WO2024079860A1 - 導波路型光スイッチ回路 - Google Patents

導波路型光スイッチ回路 Download PDF

Info

Publication number
WO2024079860A1
WO2024079860A1 PCT/JP2022/038277 JP2022038277W WO2024079860A1 WO 2024079860 A1 WO2024079860 A1 WO 2024079860A1 JP 2022038277 W JP2022038277 W JP 2022038277W WO 2024079860 A1 WO2024079860 A1 WO 2024079860A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical switch
optical
waveguide
input
output
Prior art date
Application number
PCT/JP2022/038277
Other languages
English (en)
French (fr)
Inventor
摂 森脇
賢哉 鈴木
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to PCT/JP2022/038277 priority Critical patent/WO2024079860A1/ja
Publication of WO2024079860A1 publication Critical patent/WO2024079860A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • G02F1/31Digital deflection, i.e. optical switching
    • G02F1/313Digital deflection, i.e. optical switching in an optical waveguide structure

Definitions

  • the present invention relates to a waveguide-type optical switch circuit.
  • optical communication networks capable of transmitting large volumes of data with low power consumption are being widely constructed.
  • the basic function of an optical communication network is to directly connect two points and transmit data reliably and without errors. For this reason, a function called protection has been added that switches the route to a backup route so that data can be transmitted even if a fault such as a break occurs in the transmission line, and is used to improve availability and reliability.
  • Figure 1 shows an example of a configuration for realizing a conventional protection function.
  • An optical signal output from an optical transmitter 101 is split into two optical signals by an optical splitter 102, propagates through different paths, an active transmission path 103 and a backup transmission path 104, and then input to an optical switch 105.
  • the optical switch 105 selects and outputs the optical signal input from the active transmission path 103.
  • the optical switch 105 selects and outputs the optical signal input from the backup transmission path 104.
  • the optical signal selected and output by the optical switch 105 is received by an optical receiver 106.
  • the optical switch 105 is preferably an optical switch made of a quartz-based planar lightwave circuit that does not have mechanically moving parts and uses the thermo-optical effect.
  • the optical switch described in Patent Document 1 is an optical switch made of a quartz-based planar lightwave circuit that uses the thermo-optical effect, has a short switching time, and is particularly suitable for applications that realize protection functions.
  • Figure 2 shows the configuration of an optical switch element that uses the thermo-optic effect and is made from a conventional silica-based planar lightwave circuit. It is a basic two-input, two-output element that constitutes a waveguide-type optical switch circuit, and is a Mach-Zehnder interferometer (MZI) type optical circuit.
  • Figure 2(a) shows the configuration as seen from above, and Figure 2(b) is a cross-sectional view taken along dashed line IIb-IIb in Figure 2(a).
  • MZI Mach-Zehnder interferometer
  • the optical switch element 201 is composed of an optical splitter 202 that splits an input signal, an optical coupler 204 that combines the outputs of the optical splitter 202 and outputs the resultant signal through interference, two arm waveguides 203-1 and 203-2 that connect the optical splitter 202 and the optical coupler 204, and thin-film heaters 205-1 and 205-2 formed directly above the two arm waveguides 203-1 and 203-2.
  • Each of the two arm waveguides 203-1 and 203-2 is also provided with adiabatic groove structures 206-1 to 206-4 that have surfaces parallel to the side surfaces of the waveguide cores of the arm waveguides.
  • the optical switch element 201 has a clad layer 208 laminated on a substrate 207, and arm waveguides 203 formed by waveguide cores embedded in the clad layer 208.
  • a thin-film heater 205 is formed on the upper surface of the clad layer 208 above the waveguide core of the arm waveguide 203.
  • a heat-insulating groove structure 206 is formed on both sides of each arm waveguide 203 by removing the clad layer in the vertical direction of the substrate.
  • a silicon substrate is an example of a preferable material for the substrate 207.
  • a silica-based glass containing SiO2 as a main component is an example of a preferable material for the cladding layer 208 and the optical switch element 201.
  • the two waveguides can be made equal in length.
  • the two waveguides can be made equal in length.
  • the output is sent to the lower port of the optical coupler 204.
  • the optical path length difference between the two waveguides can be set to ⁇ /2.
  • the upper port of the optical splitter 202 is the input port of the optical switch element 201
  • the voltage applied to the thin film heater 205 is zero, the signal is output to the upper port of the optical coupler 204.
  • the thin-film heater 205 When a voltage is applied to the thin-film heater 205, it generates heat, which propagates through the cladding layer and heats the waveguide core of the arm waveguide 203 located below the thin-film heater 205.
  • the refractive index of the heated waveguide core changes due to the thermo-optic effect, causing the optical path length of the arm waveguide 203 to change.
  • the wavelength of the signal light is ⁇
  • the change in the optical path length reaches ⁇ /2
  • the phase of the signal input to the optical coupler 204 via the arm waveguide 203 changes by ⁇ and is inverted, and the output port of the optical signal switches accordingly.
  • the thermal conductivity of the air present in the insulating groove structure 206 (0.0241 W/m/K) is lower than that of the material of the cladding layer 208 (for example, 1.4 W/m/K for SiO2 ). Due to this difference in thermal conductivity, the heat generated by the thin-film heater 205 is prevented from diffusing in the horizontal direction of the substrate by the insulating groove structure 206, and propagates in the vertical direction of the substrate 207.
  • V2 The voltage applied when the thin film heater 205 generates the amount of heat per unit time required to change the optical path length of the arm waveguide 203 by ⁇ /2 in a thermal equilibrium state is denoted as V2 .
  • the output port of the optical switch element 201 is switched from a state where the arm waveguide 203-1 is heated and the optical path length is changed by ⁇ /2 to a state where the output port is switched back.
  • the voltage applied to the thin-film heater 205-1 located directly above the arm waveguide 203-1 is set to zero to cool the arm waveguide 203-1 and return the change in the optical path length to zero.
  • a voltage V3 is applied to the thin-film heater 205-2 for a predetermined time to heat the arm waveguide 203-2, making both the temperatures of the arm waveguides 203 isothermal and making the change in both optical path lengths equal, thereby switching back the output port of the optical switch element 201.
  • the change in the optical path length of the two arm waveguides 203-1, 203-2 can be made equal in a short time, and the output port of the optical switch element 201 can be switched back.
  • the time required to switch the transmission path following a fault be short.
  • the switchback can be carried out in a planned manner, so the time required for switching does not necessarily have to be short.
  • the object of the present invention is to provide an optical switch that has only one thin-film heater loaded on the optical switch element and that can reduce the time required to switch the transmission path when a fault occurs in order to achieve a protection function.
  • one embodiment of the present invention includes an optical splitter that splits an input signal, an optical coupler that combines the outputs of the optical splitter and outputs the combined signal through interference, and two arm waveguides that connect the optical splitter and the optical coupler, the arm waveguide including a plurality of Mach-Zehnder interferometer type 2-input 2-output optical switch elements that are made up of a clad layer laminated on a substrate and a waveguide core embedded in the clad layer, and is a waveguide type optical switch circuit that constitutes an N-input 1-output optical switch or a 1-input N-output optical switch, each of the optical switch elements including a heater formed on the upper surface of the clad layer above the waveguide core of one of the two arm waveguides, and the switching that requires time reduction when changing the path does not include an optical switch element in the changed path that makes the voltage applied to the heater zero when changing the path.
  • FIG. 1 is a diagram showing an example of a configuration for realizing a conventional protection function.
  • FIG. 2 is a diagram showing the configuration of an optical switch element using a thermo-optic effect, which is fabricated using a conventional quartz-based planar lightwave circuit.
  • FIG. 3 is a diagram showing timing for switching and reversing output ports of a conventional optical switch element;
  • FIG. 4 is a diagram showing a configuration of an optical switch element according to a first embodiment of the present invention;
  • FIG. 5 is a diagram showing timings related to switching and switching back of the output port of the optical switch element of the first embodiment;
  • FIG. 6 is a diagram showing a first example for realizing a protection function by the optical switch element of the first embodiment;
  • FIG. 7 is a diagram showing a second example for realizing a protection function by the optical switch element of the first embodiment;
  • FIG. 8 is a diagram showing timings related to switching and switching back of the output port of the optical switch element according to the second embodiment of the present invention.
  • Fig. 4 shows the configuration of an optical switch element according to a first embodiment of the present invention. It is a basic element with two inputs and two outputs that constitutes a waveguide-type optical switch circuit, and is a Mach-Zehnder interferometer (MZI) type optical circuit.
  • Fig. 4(a) shows the configuration as seen from above, and Fig. 4(b) is a cross-sectional view taken along dashed line IVb-IVb in Fig. 4(a).
  • the optical switch element 401 is composed of an optical splitter 402 that splits an input signal, an optical coupler 404 that combines the outputs of the optical splitter 402 and outputs the resultant signal through interference, two arm waveguides 403-1 and 403-2 that connect the optical splitter 402 and the optical coupler 404, and a thin-film heater 405 formed directly above the arm waveguide 403-1.
  • Each of the two arm waveguides 403-1 and 403-2 is also provided with adiabatic groove structures 406-1 to 406-4 that have surfaces parallel to the side surfaces of the waveguide cores of the arm waveguides.
  • the optical switch element 401 has a clad layer 408 laminated on a substrate 407, and arm waveguides 403 formed by waveguide cores embedded in the clad layer 408.
  • a thin-film heater 405 is formed on the upper surface of the clad layer 408 above the waveguide core of the arm waveguide 403-1.
  • the heat-insulating groove structures 406 are formed on both sides of each arm waveguide 403 by removing the clad layer in the vertical direction of the substrate.
  • a silicon substrate is an example of a desirable material for the substrate 407.
  • a silica-based glass containing SiO2 as a main component is an example of a desirable material for the cladding layer 408 and the optical switch element 401.
  • the two waveguides can be made equal in length.
  • the two waveguides can be made equal in length.
  • the output is sent to the lower port of the optical coupler 404.
  • the optical path length difference between the two waveguides can be set to ⁇ /2.
  • the upper port of the optical splitter 402 is the input port of the optical switch element 401
  • the voltage applied to the thin film heater 405 is zero, the signal is output to the upper port of the optical coupler 404.
  • the thin-film heater 405 When a voltage is applied to the thin-film heater 405, it generates heat, which propagates through the cladding layer and heats the waveguide core of the arm waveguide 403-1 located below the thin-film heater 405.
