WO2024079960A1 - 発光装置、前照灯及びそれを備えた車両 - Google Patents

発光装置、前照灯及びそれを備えた車両 Download PDF

Info

Publication number
WO2024079960A1
WO2024079960A1 PCT/JP2023/026930 JP2023026930W WO2024079960A1 WO 2024079960 A1 WO2024079960 A1 WO 2024079960A1 JP 2023026930 W JP2023026930 W JP 2023026930W WO 2024079960 A1 WO2024079960 A1 WO 2024079960A1
Authority
WO
WIPO (PCT)
Prior art keywords
phosphor
light
emitting device
light emitting
formula
Prior art date
Application number
PCT/JP2023/026930
Other languages
English (en)
French (fr)
Inventor
はるか 日野
由紀子 佐野
Original Assignee
日亜化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日亜化学工業株式会社 filed Critical 日亜化学工業株式会社
Publication of WO2024079960A1 publication Critical patent/WO2024079960A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/59Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing silicon
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/61Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing fluorine, chlorine, bromine, iodine or unspecified halogen elements
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/64Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing aluminium
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/14Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21WINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO USES OR APPLICATIONS OF LIGHTING DEVICES OR SYSTEMS
    • F21W2102/00Exterior vehicle lighting devices for illuminating purposes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources

Definitions

  • the present invention relates to a light-emitting device, a headlamp, and a vehicle equipped with the same.
  • the headlights of road transport vehicles such as four-wheeled motor vehicles and two-wheeled motor vehicles, tractor-type vehicles such as vehicles for leveling, transporting, and loading, and excavator-type vehicles for construction machinery such as excavators, use lighting fixtures such as halogen lamps, HID lamps (High-Intensity Discharge Lamps), and light-emitting devices that use semiconductor light-emitting elements as excitation light sources.
  • lighting fixtures such as halogen lamps, HID lamps (High-Intensity Discharge Lamps), and light-emitting devices that use semiconductor light-emitting elements as excitation light sources.
  • automobile headlights are installed symmetrically on the left and right sides of the front, one or more of which are lower than the driver's point of view. Headlights are equipped with a high beam (headlight for driving) lamp and a low beam (headlight for passing other vehicles) lamp, and these can be switched between. High beams illuminate the area relatively far ahead, for example up to about 100 meters, and low beams illuminate
  • Patent Document 1 discloses a vehicle headlamp that includes a first lamp unit that is turned on in low beam mode, and a first lamp unit and a second lamp unit that are turned on simultaneously in high beam mode.
  • the first lamp unit uses a white light-emitting LED that emits light at a correlated color temperature of 4000K to 6500K as the light source
  • the second lamp unit uses a metal halide lamp, a type of HID lamp that emits light at a correlated color temperature of 4000K to 5000K as the light source.
  • the light emitted from the headlights can stimulate the vision of the driver of the preceding or oncoming vehicle, causing glare that makes it difficult to see and makes it uncomfortable. Glare is a sensation caused by an inappropriate luminance distribution or extreme luminance contrast within the field of vision, and is accompanied by discomfort and a decrease in the ability to see (JIS Z9110). Furthermore, the light emitted from the headlights can also cause glare to the driver of the moving vehicle due to reflected light.
  • An object of one aspect of the present invention is to provide a light-emitting device, a headlamp, and a vehicle including the same that can reduce glare and have improved durability.
  • the first aspect is a light emitting device including a wavelength conversion member including a light emitting element having an emission peak wavelength in the range of 400 nm to 490 nm, a first phosphor having an emission peak wavelength in the range of 480 nm to less than 580 nm, and a second phosphor having an emission peak wavelength in the range of 580 nm to 680 nm and having a composition different from that of the first phosphor, the light emitting device emitting light having a first luminance ratio Ls/L of 0.9 or less, which is calculated from the following formula (1) and is the ratio of a first effective radiance Ls of the light emitted by the light emitting device in the range of 380 nm to 780 nm taking into account the standard luminous efficiency curve for human photopic vision defined by the CIE (Commission Internationale de Illumination) to a luminance L of the light emitted by the light emitting device in the range of 380 nm to 780 nm taking into account the
  • S( ⁇ ) is the spectral radiance of the light emitted by the light emitting device
  • V( ⁇ ) is the standard luminous efficiency curve for human photopic vision defined by the CIE
  • Gs( ⁇ ) is the spectral sensitivity of human S-cones in the wavelength ⁇ range of 380 nm to 550 nm.
  • Ln 1 3-e Ce e (Al 1-a Ga a ) 5 O 12 (1A) (In formula (1A), Ln 1 is at least one element selected from the group consisting of Y, Gd, Tb, and Lu, and a and e satisfy 0 ⁇ a ⁇ 0.5 and 0.019 ⁇ e ⁇ 0.2.)
  • the second aspect is a light emitting device including a wavelength conversion member including a light emitting element having an emission peak wavelength in the range of 400 nm to 490 nm, a first phosphor having an emission peak wavelength in the range of 480 nm to less than 580 nm, and a second phosphor having an emission peak wavelength in the range of 580 nm to 680 nm and a composition different from that of the first phosphor, the light emitting device emits light having a second luminance ratio B/A of 0.104 or less, which is the ratio of a second effective radiance B of the light emitting device in the range of 300 nm to 800 nm, taking into account the scattering intensity curve for wavelength when the scattering intensity of Rayleigh scattering at a wavelength of 300 nm is set to 1, to a radiance A of the light emitted by the light emitting device in the range of 300 nm to 800 nm, and is derived from the following formula (2):
  • Ln 1 3-e Ce e (Al 1-a Ga a ) 5 O 12 (1A) (In formula (1A), Ln 1 is at least one element selected from the group consisting of Y, Gd, Tb, and Lu, and a and e satisfy 0 ⁇ a ⁇ 0.5 and 0.019 ⁇ e ⁇ 0.2.)
  • the third aspect is a headlamp equipped with the light-emitting device.
  • the fourth aspect is a vehicle equipped with the light-emitting device or the headlight.
  • a light-emitting device a headlamp, and a vehicle equipped therewith that can reduce glare and have improved durability.
  • FIG. 1 shows a standard luminous efficiency curve V( ⁇ ) for human photopic vision defined by the CIE as disclosed in Non-Patent Document 2.
  • FIG. 1 is a graph showing the Rayleigh scattering intensity curve Dc( ⁇ ) where the scattering intensity at a wavelength of 300 nm is taken as 1.
  • FIG. 1 is a schematic plan view of a light emitting device.
  • FIG. 1 is a schematic cross-sectional view of a light emitting device.
  • FIG. 1 is an enlarged view of a part of a schematic cross section of a light emitting device.
  • FIG. FIG. FIG. 4 is a diagram showing an emission spectrum of the light emitting device according to Example 1 before a reliability evaluation test.
  • FIG. 13 is a diagram showing the emission spectrum of the light emitting device according to Example 1 after a reliability evaluation test. 13 is a photograph showing a binarized light-transmitting surface of the light-emitting device according to Example 1 after a reliability evaluation test. 13 is a photograph showing a binarized light-transmitting surface of the light-emitting device according to Comparative Example 1 after a reliability evaluation test.
  • the embodiment shown below is an example of a light-emitting device, a headlamp, and a vehicle equipped with the same in order to embody the technical idea of the present invention, and the present invention is not limited to the light-emitting device, the headlamp, and the vehicle equipped with the same shown below.
  • the members shown in the claims are in no way limited to the members of the embodiments.
  • the dimensions, materials, shapes, and relative positions of the components described in the embodiments are merely explanatory examples, and are not intended to limit the scope of the present invention, unless otherwise specified.
  • each component in the composition refers to the total amount of the multiple substances present in the composition when multiple substances corresponding to each component are present in the composition, unless otherwise specified.
  • the full width at half maximum refers to the wavelength width at which the emission intensity is 50% of the emission intensity at the emission peak wavelength showing the maximum emission intensity in the emission spectrum.
  • Vehicle headlamps use various light sources, such as HID lamps, halogen lamps, and light-emitting devices using LEDs, depending on the characteristics of luminous flux and energy.
  • the glare and apparent brightness that are felt to be dazzling differ depending on the light source.
  • the brightness of the road surface is also affected by blue light components and the correlated color temperature of light.
  • Non-Patent Document 1 discloses an evaluation that LED light sources with a high correlated color temperature, for example 6600K, are felt to be dazzling by humans, regardless of whether they are elderly or not (Non-Patent Document 1: Hashimoto Hiroshi et al., "Effect of Differences in Color Temperature of White LEDs on Glare," Japan Automobile Research Institute, Preventive Safety Research Department, October 2006, Automobile Research, Vol. 28, No. 10, pp. 569 to 572). The glare that humans find unpleasant also differs depending on the decrease in retinal illuminance and deterioration of rod cells, and glare may also change depending on the age of the person.
  • Non-Patent Document 2 discloses the following formula (3) of a new spectral luminosity VK( ⁇ ) corresponding to glare, which takes into account the spectral sensitivity Gs( ⁇ ) of human S-cones at wavelength ⁇ in the standard luminosity curve V ( ⁇ ) of human photopic vision used in the side light system of the CIE 1931 color system (Non-Patent Document 2: Kobayashi Masaji et al., "Research on the Influence of the Spectral Distribution of Headlamp Light Sources on Discomfort Glare," Society of Automotive Engineers of Japan Academic Conference Preprints, No. 5 to 10, pp. 9 to 14).
  • the term “spectral radiance” is synonymous with the term “spectral distribution.”
  • FIG. 1A is the spectral sensitivity Gs( ⁇ ) of a human S cone disclosed in Non-Patent Document 2. Based on FIG. 1A, the value of the spectral sensitivity Gs( ⁇ ) of a human S cone can be derived. The spectral sensitivity Gs( ⁇ ) of a human S cone has a peak of spectral sensitivity in the range of 380 nm to 550 nm.
  • FIG. 1B is the standard luminous efficiency curve V( ⁇ ) of human photopic vision defined by the CIE disclosed in Non-Patent Document 2. The relative values shown in FIG. 1A to FIG. 1C are values in which the peak top of the standard luminous efficiency curve V( ⁇ ) of human photopic vision defined by the CIE is set to 1. Based on FIG.
  • 1B the value of the standard luminous efficiency curve V( ⁇ ) of human photopic vision defined by the CIE can be derived.
  • K is a coefficient that determines the contribution ratio of the spectral sensitivity Gs( ⁇ ) of human S-cones.
  • the coefficient K in the case of a halogen light bulb is 1.260.
  • the luminance L of the light emitted by the light-emitting device is calculated by the following formula (4).
  • the luminance L of the light emitted by the light-emitting device is the integral of the spectral radiance S( ⁇ ) of the light-emitting device in the range of 380 nm to 780 nm and the standard luminous efficiency curve V( ⁇ ) of human photopic vision defined by the CIE.
  • the first effective radiance Ls of the light emitted by the light emitting device is derived by the following formula (5):
  • the first luminance ratio Ls/L of the light emitted by the light emitting device is the ratio of the first effective radiance Ls of the light emitted by the light emitting device, taking into account the standard luminous efficacy curve for human photopic vision defined by the CIE and the spectral sensitivity of human S-cones, to the luminance L of the light emitted by the light emitting device, taking into account the standard luminous efficacy curve for human photopic vision defined by the CIE.
  • the first luminance ratio Ls/L represents the degree of reduction in glare of the light emitted by the light emitting device.
  • the light emitting device of the first embodiment includes a light emitting element having an emission peak wavelength in the range of 400 nm to 490 nm, a first phosphor having an emission peak wavelength in the range of 480 nm to less than 580 nm, and a second phosphor having an emission peak wavelength in the range of 580 nm to 680 nm and a composition different from that of the first phosphor.
  • the light emitting device emits light with a first luminance ratio Ls/L of 0.9 or less, which is derived from the following formula (1).
  • S( ⁇ ) is the spectral radiance of the light emitted by the light emitting device
  • V( ⁇ ) is the standard luminous efficiency curve for human photopic vision defined by the CIE
  • Gs( ⁇ ) is the spectral sensitivity of human S-cones in the wavelength ⁇ range of 380 nm to 550 nm.
  • the first luminance ratio Ls/L of the light emitted by the light emitting device is 0.9 or less, light with reduced glare is emitted from the light emitting device. If the first luminance ratio Ls/L of the light emitted by the light emitting device exceeds 0.9, the luminance ratio becomes close to the luminance L of the light emitted by the light emitting device without taking into account the spectral sensitivity of human S-cones, and glare is not reduced. In order to reduce glare that is unpleasant to humans, the first luminance ratio Ls/L of the light emitted by the light emitting device is preferably 0.85 or less, more preferably 0.83 or less, even more preferably 0.80 or less, and may be 0.7 or less.
  • the first luminance ratio Ls/L of the light emitted by the light emitting device may be 0.1 or more, may be 0.2 or more, preferably 0.3 or more, more preferably 0.4 or more, and even more preferably 0.5 or more.
  • a light emitting device that emits light with a first luminance ratio Ls/L of 0.9 or less preferably emits light with a second luminance ratio A/B of 0.104 or less, which will be described later.
  • a light emitting device that emits light with a first luminance ratio Ls/L of 0.9 or less and a second luminance ratio A/B of 0.104 or less, which will be described later, can project light over long distances while reducing glare.
  • the light emitting device of the first embodiment that can project light over long distances while reducing glare can be used in a headlight and a vehicle equipped with this headlight.
  • a headlight using the light emitting device of the first embodiment and a vehicle equipped with this headlight can project light over long distances while reducing the glare of the light emitted from the headlight and the vehicle.
  • the first phosphor contains a rare earth aluminate phosphor having a composition represented by the following formula (1A).
  • Ln 1 3-e Ce e (Al 1-a Ga a ) 5 O 12 (1A) (In formula (1A), Ln 1 is at least one element selected from the group consisting of Y, Gd, Tb, and Lu, and a and e satisfy 0 ⁇ a ⁇ 0.5 and 0.019 ⁇ e ⁇ 0.2.)
  • the rare earth aluminate phosphor represented by the formula (1A) has a large variable e, 0.019 or more and 0.2 or less (0.019 ⁇ e ⁇ 0.2), which represents the molar ratio of Ce, an activator element in the composition. Therefore, the content of the first phosphor contained in the light emitting device can be reduced, and even if the content of the first phosphor is small, the light emitting device can emit light of the desired color tone.
  • the light emitting device has a large variable e, 0.019 or more and 0.2 or less (0.019 ⁇ e ⁇ 0.2), which represents the molar ratio of Ce, an activator element in the composition of the rare earth aluminate phosphor represented by the formula (1A).
  • the content of the first phosphor contained in the light emitting device can be reduced, the heat generated from the phosphor can be reduced, deterioration of the light emitting device due to heat, such as cracking, can be suppressed, and the durability of the light emitting device can be increased.
  • variable e representing the molar ratio of Ce, which is an activation element
  • the variable e representing the molar ratio of Ce, which is an activation element
  • the variable a representing the molar ratio of Ga, which is the product of the variable a and 5
  • the variable a representing the molar ratio of Ga, which is the product of the variable a and 5
  • the variable a may be in the range of 0 to 0.45 (0 ⁇ a ⁇ 0.45), or in the range of 0 to 0.40 (0 ⁇ a ⁇ 0.40).
  • the light emitting device of the second embodiment includes a light emitting element having an emission peak wavelength in the range of 440 nm to 490 nm, a first phosphor having an emission peak wavelength in the range of 480 nm to less than 580 nm, and a second phosphor having an emission peak wavelength in the range of 580 nm to 680 nm and a composition different from that of the first phosphor.
  • the light emitting device emits light in which the second luminance ratio B/A, which is the ratio of the second effective radiance B of the light emitting device in the range of 300 nm to 800 nm, taking into account the scattering intensity curve for wavelength when the scattering intensity of Rayleigh scattering at a wavelength of 300 nm is set to 1, to the radiance A of the light emitting device in the range of 300 nm to 800 nm, is 0.104 or less.
  • the second luminance ratio B/A which is the ratio of the second effective radiance B of the light emitting device in the range of 300 nm to 800 nm, taking into account the scattering intensity curve for wavelength when the scattering intensity of Rayleigh scattering at a wavelength of 300 nm is set to 1, to the radiance A of the light emitting device in the range of 300 nm to 800 nm, is 0.104 or less.
  • S( ⁇ ) is the spectral radiance of the light emitted by the light emitting device
  • Dc( ⁇ ) is a scattering intensity curve for Rayleigh scattering with the scattering intensity of Rayleigh scattering at a wavelength of 300 nm set to 1.
  • the scattering of light caused by the interaction between light and particles is determined by the relative relationship between the wavelength ⁇ of light and the size D of the particles.
  • the size D of the particles contained in the air is much smaller than the wavelength ⁇ of light.
  • Rayleigh scattering is the scattering of light by particles smaller than the wavelength of light. In air, the shorter the wavelength of light, the more easily it is scattered. If the scattering of light is suppressed, the light can be made to reach a long distance.
  • a light-emitting device that can make light reach a long distance can be suitably used for a headlamp in high beam mode that illuminates a relatively long distance ahead, for example, about 100 m.
  • the light-emitting device of the second embodiment can suppress scattering and make light reach a relatively long distance.
  • a headlamp using the light-emitting device of the second embodiment and a vehicle equipped with this headlamp can make light reach a relatively long distance.
  • the radiance A of the light emitted by the light emitting device is calculated by the following formula (6).
  • the radiance A of the light emitted by the light emitting device is the integral value of the spectral radiance S( ⁇ ) of the light emitting device in the range of 300 nm to 800 nm.
  • Figure 2 shows the scattering intensity curve Dc( ⁇ ) versus wavelength when the scattering intensity of Rayleigh scattering at a wavelength of 300 nm is set to 1.
  • the second effective radiance B of the light emitted by the light emitting device is derived by the following formula (7).
  • the second effective radiance B of the light emitted by the light emitting device is the integral value of the scattering intensity curve Dc( ⁇ ) and the spectral radiance S( ⁇ ) of the light emitting device in the range of 300 nm to 800 nm.
  • the second luminance ratio B/A of the light emitted by the light emitting device is the ratio of the second effective radiance B of the light emitted by the light emitting device in the range of 300 nm to 800 nm, taking into account the scattering intensity curve for wavelength when the scattering intensity of Rayleigh scattering at a wavelength of 300 nm is set to 1, to the radiance A of the light emitted by the light emitting device in the range of 300 nm to 800 nm.
  • the second luminance ratio B/A represents the degree of scattering of the light emitted by the light emitting device.
  • the second luminance ratio B/A of the light emitted by the light emitting device is 0.104 or less, scattering is suppressed and light that reaches a relatively long distance is emitted from the light emitting device. If the second luminance ratio B/A of the light emitted by the light emitting device exceeds 0.104, it becomes close to the radiance A of the light emitted by the light emitting device without taking Rayleigh scattering into consideration.
  • the second luminance ratio B/A of the light emitted by the light emitting device is preferably 0.102 or less, more preferably 0.100 or less, even more preferably 0.099 or less, even more preferably 0.098 or less, particularly preferably 0.090 or less, and even more particularly preferably 0.085 or less.
  • the second luminance ratio B/A of the light emitted by the light emitting device is preferably 0.104 or less, and the second luminance ratio B/A of the light emitted by the light emitting device is preferably a small value, but if the second luminance ratio B/A of the light emitted by the light emitting device becomes too small, the spectral radiance becomes small, and it may be difficult to make the light reach a relatively long distance.
  • the light emitted by the light emitting device may have a second luminance ratio B/A of 0.01 or more, or 0.02 or more, preferably 0.03 or more, more preferably 0.04 or more, and even more preferably 0.05 or more.
  • a light emitting device that emits light with a second luminance ratio B/A of 0.104 or less emits light with the aforementioned first luminance ratio Ls/L of 0.9 or less.
  • a light emitting device that emits light with a second luminance ratio A/B of 0.104 or less and a first luminance ratio Ls/L of 0.9 or less can project light relatively far and reduce glare.
  • the first phosphor includes a rare earth aluminate phosphor having a composition represented by the formula (1A).
  • the variable e representing the molar ratio of Ce, which is an activator element may be in the range of 0.019 to 0.118 (0.019 ⁇ e ⁇ 0.118), or in the range of 0.019 to 0.115 (0.019 ⁇ e ⁇ 0.115).
  • the rare earth aluminate phosphor represented by the formula (1A) has a large variable e representing the molar ratio of Ce, which is an activator element in the composition, of 0.019 to 0.2 (0.019 ⁇ e ⁇ 0.2).
  • the content of the first phosphor contained in the light emitting device can be reduced, and even if the content of the first phosphor is small, the light emitting device can emit light of a desired color tone.
  • the light emitting device has a large variable e, which represents the molar ratio of Ce, an activation element in the composition of the rare earth aluminate phosphor represented by the formula (1A)
  • the content of the first phosphor contained in the light emitting device can be reduced, the heat emitted from the phosphor can be reduced, deterioration of the light emitting device due to heat can be suppressed, and the durability of the light emitting device can be increased.
  • a light emitting device that emits light with a first luminance ratio Ls/L of 0.9 or less and/or a light emitting device that emits light with a second luminance ratio B/A of 0.104 or less will be described. It is preferable that the light emitting device that emits light with a first luminance ratio Ls/L of 0.9 or less and the light emitting device that emits light with a second luminance ratio B/A of 0.104 or less have correlated color temperatures in the same range, and may be light emitting devices of the same form using the same materials.
  • the light emitting device preferably emits light with a correlated color temperature of 1800K or more and 5000K or less, and more preferably emits light with a correlated color temperature of 2000K or more and 5000K or less.
  • a light emitting device provided in a headlight emits light with a lower correlated color temperature, which can reduce glare that is perceived as dazzling by the driver of a preceding vehicle, an oncoming vehicle, or the driver of the traveling vehicle itself.
  • the light-emitting element has an emission peak wavelength in the range of 400 nm to 490 nm.
  • the emission peak wavelength of the light-emitting element is preferably in the range of 420 nm to 480 nm, and may be in the range of 440 nm to 460 nm. At least a part of the light emitted by the light-emitting element is used as excitation light for the first phosphor and the second phosphor, so it is preferable that the light-emitting element has an emission peak wavelength that easily excites those phosphors.
  • the full width at half maximum of the emission spectrum of the light-emitting element is preferably 30 nm or less, more preferably 25 nm or less, and even more preferably 20 nm or less.
  • the first phosphor is excited by the emission of the light emitting element having an emission peak wavelength in the range of 400 nm to 490 nm, and emits light having an emission peak wavelength in the range of 480 nm to less than 580 nm.
  • the first phosphor preferably has a full width at half maximum of an emission spectrum in the range of 90 nm to 125 nm, may be in the range of 100 nm to 124 nm, or may be in the range of 110 nm to 123 nm.
  • the first phosphor When the first phosphor has an emission peak wavelength in the range of 480 nm to less than 580 nm, it converts the wavelength of the excitation light from the light emitting element, and a mixed color light of the light from the light emitting element and the light wavelength-converted by the first phosphor and the second phosphor is emitted from the light emitting device.
  • the first phosphor preferably includes a rare earth aluminate phosphor having a composition represented by the formula (1A) and at least one selected from the group consisting of first nitride phosphors having a composition represented by the following formula (1B): LawLn2xCeZSi6Ny ( 1B ) (In formula (1B), Ln2 essentially contains at least one selected from the group consisting of Y and Gd, and may contain at least one selected from the group consisting of Sc and Lu, and when the Ln2 element contained in 1 mole of the composition is 100 mol%, the total of Y and Gd contained in Ln2 is 90 mol% or more, and w, x, y, and z satisfy 1.2 ⁇ w ⁇ 2.2, 0.5 ⁇ x ⁇ 1.2, 10 ⁇ y ⁇ 12, 0.5 ⁇ z ⁇ 1.2, 1.80 ⁇ w+x ⁇ 2.40, and 2.9 ⁇ w+x+z ⁇ 3.1.)
  • the first phosphor may include at least one phosphor selected from the group consisting of alkaline earth metal aluminate phosphors and alkaline earth metal halosilicate phosphors.
  • the alkaline earth metal aluminate phosphor is, for example, a phosphor that contains at least strontium and is activated with europium, and has, for example, a composition represented by the following formula (1C).
  • the alkaline earth metal halosilicate is, for example, a phosphor that contains at least calcium and chlorine, and is activated with europium, and has, for example, a composition represented by the following formula (1D).
  • Sr4Al14O25 Eu ( 1C ) (Ca,Sr,Ba) 8MgSi4O16 (F,Cl , Br) 2 : Eu (1D)
  • a part of Sr may be substituted with at least one element selected from the group consisting of Mg, Ca, Ba and Zn.
  • the alkaline earth metal aluminate phosphor having a composition represented by formula (1C) and the alkaline earth metal halosilicate phosphor having a composition represented by formula (1D) have an emission peak wavelength in the range of 480 nm or more and less than 520 nm, and preferably have an emission peak wavelength in the range of 485 nm or more and 515 nm or less.
  • the alkaline earth metal aluminate phosphor having a composition represented by formula (1C) and the alkaline earth metal halosilicate phosphor having a composition represented by formula (1D) have a full width at half maximum in their emission spectra of, for example, 30 nm or more, preferably 40 nm or more, and more preferably 50 nm or more, and for example, 80 nm or less, preferably 70 nm or less.
  • the part before the colon (:) represents the molar ratio of each element in 1 mole of the composition of the host crystal and the phosphor, and the part after the colon (:) represents the activator element.
  • a plurality of elements separated by a comma (,) means that at least one of these elements is contained in the composition, and two or more of the elements may be contained in combination.
  • the first phosphor may include at least one phosphor selected from the group consisting of a ⁇ -sialon phosphor, a first sulfide phosphor, a scandium-based phosphor, an alkaline earth metal silicate phosphor, and a lanthanoid silicon nitride phosphor.
  • the ⁇ -sialon phosphor has a composition represented by, for example, the following formula (1E).
  • the first sulfide phosphor has a composition represented by, for example, the following formula (1F).
  • the scandium-based phosphor has a composition represented by, for example, the following formula (1G).
  • the alkaline earth metal silicate phosphor has a composition represented by, for example, the following formula (1H) or the following formula (1J).
  • the lanthanoid silicon nitride phosphor has a composition represented by, for example, the following formula (1K).
  • M3 is at least one element selected from the group consisting of Be, Mg, Ca, Ba, and Zn.) (Ca,Sr) Sc2O4 : Ce (1G) (Ca,Sr) 3 (Sc,Mg) 2Si3O12 : Ce( 1H ) (Ca,Sr,Ba) 2SiO4 :Eu ( 1J ) (La,Y,Gd,Lu) 3Si6N11 : Ce( 1K )
  • the ⁇ -sialon phosphor, the first sulfide phosphor, the scandium-based phosphor, the alkaline earth metal silicate phosphor, and the lanthanoid silicon nitride phosphor each have an emission peak wavelength in the range of 520 nm or more and less than 580 nm, and preferably have an emission peak wavelength in the range of 525 nm or more and 565 nm or less.
  • the ⁇ -sialon phosphor, the first sulfide phosphor, the scandium-based phosphor, the alkaline earth metal silicate phosphor, and the lanthanoid nitride phosphor each have a full width at half maximum in the emission spectrum of, for example, 20 nm or more, preferably 30 nm or more, and for example, 120 nm or less, preferably 115 nm or less.
  • the first phosphor may include at least one phosphor selected from the group consisting of a rare earth aluminate phosphor having a composition represented by the formula (1A), a first nitride phosphor having a composition represented by the formula (1B), an alkaline earth metal aluminate phosphor having a composition represented by the formula (1C), an alkaline earth metal halosilicate phosphor having a composition represented by the formula (1D), a ⁇ -sialon phosphor having a composition represented by the formula (1E), a first sulfide phosphor having a composition represented by the formula (1F), a scandium-based phosphor having a composition represented by the formula (1G), an alkaline earth metal silicate phosphor having a composition represented by the formula (1H), an alkaline earth metal silicate phosphor having a composition represented by the formula (1J), and a lanthanoid silicon nitride phosphor having a composition represented by the formula (1K).
  • the second phosphor is excited by the emission of a light emitting element having an emission peak wavelength in the range of 400 nm to 490 nm, emits light having an emission peak wavelength in the range of 580 nm to 680 nm, and has a composition different from that of the first phosphor.
  • the second phosphor preferably has a full width at half maximum in the emission spectrum in the range of 3 nm to 15 nm.
  • a full width at half maximum in the emission spectrum in the range of 60 nm to 125 nm.
  • a second phosphor for example, it is preferable to include a second nitride phosphor having a composition represented by the following formula (2A), a third nitride phosphor having a composition represented by the following formula (2B), or an ⁇ -sialon phosphor having a composition represented by the following formula (2G).
  • the second phosphor converts the wavelength of the excitation light from the light emitting element, and a mixed color of the light from the light emitting element and the light wavelength-converted by the first phosphor and the second phosphor is emitted from the light emitting device.
  • the second phosphor preferably includes at least one selected from the group consisting of a second nitride phosphor having a composition represented by the following formula (2A), a third nitride phosphor having a composition represented by the following formula (2B), a fluoride phosphor having a composition represented by the following formula (2C), a fluoride phosphor having a composition represented by the following formula (2C') which is different in composition from that of the following formula (2C), and an ⁇ -sialon phosphor having a composition represented by the following formula (2G).
  • the second nitride phosphor having a composition represented by the following formula (2A) may be referred to as a BSESN phosphor
