WO2024079780A1 - 半導体ウエハ、半導体装置、電力変換装置、および冷却システム - Google Patents

半導体ウエハ、半導体装置、電力変換装置、および冷却システム Download PDF

Info

Publication number
WO2024079780A1
WO2024079780A1 PCT/JP2022/037823 JP2022037823W WO2024079780A1 WO 2024079780 A1 WO2024079780 A1 WO 2024079780A1 JP 2022037823 W JP2022037823 W JP 2022037823W WO 2024079780 A1 WO2024079780 A1 WO 2024079780A1
Authority
WO
WIPO (PCT)
Prior art keywords
interlayer insulating
insulating film
semiconductor
semiconductor substrate
film
Prior art date
Application number
PCT/JP2022/037823
Other languages
English (en)
French (fr)
Inventor
保夫 阿多
昌和 谷
茂男 遠井
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2022/037823 priority Critical patent/WO2024079780A1/ja
Publication of WO2024079780A1 publication Critical patent/WO2024079780A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26

Definitions

  • This disclosure relates to semiconductor wafers, semiconductor devices, power conversion devices, and cooling systems.
  • Patent Document 1 discloses a structure in which an interlayer insulating film is formed on a semiconductor wafer and a surface protective film is formed on top of the interlayer film so as to overlap and cover the interlayer film.
  • the length from the edge of the semiconductor element to the surface protective film is short, at around 15 ⁇ m, so external stress due to thermal contraction stress is applied to the edge of the semiconductor element, which causes a problem in that cracks are likely to form from the surface protective film to the underside of the interlayer insulating film. If the crack extends to the underside of the interlayer insulating film, the breakdown voltage of the semiconductor element decreases, so the length of the crack is important. At the four corners of the edge of the semiconductor element, the external stress due to thermal contraction stress is large, so the breakdown voltage of the semiconductor element is likely to decrease if the crack extends to the underside of the interlayer insulating film.
  • Such semiconductor elements are also mounted in power modules.
  • the power modules of power conversion devices mounted on vehicles have a wider range of operating temperatures (for example, a range of -40°C to 150°C) than power modules used indoors, and are used in harsh heat cycle environments.
  • torque is applied to the motor at start-up, causing the temperature of the entire drive equipment to rise rapidly. This causes problems such as peeling between the sealing resin in the power module and the semiconductor element, resulting in insulation breakdown of the semiconductor element.
  • the present disclosure therefore aims to provide a technology that can prevent cracks from extending below the interlayer insulating film when external stress caused by thermal contraction stress is applied to the corners of a semiconductor element.
  • the semiconductor wafer according to the present disclosure is a semiconductor wafer comprising a semiconductor substrate having an interlayer insulating film and a surface protective film covering the interlayer insulating film laminated on the upper surface thereof, and a plurality of semiconductor elements formed on the semiconductor substrate, which are diced into small pieces by dicing along openings formed in the surface protective film, the end of the interlayer insulating film is recessed from the end of the surface protective film relative to the end of the semiconductor substrate to be formed by dicing, and the shape of the end of the interlayer insulating film is set so that in each of the semiconductor elements after dicing, the distance Lx from the corner of the semiconductor substrate to be formed by dicing to the end of the interlayer insulating film and the thickness d of the semiconductor substrate satisfy the relationship of mathematical formula 1.
  • the distance Lx from the corner of the semiconductor substrate to the end of the interlayer insulating film is increased, so that when external stress due to thermal contraction stress is applied to the corner of the semiconductor element, it is possible to prevent cracks from extending to the underside of the interlayer insulating film.
  • 1 is a top view of a semiconductor wafer according to a first embodiment
  • 2A and 2B are a top view and a cross-sectional view of a corner of a semiconductor element to be formed by dicing in a semiconductor wafer according to a first embodiment
  • 11 is a graph showing the relationship between the length of a crack from a corner of a semiconductor element and the thickness of the semiconductor element when an external stress due to thermal contraction stress is applied to the corner of the semiconductor element.
  • 13 is a cross-sectional view of a corner of a semiconductor element to be formed by dicing in a semiconductor wafer according to a third embodiment.
  • FIG. 13 is a cross-sectional view of a corner of a semiconductor element to be formed by dicing in a semiconductor wafer according to a fourth embodiment.
  • FIG. 13 is a block diagram showing a configuration of a power conversion system to which a power conversion device according to a fifth embodiment is applied.
  • FIG. 13 is a block diagram showing the configuration of a cooling system according to a sixth embodiment.
  • Fig. 1 is a top view of a semiconductor wafer 1 according to the first embodiment.
  • Fig. 2(a) is a top view of a corner of a semiconductor element 3 to be formed by dicing in the semiconductor wafer 1 according to the first embodiment.
  • Fig. 2(b) is a cross-sectional view of a corner of a semiconductor element 3 to be formed by dicing in the semiconductor wafer 1 according to the first embodiment.
  • the semiconductor wafer 1 is formed in a disk shape.
  • a plurality of semiconductor elements 3 are formed to be cut into small pieces by dicing.
  • a plurality of dicing lines 2 for dividing the semiconductor wafer 1 into a plurality of semiconductor elements 3 are formed in mutually intersecting directions.
  • Each semiconductor element 3 obtained from the semiconductor wafer 1 is mounted on a semiconductor device (power module) after undergoing known processing.
  • the semiconductor wafer 1 includes a semiconductor substrate 10, an interlayer insulating film 9, and a surface protective film 8.
  • the semiconductor substrate 10 is formed in a disk shape.
  • the base material of the semiconductor substrate 10 is SiC.
  • the base material of the semiconductor substrate 10 may be Si or GaN.
  • An interlayer insulating film 9 and a surface protective film 8 are laminated on the upper surface of the semiconductor substrate 10.
  • the interlayer insulating film 9 is, for example, a TEOS film, and covers the upper surface of the semiconductor substrate 10. Specifically, the interlayer insulating film 9 is provided in the area excluding the peripheral portion of the semiconductor element 3 to be formed by dicing, and the portions of the interlayer insulating film 9 that correspond to the four corners of the semiconductor element 3 are formed in a curved shape with rounded corners when viewed from above.
  • the surface protective film 8 is, for example, polyimide, and is provided so as to cover the interlayer insulating film 9 from above.
  • the dicing lines 2 are formed by openings 2a that open to the upper side.
  • the ends of the interlayer insulating film 9 are set back from the ends of the surface protective film 8 relative to the ends of the semiconductor substrate 10 that are to be formed by dicing.
  • the surface protective film 8 covers the entire interlayer insulating film 9.
  • the arrows in FIG. 2(b) indicate the direction in which the cracks extend.
  • the shape of the end of the interlayer insulating film 9 is set so that the distance Lx from the corner of the semiconductor substrate 10 to be formed by dicing to the end of the interlayer insulating film 9 and the thickness d of the semiconductor substrate 10 in each semiconductor element 3 after dicing satisfy the relationship in mathematical expression 1.