  • the refractive index of the heated waveguide core changes due to the thermo-optic effect, causing a change in the optical path length of the arm waveguide 403-1.
  • the change in optical path length reaches ⁇ /2, assuming that the wavelength of the signal light is ⁇ , the phase of the signal input to the optical coupler 404 via the arm waveguide 403-1 changes by ⁇ and is inverted, causing the output port of the optical signal to switch.
  • the thermal conductivity of the air present in the insulating groove structure 406 (0.0241 W/m/K) is lower than that of the material of the cladding layer 408 (for example, 1.4 W/m/K for SiO2 ). Due to this difference in thermal conductivity, the heat generated by the thin-film heater 405 is prevented from diffusing in the horizontal direction of the substrate by the insulating groove structure 406, and propagates in the vertical direction of the substrate 407.
  • V2 The voltage applied when the thin film heater 405 generates the amount of heat per unit time required to change the optical path length of the arm waveguide 403-1 by ⁇ /2 in a thermal equilibrium state.
  • the output port of the optical switch element 401 is switched, that is, the arm waveguide 403-1 is heated and the optical path length changes by ⁇ /2, and then the output port is switched back.
  • the voltage applied to the thin film heater 405 located directly above the arm waveguide 403-1 is set to zero, and the arm waveguide 403-1 is cooled by heat dissipation.
  • the temperatures of both arm waveguides 403 become isothermal, the amount of change in the optical path length returns to zero, and switching back is completed. Therefore, the time required to switch back the output port is not shortened, and takes longer than the time required for switching.
  • FIG. 6 shows a first example for realizing a protection function by the optical switch element of the first embodiment.
  • an optical switch 605 is applied instead of the conventional optical switch 105 shown in FIG. 1.
  • the optical switch 605 uses the optical switch element 401 described above, for example, an optical switch element 401 configured with the two arm waveguides 403 having equal lengths.
  • the upper port of the optical splitter 402 of the optical switch element 401 is the input port of the active transmission line 103
  • the lower port is the input port of the backup transmission line 104
  • the lower port of the optical coupler 404 is the output port to the optical receiver 106. Therefore, the active transmission line 103 and the optical receiver 106 are connected when no voltage is applied to the thin-film heater 405, and the backup transmission line 104 and the optical receiver 106 are connected when a voltage is applied to the thin-film heater 405.
  • a gate switch is generally inserted at the input from the transmission path to the optical switch 605.
  • An example of the internal configuration of the optical switch 605 in this case is shown in FIG. 6B.
  • the optical switch 605 includes four of the above-mentioned optical switch elements 401, constituting a two-input one-output optical switch.
  • An optical signal input from the working transmission path 103 is input to the one-input one-output optical switch element 611, the output of which is input to the two-input one-output optical switch element 621.
  • a signal input from the backup transmission path 104 is input to the one-input one-output optical switch element 612, the output of which is input to one input port of the two-input one-output optical switch element 622.
  • the other input port of the two-input one-output optical switch element 622 is connected to the output of the two-input one-output optical switch element 621.
  • the output of the two-input one-output optical switch element 622 becomes the output port of the optical switch 605 and is connected to the optical receiver 106.
  • the 1-input, 1-output optical switch elements 611, 612 function as gate switches, and for example, the upper port of the optical splitter 402 of the optical switch element 401 is the input port, and the upper port of the optical coupler 404 is the output port. Therefore, when no voltage is applied to the thin-film heater 405, the input and output ports are disconnected, and when a voltage is applied to the thin-film heater 405, the input and output ports are connected.
  • the 2-input 1-output optical switch element 621 for example, uses the upper port of the optical splitter 402 of the optical switch element 401 as its input port, and the upper port of the optical coupler 404 as its output port. Therefore, when no voltage is applied to the thin-film heater 405, the connection between the 1-input 1-output optical switch element 611 and the 2-input 1-output optical switch element 622 is cut off. On the other hand, when a voltage is applied to the thin-film heater 405, a connection is made between the 1-input 1-output optical switch element 611 and the 2-input 1-output optical switch element 622.
  • the 2-input 1-output optical switch element 622 connects the output of the 2-input 1-output optical switch element 621 to the upper port of the optical splitter 402, and connects the output of the 1-input 1-output optical switch element 612 to the lower port.
  • the lower port of the optical coupler 404 serves as the output port. Therefore, when no voltage is applied to the thin-film heater 405, a connection is made between the output and output port of the 2-input 1-output optical switch element 621, and when a voltage is applied to the thin-film heater 405, a connection is made between the outputs of the 1-input 1-output optical switch element 612.
  • the optical signal after switching passes through optical switch element 612 and optical switch element 622 and is output to the optical receiver 106.
  • neither of these two optical switch elements has voltage applied to the thin-film heater 405, and voltage is applied to the thin-film heater 405 when switching. Therefore, the switching procedure shown in FIG. 5 allows the path to be switched in a short time.
  • the optical signal after switching passes through the three optical switch elements 611, 621, and 622, and is output to the optical receiver 106.
  • the optical switch elements 611 and 621 are both in a state in which no voltage is applied to the thin-film heater 405, and voltage is applied to the thin-film heater 405 upon switching, so that the path can be switched in a short time.
  • the optical switch element 622 is in a state in which voltage is applied to the thin-film heater 405, and voltage of the thin-film heater 405 becomes zero upon switching. Therefore, as described above, the time required for switching back is not shortened, and takes longer than the time required for switching.
  • the time it takes for the optical switch 605 to switch from the active transmission path 103 to the backup transmission path 104 is different from the time it takes to switch from the backup transmission path 104 back to the active transmission path 103.
  • the switch back can be performed as planned, so it is not necessarily required to reduce the time.
  • the first example of the protection function not only shortens the time required to switch the transmission path following a fault, but also allows for a simple configuration that requires only one thin-film heater.
  • FIG. 7 shows a second example for realizing a protection function using the optical switch element of the first embodiment.
  • the current transmission line and the backup transmission line are configured as 1:1, but FIG. 7(a) shows a configuration example in which the current transmission line and the backup transmission line are configured as 3:1.
  • the optical switch element 401 can be applied to the optical switches 705a-705c, or the 2-input 1-output optical switch 605 including four optical switch elements 401 shown in FIG. 6(b) can be applied.
  • Optical switch 707 and optical switch 708 are switches for selecting an active transmission line that needs to be switched to backup transmission line 104 from among the multiple active transmission lines 103a-103b, and are a 3-input 1-output optical switch and a 1-input 3-output optical switch, respectively.
  • Figure 7(b) shows the configuration of optical switch 707. The connection relationship is explained for the case of optical switch element 401 that includes six optical switch elements 401, each of which has two arm waveguides 403 with equal waveguide lengths.
  • the active transmission path 102a is selected and connected to the backup transmission path 104.
  • the active transmission path 102b is selected and connected to the backup transmission path 104.
  • the active transmission path 102c is selected and connected to the backup transmission path 104.
  • the optical switch 708 is configured by swapping the input and output of the optical switch 707 and reversing the light propagation direction. Even if the number of currently used transmission paths increases, in a similar manner, in an N:1 configuration, a switch for selecting currently used transmission paths can be realized by using an N-input, 1-output optical switch and a 1-input, N-output optical switch with the input and output swapped.
  • the switching procedure shown in FIG. 5 allows the path to be changed from the current transmission path 103 to the backup transmission path 104 in a short time.
  • the optical switch 707, the optical switch 708, and the optical switch 705 of the active transmission path switched to the backup transmission path all include optical switch elements that cause the voltage of the thin film heater 405 to become zero upon switching back. Therefore, as in the first example, the time required for switching back is not shortened and takes longer than the time required for switching.
  • the second example of the protection function also makes it possible to shorten the time required to switch the transmission path following a fault, and also allows for a simple configuration that requires only one thin-film heater to be installed.
  • the same effect can be achieved by extending the above example.
  • the voltage applied to all optical switch elements before the change is 0, and the changed path can include only the optical switch elements that switch (0 ⁇ voltage applied) when changing.
  • the changed path can include optical switch elements that do not change the voltage applied to the heater before and after the path change, that is, optical switch elements that maintain a voltage of 0 or maintain a voltage applied. Therefore, in switching that requires time reduction when changing a path, the changed path can be configured not to include optical switch elements that reduce the voltage applied to the heater when changing.
  • the changed path may include an optical switch element that sets the voltage applied to the heater to zero when the path is changed.
  • the optical switch element located at the branch point of both the path before the change and the path after the change is an optical switch element that sets the voltage applied to the heater to zero, and it is acceptable to include such an optical switch element.
  • V2 The voltage applied when the thin film heater 405 generates the amount of heat per unit time required to change the optical path length of the arm waveguide 403-1 by ⁇ /2 in a thermal equilibrium state is denoted by V2 .
  • a voltage V1 sufficiently higher than the voltage V2 is applied to the thin film heater 405 for an appropriate time T1 , and after T1 has elapsed, a pulsed voltage of the voltage V1 is applied.
  • the pulsed voltage alternates between a time ( 1 - V22 / V12 ) ⁇ T3 during which the voltage V1 is not applied and a time V22 / V12 ⁇ T3 during which the voltage V1 is applied.
  • the time average is taken, such a pulsed voltage supplies the same power as when a constant voltage V2 is applied continuously.
  • the configuration for realizing the protection function using the optical switch element of the second embodiment is the same as that of the first embodiment shown in Figures 6 and 7, and therefore the description is omitted.
  • the optical switch element of the second embodiment can also reduce the time required to switch the transmission path following a fault, and can be configured simply by loading only one thin-film heater.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

