WO2022224598A1 - 発光装置、前照灯及びそれを備えた車両 - Google Patents

発光装置、前照灯及びそれを備えた車両 Download PDF

Info

Publication number
WO2022224598A1
WO2022224598A1 PCT/JP2022/009591 JP2022009591W WO2022224598A1 WO 2022224598 A1 WO2022224598 A1 WO 2022224598A1 JP 2022009591 W JP2022009591 W JP 2022009591W WO 2022224598 A1 WO2022224598 A1 WO 2022224598A1
Authority
WO
WIPO (PCT)
Prior art keywords
phosphor
light
emitting device
light emitting
less
Prior art date
Application number
PCT/JP2022/009591
Other languages
English (en)
French (fr)
Inventor
はるか 日野
由紀子 佐野
Original Assignee
日亜化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2022026600A external-priority patent/JP2022165383A/ja
Application filed by 日亜化学工業株式会社 filed Critical 日亜化学工業株式会社
Priority to CN202280029014.9A priority Critical patent/CN117178380A/zh
Priority to DE112022002217.5T priority patent/DE112022002217T5/de
Publication of WO2022224598A1 publication Critical patent/WO2022224598A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7728Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
    • C09K11/77347Silicon Nitrides or Silicon Oxynitrides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7766Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals
    • C09K11/7774Aluminates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/14Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
    • F21S41/176Light sources where the light is generated by photoluminescent material spaced from a primary light generating element
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21WINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO USES OR APPLICATIONS OF LIGHTING DEVICES OR SYSTEMS
    • F21W2102/00Exterior vehicle lighting devices for illuminating purposes