  • Figure 3 is a graph showing the relationship between the length D of a crack from a corner of the semiconductor element 3 and the thickness d of the semiconductor element 3 when external stress due to thermal contraction stress is applied to the corner of the semiconductor element 3.
  • the thickness d of the semiconductor element 3 When the thickness d of the semiconductor element 3 is large, the thermal contraction stress on the semiconductor element 3 increases, so that external stress is more likely to be applied. The corners of the semiconductor element 3 are the places where the external stress is highest, and cracks are more likely to occur there. Therefore, the larger the thickness d of the semiconductor substrate 10 (hereinafter also referred to as "thickness d"), the more measures are required to prevent cracks from occurring.
  • distance Lx the distance from the corners of the semiconductor substrate 10 to the ends of the interlayer insulating film 9, even if cracks occur, it is difficult for them to extend to the ends of the interlayer insulating film 9, so when the thickness d increases, the distance Lx must be increased.
  • the inventors of the present application conducted experiments using semiconductor elements 3 with different thicknesses d and found that the relationship between the distance Lx and the thickness d can be expressed by the linear relational expression of equation 1.
  • Figure 3 shows the relationship between the thickness d and the length D of the crack from the corner of the semiconductor element 3, using data obtained by evaluating semiconductor elements 3 with different thicknesses d.
  • the thickness d is, for example, about 100 ⁇ m
  • the distance Lx is, for example, about 300 ⁇ m.
  • the interlayer insulating film 9 is completely covered up to its ends by the surface protective film 8, and the width of the interlayer insulating film 9 that is covered by the surface protective film 8 is, for example, about 1/3 of the distance Lx.
  • the semiconductor wafer 1 is a semiconductor wafer 1 including a semiconductor substrate 10 having an interlayer insulating film 9 and a surface protective film 8 covering the interlayer insulating film 9 laminated on the upper surface thereof, and a plurality of semiconductor elements 3 formed on the semiconductor substrate 10, which are diced into small pieces by dicing along openings 2a formed in the surface protective film 8.
  • the end of the interlayer insulating film 9 is recessed from the end of the surface protective film 8 relative to the end of the semiconductor substrate 10 to be formed by dicing, and the shape of the end of the interlayer insulating film 9 is set so that the distance Lx from the corner of the semiconductor substrate 10 to be formed by dicing to the end of the interlayer insulating film 9 and the thickness d of the semiconductor substrate 10 in each semiconductor element 3 after dicing satisfy the relationship of Mathematical formula 1.
  • the distance Lx from the corner of the semiconductor substrate 10 to the end of the interlayer insulating film 9 is increased, so that when external stress due to thermal contraction stress is applied to the corner of the semiconductor element 3, it is possible to prevent cracks from extending to the underside of the interlayer insulating film 9. As a result, the durability of the semiconductor device including the semiconductor element 3 obtained from the semiconductor wafer 1 is improved.
  • the distance Lx is affected by the finish of the dicing line 2, which is the degree to which the dicing line width W and kerf width C are removed. Therefore, in order to set the shape of the end of the interlayer insulating film 9 with high precision, it is necessary to take into account the finish of the dicing line 2. Therefore, in the second embodiment, in order to take into account the finish of the dicing line 2, the shape of the end of the interlayer insulating film 9 is set so as to satisfy the relationship of the following equation 2 in addition to the equation 1.
  • the shape of the end of the interlayer insulating film 9 is set so that the width W of the dicing line 2, the kerf width C which is the width of the dicing line 2 that is removed by dicing, the width L from the end of the surface protective film 8 to the end of the interlayer insulating film 9 in each semiconductor element 3, the curvature R of the interlayer insulating film 9 at the corner of the semiconductor element 3, and the distance Lx satisfy the relationship in equation 2.
  • Equation 2 can be obtained from this formula.
  • the width W of the dicing line 2 is, for example, about 150 ⁇ m
  • the kerf width C is, for example, about 50 ⁇ m.
  • the width L from the end of the surface protective film 8 to the end of the interlayer insulating film 9 is, for example, about 80 ⁇ m
  • the curvature R of the interlayer insulating film 9 is, for example, about 500 ⁇ m.
  • the distance Lx is, for example, 391 ⁇ m.
  • the shape of the end of the interlayer insulating film 9 is set so as to satisfy the relationship of the formula 2 in addition to the relationship of the formula 1, so that the shape of the end of the interlayer insulating film 9 can be set with high precision by taking into account the finish of the dicing line 2. This can further improve the effect of suppressing the propagation of cracks to the underside of the interlayer insulating film 9 when external stress due to thermal contraction stress is applied to the corners of the semiconductor element 3.
  • Fig. 4 is a cross-sectional view of a corner of a semiconductor element 3A to be formed by dicing in a semiconductor wafer 1A according to the third embodiment. Note that in the third embodiment, the same components as those described in the first and second embodiments are given the same reference numerals and the description thereof will be omitted.
  • an AlSi film 14 is disposed on the outer peripheral surface of the end of the interlayer insulating film 9 in each semiconductor element 3A so as to cover the end of the interlayer insulating film 9.
  • the AlSi film 14 is disposed so as to cover the entire outer peripheral surface of the end of the interlayer insulating film 9, and functions as a buffer against cracks propagating from the corners of the semiconductor element 3A.
  • the AlSi film 14 may not only be disposed on the outer peripheral surface of the end of the interlayer insulating film 9, but may also extend from the end of the interlayer insulating film 9 onto the upper surface of the interlayer insulating film 9.
  • the AlSi film 14 is disposed on the outer peripheral surface of the end of the interlayer insulating film 9 so as to cover the end of the interlayer insulating film 9 in each semiconductor element 3A. Therefore, the AlSi film 14 functions as a buffer against cracks propagating from the corners of the semiconductor element 3A, and therefore can further improve the effect of suppressing cracks from propagating to the underside of the interlayer insulating film 9 when external stress associated with thermal contraction stress is applied to the corners of the semiconductor element 3.
  • FIG. 5 is a cross-sectional view of a corner of a semiconductor element 3B to be formed by dicing in a semiconductor wafer 1B according to the fourth embodiment. Note that in the fourth embodiment, the same components as those described in the first to third embodiments are given the same reference numerals and the description thereof will be omitted.
  • the AlSi film 14 is formed thicker than the interlayer insulating film 9, and is disposed in each semiconductor element 3B from the outer peripheral surface of the end of the interlayer insulating film 9 to the end of the semiconductor substrate 10 to be formed by dicing.
  • the AlSi film 14 is disposed so as to cover the entire outer peripheral surface of the end of the interlayer insulating film 9 and the upper surface portion around it, and functions as a buffer against cracks propagating from the corners of the semiconductor element 3A.