光スイッチエレメントに装荷する薄膜ヒータの数を1つとし、かつ、プロテクション機能を実現する。マッハツェンダ干渉計型の2入力2出力の光スイッチエレメントを複数含み、N入力1出力光スイッチまたは1入力N出力光スイッチを構成する導波路型光スイッチ回路であって、前記光スイッチエレメントの各々は、2本のアーム導波路の一方にヒータを含み、経路変更の際に時間短縮が求められるスイッチングは、変更後の経路に、変更に際してヒータへの電圧印加を0にする光スイッチエレメントを含まない。

Description

導波路型光スイッチ回路
 本発明は、導波路型光スイッチ回路に関する。
 インターネットの普及に伴い、データ通信ネットワークに対する需要が急激に増えている。急増する需要に対応するため、低消費電力で大容量のデータを伝送可能な光通信ネットワークが広く構築されている。光通信ネットワークにおける基本機能は、2つの地点間を直結して、誤りなく確実にデータを伝送することである。このために、断線等の伝送路の障害が発生してもデータ伝送ができるように、経路を予備の経路に切り替えるプロテクションと呼ばれる機能が付加され、可用性および信頼性を向上するために用いられる。
 図1に、従来のプロテクション機能を実現するための構成例を示す。光送信器101から出力された光信号は、光スプリッタ102によって2つの光信号に分岐され、現用伝送路103と予備伝送路104の異なる経路で伝搬した後、光スイッチ105に入力される。光スイッチ105は、現用伝送路103に障害がなく正常に光信号が入力されている場合には、現用伝送路103から入力された光信号を選択して出力する。また、光スイッチ105は、現用伝送路103に障害が発生し、正常に光信号が入力されなくなった時に、予備伝送路104から入力された光信号を選択して出力する。光スイッチ105において選択され、出力された光信号は、光受信器106にて受信される。
 障害に伴う現用伝送路103経由から予備伝送路104経由への切り替えは、短時間で完了した方がデータのロスを少なく抑えられるため望ましい。すなわち、光スイッチ105の経路の切り替えに要する時間は短いことが望ましい。また、光スイッチ105は、光通信ネットワークの可用性および信頼性を向上のため、機械的な可動部を有さない、石英系平面光波回路で作製され、熱光学効果を用いた光スイッチが好適である。例えば、特許文献1に記載された光スイッチは、石英系平面光波回路で作製され、熱光学効果を用いた光スイッチであり、切替時間が短く、プロテクション機能を実現する用途に特に好適である。
 図2に、従来の石英系平面光波回路で作製され、熱光学効果を用いた光スイッチエレメントの構成を示す。導波路型光スイッチ回路を構成する2入力2出力の基本エレメントであり、マッハツェンダ干渉計(MZI)型の光回路である。図2(a)は上面から見た構成であり、図2(b)は、図2(a)の破線IIb-IIbにおける断面図である。以下、図を持って本発明を説明する際に、同一の構成要素は同一の番号と子番号をもって記述する。説明に際しては、子番号を省略して説明することがある。
 光スイッチエレメント201は、入力信号を分岐する光スプリッタ202と、光スプリッタ202の出力を合波し、干渉させて出力する光カプラ204と、光スプリッタ202と光カプラ204とを接続する2本のアーム導波路203-1,203-2と、2本のアーム導波路203-1,203-2の各々の直上に形成される薄膜ヒータ205-1,205-2とによって構成される。また、2本のアーム導波路203-1,203-2のそれぞれについて、アーム導波路の導波路コアの側面と平行な面を有する断熱溝構造206-1~206-4を備える。
 図2(b)において、光スイッチエレメント201には、基板207上にクラッド層208が積層され、クラッド層208内に埋め込まれた導波路コアにより、アーム導波路203が形成されている。アーム導波路203の導波路コアの上方であって、クラッド層208の上面に薄膜ヒータ205が形成されている。断熱溝構造206は、アーム導波路203の各々の両側に、基板の鉛直方向にクラッド層が除去されて形成される。
 基板207について、その望ましい材料の一例として、シリコン基板とすることができる。また、クラッド層208および光スイッチエレメント201について、その望ましい材料の一例として、SiO2を主成分とする石英系ガラスとすることができる。
 アーム導波路203について、その望ましい設計の一例として、2本の導波路長を等長にすることができる。この場合、図2(a)において、光スプリッタ202の上側ポートを光スイッチエレメント201の入力ポートとするとき、薄膜ヒータ205に印加する電圧がゼロの状態のとき、光カプラ204の下側ポートに出力される。
 アーム導波路203について、その望ましい設計の一例として、信号光の波長をλとするとき、2本の導波路の光路長差をλ/2にすることができる。この場合、図2(a)において、光スプリッタ202の上側ポートを光スイッチエレメント201の入力ポートとするとき、薄膜ヒータ205に印加する電圧がゼロの状態のとき、光カプラ204の上側ポートに出力される。
 薄膜ヒータ205に対して電圧を印加すると発熱し、発生した熱はクラッド層を伝搬して、薄膜ヒータ205の下に位置するアーム導波路203の導波路コアを加熱する。加熱された導波路コアは熱光学効果によって屈折率が変化し、アーム導波路203の光路長が変化する。信号光の波長をλとするときに、光路長の変化量がλ/2に至ると、アーム導波路203を経て光カプラ204に入力される信号の位相がπ変化して反転し、これに伴って光信号の出力ポートが切り替わる。
 断熱溝構造206に存在する空気の熱伝導率(0.0241W/m/K)は、クラッド層208の材料(例えばSiO2の場合1.4W/m/K)よりも低い。この熱伝導率の違いにより、薄膜ヒータ205で発生した熱は、断熱溝構造206によって基板水平方向への拡散が遮られて、基板207の鉛直方向に伝搬する。
 図3に、従来の光スイッチエレメントの出力ポートの切り替えおよび切り戻しのタイミング図を示す。アーム導波路203の光路長を熱平衡状態でλ/2変化させるために必要な単位時間当たりの熱量を、薄膜ヒータ205で生成するときに印加する電圧をV2とする。
 光スイッチエレメント201の出力ポートを切り替える時(切り替えの初期)に、薄膜ヒータ205-1に対して電圧V2よりも十分に高い電圧V1を適切な時間T1の間印加し、T1の経過後は電圧V2を印加する。これにより、薄膜ヒータ205-1の直下に位置するアーム導波路203-1の光路長がλ/2変化する温度に到達するまでの時間を短くする。比較のために、切り替えの初期から電圧V2を印加し続ける場合、図3のアーム導波路203-1の温度変化を破線で示す。アーム導波路203-1に、大きな熱量を切り替えの初期に発生させることにより、光スイッチエレメント201の出力ポートの切り替えに要する時間を短縮できる。
 光スイッチエレメント201の出力ポートを切り替えられた状態、すなわちアーム導波路203-1が加熱されて光路長がλ/2変化している状態から、出力ポートを切り戻す場合を説明する。一般的には、アーム導波路203-1の直上に位置する薄膜ヒータ205-1に印加する電圧をゼロとし、アーム導波路203-1を冷却し、光路長の変化量をゼロに戻す。さらに所定の時間、薄膜ヒータ205-2に電圧V3を印加してアーム導波路203-2を加熱し、アーム導波路203の両方の温度を等温にし、両方の光路長の変化量を等しくすることにより、光スイッチエレメント201の出力ポートを切り戻す。
