WO2024078462A1 - 一种pps组合物及其制备方法和应用 - Google Patents

一种pps组合物及其制备方法和应用 Download PDF

Info

Publication number
WO2024078462A1
WO2024078462A1 PCT/CN2023/123607 CN2023123607W WO2024078462A1 WO 2024078462 A1 WO2024078462 A1 WO 2024078462A1 CN 2023123607 W CN2023123607 W CN 2023123607W WO 2024078462 A1 WO2024078462 A1 WO 2024078462A1
Authority
WO
WIPO (PCT)
Prior art keywords
pps
gma
toughening agent
parts
weight
Prior art date
Application number
PCT/CN2023/123607
Other languages
English (en)
French (fr)
Inventor
何志帅
陈平绪
叶南飚
郭墨林
Original Assignee
金发科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 金发科技股份有限公司 filed Critical 金发科技股份有限公司
Publication of WO2024078462A1 publication Critical patent/WO2024078462A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/14Glass
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L81/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen or carbon only; Compositions of polysulfones; Compositions of derivatives of such polymers
    • C08L81/02Polythioethers; Polythioether-ethers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P7/16Controlling of coolant flow the coolant being liquid by thermostatic control
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to the technical field of polymer materials, and in particular to a PPS composition and a preparation method and application thereof.
  • Polyphenylene sulfide is a crystalline special engineering plastic with excellent high temperature resistance, dimensional stability, chemical resistance, creep resistance, moisture and heat resistance, and self-flame retardant properties. Based on these advantages, PPS is widely used in automotive transmission, sensor components, electronic control systems, battery systems, household appliances, mechanical industrial structural parts, wear-resistant parts and other fields. However, the rigid structure of PPS also leads to poor toughness of the material. The notched impact strength of pure PPS raw materials is only about 3KJ/ m2 . If it is not toughened, it is difficult to use in most fields.
  • the toughening modification of PPS is mainly based on adding fillers or glass fibers.
  • Adding fillers or glass fibers to polyphenylene sulfide can effectively improve the rigidity and toughness of the material, but the toughness of the material can only be improved to a limited extent by adding fillers and glass fibers.
  • the toughening effect of the material has basically reached its limit, and further increase may even lead to a decrease in the toughness of the material.
  • a toughening agent needs to be added to the system.
  • the introduction of a toughening agent will further improve the toughness of the material.
  • the toughening agents currently used in PPS are mainly styrene-ethylene/butylene-styrene block copolymers, ethylene-butyl acrylate-glycidyl methacrylate copolymers, acrylates, and ethylene-acrylates.
  • the molecular polarity of PPS materials is low, and the reaction activity with conventional toughening agents is poor, resulting in insufficient toughness.
  • the most widely used toughening agents are glycidyl methacrylate (GMA) toughening agents.
  • the toughness of the material can be greatly improved by the end group reaction of the epoxy group of the GMA toughening agent and the sodium sulfide method PPS. However, after the reaction of GMA and PPS materials, the viscosity of the material will increase. If the flow of the system is greatly reduced, the use of the material in thin-wall injection molding is limited.
  • the object of the present invention is to provide a PPS composition having the advantages of good toughness and good fluidity.
  • Another object of the present invention is to provide a preparation method and application of the above-mentioned PPS composition.
  • a PPS composition comprising the following components in parts by weight: Linear PPS 35-100 copies,
  • Linear PPS contains chlorine and iodine, wherein the weight content of chlorine accounts for 50%-80% of the total weight content of chlorine and iodine, and this value is counted as N; GMA toughening agent linear PPS weight parts *N*(0.1-0.3) parts; Glass fiber 20-50 parts.
  • Chlorine (-Cl) comes from the linear PPS of the sodium sulfide method, and iodine (-I) comes from the linear PPS of the sulfur method.
  • the iodine or chlorine content in linear PPS is tested according to the standard EN 14582-2016 (the pre-treatment method uses the oxygen bomb combustion method and the test is performed using an ion chromatograph): the weight contents of chlorine and iodine in the linear PPS are tested separately, and the formula for the percentage of the weight content of chlorine to the total weight content of chlorine and iodine is: chlorine weight content/(chlorine weight content+iodine weight content)*100%.
  • the content of the GMA toughening agent is linear PPS weight part*N*(0.15-0.25) parts.
  • N the value of N is 0.65.
  • the weight content percentage of the glycidyl methacrylate group in the GMA-based toughening agent is in the range of 4-10%.
  • the weight content percentage of the glycidyl methacrylate group in the GMA-based toughening agent is in the range of 5-8%.
  • the GMA type toughening agent is a glycidyl methacrylate copolymer toughening agent; the glycidyl methacrylate copolymer toughening agent is selected from one or two of ethylene-butyl acrylate-glycidyl methacrylate copolymer and ethylene-methyl acrylate-glycidyl methacrylate copolymer.