  • the third nitride phosphor having a composition represented by the following formula (2B) may be referred to as a SCASN phosphor.
  • M12Si5N8 Eu ( 2A )
  • M1 is an alkaline earth metal element including at least one selected from the group consisting of Ca, Sr, and Ba.
  • SrqCasAltSiuNv Eu ( 2B )
  • Eu ( 2B ) In formula (2B), q, s, t, u, and v respectively satisfy 0 ⁇ q ⁇ 1, 0 ⁇ s ⁇ 1, q+s ⁇ 1, 0.9 ⁇ t ⁇ 1.1, 0.9 ⁇ u ⁇ 1.1, and 2.5 ⁇ v ⁇ 3.5.
  • A includes at least one selected from the group consisting of K + , Li + , Na + , Rb + , Cs + and NH 4 + , among which K + is preferred.
  • M 2 includes at least one element selected from the group consisting of Group 4 elements and Group 14 elements, among which Si and Ge are preferred.
  • b satisfies 0 ⁇ b ⁇ 0.2
  • c is the absolute value of the charge of the [M 2 1-b Mn 4+ b F d ] ion, and d satisfies 5 ⁇ d ⁇ 7.
  • A' c' [M 2 ' 1-b' Mn 4 + b' F d' ] (2C') (In formula (2C'), A' includes at least one selected from the group consisting of K + , Li + , Na + , Rb + , Cs + and NH 4 + , among which K + is preferred.
  • M 2 ' includes at least one element selected from the group consisting of Group 4 elements, Group 13 elements and Group 14 elements, among which Si and Al are preferred.
  • b' satisfies 0 ⁇ b' ⁇ 0.2
  • c' is the absolute value of the charge of the [M 2 ' 1-b' Mn 4+ b' F d' ] ion, and d' satisfies 5 ⁇ d' ⁇ 7.
  • M8 includes at least one element selected from the group consisting of Li, Mg, Ca, Sr, Y, and lanthanoid elements (excluding La and Ce), and v3, w3, and x3 respectively satisfy 0 ⁇ v3 ⁇ 2.0, 2.0 ⁇ w3 ⁇ 6.0, and 0 ⁇ x3 ⁇ 1.0.)
  • the second phosphor may include at least one phosphor selected from the group consisting of a fluorogermanate phosphor, a fourth nitride phosphor, and a second sulfide phosphor.
  • the fluorogermanate phosphor has a composition represented by the following formula (2D), for example.
  • the fourth nitride phosphor has a composition represented by the following formula (2E), for example.
  • the second sulfide phosphor has a composition represented by the following formula (2F), for example. (i-j) MgO. (j/2) Sc2O3 . kmGgF2 . mCaF2 . (1-n) GeO2 .
  • M4 is at least one selected from the group consisting of Al, Ga, and In. i, j, k, m, n, and z each satisfy 2 ⁇ i ⁇ 4, 0 ⁇ j ⁇ 0.5, 0 ⁇ k ⁇ 1.5, 0 ⁇ m ⁇ 1.5, and 0 ⁇ n ⁇ 0.5.)
  • M5v2M6w2Al3 - y2Siy2Nz2 M7 ( 2E )
  • M5 is at least one element selected from the group consisting of Ca, Sr, Ba, and Mg
  • M6 is at least one element selected from the group consisting of Li, Na, and K
  • M7 is at least one element selected from the group consisting of Eu, Ce, Tb, and Mn
  • v2, w2, y2, and z2 satisfy 0.80 ⁇ v2 ⁇ 1.05, 0.80 ⁇ w2 ⁇ 1.05, 0 ⁇ y2 ⁇ 0.5, and 3.0 ⁇ z2 ⁇ 5.0,
  • the fluorogermanate phosphor having the composition represented by formula (2D) may have a composition represented by the following formula (2d): 3.5MgO.0.5MgF2.GeO2 : Mn (2d)
  • the fourth nitride phosphor having a composition represented by formula (2E) may have a composition represented by the following formula (2e): M5v2M6w2M7x2Al3 - y2Siy2Nz2 ( 2e )
  • M5 , M6 , and M7 are respectively defined as M5 , M6 , and M7 in formula (2E) and are at least one element selected from the group consisting of Ce, Tb, and Mn;
  • v2, w2, y2, and z2 are respectively defined as v2, w2, y2, and z2 in formula (2E), and x2 satisfies 0.001 ⁇ x2 ⁇ 0.1.
  • the fluorogermanate phosphor, the fourth nitride phosphor, and the second sulfide phosphor each have an emission peak wavelength in the range of 580 nm to 680 nm, and preferably in the range of 600 nm to 630 nm.
  • the fluorogermanate phosphor, the fourth nitride phosphor, and the second sulfide phosphor each have a full width at half maximum of the emission peak in the emission spectrum of, for example, 5 nm to 100 nm, and preferably 6 nm to 90 nm.
  • the second phosphor preferably includes at least one selected from the group consisting of a second nitride phosphor having a composition represented by the formula (2A), a third nitride phosphor having a composition represented by the formula (2B), a fluoride phosphor having a composition represented by the formula (2C), a fluoride phosphor having a composition represented by the formula (2C'), a fluorogermanate phosphor having a composition represented by the formula (2D), a fourth nitride phosphor having a composition represented by the formula (2E), a second sulfide phosphor having a composition represented by the formula (2F), and an ⁇ -sialon phosphor having a composition represented by the formula (2G).
  • the second phosphor may include at least one phosphor alone, or may include two or more phosphors.
  • the second phosphor contains at least one selected from the group consisting of a second nitride phosphor (BSESN phosphor) having a composition represented by the formula (2A), a third nitride phosphor (SCASN phosphor) having a composition represented by the formula (2B), and an ⁇ -sialon phosphor having a composition represented by the formula (2G).
  • BSESN phosphor second nitride phosphor
  • SCASN phosphor third nitride phosphor
  • ⁇ -sialon phosphor having a composition represented by the formula (2G.
  • At least one second phosphor selected from the group consisting of a BSESN phosphor, a SCASN phosphor, and an ⁇ -sialon phosphor has good temperature characteristics and exhibits little change in emission energy due to temperature changes.
  • a light emitting device including a wavelength conversion member containing a rare earth aluminate phosphor having a composition represented by the formula (1A) as the first phosphor and at least one selected from the group consisting of a BSESN phosphor, a SCASN phosphor, and an ⁇ -sialon phosphor as the second phosphor has good temperature characteristics of the first phosphor and the second phosphor, so that even when used in a cold atmosphere of, for example, -40 ° C.
  • the rate of change of the first luminance ratio Ls / L is small while maintaining the first luminance ratio Ls / L at 0.9 or less, and is not easily affected by the atmospheric temperature of the usage environment, and can emit light with reduced glare from the light emitting device. Even when the temperature of the usage environment of the light emitting device changes while maintaining the first luminance ratio Ls / L at 0.9 or less, a light emitting device that can emit light with a small rate of change of the first luminance ratio Ls / L may be said to have good temperature characteristics.
  • a light emitting device including a wavelength conversion member containing a rare earth aluminate phosphor having a composition represented by the formula (1A) as a first phosphor and at least one selected from the group consisting of a BSESN phosphor, a SCASN phosphor, and an ⁇ -sialon phosphor as a second phosphor has good temperature characteristics of the first phosphor and the second phosphor, and is therefore less susceptible to the ambient temperature of the usage environment, and can emit light from the light emitting device that has a small rate of change in the second luminance ratio B/A while maintaining the second luminance ratio B/A at 0.104 or less, is less susceptible to the ambient temperature of the usage environment, and suppresses scattering and reaches a relatively long distance.
  • a rare earth aluminate phosphor having a composition represented by the formula (1A) as a first phosphor and at least one selected from the group consisting of a BSESN phosphor, a SCASN phosphor, and
  • a light emitting device that can emit light with a small rate of change in the second luminance ratio B/A even when the temperature of the usage environment of the light emitting device changes while maintaining the second luminance ratio B/A at 0.104 or less may be said to have good temperature characteristics.
  • the phosphor including the first phosphor and the second phosphor preferably has an average particle size measured by a Fisher Sub-Sieve Sizer (hereinafter also referred to as "FSSS") method in the range of 5 ⁇ m to 40 ⁇ m, more preferably in the range of 6 ⁇ m to 35 ⁇ m, and even more preferably in the range of 7 ⁇ m to 30 ⁇ m. If the average particle size of the phosphor is in the range of 5 ⁇ m to 40 ⁇ m, the light emitted from the excitation light source can be efficiently absorbed by the phosphor and wavelength converted, and light with reduced glare or light with suppressed light scattering that can reach relatively long distances can be emitted from the light emitting device.
  • FSSS Fisher Sub-Sieve Sizer
  • the rare earth aluminate phosphor having the composition represented by formula (1A) preferably has an average particle size measured by the FSSS method in the range of 15 ⁇ m to 40 ⁇ m, more preferably in the range of 16 ⁇ m to 35 ⁇ m, and even more preferably in the range of 17 ⁇ m to 30 ⁇ m. If the rare earth aluminate phosphor having the composition represented by formula (1A) has a relatively large average particle size measured by the FSSS method in the range of 15 ⁇ m to 40 ⁇ m, the content of the first phosphor contained in the light emitting device can be reduced, and even if the content of the first phosphor is low, the light emitting device can emit light of the desired color tone.
  • FIG. 3A shows an example of the light-emitting device, and is a schematic plan view of the light-emitting device 101.
  • FIG. 3B is a schematic cross-sectional view of the light-emitting device 101 shown in FIG. 3A along line III-III'.
  • the light-emitting device 101 includes a light-emitting element 10 having an emission peak wavelength in the range of 400 nm to 490 nm, and a wavelength conversion member 40 including a wavelength conversion body 41 including a first phosphor 71 and a second phosphor 72 that are excited by light from the light-emitting element 10 to emit light, and a transparent body 42 in which the wavelength conversion body 41 is arranged.
  • the light-emitting element 10 is flip-chip mounted on the substrate 1 via bumps that are conductive members 60.
  • the wavelength conversion body 31 of the wavelength conversion member 40 is provided on the light-emitting surface of the light-emitting element 10 via an adhesive layer 80.
  • the light-emitting element 10 and the wavelength conversion member 40 have their sides covered by a covering member 90 that reflects light.
  • the wavelength converter 41 includes a first phosphor 71 excited by light from the light emitting element 10 and having an emission peak wavelength in the range of 480 nm or more and less than 580 nm, and a second phosphor 72 having an emission peak wavelength in the range of 580 nm or more and 680 nm or less and having a composition different from that of the first phosphor 71.
  • the light emitting element 10 can receive power from the outside of the light emitting device 101 via wiring and a conductive member 60 formed on the substrate 1 to cause the light emitting device 101 to emit light.
  • the light emitting device 101 may include a semiconductor element 50 such as a protective element for preventing the light emitting element 10 from being destroyed by application of an excessive voltage.
  • the covering member 90 is provided so as to cover, for example, the semiconductor element 50.
  • the wavelength conversion member may be a wavelength conversion member including a phosphor and a light-transmitting material, or may be a wavelength conversion member including a light-transmitting body on which the wavelength conversion member is arranged.
  • the wavelength conversion member preferably includes a first phosphor and a second phosphor and a light-transmitting material.
  • the wavelength conversion member may be formed in a plate-like, sheet-like or layer-like shape.
  • the wavelength conversion member may include a wavelength conversion member in a shape other than a plate-like, sheet-like or layer-like shape.
  • the wavelength conversion member includes a wavelength conversion member including a first phosphor and a second phosphor and a light-transmitting material, and the wavelength conversion member preferably includes a wavelength conversion member having a total amount of the first phosphor and the second phosphor in a range of 50 parts by mass or more and 500 parts by mass or less with respect to 100 parts by mass of the light-transmitting material.
  • the total amount of the first phosphor and the second phosphor contained in the wavelength converter is within a range of 50 parts by mass to 500 parts by mass relative to 100 parts by mass of the translucent material, the total amount of the first phosphor and the second phosphor is relatively small relative to the translucent material, and the heat generated when the phosphor absorbs the excitation light and emits light can be reduced, and the deterioration of the light-emitting device due to heat can be suppressed, and the durability of the light-emitting device can be improved.
  • the total amount of the first phosphor and the second phosphor contained in the wavelength converter may be within a range of 80 parts by mass to 400 parts by mass, 90 parts by mass to 350 parts by mass, 100 parts by mass to 300 parts by mass, or 100 parts by mass to 270 parts by mass relative to 100 parts by mass of the translucent material.
  • the total amount of the first phosphor and the second phosphor is also referred to as the total amount of phosphors.
  • the wavelength conversion member includes a wavelength conversion body including a first phosphor and a second phosphor, and a translucent material, and the wavelength conversion body preferably includes a high-concentration layer in which the filling rate of the first phosphor and the second phosphor is high and the concentration of the first phosphor and the second phosphor is high in the thickness direction of the cross section, and a low-concentration layer in which the filling rate of the first phosphor and the second phosphor is low and the concentration of the first phosphor and the second phosphor is low.
  • the wavelength conversion body By including a high-concentration layer in which the filling rate of the first phosphor and the second phosphor is high, even if the total amount of phosphor relative to the translucent material is small, the wavelength conversion body is less likely to break or crack. It is preferable that the high-concentration layer of the wavelength conversion body is disposed on the light-emitting element side. By disposing the high-concentration layer on the light-emitting element side, the wavelength conversion body can dissipate heat generated from the light-emitting element through the first phosphor and the second phosphor in the wavelength conversion body.
  • the filling rate of the phosphor can be measured by observing the cross section of the wavelength conversion body or the cross section of the wavelength conversion member with a scanning electron microscope (SEM) and measuring the filling rate of the phosphor from the area ratio of the resin to the phosphor in the cross section.
  • a high-concentration layer with a high phosphor filling rate refers to a layer in which the area of the phosphor is higher than the area of the resin in the cross section of the wavelength converter or the cross section of the wavelength conversion member.
  • a low-concentration layer with a low phosphor filling rate refers to a layer in which the area of the phosphor is lower than the area of the resin in the cross section of the wavelength converter or the cross section of the wavelength conversion member.
  • the low-concentration layer may be a layer in which there is substantially no phosphor, there is no area of the phosphor, and only the area of the resin can be confirmed.
  • the ratio of the thickness of the high-concentration layer to the thickness of the low-concentration layer may be 40% or less, 35% or less, 34% or less, 3% or more, or 5% or more when the total thickness of the wavelength converter is 100%.
  • the larger the ratio of the thickness of the low-concentration layer the smaller the ratio of the thickness of the high-concentration layer, and the higher the filling rate of the first phosphor and the second phosphor contained in the high-concentration layer, and the higher the density of the high-concentration layer.
  • the filling rate of the first phosphor and the second phosphor in the high concentration layer is high and that the density of the first phosphor and the second phosphor is high.
  • FIG. 3C is a partially enlarged view of a portion P1 of the schematic cross section of the light-emitting device shown in FIG. 3B.
  • FIG. 3C may be on a different scale than FIG. 3B.
  • the wavelength converter 41 has a high-concentration layer 41a with a high filling rate of the first phosphor 71 and the second phosphor 72, and a low-concentration layer 41b with a low filling rate of the first phosphor 71 and the second phosphor 72, with the high-concentration layer 41a being disposed on the light-emitting element 10 side.
  • the low-concentration layer 41b of the wavelength converter 41 is disposed on the light-transmitting body 42 side.
  • the wavelength converter 41 is provided on the light-emitting surface of the light-emitting element 10 via an adhesive layer 80.
  • wavelength conversion members having high heat resistance such as a wavelength conversion member in which a resin composition containing a phosphor is applied to a light-transmitting body made of heat-resistant glass, or a sintered body containing a phosphor and a light-transmitting material, may be used.
  • the phosphor contained in the wavelength conversion member having high heat resistance may be a phosphor that is considered to have a relatively high heat resistance compared to other phosphors, for example, a rare earth aluminate phosphor having a composition represented by Y 3 Al 5 O 12 : Ce.
  • this rare earth aluminate phosphor Since this rare earth aluminate phosphor has a relatively low emission intensity on the long wavelength side, for example, 570 nm or more, when used in a headlamp, it is generally considered to emit light with a correlated color temperature of about 6000 K. Therefore, if the phosphor contained in the wavelength conversion member is only a rare earth aluminate phosphor having a composition represented by Y 3 Al 5 O 12 : Ce, it is considered difficult to realize a headlamp that emits light with a correlated color temperature of 5000 K or less.
  • the phosphor contained in the sintered body used in the wavelength conversion member may contain one of the first phosphor and the second phosphor alone, or may contain two or more of the first phosphor and the second phosphor.
  • the phosphor contained in the sintered body may contain a phosphor having a composition represented by the formula (1A) as the first phosphor, and may contain, for example, the following phosphor.
  • the sintered body used for the wavelength conversion member may be a sintered body containing a phosphor having a composition represented by the formula (1A) and a second nitride phosphor in one sintered body, or a combination of two layers of a sintered body containing a phosphor having a composition represented by the formula (1A) and a sintered body containing the second nitride phosphor.
  • glass may be used as a light-transmitting material
  • a wavelength converter containing, for example, glass and an ⁇ -sialon phosphor represented by the composition formula M8v3 ( Si,Al) 12 (O,N) 16 :Eu (wherein M8 is Li, Mg, Ca, Y and a lanthanide element excluding La and Ce, and v3 satisfies 0 ⁇ v3 ⁇ 2) may be used.
  • the light-emitting device can emit light with a correlated color temperature of 5000 K or less, and it is believed that by using this light-emitting device, it is possible to provide a headlamp that can reduce glare and a vehicle equipped with the same.
  • the light-transmitting material may be at least one selected from the group consisting of resin, glass, and inorganic material.
  • the resin is preferably at least one selected from the group consisting of epoxy resin, silicone resin, phenol resin, and polyimide resin.
  • the inorganic material may be at least one selected from the group consisting of aluminum oxide and aluminum nitride.
  • the resin has a Shore A hardness in the range of 30 to 80.
  • the light-transmitting material is preferably a silicone resin, and it is preferable that the silicone resin has a Shore A hardness in the range of 30 to 80.
  • the Shore A hardness of the silicone resin, which is the light-transmitting material is more preferably in the range of 40 to 75, and even more preferably in the range of 50 to 70.
  • the light-transmitting material is a silicone resin with a Shore A hardness of 30 to 80, it has excellent toughness and elongation, so even if the temperature of the environmental atmosphere changes, it flexibly expands and contracts in response to the temperature change, and the wavelength converter is less likely to break or crack, and can emit light with a first luminance ratio Ls/L maintained at 0.9 or less, and has good temperature characteristics.
  • the light-transmitting material is a silicone resin with a Shore A hardness of 30 or more and 80 or less, it flexibly expands and contracts in response to temperature changes, the wavelength converter is less likely to break or crack, light can be emitted with the second luminance ratio B/A maintained at 0.104 or less, and the temperature characteristics are good.
  • the Shore A hardness of the resin can be measured using a durometer type A in accordance with JIS K6253.
  • a wavelength converter is formed using a resin with a low Shore A hardness of less than 30 as the translucent material, the wavelength converter is soft and sticky, making it difficult to cut when separating individual light emitting devices from a composite substrate equipped with multiple light emitting elements. It may also be difficult to transport and pack the product, resulting in poor mass productivity.
  • the wavelength conversion member may include a light-transmitting body.
  • the light-transmitting body may be a plate-shaped body made of a light-transmitting material such as glass or resin. Examples of glass include borosilicate glass and quartz glass. Examples of resin include silicone resin and epoxy resin.
  • the thickness of the light-transmitting body may be any thickness that does not reduce the mechanical strength during the manufacturing process and can sufficiently support the wavelength conversion body.
  • the substrate is preferably made of an insulating material that is difficult to transmit light from the light emitting element or external light.
  • the substrate material include ceramics such as aluminum oxide and aluminum nitride, and resins such as phenol resin, epoxy resin, polyimide resin, bismaleimide triazine resin (BT resin), and polyphthalamide (PPA) resin. Ceramics are preferred as a substrate material because of their high heat resistance.
  • Adhesive layer An adhesive layer is interposed between the light emitting element and the wavelength conversion member, and fixes the light emitting element and the wavelength conversion member.
  • the adhesive constituting the adhesive layer is preferably made of a material that can optically connect the light emitting element and the wavelength conversion member.
  • the material constituting the adhesive layer is preferably at least one resin selected from the group consisting of epoxy resin, silicone resin, phenol resin, and polyimide resin.
  • Semiconductor elements that are provided as necessary in a light-emitting device include, for example, transistors for controlling light-emitting elements and protective elements for preventing damage to or performance degradation of light-emitting elements due to application of excessive voltage.
  • protective elements include Zener diodes.
  • Coating member It is preferable to use an insulating material as the material of the coating member. More specifically, phenol resin, epoxy resin, bismaleimide triazine resin (BT resin), polyphthalamide (PPA) resin, and silicone resin can be mentioned. A colorant, a phosphor, and a filler may be added to the coating member as necessary.
  • bumps can be used, and the material of the bumps can be Au or its alloys, and other conductive members can be eutectic solder (Au-Sn), Pb-Sn, lead-free solder, etc.
  • the manufacturing method of the light-emitting device preferably includes a step of arranging a light-emitting element, a step of arranging a semiconductor element as necessary, a step of forming a wavelength conversion member including a wavelength converter, a step of bonding the light-emitting element and the wavelength conversion member, and a step of forming a covering member.
  • Step of arranging the light emitting element The light emitting element is arranged on the substrate.
  • the light emitting element and the semiconductor element are, for example, flip-chip mounted on the substrate.
  • the wavelength conversion member may be obtained by forming a plate-shaped, sheet-shaped or layer-shaped wavelength conversion member on one surface of a light-transmitting body by a printing method, an adhesion method, a compression molding method or an electrodeposition method.
  • the printing method can print a composition for wavelength conversion body including a phosphor and a resin serving as a light-transmitting material on one surface of the light-transmitting body to form a wavelength conversion member including a wavelength conversion member.
  • composition for wavelength converter constituting the wavelength converter or wavelength conversion member includes a light-transmitting material, a first phosphor, and a second phosphor, and may also include a solvent.
  • the viscosity of the composition for wavelength converter decreases, and when the composition for wavelength converter is cured, even if the total amount of phosphor relative to the light-transmitting material is small, the density of the first phosphor and the second phosphor increases in the direction of gravity, and a wavelength converter or wavelength conversion member having different filling rates of the first phosphor and the second phosphor in the wavelength converter or wavelength conversion member can be manufactured.
  • the wavelength converter or wavelength conversion member is less likely to break or crack due to the presence of a portion with a high filling rate of the first phosphor and the second phosphor.
  • the high-concentration layer side having a high filling rate of the first phosphor and the second phosphor of the wavelength converter on the light-emitting element side, even when a high-output light-emitting element is used, the heat generated from the light-emitting element can be dissipated through the first phosphor and the second phosphor in the wavelength converter, and the cracks and breaks of the resin constituting the wavelength converter are suppressed, and light can be emitted with the first luminance ratio Ls / L maintained at 0.9 or less, and the temperature characteristics are good.
  • the heat generated from the light-emitting element can be dissipated through the first phosphor and the second phosphor in the wavelength converter, and the cracks and breaks of the resin constituting the wavelength converter are suppressed, and light can be emitted with the second luminance ratio B / A maintained at 0.104 or less, and the temperature characteristics are good.
  • the solvent preferably has a boiling point under standard pressure (0.101 MPa) in the range of 150°C to 320°C, more preferably in the range of 170°C to 305°C, even more preferably in the range of 180°C to 300°C, and particularly preferably in the range of 190°C to 290°C.
  • the viscosity of the wavelength converter composition is reduced, and when the composition is cured, a high-concentration layer having a high filling rate of phosphors including the first phosphor and the second phosphor in the direction of gravity and a low-concentration layer having a low filling rate of the first phosphor and the second phosphor can be formed.
  • the viscosity of the wavelength converter composition at 25°C and 1 rpm using an E-type viscometer is preferably in the range of 5 mPa ⁇ s to 400 mPa ⁇ s, more preferably in the range of 6 mPa ⁇ s to 300 mPa ⁇ s, and even more preferably in the range of 8 mPa ⁇ s to 250 mPa ⁇ s.
  • the wavelength converter composition contains a total amount of phosphors in the range of 50 parts by mass to 500 parts by mass relative to 100 parts by mass of the light-transmitting material, and the solvent content is preferably in the range of 1 part by mass to 50 parts by mass relative to 100 parts by mass of the light-transmitting material, more preferably in the range of 2 parts by mass to 40 parts by mass, and even more preferably in the range of 3 parts by mass to 30 parts by mass.
  • the solvent is a liquid organic compound, some of which evaporates (volatilizes) at room temperature, and for example, by heating at 180°C or higher, the solvent remaining in the composition for wavelength conversion body can be volatilized, the composition for wavelength conversion body can be hardened, and a wavelength conversion body or wavelength conversion member can be formed.
  • the solvent include hydrocarbon-based solvents, ketone-based solvents, alcohol-based solvents, aldehyde-based solvents, glycol-based solvents, ether-based solvents, ester-based solvents, glycol ether-based solvents, and glycol ester-based solvents.
  • Examples of the hydrocarbon-based solvents include hexane, xylene, heptane, decane, dodecane, and tridecane.
  • Examples of the ketone-based solvents include acetone and methyl ethyl ketone.
  • Examples of the alcohol-based solvents include methyl alcohol, ethyl alcohol, and isopropyl alcohol.
  • Examples of the aldehyde-based solvents include nonanal and decanal.
  • Examples of the glycol-based solvents include triethylene glycol.
  • Examples of the ether-based solvents include diethyl ether.
  • Examples of the ester-based solvents include methyl acetate and ethyl acetate.
  • glycol ether-based solvents examples include propylene glycol monomethyl ether.
  • glycol ester-based solvents include ethylene glycol monoethyl ether acetate.
  • the solvent is preferably at least one selected from the group consisting of hexane, xylene, heptane, acetone, ethanol, isopropyl alcohol, decane, dodecane, tridecane, tetradecane, pentadecane, hexadecane, nonanal, decanal, and triethylene glycol.
  • the solvent is more preferably at least one selected from the group consisting of dodecane, tetradecane, pentadecane, hexadecane, and tridecane.
  • the solvent may be used alone or in combination of two or more.
  • Wavelength converter or wavelength conversion member When the composition for wavelength converter contains a solvent, a wavelength converter or wavelength conversion member can be formed that is divided into a high-concentration layer with a high filling rate of the first phosphor and the second phosphor and a low-concentration layer with a low filling rate of the first phosphor and the second phosphor in the gravity direction when the composition for wavelength converter is cured.
  • a high-concentration layer with a high filling rate of the phosphor and a low-concentration layer with a low filling rate of the phosphor can be confirmed in the thickness direction of the cross section of the wavelength converter.
  • the filling rate of the phosphor can be measured by observing the cross section of the wavelength converter or the cross section of the wavelength conversion member with a SEM and measuring the filling rate of the phosphor from the area ratio of the resin to the phosphor in the cross section.
  • the boundary between one layer and another layer may be uneven rather than being on a straight line.
  • the wavelength conversion member is placed opposite to the light emitting surface of the light emitting element, and the wavelength conversion member is bonded to the light emitting element by an adhesive layer.
  • the wavelength conversion member includes a wavelength conversion body and a light transmitting body, and the wavelength conversion body includes a high concentration layer with a high phosphor filling rate and a low concentration layer with a low phosphor filling rate, it is preferable to arrange the high concentration layer with a high phosphor filling rate on the light emitting element side and bond the wavelength conversion member to the light emitting element.