 薄膜ヒータ205-1に対する印加電圧をゼロにして、光路長の変化量がゼロに戻るまで待つ場合と比較して、切り戻しの初期に薄膜ヒータ205-2で大きな熱量を発生させることにより、短時間で2本のアーム導波路203-1,203-2の光路長の変化量を等しくし、光スイッチエレメント201の出力ポートを切り戻すことができる。
 しかしながら、上述した従来の熱光学効果を用いた光スイッチでは、出力ポートの切り替えのためには、少なくとも2本のアーム導波路203の一方に薄膜ヒータ205を備えていればよい。すなわち、切替時間の短縮を必要としなければ、必ずしも2本のアーム導波路203に薄膜ヒータ205を備える必要はない。言い換えると、切替時間の短縮を必要とする場合、2本のアーム導波路203のそれぞれに薄膜ヒータ205を備える必要があり、薄膜ヒータを駆動するための電気配線の数が増え、電気配線が複雑になるという課題があった。
 また、プロテクション機能の実運用にあたっては、障害に伴う伝送路の切り替えに要する時間は、短時間であることが望ましい。一方で、障害復旧時に伝送路の切り戻しを行う際には、計画的に切り戻しを実施できるため、必ずしも切り替えに要する時間は短時間でなくても構わない。
国際公開第2021/149243号
 本発明の目的は、光スイッチエレメントに装荷する薄膜ヒータの数を1つとし、かつ、プロテクション機能を実現するにあたって、障害に伴う伝送路の切り替えに要する時間を短縮することができる光スイッチを提供することにある。
 本発明は、このような目的を達成するために、一実施態様は、入力信号を分岐する光スプリッタと、当該光スプリッタの出力を合波し、干渉させて出力する光カプラと、前記光スプリッタと前記光カプラとを接続する2本のアーム導波路とを含み、前記アーム導波路は、基板上に積層されたクラッド層および当該クラッド層に埋め込まれた導波路コアからなるマッハツェンダ干渉計型の2入力2出力の光スイッチエレメントを複数含み、N入力1出力光スイッチまたは1入力N出力光スイッチを構成する導波路型光スイッチ回路であって、前記光スイッチエレメントの各々は、前記2本のアーム導波路の一方の前記導波路コアの上方であって、前記クラッド層の上面に形成されたヒータを含み、経路変更の際に時間短縮が求められるスイッチングは、変更後の経路に、変更に際してヒータへの電圧印加を0にする光スイッチエレメントを含まないことを特徴とする。
図1は、従来のプロテクション機能を実現するための構成例を示す図、 図2は、従来の石英系平面光波回路で作製され、熱光学効果を用いた光スイッチエレメントの構成を示す図、 図3は、従来の光スイッチエレメントの出力ポートの切り替えおよび切り戻しに関するタイミングを示す図、 図4は、本発明の第1の実施形態に係る光スイッチエレメントの構成を示す図、 図5は、第1の実施形態の光スイッチエレメントの出力ポートの切り替えおよび切り戻しに関するタイミングを示す図、 図6は、第1の実施形態の光スイッチエレメントによりプロテクション機能を実現するための第1の例を示す図、 図7は、第1の実施形態の光スイッチエレメントによりプロテクション機能を実現するための第2の例を示す図、 図8は、本発明の第2の実施形態に係る光スイッチエレメントの出力ポートの切り替えおよび切り戻しに関するタイミングを示す図である。
 以下、図面を参照しながら本発明の実施形態について詳細に説明する。
  [第1の実施形態]
 図4に、本発明の第1の実施形態に係る光スイッチエレメントの構成を示す。導波路型光スイッチ回路を構成する2入力2出力の基本エレメントであり、マッハツェンダ干渉計(MZI)型の光回路である。図4(a)は上面から見た構成であり、図4(b)は、図4(a)の破線IVb-IVbにおける断面図である。
 光スイッチエレメント401は、入力信号を分岐する光スプリッタ402と、光スプリッタ402の出力を合波し、干渉させて出力する光カプラ404と、光スプリッタ402と光カプラ404とを接続する2本のアーム導波路403-1,403-2と、アーム導波路403-1の直上に形成される薄膜ヒータ405とによって構成される。また、2本のアーム導波路403-1,403-2のそれぞれについて、アーム導波路の導波路コアの側面と平行な面を有する断熱溝構造406-1~406-4を備える。
 図4(b)において、光スイッチエレメント401には、基板407上にクラッド層408が積層され、クラッド層408内に埋め込まれた導波路コアにより、アーム導波路403が形成されている。アーム導波路403-1の導波路コアの上方であって、クラッド層408の上面に薄膜ヒータ405が形成されている。断熱溝構造406は、アーム導波路403の各々の両側に、基板の鉛直方向にクラッド層が除去されて形成される。
 基板407について、その望ましい材料の一例として、シリコン基板とすることができる。また、クラッド層408および光スイッチエレメント401について、その望ましい材料の一例として、SiO2を主成分とする石英系ガラスとすることができる。
 アーム導波路403について、その望ましい設計の一例として、2本の導波路長を等長にすることができる。この場合、図4(a)において、光スプリッタ402の上側ポートを光スイッチエレメント401の入力ポートとするとき、薄膜ヒータ405に印加する電圧がゼロの状態のとき、光カプラ404の下側ポートに出力される。
 アーム導波路403について、その望ましい設計の一例として、信号光の波長をλとするとき、2本の導波路の光路長差をλ/2にすることができる。この場合、図4(a)において、光スプリッタ402の上側ポートを光スイッチエレメント401の入力ポートとするとき、薄膜ヒータ405に印加する電圧がゼロの状態のとき、光カプラ404の上側ポートに出力される。
 薄膜ヒータ405に対して電圧を印加すると発熱し、発生した熱はクラッド層を伝搬して、薄膜ヒータ405の下に位置するアーム導波路403-1の導波路コアを加熱する。加熱された導波路コアは熱光学効果によって屈折率が変化し、アーム導波路403-1の光路長が変化する。信号光の波長をλとするときに、光路長の変化量がλ/2に至ると、アーム導波路403-1を経て光カプラ404に入力される信号の位相がπ変化して反転し、これに伴って光信号の出力ポートが切り替わる。
 断熱溝構造406に存在する空気の熱伝導率(0.0241W/m/K)は、クラッド層408の材料(例えばSiO2の場合1.4W/m/K)よりも低い。この熱伝導率の違いにより、薄膜ヒータ405で発生した熱は、断熱溝構造406によって基板水平方向への拡散が遮られて、基板407の鉛直方向に伝搬する。
 図5に、第1の実施形態の光スイッチエレメントの出力ポートの切り替えおよび切り戻しに関するタイミングを示す。アーム導波路403-1の光路長を熱平衡状態でλ/2変化させるために必要な単位時間当たりの熱量を、薄膜ヒータ405で生成するときに印加する電圧をV2とする。