Definitions

  • the present invention relates to a light emitting device, a headlamp, and a vehicle equipped with the same.
  • Headlights for road transportation vehicles such as four-wheeled motor vehicles and motorcycles, tractor-type vehicles such as land leveling, transporting and loading machines, and excavator-type vehicle construction machines such as excavating machines are halogen lamps.
  • a HID lamp High-Intensity Discharge Lamp
  • a light-emitting device using a semiconductor light-emitting element as an excitation light source.
  • one or a plurality of headlamps for automobiles are mounted symmetrically on the left and right sides of the front surface at positions lower than the driver's viewpoint.
  • the headlight includes a high beam (running headlight) lamp and a low beam (passing headlight) lamp, which can be switched.
  • the high beam illuminates a relatively distant area ahead, for example, up to about 100 m
  • the low beam illuminates a near portion slightly below the high beam, eg, about 40 m ahead.
  • Patent Literature 1 discloses a vehicle headlamp that includes a first lamp unit that is lit in low beam mode, and a first lamp unit and a second lamp unit that are simultaneously lit in high beam mode.
  • Patent Document 1 discloses a type of HID lamp that emits light at a correlated color temperature of 4000K to 5000K, using a white light emitting LED that emits light at a correlated color temperature of 4000K to 6500K as a light source as a first lamp unit and a second lamp unit that emits light at a correlated color temperature of 4000K to 5000K.
  • the use of a metal halide lamp as a light source is disclosed.
  • the light emitted from the headlights may stimulate the vision of the drivers of preceding and oncoming vehicles, causing glare that makes them feel uncomfortable and makes it difficult to see things. Glare is the sensation caused by improper luminance distribution or extreme luminance contrast within the visual field, and is associated with discomfort and reduced ability to see (JIS Z9110). Furthermore, the light emitted from the headlamp may cause glare to the driver of the vehicle due to reflected light.
  • An object of one aspect of the present invention is to provide a light-emitting device, a headlamp, and a vehicle including the same that can reduce glare.
  • a first aspect includes a light-emitting element having an emission peak wavelength in the range of 400 nm or more and 490 nm or less, a first phosphor having an emission peak wavelength in the range of 480 nm or more and less than 580 nm, and emitting light in the range of 580 nm or more and 680 nm or less. and a second phosphor having a composition different from that of the first phosphor.
  • the human photopic standard ratio luminosity curve and the human It is the ratio of the first effective radiance Ls of the light emission of the light emitting device in the range of 380 nm or more and 780 nm or less considering the spectral sensitivity of the S cone, and the first luminance ratio Ls/L derived from the following formula (1) is 0 .9 or less is a light-emitting device.
  • S ( ⁇ ) is the spectral radiance of light emitted from the light emitting device
  • V ( ⁇ ) is the human photopic standard ratio luminosity curve defined by CIE
  • Gs ( ⁇ ) is the spectral sensitivity of the human S-cone in the range of wavelength ⁇ nm from 380 nm to 550 nm.
  • a second aspect includes a light-emitting element having an emission peak wavelength in the range of 400 nm or more and 490 nm or less, a first phosphor having an emission peak wavelength in the range of 480 nm or more and less than 580 nm, and emitting light in the range of 580 nm or more and 680 nm or less. and a second phosphor having a composition different from that of the first phosphor, the light emitting device having a peak wavelength of 300 nm or more and 800 nm or less.
  • the light-emitting device emits light with a second luminance ratio B/A, which is a ratio of radiance B and derived from the following formula (2), of 0.104 or less.
  • S( ⁇ ) is the spectral radiance of light emitted from the light emitting device
  • Dc( ⁇ ) is a scattering intensity curve when the scattering intensity of Rayleigh scattering at a wavelength of 300 nm is set to 1.
  • a third aspect is a headlamp including the light emitting device.
  • a fourth aspect is a vehicle including the light emitting device or the headlamp.
  • a light emitting device a headlamp, and a vehicle including the same that can reduce glare.
  • FIG. 1A is the spectral sensitivity Gs( ⁇ ) of the human S cone disclosed in Non-Patent Document 2.
  • FIG. 1B is a human photopic standard ratio luminosity curve V( ⁇ ) defined by CIE disclosed in Non-Patent Document 2.
  • FIG. 2 is a diagram showing an intensity curve Dc( ⁇ ) of Rayleigh scattering with a scattering intensity of 1 at a wavelength of 300 nm.
  • FIG. 3A is a schematic plan view of a light emitting device.
  • FIG. 3A is a schematic plan view of a light emitting device.
  • FIG. 3B is a schematic cross-sectional view of the light emitting device.
  • FIG. 3C is an enlarged view of a portion of the schematic cross section of the light emitting device.
  • 4 is a diagram showing emission spectra of the light emitting devices according to Examples 1 and 2 and an emission spectrum of the light emitting device according to Comparative Example 1.
  • FIG. 5 is a diagram showing emission spectra of the light emitting devices according to Examples 3 and 4 and an emission spectrum of the light emitting device according to Comparative Example 1.
  • FIG. 6 is a diagram showing emission spectra of the light emitting devices according to Examples 5 and 6 and an emission spectrum of the light emitting device according to Comparative Example 1.
  • FIG. 7 is a diagram showing emission spectra of the light emitting devices according to Examples 7 and 8 and an emission spectrum of the light emitting device according to Comparative Example 1.
  • FIG. 8 is a diagram showing the emission spectra of the light emitting devices according to Examples 9 and 10 and the emission spectrum of the light emitting device according to Comparative Example 1.
  • FIG. 9 is a diagram showing the emission spectrum of the light emitting device according to Example 11 and the emission spectrum of the light emitting device according to Comparative Example 1.
  • FIG. 10 is a diagram showing an emission spectrum of a light emitting device according to Example 12 and an emission spectrum of a light emitting device according to Comparative Example 1.
  • FIG. 11 is a diagram showing an emission spectrum of a light emitting device according to Example 13 and an emission spectrum of a light emitting device according to Comparative Example 1.
  • FIG. 12 is a diagram showing the emission spectra of the light emitting devices according to Examples 14 and 15 and the emission spectrum of the light emitting device according to Comparative Example 1.
  • FIG. 13 is a diagram showing the emission spectra of the light emitting devices according to Examples 16, 17 and 18 and the emission spectrum of the light emitting device according to Comparative Example 1.
  • FIG. 14 is a graph showing the relationship between the ambient temperature and the first luminance ratio Ls/L of the light emitting devices according to Examples 7, 9 and 16 and the light emitting device according to Comparative Example 1.
  • FIG. 15 is a graph showing the relationship between the ambient temperature and the second luminance ratio B/A of the light emitting devices according to Examples 7, 9 and 16 and the light emitting device according to Comparative Example 1.
  • FIG. FIG. 16 is a graph showing the relationship between the ambient temperature and the correlated color temperature of the light emitting devices according to Examples 7 and 16 and the light emitting device according to Comparative Example 1; 17 is an SEM photograph showing a cut surface of a sample of the wavelength conversion member according to Example 18.
  • FIG. 18 is an SEM photograph showing a cut surface of a sample of the wavelength conversion member according to Example 18.
  • FIG. 19 is an SEM photograph showing a cut surface of a sample of the wavelength conversion member according to Example 3.
  • FIG. FIG. 20 is a diagram showing a horizontal sectional view of the headlamp.
  • FIG. 21 is a diagram showing a front view of the headlamp.
  • the content of each component in the composition refers to the total amount of the multiple substances present in the composition when there are multiple substances corresponding to each component in the composition, unless otherwise specified.
  • the half width of the emission spectrum means the full width at half maximum (FWHM).
  • the half-value width of a light-emitting element or phosphor means the wavelength width of an emission spectrum showing an emission intensity of 50% of the maximum emission intensity in the emission spectrum.
  • Various light sources such as HID lamps, halogen lamps, and light emitting devices using LEDs are used for vehicle headlights depending on characteristics such as luminous flux and energy.
  • the glare and apparent brightness differ depending on the difference in the light source.
  • the brightness of the road surface is also affected by the blue light component and the correlated color temperature of the light.
  • Non-Patent Document 1 discloses that an LED light source with a high color temperature of, for example, 6600 K is perceived as dazzling by humans regardless of whether they are elderly or non-elderly (Non-Patent Document 1: Hiroshi Hashimoto et al., "Influence on glare due to difference in color temperature of white LED", Japan Automobile Research Institute, Preventive Safety Research Department, October 2006, Automobile Research, Vol. 28, No. 10, p569 to p572).
  • the glare that humans feel uncomfortable differs depending on factors such as a decrease in human retinal illuminance and deterioration of rod cells, and glare may change depending on human age.
  • Non-Patent Document 2 the spectral sensitivity Gs ( ⁇ ), the following formula (3) of a new spectral luminous efficiency V K ( ⁇ ) corresponding to glare is disclosed (Non-Patent Document 2: Masaji Kobayashi et al., “The spectral distribution of the headlamp light source is uncomfortable Research on Influence on Glare", Society of Automotive Engineers of Japan, Academic Lecture Proceedings, No. 5 to 10, p9 to p14).
  • spectral radiance is synonymous with spectral distribution.
  • FIG. 1A is the spectral sensitivity Gs( ⁇ ) of the human S cone disclosed in Non-Patent Document 2.
  • FIG. 1A Based on FIG. 1A, a numerical value for the spectral sensitivity Gs( ⁇ ) of the human S cone can be derived.
  • the spectral sensitivity Gs( ⁇ ) of the human S cone has a spectral sensitivity peak within the range of 380 nm or more and 550 nm or less.
  • FIG. 1B is a human photopic standard ratio luminosity curve V( ⁇ ) defined by CIE disclosed in Non-Patent Document 2.
  • FIG. The relative values shown in FIGS. 1A to 1C are values with 1 being the peak top of the human photopic standard ratio luminosity curve V( ⁇ ) defined by the CIE. Based on FIG.
  • FIG. 1B the CIE defined human photopic standard ratio luminosity curve V( ⁇ ) can be derived.
  • 4 is an illustration of spectral luminosity V K ( ⁇ ) corresponding to glare, taking into account the spectral sensitivity of S-cones.
  • K is a coefficient that determines the contribution ratio of the human S cone spectral sensitivity Gs( ⁇ ).
  • the factor K for halogen bulbs is 1.260.
  • the luminance L of the light emission of the light emitting device is derived from the following formula (4).
  • Luminance L of light emitted from a light-emitting device is an integrated value of the spectral radiance S( ⁇ ) of the light-emitting device in the range of 380 nm or more and 780 nm or less and the human photopic standard ratio luminosity curve V( ⁇ ) defined by CIE. is.
  • the first effective radiance Ls of light emitted from the light emitting device is derived from the following equation (5).
  • the first effective radiance Ls of the light emission of the light emitting device is the spectral radiance S( ⁇ ) of the light emitting device in the range of 380 nm or more and 780 nm or less, and the human spectral luminosity corresponding to the glare represented by the above formula (3).
  • the first luminance ratio Ls/L of the light emitted from the light emitting device is the CIE defined human photopic to the luminance L of the light emitted from the light emitting device considering the human photopic standard ratio luminosity curve defined by the CIE. It is the ratio of the first effective radiance Ls of the light emission of the light emitting device considering the visual standard ratio luminosity curve and the spectral sensitivity of the human S cone.
  • the first luminance ratio Ls/L represents the degree of reduction of glare in light emitted from the light emitting device.
  • the light emitting device of the first embodiment includes a light emitting element having an emission peak wavelength in the range of 400 nm or more and 490 nm or less, a first phosphor having an emission peak wavelength in the range of 480 nm or more and less than 580 nm, and a range of 580 nm or more and 680 nm or less. a second phosphor having an emission peak wavelength and having a composition different from that of the first phosphor.
  • the light emitting device emits light with a first luminance ratio Ls/L of 0.9 or less derived from the following formula (1).
  • S ( ⁇ ) is the spectral radiance of light emitted from the light emitting device
  • V ( ⁇ ) is the human photopic standard ratio luminosity curve defined by CIE
  • Gs ( ⁇ ) is the spectral sensitivity of the human S-cone in the range of wavelength ⁇ nm from 380 nm to 550 nm.
  • the first luminance ratio Ls/L of the light emission of the light emitting device is 0.9 or less, light with reduced glare is emitted from the light emitting device.
  • the first luminance ratio Ls/L of light emission from the light emitting device exceeds 0.9, it approaches the luminance L of light emission from the light emitting device that does not consider the spectral sensitivity of the human S cone, and glare is not reduced.
  • the first luminance ratio Ls/L of light emitted from the light emitting device is preferably 0.85 or less, more preferably 0.83 or less, and more preferably 0.80. More preferably:
  • the light emission of the light emitting device may have a first luminance ratio Ls/L of 0.1 or more, or 0.2 or more.
  • a light-emitting device that emits light with a first luminance ratio Ls/L of 0.9 or less preferably emits light with a second luminance ratio A/B of 0.104 or less, which will be described later.
  • a light-emitting device that emits light in which the first luminance ratio Ls/L is 0.9 or less and the second luminance ratio A/B described later is 0.104 or less can emit light far while reducing glare. can be reached.
  • the light emitting device of the second embodiment includes a light emitting element having an emission peak wavelength in the range of 440 nm or more and 490 nm or less, a first phosphor having an emission peak wavelength in the range of 480 nm or more and less than 580 nm, and a range of 580 nm or more and 680 nm or less. a second phosphor having an emission peak wavelength and having a composition different from that of the first phosphor.
  • the light emitting device has a scattering intensity curve with respect to the wavelength when the scattering intensity of Rayleigh scattering at a wavelength of 300 nm is set to 1 with respect to the radiance A of the light emitted from the light emitting device in the range of 300 nm to 800 nm.
  • the second luminance ratio B/A which is the ratio of the second effective radiance B of light emitted from the light emitting device and is derived from the following formula (2), emits light having a value of 0.104 or less.
  • S ( ⁇ ) is the spectral radiance of light emitted from the light emitting device
  • Dc ( ⁇ ) is the scattering intensity for the wavelength when the scattering intensity of Rayleigh scattering at a wavelength of 300 nm is set to 1 in Rayleigh scattering. curve.
  • the scattering of light caused by the interaction of light and fine particles is determined by the relative relationship between the wavelength ⁇ of light and the size D of fine particles.
  • the size D of fine particles contained in the air is much smaller than the wavelength ⁇ of light.
  • Rayleigh scattering is the scattering of light by particles whose size is smaller than the wavelength of light. In air, the shorter the wavelength of light, the easier it is to scatter. If scattering of light is suppressed, light can be made to reach a long distance.
  • a light-emitting device that can transmit light over a long distance can be suitably used as a high-beam mode headlamp that illuminates a relatively distant area, for example, about 100 m ahead.
  • the light emitting device of the second embodiment can suppress scattering and allow light to reach a relatively long distance.
  • the headlamp using the light emitting device of the second embodiment and the vehicle provided with this headlamp can allow light to reach a relatively long distance.
  • the radiance A of light emitted from the light emitting device is derived from the following formula (6).
  • the emission radiance A of the light emitting device is the integrated value of the spectral radiance S( ⁇ ) of the light emitting device in the range from 300 nm to 800 nm.
  • FIG. 2 shows a scattering intensity curve Dc( ⁇ ) with respect to wavelength when the scattering intensity of Rayleigh scattering at a wavelength of 300 nm is set to 1.
  • the second effective radiance B of light emitted from the light emitting device is derived from the following formula (7).
  • the second effective radiance B of light emitted from the light emitting device is the integrated value of the scattering intensity curve Dc( ⁇ ) described above and the spectral radiance S( ⁇ ) of the light emitting device described above in the range of 300 nm to 800 nm.
  • the second luminance ratio B/A of the light emitted from the light emitting device is a scattering intensity curve with respect to the wavelength when the scattering intensity of Rayleigh scattering at a wavelength of 300 nm is set to 1 with respect to the radiance A of the light emitted from the light emitting device in the range of 300 nm or more and 800 nm or less. is the ratio of the second effective radiance B of light emitted from the light emitting device in the range of 300 nm or more and 800 nm or less in consideration of The second luminance ratio B/A represents the degree of scattering of emitted light from the light emitting device.
  • the second luminance ratio B/A of light emitted from the light emitting device is 0.104 or less, scattering is suppressed, and light that reaches a relatively long distance is emitted from the light emitting device.
  • the second luminance ratio B/A of the light emitted from the light emitting device exceeds 0.104, it approaches the radiance A of the light emitted from the light emitting device in which Rayleigh scattering is not considered.
  • the second luminance ratio B/A of light emitted from the light emitting device is preferably 0.102 or less, more preferably 0.100 or less. It is preferably 0.099 or less, and even more preferably 0.098 or less.
  • the light emitted from the light emitting device may have a second luminance ratio B/A of 0.01 or more, or 0.02 or more.
  • a light-emitting device that emits light with a second luminance ratio B/A of 0.104 or less preferably emits light with a first luminance ratio Ls/L of 0.9 or less.
  • a light-emitting device that emits light in which the second luminance ratio A/B is 0.104 or less and the first luminance ratio Ls/L is 0.9 or less can make the light reach a relatively long distance, Glare can also be reduced.
  • a light-emitting device that emits light with a first luminance ratio Ls/L of 0.9 or less and/or a light-emitting device that emits light with a second luminance ratio B/A of 0.104 or less will be described below.
  • the correlated color temperature of the light emitting device that emits light with the first luminance ratio Ls/L of 0.9 or less and the light emitting device that emits light with the second luminance ratio B/A of 0.104 or less are in the same range. is preferable, and light-emitting devices of the same form using the same members may be used.
  • the light emitting device preferably emits light with a correlated color temperature of 1800K or more and 5000K or less, more preferably 2000K or more and 5000K or less.
  • a correlated color temperature 1800K or more and 5000K or less, more preferably 2000K or more and 5000K or less.
  • the light-emitting element has an emission peak wavelength in the range of 400 nm or more and 490 nm or less.
  • the emission peak wavelength of the light emitting element is preferably in the range of 420 nm or more and 480 nm or less, and may be in the range of 440 nm or more and 460 nm or less. Since at least part of the light emitted from the light emitting element is used as excitation light for the first phosphor and the second phosphor, it is preferable to have an emission peak wavelength that easily excites those phosphors.
  • the half width of the emission spectrum of the light-emitting element is preferably 30 nm or less, more preferably 25 nm or less, and even more preferably 20 nm or less.
  • a semiconductor light emitting element using, for example, a nitride-based semiconductor. As a result, it is possible to obtain a stable light emitting device that has high efficiency, high linearity of output with respect to input, and is resistant to mechanical impact.
  • the first phosphor is excited by light emitted from a light emitting element having an emission peak wavelength in the range of 400 nm to 490 nm, and emits light having an emission peak wavelength in the range of 480 nm to less than 580 nm.
  • the first phosphor preferably has an emission spectrum with a half width of 90 nm or more and 125 nm or less, may be 100 nm or more and 124 nm or less, or may be 110 nm or more and 123 nm or less.
  • the excitation light from the light emitting element is wavelength-converted, and the light from the light emitting element, the first phosphor, and the second phosphor have wavelengths.
  • a mixed color light of the converted light is emitted from the light emitting device.
  • the first phosphor includes a rare earth aluminate phosphor having a composition included in the composition formula represented by the following formula (1A), and a first phosphor having a composition included in the composition formula represented by the following formula (1B) It preferably contains at least one selected from the group consisting of nitride phosphors.
  • Ln 13 (Al 1-a Ga ) 5 O 12 :Ce (1A)
  • Ln 1 is at least one element selected from the group consisting of Y, Gd, Tb and Lu, and a satisfies 0 ⁇ a ⁇ 0.5.
  • LawLn2xSi6Ny : Cez ( 1B ) (In formula (1B), Ln 2 essentially contains at least one selected from the group consisting of Y and Gd, and may contain at least one selected from the group consisting of Sc and Lu.
  • the total of Y and Gd contained in Ln 2 is 90 mol% or more, and w, x, y and z are 1.2 ⁇ w ⁇ 2.2, 0.5 ⁇ x ⁇ 1.2, 10 ⁇ y ⁇ 12, 0.5 ⁇ z ⁇ 1.2, 1.80 ⁇ w+x ⁇ 2.40, 2.9 ⁇ w+x+z ⁇ 3.1 Fulfill.)
  • the formula representing the composition of the phosphor before the colon (:) represents the molar ratio of each element in 1 mol of the composition of the host crystal and phosphor, and after the colon (:) the activating element show.
  • the first phosphor may contain at least one phosphor selected from the group consisting of an alkaline earth metal aluminate phosphor and an alkaline earth metal halosilicate phosphor.
  • the alkaline earth metal aluminate phosphor is, for example, a phosphor that contains at least strontium and is activated by europium, and has a composition included in the compositional formula represented by the following formula (1C), for example.
  • the alkaline earth metal halosilicate is, for example, a phosphor that contains at least calcium and chlorine and is activated by europium, and has a composition that is included in the compositional formula represented by the following formula (1D), for example.
  • Sr4Al14O25 Eu ( 1C) (Ca, Sr ,Ba) 8MgSi4O16 ( F,Cl,Br) 2 :Eu (1D)
  • part of Sr may be substituted with at least one element selected from the group consisting of Mg, Ca, Ba and Zn.
  • An alkaline earth metal aluminate phosphor having a composition included in the composition formula represented by formula (1C) and an alkaline earth metal halosilicate phosphor having a composition included in the composition formula represented by formula (1D) has an emission peak wavelength in the range of 480 nm or more and less than 520 nm, preferably in the range of 485 nm or more and 515 nm or less.
  • An alkaline earth metal aluminate phosphor having a composition included in the composition formula represented by formula (1C) and an alkaline earth metal halosilicate phosphor having a composition included in the composition formula represented by formula (1D) has a half width in the emission spectrum of, for example, 30 nm or more, preferably 40 nm or more, more preferably 50 nm or more, and for example, 80 nm or less, preferably 70 nm or less.
  • multiple elements separated by commas (,) mean that at least one of these multiple elements is included in the composition. However, it may contain a combination of two or more of a plurality of elements.
  • the first phosphor is at least one phosphor selected from the group consisting of a ⁇ -sialon phosphor, a first sulfide phosphor, a scandium phosphor, an alkaline earth metal silicate phosphor, and a lanthanide siliconitride phosphor.
  • the ⁇ -sialon phosphor has, for example, a composition included in the compositional formula represented by formula (1E) below.
  • the first sulfide phosphor has, for example, a composition included in the composition formula represented by formula (1F) below.
  • the scandium-based phosphor has, for example, a composition included in the compositional formula represented by formula (1G) below.
  • the alkaline earth metal silicate phosphor has, for example, a composition included in a composition formula represented by formula (1H) below or a composition included in a composition formula represented by formula (1J) below.
  • the lanthanide siliconitride phosphor has, for example, a composition included in the composition formula represented by formula (1K) below.
  • M3 is at least one element selected from the group consisting of Be, Mg, Ca, Ba and Zn.) (Ca,Sr) Sc2O4 :Ce ( 1G) (Ca, Sr) 3 (Sc, Mg) 2 Si 3 O 12 :Ce (1H) (Ca, Sr, Ba) 2 SiO 4 :Eu (1J) (La, Y, Gd, Lu) 3 Si 6 N 11 :Ce (1K)
  • the ⁇ -sialon phosphor, the first sulfide phosphor, the scandium phosphor, the alkaline earth metal silicate phosphor, and the lanthanide siliconitride phosphor each have an emission peak wavelength in the range of 520 nm or more and less than 580 nm, and are preferably has an emission peak wavelength in the range of 525 nm or more and 565 nm or less.
  • the ⁇ -sialon phosphor, the first sulfide phosphor, the scandium phosphor, the alkaline earth metal silicate phosphor, and the lanthanide nitride phosphor each have a half width in the emission spectrum of, for example, 20 nm or more, preferably 30 nm or more. and is, for example, 120 nm or less, preferably 115 nm or less.
  • the first phosphor is a rare earth aluminate phosphor having a composition included in the composition formula represented by the formula (1A), and a first nitride having a composition included in the composition formula represented by the formula (1B). an alkaline earth metal aluminate phosphor having a composition included in the composition formula represented by the formula (1C); and an alkaline earth having a composition included in the composition formula represented by the formula (1D).
  • the first phosphor may contain at least one phosphor alone, or may contain two or more.
  • the second phosphor is excited by light emitted from a light emitting element having an emission peak wavelength in the range of 400 nm or more and 490 nm or less, emits light having an emission peak wavelength in the range of 580 nm or more and 680 nm or less, It has a composition different from that of the phosphor.
  • the second phosphor preferably has a half width in the emission spectrum of 3 nm or more and 15 nm or less.
  • the half width in the emission spectrum is preferably in the range of 60 nm or more and 125 nm or less.
  • a second phosphor for example, a second nitride phosphor having a composition included in a composition formula represented by the following formula (2A), a composition included in a composition formula represented by the following formula (2B) or an ⁇ -sialon phosphor having a composition included in the composition formula represented by the following formula (2G).
  • the excitation light from the light emitting element is wavelength-converted by the second phosphor, and mixed color light of the light from the light emitting element and the light wavelength-converted by the first phosphor and the second phosphor is emitted from the light emitting device.
  • the second phosphor is a second nitride phosphor having a composition included in the composition formula represented by the following formula (2A), and a third nitride phosphor having a composition included in the composition formula represented by the following formula (2B).
  • the second nitride phosphor having a composition included in the composition formula represented by the following formula (2A) may be referred to as a BSESN phosphor
  • a third nitride phosphor having a composition included in the formula may be referred to as a SCASN phosphor.
  • M12Si5N8 Eu ( 2A )
  • M1 is an alkaline earth metal element containing at least one selected from the group consisting of Ca, Sr and Ba.
  • SrqCasAltSiuNv Eu ( 2B )
  • q, s, t, u, and v are 0 ⁇ q ⁇ 1, 0 ⁇ s ⁇ 1, q + s ⁇ 1, 0.9 ⁇ t ⁇ 1.1, 0.9 ⁇ u ⁇ 1.1, 2.5 ⁇ v ⁇ 3.5 are satisfied.
  • A includes at least one selected from the group consisting of K + , Li + , Na + , Rb + , Cs + and NH 4 + , and K + is preferred.
  • M 2 contains at least one element selected from the group consisting of Group 4 elements and Group 14 elements, among which Si
  • M 2 ' contains at least one element selected from the group consisting of Group 4 elements, Group 13 elements and Group 14 elements, preferably Si and Al.b' is 0 ⁇ b' ⁇ 0.2, c′ is the absolute value of the charge of the [M 2 ′ 1 ⁇ b′ Mn 4+ b′ F d′ ] ion, and d′ satisfies 5 ⁇ d′ ⁇ 7.)
  • M8 contains at least one element selected from the group consisting of Li, Mg, Ca, Sr, Y and lanthanoid elements (excluding La and Ce), v3, w3 and x3 respectively satisfy 0 ⁇ v3 ⁇ 2.0, 2.0 ⁇ w3 ⁇ 6.0, and 0 ⁇ x3 ⁇ 1.0.)
  • the second phosphor may contain at least one phosphor selected from the group consisting of a fluorogermanate phosphor, a fourth nitride phosphor, and a second sulfide phosphor.
  • the fluorogermanate phosphor has, for example, a composition included in the compositional formula represented by formula (2D) below.
  • the fourth nitride phosphor has, for example, a composition included in the compositional formula represented by formula (2E) below.
  • the second sulfide phosphor has, for example, a composition included in the compositional formula represented by formula (2F) below.
  • M4 is at least one selected from the group consisting of Al, Ga and In.
  • M5 is at least one element selected from the group consisting of Ca, Sr, Ba and Mg
  • M6 is at least one selected from the group consisting of Li, Na and K.
  • M7 is at least one element selected from the group consisting of Eu, Ce, Tb and Mn
  • v2, w2, y2 and z2 are each 0.80 ⁇ v2 ⁇ 1 .05, 0.80 ⁇ w2 ⁇ 1.05, 0 ⁇ y2 ⁇ 0.5, 3.0 ⁇ z2 ⁇ 5.0.)
  • the fluorogermanate phosphor having a composition included in the composition formula represented by formula (2D) may have a composition represented by formula (2d) below.
  • formula (2d) 3.5MgO.0.5MgF2.GeO2 :Mn ( 2d )
  • the fourth nitride phosphor having a composition included in the composition formula represented by formula (2E) may have a composition included in the composition formula represented by formula (2e) below.
  • M 5 v2 M 6 w2 M 7 x2 Al 3-y2 Si y2 N z2 (2e) (In formula (2e), M 5 , M 6 , and M 7 are synonymous with M 5 , M 6 , and M 7 in formula (2E), respectively, and are selected from the group consisting of Ce, Tb, and Mn.
  • v2, w2, y2 and z2 are the same as v2, w2, y2 and z2 in formula (2E), respectively, and x2 is 0.001 ⁇ x2 ⁇ 0.1 Fulfill.
  • the fluorogermanate phosphor, the fourth nitride phosphor, and the second sulfide phosphor each have an emission peak wavelength in the range of 580 nm or more and 680 nm or less, preferably 600 nm or more and 630 nm or less. It has an emission peak wavelength.
  • Each of the fluorogermanate phosphor, the fourth nitride phosphor, and the second sulfide phosphor has a half width of an emission peak in the emission spectrum of, for example, 5 nm or more and 100 nm or less, preferably 6 nm or more and 90 nm or less. be.