  • the phosphor including the first phosphor and the second phosphor has a higher thermal conductivity than resin, and by arranging the high concentration layer with a high phosphor filling rate of the wavelength conversion body on the light emitting element side and bonding the wavelength conversion member, heat dissipation is improved, the wavelength conversion body is less likely to break or crack, and the temperature characteristics are good.
  • the side surfaces of the light emitting element and the wavelength conversion member are covered with a composition for the covering member.
  • This covering member is for reflecting the light emitted from the light emitting element, and when the light emitting device also includes a semiconductor element, it is preferable to form the covering member so that the semiconductor element is embedded in the covering member.
  • the process may include a process of singulating a composite substrate having a plurality of light emitting elements and semiconductor elements on one substrate into individual light emitting devices.
  • a wavelength converter is formed using a resin with a low Shore A hardness of less than 30 as the translucent material, the wavelength converter is soft and sticky, making it difficult to cut when separating individual light emitting devices from a composite substrate equipped with multiple light emitting elements. It may also be difficult to transport and pack the product, resulting in poor mass productivity.
  • the light emitting device may be disposed on a support substrate of a light source unit for the headlight and used as a headlight mounted on a vehicle.
  • the light source unit for the headlight may be, for example, a light source unit disclosed in Japanese Patent Application Laid-Open No. 2003-317513.
  • the light source unit includes, for example, a reflector, a projection lens, and a support substrate on which the light emitting device is disposed.
  • the light source unit for the headlight may be controlled to be turned on by a vehicle lamp system such as that disclosed in Japanese Patent Application Laid-Open No. 8-67199.
  • the light emitting device may be used as a light source for a headlight used in a turn signal lamp such as that disclosed in Japanese Patent Application Laid-Open No.
  • FIG. 4 is a horizontal cross-sectional view of the headlight.
  • FIG. 5 is a front view of the headlight.
  • the headlight 200 shown in FIGS. 4 and 5 is provided, for example, on the right side in front of the vehicle.
  • the headlight 200 includes a lamp body 24, an outer lens 22, a plurality of substrates 32, a plurality of light emitting devices 100, an optical filter 26, and a light guiding member 34.
  • the lamp body 24 and the outer lens 22 form a lamp chamber of the headlamp 200, and within this lamp chamber, the plurality of boards 32 and the plurality of light-emitting devices 100 are held while being waterproofed.
  • the lamp body 24 is formed, for example, from resin, so as to cover the plurality of boards 32 and the plurality of light-emitting devices 100 from the rear of the vehicle.
  • the optical filter 26 is fixed to the lamp body 24 by a plurality of screws 28. Each of the plurality of light-emitting devices 100 lights up in response to power received from the lighting control unit 12 via the board 32.
  • the headlamp may have a plurality of first lamp units in which one light-emitting device is arranged in one light source unit, as disclosed in, for example, Japanese Patent Application Publication No. 2003-317513.
  • the headlamp may also have a second lamp unit in which multiple light-emitting devices are arranged in one light source unit in which multiple reflectors, multiple projection lenses, and multiple support substrates are integrally formed, as disclosed in, for example, Japanese Patent Application Publication No. 2005-141917.
  • the headlamp may have two or more types of light-emitting devices with different first luminance ratios Ls/L. In the two or more types of light-emitting devices with different first luminance ratios Ls/L, one light-emitting device may be arranged in one light source unit.
  • two or more types of light-emitting devices may be arranged in one light source unit.
  • the headlamp may have two or more types of light-emitting devices with different second luminance ratios B/A.
  • one light-emitting device may be arranged in one light source unit.
  • Two or more types of light-emitting devices having different second luminance ratios B/A may be arranged in one light source unit.
  • the headlamp may be equipped with two or more types of light-emitting devices, with the first light-emitting device being the above-mentioned light-emitting device that emits light with a first luminance ratio Ls/L of 0.9 or less, and the second light-emitting device being a light-emitting device that emits light with a first luminance ratio Ls/L of more than 0.9.
  • the headlamp may be equipped with two or more types of light-emitting devices, with the first light-emitting device being the aforementioned light-emitting device that emits light with a second luminance ratio B/A of 0.104 or less, and the second light-emitting device being a light-emitting device that emits light with a second luminance ratio B/A of more than 0.104.
  • the second light-emitting device may be a light-emitting device that emits light having a first luminance ratio Ls/L exceeding 0.9 or a light-emitting device that emits light having a second luminance ratio B/A exceeding 0.104.
  • the second light-emitting device may have a form similar to that of the first light-emitting device shown in Figures 3A and 3B, for example.
  • the second light-emitting device may be a light-emitting device that includes, for example, a light-emitting element having an emission peak wavelength in the range of 400 nm or more and 490 nm or less, and a first phosphor having an emission peak wavelength in the range of 480 nm or more and less than 580 nm, but does not include a second phosphor.
  • the first phosphor may be a phosphor similar to the first phosphor described above.
  • the second light emitting device includes a light emitting element having an emission peak wavelength in the range of 400 nm to 490 nm, a rare earth aluminate phosphor having a composition represented by formula (1A) as a first phosphor, no second phosphor, and emits light with a first luminance ratio Ls/L exceeding 0.9 or a second luminance ratio B/A exceeding 0.104 and a correlated color temperature in the range of 5000 K to 6500 K.
  • a light emitting element having an emission peak wavelength in the range of 400 nm to 490 nm
  • a rare earth aluminate phosphor having a composition represented by formula (1A) as a first phosphor, no second phosphor, and emits light with a first luminance ratio Ls/L exceeding 0.9 or a second luminance ratio B/A exceeding 0.104 and a correlated color temperature in the range of 5000 K to 6500 K.
  • Vehicles according to the third embodiment include vehicles in which the above-mentioned light-emitting device or headlight can be mounted.
  • vehicles in which the above-mentioned light-emitting device or headlight can be mounted include road vehicles such as motorcycles and four-wheeled vehicles, railway vehicles, and vehicles used in tractor-based construction machines such as machines for leveling, transporting, and loading, or excavators such as machines for excavation.
  • Embodiments of the present invention include the following light-emitting device, headlamp, and vehicle.
  • a light emitting element having an emission peak wavelength in the range of 400 nm to 490 nm;
  • a wavelength conversion member including: a first phosphor having an emission peak wavelength in the range of 480 nm or more and less than 580 nm; and a second phosphor having an emission peak wavelength in the range of 580 nm or more and 680 nm or less and having a composition different from that of the first phosphor;
  • a light emitting device comprising: The light emitting device emits light having a first luminance ratio Ls/L of 0.9 or less, which is a ratio of a first effective radiance Ls of light emitted by the light emitting device in a range of 380 nm to 780 nm inclusive, taking into account the standard luminous efficiency curve for human photopic vision defined by the CIE (International Commission on Illumination), to a luminance L of light emitted by the light emitting device in a range of 380 nm to 780 nm inclusive, taking into account
  • the light emitting device which emits light having a correlated color temperature of 1800K or more and 5000K or less.
  • Item 4] Item 4.
  • the light emitting device according to any one of items 1 to 4, wherein the rare earth aluminate phosphor having the composition represented by formula (1A) has an average particle size, as measured by a Fisher subsieve sizer method, in the range of 15 ⁇ m to 40 ⁇ m. [Item 6] Item 6.
  • the light emitting device includes a rare earth aluminate phosphor having a composition represented by formula (1A) and further includes a first nitride phosphor having a composition represented by formula (1B): LawLn2xCeZSi6Ny ( 1B ) (In formula (1B), Ln2 essentially contains at least one selected from the group consisting of Y and Gd, and may contain at least one selected from the group consisting of Sc and Lu, and when the Ln2 element contained in 1 mole of the composition is 100 mol%, the total of Y and Gd contained in Ln2 is 90 mol% or more, and w, x, y, and z satisfy 1.2 ⁇ w ⁇ 2.2, 0.5 ⁇ x ⁇ 1.2, 10 ⁇ y ⁇ 12, 0.5 ⁇ z ⁇ 1.2, 1.80 ⁇ w+x ⁇ 2.40, and 2.9 ⁇ w+x+z ⁇ 3.1.) [Item 7]
  • the second phosphor includes at least one selected from the
  • M12Si5N8 Eu ( 2A )
  • M1 is an alkaline earth metal element including at least one selected from the group consisting of Ca, Sr, and Ba.
  • SrqCasAltSiuNv Eu ( 2B )
  • Eu ( 2B ) In formula (2B), q, s, t, u, and v respectively satisfy 0 ⁇ q ⁇ 1, 0 ⁇ s ⁇ 1, q+s ⁇ 1, 0.9 ⁇ t ⁇ 1.1, 0.9 ⁇ u ⁇ 1.1, and 2.5 ⁇ v ⁇ 3.5.
  • A includes at least one selected from the group consisting of K + , Li + , Na + , Rb + , Cs + and NH 4 +
  • M 2 includes at least one element selected from the group consisting of Group 4 elements and Group 14 elements; b satisfies 0 ⁇ b ⁇ 0.2; c is the absolute value of the charge of the [M 2 1-b
  • the wavelength conversion member comprises a wavelength conversion body including the first phosphor and the second phosphor, and a translucent material
  • the total amount of the first phosphor and the second phosphor is in the range of 50 parts by mass or more and 500 parts by mass or less per 100 parts by mass of the translucent material in the wavelength conversion body.
  • the wavelength conversion member includes a wavelength conversion body including the first phosphor and the second phosphor, and a light-transmitting material; the wavelength converter includes a high-concentration layer having a high filling rate of the first phosphor and the second phosphor, and a low-concentration layer having a low filling rate of the first phosphor and the second phosphor, Item 9.
  • the light-emitting device according to any one of items 1 to 8, wherein the high-concentration layer is disposed on the side of the light-emitting element.
  • a headlamp comprising the light emitting device according to any one of items 1 to 9.
  • Item 11 Item 11.
  • the headlamp according to item 10 comprising two or more types of light emitting devices each having a different value of the first luminance ratio Ls/L.
  • a headlamp comprising two or more types of light-emitting devices, the first light-emitting device including the light-emitting device according to any one of items 1 to 9, and a second light-emitting device emitting light such that a first luminance ratio Ls/L, which is a ratio of a first effective radiance of light emitted by the light-emitting device having a wavelength of 380 nm to 780 nm inclusive taking into account the standard relative luminous efficiency curve for human photopic vision and the spectral sensitivity of human S-cones, and which is calculated from the following formula (1), exceeds 0.9: (In formula (1), S( ⁇ ) is the spectral radiance of the light emitted by the light emitting device, V( ⁇ ) is the standard luminous efficiency curve for human photopic vision defined by the CIE (Commission Internationale de Il
  • the light emitting device according to item 13 which emits light having a correlated color temperature of 1800K or more and 5000K or less.
  • Item 15 Item 15.
  • Item 16 Item 16.
  • Item 17 Item 17.
  • the first phosphor includes a rare earth aluminate phosphor having a composition represented by the formula (1A) and further includes a first nitride phosphor having a composition represented by the following formula (1B): LawLn2xCezSi6Ny : ( 1B )
  • Ln2 essentially contains at least one selected from the group consisting of Y and Gd, and may contain at least one selected from the group consisting of Sc and Lu, and when the Ln2 element contained in 1 mole of the composition is 100 mol%, the total of Y and Gd contained in Ln2 is 90 mol% or more, and w, x, y, and z satisfy 1.2 ⁇ w ⁇ 2.2, 0.5 ⁇ x ⁇ 1.2, 10 ⁇ y ⁇ 12, 0.5 ⁇ z ⁇ 1.2, 1.80 ⁇ w+x ⁇ 2.40, and 2.9 ⁇ w+x+z ⁇ 3.1.) [Item 18] Item 13 to 17, the second
  • the light-emitting device comprising at least one selected from the group consisting of: M12Si5N8 : Eu ( 2A )
  • M1 is an alkaline earth metal element including at least one selected from the group consisting of Ca, Sr, and Ba.
  • SrqCasAltSiuNv : Eu ( 2B ) (In formula (2B), q, s, t, u, and v respectively satisfy 0 ⁇ q ⁇ 1, 0 ⁇ s ⁇ 1, q+s ⁇ 1, 0.9 ⁇ t ⁇ 1.1, 0.9 ⁇ u ⁇ 1.1, and 2.5 ⁇ v ⁇ 3.5.)
  • A includes at least one selected from the group consisting of K + , Li + , Na + , Rb + , Cs + and NH 4 + ;
  • M 2 includes at least one element selected from the group consisting of Group 4 elements and Group 14 elements;
  • the light emitting device according to any one of items 13 to 18, wherein the rare earth aluminate phosphor having the composition represented by formula (1A) has an average particle size measured by a Fisher subsieve sizer method in the range of 15 ⁇ m to 40 ⁇ m. [Item 20] 20.
  • the wavelength conversion member comprises a wavelength conversion body including the first phosphor and the second phosphor and a translucent material, and the total amount of the first phosphor and the second phosphor is in the range of 50 parts by mass or more and 500 parts by mass or less per 100 parts by mass of the translucent material in the wavelength conversion body.
  • the wavelength conversion member includes a wavelength conversion body including the first phosphor and the second phosphor, and a light-transmitting material; the wavelength converter includes a high-concentration layer having a high filling rate of the first phosphor and the second phosphor, and a low-concentration layer having a low filling rate of the first phosphor and the second phosphor, Item 21.
  • the light emitting device according to any one of items 13 to 20, wherein the high concentration layer is disposed on the side of the light emitting element.
  • a headlamp comprising the light emitting device according to any one of items 13 to 21.
  • Item 23 Item 23.
  • the headlamp according to item 22, comprising two or more types of light emitting devices each having a different value of the second luminance ratio B/A.
  • a first light emitting device including the light emitting device according to any one of items 13 to 21;
  • a headlamp comprising two or more types of second light-emitting devices that emit light such that a second luminance ratio B/A, derived from the following formula (2), exceeds 0.104, the second luminance ratio B/A being a ratio of a second effective radiance B of light emitted by the light-emitting device in the range of 300 nm or more and 800 nm or less, taking into account a scattering intensity curve for wavelength when the scattering intensity of Rayleigh scattering at a wavelength of 300 nm is set to 1, to a radiance A of light emitted by the light-emitting device in the range of 300 nm or more and 800 nm or less:
  • S( ⁇ ) is the spectral radiance of the light emitted by the
  • the following first and second phosphors were used in the light emitting devices of each of the examples and comparative examples.
  • rare earth aluminate phosphors YAG-1, YAG-2, YAG-3, YAG-4, and YAG-5 were prepared, each having a composition represented by the formula (1A), Ln 1 represented by the formula (1A) being Y, and the molar ratio of Ce contained in the composition (variable e in the formula (1A)) being the numerical value shown in Table 1.
  • YAG-6 was prepared, each having a composition not included in the formula (1A), Ln 1 represented by the formula (1A) being Y, and the molar ratio of Ce contained in the composition being 0.018.
  • these first phosphors have different average particle diameters, CIE chromaticity coordinates (x, y), emission peak wavelengths, and full width at half maximum measured by the FSSS method.
  • the symbol "-" in Table 1 indicates that there is no corresponding item or numerical value.
  • BSESN-1 which is a second nitride phosphor having a composition represented by the formula (2A)
  • the second phosphor has an average particle size, CIE chromaticity coordinates (x, y), emission peak wavelength, and full width at half maximum measured by the FSSS method, as shown in Table 1.
  • Emission spectrum of phosphor For each phosphor, a quantum efficiency measuring device (QE-2000, manufactured by Otsuka Electronics Co., Ltd.) was used to irradiate each phosphor with light having an excitation wavelength of 450 nm, and the emission spectrum at room temperature (about 25° C.) was measured. From each emission spectrum, the x and y values in the CIE1931 chromaticity coordinates, the emission peak wavelength, and the full width at half maximum were measured.
  • QE-2000 Quantum efficiency measuring device
  • Average particle size of phosphor The average particle size of each phosphor was measured by the FSSS method using a Fisher Sub-Sieve Sizer Model 95 (manufactured by Fisher Scientific). Specifically, a sample of phosphor with a volume of 1 cm3 was measured and packed in a dedicated tubular container, and then dry air was passed through at a constant pressure, and the specific surface area was read from the pressure difference and converted into the average particle size (Fisher Sub-Sieve Sizer's No.).
  • Examples 1 to 6 A light emitting device having the configuration shown in FIGS. 3A and 3B was manufactured.
  • a ceramic substrate made of aluminum nitride was used as the substrate.
  • the light-emitting element used was a light-emitting element in which a nitride-based semiconductor layer having an emission peak wavelength of 450 nm was laminated.
  • the size of the light-emitting element was a roughly square shape of about 1.0 mm square in plan view, and the thickness was about 0.11 mm.
  • the light-emitting element was arranged so that the light-emitting surface was on the substrate side, and flip-chip mounted by bumps using a conductive member made of Au.
  • the semiconductor element was flip-chip mounted by bumps using a conductive member made of Au with a gap between the light-emitting element and the semiconductor element.
  • Silicone resin a (Shore A hardness 70) was used as the translucent material.
  • the first phosphor and the second phosphor were used in the ratio shown in Table 2 relative to 100 parts by mass of silicone resin a as the translucent material.
  • the total amount of phosphor indicates the total amount of the first phosphor and the second phosphor relative to 100 parts by mass of silicone resin a.
  • the mass percentage (mass%) of the first phosphor and the mass percentage (mass%) of the second phosphor indicate the mass percentage of the first phosphor and the mass percentage of the second phosphor when the total content of the first phosphor and the second phosphor is 100% by mass.
  • the content of the first phosphor or the content of the second phosphor contained in the light emitting device can be calculated by dividing the product of the total amount (parts by mass) of the first phosphor and the second phosphor and the mass percentage (mass%) of the first phosphor and the second phosphor by 100.
  • a translucent body was prepared, which was made of borosilicate glass, had a planar shape of approximately 1.15 mm square, which was approximately 0.15 mm larger in both length and width than the planar shape of the light-emitting element, and had a thickness of approximately 0.10 mm.
  • a composition for a wavelength converter was printed by a printing method on one surface of the approximately square shape of the translucent body, and the composition for the wavelength converter was cured by heating at 180°C for 2 hours to form a layered wavelength converter with a thickness of approximately 80 ⁇ m, forming a wavelength conversion member in which the layered or plate-shaped wavelength converter and the translucent body are integrated.
  • the Shore A hardness of the silicone resin was measured using a durometer type A (product name: GS-709G, manufactured by TECLOCK) in accordance with JIS K6253.
  • one surface of the wavelength conversion member which has a planar shape of approximately 1.15 mm square, and one surface of the light-emitting element, which has a planar shape of approximately 1.0 mm square, are bonded together using an adhesive containing silicone resin, forming an adhesive layer between the light-emitting element and the wavelength conversion member.
  • a composition for the covering member which contained dimethyl silicone resin and titanium oxide particles, with 30 parts by mass of titanium oxide particles per 100 parts by mass of dimethyl silicone resin.
  • the sides of the light emitting element and the wavelength conversion body including the wavelength conversion body and the light-transmitting body arranged on the substrate were covered with the composition for the covering member, and the composition for the covering member was filled so that the semiconductor element was completely embedded in the composition for the covering member, and the composition for the covering member was cured to form the covering member, forming a resin package, and the light emitting device was manufactured.
  • Comparative Example 1 A light-emitting device was manufactured in the same manner as in Example 1, except that YAG-6 having a composition not included in the formula (1A) was used as the first phosphor, and the first phosphor and the second phosphor were used in the compositions shown in Table 2.
  • Emission spectrum, chromaticity coordinates (x, y), and correlated color temperature (K) of the light-emitting device For each light-emitting device, the emission spectrum was measured at room temperature (25°C ⁇ 5°C) using an optical measurement system combining a spectrophotometer (PMA-11, manufactured by Hamamatsu Photonics K.K.) and an integrating sphere. From the emission spectrum of each light-emitting device, the x value and y value in the CIE1931 chromaticity coordinates and the correlated color temperature (K) in accordance with JIS Z8725 were measured.
  • Figure 6 shows the emission spectrum of the light-emitting device according to Example 1 when the maximum emission intensity is set to 1.
  • Second luminance ratio B/A The emission spectrum S( ⁇ ) measured for each light-emitting device and the scattering intensity curve Dc( ⁇ ) obtained from FIG. 2 were inserted into the above formula (2) to measure the second luminance ratio B/A of the emission from each light-emitting device.
  • Relative luminous flux (%) The luminous flux of each light emitting device was measured using a total luminous flux measuring device using an integrating sphere. The luminous flux of the light emitting device of Comparative Example 1 was set as 100%, and the relative luminous flux of each light emitting device other than Comparative Example 1 was calculated.
  • the light emitting devices according to Examples 1 to 6 emitted light having a correlated color temperature of 1800K or more and 5000K or less, and a first luminance ratio Ls/L of 0.9 or less.
  • the light emitting devices according to Examples 1 to 6 emitted light with reduced glare.
  • the light emitting devices according to Examples 1 to 6 emitted light with a second luminance ratio B/A of 0.104 or less.
  • the light emitting devices according to Examples 1 to 6 suppressed light scattering and emitted light that reached a relatively long distance.
  • the light emitting devices of Examples 1 to 6 include a first phosphor having a composition represented by formula (1A), in which the variable e representing the molar ratio of the activating element Ce satisfies the range of 0.019 to 0.2 (0.019 ⁇ e ⁇ 0.2), more specifically, the range is 0.025 to 0.112, and the content of the first phosphor contained in the light emitting device (the amount obtained by dividing the product of the total amount of phosphor and the mass proportion of the first phosphor by 100) can be made smaller than that of a first phosphor having a composition not included in the composition formula represented by formula (1A).
  • the light emitting devices according to Examples 1 to 6 include a first phosphor having a composition represented by the formula (1A), and in the formula (1A), the variable e representing the molar ratio of Ce, which is an activation element, satisfies the range of 0.019 to 0.2 (0.019 ⁇ e ⁇ 0.2). Therefore, the total amount of phosphor contained in the wavelength conversion member can be made smaller than that of the wavelength conversion member used in the light emitting device according to Comparative Example 1. Even when the total amount of phosphor is small, the light emitted has a color tone within the desired range of CIE chromaticity coordinates, a first luminance ratio Ls/L of 0.9 or less, and a second luminance ratio B/A of 0.104 or less.
  • the peeling ratio was quantified using ImageJ, a public domain image analysis processing software developed by the National Institutes of Health, which is an open source software.
  • ImageJ a public domain image analysis processing software developed by the National Institutes of Health, which is an open source software.
  • a photograph of the light-emitting device taken from the light-transmitting body side with a microscope was cut out so that only the light-transmitting body surface was shown, and the color photograph of the light-transmitting body was separated into the three primary colors RGB, and only G was extracted from the three primary colors RGB. This is because G tends to have a clear and distinct light contrast (light and dark).
  • the contrast of the photograph in which only G was taken out of the color photograph of the light-transmitting body of the light-emitting device was adjusted to emphasize the peeling part that occurred between the wavelength converter and the light-transmitting body, and the peeling part was binarized, and the ratio of the total area of the peeling part in the light-transmitting body surface to the area of the light-transmitting body surface (peeling surface/light-transmitting body surface (%)) was calculated as the peeling ratio.
  • the calculated peeling ratio values are shown in Table 3.
  • Table 3 also shows the type of the first phosphor represented by the formula (1A) contained in the wavelength conversion member of each light-emitting device, and the molar ratio of Ce contained in the first phosphor (variable e in the formula (1A)).
  • Fig. 8 shows a photograph in which the light-transmitting surface of the light-emitting device according to Example 1 has been binarized after a 700-hour reliability evaluation test
  • Fig. 9 shows a photograph in which the light-transmitting surface of the light-emitting device according to Comparative Example 1 has been binarized after a 700-hour reliability evaluation test.
  • the first luminance ratio and the second luminance ratio were calculated in the same manner as before the reliability evaluation test.
  • the emission spectrum of each light-emitting device after the reliability evaluation test was measured in the same manner as before the reliability evaluation test, and the x value and y value in the CIE 1931 chromaticity coordinates and the correlated color temperature (K) in accordance with JIS Z8725 were measured from the emission spectrum of each light-emitting device.
  • the x value and y value in the CIE chromaticity coordinates of the mixed color light emitted from the light-emitting device in the initial state before the reliability evaluation test were set to the x1 value and y1 value, and the light-emitting device was repeatedly turned on and off for 30 minutes at a current of 1200 mA for 700 hours in an environmental tester at 85°C and relative humidity of 85%, and then the x2 value and y2 value in the CIE chromaticity coordinates of the mixed color light emitted from the light-emitting device were measured, and the absolute values of the difference ⁇ x between the x1 value and the x2 value and the difference ⁇ y between the y1 value and the y2 value were calculated.
  • Figure 7 shows the emission spectrum of the light-emitting device of Example 1 after the reliability evaluation test described above, with the maximum emission intensity set to 1.
  • the light emitting devices according to Examples 1 to 6 emitted light with a correlated color temperature of 1800K or higher and 5000K or lower, and a first luminance ratio Ls/L of 0.9 or lower, even after a 700-hour reliability evaluation test in an environmental test chamber at 85°C and a relative humidity of 85%.
  • the light emitting devices according to Examples 1 to 6 emitted light with reduced glare.
  • the light emitting devices according to Examples 1 to 6 emitted light with a second luminance ratio B/A of 0.104 or less even after a 700-hour reliability evaluation test in an environmental test chamber at 85°C and a relative humidity of 85%.
  • the light emitting devices according to Examples 1 to 6 suppress light scattering and emit light that reaches a relatively long distance.
  • the light emitting devices of Examples 1 to 6 contain a first phosphor having a composition represented by formula (1A), and in formula (1A), the variable e representing the molar ratio of Ce, which is an activating element, satisfies the range of 0.019 to 0.2 (0.019 ⁇ e ⁇ 0.2). Therefore, the total amount of phosphor contained in the wavelength conversion member can be made smaller than that of the wavelength conversion member used in the light emitting device of Comparative Example 1, and after a reliability evaluation test of 700 hours in an environmental test chamber at 85°C and a relative humidity of 85%, the rate of peeling that occurred between the wavelength conversion body 41 and the light-transmitting body 42 of the wavelength conversion member 40 was lower than that of the light emitting device of Comparative Example 1, thereby improving durability.
  • formula (1A) the variable e representing the molar ratio of Ce, which is an activating element
  • the light emitting devices according to Examples 1 to 6 contain a first phosphor having a composition represented by formula (1A), and in formula (1A), the variable e representing the molar ratio of Ce, an activator element, satisfies the range of 0.019 to 0.2 (0.019 ⁇ e ⁇ 0.2). Therefore, the values of ⁇ x and ⁇ y representing the change in chromaticity before and after the reliability evaluation test are smaller than the ⁇ x and ⁇ y of the light emitting device according to Comparative Example 1, suppressing chromaticity deviation and improving durability.
  • formula (1A) the variable e representing the molar ratio of Ce, an activator element
  • the light emitting device according to the embodiment of the present disclosure can be used in a headlamp.
  • a headlamp equipped with a light emitting device according to the embodiment of the present disclosure can be used in vehicles used in road transport vehicles such as motorcycles and automobiles, railway vehicles, and construction machinery such as tractor-type vehicles for leveling, transporting, and loading machines, or excavator-type vehicles for excavation machines.
  • Substrate 10: Light-emitting element
  • 12 Lighting control unit
  • 22 Outer lens
  • 24 Lamp body
  • 26 Optical filter
  • 28 Screw
  • 32 Substrate
  • 34 Light-guiding member
  • 40 Wavelength conversion member
  • 41 Wavelength conversion body
  • 41a High concentration layer
  • 41b Low concentration layer
  • 42 Light-transmitting body
  • 50 Semiconductor element
  • 60 Conductive member
  • 71 First phosphor
  • 80 Adhesive layer
  • 90 Covering member
  • 100 101: Light-emitting device
  • 200 Headlamp.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Luminescent Compositions (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Led Device Packages (AREA)