 光スイッチエレメント401の出力ポートを切り替える時(切り替えの初期)に、薄膜ヒータ405に対して電圧V2よりも十分に高い電圧V1を適切な時間T1の間印加し、T1の経過後は電圧V2を印加する。これにより、薄膜ヒータ405の直下に位置するアーム導波路403-1の光路長がλ/2変化する温度に到達するまでの時間を短くする。比較のために、切り替えの初期から電圧V2を印加し続ける場合、図5のアーム導波路403-1の温度変化を破線で示す。アーム導波路403-1に、大きな熱量を切り替えの初期に発生させることにより、光スイッチエレメント401の出力ポートの切り替えに要する時間を短縮できる。
 光スイッチエレメント401の出力ポートを切り替えられた状態、すなわちアーム導波路403-1が加熱されて光路長がλ/2変化している状態から、出力ポートを切り戻す場合を説明する。この場合は、アーム導波路403-1の直上に位置する薄膜ヒータ405に印加する電圧をゼロとし、アーム導波路403-1は放熱によって冷却される。アーム導波路403の両方の温度が等温になると、光路長の変化量がゼロに戻り、切り戻しが完了する。従って、出力ポートの切り戻しに要する時間は短縮されず、切り替えに要する時間よりも長い時間がかかる。
 図6に、第1の実施形態の光スイッチエレメントによりプロテクション機能を実現するための第1の例を示す。図6(a)においては、図1に示した従来の光スイッチ105に代えて、光スイッチ605を適用する。光スイッチ605には、上述した光スイッチエレメント401であって、例えば、2本のアーム導波路403の導波路長を等長とした構成の光スイッチエレメント401を用いる。光スイッチエレメント401の光スプリッタ402の上側ポートを現用伝送路103の入力ポートとし、下側ポートを予備伝送路104の入力ポートとし、光カプラ404の下側ポートを光受信器106への出力ポートとする。従って、薄膜ヒータ405に電圧を印加しない状態で現用伝送路103と光受信器106とが接続され、薄膜ヒータ405に電圧を印加すると予備伝送路104と光受信器106とが接続される。
 プロテクション機能の実運用においては、一般的に、伝送路から光スイッチ605への入力にはゲートスイッチが挿入される。この場合の光スイッチ605内部の構成例を、図6(b)に示す。光スイッチ605は、上述した光スイッチエレメント401を4つ含み、2入力1出力光スイッチを構成している。現用伝送路103から入力された光信号は、1入力1出力光スイッチエレメント611に入力され、その出力は、2入力1出力光スイッチエレメント621に入力される。予備伝送路104から入力された信号は、1入力1出力光スイッチエレメント612に入力され、その出力は、2入力1出力光スイッチエレメント622の一方の入力ポートに入力される。2入力1出力光スイッチエレメント622の他方の入力ポートは、2入力1出力光スイッチエレメント621の出力に接続されている。2入力1出力光スイッチエレメント622の出力は、光スイッチ605の出力ポートとなり、光受信器106に接続される。ここでは、4つの光スイッチエレメント401として、2本のアーム導波路403の導波路長を等長とした構成の場合の接続関係を説明する。
 1入力1出力光のスイッチエレメント611,612は、ゲートスイッチとして機能し、例えば、光スイッチエレメント401の光スプリッタ402の上側ポートを入力ポートとし、光カプラ404の上側ポートを出力ポートとする。従って、薄膜ヒータ405に電圧を印加しない状態で入出力ポート間が遮断され、薄膜ヒータ405に電圧を印加すると入出力ポート間が接続される。
 2入力1出力の光スイッチエレメント621は、例えば、光スイッチエレメント401の光スプリッタ402の上側ポートを入力ポートとし、光カプラ404の上側ポートを出力ポートとする。従って、薄膜ヒータ405に電圧を印加しない状態では、1入力1出力光スイッチエレメント611と2入力1出力光スイッチエレメント622の間の接続は遮断される。一方、薄膜ヒータ405に電圧を印加すると、1入力1出力光スイッチエレメント611と2入力1出力光スイッチエレメント622の間が接続される。
 2入力1出力の光スイッチエレメント622は、例えば、光スイッチエレメント401の入力ポートについて、光スプリッタ402の上側ポートに2入力1出力光スイッチエレメント621の出力を接続し、下側ポートに1入力1出力光スイッチエレメント612の出力を接続する。そして、光カプラ404の下側ポートを出力ポートとする。従って、薄膜ヒータ405に電圧を印加しない状態では、2入力1出力光スイッチエレメント621の出力と出力ポートの間が接続され、薄膜ヒータ405に電圧を印加すると、1入力1出力光スイッチエレメント612の出力の間が接続される。
 このような構成により、現用伝送路103と光受信器106とを接続する場合には、光スイッチエレメント611と光スイッチエレメント621の薄膜ヒータ405に電圧を印加する。光スイッチエレメント612と光スイッチエレメント622の薄膜ヒータ405は電圧を印加しない状態である。一方、予備伝送路104と光受信器106とを接続する場合には、光スイッチエレメント612と光スイッチエレメント622の薄膜ヒータ405に電圧を印加する。光スイッチエレメント611と光スイッチエレメント621の薄膜ヒータ405は電圧を印加しない状態である。
 現用伝送路103と光受信器106とが接続された状態から、予備伝送路104と光受信器106とが接続された状態に切り替えると、切り替えた後の光信号は、光スイッチエレメント612と光スイッチエレメント622とを通り、光受信器106に出力される。これら2つの光スイッチエレメントは、いずれも切り替え前は、薄膜ヒータ405に電圧が印加されていない状態であり、切り替えに伴って薄膜ヒータ405に電圧が印加される。従って、図5に示した切替手順によって、短時間で経路を切り替えることができる。
 一方、予備伝送路104と光受信器106とが接続された状態から現用伝送路103と光受信器106とが接続された状態に切り替えると、切り替えた後の光信号は、光スイッチエレメント611、光スイッチエレメント621および光スイッチエレメント622の3つを通り、光受信器106に出力される。光スイッチエレメント611および光スイッチエレメント621は、いずれも切り替え前は、薄膜ヒータ405に電圧が印加されていない状態であり、切り替えに伴って薄膜ヒータ405に電圧が印加されるので、短時間で経路を切り替えることができる。しかしながら、光スイッチエレメント622は、切り替え前は薄膜ヒータ405に電圧が印加されている状態であり、切り替えに伴って薄膜ヒータ405の電圧がゼロとなる。従って、上述したように、切り戻しに要する時間は短縮されず、切り替えに要する時間よりも長い時間がかかる。
 このように、光スイッチ605は、現用伝送路103から予備伝送路104への切り替えにかかる時間と、予備伝送路104から現用伝送路103への切り戻しのかかる時間が異なる。しかしながら、経路を変更する際に、時間の短縮を求められるのは、障害に伴って現用伝送路103から予備伝送路104に切り替える場合である。上述したように、障害復旧時に伝送路の切り戻しを行う際には、計画的に切り戻しを実施できるため、必ずしも時間の短縮は求められない。
 プロテクション機能の第1の例によれば、障害に伴う伝送路の切り替えに要する時間を短縮することができることに加え、1つの薄膜ヒータを装荷するのみの簡易な構成とすることができる。