  • the AlSi film 14 is disposed in each semiconductor element 3B from the end of the interlayer insulating film 9 to the end of the semiconductor substrate 10 to be formed by dicing.
  • the AlSi film 14 is disposed in each semiconductor element 3B from the end of the interlayer insulating film 9 to the end of the semiconductor substrate 10 to be formed by dicing.
  • the effect of suppressing the propagation of cracks to the underside of the interlayer insulating film 9 can be further improved compared to the third embodiment.
  • the semiconductor device according to the above-mentioned embodiments 1 to 4 is applied to a power conversion device.
  • the application of the semiconductor device according to the embodiments 1 to 4 is not limited to a specific power conversion device, the case where the semiconductor device according to the embodiments 1 to 4 is applied to a three-phase inverter will be described below as embodiment 5.
  • FIG. 6 is a block diagram showing the configuration of a power conversion system that uses a power conversion device 16 according to embodiment 5.
  • the power conversion system shown in FIG. 6 is composed of a power source 15, a power conversion device 16, and a load 18.
  • the power source 15 is a DC power source, and supplies DC power to the power conversion device 16.
  • the power source 15 can be composed of various things, for example, a DC system, a solar cell, or a storage battery, or it may be composed of a rectifier circuit connected to an AC system or an AC/DC converter.
  • the power source 15 may also be composed of a DC/DC converter that converts the DC power output from the DC system into a specified power.
  • the power conversion device 16 is a three-phase inverter connected between the power source 15 and the load 18, which converts the DC power supplied from the power source 15 into AC power and supplies the AC power to the load 18. As shown in FIG. 6, the power conversion device 16 includes a main conversion circuit 17 that converts the DC power into AC power and outputs it, a drive circuit 19 that outputs drive signals that drive each switching element of the main conversion circuit 17, and a control circuit 20 that outputs a control signal to the drive circuit 19 to control the drive circuit 19.
  • the load 18 is a three-phase motor that is driven by AC power supplied from the power conversion device 16. Note that the load 18 is not limited to a specific use, but is a motor mounted on various electrical devices, and is used, for example, as a motor for hybrid cars, electric cars, railway cars, elevators, or air conditioning equipment.
  • the power conversion device 16 will be described in detail below.
  • the main conversion circuit 17 includes switching elements (not shown) and free wheel diodes (not shown), and converts DC power supplied from the power source 15 into AC power by switching the switching elements, and supplies the AC power to the load 18.
  • the main conversion circuit 17 according to this embodiment is a two-level three-phase full bridge circuit, and can be configured with six switching elements and six free wheel diodes connected in reverse parallel to each switching element.
  • a semiconductor device according to any of the above-mentioned embodiments 1 to 4 is applied to at least one of the switching elements and free wheel diodes of the main conversion circuit 17.
  • each upper and lower arm forms each phase (U phase, V phase, W phase) of the full bridge circuit.
  • the output terminals of each upper and lower arm, i.e., the three output terminals of the main conversion circuit 17, are connected to the load 18.
  • the drive circuit 19 generates drive signals that drive the switching elements of the main conversion circuit 17 and supplies them to the control electrodes of the switching elements of the main conversion circuit 17. Specifically, in accordance with a control signal from the control circuit 20 described below, it outputs to the control electrodes of each switching element a drive signal that turns the switching element on and a drive signal that turns the switching element off.
  • the drive signal is a voltage signal (on signal) that is equal to or higher than the threshold voltage of the switching element
  • the drive signal is a voltage signal (off signal) that is equal to or lower than the threshold voltage of the switching element.
  • the control circuit 20 controls the switching elements of the main conversion circuit 17 so that the desired power is supplied to the load 18. Specifically, it calculates the time (on time) that each switching element of the main conversion circuit 17 should be in the on state based on the power to be supplied to the load 18.
  • the main conversion circuit 17 can be controlled by PWM control, which modulates the on time of the switching elements according to the voltage to be output. It then outputs a control command (control signal) to the drive circuit 19 so that an on signal is output to the switching elements that should be in the on state at each point in time, and an off signal is output to the switching elements that should be in the off state.
  • the drive circuit 19 outputs an on signal or an off signal as a drive signal to the control electrode of each switching element in accordance with this control signal.
  • the semiconductor device according to embodiments 1 to 4 is used as the switching element of the main conversion circuit 17, which makes it possible to achieve improved durability.
  • the semiconductor device according to the first to fourth embodiments is applied to a two-level three-phase inverter, but the application of the semiconductor device according to the first to fourth embodiments is not limited to this, and the semiconductor device can be applied to various power conversion devices.
  • a two-level power conversion device is used, but a three-level or multi-level power conversion device may also be used, and when supplying power to a single-phase load, the semiconductor device according to the first to fourth embodiments may be applied to a single-phase inverter.
  • the semiconductor device according to the first to fourth embodiments can also be applied to a DC/DC converter or an AC/DC converter.
  • the power conversion device to which the semiconductor device according to the first to fourth embodiments is applied is not limited to the case where the load described above is an electric motor, but can also be used, for example, as a power supply device for an electric discharge machine, a laser processing machine, an induction heating cooker, or a non-contact power supply system, and can also be used as a power conditioner for a solar power generation system, a power storage system, etc.
  • FIG. 7 is a block diagram showing the configuration of the cooling system 26 according to embodiment 6.
  • the power modules (semiconductor devices) of power conversion devices mounted on vehicles have a wider range of operating temperatures (e.g., a range of -40°C to 150°C) than power modules used indoors, and are used in harsh heat cycle environments.
  • the cooling system 26 includes a radiator 21, a pump 22, a battery cooling device 23, a flow rate control device 24, a refrigerant flow path 25, and a PCU cooling device 27.
  • a device for cooling a PCU (not shown) and a battery (not shown) is connected in parallel to a radiator (heat exchanger) 21 via a refrigerant flow path 25.
  • the refrigerant flowing through the refrigerant flow path 25 flows in the direction of F as shown in the figure when a pump 22 is operated.
  • the refrigerant that has passed through the radiator 21 may have a flow rate adjustment device 24 at the branching point where it branches into the battery cooling device 23 and the PCU.
  • the battery cooling device 23 and the PCU cooling device 27 may be connected in series to the radiator 21.
  • each embodiment can be freely combined, modified, or omitted as appropriate.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Formation Of Insulating Films (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