  • the second phosphor is a second nitride phosphor having a composition included in the composition formula represented by the formula (2A), and a third nitride phosphor having a composition included in the composition formula represented by the formula (2B).
  • the second phosphor may contain at least one phosphor alone, or may contain two or more phosphors.
  • the second phosphor is a second nitride phosphor (BSESN phosphor) having a composition included in the composition formula represented by the formula (2A), and a composition included in the composition formula represented by the formula (2B). and at least one selected from the group consisting of a third nitride phosphor (SCASN phosphor) having More preferred.
  • At least one second phosphor selected from the group consisting of the BSESN phosphor, the SCASN phosphor, and the ⁇ -sialon phosphor has good temperature characteristics, and the change in emission energy due to changes in temperature is small.
  • the first phosphor includes a rare earth aluminate phosphor having a composition included in the compositional formula represented by formula (1A) above
  • the second phosphor includes a BSESN phosphor, a SCASN phosphor, and ⁇ -sialon.
  • a light-emitting device including a wavelength conversion member containing at least one selected from the group consisting of phosphors has good temperature characteristics of the first phosphor and the second phosphor, so that it can be used in a cold atmosphere of -40 ° C., for example.
  • the change rate of the first luminance ratio Ls / L is small while the first luminance ratio Ls / L is maintained at 0.9 or less, and the usage environment This makes it possible to emit light from the light emitting device that is less susceptible to the influence of ambient temperature and has reduced glare. Even when the temperature of the usage environment of the light emitting device changes while the first luminance ratio Ls/L is maintained at 0.9 or less, the light is emitted with a small change rate of the first luminance ratio Ls/L.
  • a light-emitting device that can be used in some cases has good temperature characteristics.
  • the first phosphor includes a rare earth aluminate phosphor having a composition included in the compositional formula represented by the formula (1A), and the second phosphor includes a BSESN phosphor, a SCASN phosphor, and an ⁇ -sialon phosphor.
  • the light-emitting device including the wavelength conversion member containing at least one selected from the group consisting of the first phosphor and the second phosphor has good temperature characteristics, so that it is less susceptible to the ambient temperature of the usage environment , the rate of change of the second luminance ratio B/A is small in a state where the second luminance ratio B/A is maintained at 0.104 or less, it is not easily affected by the ambient temperature of the usage environment, and scattering is suppressed and relatively far away
  • a light-emitting device can emit light that reaches up to . Even when the temperature of the usage environment of the light-emitting device changes while the second luminance ratio B/A is maintained at 0.104 or less, light is emitted with a small change rate of the second luminance ratio B/A.
  • a light-emitting device that can be used in some cases has good temperature characteristics.
  • the phosphor including the first phosphor and the second phosphor has an average particle size of 5 ⁇ m or more and 40 ⁇ m or less measured by a Fisher Sub-Sieve Sizer (hereinafter also referred to as “FSSS”) method. is preferably in the range of 6 ⁇ m or more and 35 ⁇ m or less, and further preferably in the range of 7 ⁇ m or more and 30 ⁇ m or less. If the average particle diameter of the phosphor is in the range of 5 ⁇ m or more and 40 ⁇ m or less, the phosphor efficiently absorbs and wavelength-converts the light emitted from the excitation light source, and the glare-reduced light or light scattering is suppressed. A relatively long-reaching light can be emitted from the light emitting device.
  • FSSS Fisher Sub-Sieve Sizer
  • the light emitting device emits light having a correlated color temperature of 1800 K or more and less than 3500 K, and the content of the first phosphor with respect to the total amount of the first phosphor and the second phosphor is in the range of 5% by mass or more and 93% by mass or less. is preferred.
  • the light-emitting device emits light with a correlated color temperature of 1800 K or more and less than 3500 K, light with a low correlated color temperature in which the blue light component is reduced is emitted, and glare can be reduced.
  • the correlated color temperature is 1800 K or more and less than 3500 K, and the first luminance Light having a ratio Ls/L of 0.9 or less can be emitted.
  • the content of the first phosphor with respect to the total amount of the first phosphor and the second phosphor is more preferably in the range of 10% by mass or more and 92% by mass or less, and in the range of 15% by mass or more and 90% by mass or less More preferably, it is particularly preferably in the range of 20% by mass or more and 88% by mass or less, may be in the range of 30% by mass or more and 85% by mass or less, may be 40% by mass or more, and may be 50% by mass or more It's okay.
  • the light emitting device emits light having a correlated color temperature of 3500 K or more and less than 4000 K, and the content of the first phosphor with respect to the total amount of the first phosphor and the second phosphor is in the range of 20% by mass or more and 95% by mass or less. is preferred.
  • the light-emitting device emits light with a correlated color temperature of 3500 K or more and less than 4000 K, light with a low correlated color temperature in which the blue light component is reduced is emitted, and glare can be reduced.
  • the correlated color temperature is 3500K or more and less than 4000K, and the first luminance Light having a ratio Ls/L of 0.9 or less can be emitted.
  • the content of the first phosphor with respect to the total amount of the first phosphor and the second phosphor is more preferably in the range of 30% by mass or more and 90% by mass or less, and in the range of 40% by mass or more and 85% by mass or less More preferably, it may be 50% by mass or more, 60% by mass or more, 70% by mass or more, or 75% by mass or more.
  • the light emitting device emits light having a correlated color temperature of 4000 K or more and 5000 K or less, and the content of the first phosphor with respect to the total amount of the first phosphor and the second phosphor is in the range of 50% by mass or more and 99% by mass or less. is preferred.
  • the light emitting device emits light with a correlated color temperature of 4000 K or more and 5000 K or less, light with a relatively low correlated color temperature with a relatively reduced blue light component is emitted, and glare can be reduced.
  • the light emitting device has a correlated color temperature of 4000K or more and 5000K or less, Light having a ratio Ls/L of 0.9 or less can be emitted.
  • the content of the first phosphor with respect to the total amount of the first phosphor and the second phosphor contained in the light emitting device is more preferably in the range of 60% by mass or more and 98% by mass or less, and more preferably 70% by mass or more and 95% by mass. % or less, and may be 75 mass % or more.
  • FIG. 3A shows an example of a light emitting device, and is a schematic plan view of the light emitting device 101.
  • FIG. FIG. 3B is a schematic cross-sectional view of the light emitting device 101 shown in FIG. 3A taken along line III-III'.
  • the light-emitting device 101 includes a light-emitting element 10 having an emission peak wavelength in the range of 400 nm or more and 490 nm or less, and a first phosphor 71 and a second phosphor 72 that are excited by the light from the light-emitting element 10 and emit light.
  • the light emitting element 10 is flip-chip mounted on the substrate 1 via bumps, which are conductive members 60 .
  • the wavelength conversion body 31 of the wavelength conversion member 40 is provided on the light emitting surface of the light emitting element 10 via the adhesive layer 80 .
  • the side surfaces of the light emitting element 10 and the wavelength conversion member 40 are covered with a covering member 90 that reflects light.
  • the wavelength conversion body 41 is excited by the light from the light emitting element 10 and has a first phosphor 71 having an emission peak wavelength in the range of 480 nm or more and less than 580 nm, and a first phosphor 71 having an emission peak wavelength in the range of 580 nm or more and 680 nm or less. and a second phosphor 72 having a composition different from that of the first phosphor 71 .
  • the light-emitting element 10 can receive power supplied from the outside of the light-emitting device 101 via the wiring and the conductive member 60 formed on the substrate 1 to cause the light-emitting device 101 to emit light.
  • the light-emitting device 101 may include a semiconductor element 50 such as a protection element for preventing the light-emitting element 10 from being damaged by application of excessive voltage.
  • the covering member 90 is provided so as to cover the semiconductor element 50, for example.
  • Each member used in the light emitting device will be described below. For details, it is also possible to refer to, for example, the disclosure of Japanese Patent Application Laid-Open No. 2014-112635.
  • the wavelength conversion member may be a wavelength conversion member containing a phosphor and a translucent material, or may be a wavelength conversion member including a translucent body on which the wavelength conversion member is arranged. . It is preferable that the wavelength converter includes the first phosphor, the second phosphor, and a translucent material.
  • the wavelength converter may be formed in a plate-like, sheet-like or layered shape.
  • the wavelength conversion member may have a wavelength conversion body in a form other than plate-like, sheet-like, or layer-like.
  • the wavelength conversion member or wavelength conversion body may contain a phosphor in a total amount of 1 part by mass or more and 900 parts by mass or less with respect to 100 parts by mass of the translucent material, and 10 parts by mass or more and 850 parts by mass. It may be contained within the range of parts or less, and may be contained within the range of 15 parts by mass or more and 800 parts by mass or less.
  • the total amount of phosphor refers to the total amount of the first phosphor and the second phosphor.
  • the wavelength conversion body includes a high-concentration layer having a high filling rate of the first phosphor and the second phosphor in the thickness direction of the cross section and having high concentrations of the first phosphor and the second phosphor; It is preferable to have a low-concentration layer in which the filling factor of the two phosphors is low and the concentrations of the first phosphor and the second phosphor are low. Since the wavelength conversion body includes the high-concentration layer in which the filling factor of the first phosphor and the second phosphor is high, the wavelength conversion body is less likely to break or crack. It is preferable that the high-concentration layer of the wavelength converter is arranged on the light-emitting element side.
  • the wavelength converter can dissipate heat generated from the light-emitting element through the first phosphor and the second phosphor in the wavelength converter.
  • the filling rate of the phosphor can be measured by observing the cross section of the wavelength conversion body or the wavelength conversion member with a scanning electron microscope (SEM) and measuring the area ratio of the resin and the phosphor in the cross section. is.
  • a high-concentration layer having a high phosphor filling rate refers to a layer in which the area of the phosphor is larger than the area of the resin in the cross section of the wavelength conversion body or the wavelength conversion member.
  • a low concentration layer having a low phosphor filling rate refers to a layer in which the area of the phosphor is smaller than the area of the resin in the cross section of the wavelength conversion body or the wavelength conversion member.
  • the low-concentration layer may be a layer in which the phosphor does not substantially exist, the area of the phosphor is absent, and the area of only the resin can be confirmed.
  • the ratio of the thickness of the high-concentration layer to the thickness of the low-concentration layer is 40% or less when the total thickness of the wavelength conversion body is 100%. 35% or less, 34% or less, 3% or more, or 5% or more.
  • the filling rate of the first phosphor and the second phosphor in the high concentration layer is high, and the density of the first phosphor and the second phosphor is is preferably high.
  • FIG. 3C is a partial enlarged view of a part P1 of the schematic cross section of the light emitting device shown in FIG. 3B.
  • FIG. 3C may be scaled differently than FIG. 3B.
  • the wavelength conversion body 41 includes a high-density layer 41a having a high filling rate of the first phosphor 71 and the second phosphor 72 and a low-density layer 41b having a low filling rate of the first phosphor 71 and the second phosphor 72.
  • the high concentration layer 41a is arranged on the light emitting element 10 side.
  • the low concentration layer 41b of the wavelength converter 41 is arranged on the transparent body 42 side.
  • the wavelength converter 41 is provided on the light emitting surface of the light emitting element 10 via the adhesive layer 80 .
  • wavelength conversion members which are made by applying a resin composition containing a phosphor to a translucent body made of glass with high heat resistance, and phosphor and translucent materials.
  • a wavelength conversion member having high heat resistance such as a sintered body containing a material may be used.
  • the phosphor contained in the wavelength conversion member with high heat resistance is also considered to have relatively high heat resistance compared to other phosphors, and has a composition represented by, for example, Y 3 Al 5 O 12 :Ce. Rare earth aluminate phosphors may be used.
  • this rare earth aluminate phosphor Since this rare earth aluminate phosphor has a relatively low emission intensity on the long wavelength side of, for example, 570 nm or longer, when it is used in a headlight, it is generally believed that it emits light with a correlated color temperature of around 6000K. there is Therefore, when the phosphor contained in the wavelength conversion member is, for example, only a rare earth aluminate phosphor having a composition represented by Y 3 Al 5 O 12 :Ce, light with a correlated color temperature of 5000 K or less is emitted. Realizing headlights is considered difficult.
  • the phosphor contained in the sintered body used for the wavelength conversion member is one of the first phosphor and the second phosphor.
  • the substance may be contained alone, or may contain two or more kinds of phosphors among the first phosphor and the second phosphor described above.
  • Examples of the phosphor contained in the sintered body include the following phosphors.
  • the sintered body used for the wavelength conversion member is, for example, a sintered body containing a rare earth aluminate phosphor and a second nitride phosphor in a sintered body, or a sintered body containing a rare earth aluminate phosphor. A combination of two layers of a body and a sintered body containing the second nitride phosphor may be used. Further, as the wavelength converter used for the wavelength conversion member, glass is used as a translucent material .
  • M8 is a lanthanide element excluding Li, Mg, Ca, Y, La and Ce, and v3 satisfies 0 ⁇ v3 ⁇ 2. may Even if these are used as wavelength conversion members, the light emitting device emits light with a correlated color temperature of 5000 K or less, and by using this light emitting device, a headlamp capable of reducing glare and a vehicle equipped with the same are provided. can be provided.
  • the translucent material includes at least one selected from the group consisting of resins, glass and inorganic substances.
  • the resin is preferably at least one selected from the group consisting of epoxy resins, silicone resins, phenol resins, and polyimide resins.
  • At least one selected from the group consisting of aluminum oxide and aluminum nitride can be used as the inorganic substance.
  • the resin When the translucent material is a resin, the resin preferably has a Shore A hardness of 30 or more and 80 or less.
  • the translucent material is preferably a silicone resin, preferably a silicone resin having a Shore A hardness of 30 or more and 80 or less.
  • the Shore A hardness of the silicone resin, which is the translucent material is more preferably in the range of 40 to 75, more preferably in the range of 50 to 70.
  • the translucent material is resin, the resin expands or contracts due to light or heat. If the translucent material is a silicone resin with a Shore A hardness of 30 or more and 80 or less, it has excellent toughness and elongation.
  • the wavelength conversion body is less likely to crack or break, light can be emitted while maintaining the first luminance ratio Ls/L at 0.9 or less, and the temperature characteristics are excellent.
  • the translucent material is a silicone resin having a Shore A hardness of 30 or more and 80 or less, it expands and contracts flexibly according to temperature changes, and the wavelength conversion body is less likely to crack or break, and the second luminance ratio It can emit light with B/A maintained at 0.104 or less, and has good temperature characteristics.
  • the Shore A hardness of a resin can be measured using a durometer type A according to JIS K6253.
  • the wavelength conversion body is soft and sticky, and thus a plurality of light emitting elements are provided.
  • individual light-emitting devices are separated from a composite substrate, it is difficult to cut the composite substrate, and transportation and packaging are difficult, which may result in inferior mass productivity.
  • the wavelength conversion member may include a translucent body.
  • a plate-shaped body made of a translucent material such as glass or resin can be used as the translucent body. Examples of glass include borosilicate glass and quartz glass. Resins include silicone resins and epoxy resins.
  • the thickness of the translucent body may be any thickness that does not reduce the mechanical strength in the manufacturing process and can sufficiently support the wavelength conversion body.
  • the substrate is preferably made of an insulating material that does not easily transmit light from the light-emitting element and external light.
  • Materials for the substrate include ceramics such as aluminum oxide and aluminum nitride, and resins such as phenol resin, epoxy resin, polyimide resin, bismaleimide triazine resin (BT resin), and polyphthalamide (PPA) resin. Since ceramics have high heat resistance, they are preferable as a material for the substrate.
  • Adhesive Layer An adhesive layer is interposed between the light emitting element and the wavelength conversion member to fix the light emitting element and the wavelength conversion member together.
  • the adhesive constituting the adhesive layer is preferably made of a material capable of optically connecting the light emitting element and the wavelength conversion member.
  • the material forming the adhesive layer is preferably at least one resin selected from the group consisting of epoxy resin, silicone resin, phenol resin, and polyimide resin.
  • Semiconductor Elements provided as necessary in a light-emitting device include, for example, transistors for controlling light-emitting elements and protection elements for suppressing breakage and performance deterioration of light-emitting elements due to application of excessive voltage. Zener diodes can be used as protective elements.
  • Coating Member As a material for the coating member, it is preferable to use an insulating material. More specific examples include phenol resins, epoxy resins, bismaleimide triazine resins (BT resins), polyphthalamide (PPA) resins, and silicone resins. Colorants, phosphors, and fillers may be added to the covering member as necessary.
  • Conductive member A bump can be used as the conductive member, and Au or its alloy is used as the bump material, and eutectic solder (Au—Sn), Pb—Sn, lead-free solder, etc. are used as the other conductive member. be able to.
  • a method for manufacturing a light-emitting device includes a step of arranging a light-emitting element, a step of arranging a semiconductor element if necessary, a step of forming a wavelength conversion member including a wavelength conversion body, a step of adhering the light-emitting element and the wavelength conversion member, and a step of forming a covering member. is preferably included.
  • a light-emitting element is arranged on the substrate.
  • the light emitting element and the semiconductor element are flip-chip mounted on the substrate, for example.
  • the wavelength conversion body is formed on one surface of the transparent body by a printing method, an adhesion method, a compression molding method, or an electrodeposition method. It may be obtained by forming a wave-like, sheet-like or layered wavelength converting body.
  • a wavelength conversion member composition containing a phosphor and a resin serving as a translucent material is printed on one surface of a translucent body to form a wavelength conversion member containing a wavelength converter. can.
  • composition for wavelength converter The composition for wavelength converter constituting the wavelength converter or the wavelength conversion member contains a translucent material, a first phosphor and a second phosphor, and may contain a solvent. .
  • the wavelength conversion body or the wavelength conversion member can be manufactured in which the filling ratio of the first phosphor and the second phosphor are different in the wavelength conversion body or the wavelength conversion member. Since the wavelength conversion body or the wavelength conversion member has a portion where the filling rate of the first phosphor and the second phosphor is high, the wavelength conversion body is less likely to be broken or cracked.
  • the high-concentration layer side With a high filling rate of the first phosphor and the second phosphor of the wavelength conversion body on the light emitting element side, even when a high output light emitting element is used, the light emitted from the light emitting element
  • the generated heat can be dissipated through the first phosphor and the second phosphor in the wavelength conversion body, suppressing breakage and cracking of the resin constituting the wavelength conversion body, and reducing the first luminance ratio Ls/L to 0 It can emit light maintained at 0.9 or less, and has good temperature characteristics.
  • the high-concentration layer side With a high filling rate of the first phosphor and the second phosphor of the wavelength conversion body on the light emitting element side, even when a high output light emitting element is used, the light emitted from the light emitting element
  • the generated heat can be dissipated through the first phosphor and the second phosphor in the wavelength conversion body, suppressing breakage and cracking of the resin constituting the wavelength conversion body, and reducing the second luminance ratio B / A to 0 It can emit light maintained at 0.104 or less, and has good temperature characteristics.
  • the solvent preferably has a boiling point of 150° C. or higher and 320° C. or lower under standard pressure (0.101 MPa). C. or less, more preferably 180.degree. C. or higher and 300.degree. C. or lower, and particularly preferably 190.degree.
  • the solvent whose boiling point under standard pressure is within the range of 150° C. or higher and 320° C. or lower is included in the wavelength converter composition, thereby reducing the viscosity of the wavelength converter composition and curing it.
  • the wavelength converter composition preferably has a viscosity of 5 mPa s or more and 400 mPa s or less at 25 ° C. and 1 rpm with an E-type viscometer, and is in the range of 6 mPa s or more and 300 mPa s or less. It is more preferable to be within the range of 8 mPa ⁇ s or more and 250 mPa ⁇ s or less.
  • the wavelength converter composition contains 1 part by mass or more and 900 parts by mass or less of the phosphor with respect to 100 parts by mass of the translucent material.
  • the content of the solvent is preferably in the range of 1 part by mass to 50 parts by mass, and in the range of 2 parts by mass to 40 parts by mass, relative to 100 parts by mass of the translucent material. is more preferable, and more preferably within the range of 3 parts by mass or more and 30 parts by mass or less.
  • the solvent is a liquid of an organic compound, and part of it evaporates (volatilizes) at room temperature.
  • the composition can be cured to form a wavelength converting body or member.
  • Solvents include hydrocarbon solvents, ketone solvents, alcohol solvents, aldehyde solvents, glycol solvents, ether solvents, ester solvents, glycol ether solvents, glycol ester solvents and the like.
  • Hydrocarbon solvents include hexane, xylene, heptane, decane, dodecane, tridecane and the like.
  • Examples of ketone-based solvents include acetone and methyl ethyl ketone.
  • Examples of alcohol solvents include methyl alcohol, ethyl alcohol, isopropyl alcohol, and the like.
  • aldehyde solvents include nonanal and decanal.
  • Glycol-based solvents include triethylene glycol and the like.
  • Ether-based solvents include diethyl ether and the like.
  • Methyl acetate, ethyl acetate, etc. are mentioned as an ester solvent.
  • Glycol ether solvents include propylene glycol monomethyl ether and the like.
  • Glycol ester solvents include ethylene glycol monoethyl ether acetate and the like.
  • the solvent is preferably at least one selected from the group consisting of hexane, xylene, heptane, acetone, ethanol, isopropyl alcohol, decane, dodecane, tridecane, tetradecane, pentadecane, hexadecane, nonanal, decanal and triethylene glycol. . More preferably, the solvent is at least one selected from the group consisting of dodecane, tetradecane, pentadecane, hexadecane, and tridecane.
  • a solvent may be used individually by 1 type, and may use 2 or more types together.
  • Wavelength Converter or Wavelength Conversion Member When the wavelength converter composition contains a solvent, the filling rate of the first phosphor and the second phosphor is high in the gravity direction when the wavelength converter composition is cured.
  • a wavelength converter or wavelength converting member can be formed which is divided into a layer and a low concentration layer with a low filling factor of the first phosphor and the second phosphor.
  • a high-concentration layer with a high phosphor filling rate and a low-concentration layer with a low phosphor filling rate can be identified in the thickness direction of the cross section of the wavelength conversion body.
  • the filling rate of the phosphor can be measured by observing the cross section of the wavelength conversion body or the wavelength conversion member with an SEM and measuring the area ratio of the resin and the phosphor in the cross section. can.
  • the boundary between one layer and another layer may be uneven rather than linear.
  • the wavelength conversion member is faced to the light-emitting surface of the light-emitting element, and the wavelength conversion member is bonded onto the light-emitting element with an adhesive layer.
  • the wavelength conversion member includes a wavelength conversion body and a light-transmitting body, and the wavelength conversion body includes a high-density layer with a high phosphor filling rate and a low-density layer with a low phosphor filling rate
  • the wavelength conversion body It is preferable to arrange a high-concentration layer having a high filling rate on the light-emitting element side and bond the wavelength conversion member on the light-emitting element.
  • the phosphor including the first phosphor and the second phosphor has a higher thermal conductivity than the resin, and a high-concentration layer having a high filling rate of the phosphor of the wavelength converter is arranged on the light emitting element side to form the wavelength conversion member.
  • Step of Forming Covering Member In the step of forming the covering member, the side surfaces of the light emitting element and the wavelength converting member are covered with the covering member composition.
  • the covering member serves to reflect the light emitted from the light emitting element, and when the light emitting device also includes a semiconductor element, the semiconductor element is preferably formed so as to be embedded in the covering member.
  • a step of singulating a composite substrate having a plurality of light emitting elements and semiconductor elements on one substrate into individual light emitting devices may be included.
  • the wavelength conversion body is soft and sticky, and thus a plurality of light emitting elements are provided.
  • individual light-emitting devices are separated from a composite substrate, it is difficult to cut the composite substrate, and transportation and packaging are difficult, which may result in inferior mass productivity.
  • the light-emitting device may be arranged on a support substrate or the like of a light source unit for a headlamp and used as a headlamp mounted on a vehicle.
  • the light source unit includes, for example, a reflector, a projection lens, and a support substrate on which the light emitting device is arranged.
  • the lighting of the light source unit for the headlight may be controlled by a vehicle lamp system as disclosed in Japanese Patent Application Laid-Open No. 8-67199, for example.
  • the light emitting device may be used, for example, as a light source for a headlamp used in a turn signal lamp as disclosed in Japanese Patent Application Laid-Open No. 2005-123165.
  • FIG. 20 is a diagram showing a horizontal sectional view of the headlamp.
  • FIG. 21 is a diagram showing a front view of the headlamp.
  • the headlamp 200 shown in FIGS. 20 and 21 is provided, for example, on the front right side of the vehicle.
  • the headlamp 200 includes a lamp body 24 , an outer lens 22 , multiple substrates 32 , multiple light emitting devices 100 , an optical filter 26 , and a light guide member 34 .
  • the lamp body 24 and the outer lens 22 form a lamp chamber of the headlamp 200, and the plurality of substrates 32 and the plurality of light emitting devices 100 are held in this lamp chamber while being waterproof.
  • the lamp body 24 is formed of resin, for example, so as to cover the plurality of substrates 32 and the plurality of light emitting devices 100 from the rear of the vehicle.
  • Optical filter 26 is fixed to lamp body 24 by a plurality of screws 28 .
  • Each of the plurality of light emitting devices 100 is lit according to power received from the lighting control section 12 via the substrate 32 .
  • a headlamp may include a plurality of first lamp units in which one light emitting device is arranged in one light source unit, as disclosed in Japanese Unexamined Patent Application Publication No. 2003-317513, for example.
  • the headlamp includes a single light source unit in which a plurality of reflectors, a plurality of projection lenses, and a plurality of support substrates are integrally formed.
  • a second lamp unit in which a plurality of light emitting devices are arranged.
  • the headlamp may include two or more types of light-emitting devices each having a different first luminance ratio Ls/L.
  • Two or more light emitting devices having different first luminance ratios Ls/L may be arranged in one light source unit. Two or more types of light emitting devices having different first luminance ratios Ls/L may be arranged in one light source unit.
  • the headlamp may include two or more types of light-emitting devices each having a different second luminance ratio B/A. Two or more light emitting devices with different second luminance ratios B/A may be arranged in one light source unit. Two or more types of light emitting devices having different second luminance ratios B/A may be arranged in one light source unit.
  • the headlamp uses the above-described light emitting device that emits light with a first luminance ratio Ls/L of 0.9 or less as a first light emitting device, and emits light with a first luminance ratio Ls/L that exceeds 0.9.
  • the device may be a second light-emitting device and may include two or more light-emitting devices.
  • the headlamp uses the above-described light emitting device that emits light with a second luminance ratio B/A of 0.104 or less as a first light emitting device, and emits light with a second luminance ratio B/A that exceeds 0.104.