Abstract

グレアを低減することができ、耐久性を高めた発光装置、前照灯及びそれを備えた車両を提供する。 400nm以上490nm以下の範囲内に発光ピーク波長を有する発光素子と、480nm以上580nm未満の範囲内に発光ピーク波長を有する第1蛍光体と、580nm以上680nm以下の範囲内に発光ピーク波長を有し、第1蛍光体の組成とは異なる組成を有する第2蛍光体と、を含む波長変換部材と、を備えた発光装置であり、発光装置は、CIEで規定されたヒトの明所視標準比視感度曲線を考慮した前記発光装置の発光の輝度Lに対する、ヒトの明所視標準比視感度曲線及びヒトのS錐体の分光感度を考慮した発光装置の発光の第1実効放射輝度Lsの比である第1輝度比Ls/Lが0.9以下である光を発し、第1蛍光体が、式(1A)で表される組成を有する希土類アルミン酸塩蛍光体を含む、発光装置である。 

Description

発光装置、前照灯及びそれを備えた車両
 本発明は、発光装置、前照灯及びそれを備えた車両に関する。
 自動四輪車や自動二輪車等の道路運送車両や、整地・運搬・積込用機械のようなトラクター系又は堀削用機械等のショベル系の車両系建設機械の前照灯は、例えばハロゲンランプ、HIDランプ(High-Intensity Discharge Lamp)、半導体発光素子を励起光源とする発光装置等の灯具が用いられる。例えば自動車用の前照灯は、前面の左右にそれぞれ1個又は複数個が運転者の視点よりも低い位置で左右対称に取り付けられる。前照灯は、ハイビーム(走行用前照灯)用灯具と、ロービーム(すれ違い用前照灯)用灯具とを備え、これらの切り換えができるようになっている。ハイビームは比較的遠方の例えば100m程度までの前方を照らし、ロービームはハイビームよりもやや下方の近い部分、例えば40m程度の前方を照らす。
 例えば特許文献1には、ロービームモードで点灯させる第1灯具ユニットと、ハイビームモードで同時点灯させる第1灯具ユニット及び第2灯具ユニットとを備えた車両用前照灯が開示されている。特許文献1には、第1灯具ユニットとして、4000Kから6500Kの相関色温度で発光する白色発光LEDを光源として用い、第2灯具ユニットとして、4000Kから5000Kの相関色温度で発光するHIDランプの一種であるメタルハライドランプを光源として用いることが開示されている。
特開2005-141917号公報
 前照灯からの発光によって先行車や対向車の運転者の視覚が刺激され、不快感や物の見えづらさを感じさせるグレアが生じる場合がある。グレアは、視野内の不適切な輝度分布又は極端な輝度の対比によって生じる感覚であり、不快感及び見る能力の低下を伴う(JIS Z9110)。さらに、前照灯の発光によって、走行車の運転者自体も反射光によって、グレアが生じる場合がある。
 本発明の一態様は、グレアを低減することができ、耐久性を高めた発光装置、前照灯及びそれを備えた車両を提供することを目的とする。
 第1態様は、400nm以上490nm以下の範囲内に発光ピーク波長を有する発光素子と、480nm以上580nm未満の範囲内に発光ピーク波長を有する第1蛍光体と、580nm以上680nm以下の範囲内に発光ピーク波長を有し、前記第1蛍光体の組成とは異なる組成を有する第2蛍光体と、を含む波長変換部材と、を備えた発光装置であり、前記発光装置は、CIE(国際照明委員会)で規定されたヒトの明所視標準比視感度曲線を考慮した380nm以上780nm以下の範囲の前記発光装置の発光の輝度Lに対する、前記ヒトの明所視標準比視感度曲線及びヒトのS錐体の分光感度を考慮した380nm以上780nm以下の範囲の前記発光装置の発光の第1実効放射輝度Lsの比であり、下記式(1)から導き出される第1輝度比Ls/Lが0.9以下である光を発し、前記第1蛍光体が、下記式(1A)で表される組成を有する希土類アルミン酸塩蛍光体を含む、発光装置である。
Figure JPOXMLDOC01-appb-M000005
 (式(1)中、S(λ)は発光装置の発光の分光放射輝度であり、V(λ)はCIEで規定されたヒトの明所視標準比視感度曲線であり、Gs(λ)は波長λnmが380nm以上550nm以下の範囲内におけるヒトのS錐体の分光感度である。)
 Ln 3-eCe(Al1-aGa12   (1A)
 (式(1A)中、Lnは、Y、Gd、Tb及びLuからなる群から選択される少なくとも1種の元素であり、a及びeは、0≦a≦0.5、0.019≦e≦0.2を満たす。)
 第2態様は、400nm以上490nm以下の範囲内に発光ピーク波長を有する発光素子と、480nm以上580nm未満の範囲内に発光ピーク波長を有する第1蛍光体と、580nm以上680nm以下の範囲内に発光ピーク波長を有し、前記第1蛍光体の組成とは異なる組成を有する第2蛍光体と、を含む波長変換部材と、を備えた発光装置であり、前記発光装置は、300nm以上800nm以下の範囲において前記発光装置の発光の放射輝度Aに対する、波長300nmにおけるレイリー散乱の散乱強度を1としたときの波長に対する散乱強度曲線を考慮した300nm以上800nm以下の範囲の発光装置の発光の第2実効放射輝度Bの比であり、下記式(2)から導き出される第2輝度比B/Aが0.104以下である光を発し、前記第1蛍光体が、下記式(1A)で表される組成を有する希土類アルミン酸塩蛍光体を含む、発光装置である。
Figure JPOXMLDOC01-appb-M000006
 (式(2)中、S(λ)は発光装置の発光の分光放射輝度であり、Dc(λ)はレイリー散乱において、波長300nmにおけるレイリー散乱の散乱強度を1としたときの散乱強度曲線である。)
 Ln 3-eCe(Al1-aGa12   (1A)
 (式(1A)中、Lnは、Y、Gd、Tb及びLuからなる群から選択される少なくとも1種の元素であり、a及びeは、0≦a≦0.5、0.019≦e≦0.2を満たす。)
 第3態様は、前記発光装置を備えた前照灯である。
 第4態様は、前記発光装置又は前記前照灯を備えた車両である。
 本発明の一態様によれば、グレアを低減することができ、耐久性を高めた発光装置、前照灯及びそれを備えた車両を提供することができる。
非特許文献2に開示されているヒトのS錐体の分光感度Gs(λ)である。 非特許文献2に開示されているCIEで規定されたヒトの明所視標準比視感度曲線V(λ)である。 非特許文献2に開示されているV(λ):K=1.260に対応する曲線であり、グレアに対応する分光視感度V(λ)の例示である。 波長300nmにおける散乱強度を1としたレイリー散乱の強度曲線Dc(λ)を示す図である。 発光装置の概略平面図である。 発光装置の概略断面図である。 発光装置の概略断面の一部の拡大図である。 前照灯の水平断面図である。 前照灯の正面図である。 信頼性評価試験前の実施例1に係る発光装置の発光スペクトルを示す図である。 信頼性評価試験後の実施例1に係る発光装置の発光スペクトルを示す図である。 信頼性評価試験後の実施例1に係る発光装置の透光体面を2値化した写真である。 信頼性評価試験後の比較例1に係る発光装置の透光体面を2値化した写真である。
 以下、本発明の実施形態を図面に基づいて説明する。ただし、以下に示す実施形態は、本発明の技術思想を具体化するための、発光装置、前照灯及びそれを備えた車両を例示するものであって、本発明は、以下に示す、発光装置、前照灯及びそれを備えた車両に限定されない。また、特許請求の範囲に示される部材を、実施形態の部材に限定するものでは決してない。特に実施形態に記載されている構成部品の寸法、材質、形状、その相対的配置等は特に特定的な記載がない限りは、本発明の範囲をそれのみに限定する趣旨ではなく、単なる説明例にすぎない。なお、色名と色度座標との関係、光の波長範囲と単色光の色名との関係等は、JIS Z8110に従う。本明細書において組成物中の各成分の含有量は、組成物中に各成分に該当する物質が複数存在する場合、特に断らない限り、組成物中に存在する当該複数の物質の合計量をいう。本明細書において、半値全幅は、発光スペクトルにおいて、最大の発光強度を示す発光ピーク波長における発光強度に対して発光強度が50%となる波長幅をいう。
 車両の前照灯には、光束やエネルギー等の特性によって、HIDランプ、ハロゲンランプ、LEDを用いた発光装置等の様々な光源が用いられている。光源の相違により、眩しく感じさせるグレアや見かけの明るさが異なる。例えば、路面の明るさは、青色光成分や、光の相関色温度にも影響を受ける。非特許文献1には、高齢者、非高齢者にかかわらず、相関色温度が例えば6600Kと高いLED光源は、ヒトが眩しいと感じる評価が開示されている(非特許文献1:橋本博等著、「白色LEDの色温度の違いによる眩しさへの影響」、財団法人日本自動車研究所、予防安全研究部、2006年10月、自動車研究、第28巻、第10号、p569からp572)。ヒトの網膜照度の低下や桿体細胞の劣化等によってもヒトが不快に感じるグレアは異なり、ヒトの年齢によっても眩しさが変化する場合がある。ヒトの網膜に存在する光受容細胞である錐体細胞の中でも、S錐体は、短波長光に対して光反応する。S錐体は、440nm付近に感度のピーク波長がある。非特許文献2には、CIE1931表色系の側光システムで用いられているヒトの明所視標準比視感度曲線V(λ)に、波長λにおけるヒトのS錐体の分光感度Gs(λ)を考慮した、グレアに対応する新たな分光視感度V(λ)の下記式(3)が開示されている(非特許文献2:小林正自等、「ヘッドランプ光源の分光分布が不快グレアに与える影響に関する研究」、社団法人自動車技術会 学術講演会前刷集、No.5から10、p9からp14)。本明細書において、分光放射輝度は、分光分布と同義である。
Figure JPOXMLDOC01-appb-M000007
 図1Aは、非特許文献2に開示されているヒトのS錐体の分光感度Gs(λ)である。図1Aに基づき、ヒトのS錐体の分光感度Gs(λ)の数値を導くことができる。ヒトのS錐体の分光感度Gs(λ)は、380nm以上550nm以下の範囲内に分光感度のピークを有する。図1Bは、非特許文献2に開示されているCIEで規定されたヒトの明所視標準比視感度曲線V(λ)である。図1Aから図1Cに示す相対値は、CIEで規定されたヒトの明所視標準比視感度曲線V(λ)のピークトップを1とした値である。図1Bに基づき、CIEで規定されたヒトの明所視標準比視感度曲線V(λ)の数値を導くことができる。図1Cは、非特許文献2に開示されているV(λ):K=1.260に対応する曲線であり、CIEで規定されたヒトの明所視標準比視感度曲線と、ヒトのS錐体の分光感度を考慮した、グレアに対応する分光視感度V(λ)の例示である。Kは、ヒトのS錐体の分光感度Gs(λ)が寄与する割合を決定する係数である。ハロゲン電球の場合の係数Kは1.260である。
 発光装置の発光の輝度Lは、下記式(4)によって導き出される。発光装置の発光の輝度Lは、380nm以上780nm以下の範囲の発光装置の分光放射輝度S(λ)と、CIEで規定されたヒトの明所視標準比視感度曲線V(λ)の積分値である。
Figure JPOXMLDOC01-appb-M000008
 発光装置の発光の第1実効放射輝度Lsは、下記式(5)によって導き出される。発光装置の発光の第1実効放射輝度Lsは、380nm以上780nm以下の範囲の発光装置の分光放射輝度S(λ)と、前記式(3)で表されるグレアに対応するヒトの分光視感度V(λ)(=K・Gs(λ)+V(λ))との積分値を、ハロゲン電球の場合の係数K(=1.260)を用いて前記式(3)によって導かれたV(λ)のピークトップである2.3で除した数値である。
Figure JPOXMLDOC01-appb-M000009
 発光装置の発光の第1輝度比Ls/Lは、CIEで規定されたヒトの明所視標準比視感度曲線を考慮した発光装置の発光の輝度Lに対する、CIEで規定されたヒトの明所視標準比視感度曲線及びヒトのS錐体の分光感度を考慮した発光装置の発光の第1実効放射輝度Lsの比である。第1輝度比Ls/Lは、発光装置の発光のグレアの低減の程度を表す。
 第1実施形態の発光装置は、400nm以上490nm以下の範囲に発光ピーク波長を有する発光素子と、480nm以上580nm未満の範囲に発光ピーク波長を有する第1蛍光体と、580nm以上680nm以下の範囲に発光ピーク波長を有し、第1蛍光体の組成とは異なる組成を有する第2蛍光体と、を備える。発光装置は、下記式(1)から導き出される第1輝度比Ls/Lが0.9以下の光を発する。
Figure JPOXMLDOC01-appb-M000010
 (式(1)中、S(λ)は発光装置の発光の分光放射輝度であり、V(λ)はCIEで規定されたヒトの明所視標準比視感度曲線であり、Gs(λ)は波長λnmが380nm以上550nm以下の範囲内におけるヒトのS錐体の分光感度である。)
 発光装置の発光の第1輝度比Ls/Lが0.9以下であれば、グレアを低減した光が発光装置から発せられる。発光装置の発光の第1輝度比Ls/Lが0.9を超えると、ヒトのS錐体の分光感度を考慮していない発光装置の発光の輝度Lに近くなり、グレアが低減されていない。ヒトが不快に感じるグレアを低減するために、発光装置の発光の第1輝度比Ls/Lは、0.85以下であることが好ましく、0.83以下であることがより好ましく、0.80以下であることがさらに好ましく、0.7以下でもよい。発光装置の発光は、ヒトのS錐体の分光感度を考慮すると、第1輝度比Ls/Lが0.1以上でもよく、0.2以上でもよく、0.3以上であることが好ましく、0.4以上であることがさらに好ましく、0.5以上であることがよりさらに好ましい。
 第1輝度比Ls/Lが0.9以下の光を発する発光装置は、後述する第2輝度比A/Bが0.104以下の光を発することが好ましい。第1輝度比Ls/Lが0.9以下であり、かつ、後述する第2輝度比A/Bが0.104以下である光を発する発光装置は、グレアを低減しながら、光を遠くまで到達させることができる。グレアを低減しながら光を遠くまで到達させることができる、第1実施形態の発光装置は、前照灯及びこの前照灯を備えた車両に用いることができる。第1実施形態の発光装置を用いた前照灯及びこの前照灯を備えた車両は、前照灯及び車両から発する光のグレアを低減しながら、光を遠くまで到達させることができる。
 第1実施形態の発光装置は、第1蛍光体が、下記式(1A)で表される組成を有する希土類アルミン酸塩蛍光体を含む。
 Ln 3-eCe(Al1-aGa12   (1A)
 (式(1A)中、Lnは、Y、Gd、Tb及びLuからなる群から選択される少なくとも1種の元素であり、a及びeは、0≦a≦0.5、0.019≦e≦0.2を満たす。)
 前記式(1A)で表される希土類アルミン酸塩蛍光体は、組成における賦活元素であるCeのモル比を表す変数eが0.019以上0.2以下(0.019≦e≦0.2)と多いため、発光装置に含まれる第1蛍光体の含有量を少なくすることができ、第1蛍光体の含有量が少ない場合であっても、発光装置は、所望の色調の光を発することができる。また、発光装置は、前記式(1A)で表される希土類アルミン酸塩蛍光体の組成における賦活元素であるCeのモル比を表す変数eが0.019以上0.2以下(0.019≦e≦0.2)と多いため、発光装置に含まれる第1蛍光体の含有量を少なくすることができ、蛍光体から発する熱を低減することができ、熱による発光装置の割れやクラック等の劣化を抑制することができ、発光装置の耐久性を高めることができる。
 前記式(1A)において、賦活元素であるCeのモル比を表す変数eは、0.019以上0.118以下の範囲内(0.019≦e≦0.118)でもよく、0.019以上0.115以下の範囲内(0.019≦e≦0.115)でもよい。前記式(1A)において、変数aと5の積でGaのモル比を表す変数aは、0以上0.45以下の範囲内(0≦a≦0.45)でもよく、0以上0.40以下の範囲内(0≦a≦0.40)でもよい。
 第2実施形態の発光装置は、440nm以上490nm以下の範囲に発光ピーク波長を有する発光素子と、480nm以上580nm未満の範囲に発光ピーク波長を有する第1蛍光体と、580nm以上680nm以下の範囲に発光ピーク波長を有し、第1蛍光体の組成とは異なる組成を有する第2蛍光体と、を備える。発光装置は、300nm以上800nm以下の範囲において発光装置の発光の放射輝度Aに対する、波長300nmにおけるレイリー散乱の散乱強度を1としたときの波長に対する散乱強度曲線を考慮した300nm以上800nm以下の範囲の発光装置の発光の第2実効放射輝度Bの比であり、下記式(2)から導き出される第2輝度比B/Aが0.104以下である光を発する。
Figure JPOXMLDOC01-appb-M000011
 (式(2)中、S(λ)は発光装置の発光の分光放射輝度であり、Dc(λ)はレイリー散乱において、波長300nmにおけるレイリー散乱の散乱強度を1としたときの波長に対する散乱強度曲線である。)
 光と微粒子の相互作用によって生じる光の散乱は、光の波長λと微粒子の大きさDとの相対関係で決定される。空気中に含まれる微粒子の大きさDは光の波長λよりもはるかに小さい。レイリー散乱は、光の波長よりも小さいサイズの粒子による光の散乱である。空気中において、光は波長が短いほど散乱されやすい。光の散乱が抑制されていれば、光を遠くまで到達させることができる。光を遠くまで到達させることができる発光装置は、例えば100m程度の比較的遠い前方を照らすハイビームモード用の前照灯に好適に用いることができる。第2実施形態の発光装置は、散乱を抑制して光を比較的遠方まで到達させることができる。また、第2実施形態の発光装置を用いた前照灯及びこの前照灯を備えた車両は、光を比較的遠方まで到達させることができる。
 発光装置の発光の放射輝度Aは、下記式(6)によって導き出される。発光装置の発光の放射輝度Aは、300nm以上800nm以下の範囲における発光装置の分光放射輝度S(λ)の積分値である。
Figure JPOXMLDOC01-appb-M000012
 図2は、波長300nmにおけるレイリー散乱の散乱強度を1としたときの波長に対する散乱強度曲線Dc(λ)を示す。
 発光装置の発光の第2実効放射輝度Bは、下記式(7)によって導き出される。発光装置の発光の第2実効放射輝度Bは、300nm以上800nm以下の範囲における、前述の散乱強度曲線Dc(λ)と前述の発光装置の分光放射輝度S(λ)の積分値である。
Figure JPOXMLDOC01-appb-M000013
 発光装置の発光の第2輝度比B/Aは、300nm以上800nm以下の範囲の発光装置の発光の放射輝度Aに対する、波長300nmにおけるレイリー散乱の散乱強度を1としたときの波長に対する散乱強度曲線を考慮した300nm以上800nm以下の範囲の発光装置の発光の第2実効放射輝度Bの比である。第2輝度比B/Aは、発光装置の発光の散乱の程度を表す。
 発光装置の発光の第2輝度比B/Aが0.104以下であれば、散乱が抑制され、比較的遠方まで到達する光が発光装置から発せられる。発光装置の発光の第2輝度比B/Aが0.104を超えると、レイリー散乱が考慮されていない発光装置の発光の放射輝度Aに近くなる。散乱を抑制し、比較的遠方まで到達する光を発するために、発光装置の発光の第2輝度比B/Aは、0.102以下であることが好ましく、0.100以下であることがより好ましく、0.099以下であることがさらに好ましく、0.098以下であることがよりさらに好ましく、0.090以下であることが特に好ましく、0.085以下であることがさらに特に好ましい。光の散乱を抑制するためには、発光装置の発光の第2輝度比B/Aは、0.104以下であり、発光装置の発光の第2輝度比B/Aが小さい数値であることが好ましいが、発光装置の発光の第2輝度比B/Aが小さくなりすぎると、分光放射輝度が小さくなり、比較的遠方まで光を到達させることが困難になる場合がある。発光装置の発光は、レイリー散乱を考慮すると、第2輝度比B/Aが0.01以上でもよく、0.02以上でもよく、0.03以上であることが好ましく、0.04以上であることがより好ましく、0.05以上であることがよりさらに好ましい。
 第2輝度比B/Aが0.104以下の光を発する発光装置は、前述の第1輝度比Ls/Lが0.9以下の光を発することが好ましい。第2輝度比A/Bが0.104以下であり、かつ、第1輝度比Ls/Lが0.9以下である光を発する発光装置は、比較的遠くまで光を到達させることができ、グレアも低減することができる。
 第2実施形態の発光装置は、第1蛍光体が、前記式(1A)で表される組成を有する希土類アルミン酸塩蛍光体を含む。前記式(1A)において、賦活元素であるCeのモル比を表す変数eは、0.019以上0.118以下の範囲内(0.019≦e≦0.118)でもよく、0.019以上0.115以下の範囲内(0.019≦e≦0.115)でもよい。前記式(1A)で表される希土類アルミン酸塩蛍光体は、組成における賦活元素であるCeのモル比を表す変数eが0.019以上0.2以下(0.019≦e≦0.2)と多いため、発光装置に含まれる第1蛍光体の含有量を少なくすることができ、第1蛍光体の含有量が少ない場合であっても、発光装置は、所望の色調の光を発することができる。また、発光装置は、前記式(1A)で表される希土類アルミン酸塩蛍光体の組成における賦活元素であるCeのモル比を表す変数eが多いため、発光装置に含まれる第1蛍光体の含有量を少なくすることができ、蛍光体から発する熱を低減することができ、熱による発光装置の劣化を抑制することができ、発光装置の耐久性を高めることができる。
 以下、第1輝度比Ls/Lが0.9以下の光を発する発光装置及び/又は第2輝度比B/Aが0.104以下の光を発する発光装置について説明する。第1輝度比Ls/Lが0.9以下の光を発する発光装置と、第2輝度比B/Aが0.104以下の光を発する発光装置は、相関色温度が同一の範囲であることが好ましく、同一の部材を用いた同一の形態の発光装置でもよい。
 発光装置は、相関色温度が1800K以上5000K以下の光を発することが好ましく、2000K以上5000K以下の光を発することがより好ましい。例えば前照灯に備えられた発光装置から発せられる光の相関色温度が低い方が、先行車、対向車又は走行車自体の運転者等が眩しいと感じるグレアを低減することができる。
 発光素子
 発光素子は、400nm以上490nm以下の範囲内に発光ピーク波長を有する。発光素子の発光ピーク波長は、420nm以上480nm以下の範囲内にあることが好ましく、さらに440nm以上460nm以下の範囲内でもよい。発光素子の発光の少なくとも一部が第1蛍光体及び第2蛍光体の励起光として利用されるため、それらの蛍光体を励起し易い発光ピーク波長を有することが好ましい。発光素子の発光スペクトルの半値全幅は、好ましくは30nm以下、より好ましくは25nm以下、さらに好ましくは20nm以下である。発光素子は、例えば、窒化物系半導体を用いた半導体発光素子を用いることが好ましい。これにより、高効率であり、入力に対する出力のリニアリティが高く、機械的衝撃にも強い安定した発光装置を得ることができる。
 第1蛍光体
 第1蛍光体は、400nm以上490nm以下の範囲内に発光ピーク波長を有する発光素子の発光によって励起され、480nm以上580nm未満の範囲内に発光ピーク波長を有する光を発する。第1蛍光体は、発光スペクトルの半値全幅が、90nm以上125nm以下の範囲内であることが好ましく、100nm以上124nm以下の範囲内でもよく、110nm以上123nm以下の範囲内でもよい。第1蛍光体が、480nm以上580nm未満の範囲内に発光ピーク波長を有すると、発光素子からの励起光を波長変換し、発光素子からの光と、第1蛍光体及び第2蛍光体で波長変換した光の混色光が発光装置から発せられる。
 第1蛍光体は、前記式(1A)で表される組成を有する希土類アルミン酸塩蛍光体を含み、下記式(1B)で表される組成を有する第1窒化物蛍光体からなる群から選択される少なくとも1種を含むことが好ましい。
 LaLn CeSi   (1B)
 (式(1B)中、Lnは、Y及びGdからなる群から選択される少なくとも1種を必須として含み、Sc及びLuからなる群から選択される少なくとも1種を含んでいてもよく、組成1モルに含まれるLn元素を100モル%としたときに、Lnに含まれるY及びGdの合計が90モル%以上であり、w、x、y及びzは、1.2≦w≦2.2、0.5≦x≦1.2、10≦y≦12、0.5≦z≦1.2、1.80<w+x<2.40、2.9≦w+x+z≦3.1を満たす。)
 第1蛍光体は、アルカリ土類金属アルミン酸塩蛍光体及びアルカリ土類金属ハロシリケート蛍光体からなる群から選択される少なくとも1種の蛍光体を含んでいてもよい。アルカリ土類金属アルミン酸塩蛍光体は、例えば、ストロンチウムを少なくとも含み、ユウロピウムで賦活される蛍光体であり、例えば、下記式(1C)で表される組成を有する。またアルカリ土類金属ハロシリケートは、例えば、カルシウムと塩素を少なくとも含み、ユウロピウムで賦活される蛍光体であり、例えば、下記式(1D)で表される組成を有する。
 SrAl1425:Eu   (1C)
 (Ca,Sr,Ba)MgSi16(F,Cl,Br):Eu   (1D)
 式(1C)中、Srの一部はMg、Ca、Ba及びZnからなる群から選択される少なくとも1種の元素で置換されていてもよい。
 式(1C)で表される組成を有するアルカリ土類金属アルミン酸塩蛍光体及び式(1D)で表される組成を有するアルカリ土類金属ハロシリケート蛍光体は、480nm以上520nm未満の範囲内に発光ピーク波長を有し、好ましくは485nm以上515nm以下の範囲内に発光ピーク波長を有する。
 式(1C)で表される組成を有するアルカリ土類金属アルミン酸塩蛍光体及び式(1D)で表される組成を有するアルカリ土類金属ハロシリケート蛍光体は、発光スペクトルにおける半値全幅が、例えば30nm以上、好ましくは40nm以上、より好ましくは50nm以上であり、また例えば80nm以下、好ましくは70nm以下である。
 本明細書において、蛍光体の組成を表す式中、コロン(:)の前は母体結晶及び蛍光体の組成1モル中の各元素のモル比を表し、コロン(:)の後は賦活元素を表す。また、本明細書において、蛍光体の組成を示す式中、カンマ(,)で区切られて記載されている複数の元素は、これら複数の元素のうち少なくとも1種の元素を組成中に含むことを意味し、複数の元素から2種以上を組み合わせて含んでいてもよい。
 第1蛍光体は、βサイアロン蛍光体、第1硫化物蛍光体、スカンジウム系蛍光体、アルカリ土類金属シリケート蛍光体及びランタノイドケイ窒化物蛍光体からなる群から選択される少なくとも1種の蛍光体を含んでいてもよい。βサイアロン蛍光体は、例えば、下記式(1E)で表される組成を有する。第1硫化物蛍光体は、例えば、下記式(1F)で表される組成を有する。スカンジウム系蛍光体は、例えば、下記式(1G)で表される組成を有する。アルカリ土類金属シリケート蛍光体は、例えば、下記式(1H)で表される組成又は下記式(1J)で表される組成を有する。ランタノイドケイ窒化物蛍光体は、例えば、下記式(1K)で表される組成を有する。
 Si6-gAl8-g:Eu(0<g≦4.2)   (1E)
 (Sr,M)Ga:Eu   (1F)
 (式(1F)中、Mは、Be、Mg、Ca、Ba及びZnからなる群から選択される少なくとも1種の元素である。)
 (Ca,Sr)Sc:Ce   (1G)
 (Ca,Sr)(Sc,Mg)Si12:Ce   (1H)
 (Ca,Sr,Ba)SiO:Eu   (1J)
 (La,Y,Gd,Lu)Si11:Ce   (1K)
 βサイアロン蛍光体、第1硫化物蛍光体、スカンジウム系蛍光体、アルカリ土類金属シリケート蛍光体及びランタノイドケイ窒化物蛍光体は、それぞれ520nm以上580nm未満の範囲内に発光ピーク波長を有し、好ましくは525nm以上565nm以下の範囲内に発光ピーク波長を有する。βサイアロン蛍光体、第1硫化物蛍光体、スカンジウム系蛍光体、アルカリ土類金属シリケート蛍光体及びランタノイド系窒化物蛍光体は、それぞれ発光スペクトルにおける半値全幅が、例えば20nm以上、好ましくは30nm以上であり、また例えば120nm以下、好ましくは115nm以下である。
 第1蛍光体は、前記式(1A)で表される組成を有する希土類アルミン酸塩蛍光体を含み、前記式(1B)で表される組成を有する第1窒化物蛍光体、前記式(1C)で表される組成を有するアルカリ土類金属アルミン酸塩蛍光体、前記式(1D)で表される組成を有するアルカリ土類金属ハロシリケート蛍光体、前記式(1E)で表される組成を有するβサイアロン蛍光体、前記式(1F)で表される組成を有する第1硫化物蛍光体、前記式(1G)で表される組成を有するスカンジウム系蛍光体、前記式(1H)で表される組成を有するアルカリ土類金属シリケート蛍光体、前記式(1J)で表される組成を有するアルカリ土類金属シリケート蛍光体、及び前記式(1K)で表される組成を有するランタノイドケイ窒化物蛍光体からなる群から選択される少なくとも1種の蛍光体を含んでいてもよい。第1蛍光体は、前記式(1A)で表される組成を有する少なくとも1種の蛍光体を単独で含んでいてもよく、2種以上を含んでいてもよい。
 第2蛍光体
 第2蛍光体は、400nm以上490nm以下の範囲内に発光ピーク波長を有する発光素子の発光によって励起され、580nm以上680nm以下の範囲内に発光ピーク波長を有する光を発し、第1蛍光体の組成とは異なる組成を有する。第2蛍光体は、発光スペクトルにおける半値全幅が、3nm以上15nm以下の範囲内であることが好ましい。このような第2蛍光体として、例えば、下記式(2C)で表される組成を有するフッ化物蛍光体、又は、下記式(2C’)で表される組成を有するフッ化物蛍光体を含むことが好ましい。又は、発光スペクトルにおける半値全幅が60nm以上125nm以下の範囲内であることが好ましい。このような第2蛍光体として、例えば、下記式(2A)で表される組成を有する第2窒化物蛍光体、下記式(2B)で表される組成を有する第3窒化物蛍光体、又は、下記式(2G)で表される組成を有するαサイアロン蛍光体を含むことが好ましい。第2蛍光体により、発光素子からの励起光を波長変換し、発光素子からの光と、第1蛍光体及び第2蛍光体で波長変換した光の混色光が発光装置から発せられる。
 第2蛍光体は、下記式(2A)で表される組成を有する第2窒化物蛍光体、下記式(2B)で表される組成を有する第3窒化物蛍光体、下記式(2C)で表される組成を有するフッ化物蛍光体、下記式(2C)とは組成が異なる下記式(2C’)で表される組成を有するフッ化物蛍光体、及び下記式(2G)で表される組成を有するαサイアロン蛍光体からなる群から選択される少なくとも1種を含むことが好ましい。本明細書において、下記式(2A)で表される組成を有する第2窒化物蛍光体を、BSESN蛍光体と表記する場合があり、下記式(2B)で表される組成を有する第3窒化物蛍光体を、SCASN蛍光体と表記する場合がある。
 M Si:Eu   (2A)