  • the GMA toughening agent can be a commercially available product or can be obtained by self-production.
  • the examples and comparative examples of the present invention use self-production raw materials.
  • the preparation method of GMA toughening agent is as follows: add resins such as ethylene-butyl acrylate copolymer, ethylene-methyl acrylate copolymer, or other toughening agents (such as POE) and GMA and diisopropylbenzene peroxide (the addition amount is 0.1-0.5wt% of the total weight of the resin and GMA) to a mixer in proportion, and mix for 5 minutes at room temperature. Put the mixed materials into the feeding hopper of a twin-screw extruder, mix and plasticize and extrude through the twin-screw extruder.
  • resins such as ethylene-butyl acrylate copolymer, ethylene-methyl acrylate copolymer, or other toughening agents (such as POE) and GMA and diisopropylbenzene peroxide (the addition amount is 0.1-0.5wt% of the total weight of the resin and GMA)
  • each section of the twin-screw extruder is: 175-185°C in zone 1, 180-190°C in zone 2, 190-200°C in zone 3, 205-215°C in zone 4, 205-215°C in zone 5, 195-205°C in zone 6, 180-190°C in zone 7, 175-185°C in zone 8, 170-180°C in zone 9, 205-215°C in die head, and 380-400rpm of screw speed.
  • the material extruded through the head of the twin-screw extruder is made into granules by water-cooled strand granulation, water ring granulation or underwater granulation, and the GMA toughening agent is obtained by drying.
  • the linear PPS includes sulfur method linear PPS and sodium sulfide method linear PPS. Under the conditions of 300°C and 1.2kg, according to the standard ISO 1133-1-2011, the melt index is 50-200g/10min.
  • the preparation method of the PPS composition of the present invention comprises the following steps: according to the proportion, linear PPS of sulfur method, linear PPS of sodium sulfide method and GMA type toughening agent are uniformly mixed, and then extruded and granulated by a twin-screw extruder, wherein the rotation speed range is 250-500 rpm and the temperature range is 280-310°C to obtain the PPS composition.
  • the PPS composition of the present invention is used to prepare vehicle-mounted electronic components, such as thermostats, sensors, etc.
  • the present invention adopts two types of linear PPS resins, wherein the sodium sulfide method PPS resin is obtained by reacting dichlorobenzene with sodium sulfide, and has terminal chlorine (-Cl) that can react with the GMA side chain of the GMA toughening agent to improve the mechanical properties.
  • the sodium sulfide method PPS resin is obtained by reacting dichlorobenzene with sodium sulfide, and has terminal chlorine (-Cl) that can react with the GMA side chain of the GMA toughening agent to improve the mechanical properties.
  • a specific content of the sulfur method linear PPS resin without active groups can improve the fluidity of the PPS composition.
  • the glass fiber reinforced PPS composition of the present invention can further significantly improve the toughness (notched impact strength ⁇ 12.7kJ/ m2 , preferably ⁇ 20kJ/ m2 ) after the ultimate toughening of the glass fiber, while having good fluidity (melt flow rate ⁇ 38g/10min, preferably ⁇ 50g/10min).
  • the sources of experimental raw materials used in the present invention are as follows:
  • Sulfur method linear PPS PPS J200, manufactured by SK, the melt index at 300°C and 1.2kg is 109g/10min, and the iodine content is 436ppm.
  • Sodium sulfide method linear PPS PPS 1150C, manufactured by Xinhecheng, the melt index at 300°C and 1.2kg is 72g/10min, and the chlorine content is 1271ppm.
  • GMA toughening agent A ethylene-butyl acrylate-glycidyl methacrylate copolymer, the weight content percentage of glycidyl methacrylate group is 4.1%, homemade.
  • GMA toughening agent B ethylene-butyl acrylate-glycidyl methacrylate copolymer, the weight content of glycidyl methacrylate group is 5.1%, homemade.
  • GMA toughening agent C ethylene-butyl acrylate-glycidyl methacrylate copolymer, the weight content percentage of glycidyl methacrylate group is 7.9%, homemade.
  • GMA toughening agent D ethylene-butyl acrylate-glycidyl methacrylate copolymer, the weight content percentage of glycidyl methacrylate group is 9.9%, homemade.
  • GMA toughening agent E ethylene-methyl acrylate-glycidyl methacrylate copolymer, the weight content percentage of glycidyl methacrylate group is 6.2%, homemade.
  • GMA toughening agent F ethylene-methyl acrylate-glycidyl methacrylate copolymer, the weight content of glycidyl methacrylate group is 3%, homemade.
  • GMA toughening agent G ethylene-methyl acrylate-glycidyl methacrylate copolymer, the weight content percentage of glycidyl methacrylate group is 12%, homemade.
  • Fiberglass Purchased from Jushi.
  • Coupling agent aminosilane coupling agent, KH550.
  • the preparation method of the PPS composition of the embodiment and the comparative example is as follows: according to the ratio, the linear PPS of the sulfur method, the linear PPS of the sodium sulfide method and the GMA toughening agent are uniformly mixed, and then extruded and granulated by a twin-screw extruder, wherein the four extrusion temperatures are 290°C, 285°C, 280°C and 280°C respectively, and the screw speed is 350rpm/min. , and a PPS composition is obtained.
  • the pretreatment method uses the oxygen bomb combustion method and the test is performed using an ion chromatograph.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)