  • the device may be a second light-emitting device and may include two or more light-emitting devices.
  • the second light emitting device may be a light emitting device that emits light with a first luminance ratio Ls/L exceeding 0.9 or a light emitting device that emits light with a second luminance ratio B/A exceeding 0.104.
  • the second light emitting device may be in the same form as the first light emitting device shown, for example, in FIGS. 3A and 3B.
  • the second light emitting device includes, for example, a light emitting element having an emission peak wavelength in the range of 400 nm or more and 490 nm or less, and a first phosphor having an emission peak wavelength in the range of 480 nm or more and less than 580 nm.
  • the first phosphor may be the same phosphor as the first phosphor described above.
  • the second light emitting device includes a light emitting element having an emission peak wavelength in the range of 400 nm or more and 490 nm or less, and a rare earth aluminate phosphor having a composition represented by formula (1A) as a first phosphor, No phosphor is provided, the first luminance ratio Ls/L exceeds 0.9 or the second luminance ratio B/A exceeds 0.104, and the correlated color temperature is in the range of 5000K to 6500K One that emits internal light is included.
  • Vehicle The vehicle of the third embodiment includes a vehicle on which the above-described light emitting device or headlight can be mounted.
  • Vehicles equipped with the above-described light emitting device or headlight include, for example, road vehicles such as motorcycles and four-wheeled vehicles, railway vehicles, tractors such as land preparation, transportation and loading machines, and excavation. Examples include vehicles used for shovel-type vehicle-type construction machines such as construction machines.
  • first phosphor and second phosphor were used in the light emitting devices of each example and comparative example.
  • First phosphor YAG-1 and YAG-2 which are rare earth aluminate phosphors having a composition included in the compositional formula represented by the formula (1A) as the first phosphor and having different compositions respectively , YAG-3, YAG-4, and YAG-5 were prepared. These first phosphors have different CIE chromaticity coordinates (x, y), emission peak wavelengths, and half widths, as shown in Table 1.
  • Second phosphor BSESN-1 and BSESN-2 which are second nitride phosphors having a composition included in the compositional formula represented by the formula (2A) as the second phosphor and having different compositions, respectively and SCASN-1 and SCASN-2, which are third nitride phosphors having compositions included in the composition formula represented by formula (2B) and having different compositions, and formula (2G).
  • An ⁇ -sialon phosphor having a composition included in the represented compositional formula was prepared.
  • These second phosphors have different CIE chromaticity coordinates (x, y), emission peak wavelengths, and half widths, as shown in Table 1.
  • Emission spectrum of phosphor Each phosphor is irradiated with light having an excitation wavelength of 450 nm using a quantum efficiency measurement device (QE-2000, manufactured by Otsuka Electronics Co., Ltd.), and light emission at room temperature (about 25 ° C.) A spectrum was measured, and the x value and y value, the emission peak wavelength, and the half width in the chromaticity coordinates of CIE1931 were measured from each emission spectrum. Table 1 shows the results.
  • Average Particle Size of Phosphor The average particle size of each phosphor was measured by the FSSS method using Fisher Sub-Sieve Sizer Model 95 (manufactured by Fisher Scientific). Specifically, after weighing a sample phosphor with a volume of 1 cm 3 and packing it in a dedicated tubular container, dry air at a constant pressure is flowed, the specific surface area is read from the differential pressure, and the average particle size (Fisher Sub-Sieve Sizer's No.).
  • Examples 1 to 13 A light emitting device having the configuration shown in FIGS. 3A and 3B was manufactured.
  • a ceramic substrate made of aluminum nitride was used as the substrate.
  • a light-emitting element in which nitride-based semiconductor layers having a dominant wavelength of 450 nm are laminated was used.
  • the size of the light emitting element is approximately 1.0 mm square in plan view, and approximately 0.11 mm thick.
  • the light emitting element was arranged so that the light emitting surface faced the substrate side, and was flip-chip mounted by bumps using a conductive member made of Au. Further, the semiconductor element was flip-chip mounted with a bump using a conductive member made of Au with a gap from the light emitting element.
  • a silicone resin a (Shore A hardness 70) was used as the translucent material.
  • the first phosphor and the second phosphor were used in the ratio shown in Table 2 with respect to 100 parts by mass of the silicone resin a as the translucent material.
  • the phosphor total amount indicates the total amount of the first phosphor and the second phosphor with respect to 100 parts by mass of the silicone resin a.
  • the content (% by mass) of the first phosphor and the content (% by mass) of the second phosphor are the total content of the first phosphor and the second phosphor and 100% by mass. The content of the first phosphor and the content of the second phosphor are shown.
  • the translucent body was made of borosilicate glass, and had a planar shape approximately 1.15 mm square, approximately 0.15 mm larger than the planar shape of the light emitting element, and a thickness of approximately 0.10 mm. Prepared the light.
  • a wavelength converter composition is printed on one surface of a substantially square transparent body by a printing method and heated at 180° C. for 2 hours to cure the wavelength converter composition to form a layer having a thickness of about 80 ⁇ m.
  • a wavelength conversion member was formed by forming a wavelength conversion body and integrating a layered or plate-like wavelength conversion body and a translucent body.
  • the Shore A hardness of the silicone resin was measured using a durometer type A (product name: GS-709G, manufactured by TECLOCK) in accordance with JIS K6253. Moreover, the viscosity of the composition for wavelength converters was measured by the measurement method described later. The viscosity of the composition for wavelength converters according to Example 3 was 40.4 mPa ⁇ s.
  • one surface of the wavelength conversion member having a planar shape of about 1.15 mm square and a substantially square shape and one surface of the light emitting element having a planar shape of about 1.0 mm square were bonded with silicone.
  • An adhesive containing a resin was used to bond them together to form an adhesive layer between the light emitting element and the wavelength conversion member.
  • a covering member composition containing dimethyl silicone resin and titanium oxide particles and containing 30 parts by mass of titanium oxide particles per 100 parts by mass of the dimethyl silicone resin was prepared.
  • the side surface of the wavelength conversion body including the light emitting element, the wavelength conversion member, and the transparent body arranged on the substrate is covered with the composition for the coating member, and the semiconductor element is completely embedded in the composition for the coating member.
  • the composition for the coating member was filled, the composition for the coating member was cured, the coating member was formed, the resin package was formed, and the light-emitting device was manufactured.
  • Example 14 Example 2 except that silicone resin b (Shore A hardness 70) was used as the translucent material, and the first phosphor and the second phosphor were used in the formulation shown in Table 2 with respect to 100 parts by mass of silicone resin b. A light-emitting device was manufactured in the same manner as above.
  • silicone resin b Shore A hardness 70
  • the first phosphor and the second phosphor were used in the formulation shown in Table 2 with respect to 100 parts by mass of silicone resin b.
  • a light-emitting device was manufactured in the same manner as above.
  • Example 15 As the first phosphor, YAG-5 shown in Table 1 was used, and the first phosphor and the second phosphor were used in the formulation shown in Table 2 with respect to 100 parts by mass of the silicone resin a. A light-emitting device was manufactured in the same manner.
  • Example 16 Example 9 except that the ⁇ -sialon phosphor shown in Table 1 was used as the second phosphor, and the first phosphor and the second phosphor were used in the formulation shown in Table 2 with respect to 100 parts by mass of the silicone resin a.
  • a light-emitting device was manufactured in the same manner as above. In the light emitting device according to Example 16, the blending amounts of the first phosphor and the second phosphor were adjusted so that the light emission of the light emitting device according to Example 9 has a chromaticity coordinate value close to that of the light emitting device according to Example 9.
  • Example 17 Example 2 except that silicone resin c (Shore A hardness 60) was used as the translucent material, and the first phosphor and the second phosphor were used in the formulation shown in Table 2 with respect to 100 parts by mass of silicone resin c. A light-emitting device was manufactured in the same manner as above.
  • silicone resin c Shore A hardness 60
  • the first phosphor and the second phosphor were used in the formulation shown in Table 2 with respect to 100 parts by mass of silicone resin c.
  • a light-emitting device was manufactured in the same manner as above.
  • Example 18 Except for using a wavelength converter composition containing 5 parts by mass of tridecane (boiling point: 234° C.) as a solvent with respect to 100 parts by mass of silicone resin a (Shore A hardness: 70). produced a light-emitting device in the same manner as in Example 3.
  • the wavelength converter formed using the above-described composition for a wavelength converter includes a high-concentration layer having a high filling rate of the first phosphor and the second phosphor in the thickness direction of the wavelength converter, and a second A low-concentration layer with a low filling rate of the first phosphor and the second phosphor was formed.
  • a light-emitting device was manufactured by arranging the high-concentration layer having a high filling rate of the first phosphor and the second phosphor on the light-emitting element side.
  • the first The blending amounts of the phosphor and the second phosphor were adjusted.
  • the viscosity of the composition for a wavelength converter according to Example 18 measured by the method described below was 16.3 mPa ⁇ s.
  • Comparative example 1 YAG-4 shown in Table 1 is used as the first phosphor without using the second phosphor, and the first phosphor with respect to 100 parts by mass of the silicone resin a is used in the formulation shown in Table 2.
  • a light-emitting device was manufactured in the same manner as in Example 1.
  • Table 2 shows the results.
  • the symbol "-" indicates that the second phosphor was not used.
  • Emission spectrum of light emitting device chromaticity coordinates (x, y), correlated color temperature (K)
  • chromaticity coordinates (x, y), correlated color temperature (K) For each light-emitting device, an emission spectrum was measured at room temperature (25° C. ⁇ 5° C.) using an optical measurement system combining a spectrophotometer (PMA-11, manufactured by Hamamatsu Photonics Co., Ltd.) and an integrating sphere. From the emission spectrum of each light emitting device, the x value and y value in the chromaticity coordinates of CIE1931 and the correlated color temperature (K) were measured according to JIS Z8725. 4 to 13 show the emission spectrum of each light emitting device when the maximum emission intensity is set to 1.
  • Relative luminous flux (%) Luminous flux was measured for each light-emitting device using a total luminous flux measuring device using an integrating sphere. Assuming that the luminous flux of the light emitting device of Comparative Example 1 is 100%, the relative luminous flux of each light emitting device other than Comparative Example 1 was calculated.
  • Viscosity of wavelength conversion body composition For each wavelength conversion body composition used for each wavelength conversion member, an E-type viscometer (cone rotor (3 ° ⁇ R9.7): TVE-33H, manufactured by Toki Sangyo Co., Ltd. ) was used to measure the viscosity at 25° C. and 1 rpm.
  • E-type viscometer cone rotor (3 ° ⁇ R9.7): TVE-33H, manufactured by Toki Sangyo Co., Ltd.
  • the light emitting devices according to Examples 1 to 18 emitted light with a first luminance ratio Ls/L of 0.9 or less.
  • the light emitting devices according to Examples 1 to 18 emit light with reduced glare.
  • the light emitting devices according to Examples 1 to 18 emitted light with a second luminance ratio B/A of 0.104 or less.
  • the light emitting devices according to Examples 1 to 18 suppress light scattering and emit light that reaches a relatively long distance.
  • the light emitting devices according to Examples 1 to 4, 6, and 18 emit light having a correlated color temperature of 3500 K or more and less than 4000 K, and the content of the first phosphor with respect to the total amount of the first phosphor and the second phosphor is 70 mass. % or more and 85% by mass or less, emits light with a low correlated color temperature with a reduced blue light component, reduces glare, suppresses light scattering, and emits light that reaches a relatively long distance. be able to.
  • the light emitting devices according to Examples 5, 7 to 13 and 16 emit light having a correlated color temperature of 1800 K or more and less than 3500 K, and the content of the first phosphor with respect to the total amount of the first phosphor and the second phosphor is 50 mass. % or more and 85% by mass or less, emits light with a low correlated color temperature with a reduced blue light component, reduces glare, suppresses light scattering, and emits light that reaches a relatively long distance. be able to.
  • the light emitting devices according to Examples 14, 15, and 17 emit light having a correlated color temperature of 4000 K or more and 5000 K or less, and the content of the first phosphor with respect to the total amount of the first phosphor and the second phosphor is 75% by mass or more. It is within the range of 95% by mass or less, emits light with a low correlated color temperature with a reduced blue light component, reduces glare, suppresses light scattering, and emits light that reaches a relatively long distance. can.
  • the light emitting device according to Comparative Example 1 emits light with a first luminance ratio Ls/L exceeding 0.9, and the light of the blue light component, which tends to cause glare, is not reduced. In addition, the light emitting device according to Comparative Example 1 emitted light with a second luminance ratio B/A exceeding 0.104, and light scattering was not suppressed. The light emitting device according to Comparative Example 1 emits light with a correlated color temperature exceeding 5000 K, and the light of the blue light component, which tends to cause glare, is not reduced.
  • FIGS. 4 to 13 show the emission spectrum of the light emitting device according to each example and the emission spectrum of the light emitting device according to Comparative Example 1.
  • FIG. 1 when the maximum emission intensity is 1, the emission spectra (spectral radiance) of the light emitting devices according to Examples 1 to 15 are in the range of 500 nm to 700 nm. However, the emission intensity of the light emitting device according to each example was higher than that of Comparative Example 1. Further, as shown in FIG. 13, the emission spectra (spectral radiance) of the light emitting devices according to Examples 16 to 18 when the maximum emission intensity is set to 1 is the emission intensity of the emission spectrum within the range of 550 nm to 700 nm.
  • the emission intensity of the light emitting device according to each example was higher than that of Comparative Example 1.
  • the emission spectrum (spectral radiance) of the light emitting device according to Example 16 the emission intensity in the emission spectrum within the range of 500 nm to 550 nm was lower than that of Comparative Example 1, but the temperature characteristics were excellent as described later. rice field. From the emission spectrum (spectral radiance) of the light emitting device according to each example, it was confirmed that light with a first luminance ratio Ls/L of 0.9 or less was emitted, and it was found that glare could be reduced.
  • Temperature characteristic evaluation 1 rate of change in first luminance ratio, rate of change in second luminance ratio
  • the light-emitting device according to Example 7, the light-emitting device according to Example 9, the light-emitting device according to Example 16, and the light-emitting device according to Comparative Example 1 were energized at 1000 mA while the environmental atmosphere temperature Ta ° C. minutes)): -40°C (60 minutes), 0°C (60 minutes), 25°C (90 minutes), 85°C (60 minutes), 100°C (60 minutes), 110°C (60 minutes), 125°C ( 60 minutes) and left in a constant temperature bath at 150° C. (30 minutes), and after each standing time, the emission spectrum of each light emitting device was measured under each ambient temperature.
  • FIG. 14 shows a graph representing the relationship between the ambient temperature of each light emitting device and the first luminance ratio.
  • FIG. 15 shows a graph representing the relationship between the ambient temperature of each light emitting device and the second luminance ratio.
  • the rate of change in the first luminance ratio or the rate of change in the second luminance ratio was calculated by the following equation (8).
  • Table 3 shows the rate of change of the first luminance ratio and the rate of change of the second luminance ratio of each light emitting device.
  • Rate of change of the first luminance ratio or rate of change of the second luminance ratio (%) ⁇ (maximum value/minimum value) - 1 ⁇ x 100 (8)
  • the maximum value in equation (8) is the maximum value of the first luminance ratio or the second luminance ratio at each environmental temperature of each light emitting device, and the minimum value is the first luminance ratio or second luminance ratio at each environmental temperature of each light emitting device. It is the minimum value of the second luminance ratio.
  • Temperature characteristic evaluation 2 (correlated color temperature) While the light emitting device according to Example 7, the light emitting device according to Example 16, and the light emitting device according to Comparative Example 1 were energized at 1000 mA, the environmental atmosphere temperature Ta ° C. (standing time (minutes)): -40 ° C. ( 60 minutes), 0°C (60 minutes), 25°C (90 minutes), 85°C (60 minutes), 100°C (60 minutes), 110°C (60 minutes), 125°C (60 minutes), 150°C (30 minutes) minutes), and after each standing time, the emission spectrum of each light-emitting device is measured under each environmental atmosphere temperature, and the correlation is obtained from each emission spectrum S ( ⁇ ) measured for each light-emitting device. Color temperature was measured.
  • FIG. 16 shows a graph representing the relationship between the ambient temperature of each light emitting device and the correlated color temperature.
  • FIGS. 14 and 15 the light-emitting device according to Example 7, the light-emitting device according to Example 9, and the light-emitting device according to Example 16 have the first luminance ratio Ls /L is 0.9 or less, and the second luminance ratio B/A is 0.104 or less.
  • the rate of change of the first luminance ratio and the rate of change of the second luminance ratio were the same as those of the light emitting device of Example 7 and Example 9. It was smaller than the related light emitting device.
  • the light-emitting device according to Example 16 has a small rate of change in the first luminance ratio even when used in a cold atmosphere of -40°C, for example, and even when used in a high-temperature atmosphere exceeding 100°C. , it was possible to emit light with reduced glare, which makes people feel uncomfortable, and it had good temperature characteristics.
  • the light-emitting device according to Example 16 has a small rate of change in the second luminance ratio even when used in a cold atmosphere of -40°C, for example, and even when used in a high-temperature atmosphere exceeding 100°C. , scattering could be suppressed, light could be emitted to reach a relatively long distance, and temperature characteristics were good.
  • the light-emitting device according to Example 7 and the light-emitting device according to Example 16 can emit light having a correlated color temperature within a predetermined range regardless of the ambient temperature. It was good.
  • the rate of change in the correlated color temperature is calculated by the formula shown in Equation (8)
  • the rate of change in the correlated color temperature of the light emitting device according to Example 16 is 8.2%
  • the rate of change in the correlated color temperature of the light emitting device according to Example 7 is 8.2%.
  • the correlated color temperature change rate was 4.3
  • the correlated color temperature change rate of the light emitting device according to Comparative Example 1 was 10.7%.
  • the maximum value in Equation (8) is the maximum value of the correlated color temperature at each ambient temperature of each light emitting device
  • the minimum value in Equation (8) is the minimum value of the correlated color temperature at each ambient temperature of each light emitting device. is.
  • the wavelength conversion body used in the light emitting device according to Example 3 and the wavelength conversion body used in the light emitting device according to Example 18 were cut, and the cross sections of the two wavelength conversion bodies were examined using a scanning electron microscope (SEM). Observed.
  • the wavelength converter used in the light emitting device according to Example 3 and the wavelength converter used in the light emitting device according to Example 18 were the first phosphor and the second phosphor with respect to 100 parts by mass of the translucent material.
  • the total amount of bodies is 240 parts by weight.
  • the wavelength converter used in the light emitting device according to Example 18 used tridecane as a solvent in the composition for wavelength converters.
  • the viscosity of the composition was lowered, and a high-concentration layer with a high filling rate was confirmed in the cross section of the wavelength conversion body.
  • Temperature characteristic evaluation 3 The light-emitting device according to Example 18 and the light-emitting device according to Example 3 were energized at 1200 mA at a junction temperature Tj of the light-emitting element of 150° C., and in an environmental atmosphere with an environmental temperature Ta of 85° C. and a relative humidity of 85% RH. in a constant temperature bath for 1000 hours, and the state of each light emitting device was checked.
  • the light-emitting device according to Example 18 was energized at 1200 mA under an environment of 85° C. and a relative humidity of 85% RH, and was continuously lit for 1000 hours.
  • the wavelength converter composition forming the wavelength converter contains a solvent, the viscosity of the wavelength converter composition is lowered, and the phosphor is distributed in the thickness direction of the wavelength converter. Since a layer with a high filling rate is formed and a layer with a high filling rate of phosphor is arranged on the light emitting element side, heat from the light emitting element can be dissipated through the phosphor, and the resin constituting the wavelength converter can be dissipated. Cracks, cracks, etc. could be suppressed.
  • the light-emitting device according to Example 17 was placed in a constant temperature bath with an ambient temperature of Ta: 85° C. and a relative humidity of 85% RH for 1000 hours while the junction temperature Tj of the light-emitting element was 150° C. and current was applied at 1200 mA. Then, the state of each light-emitting device was confirmed.
  • the light-emitting device according to Example 17 emits light using a microscope (manufactured by Hilox Co., Ltd.) even when it is continuously lit for 1000 hours under an environment of 85° C. and a relative humidity of 85% RH by energizing at 1200 mA. No resin cracks were observed on the surface of the wavelength conversion member in the device.
  • the silicone resin used in the composition for wavelength converters has a Shore A hardness of 60, and the silicone resin used in the composition for wavelength converters in Example 17 has a lower Shore A hardness. It expands and contracts flexibly even when continuously lit in a relatively high temperature environment of 85% RH and high humidity, and suppresses cracks and cracks in the resin that constitutes the wavelength conversion body. was made.
  • Example 19 As a wavelength converter composition, a wavelength converter composition containing 5 parts by mass of dodecane (boiling point: 214° C. to 216° C.) as a solvent is used with respect to 100 parts by mass of silicone resin a (Shore A hardness: 70).
  • a light-emitting device was manufactured in the same manner as in Example 3, except that The wavelength converter formed using the above-described composition for a wavelength converter includes a high-concentration layer having a high filling rate of the first phosphor and the second phosphor in the thickness direction of the wavelength converter, and a second A low-concentration layer with a low filling rate of the first phosphor and the second phosphor was formed.
  • a light-emitting device was manufactured by arranging the high-concentration layer having a high filling rate of the first phosphor and the second phosphor on the light-emitting element side.
  • the first The blending amounts of the phosphor and the second phosphor were adjusted.
  • Example 20 Except for using a wavelength converter composition containing 5 parts by mass of hexadecane (boiling point: 287° C.) as a solvent with respect to 100 parts by mass of silicone resin a (Shore A hardness: 70). produced a light-emitting device in the same manner as in Example 3.
  • the wavelength converter formed using the above-described composition for a wavelength converter includes a high-concentration layer having a high filling rate of the first phosphor and the second phosphor in the thickness direction of the wavelength converter, and a second A low-concentration layer with a low filling rate of the first phosphor and the second phosphor was formed.
  • a light-emitting device was manufactured by arranging the high-concentration layer having a high filling rate of the first phosphor and the second phosphor on the light-emitting element side.
  • the total amount of the phosphors including the first phosphor and the second phosphor with respect to 100 parts by mass of the silicone resin a was the same as that of the light emitting device according to Example 3.
  • the blending amounts of the first phosphor and the second phosphor were adjusted.
  • FIG. 17 shows a SEM photograph of a cross section of a sample of the wavelength conversion body according to Example 18. As shown in FIG. 17 , white solid lines and broken white lines are used to describe thicknesses (heights) T1 to T5, which will be described later.
  • a method of calculating the thickness of the high-concentration layer 41a and the thickness of the low-concentration layer 41b will be described based on the SEM photograph of FIG.
  • the thickness (height) of the entire wavelength conversion body 41 of the wavelength conversion member 40 is defined as a first height T1.
  • a layer in which the total area of the first phosphor and the second phosphor is larger than the area of the resin is referred to as a high-concentration layer 41a.
  • a layer in which the total area of the first phosphor and the second phosphor is smaller than the area of the resin is defined as a low-concentration layer 41b.
  • a second height T2 is defined as a distance between a portion of the first phosphor or the second phosphor included in the high-density layer 41a that is closest to the transparent body 42 and the lower surface 41c of the wavelength conversion body 41 .
  • the distance between the portion of the first phosphor and the second phosphor included in the high-concentration layer 41a and the low-concentration layer 41b that is closest to the lower surface 41c of the wavelength converter and the lower surface 41c of the wavelength converter 41 is the first 3 Let the height be T3.
  • the average value of the second height T2 and the third height T3 is defined as a fourth height T4, and the fourth height T4 is defined as the thickness (height) T4 of the high-concentration layer 41a.
  • a fifth height T5 obtained by subtracting a fourth height T4 representing the thickness of the high-concentration layer 41a from the first height T1 representing the thickness of the wavelength conversion body 41 is defined as the thickness (height) T5 of the low-concentration layer 41b.
  • Table 4 shows the mixing ratio and viscosity of the wavelength converter compositions according to Examples 3 and 18 to 20, and the thicknesses (high ratio).
  • the phosphor total amount indicates the total amount of the first phosphor and the second phosphor with respect to 100 parts by mass of the silicone resin.
  • the first phosphor content (% by mass) and the second phosphor content (% by mass) are when the total content of the first phosphor and the second phosphor is 100% by mass. shows the content of the first phosphor and the content of the second phosphor.
  • the solvent content (parts by mass) indicates the amount of solvent per 100 parts by mass of the silicone resin.
  • Table 4 shows the ratio of the thickness (height) of the high-concentration layer and the ratio of the thickness (height) of the low-concentration layer when the thickness (height) of the entire wavelength conversion body is 100%.
  • the wavelength converters according to Examples 3 and 18 to 20 all have high-density layers with high filling rates of the first and second phosphors and low-density layers with low filling rates of the first and second phosphors. and a density layer.
  • the ratio of the thickness of the high-concentration layer to 100% of the total thickness of the wavelength conversion bodies of the wavelength conversion members according to Examples 3 and 18 to 20 is in the range of 60% or more and 95% or less, and the thickness of the low-concentration layer was in the range of 5% or more and 40% or less.
  • the thickness ratio of the high-concentration layer was the same as that of the wavelength converter composition containing no solvent.
  • the filling rate of the first phosphor and the second phosphor contained in the high-concentration layer is high, and the first phosphor in the high-concentration layer and the density of the second phosphor was high.
  • the wavelength conversion member 40 includes a wavelength conversion body 41 and a transparent body 42 .
  • the wavelength conversion body 41 includes a high-density layer 41a having a high filling rate of the first phosphor 71 and the second phosphor 72 and a low-density layer 41b having a low filling rate of the first phosphor 71 and the second phosphor 72.
  • a high-density layer 41a having a high filling rate of the first phosphor 71 and the second phosphor 72
  • a low-density layer 41b having a low filling rate of the first phosphor 71 and the second phosphor 72.
  • the thickness ratio of the high-concentration layer 41a of the wavelength conversion body 51 according to Example 3 It is smaller than the thickness ratio of the high-concentration layer 41a of the wavelength conversion body 51 according to Example 3, the filling rate of the first phosphor and the second phosphor contained in the high-concentration layer 41 is high, and the high-concentration layer 41 The densities of the first phosphor and the second phosphor were high.
  • the thickness ratio of the low-concentration layer 41b was larger than the thickness ratio of the low-concentration layer 41b of the wavelength conversion body 41 according to Example 3.
  • the light-emitting device of the embodiments of the present disclosure can be used for headlights.
  • Headlamps with light emitting devices according to embodiments of the present disclosure may be used for road vehicles such as motorcycles, automobiles, rail vehicles, tractor systems such as grading, transporting and loading machines, or for excavation. It can be used for vehicles used in excavator-type vehicle-type construction machines such as machines.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Luminescent Compositions (AREA)