 (式(2A)中、Mは、Ca、Sr及びBaからなる群から選択される少なくとも1種を含むアルカリ土類金属元素である。)
 SrCaAlSi:Eu   (2B)
 (式(2B)中、q、s、t、u、vは、それぞれ0≦q<1、0<s≦1、q+s≦1、0.9≦t≦1.1、0.9≦u≦1.1、2.5≦v≦3.5を満たす。)
 A[M 1-bMn4+ ]   (2C)
 (式(2C)中、Aは、K、Li、Na、Rb、Cs及びNH から成る群から選択される少なくとも1種を含み、その中でもKが好ましい。Mは、第4族元素及び第14族元素からなる群から選択される少なくとも1種の元素を含み、その中でもSi、Geが好ましい。bは、0<b<0.2を満たし、cは、[M 1-bMn4+ ]イオンの電荷の絶対値であり、dは、5<d<7を満たす。)
 A’c’[M1-b’Mn4+ b’d’]   (2C’)
 (式(2C’)中、A’は、K、Li、Na、Rb、Cs及びNH から成る群から選択される少なくとも1種を含み、その中でもKが好ましい。M’は、第4族元素、第13族元素及び第14族元素からなる群から選択される少なくとも1種の元素を含み、その中でもSi、Alが好ましい。b’は、0<b’<0.2を満たし、c’は、[M1-b’Mn4+ b’d’]イオンの電荷の絶対値であり、d’は、5<d’<7を満たす。)
 M v3Si12-(w3+x3)Alw3+x3x316-x3:Eu (2G)
 (式(2G)中、Mは、Li、Mg、Ca、Sr、Y及びランタノイド元素(但し、LaとCeを除く。)からなる群から選択される少なくとも1種の元素を含み、v3、w3及びx3は、それぞれ0<v3≦2.0、2.0≦w3≦6.0、0≦x3≦1.0を満たす。)
 第2蛍光体は、フルオロジャーマネ―ト蛍光体、第4窒化物蛍光体、及び第2硫化物蛍光体からなる群から選択される少なくとも1種の蛍光体を含んでいてもよい。フルオロジャーマネート蛍光体は、例えば、下記式(2D)で表される組成を有する。第4窒化物蛍光体は、例えば、下記式(2E)で表される組成を有する。第2硫化物蛍光体は、例えば、下記式(2F)で表される組成を有する。
 (i-j)MgO・(j/2)Sc・kMgF・mCaF・(1-n)GeO・(n/2)M :Mn   (2D)
 (式(2D)中、MはAl、Ga及Inからなる群から選択される少なくとも1種である。i、j、k、m、n及びzはそれぞれ、2≦i≦4、0≦j<0.5、0<k<1.5、0≦m<1.5、0≦n<0.5を満たす。)
 M v2 w2Al3-y2Siy2z2:M   (2E)
 (式(2E)中、Mは、Ca、Sr、Ba及びMgからなる群より選択される少なくとも1種の元素であり、Mは、Li、Na及びKからなる群より選択される少なくとも1種の元素であり、Mは、Eu、Ce、Tb及びMnからなる群より選択される少なくとも1種の元素であり、v2、w2、y2及びz2は、それぞれ0.80≦v2≦1.05、0.80≦w2≦1.05、0≦y2≦0.5、3.0≦z2≦5.0を満たす。)
 (Ca,Sr)S:Eu   (2F)
 式(2D)で表される組成を有するフルオロジャーマネート蛍光体は、下記式(2d)で表される組成を有していてもよい。
 3.5MgO・0.5MgF・GeO:Mn (2d)
 式(2E)で表される組成を有する第4窒化物蛍光体は、下記式(2e)で表される組成を有していてもよい。
 M v2 w2 x2Al3-y2Siy2z2   (2e)
 (式(2e)中、M、M、及びMは、それぞれ式(2E)中のM、M、及びMと同義であり、Ce、Tb及びMnからなる群より選択される少なくとも1種の元素であり、v2、w2、y2及びz2は、それぞれ式(2E)中のv2、w2、y2及びz2と同義であり、x2は、0.001<x2≦0.1を満たす。)
 フルオロジャーマネート蛍光体、第4窒化物蛍光体、及び第2硫化物蛍光体は、それぞれ、580nm以上680nm以下の範囲内に発光ピーク波長を有し、好ましくは600nm以上630nm以下の範囲内に発光ピーク波長を有する。フルオロジャーマネート蛍光体、第4窒化物蛍光体、及び第2硫化物蛍光体は、それぞれ、発光スペクトルにおける発光ピークの半値全幅が、例えば5nm以上100nm以下であり、好ましくは6nm以上90nm以下である。
 第2蛍光体は、前記式(2A)で表される組成を有する第2窒化物蛍光体、前記式(2B)で表される組成を有する第3窒化物蛍光体、前記式(2C)で表される組成を有するフッ化物蛍光体、前記式(2C’)で表されるフッ化物蛍光体、前記式(2D)で表される組成を有するフルオロジャーマネート蛍光体、前記式(2E)で表される組成を有する第4窒化物蛍光体、前記式(2F)で表される組成を有する第2硫化物蛍光体、及び前記式(2G)で表される組成を有するαサイアロン蛍光体からなる群から選択される少なくとも1種を含むことが好ましい。第2蛍光体は、少なくとも1種の蛍光体を単独で含んでいてもよく、2種以上の蛍光体を含んでいてもよい。
 第2蛍光体は、前記式(2A)で表される組成を有する第2窒化物蛍光体(BSESN蛍光体)、前記式(2B)で表される組成を有する第3窒化物蛍光体(SCASN蛍光体)、及び前記式(2G)で表される組成を有するαサイアロン蛍光体からなる群から選択される少なくとも1種を含むことがさらに好ましい。BSESN蛍光体、SCASN蛍光体及びαサイアロン蛍光体からなる群から選択される少なくとも1種の第2蛍光体は、温度特性が良好であり、温度の変化による発光エネルギーの変化が少ない。例えば、第1蛍光体として、前記式(1A)で表される組成を有する希土類アルミン酸塩蛍光体を含み、第2蛍光体として、BSESN蛍光体、SCASN蛍光体及びαサイアロン蛍光体からなる群から選択される少なくとも1種を含む波長変換部材を備えた発光装置は、第1蛍光体及び第2蛍光体の温度特性が良好であるため、例えば-40℃の寒冷雰囲気で使用した場合や100℃を超える高温雰囲気で用いた場合においても、第1輝度比Ls/Lが0.9以下を維持した状態で第1輝度比Ls/Lの変化率が少なく、使用環境の雰囲気温度の影響を受けにくく、グレアを低減した光を発光装置から発することができる。第1輝度比Ls/Lが0.9以下を維持した状態で、発光装置の使用環境の温度が変化した場合であっても、第1輝度比Ls/Lの変化率が少ない光を発光することができる発光装置は、温度特性が良好であるという場合がある。
 第1蛍光体として、前記式(1A)で表される組成を有する希土類アルミン酸塩蛍光体を含み、第2蛍光体として、BSESN蛍光体、SCASN蛍光体及びαサイアロン蛍光体からなる群から選択される少なくとも1種を含む波長変換部材を備えた発光装置は、第1蛍光体及び第2蛍光体の温度特性が良好であるため、使用環境の雰囲気温度の影響を受けにくく、第2輝度比B/Aが0.104以下を維持した状態で第2輝度比B/Aの変化率が少なく、使用環境の雰囲気温度の影響を受けにくく、散乱を抑制して比較的遠くまで到達する光を発光装置から発することができる。第2輝度比B/Aが0.104以下を維持した状態で、発光装置の使用環境の温度が変化した場合であっても、第2輝度比B/Aの変化率が少ない光を発光することができる発光装置は、温度特性が良好であるという場合がある。
 第1蛍光体及び第2蛍光体を含む蛍光体は、フィッシャーサブシーブサイザー(Fisher Sub-Sieve Sizer、以下「FSSS」ともいう。)法により測定された平均粒径が5μm以上40μm以下の範囲内であることが好ましく、6μm以上35μm以下の範囲内であることがより好ましく、7μm以上30μm以下の範囲内であることがさらに好ましい。蛍光体の平均粒径が5μm以上40μm以下の範囲内であれば、励起光源から発せられる光を蛍光体で効率よく吸収して波長変換し、グレアを低減した光又は光の散乱を抑制して比較的遠くまで到達する光、を発光装置から発することができる。
 前記式(1A)で表される組成を有する希土類アルミン酸塩蛍光体は、FSSS法により測定された平均粒径が15μm以上40μmの範囲内であることが好ましく、16μm以上35μm以下の範囲内であることがより好ましく、17μm以上30μm以下の範囲内であることがさらに好ましい。前記式(1A)で表される組成を有する希土類アルミン酸塩蛍光体のFSSS法で測定された平均粒径が15μm以上40μm以下の範囲内と比較的大きい蛍光体であれば、発光装置に含まれる第1蛍光体の含有量を少なくすることができ、第1蛍光体の含有量が少ない場合であっても、発光装置は、所望の色調の光を発することができる。
 発光装置
 発光装置の形態について説明する。図3Aは、発光装置の一例を示し、発光装置101の概略平面図である。図3Bは、図3Aに示す発光装置101のIII-III’線の概略断面図である。発光装置101は、400nm以上490nm以下の範囲内に発光ピーク波長を有する発光素子10と、発光素子10からの光により励起されて発光する第1蛍光体71及び第2蛍光体72を含む波長変換体41とその波長変換体41が配置された透光体42とを含む波長変換部材40と、を備える。発光素子10は、基板1上に導電部材60であるバンプを介してフリップチップ実装されている。波長変換部材40の波長変換体31は、接着層80を介して発光素子10の発光面上に設けられている。発光素子10及び波長変換部材40は、その側面が光を反射する被覆部材90によって覆われている。波長変換体41は、発光素子10からの光により励起されて、480nm以上580nm未満の範囲内に発光ピーク波長を有する第1蛍光体71と、580nm以上680nm以下の範囲内に発光ピーク波長を有し、第1蛍光体71の組成とは異なる組成を有する第2蛍光体72と、を含む。発光素子10は、基板1上に形成された配線及び導電部材60を介して、発光装置101の外部からの電力の供給を受けて、発光装置101を発光させることができる。発光装置101は、発光素子10を過大な電圧の印加による破壊から防ぐための保護素子等の半導体素子50を含んでいてもよい。被覆部材90は、例えば半導体素子50を覆うように設けられる。以下、発光装置に用いる各部材について説明する。なお、詳細は、例えば特開2014-112635号公報の開示を参照することもできる。
 波長変換部材
 波長変換部材は、蛍光体と透光性材料を含む波長変換体を波長変換部材としてもよいし、さらにその波長変換体が配置される透光体を備えた波長変換部材としてもよい。波長変換体は、第1蛍光体及び第2蛍光体と透光性材料とを含むことが好ましい。波長変換体は、板状、シート状又は層状に形成されていてもよい。波長変換部材は、板状、シート状又は層状以外の他の形態の波長変換体を備えていてもよい。波長変換部材は、第1蛍光体及び第2蛍光体と、透光性材料と、を含む波長変換体を備え、波長変換体は、透光性材料の100質量部に対して、第1蛍光体及び第2蛍光体の総量が50質量部以上500質量部以下の範囲内であることが好ましい。波長変換体に含まれる第1蛍光体及び第2蛍光体の総量が、透光性材料100質量部に対して、50質量部以上500質量部以下の範囲内であれば、透光性材料に対して、第1蛍光体及び第2蛍光体の総量が比較的少なく、蛍光体が励起光を吸収して発光するときの熱を低減することができ、熱による発光装置の劣化を抑制することができ、発光装置の耐久性を高めることができる。波長変換体に含まれる第1蛍光体及び第2蛍光体の総量は、透光性材料100質量部に対して、80質量部以上400質量部以下の範囲内でもよく、90質量部以上350質量部以下の範囲内でもよく、100質量部以上300質量部以下の範囲内でもよく、100質量部以上270質量部以下の範囲内でもよい。第1蛍光体及び第2蛍光体の総量を、蛍光体の総量ともいう。
 波長変換部材は、第1蛍光体及び第2蛍光体と、透光性材料と、を含む波長変換体を備え、波長変換体は、断面の厚さ方向に第1蛍光体及び第2蛍光体の充填率が高く、第1蛍光体及び第2蛍光体の濃度が高い高濃度層と、第1蛍光体及び第2蛍光体の充填率が低く、第1蛍光体及び第2蛍光体の濃度が低い低濃度層を備えることが好ましい。波長変換体は、第1蛍光体及び第2蛍光体の充填率が高い、高濃度層を備えていることによって、透光性材料に対する蛍光体の総量が少ない場合であっても、波長変換体に割れやクラックが発生しにくくなる。波長変換体は、高濃度層が発光素子側に配置されることが好ましい。波長変換体は、高濃度層が発光素子側に配置されることによって、発光素子から発生した熱を波長変換体中の第1蛍光体及び第2蛍光体を介して放熱することができる。蛍光体の充填率は、波長変換体の断面又は波長変換部材の断面を走査型電子顕微鏡(SEM)で観察し、その断面における樹脂と蛍光体との面積比から蛍光体の充填率を測定可能である。蛍光体の充填率が高い高濃度層は、波長変換体の断面又は波長変換部材の断面において、蛍光体の面積が樹脂の面積よりも高い層をいう。蛍光体の充填率が低い低濃度層は、波長変換体の断面又は波長変換部材の断面において、蛍光体の面積が樹脂の面積よりも低い層をいう。低濃度層は、実質的に蛍光体が存在せず、蛍光体の面積がなく、樹脂のみの面積が確認できる層でもよい。SEMで観察した波長変換体の断面において、高濃度層の厚みと低濃度層の厚みの比率は、波長変換体の全体の厚みを100%とした場合に、低濃度層の厚みが40%以下でもよく、35%以下でもよく、34%以下でもよく、3%以上でもよく、5%以上でもよい。低濃度層の厚みの比率が大きい方が高濃度層の厚みの比率が小さく、高濃度層に含まれる第1蛍光体及び第2蛍光体の充填率が高く、高濃度層の密度が高いことを表す。波長変換体の割れやクラックを抑制し、放熱性を高くするためには、高濃度層における第1蛍光体及び第2蛍光体の充填率が高く、第1蛍光体及び第2蛍光体の密度が高いことが好ましい。
 図3Cは、図3Bに示す発光装置の概略断面の一部P1の部分拡大図である。説明のため、図3Cは、図3Bと縮尺が異なる場合がある。
 波長変換体41は、第1蛍光体71及び第2蛍光体72の充填率が高い高濃度層41aと、第1蛍光体71及び第2蛍光体72の充填率が低い低濃度層41bとを備え、高濃度層41aが発光素子10側に配置される。波長変換体41の低濃度層41bは、透光体42側に配置される。波長変換体41は、接着層80を介して発光素子10の発光面上に設けられる。
 前照灯には高出力な発光装置が用いられてきているため、耐熱性の高いガラスからなる透光体に蛍光体を含む樹脂組成物を塗布した波長変換部材や、蛍光体と透光性材料とを含む焼結体のような耐熱性の高い波長変換部材が用いられる場合がある。耐熱性の高い波長変換部材に含まれる蛍光体についても、他の蛍光体と比べて比較的耐熱性が高いと考えられる蛍光体、例えばYAl12:Ceで表される組成を有する希土類アルミン酸塩蛍光体が用いられる場合がある。この希土類アルミン酸塩蛍光体は、例えば570nm以上の長波長側の発光強度が比較的小さいことから、前照灯に用いた場合、6000K付近の相関色温度の光を発するのが通常とされている。そのため、波長変換部材に含まれる蛍光体が、例えばYAl12:Ceで表される組成を有する希土類アルミン酸塩蛍光体だけである場合は、5000K以下の相関色温度の光を発する前照灯を実現することは困難であると考えられている。第1実施形態の発光装置又は第2実施形態の発光装置は、波長変換部材に用いられる焼結体に含まれる蛍光体として、前述の第1蛍光体及び第2蛍光体のうち1種の蛍光体が単独で含まれていてもよく、前述の第1蛍光体及び第2蛍光体のうち2種以上の蛍光体が含まれていてもよい。焼結体に含まれる蛍光体としては、第1蛍光体として、前記式(1A)で表される組成を有する蛍光体を含み、例えば以下の蛍光体を含んでいてもよい。
 (Ba,Sr,Ca)Si:Eu
 (La,Y,Gd,Lu)Si11:Ce
 (Ca,Sr)AlSiN:Eu
 また、波長変換部材に用いられる焼結体は、前記式(1A)で表される組成を有する蛍光体と第2窒化物蛍光体を1つ焼結体に含む焼結体や、前記式(1A)で表される組成を有する蛍光体を含む焼結体と第2窒化物蛍光体を含む焼結体とを2層に組み合わせたものを用いてもよい。
 また、波長変換部材に用いられる波長変換体としては、透光性材料としてガラスを用いて、例えば、ガラスと、組成式がM v3(Si,Al)12(O,N)16:Eu(Mは、Li、Mg、Ca、Y及びLaとCeを除くランタニド元素であり、v3は、0<v3≦2を満たす。)で表されるαサイアロン蛍光体を含む波長変換体を用いてもよい。
 これらを波長変換部材とすることでも、発光装置は、5000K以下の相関色温度の光を発し、この発光装置を用いることにより、グレアを低減することができる前照灯及びそれを備えた車両を提供することができると考えられる。
 透光性材料
 透光性材料は、樹脂、ガラス及び無機物からなる群から選択される少なくとも1種が挙げられる。樹脂は、エポキシ樹脂、シリコーン樹脂、フェノール樹脂、及びポリイミド樹脂からなる群から選択される少なくとも1種であることが好ましい。無機物は、酸化アルミニウム及び窒化アルミニウムからなる群から選択される少なくとも1種が挙げられる。
 透光性材料が樹脂である場合、ショアA硬度が30以上80以下の範囲内である樹脂であることが好ましい。透光性材料は、シリコーン樹脂であることが好ましく、ショアA硬度が30以上80以下の範囲内であるシリコーン樹脂であることが好ましい。透光性材料であるシリコーン樹脂のショアA硬度は、40以上75以下の範囲内であることがより好ましく、50以上70以下の範囲内であることがさらに好ましい。透光性材料が樹脂である場合、樹脂は、光や熱によって膨張又は収縮が生じる。透光性材料がショアA硬度が30以上80以下のシリコーン樹脂であれば靭性、伸びが優れるため、環境雰囲気の温度が変化した場合であっても、温度変化に追従して柔軟に膨張及び収縮し、波長変換体の割れやクラック等が発生しにくく、第1輝度比Ls/Lを0.9以下に維持した光を発することができ、温度特性が良好である。透光性材料がショアA硬度が30以上80以下のシリコーン樹脂である場合、温度変化に追従して柔軟に膨張及び収縮し、波長変換体に割れやクラック等が発生しにくく、第2輝度比B/Aを0.104以下に維持した光を発することができ、温度特性が良好である。樹脂のショアA硬度は、JIS K6253に準拠して、デュロメータータイプAを使用して測定することができる。
 例えばショアA硬度が30未満程度のショアA硬度の低い樹脂を透光性材料として用いて、波長変換体を形成した場合、波長変換体が柔らかく粘着性があるため、複数の発光素子を備えた複合基板から個々の発光装置を個片化する際に切断しにくく、また、搬送や梱包がし難く量産性に劣る場合が生じる。
 そこで、ショアA硬度が30以上80以下の樹脂を透光性材料として用いることによって、波長変換体又は波長変換部材に割れやクラック等が発生しにくく、温度特性の良好な波長変換体を得ることができる。
 透光体
 波長変換部材は、透光体を備えていてもよい。透光体は、ガラスや樹脂のような透光性材料からなる板状体を用いることができる。ガラスは、例えばホウ珪酸ガラスや石英ガラスが挙げられる。樹脂は、シリコーン樹脂やエポキシ樹脂が挙げられる。透光体の厚さは、製造工程における機械的強度が低下せず、波長変換体を十分に支持することができる厚さであればよい。
 基板
 基板は、絶縁性材料であって、発光素子からの光や外光を透過し難い材料からなることが好ましい。基板の材料としては、酸化アルミニウム、窒化アルミニウム等のセラミックス、フェノール樹脂、エポキシ樹脂、ポリイミド樹脂、ビスマレイミドトリアジン樹脂(BTレジン)、ポリフタルアミド(PPA)樹脂等の樹脂を上げることができる。セラミックスは耐熱性が高いため、基板の材料として好ましい。
 接着層
 発光素子と波長変換部材の間には、接着層が介在し、発光素子と波長変換部材とを固着する。接着層を構成する接着剤は、発光素子と波長変換部材を光学的に連結できる材料からなることが好ましい。接着層を構成する材料としては、エポキシ樹脂、シリコーン樹脂、フェノール樹脂、及びポリイミド樹脂からなる群から選択される少なくとも1種の樹脂であることが好ましい。
 半導体素子
 発光装置に必要に応じて設けられる半導体素子は、例えば発光素子を制御するためのトランジスタや、過大な電圧印加による発光素子の破壊や性能劣化を抑制するための保護素子が挙げられる。保護素子としてはツェナーダイオード(Zener Diode)が挙げられる。
 被覆部材
 被覆部材の材料としては、絶縁性材料を用いることが好ましい。より具体的には、フェノール樹脂、エポキシ樹脂、ビスマレイミドトリアジン樹脂(BTレジン)、ポリフタルアミド(PPA)樹脂、シリコーン樹脂が挙げられる。被覆部材には、必要に応じて着色剤、蛍光体、フィラーを添加してもよい。
 導電部材
 導電部材としては、バンプを用いることができ、バンプの材料としては、Auあるいはその合金、他の導電部材として、共晶ハンダ(Au-Sn)、Pb-Sn、鉛フリーハンダ等を用いることができる。
 発光装置の製造方法
 発光装置の製造方法の一例を説明する。なお、詳細は、例えば特開2014-112635号公報、又は、特開2017-117912号公報の開示を参照することもできる。発光装置の製造方法は、発光素子の配置工程、必要に応じて半導体素子の配置工程、波長変換体を含む波長変換部材の形成工程、発光素子と波長変換部材の接着工程、被覆部材の形成工程を含むことが好ましい。
 発光素子の配置工程
 基板上に発光素子を配置する。発光素子と半導体素子とは、例えば、基板上にフリップチップ実装される。
 波長変換体を含む波長変換部材の形成工程
 波長変換体を含む波長変換部材の形成工程において、波長変換体は、透光体の一面に印刷法、接着法、圧縮成形法、電着法により板状、シート状又は層状の波長変換体を形成することによって得てもよい。例えば、印刷法は、蛍光体と、透光性材料となる樹脂とを含む波長変換体用組成物を、透光体の一面に印刷し、波長変換体を含む波長変換部材を形成することができる。
 波長変換体用組成物
 波長変換体又は波長変換部材を構成する波長変換体用組成物は、透光性材料と、第1蛍光体及び第2蛍光体とを含み、溶剤を含んでいてもよい。波長変換体用組成物が溶剤を含む場合には、波長変換体用組成物の粘度が低下し、波長変換体用組成物を硬化させるときに、透光性材料に対する蛍光体の総量が少ない場合であっても、重力方向に第1蛍光体及び第2蛍光体の密度が大きくなり、波長変換体中又は波長変換部材中で第1蛍光体及び第2蛍光体の充填率が異なる波長変換体又は波長変換部材を製造することができる。波長変換体又は波長変換部材は、第1蛍光体及び第2蛍光体の充填率が高い部分が存在することによって、波長変換体に割れやクラックが発生しにくくなる。波長変換体の第1蛍光体及び第2蛍光体の充填率が高い高濃度層側を発光素子側に配置することによって、高出力の発光素子を使用した場合であっても、発光素子から発生した熱を波長変換体中の第1蛍光体及び第2蛍光体を介して放熱することができ、波長変換体を構成する樹脂の割れやクラックを抑制し、第1輝度比Ls/Lを0.9以下に維持した光を発することができ、温度特性が良好である。波長変換体の第1蛍光体及び第2蛍光体の充填率が高い高濃度層側を発光素子側に配置することによって、高出力の発光素子を使用した場合であっても、発光素子から発生した熱を波長変換体中の第1蛍光体及び第2蛍光体を介して放熱することができ、波長変換体を構成する樹脂の割れやクラックを抑制し、第2輝度比B/Aを0.104以下に維持した光を発することができ、温度特性が良好である。
 溶剤は、透光性樹脂への溶解性と揮発性を考慮して、標準圧力(0.101MPa)下の沸点が、150℃以上320℃以下の範囲内であることが好ましく、170℃以上305℃以下の範囲内であることがより好ましく、180℃以上300℃以下の範囲内であることがさらに好ましく、190℃以上290℃以下の範囲内であることが特に好ましい。標準圧力下における沸点が150℃以上320℃以下の範囲内である溶剤は、波長変換体用組成物の含まれることにより、波長変換体用組成物の粘度を低下させて、硬化させる際に、重力方向に第1蛍光体及び第2蛍光体を含む蛍光体の充填率が高い高濃度層と、第1蛍光体及び第2蛍光体の充填率が低い低濃度層とを形成することができる。
 波長変換体用組成物は、E型粘度計で、25℃、1rpmの粘度が5mPa・s以上400mPa・s以下の範囲であることが好ましく、6mPa・s以上300mPa・s以下の範囲内であることがより好ましく、8mPa・s以上250mPa・s以下の範囲内であることがさらに好ましい。
 透光性材料がシリコーン樹脂である場合、波長変換体用組成物は、透光性材料の100質量部に対して、蛍光体の総量が50質量部以上500質量部以下の範囲内で含む場合に、溶剤の含有量が、透光性材料100質量部に対して、1質量部以上50質量部以下の範囲内であることが好ましく、2質量部以上40質量部以下の範囲内であることがより好ましく、3質量部以上30質量部以下の範囲内であることがさらに好ましい。
 溶剤は、有機化合物の液体であり、一部は常温で蒸発(揮発)し、例えば180℃以上で加熱することで波長変換体用組成物中に残存する溶剤を揮発させて、波長変換体用組成物を硬化させ、波長変換体又は波長変換部材を形成することができる。溶剤は、炭化水素系溶剤、ケトン系溶剤、アルコール系溶剤、アルデヒド系溶剤、グリコール系溶剤、エーテル系溶剤、エステル系溶剤、グリコールエーテル系溶剤、グリコールエステル系溶剤等が挙げられる。炭化水素系溶剤は、ヘキサン、キシレン、ヘプタン、デカン、ドデカン、トリデカン等が挙げられる。ケトン系溶剤は、アセトン、メチルエチルケトン等が挙げられる。アルコール系溶剤は、メチルアルコール、エチルアルコール、イソプロピルアルコール等が挙げられる。アルデヒド系溶剤は、ノナナール、デカナール等が挙げられる。グリコール系溶剤は、トリエチレングリコール等が挙げられる。エーテル系溶剤は、ジエチルエーテル等が挙げられる。エステル系溶剤は、酢酸メチル、酢酸エチル等が挙げられる。グリコールエーテル系溶剤は、プロピレングリコールモノメチルエーテル等が挙げられる。グリコールエステル系溶剤は、エチレングルコールモノエチルエーテルアセテート等が挙げられる。溶剤は、ヘキサン、キシレン、ヘプタン、アセトン、エタノール、イソプロピルアルコール、デカン、ドデカン、トリデカン、テトラデカン、ペンタデカン、ヘキサデカン、ノナナール、デカナール及びトリエチレングリコールからなる群から選択される少なくとも1種であることが好ましい。溶剤は、ドデカン、テトラデカン、ペンタデカン、ヘキサデカン、及びトリデカンからなる群から選択される少なくとも1種であることがより好ましい。溶剤は、1種を単独で用いてもよく、2種以上を併用してもよい。
 波長変換体又は波長変換部材
 波長変換体用組成物が、溶剤を含む場合、波長変換体用組成物を硬化させるときの重力方向に第1蛍光体及び第2蛍光体の充填率が高い高濃度層と、第1蛍光体及び第2蛍光体の充填率が低い低濃度層に分かれた波長変換体又は波長変換部材を形成することができる。本明細書において、波長変換体の断面の厚さ方向に蛍光体の充填率が高い高濃度層と蛍光体の充填率が低い低濃度層を確認することができる。蛍光体の充填率は、前述のとおり、波長変換体の断面又は波長変換部材の断面をSEMで観察し、その断面における樹脂と蛍光体との面積比から蛍光体の充填率を測定することができる。一つの層と他の層の境界は、直線上ではなく凹凸を有していてもよい。
 発光素子と波長変換部材の接着工程
 発光素子と波長変換部材の接着工程において、波長変換部材を発光素子の発光面に対向させて、発光素子上に波長変換部材を接着層により接合する。波長変換部材が、波長変換体及び透光体を含み、波長変換体が蛍光体の充填率が高い高濃度層と蛍光体の充填率が低い低濃度層を含む場合には、波長変換体の充填率が高い高濃度層を発光素子側に配置して、発光素子上に波長変換部材を接合することが好ましい。第1蛍光体及び第2蛍光体を含む蛍光体は、樹脂よりも熱伝導率が高く、波長変換体の蛍光体の充填率が高い高濃度層を発光素子側に配置して波長変換部材を接合することにより、熱引きがよくなり、波長変換体の割れやクラック等が発生しにくく、温度特性が良好である。
 被覆部材の形成工程
 被覆部材の形成工程において、発光素子及び波長変換部材の側面が被覆部材用組成物で覆われる。この被覆部材は、発光素子から出射された光を反射させるためのものであり、発光装置が半導体素子も備える場合は、その半導体素子が被覆部材で埋設されるように形成することが好ましい。一つ基板上に複数の発光素子及び半導体素子を備えた複合基板から個々の発光装置に個片化する工程を含んでいてもよい。
 例えばショアA硬度が30未満程度のショアA硬度の低い樹脂を透光性材料として用いて、波長変換体を形成した場合、波長変換体が柔らかく粘着性があるため、複数の発光素子を備えた複合基板から個々の発光装置を個片化する際に切断しにくく、また、搬送や梱包がし難く量産性に劣る場合が生じる。
 そこで、ショアA硬度が30以上80以下の樹脂を透光性材料として用いることによって、波長変換体又は波長変換部材に割れやクラック等が発生しにくく、温度特性の良好な波長変換体を得ることができる。
 前照灯
 発光装置は、前照灯用の光源ユニットの支持基板等に配置され、車両に搭載される前照灯として用いられてもよい。前照灯用の光源ユニットは、例えば特開2003-317513号公報に開示されている光源ユニットを用いることができる。光源ユニットは、例えばリフレクタと、投影レンズと、発光装置を配置する支持基板等を備える。前照灯用の光源ユニットは、例えば特開平8-67199号公報に開示されているような車両用ランプシステムによって点灯等が制御されてもよい。発光装置は、例えば特開2005-123165号公報に開示されているようなターンシグナルランプに用いる前照灯の光源として用いられてもよい。図4は、前照灯の水平断面図である。図5は、前照灯の正面図である。図4及び図5に示した前照灯200は、例えば車両前方の右側に設けられる。前照灯200は、ランプボディ24、アウターレンズ22、複数の基板32、複数の発光装置100、光学フィルタ26、及び導光部材34を備える。ランプボディ24及びアウターレンズ22は、前照灯200の灯室を形成し、この灯室内に、複数の基板32、及び複数の発光装置100を、防水しつつ保持する。ランプボディ24は、例えば樹脂により、複数の基板32、及び複数の発光装置100を車両の後方から覆うように形成される。光学フィルタ26は、複数のネジ28により、ランプボディ24に固定される。複数の発光装置100のそれぞれは、基板32を介して点灯制御部12から受け取る電力に応じて点灯する。