熱収縮ストレスに伴う外部応力が半導体素子の角部にかかった場合に、層間絶縁膜の下側までクラックが伸展することを抑制可能な技術を提供することを目的とする。半導体ウエハ(1)は、層間絶縁膜(9)と層間絶縁膜(9)を覆う表面保護膜(8)とが上面に積層される半導体基板(10)を備える。表面保護膜(8)に形成された開口部(2a)に沿ったダイシングにより小片化される複数の半導体素子(3)が半導体基板(10)に形成される。ダイシングにより形成されるべき半導体基板(10)の端部に対し、層間絶縁膜(9)の端部は表面保護膜(8)の端部よりも退避しており、ダイシング後の各半導体素子(3)において、ダイシングにより形成されるべき半導体基板(10)の角部から層間絶縁膜(9)の端部までの距離Lxと半導体基板(10)の厚みdは、数1の関係を満たすように、層間絶縁膜(9)の端部の形状が設定される。

Description

半導体ウエハ、半導体装置、電力変換装置、および冷却システム
 本開示は、半導体ウエハ、半導体装置、電力変換装置、および冷却システムに関するものである。
 特許文献1には、半導体ウエハ上に層間絶縁膜とその上に層間膜をオーバーラップして覆うように表面保護膜が形成された構造が開示されている。例えばこの構造では、表面保護膜の開口部の幅80μmとスクライブラインの溝50μmを除いた半導体素子の端部から表面保護膜までの長さは30μm/2=15μmであり、製品の厚さは180μmである。
特開2016-225511号公報
 特許文献1に記載の技術では、半導体素子の端部から表面保護膜までの長さが15μm程度と短いため、熱収縮ストレスに伴う外部応力が半導体素子の端部にかかることにより、表面保護膜から層間絶縁膜の下側に渡ってクラックが入りやすいという問題があった。クラックが層間絶縁膜の下側まで伸展すると半導体素子の耐圧が低下するため、クラックの長さが重要となる。半導体素子の端部の中でも4つの角部においては、熱収縮ストレスに伴う外部応力が大きくなるため、クラックが層間絶絶縁膜の下側まで伸展することで半導体素子の耐圧が低下しやすかった。
 また、このような半導体素子はパワーモジュールに搭載される。例えば、車両に搭載される電力変換装置のパワーモジュールは屋内で使用されるパワーモジュールと比較して動作温度の幅が広く(例えば、-40℃以上150℃以下の範囲)、過酷なヒートサイクル環境で使用される。また、低温環境下において、始動時はモーターにトルクがかかるため駆動機器全体の温度が急激に上昇する。このため、パワーモジュールにおける封止樹脂と半導体素子との剥離が発生し半導体素子の絶縁破壊が発生するという問題があった。
 そこで、本開示は、熱収縮ストレスに伴う外部応力が半導体素子の角部にかかった場合に、層間絶縁膜の下側までクラックが伸展することを抑制可能な技術を提供することを目的とする。
 本開示に係る半導体ウエハは、層間絶縁膜と前記層間絶縁膜を覆う表面保護膜とが上面に積層される半導体基板を備え、前記表面保護膜に形成された開口部に沿ったダイシングにより小片化される複数の半導体素子が前記半導体基板に形成された半導体ウエハであって、ダイシングにより形成されるべき前記半導体基板の端部に対し、前記層間絶縁膜の端部は前記表面保護膜の端部よりも退避しており、ダイシング後の各前記半導体素子において、ダイシングにより形成されるべき前記半導体基板の角部から前記層間絶縁膜の端部までの距離Lxと前記半導体基板の厚みdは、数1の関係を満たすように、前記層間絶縁膜の端部の形状が設定されている。
 本開示によれば、半導体基板の角部から層間絶縁膜の端部までの距離Lxが長くなるため、熱収縮ストレスに伴う外部応力が半導体素子の角部にかかった場合に、層間絶縁膜の下側までクラックが伸展することを抑制することができる。
 この開示の目的、特徴、局面、および利点は、以下の詳細な説明と添付図面とによって、より明白となる。
実施の形態1に係る半導体ウエハの上面図である。 実施の形態1に係る半導体ウエハにおいて、ダイシングにより形成されるべき半導体素子の角部の上面図と断面図である。 熱収縮ストレスに伴う外部応力が半導体素子の角部にかかった場合の半導体素子の角部からのクラックの長さと半導体素子の厚みとの関係を示すグラフである。 実施の形態3に係る半導体ウエハにおいて、ダイシングにより形成されるべき半導体素子の角部の断面図である。 実施の形態4に係る半導体ウエハにおいて、ダイシングにより形成されるべき半導体素子の角部の断面図である。 実施の形態5に係る電力変換装置を適用した電力変換システムの構成を示すブロック図である。 実施の形態6に係る冷却システムの構成を示すブロック図である。
 <実施の形態1>
 実施の形態1について、図面を用いて以下に説明する。図1は、実施の形態1に係る半導体ウエハ1の上面図である。図2(a)は、実施の形態1に係る半導体ウエハ1において、ダイシングにより形成されるべき半導体素子3の角部の上面図である。図2(b)は、実施の形態1に係る半導体ウエハ1において、ダイシングにより形成されるべき半導体素子3の角部の断面図である。
 図1に示すように、半導体ウエハ1は、円板状に形成されている。半導体ウエハ1における周縁部を除く領域には、ダイシングにより小片化される複数の半導体素子3が形成されている。さらに半導体ウエハ1における周縁部を除く領域には、複数の半導体素子3に分割するための複数のダイシングライン2が互いに交差する方向に形成されている。半導体ウエハ1から得られた各半導体素子3は、公知の処理を経て半導体装置(パワーモジュール)に搭載される。
 図2(a),(b)に示すように、半導体ウエハ1は、半導体基板10と、層間絶縁膜9と、表面保護膜8とを備えている。
 半導体基板10は、円板状に形成されている。半導体基板10の基材は、SiCである。なお、半導体基板10の基材は、SiまたはGaNであってもよい。半導体基板10の上面には、層間絶縁膜9と表面保護膜8とが積層されている。
 層間絶縁膜9は、例えばTEOS膜であり、半導体基板10の上面を覆っている。具体的には、層間絶縁膜9はダイシングにより形成されるべき半導体素子3の周縁部を除く領域に設けられ、層間絶縁膜9における半導体素子3の4つの角部に対応する部分は上面視にて角部を丸めた曲線状に形成されている。
 表面保護膜8は、例えばポリイミドであり、層間絶縁膜9を上側から覆うように設けられている。ダイシングライン2は上側に開口する開口部2aにより形成されている。ダイシングにより形成されるべき半導体基板10の端部に対し、層間絶縁膜9の端部は表面保護膜8の端部よりも退避している。つまり、表面保護膜8は、層間絶縁膜9全体を覆っている。なお、図2(b)の矢印はクラックが伸展する方向である。
 実施の形態1では、熱収縮ストレスに伴う外部応力が半導体素子3の角部にかかった場合に、層間絶縁膜9の下側までクラックが伸展することを抑制するために、ダイシング後の各半導体素子3において、ダイシングにより形成されるべき半導体基板10の角部から層間絶縁膜9の端部までの距離Lxと半導体基板10の厚みdは、数1の関係を満たすように、層間絶縁膜9の端部の形状が設定されている。
Figure JPOXMLDOC01-appb-M000004
 以下、層間絶縁膜9の端部の形状が数1の関係を満たすように設定されることで、熱収縮ストレスに伴う外部応力が半導体素子3の角部にかかった場合に、層間絶縁膜9の下側までクラックが伸展することを抑制できるという効果が得られる理由について説明する。図3は、熱収縮ストレスに伴う外部応力が半導体素子3の角部にかかった場合の半導体素子3の角部からのクラックの長さDと半導体素子3の厚みdとの関係を示すグラフである。