 なお、4つの光スイッチエレメント401として、2本のアーム導波路403の導波路長を光路長差λ/2にする場合であっても、各々の光スイッチエレメントのポートの接続関係を変更すれば、同じ機能を奏することは言うまでもない。
 図7に、第1の実施形態の光スイッチエレメントによりプロテクション機能を実現するための第2の例を示す。上述した第1の例では、現用伝送路と予備伝送路とが1:1の構成であったが、図7(a)に、現用伝送路と予備伝送路とが3:1の場合の構成例を示す。光スイッチ705a-705cには、第1の例で示したように、光スイッチエレメント401を適用したり、図6(b)に示した光スイッチエレメント401を4つ含む2入力1出力光スイッチ605を適用することができる。
 光スイッチ707および光スイッチ708は、複数の現用伝送路103a-103bのうち、予備伝送路104に切り替える必要がある現用伝送路を選択するためのスイッチであり、それぞれ3入力1出力光スイッチおよび1入力3出力光スイッチである。図7(b)に、光スイッチ707の構成を示す。光スイッチエレメント401を6つ含み、いずれも2本のアーム導波路403の導波路長を等長とした光スイッチエレメント401の場合の接続関係を説明する。
 第1の例と同様に、全ての光スイッチエレメント711-713,721-723の薄膜ヒータ405に電圧を印加しない状態では、いずれの現用伝送路103a-103bも予備伝送路104には接続されない。光スイッチエレメント711および光スイッチエレメント721の薄膜ヒータ405に電圧を印加すると、現用伝送路102aが選択され、予備伝送路104に接続される。光スイッチエレメント712および光スイッチエレメント722の薄膜ヒータ405に電圧を印加すると、現用伝送路102bが選択され、予備伝送路104に接続される。光スイッチエレメント713および光スイッチエレメント723の薄膜ヒータ405に電圧を印加すると、現用伝送路102cが選択され、予備伝送路104に接続される。
 なお、光スイッチ708の構成は、光スイッチ707の入出力を入れ替え、光の伝搬方向を逆方向にした構成となる。現用伝送路の数が増えた場合でも、同様にして、N:1の構成であれば、N入力1出力の光スイッチと、その入出力を入れ替えた1入力N出力の光スイッチを用いることにより、現用伝送路を選択するためのスイッチを実現することができる。
 光スイッチ707、光スイッチ708、および予備伝送路に切り替えられる現用伝送路の光スイッチ705のいずれも、切り替え前は薄膜ヒータ405に電圧が印加されていない状態であり、切り替えに伴って薄膜ヒータ405に電圧が印加される。従って、第1の例と同様に、図5に示した切替手順によって、現用伝送路103から予備伝送路104への経路の変更は、短時間で経路を切り替えることができる。
 また、予備伝送路104から現用伝送路103に切り戻す場合には、光スイッチ707、光スイッチ708、および予備伝送路に切り替えられた現用伝送路の光スイッチ705のいずれも、切り戻しに伴って薄膜ヒータ405の電圧がゼロとなる光スイッチエレメントが含まれる。従って、第1の例と同様に、切り戻しに要する時間は短縮されず、切り替えに要する時間よりも長い時間がかかる。
 しかしながら、プロテクション機能の第2の例によっても、障害に伴う伝送路の切り替えに要する時間を短縮することができることに加え、1つの薄膜ヒータを装荷するのみの簡易な構成とすることができる。
 また、4つの光スイッチエレメント401として、2本のアーム導波路403の導波路長を光路長差λ/2にする場合であっても、各々の光スイッチエレメントのポートの接続関係を変更すれば、同じ機能を奏することは言うまでもない。
 現用伝送路と予備伝送路とがN:1の場合であっても、上述した例を拡張することにより、同じ作用効果を奏することができる。上述した例においては、現用伝送路から予備伝送路への経路変更のように、経路変更の際に時間短縮が求められるスイッチングは、変更前の全ての光スイッチエレメントへの印加電圧は0であり、変更に際して切り替える(0→電圧印加)光スイッチエレメントのみを変更後の経路に含む構成とすればよい。なお、変更後の経路において、経路変更の前後でヒータへの電圧印加が変わらない光スイッチエレメント、すなわち電圧0を維持または電圧印加を維持したままの光スイッチエレメントが含まれても構わない。従って、経路変更の際に時間短縮が求められるスイッチングは、変更後の経路に、変更に際してヒータへの電圧印加を0にする光スイッチエレメントを含まない構成とすればよい。
 一方、予備伝送路から現用伝送路への経路変更のように、経路変更の際に時間短縮が求められないスイッチングは、変更後の経路に、変更に際してヒータへの電圧印加を0にする光スイッチエレメントを含んでいても構わない。上述した例においては、変更前の経路と変更後の経路の両方の経路の分岐点に位置する光スイッチエレメントが、ヒータへの電圧印加を0にする光スイッチエレメントであり、このような光スイッチエレメントを含んでいても構わない。
  [第2の実施形態]
 第2の実施形態に係る光スイッチエレメントの構成は、図4に示した第1の実施形態と同じであり、その説明を省略する。第2の実施形態では、切り替えおよび切り戻しの手順が第1の実施形態と異なる。
 図8に、本発明の第2の実施形態に係る光スイッチエレメントの出力ポートの切り替えおよび切り戻しに関するタイミングを示す。アーム導波路403-1の光路長を熱平衡状態でλ/2変化させるために必要な単位時間当たりの熱量を、薄膜ヒータ405で生成するときに印加する電圧をV2とする。
 光スイッチエレメント401の出力ポートを切り替える時(切り替えの初期)に、薄膜ヒータ405に対して電圧V2よりも十分に高い電圧V1を適切な時間T1の間印加し、T1の経過後は、電圧V1のパルス状の電圧を印加する。パルス状の電圧は、アーム導波路403の熱光学効果の応答時間に対して十分短い時間T3とするとき、電圧V1を印加しない時間(1-V2 2/V1 2)×T3と、電圧V1を印加する時間V2 2/V1 2×T3とを交互に繰り返す。このようなパルス状の電圧は、時間平均をとると一定の電圧V2を連続して印加した場合と同じ電力を供給する。
 このような手順により、切り替えの初期から電圧V2を印加し続ける場合と比較して、大きな熱量を切り替えの初期に発生させることにより、アーム導波路403-1の光路長がλ/2変化する温度に到達するまでの時間を短くすることができる。すなわち、光スイッチエレメント401の出力ポートの切り替えに要する時間を短縮できる。また、所望の温度に到達した後は、パルス状の電圧を印加して、所望の温度で熱平衡状態を保つのに必要な電力を供給する。これにより、薄膜ヒータ405に印加する電圧をV1の1種類のみにすることができ、電圧を印加するための電気回路を簡素化することができる。
 第2の実施形態の光スイッチエレメントによりプロテクション機能を実現するための構成は、図6,7に示した第1の実施形態と同じであり、その説明を省略する。
 第2の実施形態の光スイッチエレメントによっても、障害に伴う伝送路の切り替えに要する時間を短縮することができることに加え、1つの薄膜ヒータを装荷するのみの簡易な構成とすることができる。