Abstract

グレアを低減することができる発光装置、前照灯及びそれを備えた車両を提供する。 400nm以上490nm以下の範囲内に発光ピーク波長を有する発光素子と、480nm以上580nm未満の範囲内に発光ピーク波長を有する第1蛍光体と、580nm以上680nm以下の範囲内に発光ピーク波長を有し、前記第1蛍光体の組成とは異なる組成を有する第2蛍光体と、を含む波長変換部材と、を備えた発光装置であり、前記発光装置は、CIE(国際照明委員会)で規定されたヒトの明所視標準比視感度曲線を考慮した前記発光装置の発光の輝度Lに対する、前記ヒトの明所視標準比視感度曲線及びヒトのS錐体の分光感度を考慮した前記発光装置の発光の第1実効放射輝度Lsの比である第1輝度比Ls/Lが0.9以下である光を発する。

Description

発光装置、前照灯及びそれを備えた車両
 本発明は、発光装置、前照灯及びそれを備えた車両に関する。
 自動四輪車や自動二輪車等の道路運送車両や、整地・運搬・積込用機械のようなトラクター系又は堀削用機械等のショベル系の車両系建設機械の前照灯は、例えばハロゲンランプ、HIDランプ(High-Intensity Discharge Lamp)、半導体発光素子を励起光源とする発光装置等の灯具が用いられる。例えば自動車用の前照灯は、前面の左右にそれぞれ1個又は複数個が運転者の視点よりも低い位置で左右対称に取り付けられる。前照灯は、ハイビーム(走行用前照灯)用灯具と、ロービーム(すれ違い用前照灯)用灯具とを備え、これらの切り換えができるようになっている。ハイビームは比較的遠方の例えば100m程度までの前方を照らし、ロービームはハイビームよりもやや下方の近い部分、例えば40m程度の前方を照らす。
 例えば特許文献1には、ロービームモードで点灯させる第1灯具ユニットと、ハイビームモードで同時点灯させる第1灯具ユニット及び第2灯具ユニットとを備えた車両用前照灯が開示されている。特許文献1には、第1灯具ユニットとして、4000Kから6500Kの相関色温度で発光する白色発光LEDを光源として用い、第2灯具ユニットとして、4000Kから5000Kの相関色温度で発光するHIDランプの一種であるメタルハライドランプを光源として用いることが開示されている。
特開2005-141917号公報
 前照灯からの発光によって先行車や対向車の運転者の視覚が刺激され、不快感や物の見えづらさを感じさせるグレアが生じる場合がある。グレアは、視野内の不適切な輝度分布又は極端な輝度の対比によって生じる感覚であり、不快感及び見る能力の低下を伴う(JIS Z9110)。さらに、前照灯の発光によって、走行車の運転者自体も反射光によって、グレアが生じる場合がある。
 本発明の一態様は、グレアを低減することができる発光装置、前照灯及びそれを備えた車両を提供することを目的とする。
 第1態様は、400nm以上490nm以下の範囲内に発光ピーク波長を有する発光素子と、480nm以上580nm未満の範囲内に発光ピーク波長を有する第1蛍光体と、580nm以上680nm以下の範囲内に発光ピーク波長を有し、前記第1蛍光体の組成とは異なる組成を有する第2蛍光体と、を含む波長変換部材と、を備えた発光装置であり、前記発光装置は、CIE(国際照明委員会)で規定されたヒトの明所視標準比視感度曲線を考慮した380nm以上780nm以下の範囲の前記発光装置の発光の輝度Lに対する、前記ヒトの明所視標準比視感度曲線及びヒトのS錐体の分光感度を考慮した380nm以上780nm以下の範囲の前記発光装置の発光の第1実効放射輝度Lsの比であり、下記式(1)から導き出される第1輝度比Ls/Lが0.9以下である光を発する、発光装置である。
Figure JPOXMLDOC01-appb-M000005
 (式(1)中、S(λ)は発光装置の発光の分光放射輝度であり、V(λ)はCIEで規定されたヒトの明所視標準比視感度曲線であり、Gs(λ)は波長λnmが380nm以上550nm以下の範囲内におけるヒトのS錐体の分光感度である。)
 第2態様は、400nm以上490nm以下の範囲内に発光ピーク波長を有する発光素子と、480nm以上580nm未満の範囲内に発光ピーク波長を有する第1蛍光体と、580nm以上680nm以下の範囲内に発光ピーク波長を有し、前記第1蛍光体の組成とは異なる組成を有する第2蛍光体と、を含む波長変換部材と、を備えた発光装置であり、前記発光装置は、300nm以上800nm以下の範囲において前記発光装置の発光の放射輝度Aに対する、波長300nmにおけるレイリー散乱の散乱強度を1としたときの波長に対する散乱強度曲線を考慮した300nm以上800nm以下の範囲の発光装置の発光の第2実効放射輝度Bの比であり、下記式(2)から導き出される第2輝度比B/Aが0.104以下である光を発する、発光装置である。
Figure JPOXMLDOC01-appb-M000006
 (式(2)中、S(λ)は発光装置の発光の分光放射輝度であり、Dc(λ)は波長300nmにおけるレイリー散乱の散乱強度を1としたときの散乱強度曲線である。)
 第3態様は、前記発光装置を備えた前照灯である。
 第4態様は、前記発光装置又は前記前照灯を備えた車両である。
 本発明の一態様によれば、グレアを低減することができる発光装置、前照灯及びそれを備えた車両を提供することができる。
図1Aは、非特許文献2に開示されているヒトのS錐体の分光感度Gs(λ)である。 図1Bは、非特許文献2に開示されているCIEで規定されたヒトの明所視標準比視感度曲線V(λ)である。 図1Cは、非特許文献2に開示されているV(λ):K=1.260に対応する曲線であり、グレアに対応する分光視感度V(λ)の例示である。 図2は、波長300nmにおける散乱強度を1としたレイリー散乱の強度曲線Dc(λ)を示す図である。 図3Aは、発光装置の概略平面図である。 図3Bは、発光装置の概略断面図である。 図3Cは、発光装置の概略断面の一部の拡大図である。 図4は、実施例1及び2に係る発光装置の発光スペクトルと、比較例1に係る発光装置の発光スペクトルを示す図である。 図5は、実施例3及び4に係る発光装置の発光スペクトルと、比較例1に係る発光装置の発光スペクトルを示す図である。 図6は、実施例5及び6に係る発光装置の発光スペクトルと、比較例1に係る発光装置の発光スペクトルを示す図である。 図7は、実施例7及び8に係る発光装置の発光スペクトルと、比較例1に係る発光装置の発光スペクトルを示す図である。 図8は、実施例9及び10に係る発光装置の発光スペクトルと、比較例1に係る発光装置の発光スペクトルを示す図である。 図9は、実施例11に係る発光装置の発光スペクトルと、比較例1に係る発光装置の発光スペクトルを示す図である。 図10は、実施例12に係る発光装置の発光スペクトルと、比較例1に係る発光装置の発光スペクトルを示す図である。 図11は、実施例13に係る発光装置の発光スペクトルと、比較例1に係る発光装置の発光スペクトルを示す図である。 図12は、実施例14及び15に係る発光装置の発光スペクトルと、比較例1に係る発光装置の発光スペクトルを示す図である。 図13は、実施例16、17及び18に係る発光装置の発光スペクトルと、比較例1に係る発光装置の発光スペクトルを示す図である。 図14は、実施例7、9及び16に係る発光装置と比較例1に係る発光装置の環境雰囲気温度と第1輝度比Ls/Lの関係を示すグラフである。 図15は、実施例7、9及び16に係る発光装置と、比較例1に係る発光装置の環境雰囲気温度と第2輝度比B/Aの関係を示すグラフである。 図16は、実施例7及び16に係る発光装置と、比較例1に係る発光装置の環境雰囲気温度と相関色温度の変化の関係を表すグラフである。 図17は、実施例18に係る波長変換部材のサンプルの切断面を示すSEM写真である。 図18は、実施例18に係る波長変換部材のサンプルの切断面を示すSEM写真である。 図19は、実施例3に係る波長変換部材のサンプルの切断面を示すSEM写真である。 図20は、前照灯の水平断面図を示す図である。 図21は、前照灯の正面図を示す図である。
 以下、本発明の実施形態を図面に基づいて説明する。ただし、以下に示す実施形態は、本発明の技術思想を具体化するための、発光装置、前照灯及びそれを備えた車両を例示するものであって、本発明は、以下に示す、発光装置、前照灯及びそれを備えた車両に限定されない。また、特許請求の範囲に示される部材を、実施形態の部材に限定するものでは決してない。特に実施形態に記載されている構成部品の寸法、材質、形状、その相対的配置等は特に特定的な記載がない限りは、本発明の範囲をそれのみに限定する趣旨ではなく、単なる説明例にすぎない。なお、色名と色度座標との関係、光の波長範囲と単色光の色名との関係等は、JIS Z8110に従う。本明細書において組成物中の各成分の含有量は、組成物中に各成分に該当する物質が複数存在する場合、特に断らない限り、組成物中に存在する当該複数の物質の合計量を意味する。発光スペクトルの半値幅は、半値全幅(Full Width at Half Maximum、FWHM)をいう。半値幅は、発光素子、蛍光体の半値幅は、発光スペクトルにおいて最大発光強度の50%の発光強度を示す発光スペクトルの波長幅を意味する。
 車両の前照灯には、光束やエネルギー等の特性によって、HIDランプ、ハロゲンランプ、LEDを用いた発光装置等の様々な光源が用いられている。光源の相違により、眩しく感じさせるグレアや見かけの明るさが異なる。例えば、路面の明るさは、青色光成分や、光の相関色温度にも影響を受ける。非特許文献1には、高齢者、非高齢者にかかわらず、色温度が例えば6600Kと高いLED光源は、ヒトが眩しいと感じる評価が開示されている(非特許文献1:橋本博等著、「白色LEDの色温度の違いによる眩しさへの影響」、財団法人日本自動車研究所、予防安全研究部、2006年10月、自動車研究、第28巻、第10号、p569からp572)。ヒトの網膜照度の低下や桿体細胞の劣化等によってもヒトが不快に感じるグレアは異なり、ヒトの年齢によっても眩しさが変化する場合がある。ヒトの網膜に存在する光受容細胞である錐体細胞の中でも、S錐体は、短波長光に対して光反応する。S錐体は、440nm付近に感度のピーク波長がある。非特許文献2には、CIE1931表色系の側光システムで用いられているヒトの明所視標準比視感度曲線V(λ)に、波長λにおけるヒトのS錐体の分光感度Gs(λ)を考慮した、グレアに対応する新たな分光視感度V(λ)の下記式(3)が開示されている(非特許文献2:小林正自等、「ヘッドランプ光源の分光分布が不快グレアに与える影響に関する研究」、社団法人自動車技術会 学術講演会前刷集、No.5から10、p9からp14)。本明細書において、分光放射輝度は、分光分布と同義である。
Figure JPOXMLDOC01-appb-M000007
 図1Aは、非特許文献2に開示されているヒトのS錐体の分光感度Gs(λ)である。図1Aに基づき、ヒトのS錐体の分光感度Gs(λ)の数値を導くことができる。ヒトのS錐体の分光感度Gs(λ)は、380nm以上550nm以下の範囲内に分光感度のピークを有する。図1Bは、非特許文献2に開示されているCIEで規定されたヒトの明所視標準比視感度曲線V(λ)である。図1Aから図1Cに示す相対値は、CIEで規定されたヒトの明所視標準比視感度曲線V(λ)のピークトップを1とした値である。図1Bに基づき、CIEで規定されたヒトの明所視標準比視感度曲線V(λ)の数値を導くことができる。図1Cは、非特許文献2に開示されているV(λ):K=1.260に対応する曲線であり、CIEで規定されたヒトの明所視標準比視感度曲線と、ヒトのS錐体の分光感度を考慮した、グレアに対応する分光視感度V(λ)の例示である。Kは、ヒトのS錐体の分光感度Gs(λ)が寄与する割合を決定する係数である。ハロゲン電球の場合の係数Kは1.260である。
 発光装置の発光の輝度Lは、下記式(4)によって導き出される。発光装置の発光の輝度Lは、380nm以上780nm以下の範囲の発光装置の分光放射輝度S(λ)と、CIEで規定されたヒトの明所視標準比視感度曲線V(λ)の積分値である。
Figure JPOXMLDOC01-appb-M000008
 発光装置の発光の第1実効放射輝度Lsは、下記式(5)によって導き出される。発光装置の発光の第1実効放射輝度Lsは、380nm以上780nm以下の範囲の発光装置の分光放射輝度S(λ)と、前記式(3)で表されるグレアに対応するヒトの分光視感度V(λ)(=K・Gs(λ)+V(λ))との積分値を、ハロゲン電球の場合の係数K(=1.260)を用いて前記式(3)によって導かれたV(λ)のピークトップである2.3で除した数値である。
Figure JPOXMLDOC01-appb-M000009
 発光装置の発光の第1輝度比Ls/Lは、CIEで規定されたヒトの明所視標準比視感度曲線を考慮した発光装置の発光の輝度Lに対する、CIEで規定されたヒトの明所視標準比視感度曲線及びヒトのS錐体の分光感度を考慮した発光装置の発光の第1実効放射輝度Lsの比である。第1輝度比Ls/Lは、発光装置の発光のグレアの低減の程度を表す。
 第1実施形態の発光装置は、400nm以上490nm以下の範囲に発光ピーク波長を有する発光素子と、480nm以上580nm未満の範囲に発光ピーク波長を有する第1蛍光体と、580nm以上680nm以下の範囲に発光ピーク波長を有し、第1蛍光体の組成とは異なる組成を有する第2蛍光体と、を備える。発光装置は、下記式(1)から導き出される第1輝度比Ls/Lが0.9以下の光を発する。
Figure JPOXMLDOC01-appb-M000010
 (式(1)中、S(λ)は発光装置の発光の分光放射輝度であり、V(λ)はCIEで規定されたヒトの明所視標準比視感度曲線であり、Gs(λ)は波長λnmが380nm以上550nm以下の範囲内におけるヒトのS錐体の分光感度である。)
 発光装置の発光の第1輝度比Ls/Lが0.9以下であれば、グレアを低減した光が発光装置から発せられる。発光装置の発光の第1輝度比Ls/Lが0.9を超えると、ヒトのS錐体の分光感度を考慮していない発光装置の発光の輝度Lに近くなり、グレアが低減されていない。ヒトが不快に感じるグレアを低減するために、発光装置の発光の第1輝度比Ls/Lは、0.85以下であることが好ましく、0.83以下であることがより好ましく、0.80以下であることがさらに好ましい。発光装置の発光は、ヒトのS錐体の分光感度を考慮すると、第1輝度比Ls/Lが0.1以上でもよく、0.2以上でもよい。
 第1輝度比Ls/Lが0.9以下の光を発する発光装置は、後述する第2輝度比A/Bが0.104以下の光を発することが好ましい。第1輝度比Ls/Lが0.9以下であり、かつ、後述する第2輝度比A/Bが0.104以下である光を発する発光装置は、グレアを低減しながら、光を遠くまで到達させることができる。
 第2実施形態の発光装置は、440nm以上490nm以下の範囲に発光ピーク波長を有する発光素子と、480nm以上580nm未満の範囲に発光ピーク波長を有する第1蛍光体と、580nm以上680nm以下の範囲に発光ピーク波長を有し、第1蛍光体の組成とは異なる組成を有する第2蛍光体と、を備える。発光装置は、300nm以上800nm以下の範囲において発光装置の発光の放射輝度Aに対する、波長300nmにおけるレイリー散乱の散乱強度を1としたときの波長に対する散乱強度曲線を考慮した300nm以上800nm以下の範囲の発光装置の発光の第2実効放射輝度Bの比であり、下記式(2)から導き出される第2輝度比B/Aが0.104以下である光を発する。
Figure JPOXMLDOC01-appb-M000011
 (式(2)中、S(λ)は発光装置の発光の分光放射輝度であり、Dc(λ)はレイリー散乱において、波長300nmにおけるレイリー散乱の散乱強度を1としたときの波長に対する散乱強度曲線である。)
 光と微粒子の相互作用によって生じる光の散乱は、光の波長λと微粒子の大きさDとの相対関係で決定される。空気中に含まれる微粒子の大きさDは光の波長λよりもはるかに小さい。レイリー散乱は、光の波長よりも小さいサイズの粒子による光の散乱である。空気中において、光は波長が短いほど散乱されやすい。光の散乱が抑制されていれば、光を遠くまで到達させることができる。光を遠くまで到達させることができる発光装置は、例えば100m程度の比較的遠い前方を照らすハイビームモード用の前照灯に好適に用いることができる。第2実施形態の発光装置は、散乱を抑制して光を比較的遠方まで到達させることができる。また、第2実施形態の発光装置を用いた前照灯及びこの前照灯を備えた車両は、光を比較的遠方まで到達させることができる。
 発光装置の発光の放射輝度Aは、下記式(6)によって導き出される。発光装置の発光の放射輝度Aは、300nm以上800nm以下の範囲における発光装置の分光放射輝度S(λ)の積分値である。
Figure JPOXMLDOC01-appb-M000012
 図2は、波長300nmにおけるレイリー散乱の散乱強度を1としたときの波長に対する散乱強度曲線Dc(λ)を示す。
 発光装置の発光の第2実効放射輝度Bは、下記式(7)によって導き出される。発光装置の発光の第2実効放射輝度Bは、300nm以上800nm以下の範囲における、前述の散乱強度曲線Dc(λ)と前述の発光装置の分光放射輝度S(λ)の積分値である。
Figure JPOXMLDOC01-appb-M000013
 発光装置の発光の第2輝度比B/Aは、300nm以上800nm以下の範囲の発光装置の発光の放射輝度Aに対する、波長300nmにおけるレイリー散乱の散乱強度を1としたときの波長に対する散乱強度曲線を考慮した300nm以上800nm以下の範囲の発光装置の発光の第2実効放射輝度Bの比である。第2輝度比B/Aは、発光装置の発光の散乱の程度を表す。
 発光装置の発光の第2輝度比B/Aが0.104以下であれば、散乱が抑制され、比較的遠方まで到達する光が発光装置から発せられる。発光装置の発光の第2輝度比B/Aが0.104を超えると、レイリー散乱が考慮されていない発光装置の発光の放射輝度Aに近くなる。散乱を抑制し、比較的遠方まで到達する光を発するために、発光装置の発光の第2輝度比B/Aは、0.102以下であることが好ましく、0.100以下であることがより好ましく、0.099以下であることがさらに好ましく、0.098以下であることがよりさらに好ましい。発光装置の発光は、レイリー散乱を考慮すると、第2輝度比B/Aが0.01以上でもよく、0.02以上でもよい。
 第2輝度比B/Aが0.104以下の光を発する発光装置は、前述の第1輝度比Ls/Lが0.9以下の光を発することが好ましい。第2輝度比A/Bが0.104以下であり、かつ、第1輝度比Ls/Lが0.9以下である光を発する発光装置は、比較的遠くまで光を到達させることができ、グレアも低減することができる。
 以下、第1輝度比Ls/Lが0.9以下の光を発する発光装置及び/又は第2輝度比B/Aが0.104以下の光を発する発光装置について説明する。第1輝度比Ls/Lが0.9以下の光を発する発光装置と、第2輝度比B/Aが0.104以下の光を発する発光装置は、相関色温度が同一の範囲であることが好ましく、同一の部材を用いた同一の形態の発光装置でもよい。
 発光装置は、相関色温度が1800K以上5000K以下の光を発することが好ましく、2000K以上5000K以下の光を発することがより好ましい。例えば前照灯に備えられた発光装置から発せられる光の相関色温度が低い方が、先行車、対向車又は走行車自体の運転者等が眩しいと感じるグレアを低減することができる。
 発光素子
 発光素子は、400nm以上490nm以下の範囲内に発光ピーク波長を有する。発光素子の発光ピーク波長は、420nm以上480nm以下の範囲内にあることが好ましく、さらに440nm以上460nm以下の範囲内でもよい。発光素子の発光の少なくとも一部が第1蛍光体及び第2蛍光体の励起光として利用されるため、それらの蛍光体を励起し易い発光ピーク波長を有することが好ましい。発光素子の発光スペクトルの半値幅は、好ましくは30nm以下、より好ましくは25nm以下、さらに好ましくは20nm以下である。発光素子は、例えば、窒化物系半導体を用いた半導体発光素子を用いることが好ましい。これにより、高効率であり、入力に対する出力のリニアリティが高く、機械的衝撃にも強い安定した発光装置を得ることができる。
 第1蛍光体
 第1蛍光体は、400nm以上490nm以下の範囲内に発光ピーク波長を有する発光素子の発光によって励起され、480nm以上580nm未満の範囲内に発光ピーク波長を有する光を発する。第1蛍光体は、発光スペクトルの半値幅が、90nm以上125nm以下の範囲内であることが好ましく、100nm以上124nm以下の範囲内でもよく、110nm以上123nm以下の範囲内でもよい。第1蛍光体が、480nm以上580nm未満の範囲内に発光ピーク波長を有すると、発光素子からの励起光を波長変換し、発光素子からの光と、第1蛍光体及び第2蛍光体で波長変換した光の混色光が発光装置から発せられる。
 第1蛍光体は、下記式(1A)で表される組成式に含まれる組成を有する希土類アルミン酸塩蛍光体、及び下記式(1B)で表される組成式に含まれる組成を有する第1窒化物蛍光体からなる群から選択される少なくとも1種を含むことが好ましい。
 Ln (Al1-aGa12:Ce   (1A)
 (式(1A)中、Lnは、Y、Gd、Tb及びLuからなる群から選択される少なくとも1種の元素であり、aは、0≦a≦0.5を満たす。)
 LaLn Si:Ce   (1B)
 (式(1B)中、Lnは、Y及びGdからなる群から選択される少なくとも1種を必須として含み、Sc及びLuからなる群から選択される少なくとも1種を含んでいてもよく、組成1モルに含まれるLn元素を100モル%としたときに、Lnに含まれるY及びGdの合計が90モル%以上であり、w、x、y及びzは、1.2≦w≦2.2、0.5≦x≦1.2、10≦y≦12、0.5≦z≦1.2、1.80<w+x<2.40、2.9≦w+x+z≦3.1を満たす。)
 本明細書において、蛍光体の組成を表す式中、コロン(:)の前は母体結晶及び蛍光体の組成1モル中の各元素のモル比を表し、コロン(:)の後は賦活元素を表す。
 第1蛍光体は、アルカリ土類金属アルミン酸塩蛍光体及びアルカリ土類金属ハロシリケート蛍光体からなる群から選択される少なくとも1種の蛍光体を含んでいてもよい。アルカリ土類金属アルミン酸塩蛍光体は、例えば、ストロンチウムを少なくとも含み、ユウロピウムで賦活される蛍光体であり、例えば、下記式(1C)で表される組成式に含まれる組成を有する。またアルカリ土類金属ハロシリケートは、例えば、カルシウムと塩素を少なくとも含み、ユウロピウムで賦活される蛍光体であり、例えば、下記式(1D)で表される組成式に含まれる組成を有する。
 SrAl1425:Eu   (1C)
 (Ca,Sr,Ba)MgSi16(F,Cl,Br):Eu   (1D)
 式(1C)中、Srの一部はMg、Ca、Ba及びZnからなる群から選択される少なくとも1種の元素で置換されていてもよい。
 式(1C)で表される組成式に含まれる組成を有するアルカリ土類金属アルミン酸塩蛍光体及び式(1D)で表される組成式に含まれる組成を有するアルカリ土類金属ハロシリケート蛍光体は、480nm以上520nm未満の範囲内に発光ピーク波長を有し、好ましくは485nm以上515nm以下の範囲内に発光ピーク波長を有する。
 式(1C)で表される組成式に含まれる組成を有するアルカリ土類金属アルミン酸塩蛍光体及び式(1D)で表される組成式に含まれる組成を有するアルカリ土類金属ハロシリケート蛍光体は、発光スペクトルにおける半値幅が、例えば30nm以上、好ましくは40nm以上、より好ましくは50nm以上であり、また例えば80nm以下、好ましくは70nm以下である。
 本明細書において、蛍光体の組成を示す式中、カンマ(,)で区切られて記載されている複数の元素は、これら複数の元素のうち少なくとも1種の元素を組成中に含むことを意味し、複数の元素から2種以上を組み合わせて含んでいてもよい。
 第1蛍光体は、βサイアロン蛍光体、第1硫化物蛍光体、スカンジウム系蛍光体、アルカリ土類金属シリケート蛍光体及びランタノイドケイ窒化物蛍光体からなる群から選択される少なくとも1種の蛍光体を含んでいてもよい。βサイアロン蛍光体は、例えば、下記式(1E)で表される組成式に含まれる組成を有する。第1硫化物蛍光体は、例えば、下記式(1F)で表される組成式に含まれる組成を有する。スカンジウム系蛍光体は、例えば、下記式(1G)で表される組成式に含まれる組成を有する。アルカリ土類金属シリケート蛍光体は、例えば、下記式(1H)で表される組成式に含まれる組成又は下記式(1J)で表される組成式に含まれる組成を有する。ランタノイドケイ窒化物蛍光体は、例えば、下記式(1K)で表される組成式に含まれる組成を有する。
 Si6-gAl8-g:Eu(0<g≦4.2)   (1E)
 (Sr,M)Ga:Eu   (1F)
 (式(1F)中、Mは、Be、Mg、Ca、Ba及びZnからなる群から選択される少なくとも1種の元素である。)
 (Ca,Sr)Sc:Ce   (1G)
 (Ca,Sr)(Sc,Mg)Si12:Ce   (1H)
 (Ca,Sr,Ba)SiO:Eu   (1J)
 (La,Y,Gd,Lu)Si11:Ce   (1K)
 βサイアロン蛍光体、第1硫化物蛍光体、スカンジウム系蛍光体、アルカリ土類金属シリケート蛍光体及びランタノイドケイ窒化物蛍光体は、それぞれ520nm以上580nm未満の範囲内に発光ピーク波長を有し、好ましくは525nm以上565nm以下の範囲内に発光ピーク波長を有する。βサイアロン蛍光体、第1硫化物蛍光体、スカンジウム系蛍光体、アルカリ土類金属シリケート蛍光体及びランタノイド系窒化物蛍光体は、それぞれ発光スペクトルにおける半値幅が、例えば20nm以上、好ましくは30nm以上であり、また例えば120nm以下、好ましくは115nm以下である。
 第1蛍光体は、前記式(1A)で表される組成式に含まれる組成を有する希土類アルミン酸塩蛍光体、前記式(1B)で表される組成式に含まれる組成を有する第1窒化物蛍光体、前記式(1C)で表される組成式に含まれる組成を有するアルカリ土類金属アルミン酸塩蛍光体、前記式(1D)で表される組成式に含まれる組成を有するアルカリ土類金属ハロシリケート蛍光体、前記式(1E)で表される組成式に含まれる組成を有するβサイアロン蛍光体、前記式(1F)で表される組成式に含まれる組成を有する第1硫化物蛍光体、前記式(1G)で表される組成式に含まれる組成を有するスカンジウム系蛍光体、前記式(1H)で表される組成式に含まれる組成を有するアルカリ土類金属シリケート蛍光体、前記式(1J)で表される組成式に含まれる組成を有するアルカリ土類金属シリケート蛍光体、及び前記式(1K)で表される組成式に含まれる組成を有するランタノイドケイ窒化物蛍光体からなる群から選択される少なくとも1種の蛍光体を含んでいてもよい。第1蛍光体は、少なくとも1種の蛍光体を単独で含んでいてもよく、2種以上を含んでいてもよい。
 第2蛍光体
 第2蛍光体は、400nm以上490nm以下の範囲内に発光ピーク波長を有する発光素子の発光によって励起され、580nm以上680nm以下の範囲内に発光ピーク波長を有する光を発し、第1蛍光体の組成とは異なる組成を有する。第2蛍光体は、発光スペクトルにおける半値幅が、3nm以上15nm以下の範囲内であることが好ましい。このような第2蛍光体として、例えば、下記式(2C)で表される組成式に含まれる組成を有するフッ化物蛍光体、又は、下記式(2C’)で表される組成式に含まれる組成を有するフッ化物蛍光体を含むことが好ましい。又は、発光スペクトルにおける半値幅が60nm以上125nm以下の範囲内であることが好ましい。このような第2蛍光体として、例えば、下記式(2A)で表される組成式に含まれる組成を有する第2窒化物蛍光体、下記式(2B)で表される組成式に含まれる組成を有する第3窒化物蛍光体、又は、下記式(2G)で表される組成式に含まれる組成を有するαサイアロン蛍光体を含むことが好ましい。第2蛍光体により、発光素子からの励起光を波長変換し、発光素子からの光と、第1蛍光体及び第2蛍光体で波長変換した光の混色光が発光装置から発せられる。
 第2蛍光体は、下記式(2A)で表される組成式に含まれる組成を有する第2窒化物蛍光体、下記式(2B)で表される組成式に含まれる組成を有する第3窒化物蛍光体、下記式(2C)で表される組成式に含まれる組成を有するフッ化物蛍光体、下記式(2C)とは組成が異なる下記式(2C’)で表される組成式に含まれる組成を有するフッ化物蛍光体、及び下記式(2G)で表される組成式に含まれる組成を有するαサイアロン蛍光体からなる群から選択される少なくとも1種を含むことが好ましい。本明細書において、下記式(2A)で表される組成式に含まれる組成を有する第2窒化物蛍光体を、BSESN蛍光体と表記する場合があり、下記式(2B)で表される組成式に含まれる組成を有する第3窒化物蛍光体を、SCASN蛍光体と表記する場合がある。
 M Si:Eu   (2A)
 (式(2A)中、Mは、Ca、Sr及びBaからなる群から選択される少なくとも1種を含むアルカリ土類金属元素である。)
 SrCaAlSi:Eu   (2B)
 (式(2B)中、q、s、t、u、vは、それぞれ0≦q<1、0<s≦1、q+s≦1、0.9≦t≦1.1、0.9≦u≦1.1、2.5≦v≦3.5を満たす。)
 A[M 1-bMn4+ ]   (2C)
 (式(2C)中、Aは、K、Li、Na、Rb、Cs及びNH から成る群から選択される少なくとも1種を含み、その中でもKが好ましい。Mは、第4族元素及び第14族元素からなる群から選択される少なくとも1種の元素を含み、その中でもSi、Geが好ましい。bは、0<b<0.2を満たし、cは、[M 1-bMn4+ ]イオンの電荷の絶対値であり、dは、5<d<7を満たす。)
 A’c’[M1-b’Mn4+ b’d’]   (2C’)
 (式(2C’)中、A’は、K、Li、Na、Rb、Cs及びNH から成る群から選択される少なくとも1種を含み、その中でもKが好ましい。M’は、第4族元素、第13族元素及び第14族元素からなる群から選択される少なくとも1種の元素を含み、その中でもSi、Alが好ましい。b’は、0<b’<0.2を満たし、c’は、[M1-b’Mn4+ b’d’]イオンの電荷の絶対値であり、d’は、5<d’<7を満たす。)