 半導体素子3の厚みdが厚くなると、半導体素子3に対する熱収縮ストレスが大きくなるため外部応力がかかりやすくなる。外部応力が最も高い箇所は、半導体素子3の角部であり、その箇所にクラックが入りやすくなる。そのため、半導体基板10の厚みd(以下、「厚みd」ともいう)が大きくなるほど、クラックが入ることへの対策が必要となる。具体的には、半導体基板10の角部から層間絶縁膜9の端部までの距離Lx(以下、「距離Lx」ともいう)の長さを長くすることで、クラックが入っても層間絶縁膜9の端部まで伸展しにくくなるため、厚みdが大きくなると、距離Lxを大きくする必要がある。本願の発明者は、厚みdの異なる半導体素子3を用いて実験したところ、距離Lxと厚みdとの関係性は、数1の1次関係式で表されることが分かった。
 図3は、厚みdが異なる半導体素子3を評価したデータを用いて、半導体素子3の角部からのクラックの長さDと厚みdとの関係を示したものである。図3に示すように、d=100μmの半導体素子3と、d=300μmの半導体素子3とでは、d=300μmの方がクラックの長さDが長くなっており、その関係性は数1の1次関係式で表される。距離Lxがクラックの長さDよりも長い場合、層間絶縁膜9の端部までクラックが伸展しないため、数1を満たすことで上記の効果が得られる。
 ここで、厚みdは例えば100μm程度であり、距離Lxは例えば300μm程度である。層間絶縁膜9は、表面保護膜8により端部まで完全に覆われており、層間絶縁膜9が表面保護膜8により覆われている幅は例えば距離Lxの1/3程度である。
 以上のように、実施の形態1に係る半導体ウエハ1は、層間絶縁膜9と層間絶縁膜9を覆う表面保護膜8とが上面に積層される半導体基板10を備え、表面保護膜8に形成された開口部2aに沿ったダイシングにより小片化される複数の半導体素子3が半導体基板10に形成された半導体ウエハ1である。ダイシングにより形成されるべき半導体基板10の端部に対し、層間絶縁膜9の端部は表面保護膜8の端部よりも退避しており、ダイシング後の各半導体素子3において、ダイシングにより形成されるべき半導体基板10の角部から層間絶縁膜9の端部までの距離Lxと半導体基板10の厚みdは、数1の関係を満たすように、層間絶縁膜9の端部の形状が設定されている。
 したがって、半導体基板10の角部から層間絶縁膜9の端部までの距離Lxが長くなるため、熱収縮ストレスに伴う外部応力が半導体素子3の角部にかかった場合に、層間絶縁膜9の下側までクラックが伸展することを抑制することができる。以上より、半導体ウエハ1から得られた半導体素子3を備える半導体装置の耐久性が向上する。
 <実施の形態2>
 次に、実施の形態2に係る半導体ウエハ1について説明する。なお、実施の形態2において、実施の形態1で説明したものと同一の構成要素については同一符号を付して説明は省略する。
 距離Lxは、ダイシングラインの幅Wおよびカーフ幅Cの削られ具合であるダイシングライン2の仕上がりに影響を受ける。そのため、層間絶縁膜9の端部の形状を高精度に設定するためには、ダイシングライン2の仕上がりを考慮する必要がある。そこで、実施の形態2では、ダイシングライン2の仕上がりを考慮するために、数1に加えて、以下に示す数2の関係を満たすように、層間絶縁膜9の端部の形状が設定されている。
 ダイシングライン2の幅Wと、ダイシングライン2のうちダイシングにより除去される幅であるカーフ幅Cと、各半導体素子3において表面保護膜8の端部から層間絶縁膜9の端部までの幅Lと、半導体素子3の角部において層間絶縁膜9の曲率Rと、距離Lxは、数2の関係を満たすように、層間絶縁膜9の端部の形状が設定されている。
Figure JPOXMLDOC01-appb-M000005
 図2を用いて、数2の導出方法について説明する。図2に示すように、一辺の長さがR+L+(W-C)/2)である正方形の対角長さはLx+Rである。この正方形の対角長さは、Lx+R=R+L+(W-C)/2)×√2という式で表される。この式から数2が得られる。
 ここで、ダイシングライン2の幅Wは例えば150μm程度であり、カーフ幅Cは例えば50μm程度である。また、各半導体素子3において表面保護膜8の端部から層間絶縁膜9の端部までの幅Lは、例えば80μm程度であり、層間絶縁膜9の曲率Rは例えば500μm程度である。その結果、距離Lxは例えば391μmとなる。なお、数1の関係に加えて、数2の関係を満たすように、層間絶縁膜9の端部の形状を設定することについては、以下の実施の形態3,4の場合にも採用可能である。
 以上のように、実施の形態2に係る半導体ウエハ1では、数1の関係に加えて、数2の関係を満たすように、層間絶縁膜9の端部の形状が設定されているため、ダイシングライン2の仕上がりを考慮することで、層間絶縁膜9の端部の形状を高精度に設定することができる。これにより、熱収縮ストレスに伴う外部応力が半導体素子3の角部にかかった場合に、層間絶縁膜9の下側までクラックが伸展することの抑制効果を一層向上させることができる。
 <実施の形態3>
 次に、実施の形態3に係る半導体ウエハ1Aについて説明する。図4は、実施の形態3に係る半導体ウエハ1Aにおいて、ダイシングにより形成されるべき半導体素子3Aの角部の断面図である。なお、実施の形態3において、実施の形態1,2で説明したものと同一の構成要素については同一符号を付して説明は省略する。
 図4に示すように、実施の形態3では、各半導体素子3Aにおいて層間絶縁膜9の端部を覆うように、層間絶縁膜9の端部の外周面にAlSi膜14が配置されている。AlSi膜14は、層間絶縁膜9の端部の外周面全体を覆うように配置され、半導体素子3Aの角部から伸展するクラックに対する緩衝材として機能する。なお、AlSi膜14は、層間絶縁膜9の端部の外周面のみに配置されるのではなく、層間絶縁膜9の端部から層間絶縁膜9の上面に乗り上げていてもよい。
 以上のように、実施の形態3に係る半導体ウエハ1Aでは、各半導体素子3Aにおいて層間絶縁膜9の端部を覆うように、層間絶縁膜9の端部の外周面にAlSi膜14が配置されている。したがって、AlSi膜14は、半導体素子3Aの角部から伸展するクラックに対する緩衝材として機能するため、熱収縮ストレスに伴う外部応力が半導体素子3の角部にかかった場合に、層間絶縁膜9の下側までクラックが伸展することの抑制効果を一層向上させることができる。
 <実施の形態4>
 次に、実施の形態4に係る半導体ウエハ1Bについて説明する。図5は、実施の形態4に係る半導体ウエハ1Bにおいて、ダイシングにより形成されるべき半導体素子3Bの角部の断面図である。なお、実施の形態4において、実施の形態1~3で説明したものと同一の構成要素については同一符号を付して説明は省略する。
 図5に示すように、実施の形態4では、AlSi膜14は、層間絶縁膜9よりも厚く形成され、各半導体素子3Bにおいて層間絶縁膜9の端部の外周面からダイシングにより形成されるべき半導体基板10の端部に渡って配置されている。AlSi膜14は、層間絶縁膜9の端部の外周面全体とその周辺の上面部分とを覆うように配置され、半導体素子3Aの角部から伸展するクラックに対する緩衝材として機能する。
 半導体基板10と表面保護膜8との間にAlSi膜14が配置されていない場合、半導体基板10と表面保護膜8との接点に外部応力が加わる。これに対して、実施の形態4では、各半導体素子3Bにおいて層間絶縁膜9の端部からダイシングにより形成されるべき半導体基板10の端部までAlSi膜14が配置される。つまり、AlSi膜14が層間絶縁膜9の端部から半導体素子3Bの端部まで配置されることで、層間絶縁膜9を覆うように積層された表面保護膜8の端部と、層間絶縁膜9の端部から半導体素子3Aの端部まで配置されたAlSi膜14との接点に外部応力が加わることになる。半導体基板10と比較してAlSi膜14の線膨張係数が大きいため、この接点にかかる外部応力が緩和しやすくなる。
 以上のように、実施の形態4に係る半導体ウエハ1Bでは、熱収縮ストレスに伴う外部応力が半導体素子3の角部にかかった場合に、実施の形態3の場合よりも、層間絶縁膜9の下側までクラックが伸展することの抑制効果を一層向上させることができる。
 <実施の形態5>