Abstract

本发明公开了一种PPS组合物,采用两种类型的线性PPS树脂,其中硫化钠法PPS树脂是通过二氯苯与硫化钠反应获得,具有能够与GMA类增韧剂进行反应接枝的活性基团,再通过特定量的硫磺法线性PPS树脂使得能够提升PPS组合物的流动性。使得本发明申请的PPS组合物具有高韧性的同时具有良好的流动性。

Description

一种PPS组合物及其制备方法和应用 技术领域
本发明涉及高分子材料技术领域,特别是涉及一种PPS组合物及其制备方法和应用。
背景技术
聚苯硫醚(PPS)作为一种结晶性的特种工程塑料,其具有优异的耐高温性、尺寸稳定性、耐化学、耐蠕变性能、耐湿热和自阻燃性能等优点。基于这些优点,PPS被广泛运用于汽车传动,传感部件、电控系统、电池系统、家用电器,机械工业结构件,耐磨件等领域。但是PPS的刚性结构也导致了材料的韧性较差,纯PPS原材料的缺口冲击强度仅有3KJ/m2左右,若不进行增韧改性,在大部分领域很难使用。
现阶段对PPS增韧改性主要是以加入填料或者玻纤为主。在聚苯硫醚中加入填料或者玻璃纤维,能够有效的提高材料的刚性和韧性,但是加入填料和玻纤对材料的韧性提升有限,以玻纤为例,其含量高于50%以上时,材料的增韧效果基本已经达到极限,继续增加甚至会导致材料的韧性下降。
为进一步提高材料的韧性,需要在体系中加入增韧剂。增韧剂的引入会进一步提高材料的韧性,目前在PPS中使用的增韧剂主要为苯乙烯-乙烯/丁烯-苯乙烯嵌段共聚物、乙烯-丙烯酸丁酯-甲基丙烯酸缩水甘油酯共聚物、丙烯酸酯类、乙烯-丙烯酸酯类。但是PPS材料的分子极性低,与常规的增韧剂反应活性差,导致韧性不够。目前使用较为广泛的增韧剂较多的是甲基丙烯酸缩水甘油酯(GMA)类增韧剂,通过GMA类的增韧剂环氧基团和硫化钠法PPS通过端基反应可以大大提高材料的韧性。但是GMA和PPS材料反应后,会使材料粘度增大,如果大大降低体系流动,限制了材料在薄壁注塑中的使用。
发明内容
本发明的目的在于,提供一种PPS组合物,具有韧性好、流动性好的优点。
本发明的另一目的在于,提供上述PPS组合物的制备方法和应用。
本发明是通过以下技术方案实现的:
一种PPS组合物,按重量份计,包括以下组分:
线性PPS            35-100份,
线性PPS中含有氯、碘,其中,氯的重量含量占氯与碘的总重量含量的50%-80%,计该数值为N;
GMA类增韧剂       线性PPS重量份*N*(0.1-0.3)份;
玻璃纤维          20-50份。
氯(-Cl)来源于硫化钠法线性PPS,碘(-I)来源于硫磺法线性PPS。
线性PPS中碘或氯的含量按照EN 14582-2016的标准测试(前处理方法用氧弹燃烧法,采用离子色谱仪进行测试):分别测试得到线性PPS中氯和碘的重量含量,氯的重量含量占氯与碘的总重量含量的百分比的公式为:氯重量含量/(氯重量含量+碘重量含量)*100%。
优选的,GMA类增韧剂的含量为线性PPS重量份*N*(0.15-0.25)份。比如氯的重量含量占氯与碘的总重量含量的65%时,N数值计为0.65。
GMA类增韧剂中甲基丙烯酸缩水甘油酯基团的重量含量百分比的范围是4-10%,优选的,GMA类增韧剂中甲基丙烯酸缩水甘油酯基团的重量含量百分比的范围是5-8%。
所述的GMA类增韧剂为甲基丙烯酸缩水甘油酯共聚物型增韧剂;所述的甲基丙烯酸缩水甘油酯共聚物型增韧剂选自乙烯-丙烯酸丁酯-甲基丙烯酸缩水甘油酯共聚物、乙烯-丙烯酸甲酯-甲基丙烯酸缩水甘油酯共聚物中的一种或两种。
GMA类增韧剂可以是市售产品也可以是通过自制获得,为了详细探索GMA类增韧剂中甲基丙烯酸缩水甘油酯基团的重量含量百分比对于PPS组合物性能的影响,本发明申请实施例和对比例采用自制原料。
GMA类增韧剂的制备方法为:将乙烯-丙烯酸丁酯共聚物、乙烯-丙烯酸甲酯共聚物、或其他增韧剂(如POE)等树脂与GMA和过氧化二异丙苯(添加量为树脂与GMA总重量的0.1-0.5wt%)按比例加入到混合器中,在室温下,混合5分钟。将混合好的物料投入双螺杆挤出机的加料斗中,经双螺杆挤出机混炼塑化并挤出。双螺杆挤出机各段区间的温度为:一区175-185℃,二区180-190℃,三区190-200℃,四区205-215℃,五区205-215℃,六区195-205℃,七区180-190℃,八区175-185℃,九区170-180℃,机头205-215℃,螺杆转速380~400rpm。将通过双螺杆挤出机机头挤出的物料,采用水冷拉条造粒或水环造粒或水下造粒的方式制成颗粒,干燥即为GMA类增韧剂。