Claims (6)

  1.  入力信号を分岐する光スプリッタと、当該光スプリッタの出力を合波し、干渉させて出力する光カプラと、前記光スプリッタと前記光カプラとを接続する2本のアーム導波路とを含み、前記アーム導波路は、基板上に積層されたクラッド層および当該クラッド層に埋め込まれた導波路コアからなるマッハツェンダ干渉計型の2入力2出力の光スイッチエレメントを複数含み、N入力1出力光スイッチまたは1入力N出力光スイッチを構成する導波路型光スイッチ回路であって、
     前記光スイッチエレメントの各々は、前記2本のアーム導波路の一方の前記導波路コアの上方であって、前記クラッド層の上面に形成されたヒータを含み、
     経路変更の際に時間短縮が求められるスイッチングは、変更後の経路に、変更に際してヒータへの電圧印加を0にする光スイッチエレメントを含まないことを特徴とする導波路型光スイッチ回路。
  2.  経路変更の際に時間短縮が求められるスイッチングは、変更前の全ての光スイッチエレメントのヒータへの印加電圧は0であり、変更に際して当該ヒータに電圧を印加する光スイッチエレメントを変更後の経路に含むことを特徴とする請求項1に記載の導波路型光スイッチ回路。
  3.  経路変更の際に時間短縮が求められないスイッチングは、変更前の経路と変更後の経路の両方の経路の分岐点に位置する光スイッチエレメントであって、ヒータに電圧が印加された状態から電圧印加を0にする光スイッチエレメントを含むことを特徴とする請求項2に記載の導波路型光スイッチ回路。
  4.  前記光スイッチエレメントの各々は、前記ヒータに印加する電圧が0の状態で一方の出力から光信号を出力するように、前記2本のアーム導波路の長さが設定されていることを特徴とする請求項1、2または3に記載の導波路型光スイッチ回路。
  5.  前記光スイッチエレメントの各々は、前記導波路コアの側面と平行な面を有し、前記基板の鉛直方向に前記クラッド層が除去された溝を含むことを特徴とする請求項1、2または3に記載の導波路型光スイッチ回路。
  6.  前記光スイッチエレメントの各々は、前記基板がシリコン基板であり、前記クラッド層および前記導波路コアは、SiO2を主成分とする石英系ガラスからなることを特徴する請求項1、2または3に記載の導波路型光スイッチ回路。
PCT/JP2022/038277 2022-10-13 2022-10-13 導波路型光スイッチ回路 WO2024079860A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/038277 WO2024079860A1 (ja) 2022-10-13 2022-10-13 導波路型光スイッチ回路