 前照灯は、例えば特開2003-317513号公報に開示されているように、1つの光源ユニットに1つの発光装置を配置した第1灯具ユニットを複数備える場合がある。また、前照灯は、例えば特開2005-141917号公報に開示されているように、複数のリフレクタと、複数の投影レンズと、複数の支持基板が一体的に形成された1つの光源ユニットに、複数の発光装置を配置した第2灯具ユニットを備える場合がある。前照灯は、第1輝度比Ls/Lがそれぞれ異なる2種以上の発光装置を備えていてもよい。第1輝度比Ls/Lが異なる2種以上の発光装置は、1つの発光装置がそれぞれ1つの光源ユニットに配置されていてもよい。第1輝度比Ls/Lが異なる2種以上の発光装置は、1つの光源ユニットに2種以上の発光装置が配置されていてもよい。前照灯は、第2輝度比B/Aがそれぞれ異なる2種以上の発光装置を備えていてもよい。第2輝度比B/Aが異なる2種以上の発光装置は、1つの発光装置がそれぞれ1つの光源ユニットに配置されていてもよい。第2輝度比B/Aが異なる2種以上の発光装置は、1つの光源ユニットに2種以上の発光装置が配置されていてもよい。
 前照灯は、第1輝度比Ls/Lが0.9以下である光を発する前述の発光装置を第1発光装置とし、第1輝度比Ls/Lが0.9を超える光を発する発光装置を第2発光装置として、2種以上の発光装置を備えていてもよい。
 前照灯は、第2輝度比B/Aが0.104以下である光を発する前述の発光装置を第1発光装置とし、第2輝度比B/Aが0.104を超える光を発する発光装置を第2発光装置として、2種以上の発光装置を備えていてもよい。
 第2発光装置は、第1輝度比Ls/Lが0.9を超える光を発する発光装置又は第2輝度比B/Aが0.104を超える光を発する発光装置であればよい。第2発光装置は、例えば図3A及び図3Bに示す第1発光装置と同様の形態でもよい。第2発光装置は、例えば400nm以上490nm以下の範囲内に発光ピーク波長を有する発光素子と、480nm以上580nm未満の範囲内に発光ピーク波長を有する第1蛍光体とを、備え、第2蛍光体を備えていない、発光装置が挙げられる。第1蛍光体は、前述の第1蛍光体と同様の蛍光体が挙げられる。第2発光装置は、400nm以上490nm以下の範囲内に発光ピーク波長を有する発光素子と、第1蛍光体として式(1A)で表される組成を有する希土類アルミン酸塩蛍光体を備え、第2蛍光体を備えておらず、第1輝度比Ls/Lが0.9を超えて、又は、第2輝度比B/Aが0.104を超えて、相関色温度が5000K以上6500K以下の範囲内の光を発するものが挙げられる。
 車両
 第3実施形態の車両は、前述の発光装置又は前照灯が搭載され得る車両が挙げられる。前述の発光装置又は前照灯が搭載される車両としては、例えば自動二輪車、自動四輪車等の道路運送車両や、鉄道車両、整地・運搬・積込用機械のようなトラクター系又は堀削用機械等のショベル系の車両系建設機械に用いる車両等が挙げられる。
 本発明に係る実施形態は、以下の発光装置、前照灯及び車両を含む。
 [項1]
 400nm以上490nm以下の範囲内に発光ピーク波長を有する発光素子と、
 480nm以上580nm未満の範囲内に発光ピーク波長を有する第1蛍光体と、580nm以上680nm以下の範囲内に発光ピーク波長を有し、前記第1蛍光体の組成とは異なる組成を有する第2蛍光体と、を含む波長変換部材と、
 を備えた発光装置であり、
 前記発光装置は、CIE(国際照明委員会)で規定されたヒトの明所視標準比視感度曲線を考慮した380nm以上780nm以下の範囲の前記発光装置の発光の輝度Lに対する、前記ヒトの明所視標準比視感度曲線及びヒトのS錐体の分光感度を考慮した380nm以上780nm以下の範囲の前記発光装置の発光の第1実効放射輝度Lsの比であり、下記式(1)から導き出される第1輝度比Ls/Lが0.9以下である光を発し、
 前記第1蛍光体が、下記式(1A)で表される組成を有する希土類アルミン酸塩蛍光体を含む、発光装置。
Figure JPOXMLDOC01-appb-I000014
 (式(1)中、S(λ)は発光装置の発光の分光放射輝度であり、V(λ)はCIE(国際照明委員会)で規定されたヒトの明所視標準比視感度曲線であり、Gs(λ)は波長λnmが380nm以上550nm以下の範囲内におけるヒトのS錐体の分光感度である。)
 Ln 3-eCe(Al1-aGa12   (1A)
 (式(1A)中、Lnは、Y、Gd、Tb及びLuからなる群から選択される少なくとも1種の元素であり、a及びeは、0≦a≦0.5、0.019≦e≦0.2を満たす。)
 [項2]
 相関色温度が1800K以上5000K以下の光を発する、項1に記載の発光装置。
 [項3]
 前記第1蛍光体は、発光スペクトルの半値全幅が90nm以上125nm以下の範囲内である、項1又は2に記載の発光装置。
 [項4]
 前記第2蛍光体は、発光スペクトルの半値全幅が3nm以上15nm以下の範囲内であるか、又は発光スペクトルの半値全幅が60nm以上120nm以下の範囲内である、項1から3のいずれか1項に記載の発光装置。
 [項5]
 前記式(1A)で表される組成を有する希土類アルミン酸塩蛍光体のフィッシャーサブシーブサイザー法により測定された平均粒径が15μm以上40μm以下の範囲内である、項1から4のいずれか1項に記載の発光装置。
 [項6]
 前記第1蛍光体が、前記式(1A)で表される組成を有する希土類アルミン酸塩蛍光体を含み、さらに下記式(1B)で表される組成を有する第1窒化物蛍光体を含む、項1から5のいずれか1項に記載の発光装置。
 LaLn CeSi (1B)
 (式(1B)中、Lnは、Y及びGdからなる群から選択される少なくとも1種を必須として含み、Sc及びLuからなる群から選択される少なくとも1種を含んでいてもよく、組成1モル中に含まれるLn元素を100モル%としたときに、Lnに含まれるY及びGdの合計が90モル%以上であり、w、x、y及びzは、1.2≦w≦2.2、0.5≦x≦1.2、10≦y≦12、0.5≦z≦1.2、1.80<w+x<2.40、2.9≦w+x+z≦3.1を満たす。)
 [項7]
 前記第2蛍光体が、下記式(2A)で表される組成を有する第2窒化物蛍光体、下記式(2B)で表される組成を有する第3窒化物蛍光体、下記式(2C)で表される組成を有するフッ化物蛍光体、下記式(2C)とは組成が異なる下記式(2C’)で表される組成を有するフッ化物蛍光体、及び下記式(2G)で表される組成を有するαサイアロン蛍光体からなる群から選択される少なくとも1種を含む、項1から6のいずれか1項に記載の発光装置。
 M Si:Eu (2A)
 (式(2A)中、Mは、Ca、Sr及びBaからなる群から選択される少なくとも1種を含むアルカリ土類金属元素である。)
 SrCaAlSi:Eu (2B)
 (式(2B)中、q、s、t、u及びvは、それぞれ0≦q<1、0<s≦1、q+s≦1、0.9≦t≦1.1、0.9≦u≦1.1、2.5≦v≦3.5を満たす。)
 A[M 1-bMn4+ ] (2C)
 (式(2C)中、Aは、K、Li、Na、Rb、Cs及びNH からなる群から選択される少なくとも1種を含み、Mは、第4族元素及び第14族元素からなる群から選択される少なくとも1種の元素を含み、bは、0<b<0.2を満たし、cは、[M 1-bMn4+ ]イオンの電荷の絶対値であり、dは、5<d<7を満たす。)
 A’c’[M1-b’Mn4+ b’d’] (2C’)
 (式(2C’)中、A’は、K、Li、Na、Rb、Cs及びNH からなる群から選択される少なくとも1種を含み、M’は、第4族元素、第13族元素及び第14族元素からなる群から選択される少なくとも1種の元素を含み、b’は、0<b’<0.2を満たし、c’は、[M1-b’Mn4+ b’d’]イオンの電荷の絶対値であり、d’は、5<d’<7を満たす。)
 M v3Si12-(w3+x3)Alw3+x3x316-x3:Eu (2G)
 (式(2G)中、Mは、Li、Mg、Ca、Sr、Y及びランタノイド元素(但し、LaとCeを除く。)からなる群から選択される少なくとも1種の元素を含み、v3、w3及びx3は、それぞれ0<v3≦2.0、2.0≦w3≦6.0、0≦x3≦1.0を満たす。)
 [項8]
 前記波長変換部材が、前記第1蛍光体及び前記第2蛍光体と、透光性材料とを含む波長変換体を備え、波長変換体中の透光性材料100質量部に対して、第1蛍光体及び第2蛍光体の総量が50質量部以上500質量部以下の範囲内である、項1から7のいずれか1項に記載の発光装置。
 [項9]
 前記波長変換部材が、前記第1蛍光体及び前記第2蛍光体と、透光性材料とを含む波長変換体を備え、
 前記波長変換体が、前記第1蛍光体及び前記第2蛍光体の充填率が高い高濃度層と、前記第1蛍光体及び前記第2蛍光体の充填率が低い低濃度層とを備え、
 前記高濃度層が前記発光素子の側に配置された、項1から8のいずれか1項に記載の発光装置。
 [項10]
 前記項1から9のいずれか1項に記載の発光装置を備えた、前照灯。
 [項11]
 前記第1輝度比Ls/Lの値がそれぞれ異なる2種以上の発光装置を備えた、項10に記載の前照灯。
 [項12]
 前記項1から9のいずれか1項に記載の発光装置を含む第1発光装置と、CIE(国際照明委員会)で規定されたヒトの明所視標準比視感度曲線を考慮した380nm以上780nm以下の発光装置の発光の輝度Lに対する、前記ヒトの明所視標準比視感度曲線及びヒトのS錐体の分光感度を考慮した380nm以上780nm以下の発光装置の発光の第1実効放射輝度の比であり、下記式(1)から導き出される第1輝度比Ls/Lが0.9を超える光を発する第2発光装置の2種以上の発光装置を備えた、前照灯。
Figure JPOXMLDOC01-appb-I000015
 (式(1)中、S(λ)は発光装置の発光の分光放射輝度であり、V(λ)はCIE(国際照明委員会)で規定されたヒトの明所視標準比視感度曲線であり、Gs(λ)は波長λnmが380nm以上550nm以下の範囲内におけるヒトのS錐体の分光感度である。)
 [項13]
 400nm以上490nm以下の範囲内に発光ピーク波長を有する発光素子と、
 480nm以上580nm未満の範囲内に発光ピーク波長を有する第1蛍光体と、580nm以上680nm以下の範囲内に発光ピーク波長を有し、前記第1蛍光体の組成とは異なる組成を有する第2蛍光体と、を含む波長変換部材と、
 を備えた発光装置であり、
 前記発光装置は、300nm以上800nm以下の範囲において前記発光装置の発光の放射輝度Aに対する、波長300nmにおけるレイリー散乱の散乱強度を1としたときの波長に対する散乱強度曲線を考慮した300nm以上800nm以下の範囲の発光装置の発光の第2実効放射輝度Bの比であり、下記式(2)から導き出される第2輝度比B/Aが0.104以下である光を発し、
 前記第1蛍光体が、下記式(1A)で表される組成を有する希土類アルミン酸塩蛍光体を含む、発光装置。
Figure JPOXMLDOC01-appb-I000016
 (式(2)中、S(λ)は発光装置の発光の分光放射輝度であり、Dc(λ)はレイリー散乱において、波長300nmにおけるレイリー散乱の散乱強度を1としたときの波長に対する散乱強度曲線である。)
 Ln 3-eCe(Al1-aGa12   (1A)
 (式(1A)中、Lnは、Y、Gd、Tb及びLuからなる群から選択される少なくとも1種の元素であり、a及びeは、0≦a≦0.5、0.019≦e≦0.2を満たす。)
 [項14]
 相関色温度が1800K以上5000K以下の光を発する、項13に記載の発光装置。
 [項15]
 前記第1蛍光体は、発光スペクトルの半値全幅が90nm以上125nm以下の範囲内である、項13又は14に記載の発光装置。
 [項16]
 前記第2蛍光体は、発光スペクトルの半値全幅が3nm以上15nm以下の範囲内であるか、又は発光スペクトルの半値全幅が60nm以上120nm以下の範囲内である、項13から15のいずれか1項に記載の発光装置。
 [項17]
 前記第1蛍光体が、前記式(1A)で表される組成を有する希土類アルミン酸塩蛍光体を含み、さらに下記式(1B)で表される組成を有する第1窒化物蛍光体を含む、項13から16のいずれか1項に記載の発光装置。
 LaLn CeSi: (1B)
 (式(II)中、Lnは、Y及びGdからなる群から選択される少なくとも1種を必須として含み、Sc及びLuからなる群から選択される少なくとも1種を含んでいてもよく、組成1モル中に含まれるLn元素を100モル%としたときに、Lnに含まれるY及びGdの合計が90モル%以上であり、w、x、y及びzは、1.2≦w≦2.2、0.5≦x≦1.2、10≦y≦12、0.5≦z≦1.2、1.80<w+x<2.40、2.9≦w+x+z≦3.1を満たす。)
 [項18]
 前記第2蛍光体が、下記式(2A)で表される組成を有する第2窒化物蛍光体、下記式(2B)で表される組成を有する第3窒化物蛍光体、下記式(2C)で表される組成を有するフッ化物蛍光体、下記式(2C)とは組成が異なる下記式(2C’)で表される組成を有するフッ化物蛍光体、及び下記式(2G)で表される組成を有するαサイアロン蛍光体からなる群から選択される少なくとも1種を含む、項13から17のいずれか1項に記載の発光装置。
 M Si:Eu (2A)
 (式(2A)中、Mは、Ca、Sr及びBaからなる群から選択される少なくとも1種を含むアルカリ土類金属元素である。)
 SrCaAlSi:Eu (2B)
 (式(2B)中、q、s、t、u及びvは、それぞれ0≦q<1、0<s≦1、q+s≦1、0.9≦t≦1.1、0.9≦u≦1.1、2.5≦v≦3.5を満たす。)
 A[M 1-bMn4+ ] (2C)
 (式(2C)中、Aは、K、Li、Na、Rb、Cs及びNH からなる群から選択される少なくとも1種を含み、Mは、第4族元素及び第14族元素からなる群から選択される少なくとも1種の元素を含み、bは、0<b<0.2を満たし、cは、[M 1-bMn4+ ]イオンの電荷の絶対値であり、dは、5<d<7を満たす。)
 A’c’[M1-b’Mn4+ b’d’] (2C’)
 (式(2C’)中、A’は、K、Li、Na、Rb、Cs及びNH からなる群から選択される少なくとも1種を含み、M’は、第4族元素、第13族元素及び第14族元素からなる群から選択される少なくとも1種の元素を含み、b’は、0<b’<0.2を満たし、c’は、[M1-b’Mn4+ b’d’]イオンの電荷の絶対値であり、d’は、5<d’<7を満たす。)
 M v3Si12-(w3+x3)Alw3+x3x316-x3:Eu (2G)
 (式(2G)中、Mは、Li、Mg、Ca、Sr、Y及びランタノイド元素(但し、LaとCeを除く。)からなる群から選択される少なくとも1種の元素を含み、v3、w3及びx3は、それぞれ0<v3≦2.0、2.0≦w3≦6.0、0≦x3≦1.0を満たす。)
 [項19]
 前記式(1A)で表される組成を有する希土類アルミン酸塩蛍光体のフィッシャーサブシーブサイザー法により測定された平均粒径が15μm以上40μm以下の範囲内である、項13から18のいずれか1項に記載の発光装置。
 [項20]
 前記波長変換部材が、前記第1蛍光体及び前記第2蛍光体と、透光性材料とを含む波長変換体を備え、波長変換体中の透光性材料100質量部に対して、第1蛍光体及び第2蛍光体の総量が50質量部以上500質量部以下の範囲内である、項13から19のいずれか1項に記載の発光装置。
 [項21]
 前記波長変換部材が、前記第1蛍光体及び前記第2蛍光体と、透光性材料とを含む波長変換体を備え、
 前記波長変換体が、前記第1蛍光体及び前記第2蛍光体の充填率が高い高濃度層と、前記第1蛍光体及び前記第2蛍光体の充填率が低い低濃度層とを備え、
 前記高濃度層が、前記発光素子の側に配置された、項13から20のいずれか1項に記載の発光装置。
 [項22]
 前記項13から21のいずれか1項に記載の発光装置を備えた、前照灯。
 [項23]
 前記第2輝度比B/Aの値がそれぞれ異なる2種以上の発光装置を備えた、項22に記載の前照灯。
 [項24]
 前記項13から21のいずれか1項に記載の発光装置を含む第1発光装置と、
 300nm以上800nm以下の範囲において発光装置の発光の放射輝度Aに対する、波長300nmにおけるレイリー散乱の散乱強度を1としたときの波長に対する散乱強度曲線を考慮した300nm以上800nm以下の範囲の発光装置の発光の第2実効放射輝度Bの比であり、下記式(2)から導き出される第2輝度比B/Aが0.104を超える光を発する第2発光装置の2種以上の発光装置を備えた、前照灯。
Figure JPOXMLDOC01-appb-I000017
 (式(2)中、S(λ)は発光装置の発光の分光放射輝度であり、Dc(λ)はレイリー散乱において、波長300nmにおけるレイリー散乱の散乱強度を1としたときの波長に対する散乱強度曲線である。)
 [項25]
 前記項1から9及び13から21のいずれか1項に記載の発光装置を備えた、車両。
 [項26]
 前記項10から12及び22から24のいずれか1項に記載の前照灯を備えた、車両。
 以下、本発明を実施例により具体的に説明する。本発明は、これらの実施例に限定されるものではない。
 各実施例及び比較例の発光装置には、以下の第1蛍光体及び第2蛍光体を用いた。
 第1蛍光体
 第1蛍光体として、前記式(1A)で表される組成を有し、前記式(1A)で表されるLnがYであり、組成に含まれるCeのモル比(前記式(1A)中の変数e)が、それぞれ表1に示す数値である、希土類アルミン酸塩蛍光体のYAG-1、YAG-2、YAG-3、YAG-4、及びYAG-5を準備した。また、第1蛍光体として、前記式(1A)に含まれない組成を有し、前記式(1A)で表されるLnがYであり、組成に含まれるCeのモル比が0.018である、YAG-6を準備した。これらの第1蛍光体は、表1に示すように、それぞれ異なる、FSSS法により測定した平均粒径、CIE色度座標(x、y)、発光ピーク波長、及び半値全幅を有する。本明細書において、表1中、「-」の記号は、該当する項目又は数値がないことを表す。
 第2蛍光体
 第2蛍光体として、前記式(2A)で表される組成を有する第2窒化物蛍光体である、BSESN-1を準備した。第2蛍光体は、表1に示すように、FSSS法により測定した平均粒径、CIE色度座標(x、y)、発光ピーク波長、半値全幅を有する。
 蛍光体の発光スペクトル
 各蛍光体は、量子効率測定装置(QE-2000、大塚電子株式会社製)を用いて、励起波長450nmの光を各蛍光体に照射し、室温(約25℃)における発光スペクトルを測定し、各発光スペクトルからCIE1931の色度座標におけるx値及びy値、発光ピーク波長、半値全幅を測定した。
 蛍光体の平均粒径
 各蛍光体は、Fisher Sub-Sieve Sizer Model 95(Fisher Scientific社製)を用いて、FSSS法により平均粒径を測定した。具体的には、1cm分の体積の試料となる蛍光体を計り取り、専用の管状容器にパッキングした後、一定圧力の乾燥空気を流し、差圧から比表面積を読み取り、平均粒径(Fisher Sub-Sieve Sizer’s No.)に換算した値である。
Figure JPOXMLDOC01-appb-T000018
 実施例1から6
 図3A及び図3Bに示される形態の発光装置を製造した。
 発光素子の配置工程において、基板は、窒化アルミニウムを材料とするセラミックス基板を用いた。発光素子は、発光ピーク波長が450nmである窒化物系半導体層が積層された発光素子を用いた。発光素子の大きさは、平面形状が約1.0mm四方の略正方形であり、厚さが約0.11mmである。発光素子は、光出射面が基板側になるように配置し、Auからなる導電部材を用いたバンプによってフリップチップ実装した。また、発光素子と間隔を空けて半導体素子をAuからなる導電部材を用いたバンプによってフリップチップ実装した。
 透光性材料として、シリコーン樹脂a(ショアA硬度70)を用いた。波長変換体を含む波長変換部材の形成工程において、透光性材料としてシリコーン樹脂aの100質量部に対する、第1蛍光体及び第2蛍光体を表2に示す配合で用いた。表2中、蛍光体総量は、シリコーン樹脂aの100質量部に対する、第1蛍光体及び第2蛍光体の総量を示す。また、表2中、第1蛍光体の質量割合(質量%)及び第2蛍光体の質量割合(質量%)は、第1蛍光体及び第2蛍光体の合計の含有量を100質量%としたときの第1蛍光体の質量割合及び第2蛍光体の質量割合を示す。発光装置に含まれる第1蛍光体の含有量又は第2蛍光体の含有量は、第1蛍光体及び第2蛍光体の総量(質量部)と、第1蛍光体及び第2蛍光体の各質量割合(質量%)の積を100で除すことによって算出することができる。透光体として、ホウ珪酸ガラスからなり、発光素子の平面形状よりも縦横に約0.15mm大きい、平面形状が約1.15mm四方の略正方形であり、厚さが約0.10mmである透光体を準備した。透光体の略正方形状の一面に波長変換体用組成物を印刷法により印刷し、180℃で2時間加熱して、波長変換体用組成物を硬化させて、厚さ約80μmの層状の波長変換体を形成し、層状又は板状の波長変換体と透光体が一体となった波長変換部材を形成した。本明細書において、シリコーン樹脂のショアA硬度は、JIS K6253に準拠して、デュロメータータイプA(製品名:GS-709G、TECLOCK社製)を使用して測定した。
 発光素子と波長変換部材の接着工程において、波長変換部材の平面形状が約1.15mm四方の略正方形の一面と、発光素子の平面形状が約1.0mm四方の略正方形の一面とを、シリコーン樹脂を含む接着剤を用いて接着し、発光素子と波長変換部材の間に接着層を形成した。
 被覆部材の形成工程において、ジメチルシリコーン樹脂と酸化チタン粒子とを含み、ジメチルシリコーン樹脂の100質量部に対して酸化チタン粒子を30質量部含む被覆部材用組成物を準備した。基板上に配置された発光素子及び波長変換部材及び透光体を含む波長変換体の側面を被覆部材用組成物で覆い、半導体素子は完全に被覆部材用組成物に埋設するように、被覆部材用組成物を充填し、被覆部材用組成物を硬化させ、被覆部材を形成して、樹脂パッケージを形成し、発光装置を製造した。
 比較例1
 第1蛍光体として、前記式(1A)に含まれない組成を有するYAG-6を用いて、第1蛍光体及び第2蛍光体を表2に示す配合で用いたこと以外は、実施例1と同様にして、発光装置を製造した。
 各発光装置について、以下の測定を行った。結果を表2に示す。
 発光装置の発光スペクトル、色度座標(x、y)、相関色温度(K)
 各発光装置について、分光測光装置(PMA-11、浜松ホトニクス株式会社製)と積分球を組み合わせた光計測システムを用いて、室温(25℃±5℃)における発光スペクトルを測定した。各発光装置の発光スペクトルから、CIE1931の色度座標におけるx値及びy値と、JIS Z8725に準拠して相関色温度(K)と、を測定した。図6に、最大の発光強度を1としたときの実施例1に係る発光装置の発光スペクトルを示す。
 第1輝度比Ls/L
 各発光装置について測定した各発光スペクトルS(λ)、図1Aから求められるヒトのS錐体の分光感度Gs(λ)、図1Bから求められるCIEで規定されたヒトの明所視標準比視感度曲線V(λ)を、前記式(1)に算入し、各発光装置の発光の第1輝度比Ls/Lを測定した。
 第2輝度比B/A
 各発光装置について測定した各発光スペクトルS(λ)、図2から求められる散乱強度曲線Dc(λ)を、前記式(2)に算入し、各発光装置の発光の第2輝度比B/Aを測定した。
 相対光束(%)
 積分球を使用した全光束測定装置を用いて、各発光装置について光束を測定した。比較例1の発光装置の光束を100%として、比較例1以外の各発光装置の相対光束を算出した。
Figure JPOXMLDOC01-appb-T000019
 実施例1から6に係る発光装置は、相関色温度が1800K以上5000K以下の光を発し、第1輝度比Ls/Lが0.9以下である光を発した。実施例1から6に係る発光装置は、グレアを低減した光が発せられる。
 実施例1から6に係る発光装置は、第2輝度比B/Aが0.104以下である光を発した。実施例1から6に係る発光装置は、光の散乱が抑制され、比較的遠方まで到達する光が発せられる。
 実施例1から6に係る発光装置は、前記式(1A)で表される組成を有する第1蛍光体を含み、前記式(1A)において、賦活元素であるCeのモル比を表す変数eが、0.019以上0.2以下の範囲(0.019≦e≦0.2)を満たし、より具体的には、0.025以上0.112以下の範囲であり、前記式(1A)で表される組成式に含まれていない組成を有する第1蛍光体よりも、発光装置に含まれる第1蛍光体の含有量(蛍光体総量と第1蛍光体の質量割合の積を100で除した量)を少なくすることができた。また、実施例1から6に係る発光装置は、前記式(1A)で表される組成を有する第1蛍光体を含み、前記式(1A)において、賦活元素であるCeのモル比を表す変数eが、0.019以上0.2以下の範囲(0.019≦e≦0.2)を満たしているので、波長変換部材に含まれる蛍光体総量も比較例1に係る発光装置に用いた波長変換部材よりも少なくすることができ、蛍光体総量が少ない場合であっても、CIE色度座標の目的する範囲の色調を有し、第1輝度比Ls/Lが0.9以下であり、第2輝度比B/Aが0.104以下である光を発した。
 信頼性評価試験、剥離の割合の数値化
 各発光装置について、信頼性評価を行った。結果を表3に示す。信頼性評価としては、発光装置を85℃かつ相対湿度85%の環境試験機内で、700時間、電流1200mAで30分間ずつONとOFFを繰り返して信頼性評価試験を行った。信頼性評価試験後、発光装置の波長変換部材をマイクロスコープで観察し、波長変換体と透光体の間に生じる剥離の割合を数値化することで、耐久性を評価した。図3Bにおいて、波長変換部材40の波長変換体41及び透光体42の間に生じる剥離の割合を数値化した。
 剥離の割合の数値化には、アメリカ国立衛生研究所が開発したオープンソースであるパブリックドメインの画像解析処理ソフトウェア「ImageJ」を用いた。マイクロスコープで発光装置を透光体面側から撮影した写真を透光体面だけになるように切り抜き、透光体を撮影したカラー写真の三原色RGBに分離し、三原色RGBのうちGだけを抽出した。Gは、光のコントラスト(明暗)がはっきりと明確になりやすいためである。発光装置の透光体を撮影したカラー写真のGだけを取り出した写真のコントラストを調整して波長変換体と透光体の間に生じた剥離部分を強調し、剥離部分を2値化して、透光体面の面積に対する透光体面中の剥離部分の合計の面積の割合(剥離面/透光体面(%))を剥離の割合として算出した。算出した剥離の割合の数値は表3に示す。表3には、各発光装置の波長変換部材に含まれる、前記式(1A)で表される第1蛍光体の種類と、第1蛍光体に含まれるCeのモル比(前記式(1A)中の変数e)も示す。また、図8は、700時間の信頼性評価試験後の実施例1に係る発光装置の透光体面を2値化した写真を示す。図9は、700時間の信頼性評価試験後の比較例1に係る発光装置の透光体面を2値化した写真を示す。
 上述の信頼性評価試験後の各発光装置について、信頼性評価試験前と同様にして、第1輝度比、第2輝度比を算出した。また、信頼性評価試験前と同様にして、信頼性評価試験後の各発光装置の発光スペクトルを測定し、各発光装置の発光スペクトルからCIE1931の色度座標におけるx値及びy値と、JIS Z8725に準拠して相関色温度(K)を測定した。具体的には信頼性評価試験前の初期状態の発光装置から発する混色光のCIE色度座標におけるx値及びy値を、x1値及びy1値とし、発光装置を85℃かつ相対湿度85%の環境試験機内で、700時間、電流1200mAで30分間ずつONとOFFを繰り返した後、発光装置から発する混色光のCIE色度座標におけるx2及びy2値を測定し、x1値とx2値との差分Δxとy1値とy2値の差分Δyの絶対値を算出した。図7に、最大の発光強度を1としたときの前述の信頼性評価試験後の実施例1に係る発光装置の発光スペクトルを示す。
Figure JPOXMLDOC01-appb-T000020
 実施例1から6に係る発光装置は、85℃かつ相対湿度85%の環境試験機内で、700時間の信頼性評価試験後においても、相関色温度が1800K以上5000K以下の光を発し、第1輝度比Ls/Lが0.9以下である光を発した。実施例1から6に係る発光装置は、グレアを低減した光が発せられる。
 実施例1から6に係る発光装置は、85℃かつ相対湿度85%の環境試験機内で、700時間の信頼性評価試験後においても、第2輝度比B/Aが0.104以下である光を発した。実施例1から6に係る発光装置は、光の散乱が抑制され、比較的遠方まで到達する光が発せられる。
 また、実施例1から6に係る発光装置は、前記式(1A)で表される組成を有する第1蛍光体を含み、前記式(1A)において、賦活元素であるCeのモル比を表す変数eが、0.019以上0.2以下の範囲(0.019≦e≦0.2)を満たしているので、波長変換部材に含まれる蛍光体総量が比較例1に係る発光装置に用いた波長変換部材よりも少ない量とすることができ、85℃かつ相対湿度85%の環境試験機内で、700時間の信頼性評価試験後において、波長変換部材40の波長変換体41と透光体42の間に生じる剥離の割合が、比較例1に係る発光装置と比較して少なく、耐久性を高めることができた。また、また、実施例1から6に係る発光装置は、前記式(1A)で表される組成を有する第1蛍光体を含み、前記式(1A)において、賦活元素であるCeのモル比を表す変数eが、0.019以上0.2以下の範囲(0.019≦e≦0.2)を満たしているので、信頼性評価試験前後の色度の変化を表すΔx及びΔyの値が、比較例1に係る発光装置のΔx及びΔyよりも小さくなり、色度ずれを抑制し、耐久性を高めることができた。
 図6に示す信頼性評価試験前の実施例1に係る発光装置の発光スペクトルと、図7に示す信頼性評価試験後の実施例1に係る発光装置の発光スペクトルとでは、発光スペクトルにほぼ変化がなく、85℃かつ相対湿度85%の環境試験機内で、700時間の信頼性評価試験後において、前述のとおり、グレアを低減した光が発せられ、光の散乱が抑制され、比較的遠方まで到達する光が発せられる。
 図8に示す700時間の信頼性評価試験後の実施例1に係る発光装置の透光体面を2値化した写真において、白色の剥離部分がほとんど確認できず、発光装置の耐久性が高められていた。
 図9に示す700時間の信頼性評価試験後の比較例1に係る発光装置の透光体面を2値化した写真において、波長変換体と透光体の間の剥離部分を示す白色が多くみられた。
 本開示の実施形態の発光装置は、前照灯に用いることができる。本開示の実施形態による発光装置を備えた前照灯は、例えば自動二輪車、自動四輪車等の道路運送車両、鉄道車両、整地・運搬・積込用機械のようなトラクター系又は堀削用機械等のショベル系の車両系建設機械に用いる車両に用いることができる。
 1:基板、10:発光素子、12:点灯制御部、22:アウターレンズ、24:ランプボディ、26:光学フィルタ、28:ネジ、32:基板、34:導光部材、40:波長変換部材、41:波長変換体、41a:高濃度層、41b:低濃度層、42:透光体、50:半導体素子、60:導電部材、71:第1蛍光体、72:第2蛍光体、80:接着層、90:被覆部材、100、101:発光装置、200:前照灯。