所述的线性PPS包括硫磺法线性PPS、硫化钠法线性PPS,在300℃、1.2kg条件下的按照标准ISO 1133-1-2011,熔融指数为50-200g/10min。
可以根据实际需求决定是否添加0-2份偶联剂。
可以根据实际需求决定是否添加0-2份抗氧剂。
本发明的PPS组合物的制备方法,包括以下步骤:按照配比,将硫磺法线性PPS、硫化钠法线性PPS、GMA类增韧剂混合均匀,后通过双螺杆挤出机挤出造粒,其中转速范围是250-500转/分,温度范围是280-310℃,得到PPS组合物。
本发明的所述PPS组合物的应用,用于制备车载电子零部件,比如节温器、传感器等。
本发明具有如下有益效果:
本发明采用两种类型的线性PPS树脂,其中硫化钠法PPS树脂是通过二氯苯与硫化钠反应获得,具有能够与GMA类增韧剂的GMA支链反应的端基氯(-Cl),以提高力学性能。同时,特定含量的不含有活性基团的硫磺法线性PPS树脂能够提升PPS组合物的流动性。使得本发明申请的玻纤增强PPS组合物在玻纤极限增韧后能够进一步显著提高韧性(缺口冲击强度≥12.7kJ/m2,优选≥20kJ/m2)的同时具有良好的流动性(熔体流动速率≥38g/10min、优选≥50g/10min)。
具体实施方式
下面结合具体实施例对本发明进行详细说明。以下实施例将有助于本领域的技术人员进一步理解本发明,但不以任何形式限制本发明。应当指出的是,对本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进。这些都属于本发明的保护范围。
本发明所用实验原料来源如下:
硫磺法线性PPS:PPS J200,厂家为SK,300℃、1.2kg条件下的熔融指数为109g/10min,碘的含量为436ppm。
硫化钠法线性PPS:PPS 1150C,厂家为新和成,300℃、1.2kg条件下的熔融指数为72g/10min,氯的含量为1271ppm。
硫化钠法非线性PPS:PPS 21150C,厂家为新和成,300℃、1.2kg条件下的 熔融指数为59g/10min,氯的含量为946ppm。
GMA类增韧剂A:乙烯-丙烯酸丁酯-甲基丙烯酸缩水甘油酯共聚物,甲基丙烯酸缩水甘油酯基团的重量含量百分比为4.1%,自制。
GMA类增韧剂B:乙烯-丙烯酸丁酯-甲基丙烯酸缩水甘油酯共聚物,甲基丙烯酸缩水甘油酯基团的重量含量百分比为5.1%,自制。
GMA类增韧剂C:乙烯-丙烯酸丁酯-甲基丙烯酸缩水甘油酯共聚物,甲基丙烯酸缩水甘油酯基团的重量含量百分比为7.9%,自制。
GMA类增韧剂D:乙烯-丙烯酸丁酯-甲基丙烯酸缩水甘油酯共聚物,甲基丙烯酸缩水甘油酯基团的重量含量百分比为9.9%,自制。
GMA类增韧剂E:乙烯-丙烯酸甲酯-甲基丙烯酸缩水甘油酯共聚物,甲基丙烯酸缩水甘油酯基团的重量含量百分比为6.2%,自制。
GMA类增韧剂F:乙烯-丙烯酸甲酯-甲基丙烯酸缩水甘油酯共聚物,甲基丙烯酸缩水甘油酯基团的重量含量百分比为3%,自制。
GMA类增韧剂G:乙烯-丙烯酸甲酯-甲基丙烯酸缩水甘油酯共聚物,甲基丙烯酸缩水甘油酯基团的重量含量百分比为12%,自制。
玻璃纤维:购自巨石。
偶联剂:氨基硅烷偶联剂,KH550。
实施例和对比例PPS组合物的制备方法:按照配比,将硫磺法线性PPS、硫化钠法线性PPS、GMA类增韧剂混合均匀,后通过双螺杆挤出机挤出造粒,其中挤出四段温度分别为290℃、285℃、280℃、280℃,螺杆转速为350rpm/min。,得到PPS组合物。
各项性能测试方法:
(1)缺口冲击强度:按照标准ISO 180:2000/Amd2:2013进行测试;
(2)熔体流动速率:按照标准ISO 1133-1:2011进行测试,测试条件:300℃,5KG。
(3)树脂基体中碘或氯的含量:按照EN 14582-2016的标准,前处理方法用氧弹燃烧法,采用离子色谱仪进行测试。
表1:实施例1-7PPS组合物各组分含量(重量份)及测试结果