 本実施の形態は、上述した実施の形態1~4に係る半導体装置を電力変換装置に適用したものである。実施の形態1~4に係る半導体装置の適用は特定の電力変換装置に限定されるものではないが、以下、実施の形態5として、三相のインバータに実施の形態1~4に係る半導体装置を適用した場合について説明する。
 図6は、実施の形態5に係る電力変換装置16を適用した電力変換システムの構成を示すブロック図である。
 図6に示す電力変換システムは、電源15、電力変換装置16、負荷18から構成される。電源15は、直流電源であり、電力変換装置16に直流電力を供給する。電源15は種々のもので構成することが可能であり、例えば、直流系統、太陽電池、蓄電池で構成することができるし、交流系統に接続された整流回路やAC/DCコンバータで構成することとしてもよい。また、電源15を、直流系統から出力される直流電力を所定の電力に変換するDC/DCコンバータによって構成することとしてもよい。
 電力変換装置16は、電源15と負荷18の間に接続された三相のインバータであり、電源15から供給された直流電力を交流電力に変換し、負荷18に交流電力を供給する。電力変換装置16は、図6に示すように、直流電力を交流電力に変換して出力する主変換回路17と、主変換回路17の各スイッチング素子を駆動する駆動信号を出力する駆動回路19と、駆動回路19を制御する制御信号を駆動回路19に出力する制御回路20とを備えている。
 負荷18は、電力変換装置16から供給された交流電力によって駆動される三相の電動機である。なお、負荷18は特定の用途に限られるものではなく、各種電気機器に搭載された電動機であり、例えば、ハイブリッド自動車や電気自動車、鉄道車両、エレベーター、もしくは、空調機器向けの電動機として用いられる。
 以下、電力変換装置16の詳細を説明する。主変換回路17は、スイッチング素子(図示せず)と還流ダイオード(図示せず)を備えており、スイッチング素子がスイッチングすることによって、電源15から供給される直流電力を交流電力に変換し、負荷18に供給する。主変換回路17の具体的な回路構成は種々のものがあるが、本実施の形態にかかる主変換回路17は2レベルの三相フルブリッジ回路であり、6つのスイッチング素子とそれぞれのスイッチング素子に逆並列された6つの還流ダイオードから構成することができる。主変換回路17の各スイッチング素子と各還流ダイオードの少なくともいずれかに、上述した実施の形態1~4のいずれかに係る半導体装置を適用する。6つのスイッチング素子は2つのスイッチング素子ごとに直列接続され上下アームを構成し、各上下アームはフルブリッジ回路の各相(U相、V相、W相)を構成する。そして、各上下アームの出力端子、すなわち主変換回路17の3つの出力端子は、負荷18に接続される。
 駆動回路19は、主変換回路17のスイッチング素子を駆動する駆動信号を生成し、主変換回路17のスイッチング素子の制御電極に供給する。具体的には、後述する制御回路20からの制御信号に従い、スイッチング素子をオン状態にする駆動信号とスイッチング素子をオフ状態にする駆動信号とを各スイッチング素子の制御電極に出力する。スイッチング素子をオン状態に維持する場合、駆動信号はスイッチング素子の閾値電圧以上の電圧信号(オン信号)であり、スイッチング素子をオフ状態に維持する場合、駆動信号はスイッチング素子の閾値電圧以下の電圧信号(オフ信号)となる。
 制御回路20は、負荷18に所望の電力が供給されるよう主変換回路17のスイッチング素子を制御する。具体的には、負荷18に供給すべき電力に基づいて主変換回路17の各スイッチング素子がオン状態となるべき時間(オン時間)を算出する。例えば、出力すべき電圧に応じてスイッチング素子のオン時間を変調するPWM制御によって主変換回路17を制御することができる。そして、各時点においてオン状態となるべきスイッチング素子にはオン信号を、オフ状態となるべきスイッチング素子にはオフ信号が出力されるよう、駆動回路19に制御指令(制御信号)を出力する。駆動回路19は、この制御信号に従い、各スイッチング素子の制御電極にオン信号又はオフ信号を駆動信号として出力する。
 本実施の形態に係る電力変換装置では、主変換回路17のスイッチング素子として実施の形態1~4に係る半導体装置を適用するため、耐久性の向上を実現することができる。
 本実施の形態では、2レベルの三相インバータに実施の形態1~4に係る半導体装置を適用する例を説明したが、実施の形態1~4に係る半導体装置の適用は、これに限られるものではなく、種々の電力変換装置に適用することができる。本実施の形態では、2レベルの電力変換装置としたが3レベルやマルチレベルの電力変換装置であっても構わないし、単相負荷に電力を供給する場合には単相のインバータに実施の形態1~4に係る半導体装置を適用しても構わない。また、直流負荷等に電力を供給する場合にはDC/DCコンバータやAC/DCコンバータに実施の形態1~4に係る半導体装置を適用することも可能である。
 また、実施の形態1~4に係る半導体装置を適用した電力変換装置は、上述した負荷が電動機の場合に限定されるものではなく、例えば、放電加工機やレーザー加工機、又は誘導加熱調理器や非接触給電システムの電源装置として用いることもでき、さらには太陽光発電システムや蓄電システム等のパワーコンディショナーとして用いることも可能である。
 <実施の形態6>
 次に、実施の形態6に係る冷却システム26について説明する。図7は、実施の形態6に係る冷却システム26の構成を示すブロック図である。
 例えば、車両に搭載される電力変換装置のパワーモジュール(半導体装置)は屋内で使用するパワーモジュールと比較して動作温度の幅が広く(例えば、-40℃以上150℃以下の範囲)、過酷なヒートサイクル環境で使用される。
 また、低温環境下において、始動時はモーターにトルクがかかるため駆動機器全体の温度が急激に上昇する。例えば、冬季に雪が積もっている場合では、高トルクが必要なため駆動機器により高い負荷がかかる。このため、パワーモジュールにおける封止樹脂と半導体素子との剥離が発生し半導体素子の絶縁破壊が発生するという問題があった。実施の形態6では、このような問題を解決するためになされたものであり、以下に詳細に説明する。
 図7に示すように、冷却システム26は、ラジエータ21と、ポンプ22と、バッテリー冷却装置23と、流量調節装置24と、冷媒流路25と、PCU冷却装置27とを備えている。
 冷却システム26は、ラジエータ(熱交換器)21にPCU(図示せず)とバッテリー(図示せず)とを冷却する装置が冷媒流路25を介して並列に接続されている。冷媒流路25を流れる冷媒はポンプ22が動作することにより図示したFの方向へ流れる。ラジエータ21を通過した冷媒はバッテリー冷却装置23およびPCUに分岐する分岐点に流量調節装置24を有していてもよい。なお、バッテリー冷却装置23とPCU冷却装置27とはラジエータ21に対して直列接続であってもよい。
 これにより、半導体装置における封止樹脂(図示せず)と半導体素子3(図1参照)とのクラックを抑制することができるため、PCU冷却装置27の冷却負荷が従来よりも低下しバッテリーへ冷却能力を分配することができる。バッテリーの冷却性能を向上させることにより車両の航続距離を従来よりもさらに伸ばすことができる。さらに、半導体装置を備えたPCUを冷却するためのPCU冷却装置27の大きさを小型化できる。従って、車両内のスペースを有効活用できる。
 この開示は詳細に説明されたが、上記した説明は、すべての局面において、例示であって、限定的なものではない。例示されていない無数の変形例が、想定され得るものと解される。
 なお、各実施の形態を自由に組み合わせたり、各実施の形態を適宜、変形、省略することが可能である。
 1 半導体ウエハ、2a 開口部、3,3A,3B 半導体素子、8 表面保護膜、9 層間絶縁膜、10 半導体基板、14 AlSi膜、16 電力変換装置、17 主変換回路、19 駆動回路、20 制御回路、21 ラジエータ、23 バッテリー冷却装置、25 冷媒流路、26 冷却システム、27 PCU冷却装置。