 M v3Si12-(w3+x3)Alw3+x3x316-x3:Eu (2G)
 (式(2G)中、Mは、Li、Mg、Ca、Sr、Y及びランタノイド元素(但し、LaとCeを除く。)からなる群から選択される少なくとも1種の元素を含み、v3、w3及びx3は、それぞれ0<v3≦2.0、2.0≦w3≦6.0、0≦x3≦1.0を満たす。)
 第2蛍光体は、フルオロジャーマネ―ト蛍光体、第4窒化物蛍光体、及び第2硫化物蛍光体からなる群から選択される少なくとも1種の蛍光体を含んでいてもよい。フルオロジャーマネート蛍光体は、例えば、下記式(2D)で表される組成式に含まれる組成を有する。第4窒化物蛍光体は、例えば、下記式(2E)で表される組成式に含まれる組成を有する。第2硫化物蛍光体は、例えば、下記式(2F)で表される組成式に含まれる組成を有する。
 (i-j)MgO・(j/2)Sc・kMgF・mCaF・(1-n)GeO・(n/2)M :Mn   (2D)
 (式(2D)中、MはAl、Ga及Inからなる群から選択される少なくとも1種である。i、j、k、m、n及びzはそれぞれ、2≦i≦4、0≦j<0.5、0<k<1.5、0≦m<1.5、0≦n<0.5を満たす。)
 M v2 w2Al3-y2Siy2z2:M   (2E)
 (式(2E)中、Mは、Ca、Sr、Ba及びMgからなる群より選択される少なくとも1種の元素であり、Mは、Li、Na及びKからなる群より選択される少なくとも1種の元素であり、Mは、Eu、Ce、Tb及びMnからなる群より選択される少なくとも1種の元素であり、v2、w2、y2及びz2は、それぞれ0.80≦v2≦1.05、0.80≦w2≦1.05、0≦y2≦0.5、3.0≦z2≦5.0を満たす。)
 (Ca,Sr)S:Eu   (2F)
 式(2D)で表される組成式に含まれる組成を有するフルオロジャーマネート蛍光体は、下記式(2d)で表される組成を有していてもよい。
 3.5MgO・0.5MgF・GeO:Mn (2d)
 式(2E)で表される組成式に含まれる組成を有する第4窒化物蛍光体は、下記式(2e)で表される組成式に含まれる組成を有していてもよい。
 M v2 w2 x2Al3-y2Siy2z2   (2e)
 (式(2e)中、M、M、及びMは、それぞれ式(2E)中のM、M、及びMと同義であり、Ce、Tb及びMnからなる群より選択される少なくとも1種の元素であり、v2、w2、y2及びz2は、それぞれ式(2E)中のv2、w2、y2及びz2と同義であり、x2は、0.001<x2≦0.1を満たす。)
 フルオロジャーマネート蛍光体、第4窒化物蛍光体、及び第2硫化物蛍光体は、それぞれ、580nm以上680nm以下の範囲内に発光ピーク波長を有し、好ましくは600nm以上630nm以下の範囲内に発光ピーク波長を有する。フルオロジャーマネート蛍光体、第4窒化物蛍光体、及び第2硫化物蛍光体は、それぞれ、発光スペクトルにおける発光ピークの半値幅が、例えば5nm以上100nm以下であり、好ましくは6nm以上90nm以下である。
 第2蛍光体は、前記式(2A)で表される組成式に含まれる組成を有する第2窒化物蛍光体、前記式(2B)で表される組成式に含まれる組成を有する第3窒化物蛍光体、前記式(2C)で表される組成式に含まれる組成を有するフッ化物蛍光体、前記式(2C’)で表されるフッ化物蛍光体、前記式(2D)で表される組成式に含まれる組成を有するフルオロジャーマネート蛍光体、前記式(2E)で表される組成式に含まれる組成を有する第4窒化物蛍光体、前記式(2F)で表される組成式に含まれる組成を有する第2硫化物蛍光体、及び前記式(2G)で表される組成式に含まれる組成を有するαサイアロン蛍光体からなる群から選択される少なくとも1種を含むことが好ましい。第2蛍光体は、少なくとも1種の蛍光体を単独で含んでいてもよく、2種以上の蛍光体を含んでいてもよい。
 第2蛍光体は、前記式(2A)で表される組成式に含まれる組成を有する第2窒化物蛍光体(BSESN蛍光体)、前記式(2B)で表される組成式に含まれる組成を有する第3窒化物蛍光体(SCASN蛍光体)、及び前記式(2G)で表される組成式に含まれる組成を有するαサイアロン蛍光体からなる群から選択される少なくとも1種を含むことがさらに好ましい。BSESN蛍光体、SCASN蛍光体及びαサイアロン蛍光体からなる群から選択される少なくとも1種の第2蛍光体は、温度特性が良好であり、温度の変化による発光エネルギーの変化が少ない。例えば、第1蛍光体として、前記式(1A)で表される組成式に含まれる組成を有する希土類アルミン酸塩蛍光体を含み、第2蛍光体として、BSESN蛍光体、SCASN蛍光体及びαサイアロン蛍光体からなる群から選択される少なくとも1種を含む波長変換部材を備えた発光装置は、第1蛍光体及び第2蛍光体の温度特性が良好であるため、例えば-40℃の寒冷雰囲気で使用した場合や100℃を超える高温で雰囲気で用した場合においても、第1輝度比Ls/Lが0.9以下を維持した状態で第1輝度比Ls/Lの変化率が少なく、使用環境の雰囲気温度の影響を受けにくく、グレアを低減した光を発光装置から発することができる。第1輝度比Ls/Lが0.9以下を維持した状態で、発光装置の使用環境の温度が変化した場合であっても、第1輝度比Ls/Lの変化率が少ない光を発光することができる発光装置は、温度特性が良好であるという場合がある。
 第1蛍光体として、前記式(1A)で表される組成式に含まれる組成を有する希土類アルミン酸塩蛍光体を含み、第2蛍光体として、BSESN蛍光体、SCASN蛍光体及びαサイアロン蛍光体からなる群から選択される少なくとも1種を含む波長変換部材を備えた発光装置は、第1蛍光体及び第2蛍光体の温度特性が良好であるため、使用環境の雰囲気温度の影響を受けにくく、第2輝度比B/Aが0.104以下を維持した状態で第2輝度比B/Aの変化率が少なく、使用環境の雰囲気温度の影響を受けにくく、散乱を抑制して比較的遠くまで到達する光を発光装置から発することができる。第2輝度比B/Aが0.104以下を維持した状態で、発光装置の使用環境の温度が変化した場合であっても、第2輝度比B/Aの変化率が少ない光を発光することができる発光装置は、温度特性が良好であるという場合がある。
 第1蛍光体及び第2蛍光体を含む蛍光体は、フィッシャーサブシーブサイザー(Fisher Sub-Sieve Sizer、以下「FSSS」ともいう。)法により測定された平均粒径が5μm以上40μm以下の範囲内であることが好ましく、6μm以上35μm以下の範囲内であることがより好ましく、7μm以上30μm以下の範囲内であることがさらに好ましい。蛍光体の平均粒径が5μm以上40μm以下の範囲内であれば、励起光源から発せられる光を蛍光体で効率よく吸収して波長変換し、グレアを低減した光又は光の散乱を抑制して比較的遠くまで到達する光、を発光装置から発することができる。
 発光装置は、相関色温度が1800K以上3500K未満の光を発し、第1蛍光体及び第2蛍光体の総量に対する第1蛍光体の含有量が5質量%以上93質量%以下の範囲内であることが好ましい。発光装置が、相関色温度が1800K以上3500K未満の光を発すると、青色光成分が低減された相関色温度の低い光が発せられ、グレアを低減することができる。発光装置は、第1蛍光体及び第2蛍光体の総量に対する第1蛍光体の含有量が5質量%以上93質量%以下であれば、相関色温度が1800K以上3500K未満であり、第1輝度比Ls/Lが0.9以下の光を発することができる。第1蛍光体及び第2蛍光体の総量に対する第1蛍光体の含有量は、10質量%以上92質量%以下の範囲内であることがより好ましく、15質量%以上90質量%以下の範囲内であることがさらに好ましく、20質量%以上88質量%以下の範囲内であることが特に好ましく、30質量%以上85質量%以下の範囲内でもよく、40質量%以上でもよく、50質量%以上でもよい。
 発光装置は、相関色温度が3500K以上4000K未満の光を発し、第1蛍光体及び第2蛍光体の総量に対する第1蛍光体の含有量が20質量%以上95質量%以下の範囲内であることが好ましい。発光装置が、相関色温度が3500K以上4000K未満の光を発すると、青色光成分が低減された相関色温度の低い光が発せられ、グレアを低減することができる。発光装置は、第1蛍光体及び第2蛍光体の総量に対する第1蛍光体の含有量が20質量%以上95質量%以下であれば、相関色温度が3500K以上4000K未満であり、第1輝度比Ls/Lが0.9以下の光を発することができる。第1蛍光体及び第2蛍光体の総量に対する第1蛍光体の含有量は、30質量%以上90質量%以下の範囲内であることがより好ましく、40質量%以上85質量%以下の範囲内であることがさらに好ましく、50質量%以上でもよく、60質量%以上でもよく、70質量%以上でもよく、75質量%以上でもよい。
 発光装置は、相関色温度が4000K以上5000K以下の光を発し、第1蛍光体及び第2蛍光体の総量に対する第1蛍光体の含有量が50質量%以上99質量%以下の範囲内であることが好ましい。発光装置が、相関色温度が4000K以上5000K以下の光を発すると、青色光成分が比較的低減された相関色温度が比較的低い光が発せられ、グレアを低減することができる。発光装置は、第1蛍光体及び第2蛍光体の総量に対する第1蛍光体の含有量が50質量%以上99質量%以下であれば、相関色温度が4000K以上5000K以下であり、第1輝度比Ls/Lが0.9以下の光を発することができる。発光装置に含まれる第1蛍光体及び第2蛍光体の総量に対する第1蛍光体の含有量は、60質量%以上98質量%以下の範囲内であることがより好ましく、70質量%以上95質量%以下の範囲内であることがさらに好ましく、75質量%以上でもよい。
 発光装置
 発光装置の形態について説明する。図3Aは、発光装置の一例を示し、発光装置101の概略平面図である。図3Bは、図3Aに示す発光装置101のIII-III’線の概略断面図である。発光装置101は、400nm以上490nm以下の範囲内に発光ピーク波長を有する発光素子10と、発光素子10からの光により励起されて発光する第1蛍光体71及び第2蛍光体72を含む波長変換体41とその波長変換体41が配置された透光体42とを含む波長変換部材40と、を備える。発光素子10は、基板1上に導電部材60であるバンプを介してフリップチップ実装されている。波長変換部材40の波長変換体31は、接着層80を介して発光素子10の発光面上に設けられている。発光素子10及び波長変換部材40は、その側面が光を反射する被覆部材90によって覆われている。波長変換体41は、発光素子10からの光により励起されて、480nm以上580nm未満の範囲内に発光ピーク波長を有する第1蛍光体71と、580nm以上680nm以下の範囲内に発光ピーク波長を有し、第1蛍光体71の組成とは異なる組成を有する第2蛍光体72と、を含む。発光素子10は、基板1上に形成された配線及び導電部材60を介して、発光装置101の外部からの電力の供給を受けて、発光装置101を発光させることができる。発光装置101は、発光素子10を過大な電圧の印加による破壊から防ぐための保護素子等の半導体素子50を含んでいてもよい。被覆部材90は、例えば半導体素子50を覆うように設けられる。以下、発光装置に用いる各部材について説明する。なお、詳細は、例えば特開2014-112635号公報の開示を参照することもできる。
 波長変換部材
 波長変換部材は、蛍光体と透光性材料を含む波長変換体を波長変換部材としてもよいし、さらにその波長変換体が配置される透光体を備えた波長変換部材としてもよい。波長変換体は、第1蛍光体及び第2蛍光体と透光性材料とを含むことが好ましい。波長変換体は、板状、シート状又は層状に形成されていてもよい。波長変換部材は、板状、シート状又は層状以外の他の形態の波長変換体を備えていてもよい。波長変換部材又は波長変換体は、透光性材料の100質量部に対して、蛍光体の総量が1質量部以上900質量部以下の範囲内で含んでいてもよく、10質量部以上850質量部以下の範囲内で含んでいてもよく、15質量部以上800質量部以下の範囲内で含んでいてもよい。蛍光体の総量は、第1蛍光体及び第2蛍光体の総量をいう。
 波長変換体は、断面の厚さ方向に第1蛍光体及び第2蛍光体の充填率が高く、第1蛍光体及び第2蛍光体の濃度が高い高濃度層と、第1蛍光体及び第2蛍光体の充填率が低く、第1蛍光体及び第2蛍光体の濃度が低い低濃度層を備えることが好ましい。波長変換体は、第1蛍光体及び第2蛍光体の充填率が高い、高濃度層を備えていることによって、波長変換体に割れやクラックが発生しにくくなる。波長変換体は、高濃度層が発光素子側に配置されることが好ましい。波長変換体は、高濃度層が発光素子側に配置されることによって、発光素子から発生した熱を波長変換体中の第1蛍光体及び第2蛍光体を介して放熱することができる。蛍光体の充填率は、波長変換体の断面又は波長変換部材の断面を走査型電子顕微鏡(SEM)で観察し、その断面における樹脂と蛍光体との面積比から蛍光体の充填率を測定可能である。蛍光体の充填率が高い高濃度層は、波長変換体の断面又は波長変換部材の断面において、蛍光体の面積が樹脂の面積よりも高い層をいう。蛍光体の充填率が低い低濃度層は、波長変換体の断面又は波長変換部材の断面において、蛍光体の面積が樹脂の面積よりも低い層をいう。低濃度層は、実質的に蛍光体が存在せず、蛍光体の面積がなく、樹脂のみの面積が確認できる層でもよい。SEMで観察した波長変換体の断面において、高濃度層の厚みと低濃度層の厚みの比率は、波長変換体の全体の厚みを100%とした場合に、低濃度層の厚みが40%以下でもよく、35%以下でもよく、34%以下でもよく、3%以上でもよく、5%以上でもよい。低濃度層の厚みの比率が大きい方が高濃度層の厚みの比率が小さく、高濃度層に含まれる第1蛍光体及び第2蛍光体の充填率が高く、高濃度層の密度が高いことを表す。波長変換体の割れやクラックを抑制し、放熱性を高くするためには、高濃度層における第1蛍光体及び第2蛍光体の充填率が高く、第1蛍光体及び第2蛍光体の密度が高いことが好ましい。
 図3Cは、図3Bに示す発光装置の概略断面の一部P1の部分拡大図である。説明のため、図3Cは、図3Bと縮尺が異なる場合がある。
 波長変換体41は、第1蛍光体71及び第2蛍光体72の充填率が高い高濃度層41aと、第1蛍光体71及び第2蛍光体72の充填率が低い低濃度層41bとを備え、高濃度層41aが発光素子10側に配置される。波長変換体41の低濃度層41bは、透光体42側に配置される。波長変換体41は、接着層80を介して発光素子10の発光面上に設けられる。
 前照灯には高出力な発光装置が用いられてきているため、耐熱性の高いガラスからなる透光体に蛍光体を含む樹脂組成物を塗布した波長変換部材や、蛍光体と透光性材料とを含む焼結体のような耐熱性の高い波長変換部材が用いられる場合がある。耐熱性の高い波長変換部材に含まれる蛍光体についても、他の蛍光体と比べて比較的耐熱性が高いと考えられる蛍光体、例えばYAl12:Ceで表される組成を有する希土類アルミン酸塩蛍光体が用いられる場合がある。この希土類アルミン酸塩蛍光体は、例えば570nm以上の長波長側の発光強度が比較的小さいことから、前照灯に用いた場合、6000K付近の相関色温度の光を発するのが通常とされている。そのため、波長変換部材に含まれる蛍光体が、例えばYAl12:Ceで表される組成を有する希土類アルミン酸塩蛍光体だけである場合は、5000K以下の相関色温度の光を発する前照灯を実現することは困難であると考えられている。第1実施形態の発光装置又は第2実施形態の発光装置は、波長変換部材に用いられる焼結体に含まれる蛍光体として、前述の第1蛍光体及び第2蛍光体のうち1種の蛍光体が単独で含まれていてもよく、前述の第1蛍光体及び第2蛍光体のうち2種以上の蛍光体が含まれていてもよい。焼結体に含まれる蛍光体としては、例えば以下の蛍光体が挙げられる。
 (Ba,Sr,Ca)Si:Eu
 (La,Y,Gd,Lu)Si11:Ce
 (Ca,Sr)AlSiN:Eu
 また、波長変換部材に用いられる焼結体は、例えば希土類アルミン酸塩蛍光体と第2窒化物蛍光体を1つ焼結体に含む焼結体や、希土類アルミン酸塩蛍光体を含む焼結体と第2窒化物蛍光体を含む焼結体とを2層に組み合わせたものを用いてもよい。
 また、波長変換部材に用いられる波長変換体としては、透光性材料としてガラスを用いて、例えば、ガラスと、組成式がM v3(Si,Al)12(O,N)16:Eu(Mは、Li、Mg、Ca、Y及びLaとCeを除くランタニド元素であり、v3は、0<v3≦2を満たす。)で表されるαサイアロン蛍光体とを含む波長変換体を用いてもよい。
 これらを波長変換部材とすることでも、発光装置は、5000K以下の相関色温度の光を発し、この発光装置を用いることにより、グレアを低減することができる前照灯及びそれを備えた車両を提供することができると考えられる。
 透光性材料
 透光性材料は、樹脂、ガラス及び無機物からなる群から選択される少なくとも1種が挙げられる。樹脂は、エポキシ樹脂、シリコーン樹脂、フェノール樹脂、及びポリイミド樹脂からなる群から選択される少なくとも1種であることが好ましい。無機物は、酸化アルミニウム及び窒化アルミニウムからなる群から選択される少なくとも1種が挙げられる。
 透光性材料が樹脂である場合、ショアA硬度が30以上80以下の範囲内である樹脂であることが好ましい。透光性材料は、シリコーン樹脂であることが好ましく、ショアA硬度が30以上80以下の範囲内であるシリコーン樹脂であることが好ましい。透光性材料であるシリコーン樹脂のショアA硬度は、40以上75以下の範囲内であることがより好ましく、50以上70以下の範囲内であることがさらに好ましい。透光性材料が樹脂である場合、樹脂は、光や熱によって膨張又は収縮が生じる。透光性材料がショアA硬度が30以上80以下のシリコーン樹脂であれば靭性、伸びが優れるため、環境雰囲気の温度が変化した場合であっても、温度変化に追従して柔軟に膨張及び収縮し、波長変換体の割れやクラック等が発生しにくく、第1輝度比Ls/Lを0.9以下に維持した光を発することができ、温度特性が良好である。透光性材料がショアA硬度が30以上80以下のシリコーン樹脂である場合、温度変化に追従して柔軟に膨張及び収縮し、波長変換体に割れやクラック等が発生しにくく、第2輝度比B/Aを0.104以下に維持した光を発することができ、温度特性が良好である。樹脂のショアA硬度は、JIS K6253に準拠して、デュロメータータイプAを使用して測定することができる。
 例えばショアA硬度が30未満程度のショアA硬度の低い樹脂を透光性材料として用いて、波長変換体を形成した場合、波長変換体が柔らかく粘着性があるため、複数の発光素子を備えた複合基板から個々の発光装置を個片化する際に切断しにくく、また、搬送や梱包がし難く量産性に劣る場合が生じる。
 そこで、ショアA硬度が30以上80以下の樹脂を透光性材料として用いることによって、波長変換体又は波長変換部材に割れやクラック等が発生しにくく、温度特性の良好な波長変換体を得ることができる。
 透光体
 波長変換部材は、透光体を備えていてもよい。透光体は、ガラスや樹脂のような透光性材料からなる板状体を用いることができる。ガラスは、例えばホウ珪酸ガラスや石英ガラスが挙げられる。樹脂は、シリコーン樹脂やエポキシ樹脂が挙げられる。透光体の厚さは、製造工程における機械的強度が低下せず、波長変換体を十分に支持することができる厚さであればよい。
 基板
 基板は、絶縁性材料であって、発光素子からの光や外光を透過し難い材料からなることが好ましい。基板の材料としては、酸化アルミニウム、窒化アルミニウム等のセラミックス、フェノール樹脂、エポキシ樹脂、ポリイミド樹脂、ビスマレイミドトリアジン樹脂(BTレジン)、ポリフタルアミド(PPA)樹脂等の樹脂を上げることができる。セラミックスは耐熱性が高いため、基板の材料として好ましい。
 接着層
 発光素子と波長変換部材の間には、接着層が介在し、発光素子と波長変換部材とを固着する。接着層を構成する接着剤は、発光素子と波長変換部材を光学的に連結できる材料からなることが好ましい。接着層を構成する材料としては、エポキシ樹脂、シリコーン樹脂、フェノール樹脂、及びポリイミド樹脂からなる群から選択される少なくとも1種の樹脂であることが好ましい。
 半導体素子
 発光装置に必要に応じて設けられる半導体素子は、例えば発光素子を制御するためのトランジスタや、過大な電圧印加による発光素子の破壊や性能劣化を抑制するための保護素子が挙げられる。保護素子としてはツェナーダイオード(Zener Diode)が挙げられる。
 被覆部材
 被覆部材の材料としては、絶縁性材料を用いることが好ましい。より具体的には、フェノール樹脂、エポキシ樹脂、ビスマレイミドトリアジン樹脂(BTレジン)、ポリフタルアミド(PPA)樹脂、シリコーン樹脂が挙げられる。被覆部材には、必要に応じて着色剤、蛍光体、フィラーを添加してもよい。
 導電部材
 導電部材としては、バンプを用いることができ、バンプの材料としては、Auあるいはその合金、他の導電部材として、共晶ハンダ(Au-Sn)、Pb-Sn、鉛フリーハンダ等を用いることができる。
 発光装置の製造方法
 発光装置の製造方法の一例を説明する。なお、詳細は、例えば特開2014-112635号公報、又は、特開2017-117912号公報の開示を参照することもできる。発光装置の製造方法は、発光素子の配置工程、必要に応じて半導体素子の配置工程、波長変換体を含む波長変換部材の形成工程、発光素子と波長変換部材の接着工程、被覆部材の形成工程を含むことが好ましい。
 発光素子の配置工程
 基板上に発光素子を配置する。発光素子と半導体素子とは、例えば、基板上にフリップチップ実装される。
 波長変換体を含む波長変換部材の形成工程
 波長変換体を含む波長変換部材の形成工程において、波長変換体は、透光体の一面に印刷法、接着法、圧縮成形法、電着法により板状、シート状又は層状の波長変換体を形成することによって得てもよい。例えば、印刷法は、蛍光体と、透光性材料となる樹脂とを含む波長変換体用組成物を、透光体の一面に印刷し、波長変換体を含む波長変換部材を形成することができる。
 波長変換体用組成物
 波長変換体又は波長変換部材を構成する波長変換体用組成物は、透光性材料と、第1蛍光体及び第2蛍光体とを含み、溶剤を含んでいてもよい。波長変換体用組成物が溶剤を含む場合には、波長変換体用組成物の粘度が低下し、波長変換体用組成物を硬化させるときに、重力方向に第1蛍光体及び第2蛍光体の密度が大きくなり、波長変換体中又は波長変換部材中で第1蛍光体及び第2蛍光体の充填率が異なる波長変換体又は波長変換部材を製造することができる。波長変換体又は波長変換部材は、第1蛍光体及び第2蛍光体の充填率が高い部分が存在することによって、波長変換体に割れやクラックが発生しにくくなる。波長変換体の第1蛍光体及び第2蛍光体の充填率が高い高濃度層側を発光素子側に配置することによって、高出力の発光素子を使用した場合であっても、発光素子から発生した熱を波長変換体中の第1蛍光体及び第2蛍光体を介して放熱することができ、波長変換体を構成する樹脂の割れやクラックを抑制し、第1輝度比Ls/Lを0.9以下に維持した光を発することができ、温度特性が良好である。波長変換体の第1蛍光体及び第2蛍光体の充填率が高い高濃度層側を発光素子側に配置することによって、高出力の発光素子を使用した場合であっても、発光素子から発生した熱を波長変換体中の第1蛍光体及び第2蛍光体を介して放熱することができ、波長変換体を構成する樹脂の割れやクラックを抑制し、第2輝度比B/Aを0.104以下に維持した光を発することができ、温度特性が良好である。
 溶剤は、透光性樹脂への溶解性と揮発性を考慮して、標準圧力(0.101MPa)下の沸点が、150℃以上320℃以下の範囲内であることが好ましく、170℃以上305℃以下の範囲内であることがより好ましく、180℃以上300℃以下の範囲内であることがさらに好ましく、190℃以上290℃以下の範囲内であることが特に好ましい。標準圧力下における沸点が150℃以上320℃以下の範囲内である溶剤は、波長変換体用組成物の含まれることにより、波長変換体用組成物の粘度を低下させて、硬化させる際に、重力方向に第1蛍光体及び第2蛍光体を含む蛍光体の充填率が高い高濃度層と、第1蛍光体及び第2蛍光体の充填率が低い低濃度層とを形成することができる。
 波長変換体用組成物は、E型粘度計で、25℃、1rpmの粘度が5mPa・s以上400mPa・s以下の範囲であることが好ましく、6mPa・s以上300mPa・s以下の範囲内であることがより好ましく、8mPa・s以上250mPa・s以下の範囲内であることがさらに好ましい。
 透光性材料がシリコーン樹脂である場合、波長変換体用組成物は、透光性材料の100質量部に対して、蛍光体の総量が1質量部以上900質量部以下の範囲内で含む場合に、溶剤の含有量が、透光性材料100質量部に対して、1質量部以上50質量部以下の範囲内であることが好ましく、2質量部以上40質量部以下の範囲内であることがより好ましく、3質量部以上30質量部以下の範囲内であることがさらに好ましい。
 溶剤は、有機化合物の液体であり、一部は常温で蒸発(揮発)し、例えば180℃以上で加熱することで波長変換体用組成物中に残存する溶剤を揮発させて、波長変換体用組成物を硬化させ、波長変換体又は波長変換部材を形成することができる。溶剤は、炭化水素系溶剤、ケトン系溶剤、アルコール系溶剤、アルデヒド系溶剤、グリコール系溶剤、エーテル系溶剤、エステル系溶剤、グリコールエーテル系溶剤、グリコールエステル系溶剤等が挙げられる。炭化水素系溶剤は、ヘキサン、キシレン、ヘプタン、デカン、ドデカン、トリデカン等が挙げられる。ケトン系溶剤は、アセトン、メチルエチルケトン等が挙げられる。アルコール系溶剤は、メチルアルコール、エチルアルコール、イソプロピルアルコール等が挙げられる。アルデヒド系溶剤は、ノナナール、デカナール等が挙げられる。グリコール系溶剤は、トリエチレングリコール等が挙げられる。エーテル系溶剤は、ジエチルエーテル等が挙げられる。エステル系溶剤は、酢酸メチル、酢酸エチル等が挙げられる。グリコールエーテル系溶剤は、プロピレングリコールモノメチルエーテル等が挙げられる。グリコールエステル系溶剤は、エチレングルコールモノエチルエーテルアセテート等が挙げられる。溶剤は、ヘキサン、キシレン、ヘプタン、アセトン、エタノール、イソプロピルアルコール、デカン、ドデカン、トリデカン、テトラデカン、ペンタデカン、ヘキサデカン、ノナナール、デカナール及びトリエチレングリコールからなる群から選択される少なくとも1種であることが好ましい。溶剤は、ドデカン、テトラデカン、ペンタデカン、ヘキサデカン、及びトリデカンからなる群から選択される少なくとも1種であることがより好ましい。溶剤は、1種を単独で用いてもよく、2種以上を併用してもよい。
 波長変換体又は波長変換部材
 波長変換体用組成物が、溶剤を含む場合、波長変換体用組成物を硬化させるときの重力方向に第1蛍光体及び第2蛍光体の充填率が高い高濃度層と、第1蛍光体及び第2蛍光体の充填率が低い低濃度層に分かれた波長変換体又は波長変換部材を形成することができる。本明細書において、波長変換体の断面の厚さ方向に蛍光体の充填率が高い高濃度層と蛍光体の充填率が低い低濃度層を確認することができる。蛍光体の充填率は、前述のとおり、波長変換体の断面又は波長変換部材の断面をSEMで観察し、その断面における樹脂と蛍光体との面積比から蛍光体の充填率を測定することができる。一つの層と他の層の境界は、直線上ではなく凹凸を有していてもよい。
 発光素子と波長変換部材の接着工程
 発光素子と波長変換部材の接着工程において、波長変換部材を発光素子の発光面に対向させて、発光素子上に波長変換部材を接着層により接合する。波長変換部材が、波長変換体及び透光体を含み、波長変換体が蛍光体の充填率が高い高濃度層と蛍光体の充填率が低い低濃度層を含む場合には、波長変換体の充填率が高い高濃度層を発光素子側に配置して、発光素子上に波長変換部材を接合することが好ましい。第1蛍光体及び第2蛍光体を含む蛍光体は、樹脂よりも熱伝導率が高く、波長変換体の蛍光体の充填率が高い高濃度層を発光素子側に配置して波長変換部材を接合することにより、熱引きがよくなり、波長変換体の割れやクラック等が発生しにくく、温度特性が良好である。
 被覆部材の形成工程
 被覆部材の形成工程において、発光素子及び波長変換部材の側面が被覆部材用組成物で覆われる。この被覆部材は、発光素子から出射された光を反射させるためのものであり、発光装置が半導体素子も備える場合は、その半導体素子が被覆部材で埋設されるように形成することが好ましい。一つ基板上に複数の発光素子及び半導体素子を備えた複合基板から個々の発光装置に個片化する工程を含んでいてもよい。
 例えばショアA硬度が30未満程度のショアA硬度の低い樹脂を透光性材料として用いて、波長変換体を形成した場合、波長変換体が柔らかく粘着性があるため、複数の発光素子を備えた複合基板から個々の発光装置を個片化する際に切断しにくく、また、搬送や梱包がし難く量産性に劣る場合が生じる。
 そこで、ショアA硬度が30以上80以下の樹脂を透光性材料として用いることによって、波長変換体又は波長変換部材に割れやクラック等が発生しにくく、温度特性の良好な波長変換体を得ることができる。
 前照灯
 発光装置は、前照灯用の光源ユニットの支持基板等に配置され、車両に搭載される前照灯として用いられてもよい。前照灯用の光源ユニットは、例えば特開2003-317513号公報に開示されている光源ユニットを用いることができる。光源ユニットは、例えばリフレクタと、投影レンズと、発光装置を配置する支持基板等を備える。前照灯用の光源ユニットは、例えば特開平8-67199号公報に開示されているような車両用ランプシステムによって点灯等が制御されてもよい。発光装置は、例えば特開2005-123165号公報に開示されているようなターンシグナルランプに用いる前照灯の光源として用いられるれてもよい。図20は、前照灯の水平断面図を示す図である。図21は、前照灯の正面図を示す図である。図20及び図21に示した前照灯200は、例えば車両前方の右側に設けられる。前照灯200は、ランプボディ24、アウターレンズ22、複数の基板32、複数の発光装置100、光学フィルタ26、及び導光部材34を備える。ランプボディ24及びアウターレンズ22は、前照灯200の灯室を形成し、この灯室内に、複数の基板32、及び複数の発光装置100を、防水しつつ保持する。ランプボディ24は、例えば樹脂により、複数の基板32、及び複数の発光装置100を車両の後方から覆うように形成される。光学フィルタ26は、複数のネジ28により、ランプボディ24に固定される。複数の発光装置100のそれぞれは、基板32を介して点灯制御部12から受け取る電力に応じて点灯する。