由实施例3-7可知,在优选的GMA类增韧剂的添加量范围内,缺口冲击强度达到19kJ/m2以上,并且熔体流动速率也能够保持高于50g/10min。
表2:实施例8-12PPS组合物各组分含量(重量份)及测试结果

由实施例5/8-12可知,虽然GMA类增韧剂的GMA接枝率越高缺口冲击强度则越高,但是熔体流动性也下降严重。可见,优选接枝范围的GMA类增韧剂缺口冲击强度达到22kJ/m2以上,同时熔体流动速率也能够保持高于50g/10min。
表3:对比例1-7PPS组合物各组分含量(重量份)及测试结果
由对比例1可知,硫化钠法线性PPS所含的氯基与GMA类增韧剂中GMA基团进行反应从而有效提升缺口冲击强度,但是熔体流动速率也急速下降。而由对比例2可知,硫磺法线性PPS所含的碘基与GMA反应活性低,GMA类增韧剂中GMA基团不会进行反应,因此缺口冲击强度低但是熔体流动速率高。由对比例3和对比例4可知,当GMA类增韧剂的添加量过低时缺口冲击强度的,但GMA类增韧剂含量过高时熔体流动性低。
由对比例5和实施例5可知,硫化钠法线性PPS含量过高,GMA基团与氯基团反应程度过高,导致熔体流动性降低。
由对比例6与实施例5可知,硫化钠法线性PPS含量过低导致组合物中所含的氯含量过低,GMA与氯的反应程度较少,因此缺口冲击强度低。
由对比例7可知,硫化钠法非线性PPS虽然也含有氯基,但是其与GMA基团的反应活性低,因此无法实现本发明的技术效果。
表4:对比例8-9PPS组合物各组分含量(重量份)及测试结果
由对比例8/9可知,如GMA类增韧剂的GMA接枝率过低,缺口冲击强度的提升较少;反之则造成熔体流动速率下降严重。