Claims (10)

  1.  層間絶縁膜と前記層間絶縁膜を覆う表面保護膜とが上面に積層される半導体基板を備え、前記表面保護膜に形成された開口部に沿ったダイシングにより小片化される複数の半導体素子が前記半導体基板に形成された半導体ウエハであって、
     ダイシングにより形成されるべき前記半導体基板の端部に対し、前記層間絶縁膜の端部は前記表面保護膜の端部よりも退避しており、
     ダイシング後の各前記半導体素子において、ダイシングにより形成されるべき前記半導体基板の角部から前記層間絶縁膜の端部までの距離Lxと前記半導体基板の厚みdは、
    Figure JPOXMLDOC01-appb-M000001
    の関係を満たすように、前記層間絶縁膜の端部の形状が設定されている、半導体ウエハ。
  2.  各前記半導体素子の角部において前記層間絶縁膜は上面視にて曲線状に形成され、
     ダイシングラインの幅Wと、前記ダイシングラインのうち前記ダイシングにより除去される幅であるカーフ幅Cと、各前記半導体素子において前記表面保護膜の端部から前記層間絶縁膜の端部までの幅Lと、前記半導体素子の角部において前記層間絶縁膜の曲率Rと、前記距離Lxは、
    Figure JPOXMLDOC01-appb-M000002
    の関係を満たすように、前記層間絶縁膜の端部の形状が設定されている、請求項1に記載の半導体ウエハ。
  3.  各前記半導体素子において前記層間絶縁膜の端部を覆うように、前記層間絶縁膜の端部の外周面にAlSi膜が配置されている、請求項1または請求項2に記載の半導体ウエハ。
  4.  前記AlSi膜は、前記層間絶縁膜よりも厚く形成され、各前記半導体素子において前記層間絶縁膜の端部の外周面からダイシングにより形成されるべき前記半導体基板の端部に渡って配置されている、請求項3に記載の半導体ウエハ。
  5.  請求項1から請求項4のいずれか1項に記載の半導体ウエハから得られた前記半導体素子を備える、半導体装置。
  6.  層間絶縁膜と前記層間絶縁膜を覆う表面保護膜とが上面に積層される半導体基板を備える半導体素子を備え、
     前記半導体素子の端部である前記半導体基板の端部に対し、前記層間絶縁膜の端部は前記表面保護膜の端部よりも退避しており、
     前記半導体素子において、前記半導体基板の角部から前記層間絶縁膜の端部までの距離Lxと前記半導体基板の厚みdは、
    Figure JPOXMLDOC01-appb-M000003
    の関係を満たすように、前記層間絶縁膜の端部の形状が設定されている、半導体装置。
  7.  前記半導体素子において前記層間絶縁膜の端部を覆うように、前記層間絶縁膜の端部の外周面にAlSi膜が配置されている、請求項6に記載の半導体装置。
  8.  前記AlSi膜は、前記層間絶縁膜よりも厚く形成され、前記半導体素子において前記層間絶縁膜の端部の外周面から前記半導体基板の端部に渡って配置されている、請求項7に記載の半導体装置。
  9.  請求項5に記載の半導体装置を有し、入力される電力を変換して出力する主変換回路と、
     前記半導体装置を駆動する駆動信号を前記半導体装置に出力する駆動回路と、
     前記駆動回路を制御する制御信号を前記駆動回路に出力する制御回路と、
     を備えた、電力変換装置。
  10.  請求項5に記載の半導体装置を含むPCUと、
     冷媒を冷却するラジエータと、
     前記PCUに電力を供給するバッテリーと、
     前記冷媒により前記バッテリーを冷却するバッテリー冷却装置と、
     前記冷媒により前記PCUを冷却するPCU冷却装置と、
     前記冷媒が流れる冷媒流路と、
     を備えた、冷却システム。
PCT/JP2022/037823 2022-10-11 2022-10-11 半導体ウエハ、半導体装置、電力変換装置、および冷却システム WO2024079780A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/037823 WO2024079780A1 (ja) 2022-10-11 2022-10-11 半導体ウエハ、半導体装置、電力変換装置、および冷却システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/037823 WO2024079780A1 (ja) 2022-10-11 2022-10-11 半導体ウエハ、半導体装置、電力変換装置、および冷却システム