 前照灯は、例えば特開2003-317513号公報に開示されているように、1つの光源ユニットに1つの発光装置を配置した第1灯具ユニットを複数備える場合がある。また、前照灯は、例えば特開2005-141917号公報に開示されているように、複数のリフレクタと、複数の投影レンズと、複数の支持基板が一体的に形成された1つの光源ユニットに、複数の発光装置を配置した第2灯具ユニットを備える場合がある。前照灯は、第1輝度比Ls/Lがそれぞれ異なる2種以上の発光装置を備えていてもよい。第1輝度比Ls/Lが異なる2種以上の発光装置は、1つの発光装置がそれぞれ1つの光源ユニットに配置されていてもよい。第1輝度比Ls/Lが異なる2種以上の発光装置は、1つの光源ユニットに2種以上の発光装置が配置されていてもよい。前照灯は、第2輝度比B/Aがそれぞれ異なる2種以上の発光装置を備えていてもよい。第2輝度比B/Aが異なる2種以上の発光装置は、1つの発光装置がそれぞれ1つの光源ユニットに配置されていてもよい。第2輝度比B/Aが異なる2種以上の発光装置は、1つの光源ユニットに2種以上の発光装置が配置されていてもよい。
 前照灯は、第1輝度比Ls/Lが0.9以下である光を発する前述の発光装置を第1発光装置とし、第1輝度比Ls/Lが0.9を超える光を発する発光装置を第2発光装置として、2種以上の発光装置を備えていてもよい。
 前照灯は、第2輝度比B/Aが0.104以下である光を発する前述の発光装置を第1発光装置とし、第2輝度比B/Aが0.104を超える光を発する発光装置を第2発光装置として、2種以上の発光装置を備えていてもよい。
 第2発光装置は、第1輝度比Ls/Lが0.9を超える光を発する発光装置又は第2輝度比B/Aが0.104を超える光を発する発光装置であればよい。第2発光装置は、例えば図3A及び図3Bに示す第1発光装置と同様の形態でもよい。第2発光装置は、例えば400nm以上490nm以下の範囲内に発光ピーク波長を有する発光素子と、480nm以上580nm未満の範囲内に発光ピーク波長を有する第1蛍光体とを、備え、第2蛍光体を備えていない、発光装置が挙げられる。第1蛍光体は、前述の第1蛍光体と同様の蛍光体が挙げられる。第2発光装置は、400nm以上490nm以下の範囲内に発光ピーク波長を有する発光素子と、第1蛍光体として式(1A)で表される組成を有する希土類アルミン酸塩蛍光体を備え、第2蛍光体を備えておらず、第1輝度比Ls/Lが0.9を超えて、又は、第2輝度比B/Aが0.104を超えて、相関色温度が5000K以上6500K以下の範囲内の光を発するものが挙げられる。
 車両
 第3実施形態の車両は、前述の発光装置又は前照灯が搭載され得る車両が挙げられる。前述の発光装置又は前照灯が搭載される車両としては、例えば自動二輪車、自動四輪車等の道路運送車両や、鉄道車両、整地・運搬・積込用機械のようなトラクター系又は堀削用機械等のショベル系の車両系建設機械に用いる車両等が挙げられる。
 以下、本発明を実施例により具体的に説明する。本発明は、これらの実施例に限定されるものではない。
 各実施例及び比較例の発光装置には、以下の第1蛍光体及び第2蛍光体を用いた。
 第1蛍光体
 第1蛍光体として、前記式(1A)で表される組成式に含まれる組成を有し、それぞれ異なる組成を有する希土類アルミン酸塩蛍光体である、YAG-1、YAG-2、YAG-3、YAG-4、及びYAG-5を準備した。これらの第1蛍光体は、表1に示すように、それぞれ異なる、CIE色度座標(x、y)、発光ピーク波長、及び半値幅を有する。
 第2蛍光体
 第2蛍光体として、前記式(2A)で表される組成式に含まれる組成を有し、それぞれ異なる組成を有する第2窒化物蛍光体である、BSESN-1、BSESN-2と、前記式(2B)で表される組成式に含まれる組成を有し、それぞれ異なる組成を有する第3窒化物蛍光体である、SCASN-1、SCASN-2と、前記式(2G)で表される組成式に含まれる組成を有するαサイアロン蛍光体を準備した。これらの第2蛍光体は、表1に示すように、それぞれ異なる、CIE色度座標(x、y)、発光ピーク波長、及び半値幅を有する。
 蛍光体の発光スペクトル
 各蛍光体は、量子効率測定装置(QE-2000、大塚電子株式会社製)を用いて、励起波長450nmの光を各蛍光体に照射し、室温(約25℃)における発光スペクトルを測定し、各発光スペクトルからCIE1931の色度座標におけるx値及びy値、発光ピーク波長、半値幅を測定した。結果を表1に示す。
 蛍光体の平均粒径
 各蛍光体は、Fisher Sub-Sieve Sizer Model 95(Fisher Scientific社製)を用いて、FSSS法により平均粒径を測定した。具体的には、1cm分の体積の試料となる蛍光体を計り取り、専用の管状容器にパッキングした後、一定圧力の乾燥空気を流し、差圧から比表面積を読み取り、平均粒径(Fisher Sub-Sieve Sizer’s No.)に換算した値である。
Figure JPOXMLDOC01-appb-T000014
 実施例1から13
 図3A及び図3Bに示される形態の発光装置を製造した。
 発光素子の配置工程において、基板は、窒化アルミニウムを材料とするセラミックス基板を用いた。発光素子は、主波長が450nmである窒化物系半導体層が積層された発光素子を用いた。発光素子の大きさは、平面形状が約1.0mm四方の略正方形であり、厚さが約0.11mmである。発光素子は、光出射面が基板側になるように配置し、Auからなる導電部材を用いたバンプによってフリップチップ実装した。また、発光素子と間隔を空けて半導体素子をAuからなる導電部材を用いたバンプによってフリップチップ実装した。
 透光性材料として、シリコーン樹脂a(ショアA硬度70)を用いた。波長変換体を含む波長変換部材の形成工程において、透光性材料としてシリコーン樹脂aの100質量部に対する、第1蛍光体及び第2蛍光体を表2に示す配合で用いた。表2中、蛍光体総量は、シリコーン樹脂aの100質量部に対する、第1蛍光体及び第2蛍光体の総量を示す。また、表2中、第1蛍光体の含有量(質量%)及び第2蛍光体の含有量(質量%)は、第1蛍光体及び第2蛍光体の合計の含有量を100質量%としたときの第1蛍光体の含有量及び第2蛍光体の含有量を示す。透光体として、ホウ珪酸ガラスからなり、発光素子の平面形状よりも縦横に約0.15mm大きい、平面形状が約1.15mm四方の略正方形であり、厚さが約0.10mmである透光体を準備した。透光体の略正方形状の一面に波長変換体用組成物を印刷法により印刷し、180℃で2時間加熱して、波長変換体用組成物を硬化させて、厚さ約80μmの層状の波長変換体を形成し、層状又は板状の波長変換体と透光体が一体となった波長変換部材を形成した。本明細書において、シリコーン樹脂のショアA硬度は、JIS K6253に準拠して、デュロメータータイプA(製品名:GS-709G、TECLOCK社製)を使用して測定した。また、後述測定方法によって波長変換体用組成物の粘度を測定した。実施例3に係る波長変換体用組成物の粘度は、40.4mPa・sであった。
 発光素子と波長変換部材の接着工程において、波長変換部材の平面形状が約1.15mm四方の略正方形の一面と、発光素子の平面形状が約1.0mm四方の略正方形の一面とを、シリコーン樹脂を含む接着剤を用いて接着し、発光素子と波長変換部材の間に接着層を形成した。
 被覆部材の形成工程において、ジメチルシリコーン樹脂と酸化チタン粒子とを含み、ジメチルシリコーン樹脂の100質量部に対して酸化チタン粒子を30質量部含む被覆部材用組成物を準備した。基板上に配置された発光素子及び波長変換部材及び透光体を含む波長変換体の側面を被覆部材用組成物で覆い、半導体素子は完全に被覆部材用組成物に埋設するように、被覆部材用組成物を充填し、被覆部材用組成物を硬化させ、被覆部材を形成して、樹脂パッケージを形成し、発光装置を製造した。
 実施例14
 透光性材料として、シリコーン樹脂b(ショアA硬度70)を用い、シリコーン樹脂bの100質量部に対する、第1蛍光体及び2蛍光を表2に示す配合で用いたこと以外は、実施例2と同様にして、発光装置を製造した。
 実施例15
 第1蛍光体として、表1に示すYAG-5を用い、シリコーン樹脂aの100質量部に対する第1蛍光体及び第2蛍光体を表2に示す配合で用いたこと以外は、実施例2と同様にして、発光装置を製造した。
 実施例16
 第2蛍光体として、表1に示すαサイアロン蛍光体を用い、シリコーン樹脂aの100質量部に対する第1蛍光体及び第2蛍光体を表2に示す配合で用いたこと以外は、実施例9と同様にして、発光装置を製造した。実施例16に係る発光装置は、実施例9に係る発光装置の発光の色度座標と近い値の発光になるように、第1蛍光体及び第2蛍光体の配合量を調整した。
 実施例17
 透光性材料として、シリコーン樹脂c(ショアA硬度60)を用い、シリコーン樹脂cの100質量部に対する、第1蛍光体及び2蛍光を表2に示す配合で用いたこと以外は、実施例2と同様にして、発光装置を製造した。
 実施例18
 波長変換体用組成物として、シリコーン樹脂a(ショアA硬度70)の100質量部に対して、溶剤としてトリデカン(沸点234℃)の5質量部を含む波長変換体用組成物を用いたこと以外は、実施例3と同様にして発光装置を製造した。前述の波長変換体用組成物を用いて形成した波長変換体は、後述するように波長変換体の厚さ方向に第1蛍光体及び第2蛍光体の充填率が高い高濃度層と、第1蛍光体及び第2蛍光体の充填率が低い低濃度層が形成されていた。第1蛍光体及び第2蛍光体の充填率が高い高濃度層が発光素子側となるように配置して発光装置を製造した。実施例18に係る発光装置は、シリコーン樹脂aの100質量部に対する第1蛍光体及び第2蛍光体を含む蛍光体の総量が実施例3に係る発光装置と同じ数値となるように、第1蛍光体及び第2蛍光体の配合量を調整した。後述の測定方法によって測定した実施例18に係る波長変換体用組成物の粘度は、16.3mPa・sであった。
 比較例1
 第2蛍光体を用いることなく、第1蛍光体として、表1に示すYAG-4を用い、シリコーン樹脂aの100質量部に対する第1蛍光体を表2に示す配合で用いたこと以外は、実施例1と同様にして、発光装置を製造した。
 各発光装置について、以下の測定を行った。結果を表2に示す。表2中、「-」の記号は、第2蛍光体を用いていないことを表す。
 発光装置の発光スペクトル、色度座標(x、y)、相関色温度(K)
 各発光装置について、分光測光装置(PMA-11、浜松ホトニクス株式会社製)と積分球を組み合わせた光計測システムを用いて、室温(25℃±5℃)における発光スペクトルを測定した。各発光装置の発光スペクトルから、CIE1931の色度座標におけるx値及びy値と、JIS Z8725に準拠して相関色温度(K)と、を測定した。図4から図13に、最大の発光強度を1としたときの各発光装置の発光スペクトルを示す。
 第1輝度比Ls/L
 各発光装置について測定した各発光スペクトルS(λ)、図1Aから求められるヒトのS錐体の分光感度Gs(λ)、図1Bから求められるCIEで規定されたヒトの明所視標準比視感度曲線V(λ)を、前記式(1)に算入し、各発光装置の発光の第1輝度比Ls/Lを測定した。
 第2輝度比B/A
 各発光装置について測定した各発光スペクトルS(λ)、図2から求められる散乱強度曲線Dc(λ)を、前記式(2)に算入し、各発光装置の発光の第2輝度比B/Aを測定した。
 相対光束(%)
 積分球を使用した全光束測定装置を用いて、各発光装置について光束を測定した。比較例1の発光装置の光束を100%として、比較例1以外の各発光装置の相対光束を算出した。
 波長変換体用組成物の粘度
 各波長変換部材に用いた各波長変換体用組成物について、E型粘度計(コーンロータ(3°×R9.7):TVE-33H、東機産業株式会社製)を用いて、25℃、1rpmの粘度を測定した。
Figure JPOXMLDOC01-appb-T000015
 実施例1から18に係る発光装置は、第1輝度比Ls/Lが0.9以下である光を発した。実施例1から18に係る発光装置は、グレアを低減した光が発せられる。
 実施例1から18に係る発光装置は、第2輝度比B/Aが0.104以下である光を発した。実施例1から18に係る発光装置は、光の散乱が抑制され、比較的遠方まで到達する光が発せられる。
 実施例1から4、6及び18に係る発光装置は、相関色温度が3500K以上4000K未満の光を発し、第1蛍光体及び第2蛍光体の総量に対する第1蛍光体の含有量が70質量%以上85質量%以下の範囲内であり、青色光成分が低減された相関色温度の低い光が発せられ、グレアを低減し、光の散乱が抑制され、比較的遠方まで到達する光を発することができる。
 実施例5、7から13及び16に係る発光装置は、相関色温度が1800K以上3500K未満の光を発し、第1蛍光体及び第2蛍光体の総量に対する第1蛍光体の含有量が50質量%以上85質量%以下の範囲内であり、青色光成分が低減された相関色温度の低い光が発せられ、グレアを低減し、光の散乱が抑制され、比較的遠方まで到達する光を発することができる。
 実施例14、15及び17に係る発光装置は、相関色温度が4000K以上5000K以下の光を発し、第1蛍光体及び第2蛍光体の総量に対する第1蛍光体の含有量が75質量%以上95質量%以下の範囲内であり、青色光成分が低減された相関色温度の低い光が発せられ、グレアを低減し、光の散乱が抑制され、比較的遠方まで到達する光を発することができる。
 比較例1に係る発光装置は、第1輝度比Ls/Lが0.9を超える光を発し、グレアを生じさせやすい青色光成分の光が低減されていなかった。また、比較例1に係る発光装置は、第2輝度比B/Aも0.104を超える光を発し、光の散乱が抑制されていなかった。比較例1に係る発光装置は、相関色温度が5000Kを超える光を発し、グレアを生じさせやすい青色光成分の光が低減されていなかった。
 図4から13は、各実施例に係る発光装置の発光スペクトルと、比較例1に係る発光装置の発光スペクトルを示す。図4から12に示すように、最大の発光強度を1としたときの実施例1から15に係る発光装置の発光スペクトル(分光放射輝度)は、500nmから700nmの範囲内の発光スペクトルの発光強度が、比較例1よりも、各実施例に係る発光装置の発光強度の方が高くなった。また、図13に示ように、最大の発光強度を1としたときの実施例16から18に係る発光装置の発光スペクトル(分光放射輝度)は、550nmから700nmの範囲内の発光スペクトルの発光強度が、比較例1よりも、各実施例に係る発光装置の発光強度の方が高くなった。実施例16に係る発光装置の発光スペクトル(分光放射輝度)は、500nmから550nmの範囲内の発光スペクトルの発光強度が、比較例1よりも低くなったが、後述するように温度特性に優れていた。各実施例に係る発光装置の発光スペクトル(分光放射輝度)により、第1輝度比Ls/Lが0.9以下となる光を発していることが確認でき、グレアを低減できることが分かった。また、各実施例に係る発光装置の発光スペクトル(分光放射輝度)により、第2輝度比B/Aが0.104以下となる光を発していることが確認でき、光の散乱を抑制することが分かった。
 温度特性評価1(第1輝度比の変化率、第2輝度比の変化率)
 実施例7に係る発光装置、実施例9に係る発光装置、実施例16に係る発光装置、及び比較例1に係る発光装置を、1000mAで通電しながら、環境雰囲気温度Ta℃(静置時間(分)):-40℃(60分)、0℃(60分)、25℃(90分)、85℃(60分)、100℃(60分)、110℃(60分)、125℃(60分)、150℃(30分)の恒温槽に静置し、各静置時間経過後、各環境雰囲気温度の状態で、各発光装置の発光スペクトルを測定した。各環境雰囲気温度において、発光装置を静置した恒温槽内の温度が安定する時間を静置時間とした。各発光装置について測定した各発光スペクトルS(λ)から第1輝度比Ls/L、第2輝度比B/Aを測定した。図14に、各発光装置の環境雰囲気温度と第1輝度比の関係を表すグラフを示す。図15に、各発光装置の環境雰囲気温度と第2輝度比の関係を表すグラフを示す。
 各発光装置について測定した各環境雰囲気温度における第1輝度比又は第2輝度比から、第1輝度比の変化率又は第2輝度比の変化率を以下の式(8)により算出した。各発光装置の第1輝度比の変化率及び第2輝度比の変化率を表3に示す。
 第1輝度比の変化率又は第2輝度比の変化率(%)={(最大値/最小値)-1}×100 (8)
 式(8)における最大値は、各発光装置の各環境雰囲気温度における第1輝度比又は第2輝度比の最大値であり、最小値は、各発光装置の各環境温度における第1輝度比又は第2輝度比の最小値である。
 温度特性評価2(相関色温度)
 実施例7に係る発光装置、実施例16に係る発光装置、及び比較例1に係る発光装置を、1000mAで通電しながら、環境雰囲気温度Ta℃(静置時間(分)):-40℃(60分)、0℃(60分)、25℃(90分)、85℃(60分)、100℃(60分)、110℃(60分)、125℃(60分)、150℃(30分)の恒温槽に静置し、各静置時間経過後、各環境雰囲気温度の状態で、各発光装置の発光スペクトルを測定し、各発光装置について測定した各発光スペクトルS(λ)から相関色温度を測定した。図16に、各発光装置の環境雰囲気温度と相関色温度の関係を表すグラフを示す。
Figure JPOXMLDOC01-appb-T000016
 表3、図14及び図15に示すように、実施例7に係る発光装置、実施例9にかかる発光装置及び実施例16に係る発光装置は、環境雰囲気温度に関わらず、第1輝度比Ls/Lが0.9以下である光を発し、第2輝度比B/Aが0.104以下である光を発した。第2蛍光体としてαサイアロン蛍光体を用いた実施例16に係る発光装置は、第1輝度比の変化率及び第2輝度比の変化率が、実施例7に係る発光装置及び実施例9に係る発光装置よりも小さかった。実施例16に係る発光装置は、例えば-40℃の寒冷雰囲気で使用した場合であっても、100℃を超える高温の雰囲気で使用した場合であっても、第1輝度比の変化率が小さく、ヒトが不快に感じるグレアを低減した光を発することができ、温度特性が良好であった。実施例16に係る発光装置は、例えば-40℃の寒冷雰囲気で使用した場合であっても、100℃を超える高温の雰囲気で使用した場合であっても、第2輝度比の変化率が小さく、散乱を抑制し、比較的遠方まで到達する光を発することができ、温度特性が良好であった。
 図16に示すように、実施例7に係る発光装置及び実施例16に係る発光装置は、環境雰囲気温度に関わらず、所定の範囲の相関色温度を有する光を発することができ、温度特性が良好であった。式(8)に示す計算式により、相関色温度の変化率を算出すると、実施例16に係る発光装置の相関色温度の変化率は8.2%であり、実施例7に係る発光装置の相関色温度の変化率は4.3であり、比較例1に係る発光装置の相関色温度の変化率は10.7%であった。式(8)における最大値は、各発光装置の各環境雰囲気温度における相関色温度の最大値であり、式(8)における最小値は、各発光装置の各環境温度における相関色温度の最小値である。
 断面における蛍光体の充填率の確認1
 実施例3に係る発光装置に用いた波長変換体と、実施例18に係る発光装置に用いた波長変換体を切断し、2つの波長変換体の断面を走査型電子顕微鏡(SEM)を用いて観察した。実施例3に係る発光装置に用いた波長変換体と、実施例18に係る発光装置に用いた波長変換体は、透光性材料の100質量部に対して、第1蛍光体及び第2蛍光体の総量が240質量部である。実施例3に係る発光装置に用いた波長変換体に比べて、実施例18に係る発光装置に用いた波長変換体は、波長変換体用組成物に溶剤としてトリデカンを用いたため、波長変換体用組成物の粘度が低くなり、波長変換体の断面において充填率が高い高濃度層が確認できた。
 温度特性評価3
 実施例18に係る発光装置と、実施例3に係る発光装置を、発光素子のジャンクション温度Tj:150℃で、1200mAで通電しながら、環境温度Ta:85℃、相対湿度85%RHの環境雰囲気の恒温槽に、1000時間静置し、各発光装置の状態を確認した。実施例18に係る発光装置は、85℃、相対湿度85%RHの環境下で、1200mAで通電し、1000時間、連続的に点灯させた後も、マイクロスコープ(株式会社ハイロックス製)を用いて発光装置における波長変換部材の表面を確認しても樹脂割れ等は確認できなかった。実施例18に係る発光装置は、波長変換体を形成する波長変換体用組成物に溶剤を含むため、波長変換体用組成物の粘度が低下し、波長変換体の厚さ方向に蛍光体の充填率が高い層が形成され、蛍光体の充填率が高い層を発光素子側に配置したため、発光素子からの熱を蛍光体を介して放熱することができ、波長変換体を構成する樹脂の割れやクラック等を抑制することができた。
 温度特性評価4
 実施例17に係る発光装置を、発光素子のジャンクション温度Tj:150℃で、1200mAで通電しながら、環境温度Ta:85℃、相対湿度85%RHの環境雰囲気の恒温槽に、1000時間静置し、各発光装置の状態を確認した。実施例17に係る発光装置は、85℃、相対湿度85%RHの環境下で、1200mAで通電し、1000時間連続的に点灯させても、マイクロスコープ(株式会社ハイロックス製)を用いて発光装置における波長変換部材の表面に樹脂割れが確認できなかった。実施例17は波長変換体用組成物に用いたシリコーン樹脂のショアA硬度が60であり、実施例17の波長変換体用組成物に用いたシリコーン樹脂のショアA硬度はより低いため、85℃の比較的高温で、相対湿度85%RHの高湿度の環境下で連続点灯させた場合であっても、柔軟に膨張及び収縮し、波長変換体を構成する樹脂の割れやクラックを抑制することができた。
 断面における蛍光体の充填率の確認2
 実施例3に係る発光装置に用いた波長変換部材と、実施例18に係る発光装置に用いた波長変換部材と、さらに実施例19の発光装置に用いた波長変換部材、実施例20に用いた波長変換部材について、以下の評価を行った。
 実施例19
 波長変換体用組成物として、シリコーン樹脂a(ショアA硬度70)の100質量部に対して、溶剤としてドデカン(沸点214℃から216℃)の5質量部を含む波長変換体用組成物を用いたこと以外は、実施例3と同様にして発光装置を製造した。前述の波長変換体用組成物を用いて形成した波長変換体は、後述するように波長変換体の厚さ方向に第1蛍光体及び第2蛍光体の充填率が高い高濃度層と、第1蛍光体及び第2蛍光体の充填率が低い低濃度層が形成されていた。第1蛍光体及び第2蛍光体の充填率が高い高濃度層が発光素子側となるように配置して発光装置を製造した。実施例19に係る発光装置は、シリコーン樹脂aの100質量部に対する第1蛍光体及び第2蛍光体を含む蛍光体の総量が実施例3に係る発光装置と同じ数値となるように、第1蛍光体及び第2蛍光体の配合量を調整した。
 実施例20
 波長変換体用組成物として、シリコーン樹脂a(ショアA硬度70)の100質量部に対して、溶剤としてヘキサデカン(沸点287℃)の5質量部を含む波長変換体用組成物を用いたこと以外は、実施例3と同様にして発光装置を製造した。前述の波長変換体用組成物を用いて形成した波長変換体は、後述するように波長変換体の厚さ方向に第1蛍光体及び第2蛍光体の充填率が高い高濃度層と、第1蛍光体及び第2蛍光体の充填率が低い低濃度層が形成されていた。第1蛍光体及び第2蛍光体の充填率が高い高濃度層が発光素子側となるように配置して発光装置を製造した。実施例20に係る発光装置は、シリコーン樹脂aの100質量部に対する第1蛍光体及び第2蛍光体のを含む蛍光体の総量が実施例3に係る発光装置と同じ数値となるように、第1蛍光体及び第2蛍光体の配合量を調整した。
 高濃度層と低濃度層の厚みの比率
 実施例3、18から20に係る各波長変換体用組成物について、前述と同様にして、粘度を測定した。また、実施例3、18から20に係る波長変換部材について、サンプルの断面をSEM(SU3500、株式会社日立ハイテク製)で確認した。図17に実施例18に係る波長変換体のサンプルの断面のSEM写真を示す。図17中、白色の実線及び破線は、後述する厚み(高さ)T1からT5を説明するために記載した。図17のSEM写真に基づき、高濃度層41aの厚みと低濃度層41bの厚みの算出方法を説明する。波長変換部材40の波長変換体41の全体の厚み(高さ)を第1高さT1とする。SEM写真における波長変換体41の断面において、第1蛍光体及び第2蛍光体の合計の面積が樹脂の面積よりも大きい層を高濃度層41aとする。SEM写真における波長変換体41の断面において、第1蛍光体及び第2蛍光体の合計の面積が樹脂の面積よりも小さい層を低濃度層41bとする。高濃度層41aと低濃度層41bの境界は直線で示すことができず、第1蛍光体及び第2蛍光体の形状によって凹凸が形成される。高濃度層41aに含まれる第1蛍光体又は第2蛍光体のうち最も透光体42側に近い部分と波長変換体41の下面41cまでの距離を第2高さT2とする。高濃度層41aに含まれる第1蛍光体及び第2蛍光体のうち低濃度層41bとの境目が最も波長変換体の下面41c側に近い部分と波長変換体41の下面41cまでの距離を第3高さT3とする。第2高さT2と第3高さT3の平均値を第4高さT4とし、第4高さT4を高濃度層41aの厚み(高さ)T4とする。波長変換体41の厚みを表す第1高さT1から高濃度層41aの厚みを表す第4高さT4を差し引いた第5高さT5を、低濃度層41bの厚み(高さ)T5とする。SEM写真における波長変換体41の高濃度層41aの厚みT4及び低濃度層41bの厚みT5は、以下の式(9)及び(10)から算出できる。下記式(9)及び(10)中、T1からT5は上述に説明したとおりである。
 高濃度層の厚み(高さ)T4=(T2+T3)/2  (9)
 低濃度層の厚み(高さ)T5=T1-T4  (10)
 表4は、実施例3、18から20に係る波長変換体用組成物の配合割合及び粘度と、実施例3、18から20に係る波長変換体の高濃度層及び低濃度層の厚み(高さ)の比率を示す。表4中、蛍光体総量は、シリコーン樹脂の100質量部に対する、第1蛍光体及び第2蛍光体の総量を示す。また、表4中、第1蛍光体含有量(質量%)及び第2蛍光体含有量(質量%)は、第1蛍光体及び第2蛍光体の合計の含有量を100質量%としたときの第1蛍光体の含有量及び第2蛍光体の含有量を示す。表4中、溶剤含有量(質量部)は、シリコーン樹脂の100質量部に対する、溶剤の量を示す。表4中、波長変換体の全体の厚み(高さ)を100%としたときの、高濃度層の厚み(高さ)の比率と、低濃度層の厚み(高さ)の比率を示す。
Figure JPOXMLDOC01-appb-T000017
 実施例3、18から20に係る波長変換体は、いずれも第1蛍光体及び第2蛍光体の充填率が高い高濃度層と、第1蛍光体及び第2蛍光体の充填率が低い低濃度層とを備えていた。実施例3、18から20に係る波長変換部材の波長変換体の全体の厚み100%に対する高濃度層の厚みの比率は60%以上であり95%以下の範囲内であり、低濃度層の厚みの比率は5%以上40%以下の範囲内であった。溶剤を含有している波長変換体用組成物を用いた実施例18から20に係る波長変換体は、高濃度層の厚みの比率が、溶剤を含有していない波長変換体用組成物を用いた実施例3に係る波長変換体の高濃度層の厚みの比率よりも小さく、高濃度層に含まれる第1蛍光体及び第2蛍光体の充填率が高く、高濃度層における第1蛍光体及び第2蛍光体の密度が高くなっていた。
 図18は、実施例18に係る波長変換部材のサンプルの切断面を示すSEM写真である。図19は、実施例3に係る波長変換部材のサンプルの切断面を示すSEM写真である。図18及び図19中に示した白色の実線は、説明のために波長変換体41の全体の厚み(高さ)を示す。図18及び図19中に示した白色の破線は、説明のために波長変換体41の高濃度層41aと低濃度層41bの境界を示した。実施例3及び18に係る波長変換部材のサンプルの断面において、波長変換部材40は、波長変換体41と、透光体42とを備えている。波長変換体41は、第1蛍光体71及び第2蛍光体72の充填率が高い高濃度層41aと、第1蛍光体71及び第2蛍光体72の充填率が低い低濃度層41bとを備える。溶剤を含有している波長変換体用組成物を用いた実施例18に係る波長変換体41は、高濃度層41aの厚みの比率が、溶剤を含有していない波長変換体用組成物を用いた実施例3に係る波長変換体51の高濃度層41aの厚みの比率よりも小さく、高濃度層41に含まれる第1蛍光体及び第2蛍光体の充填率が高く、高濃度層41における第1蛍光体及び第2蛍光体の密度が高くなっていた。実施例18に係る波長変換体41は、低濃度層41bの厚みの比率が、実施例3に係る波長変換体41の低濃度層41bの厚みの比率よりも大きくなった。
 本開示の実施形態の発光装置は、前照灯に用いることができる。本開示の実施形態による発光装置を備えた前照灯は、例えば自動二輪車、自動四輪車等の道路運送車両、鉄道車両、整地・運搬・積込用機械のようなトラクター系又は堀削用機械等のショベル系の車両系建設機械に用いる車両に用いることができる。
 1:基板、10:発光素子、12:点灯制御部、22:アウターレンズ、24:ランプボディ、26:光学フィルタ、28:ネジ、32:基板、34:導光部材、40:波長変換部材、41:波長変換体、41a:高濃度層、41b:低濃度層、42:透光体、50:半導体素子、60:導電部材、71:第1蛍光体、72:第2蛍光体、80:接着層、90:被覆部材、100、101:発光装置、200:前照灯。