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/038277 WO2024079860A1 (ja) 2022-10-13 2022-10-13 導波路型光スイッチ回路

Publications (1)

Publication Number Publication Date
WO2024079860A1 true WO2024079860A1 (ja) 2024-04-18

Family

ID=90669014

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/038277 WO2024079860A1 (ja) 2022-10-13 2022-10-13 導波路型光スイッチ回路

Country Status (1)

Country Link
WO (1) WO2024079860A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6477002A (en) * 1987-06-29 1989-03-23 Nippon Telegraph & Telephone Integrated optical device and its manufacture
JPH1130769A (ja) * 1997-07-09 1999-02-02 Nippon Telegr & Teleph Corp <Ntt> 光出力強度制御回路
JP2000068932A (ja) * 1998-08-24 2000-03-03 Hitachi Ltd 光伝送装置
JP2001264558A (ja) * 2000-03-23 2001-09-26 Nippon Telegr & Teleph Corp <Ntt> 導波路型光スイッチ
JP2002062549A (ja) * 2000-08-14 2002-02-28 Fujitsu Ltd 光スイッチ切り替え制御方法、光ノード装置および光スイッチシステム
US6773615B1 (en) * 1999-05-21 2004-08-10 British Telecommunications Public Limited Company Making grooves in planar waveguides
WO2021149243A1 (ja) * 2020-01-24 2021-07-29 日本電信電話株式会社 導波路型光スイッチ回路およびその駆動方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6477002A (en) * 1987-06-29 1989-03-23 Nippon Telegraph & Telephone Integrated optical device and its manufacture
JPH1130769A (ja) * 1997-07-09 1999-02-02 Nippon Telegr & Teleph Corp <Ntt> 光出力強度制御回路
JP2000068932A (ja) * 1998-08-24 2000-03-03 Hitachi Ltd 光伝送装置
US6773615B1 (en) * 1999-05-21 2004-08-10 British Telecommunications Public Limited Company Making grooves in planar waveguides
JP2001264558A (ja) * 2000-03-23 2001-09-26 Nippon Telegr & Teleph Corp <Ntt> 導波路型光スイッチ
JP2002062549A (ja) * 2000-08-14 2002-02-28 Fujitsu Ltd 光スイッチ切り替え制御方法、光ノード装置および光スイッチシステム
WO2021149243A1 (ja) * 2020-01-24 2021-07-29 日本電信電話株式会社 導波路型光スイッチ回路およびその駆動方法

Similar Documents

Publication Publication Date Title
JP4105724B2 (ja) 干渉計型光スイッチおよび可変光アッテネータ
JP2856880B2 (ja) 偏光無依存性光スイッチ/変調器及びその製造方法
JP2010079082A (ja) 多方路光スイッチ
Nashimoto et al. Nano-second response, polarization insensitive and low-power consumption PLZT 4× 4 matrix optical switch
JPH07140496A (ja) 波長選択光スイッチ
US6961495B2 (en) Heating optical devices
JP2000089263A (ja) 光回路およびネットワーク
JP2003207668A (ja) 偏波制御回路アレイおよびそれを用いた光回路
WO2024079860A1 (ja) 導波路型光スイッチ回路
US7006716B2 (en) Method and apparatus for switching and modulating an optical signal with enhanced sensitivity
JP6702307B2 (ja) 光回路、およびそれを用いた光スイッチ
JPH11295769A (ja) 光信号伝送システム
JP2020187173A (ja) 位相シフタおよびその制御方法
JP2006038897A (ja) 導波路型光スイッチ単位素子および導波路型マトリクス光スイッチ
JPH11237652A (ja) 導波路型光スイッチ
JP7119990B2 (ja) 光信号処理装置
JP2004233619A (ja) 光スイッチ及び光波長ルータ
JP7474445B2 (ja) 光スイッチ
JP4343686B2 (ja) マルチモード干渉導波路型スイッチ
US20020044714A1 (en) Multiple wavelength Michelson interferometer switch
US20020044318A1 (en) Add/drop apparatus using multiple wavelength michelson interferometer
JP2019179173A (ja) 光デバイス、波長分割多重送信器、波長分割多重受信器、及び波長分割多重送受信システム
WO2024038494A1 (ja) 利得等化器
JP2001109023A (ja) 光スイッチとこれを用いた光スイッチアレイ及び光スイッチ制御装置
JP4805204B2 (ja) 光モジュール

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22962078

Country of ref document: EP

Kind code of ref document: A1