Publications (1)

Publication Number Publication Date
WO2024079780A1 true WO2024079780A1 (ja) 2024-04-18

Family

ID=90668942

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/037823 WO2024079780A1 (ja) 2022-10-11 2022-10-11 半導体ウエハ、半導体装置、電力変換装置、および冷却システム

Country Status (1)

Country Link
WO (1) WO2024079780A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05335300A (ja) * 1992-05-27 1993-12-17 Canon Inc 半導体装置
JPH06260554A (ja) * 1993-03-08 1994-09-16 Seiko Epson Corp 半導体装置
JPH09298196A (ja) * 1996-04-30 1997-11-18 Yamaha Corp 半導体装置とその製造方法
JP2006269837A (ja) * 2005-03-24 2006-10-05 Consortium For Advanced Semiconductor Materials & Related Technologies 半導体素子集合体、半導体素子製造方法、及び半導体素子
WO2011078319A1 (ja) * 2009-12-24 2011-06-30 株式会社フジクラ 半導体装置,半導体ウエハ,及び半導体装置の製造方法
JP2020027858A (ja) * 2018-08-10 2020-02-20 ローム株式会社 SiC半導体装置
WO2020208706A1 (ja) * 2019-04-09 2020-10-15 三菱電機株式会社 半導体装置および半導体モジュール

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05335300A (ja) * 1992-05-27 1993-12-17 Canon Inc 半導体装置
JPH06260554A (ja) * 1993-03-08 1994-09-16 Seiko Epson Corp 半導体装置
JPH09298196A (ja) * 1996-04-30 1997-11-18 Yamaha Corp 半導体装置とその製造方法
JP2006269837A (ja) * 2005-03-24 2006-10-05 Consortium For Advanced Semiconductor Materials & Related Technologies 半導体素子集合体、半導体素子製造方法、及び半導体素子
WO2011078319A1 (ja) * 2009-12-24 2011-06-30 株式会社フジクラ 半導体装置,半導体ウエハ,及び半導体装置の製造方法
JP2020027858A (ja) * 2018-08-10 2020-02-20 ローム株式会社 SiC半導体装置
WO2020208706A1 (ja) * 2019-04-09 2020-10-15 三菱電機株式会社 半導体装置および半導体モジュール

Similar Documents

Publication Publication Date Title
CN101496169B (zh) 电力转换装置
JP5970983B2 (ja) 電力変換装置
US11915988B2 (en) Semiconductor device and power converter
US20130169035A1 (en) Power semiconductor module, power conversion apparatus, and railroad vehicle
US9117789B2 (en) Semiconductor device
JP7091878B2 (ja) パワーモジュール、電力変換装置、及びパワーモジュールの製造方法
JP7014012B2 (ja) 半導体装置、半導体装置の製造方法および電力変換装置
JP5825843B2 (ja) 半導体ユニット及び電力変換装置
JP2012105419A (ja) 電力変換装置
US20210175144A1 (en) Arrangement for electronic components
US10468314B2 (en) Semiconductor power module and power conversion apparatus
US10777499B2 (en) Semiconductor module, method for manufacturing the same and power conversion apparatus
WO2019239615A1 (ja) パワー半導体モジュール及び電力変換装置
Tokuyama et al. A novel direct water and double-sided cooled power module for HEV/EV inverter
WO2024079780A1 (ja) 半導体ウエハ、半導体装置、電力変換装置、および冷却システム
US20210391299A1 (en) Semiconductor device, method for manufacturing semiconductor device, and power conversion device
US11127603B2 (en) Semiconductor module and power conversion device
US11894789B2 (en) Power conversion device and electric drive unit
JP2010245158A (ja) 冷却器
US20220108969A1 (en) Power semiconductor module and power conversion apparatus
JP7378379B2 (ja) パワー半導体モジュール及び電力変換装置
JP2007059536A (ja) 半導体装置
WO2022130523A1 (ja) 半導体装置、電力変換装置、および移動体
US11887904B2 (en) Integrally bonded semiconductor device and power converter including the same
US11777419B2 (en) Semiconductor device, semiconductor device manufacturing method, and power converter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22962001

Country of ref document: EP

Kind code of ref document: A1