Claims (32)

  1.  400nm以上490nm以下の範囲内に発光ピーク波長を有する発光素子と、
     480nm以上580nm未満の範囲内に発光ピーク波長を有する第1蛍光体と、580nm以上680nm以下の範囲内に発光ピーク波長を有し、前記第1蛍光体の組成とは異なる組成を有する第2蛍光体と、を含む波長変換部材と、
     を備えた発光装置であり、
     前記発光装置は、CIE(国際照明委員会)で規定されたヒトの明所視標準比視感度曲線を考慮した380nm以上780nm以下の範囲の前記発光装置の発光の輝度Lに対する、前記ヒトの明所視標準比視感度曲線及びヒトのS錐体の分光感度を考慮した380nm以上780nm以下の範囲の前記発光装置の発光の第1実効放射輝度Lsの比であり、下記式(1)から導き出される第1輝度比Ls/Lが0.9以下である光を発する、発光装置。
    Figure JPOXMLDOC01-appb-I000001
     (式(1)中、S(λ)は発光装置の発光の分光放射輝度であり、V(λ)はCIE(国際照明委員会)で規定されたヒトの明所視標準比視感度曲線であり、Gs(λ)は波長λnmが380nm以上550nm以下の範囲内におけるヒトのS錐体の分光感度である。)
  2.  相関色温度が1800K以上5000K以下の光を発する、請求項1に記載の発光装置。
  3.  前記第1蛍光体は、発光スペクトルの半値幅が90nm以上125nm以下の範囲内である、請求項1又は2に記載の発光装置。
  4.  前記第2蛍光体は、発光スペクトルの半値幅が3nm以上15nm以下の範囲内であるか、又は発光スペクトルの半値幅が60nm以上120nm以下の範囲内である、請求項1又は2に記載の発光装置。
  5.  前記第1蛍光体が、下記式(1A)で表される組成式に含まれる組成を有する希土類アルミン酸塩蛍光体、及び下記式(1B)で表される組成式に含まれる組成を有する第1窒化物蛍光体からなる群から選択される少なくとも1種を含む、請求項1から4のいずれか1項に記載の発光装置。
     Ln (Al1-aGa12:Ce (1A)
     (式(1A)中、Lnは、Y、Gd、Tb及びLuからなる群から選択される少なくとも1種の元素であり、aは、0≦a≦0.5を満たす。)
     LaLn Si:Ce (1B)
     (式(1B)中、Lnは、Y及びGdからなる群から選択される少なくとも1種を必須として含み、Sc及びLuからなる群から選択される少なくとも1種を含んでいてもよく、組成1モル中に含まれるLn元素を100モル%としたときに、Lnに含まれるY及びGdの合計が90モル%以上であり、w、x、y及びzは、1.2≦w≦2.2、0.5≦x≦1.2、10≦y≦12、0.5≦z≦1.2、1.80<w+x<2.40、2.9≦w+x+z≦3.1を満たす。)
  6.  前記第2蛍光体が、下記式(2A)で表される組成式に含まれる組成を有する第2窒化物蛍光体、下記式(2B)で表される組成式に含まれる組成を有する第3窒化物蛍光体、下記式(2C)で表される組成式に含まれる組成を有するフッ化物蛍光体、及び下記式(2C)とは組成が異なる下記式(2C’)で表される組成式に含まれる組成を有するフッ化物蛍光体、及び下記式(2G)で表される組成式に含まれる組成を有するαサイアロン蛍光体からなる群から選択される少なくとも1種を含む、請求項1から5のいずれか1項に記載の発光装置。
     M Si:Eu (2A)
     (式(2A)中、Mは、Ca、Sr及びBaからなる群から選択される少なくとも1種を含むアルカリ土類金属元素である。)
     SrCaAlSi:Eu (2B)
     (式(2B)中、q、s、t、u及びvは、それぞれ0≦q<1、0<s≦1、q+s≦1、0.9≦t≦1.1、0.9≦u≦1.1、2.5≦v≦3.5を満たす。)
     A[M 1-bMn4+ ] (2C)
     (式(2C)中、Aは、K、Li、Na、Rb、Cs及びNH からなる群から選択される少なくとも1種を含み、Mは、第4族元素及び第14族元素からなる群から選択される少なくとも1種の元素を含み、bは、0<b<0.2を満たし、cは、[M 1-bMn4+ ]イオンの電荷の絶対値であり、dは、5<d<7を満たす。)
     A’c’[M1-b’Mn4+ b’d’] (2C’)
     (式(2C’)中、A’は、K、Li、Na、Rb、Cs及びNH からなる群から選択される少なくとも1種を含み、M’は、第4族元素、第13族元素及び第14族元素からなる群から選択される少なくとも1種の元素を含み、b’は、0<b’<0.2を満たし、c’は、[M1-b’Mn4+ b’d’]イオンの電荷の絶対値であり、d’は、5<d’<7を満たす。)
     M v3Si12-(w3+x3)Alw3+x3x316-x3:Eu (2G)
     (式(2G)中、Mは、Li、Mg、Ca、Sr、Y及びランタノイド元素(但し、LaとCeを除く。)からなる群から選択される少なくとも1種の元素を含み、v3、w3及びx3は、それぞれ0<v3≦2.0、2.0≦w3≦6.0、0≦x3≦1.0を満たす。)
  7.  前記第1蛍光体が、下記式(1A)で表される組成式に含まれる組成を有する希土類アルミン酸塩蛍光体であり、
     前記第2蛍光体が、下記式(2A)で表される組成式に含まれる組成を有する第2窒化物蛍光体、下記式(2B)で表される組成式に含まれる組成を有する第3窒化物蛍光体、及び下記式(2G)で表される組成式に含まれる組成を有するαサイアロン蛍光体からなる群から選択される少なくとも1種を含む、請求項1から4のいずれか1項に記載の発光装置。
     Ln (Al1-aGa12:Ce (1A)
     (式(1A)中、Lnは、Y、Gd、Tb及びLuからなる群から選択される少なくとも1種の元素であり、aは、0≦a≦0.5を満たす。)
     M Si:Eu (2A)
     (式(2A)中、Mは、Ca、Sr及びBaからなる群から選択される少なくとも1種を含むアルカリ土類金属元素である。)
     SrCaAlSi:Eu (2B)
     (式(2B)中、q、s、t、u及びvは、それぞれ0≦q<1、0<s≦1、q+s≦1、0.9≦t≦1.1、0.9≦u≦1.1、2.5≦v≦3.5を満たす。)
     M v3Si12-(w3+x3)Alw3+x3x316-x3:Eu (2G)
     (式(2G)中、Mは、Li、Mg、Ca、Sr、Y及びランタノイド元素(但し、LaとCeを除く。)からなる群から選択される少なくとも1種の元素を含み、v3、w3及びx3は、それぞれ0<v3≦2.0、2.0≦w3≦6.0、0<x3≦1.0を満たす。)
  8.  前記波長変換部材が、ショアA硬度が30以上80以下の範囲内であるシリコーン樹脂を含む、請求項1から7のいずれか1項に記載の発光装置。
  9.  相関色温度が1800K以上3500K未満の光を発し、前記第1蛍光体及び前記第2蛍光体の総量に対する前記第1蛍光体の含有量が5質量%以上93質量%以下の範囲内である、請求項1から8のいずれか1項に記載の発光装置。
  10.  前記発光装置は、相関色温度が3500K以上4000K未満の光を発し、前記第1蛍光体及び前記第2蛍光体の総量に対する前記第1蛍光体の含有量が20質量%以上95質量%以下の範囲内である、請求項1から8のいずれか1項に記載の発光装置。
  11.  相関色温度が4000K以上5000K以下の光を発し、前記第1蛍光体及び前記第2蛍光体の総量に対する前記第1蛍光体の含有量が50質量%以上99質量%以下の範囲内である、請求項1から8のいずれか1項に記載の発光装置。
  12.  前記波長変換部材が、前記第1蛍光体及び前記第2蛍光体と、透光性材料とを含む波長変換体を備え、
     前記波長変換体が、前記第1蛍光体及び前記第2蛍光体の充填率が高い高濃度層と、前記第1蛍光体及び前記第2蛍光体の充填率が低い低濃度層とを備え、
     前記高濃度層が前記発光素子の側に配置された、請求項1から11のいずれか1項に記載の発光装置。
  13.  前記請求項1から12のいずれか1項に記載の発光装置を備えた、前照灯。
  14.  前記第1輝度比Ls/Lの値がそれぞれ異なる2種以上の発光装置を備えた、請求項13に記載の前照灯。
  15.  前記請求項1から12のいずれか1項に記載の発光装置を含む第1発光装置と、CIE(国際照明委員会)で規定されたヒトの明所視標準比視感度曲線を考慮した380nm以上780nm以下の発光装置の発光の輝度Lに対する、前記ヒトの明所視標準比視感度曲線及びヒトのS錐体の分光感度を考慮した380nm以上780nm以下の発光装置の発光の第1実効放射輝度の比であり、下記式(1)から導き出される第1輝度比Ls/Lが0.9を超える光を発する第2発光装置の2種以上の発光装置を備えた、前照灯。
    Figure JPOXMLDOC01-appb-I000002
     (式(1)中、S(λ)は発光装置の発光の分光放射輝度であり、V(λ)はCIE(国際照明委員会)で規定されたヒトの明所視標準比視感度曲線であり、Gs(λ)は波長λnmが380nm以上550nm以下の範囲内におけるヒトのS錐体の分光感度である。)
  16.  400nm以上490nm以下の範囲内に発光ピーク波長を有する発光素子と、
     480nm以上580nm未満の範囲内に発光ピーク波長を有する第1蛍光体と、580nm以上680nm以下の範囲内に発光ピーク波長を有し、前記第1蛍光体の組成とは異なる組成を有する第2蛍光体と、を含む波長変換部材と、
     を備えた発光装置であり、
     前記発光装置は、300nm以上800nm以下の範囲において前記発光装置の発光の放射輝度Aに対する、波長300nmにおけるレイリー散乱の散乱強度を1としたときの波長に対する散乱強度曲線を考慮した300nm以上800nm以下の範囲の発光装置の発光の第2実効放射輝度Bの比であり、下記式(2)から導き出される第2輝度比B/Aが0.104以下である光を発する、発光装置。
    Figure JPOXMLDOC01-appb-I000003
     (式(2)中、S(λ)は発光装置の発光の分光放射輝度であり、Dc(λ)はレイリー散乱において、波長300nmにおけるレイリー散乱の散乱強度を1としたときの波長に対する散乱強度曲線である。)
  17.  相関色温度が1800K以上5000K以下の光を発する、請求項16に記載の発光装置。
  18.  前記第1蛍光体は、発光スペクトルの半値幅が90nm以上125nm以下の範囲内である、請求項16又は17に記載の発光装置。
  19.  前記第2蛍光体は、発光スペクトルの半値幅が3nm以上15nm以下の範囲内であるか、又は発光スペクトルの半値幅が60nm以上120nm以下の範囲内である、請求項16又は17に記載の発光装置。
  20.  前記第1蛍光体が、下記式(1A)で表される組成式に含まれる組成を有する希土類アルミン酸塩蛍光体、及び下記式(1B)で表される組成式に含まれる組成を有する第1窒化物蛍光体からなる群から選択される少なくとも1種を含む、請求項16から19のいずれか1項に記載の発光装置。
     Ln (Al1-aGa12:Ce (1A)
     (式(I)中、Lnは、Y、Gd、Tb及びLuからなる群から選択される少なくとも1種の元素であり、aは、0≦a≦0.5を満たす。)
     LaLn Si:Ce (1B)
     (式(II)中、Lnは、Y及びGdからなる群から選択される少なくとも1種を必須として含み、Sc及びLuからなる群から選択される少なくとも1種を含んでいてもよく、組成1モル中に含まれるLn元素を100モル%としたときに、Lnに含まれるY及びGdの合計が90モル%以上であり、w、x、y及びzは、1.2≦w≦2.2、0.5≦x≦1.2、10≦y≦12、0.5≦z≦1.2、1.80<w+x<2.40、2.9≦w+x+z≦3.1を満たす。)
  21.  前記第2蛍光体が、下記式(2A)で表される組成式に含まれる組成を有する第2窒化物蛍光体、下記式(2B)で表される組成式に含まれる組成を有する第3窒化物蛍光体、及び下記式(2C)で表される組成式に含まれる組成を有するフッ化物蛍光体、下記式(2C)とは組成が異なる下記式(2C’)で表される組成式に含まれる組成を有するフッ化物蛍光体、及び下記式(2G)で表される組成式に含まれる組成を有するαサイアロン蛍光体からなる群から選択される少なくとも1種を含む、請求項16から20のいずれか1項に記載の発光装置。
     M Si:Eu (2A)
     (式(2A)中、Mは、Ca、Sr及びBaからなる群から選択される少なくとも1種を含むアルカリ土類金属元素である。)
     SrCaAlSi:Eu (2B)
     (式(2B)中、q、s、t、u及びvは、それぞれ0≦q<1、0<s≦1、q+s≦1、0.9≦t≦1.1、0.9≦u≦1.1、2.5≦v≦3.5を満たす。)
     A[M 1-bMn4+ ] (2C)
     (式(2C)中、Aは、K、Li、Na、Rb、Cs及びNH からなる群から選択される少なくとも1種を含み、Mは、第4族元素及び第14族元素からなる群から選択される少なくとも1種の元素を含み、bは、0<b<0.2を満たし、cは、[M 1-bMn4+ ]イオンの電荷の絶対値であり、dは、5<d<7を満たす。)
     A’c’[M1-b’Mn4+ b’d’] (2C’)
     (式(2C’)中、A’は、K、Li、Na、Rb、Cs及びNH からなる群から選択される少なくとも1種を含み、M’は、第4族元素、第13族元素及び第14族元素からなる群から選択される少なくとも1種の元素を含み、b’は、0<b’<0.2を満たし、c’は、[M1-b’Mn4+ b’d’]イオンの電荷の絶対値であり、d’は、5<d’<7を満たす。)
     M v3Si12-(w3+x3)Alw3+x3x316-x3:Eu (2G)
     (式(2G)中、Mは、Li、Mg、Ca、Sr、Y及びランタノイド元素(但し、LaとCeを除く。)からなる群から選択される少なくとも1種の元素を含み、v3、w3及びx3は、それぞれ0<v3≦2.0、2.0≦w3≦6.0、0≦x3≦1.0を満たす。)
  22.  前記第1蛍光体が、下記式(1A)で表される組成式に含まれる組成を有する希土類アルミン酸塩蛍光体であり、
     前記第2蛍光体が、下記式(2A)で表される組成式に含まれる組成を有する第2窒化物蛍光体、下記式(2B)で表される組成式に含まれる組成を有する第3窒化物蛍光体、及び下記式(2G)で表される組成式に含まれる組成を有するαサイアロン蛍光体からなる群から選択される少なくとも1種を含む、請求項16から19のいずれか1項に記載の発光装置。
     Ln (Al1-aGa12:Ce (1A)
     (式(1A)中、Lnは、Y、Gd、Tb及びLuからなる群から選択される少なくとも1種の元素であり、aは、0≦a≦0.5を満たす。)
     M Si:Eu (2A)
     (式(2A)中、Mは、Ca、Sr及びBaからなる群から選択される少なくとも1種を含むアルカリ土類金属元素である。)
     SrCaAlSi:Eu (2B)
     (式(2B)中、q、s、t、u及びvは、それぞれ0≦q<1、0<s≦1、q+s≦1、0.9≦t≦1.1、0.9≦u≦1.1、2.5≦v≦3.5を満たす。)
     M v3Si12-(w3+x3)Alw3+x3x316-x3:Eu (2G)
     (式(2G)中、Mは、Li、Mg、Ca、Sr、Y及びランタノイド元素(但し、LaとCeを除く。)からなる群から選択される少なくとも1種の元素を含み、v3、w3及びx3は、それぞれ0<v3≦2.0、2.0≦w3≦6.0、0<x3≦1.0を満たす。)
  23.  前記波長変換部材が、ショアA硬度が30以上80以下の範囲内であるシリコーン樹脂を含む、請求項16から22のいずれか1項に記載の発光装置。
  24.  前記発光装置は、相関色温度が1800K以上3500K未満の光を発し、前記第1蛍光体及び前記第2蛍光体の総量に対する前記第1蛍光体の含有量が5質量%以上93質量%以下の範囲内である、請求項16から23のいずれか1項に記載の発光装置。
  25.  前記発光装置は、相関色温度が3500K以上4000K未満の光を発し、前記第1蛍光体及び前記第2蛍光体の総量に対する前記第1蛍光体の含有量が20質量%以上95質量%以下の範囲内である、請求項16から23のいずれか1項に記載の発光装置。
  26.  相関色温度が4000K以上5000K以下の光を発し、前記第1蛍光体及び前記第2蛍光体の総量に対する前記第1蛍光体の含有量が50質量%以上99質量%以下の範囲内である、請求項16から23のいずれか1項に記載の発光装置。
  27.  前記波長変換部材が、前記第1蛍光体及び前記第2蛍光体と、透光性材料とを含む波長変換体を備え、
     前記波長変換体が、前記第1蛍光体及び前記第2蛍光体の充填率が高い高濃度層と、前記第1蛍光体及び前記第2蛍光体の充填率が低い低濃度層とを備え、
     前記高濃度層が、前記発光素子の側に配置された、請求項16から26のいずれか1項に記載の発光装置。
  28.  前記請求項16から27のいずれか1項に記載の発光装置を備えた、前照灯。
  29.  前記第2輝度比B/Aの値がそれぞれ異なる2種以上の発光装置を備えた、請求項28に記載の前照灯。
  30.  前記請求項16から27のいずれか1項に記載の発光装置を含む第1発光装置と、
     300nm以上800nm以下の範囲において発光装置の発光の放射輝度Aに対する、波長300nmにおけるレイリー散乱の散乱強度を1としたときの波長に対する散乱強度曲線を考慮した300nm以上800nm以下の範囲の発光装置の発光の第2実効放射輝度Bの比であり、下記式(2)から導き出される第2輝度比B/Aが0.104を超える光を発する第2発光装置の2種以上の発光装置を備えた、前照灯。
    Figure JPOXMLDOC01-appb-I000004
     (式(2)中、S(λ)は発光装置の発光の分光放射輝度であり、Dc(λ)はレイリー散乱において、波長300nmにおけるレイリー散乱の散乱強度を1としたときの波長に対する散乱強度曲線である。)
  31.  前記請求項1から12、16から27のいずれか1項に記載の発光装置を備えた、車両。
  32.  前記請求項13から15、28から30のいずれか1項に記載の前照灯を備えた、車両。
     
PCT/JP2022/009591 2021-04-19 2022-03-07 発光装置、前照灯及びそれを備えた車両 WO2022224598A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280029014.9A CN117178380A (zh) 2021-04-19 2022-03-07 发光装置、前照灯及具备其的车辆
DE112022002217.5T DE112022002217T5 (de) 2021-04-19 2022-03-07 Lichtemittierende Vorrichtung, Scheinwerfer und Fahrzeug mit einer solchen Vorrichtung

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2021070652 2021-04-19
JP2021-070652 2021-04-19
JP2021-189899 2021-11-24
JP2021189899 2021-11-24
JP2022026600A JP2022165383A (ja) 2021-04-19 2022-02-24 発光装置、前照灯及びそれを備えた車両
JP2022-026600 2022-02-24

Publications (1)

Publication Number Publication Date
WO2022224598A1 true WO2022224598A1 (ja) 2022-10-27

Family

ID=83722795

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/009591 WO2022224598A1 (ja) 2021-04-19 2022-03-07 発光装置、前照灯及びそれを備えた車両

Country Status (2)

Country Link
DE (1) DE112022002217T5 (ja)
WO (1) WO2022224598A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009141051A (ja) * 2007-12-05 2009-06-25 Stanley Electric Co Ltd シリコーン樹脂を用いた発光ダイオード装置
JP2013232634A (ja) * 2012-04-06 2013-11-14 Panasonic Corp 発光装置
JP2017017317A (ja) * 2015-06-30 2017-01-19 日亜化学工業株式会社 発光装置
WO2017021087A1 (en) * 2015-07-31 2017-02-09 Philips Lighting Holding B.V. Crisp white with improved efficiency

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3023585B2 (ja) 1994-08-29 2000-03-21 株式会社小糸製作所 車両用ランプシステム
JP4080780B2 (ja) 2002-04-23 2008-04-23 株式会社小糸製作所 光源ユニット
JP4378242B2 (ja) 2003-09-25 2009-12-02 株式会社小糸製作所 車両用灯具
JP4053489B2 (ja) 2003-11-04 2008-02-27 株式会社小糸製作所 車両用前照灯
JP6149487B2 (ja) 2012-11-09 2017-06-21 日亜化学工業株式会社 発光装置の製造方法および発光装置
JP6387954B2 (ja) 2015-12-24 2018-09-12 日亜化学工業株式会社 波長変換部材を用いた発光装置の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009141051A (ja) * 2007-12-05 2009-06-25 Stanley Electric Co Ltd シリコーン樹脂を用いた発光ダイオード装置
JP2013232634A (ja) * 2012-04-06 2013-11-14 Panasonic Corp 発光装置
JP2017017317A (ja) * 2015-06-30 2017-01-19 日亜化学工業株式会社 発光装置
WO2017021087A1 (en) * 2015-07-31 2017-02-09 Philips Lighting Holding B.V. Crisp white with improved efficiency

Also Published As

Publication number Publication date
DE112022002217T5 (de) 2024-03-21

Similar Documents

Publication Publication Date Title
TWI415923B (zh) 包含輻射源及螢光材料之照明系統
JP5099418B2 (ja) 照明装置
JP5941243B2 (ja) 発光装置、それを用いた車両用灯具、およびヘッドランプ
US7859182B2 (en) Warm white LED-based lamp incoporating divalent EU-activated silicate yellow emitting phosphor
US10199547B2 (en) Red phosphor and light emitting device including the same
WO2007120582A1 (en) WHITE LEDs WITH TAILORABLE COLOR TEMPERATURE
JP2008505477A (ja) 放射線源と蛍光物質とを含む照明システム
JP7454785B2 (ja) 蛍光体およびそれを使用した発光装置
JP2010097829A (ja) 照明装置および車両用灯具
JP5370047B2 (ja) 白色発光装置のための演色性改善方法および白色発光装置
WO2009104653A1 (ja) 白色発光装置及びこれを用いた車両用灯具
JP5323308B2 (ja) 発光モジュール
US8299487B2 (en) White light emitting device and vehicle lamp using the same
JP4890017B2 (ja) 青色発光蛍光体およびそれを用いた発光モジュール
WO2022224598A1 (ja) 発光装置、前照灯及びそれを備えた車両
JP2022165383A (ja) 発光装置、前照灯及びそれを備えた車両
JP5683625B2 (ja) 発光装置、それを用いた車両用灯具、およびヘッドランプ
WO2024079960A1 (ja) 発光装置、前照灯及びそれを備えた車両
EP4083167A1 (en) Light emitting device
WO2009104652A1 (ja) 白色発光装置及びこれを用いた車両用灯具
CN117178380A (zh) 发光装置、前照灯及具备其的车辆
WO2009093611A1 (ja) 蛍光体を用いた発光モジュール及びこれを用いた車両用灯具
JP7361314B2 (ja) 蛍光体およびそれを使用した発光装置
JP4732888B2 (ja) 赤色発光蛍光体およびそれを用いた発光モジュール
JP2006156505A (ja) 白色発光モジュールおよび車両用灯具

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22791379

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18556082

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112022002217

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22791379

Country of ref document: EP

Kind code of ref document: A1