Claims (26)

  1.  400nm以上490nm以下の範囲内に発光ピーク波長を有する発光素子と、
     480nm以上580nm未満の範囲内に発光ピーク波長を有する第1蛍光体と、580nm以上680nm以下の範囲内に発光ピーク波長を有し、前記第1蛍光体の組成とは異なる組成を有する第2蛍光体と、を含む波長変換部材と、
     を備えた発光装置であり、
     前記発光装置は、CIE(国際照明委員会)で規定されたヒトの明所視標準比視感度曲線を考慮した380nm以上780nm以下の範囲の前記発光装置の発光の輝度Lに対する、前記ヒトの明所視標準比視感度曲線及びヒトのS錐体の分光感度を考慮した380nm以上780nm以下の範囲の前記発光装置の発光の第1実効放射輝度Lsの比であり、下記式(1)から導き出される第1輝度比Ls/Lが0.9以下である光を発し、
     前記第1蛍光体が、下記式(1A)で表される組成を有する希土類アルミン酸塩蛍光体を含む、発光装置。
    Figure JPOXMLDOC01-appb-I000001
     (式(1)中、S(λ)は発光装置の発光の分光放射輝度であり、V(λ)はCIE(国際照明委員会)で規定されたヒトの明所視標準比視感度曲線であり、Gs(λ)は波長λnmが380nm以上550nm以下の範囲内におけるヒトのS錐体の分光感度である。)
     Ln 3-eCe(Al1-aGa12   (1A)
     (式(1A)中、Lnは、Y、Gd、Tb及びLuからなる群から選択される少なくとも1種の元素であり、a及びeは、0≦a≦0.5、0.019≦e≦0.2を満たす。)
  2.  相関色温度が1800K以上5000K以下の光を発する、請求項1に記載の発光装置。
  3.  前記第1蛍光体は、発光スペクトルの半値全幅が90nm以上125nm以下の範囲内である、請求項1又は2に記載の発光装置。
  4.  前記第2蛍光体は、発光スペクトルの半値全幅が3nm以上15nm以下の範囲内であるか、又は発光スペクトルの半値全幅が60nm以上120nm以下の範囲内である、請求項1から3のいずれか1項に記載の発光装置。
  5.  前記式(1A)で表される組成を有する希土類アルミン酸塩蛍光体のフィッシャーサブシーブサイザー法により測定された平均粒径が15μm以上40μm以下の範囲内である、請求項1から4のいずれか1項に記載の発光装置。
  6.  前記第1蛍光体が、前記式(1A)で表される組成を有する希土類アルミン酸塩蛍光体を含み、さらに下記式(1B)で表される組成を有する第1窒化物蛍光体を含む、請求項1から5のいずれか1項に記載の発光装置。
     LaCeLn Si:Ce (1B)
     (式(1B)中、Lnは、Y及びGdからなる群から選択される少なくとも1種を必須として含み、Sc及びLuからなる群から選択される少なくとも1種を含んでいてもよく、組成1モル中に含まれるLn元素を100モル%としたときに、Lnに含まれるY及びGdの合計が90モル%以上であり、w、x、y及びzは、1.2≦w≦2.2、0.5≦x≦1.2、10≦y≦12、0.5≦z≦1.2、1.80<w+x<2.40、2.9≦w+x+z≦3.1を満たす。)
  7.  前記第2蛍光体が、下記式(2A)で表される組成を有する第2窒化物蛍光体、下記式(2B)で表される組成を有する第3窒化物蛍光体、下記式(2C)で表される組成を有するフッ化物蛍光体、及び下記式(2C)とは組成が異なる下記式(2C’)で表される組成を有するフッ化物蛍光体、及び下記式(2G)で表される組成を有するαサイアロン蛍光体からなる群から選択される少なくとも1種を含む、請求項1から6のいずれか1項に記載の発光装置。
     M Si:Eu (2A)
     (式(2A)中、Mは、Ca、Sr及びBaからなる群から選択される少なくとも1種を含むアルカリ土類金属元素である。)
     SrCaAlSi:Eu (2B)
     (式(2B)中、q、s、t、u及びvは、それぞれ0≦q<1、0<s≦1、q+s≦1、0.9≦t≦1.1、0.9≦u≦1.1、2.5≦v≦3.5を満たす。)
     A[M 1-bMn4+ ] (2C)
     (式(2C)中、Aは、K、Li、Na、Rb、Cs及びNH からなる群から選択される少なくとも1種を含み、Mは、第4族元素及び第14族元素からなる群から選択される少なくとも1種の元素を含み、bは、0<b<0.2を満たし、cは、[M 1-bMn4+ ]イオンの電荷の絶対値であり、dは、5<d<7を満たす。)
     A’c’[M1-b’Mn4+ b’d’] (2C’)
     (式(2C’)中、A’は、K、Li、Na、Rb、Cs及びNH からなる群から選択される少なくとも1種を含み、M’は、第4族元素、第13族元素及び第14族元素からなる群から選択される少なくとも1種の元素を含み、b’は、0<b’<0.2を満たし、c’は、[M1-b’Mn4+ b’d’]イオンの電荷の絶対値であり、d’は、5<d’<7を満たす。)
     M v3Si12-(w3+x3)Alw3+x3x316-x3:Eu (2G)
     (式(2G)中、Mは、Li、Mg、Ca、Sr、Y及びランタノイド元素(但し、LaとCeを除く。)からなる群から選択される少なくとも1種の元素を含み、v3、w3及びx3は、それぞれ0<v3≦2.0、2.0≦w3≦6.0、0≦x3≦1.0を満たす。)
  8.  前記波長変換部材が、前記第1蛍光体及び前記第2蛍光体と、透光性材料とを含む波長変換体を備え、波長変換体中の透光性材料100質量部に対して、第1蛍光体及び第2蛍光体の総量が50質量部以上500質量部以下の範囲内である、請求項1から7のいずれか1項に記載の発光装置。
  9.  前記波長変換部材が、前記第1蛍光体及び前記第2蛍光体と、透光性材料とを含む波長変換体を備え、
     前記波長変換体が、前記第1蛍光体及び前記第2蛍光体の充填率が高い高濃度層と、前記第1蛍光体及び前記第2蛍光体の充填率が低い低濃度層とを備え、
     前記高濃度層が前記発光素子の側に配置された、請求項1から8のいずれか1項に記載の発光装置。
  10.  前記請求項1から9のいずれか1項に記載の発光装置を備えた、前照灯。
  11.  前記第1輝度比Ls/Lの値がそれぞれ異なる2種以上の発光装置を備えた、請求項10に記載の前照灯。
  12.  前記請求項1から9のいずれか1項に記載の発光装置を含む第1発光装置と、CIE(国際照明委員会)で規定されたヒトの明所視標準比視感度曲線を考慮した380nm以上780nm以下の発光装置の発光の輝度Lに対する、前記ヒトの明所視標準比視感度曲線及びヒトのS錐体の分光感度を考慮した380nm以上780nm以下の発光装置の発光の第1実効放射輝度の比であり、下記式(1)から導き出される第1輝度比Ls/Lが0.9を超える光を発する第2発光装置の2種以上の発光装置を備えた、前照灯。
    Figure JPOXMLDOC01-appb-I000002
     (式(1)中、S(λ)は発光装置の発光の分光放射輝度であり、V(λ)はCIE(国際照明委員会)で規定されたヒトの明所視標準比視感度曲線であり、Gs(λ)は波長λnmが380nm以上550nm以下の範囲内におけるヒトのS錐体の分光感度である。)
  13.  400nm以上490nm以下の範囲内に発光ピーク波長を有する発光素子と、
     480nm以上580nm未満の範囲内に発光ピーク波長を有する第1蛍光体と、580nm以上680nm以下の範囲内に発光ピーク波長を有し、前記第1蛍光体の組成とは異なる組成を有する第2蛍光体と、を含む波長変換部材と、
     を備えた発光装置であり、
     前記発光装置は、300nm以上800nm以下の範囲において前記発光装置の発光の放射輝度Aに対する、波長300nmにおけるレイリー散乱の散乱強度を1としたときの波長に対する散乱強度曲線を考慮した300nm以上800nm以下の範囲の発光装置の発光の第2実効放射輝度Bの比であり、下記式(2)から導き出される第2輝度比B/Aが0.104以下である光を発し、
     前記第1蛍光体が、下記式(1A)で表される組成を有する希土類アルミン酸塩蛍光体を含む、発光装置。
    Figure JPOXMLDOC01-appb-I000003
     (式(2)中、S(λ)は発光装置の発光の分光放射輝度であり、Dc(λ)はレイリー散乱において、波長300nmにおけるレイリー散乱の散乱強度を1としたときの波長に対する散乱強度曲線である。)
     Ln 3-eCe(Al1-aGa12   (1A)
     (式(1A)中、Lnは、Y、Gd、Tb及びLuからなる群から選択される少なくとも1種の元素であり、a及びeは、0≦a≦0.5、0.019≦e≦0.2を満たす。)
  14.  相関色温度が1800K以上5000K以下の光を発する、請求項13に記載の発光装置。
  15.  前記第1蛍光体は、発光スペクトルの半値全幅が90nm以上125nm以下の範囲内である、請求項13又は14に記載の発光装置。
  16.  前記第2蛍光体は、発光スペクトルの半値全幅が3nm以上15nm以下の範囲内であるか、又は発光スペクトルの半値全幅が60nm以上120nm以下の範囲内である、請求項13から15のいずれか1項に記載の発光装置。
  17.  前記第1蛍光体が、前記式(1A)で表される組成を有する希土類アルミン酸塩蛍光体を含み、さらに下記式(1B)で表される組成を有する第1窒化物蛍光体を含む、請求項13から16のいずれか1項に記載の発光装置。
     LaCeLn Si:Ce (1B)
     (式(1B)中、Lnは、Y及びGdからなる群から選択される少なくとも1種を必須として含み、Sc及びLuからなる群から選択される少なくとも1種を含んでいてもよく、組成1モル中に含まれるLn元素を100モル%としたときに、Lnに含まれるY及びGdの合計が90モル%以上であり、w、x、y及びzは、1.2≦w≦2.2、0.5≦x≦1.2、10≦y≦12、0.5≦z≦1.2、1.80<w+x<2.40、2.9≦w+x+z≦3.1を満たす。)
  18.  前記第2蛍光体が、下記式(2A)で表される組成を有する第2窒化物蛍光体、下記式(2B)で表される組成を有する第3窒化物蛍光体、及び下記式(2C)で表される組成を有するフッ化物蛍光体、下記式(2C)とは組成が異なる下記式(2C’)で表される組成を有するフッ化物蛍光体、及び下記式(2G)で表される組成を有するαサイアロン蛍光体からなる群から選択される少なくとも1種を含む、請求項13から17のいずれか1項に記載の発光装置。
     M Si:Eu (2A)
     (式(2A)中、Mは、Ca、Sr及びBaからなる群から選択される少なくとも1種を含むアルカリ土類金属元素である。)
     SrCaAlSi:Eu (2B)
     (式(2B)中、q、s、t、u及びvは、それぞれ0≦q<1、0<s≦1、q+s≦1、0.9≦t≦1.1、0.9≦u≦1.1、2.5≦v≦3.5を満たす。)
     A[M 1-bMn4+ ] (2C)
     (式(2C)中、Aは、K、Li、Na、Rb、Cs及びNH からなる群から選択される少なくとも1種を含み、Mは、第4族元素及び第14族元素からなる群から選択される少なくとも1種の元素を含み、bは、0<b<0.2を満たし、cは、[M 1-bMn4+ ]イオンの電荷の絶対値であり、dは、5<d<7を満たす。)
     A’c’[M1-b’Mn4+ b’d’] (2C’)
     (式(2C’)中、A’は、K、Li、Na、Rb、Cs及びNH からなる群から選択される少なくとも1種を含み、M’は、第4族元素、第13族元素及び第14族元素からなる群から選択される少なくとも1種の元素を含み、b’は、0<b’<0.2を満たし、c’は、[M1-b’Mn4+ b’d’]イオンの電荷の絶対値であり、d’は、5<d’<7を満たす。)
     M v3Si12-(w3+x3)Alw3+x3x316-x3:Eu (2G)
     (式(2G)中、Mは、Li、Mg、Ca、Sr、Y及びランタノイド元素(但し、LaとCeを除く。)からなる群から選択される少なくとも1種の元素を含み、v3、w3及びx3は、それぞれ0<v3≦2.0、2.0≦w3≦6.0、0≦x3≦1.0を満たす。)
  19.  前記式(1A)で表される組成を有する希土類アルミン酸塩蛍光体のフィッシャーサブシーブサイザー法により測定された平均粒径が15μm以上40μm以下の範囲内である、請求項13から18のいずれか1項に記載の発光装置。
  20.  前記波長変換部材が、前記第1蛍光体及び前記第2蛍光体と、透光性材料とを含む波長変換体を備え、波長変換体中の透光性材料100質量部に対して、第1蛍光体及び第2蛍光体の総量が50質量部以上500質量部以下の範囲内である、請求項13から19のいずれか1項に記載の発光装置。
  21.  前記波長変換部材が、前記第1蛍光体及び前記第2蛍光体と、透光性材料とを含む波長変換体を備え、
     前記波長変換体が、前記第1蛍光体及び前記第2蛍光体の充填率が高い高濃度層と、前記第1蛍光体及び前記第2蛍光体の充填率が低い低濃度層とを備え、
     前記高濃度層が、前記発光素子の側に配置された、請求項13から20のいずれか1項に記載の発光装置。
  22.  前記請求項13から21のいずれか1項に記載の発光装置を備えた、前照灯。
  23.  前記第2輝度比B/Aの値がそれぞれ異なる2種以上の発光装置を備えた、請求項22に記載の前照灯。
  24.  前記請求項13から21のいずれか1項に記載の発光装置を含む第1発光装置と、
     300nm以上800nm以下の範囲において発光装置の発光の放射輝度Aに対する、波長300nmにおけるレイリー散乱の散乱強度を1としたときの波長に対する散乱強度曲線を考慮した300nm以上800nm以下の範囲の発光装置の発光の第2実効放射輝度Bの比であり、下記式(2)から導き出される第2輝度比B/Aが0.104を超える光を発する第2発光装置の2種以上の発光装置を備えた、前照灯。
    Figure JPOXMLDOC01-appb-I000004
     (式(2)中、S(λ)は発光装置の発光の分光放射輝度であり、Dc(λ)はレイリー散乱において、波長300nmにおけるレイリー散乱の散乱強度を1としたときの波長に対する散乱強度曲線である。)
  25.  前記請求項1から9及び13から21のいずれか1項に記載の発光装置を備えた、車両。
  26.  前記請求項10から12及び22から24のいずれか1項に記載の前照灯を備えた、車両。
PCT/JP2023/026930 2022-10-14 2023-07-24 発光装置、前照灯及びそれを備えた車両 WO2024079960A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-165217 2022-10-14
JP2022165217A JP2024058077A (ja) 2022-10-14 2022-10-14 発光装置、前照灯及びそれを備えた車両

Publications (1)

Publication Number Publication Date
WO2024079960A1 true WO2024079960A1 (ja) 2024-04-18

Family

ID=90669495

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/026930 WO2024079960A1 (ja) 2022-10-14 2023-07-24 発光装置、前照灯及びそれを備えた車両

Country Status (3)

Country Link
JP (1) JP2024058077A (ja)
TW (1) TW202426814A (ja)
WO (1) WO2024079960A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013191455A (ja) * 2012-03-14 2013-09-26 Stanley Electric Co Ltd 車両用前照灯
JP2017017317A (ja) * 2015-06-30 2017-01-19 日亜化学工業株式会社 発光装置
JP2017149847A (ja) * 2016-02-24 2017-08-31 日亜化学工業株式会社 蛍光体及び発光装置
US20200028047A1 (en) * 2018-07-20 2020-01-23 National Taiwan University Of Science And Technology Light emitting diode array package structure with high thermal conductivity
JP2020057777A (ja) * 2018-09-28 2020-04-09 日亜化学工業株式会社 発光装置及びそれを備えた灯具

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013191455A (ja) * 2012-03-14 2013-09-26 Stanley Electric Co Ltd 車両用前照灯
JP2017017317A (ja) * 2015-06-30 2017-01-19 日亜化学工業株式会社 発光装置
JP2017149847A (ja) * 2016-02-24 2017-08-31 日亜化学工業株式会社 蛍光体及び発光装置
US20200028047A1 (en) * 2018-07-20 2020-01-23 National Taiwan University Of Science And Technology Light emitting diode array package structure with high thermal conductivity
JP2020057777A (ja) * 2018-09-28 2020-04-09 日亜化学工業株式会社 発光装置及びそれを備えた灯具

Also Published As

Publication number Publication date
JP2024058077A (ja) 2024-04-25
TW202426814A (zh) 2024-07-01

Similar Documents

Publication Publication Date Title
JP7277804B2 (ja) 発光装置及び光源
JP5941243B2 (ja) 発光装置、それを用いた車両用灯具、およびヘッドランプ
JP5099418B2 (ja) 照明装置
JP5105132B1 (ja) 半導体発光装置、半導体発光システムおよび照明器具
JP5200537B2 (ja) 発光装置
TWI383035B (zh) A phosphor and a light-emitting device using the same, and a method for manufacturing the phosphor
US20070090381A1 (en) Semiconductor light emitting device
WO2007120582A1 (en) WHITE LEDs WITH TAILORABLE COLOR TEMPERATURE
JP5370047B2 (ja) 白色発光装置のための演色性改善方法および白色発光装置
JP5323308B2 (ja) 発光モジュール
US11282990B2 (en) Light emitting device and light source
WO2009104653A1 (ja) 白色発光装置及びこれを用いた車両用灯具
US8299487B2 (en) White light emitting device and vehicle lamp using the same
WO2022224598A1 (ja) 発光装置、前照灯及びそれを備えた車両
JP6428245B2 (ja) 発光装置
JP7348521B2 (ja) 発光装置
JP4890017B2 (ja) 青色発光蛍光体およびそれを用いた発光モジュール
JP2002344021A (ja) 発光装置
WO2024079960A1 (ja) 発光装置、前照灯及びそれを備えた車両
JP6550889B2 (ja) 発光装置及びその製造方法
JP5683625B2 (ja) 発光装置、それを用いた車両用灯具、およびヘッドランプ
JP2022165383A (ja) 発光装置、前照灯及びそれを備えた車両
WO2009104652A1 (ja) 白色発光装置及びこれを用いた車両用灯具
CN117178380A (zh) 发光装置、前照灯及具备其的车辆
WO2009093611A1 (ja) 蛍光体を用いた発光モジュール及びこれを用いた車両用灯具

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23876969

Country of ref document: EP

Kind code of ref document: A1