Claims (9)

  1. 一种PPS组合物,其特征在于,按重量份计,包括以下组分:
    线性PPS      35-100份,
    线性PPS中含有氯、碘,其中,氯的重量含量占氯与碘的总重量含量的50%-80%,计该数值为N;
    GMA类增韧剂  线性PPS重量份*N*(0.1-0.3)份;
    玻璃纤维     20-50份。
  2. 根据权利要求1所述的PPS组合物,其特征在于,GMA类增韧剂的含量为线性PPS重量份*N*(0.15-0.25)份。
  3. 根据权利要求1所述的PPS组合物,其特征在于,GMA类增韧剂中甲基丙烯酸缩水甘油酯基团的重量含量百分比的范围是4-10%;所述的GMA类增韧剂为甲基丙烯酸缩水甘油酯共聚物型增韧剂;所述的甲基丙烯酸缩水甘油酯共聚物型增韧剂选自乙烯-丙烯酸丁酯-甲基丙烯酸缩水甘油酯共聚物、乙烯-丙烯酸甲酯-甲基丙烯酸缩水甘油酯共聚物中的一种或两种。
  4. 根据权利要求3所述的PPS组合物,其特征在于,GMA类增韧剂中甲基丙烯酸缩水甘油酯基团的重量含量百分比的范围是5-8%。
  5. 根据权利要求1所述的PPS组合物,其特征在于,所述的线性PPS包括硫磺法线性PPS、硫化钠法线性PPS,按照标准ISO 1133-1-2011,300℃、1.2kg条件下的熔融指数为50-200g/10min,氯来源于硫化钠法线性PPS,碘来源于硫磺法线性PPS。
  6. 根据权利要求1所述的PPS组合物,其特征在于,按重量份计,还包括0-2份偶联剂。
  7. 根据权利要求1所述的PPS组合物,其特征在于,按重量份计,还包括0-2份抗氧剂。
  8. 权利要求5 PPS组合物的制备方法,其特征在于,包括以下步骤:按照配比,将硫磺法线性PPS、硫化钠法线性PPS、GMA类增韧剂混合均匀,后通过双螺杆挤出机挤出造粒,其中转速范围是250-500转/分,温度范围是280-310℃,得到PPS组合物。
  9. 权利要求1-7任一项所述PPS组合物的应用,其特征在于,用于制备车载电子零部件。
PCT/CN2023/123607 2022-10-12 2023-10-09 一种pps组合物及其制备方法和应用 WO2024078462A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211244728.XA CN115746563B (zh) 2022-10-12 2022-10-12 一种pps组合物及其制备方法和应用
CN202211244728.X 2022-10-12

Publications (1)

Publication Number Publication Date
WO2024078462A1 true WO2024078462A1 (zh) 2024-04-18

Family

ID=85351162

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/123607 WO2024078462A1 (zh) 2022-10-12 2023-10-09 一种pps组合物及其制备方法和应用

Country Status (2)

Country Link
CN (1) CN115746563B (zh)
WO (1) WO2024078462A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115746563B (zh) * 2022-10-12 2024-03-26 金发科技股份有限公司 一种pps组合物及其制备方法和应用
CN116515288A (zh) * 2023-04-28 2023-08-01 金发科技股份有限公司 一种导电聚酰胺材料及其制备方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104672903A (zh) * 2013-12-02 2015-06-03 上海杰事杰新材料(集团)股份有限公司 一种高性能特种聚苯硫醚材料及其制备方法
CN107001798A (zh) * 2015-01-26 2017-08-01 帝人株式会社 树脂组合物
CN111574832A (zh) * 2019-02-18 2020-08-25 现代摩比斯株式会社 聚芳硫醚树脂组合物及汽车前照灯组件
US20220106486A1 (en) * 2019-02-22 2022-04-07 Dic Corporation Polyarylene sulfide resin composition, molded body of same, method for producing polyarylene sulfide resin composition, and method for producing molded body
CN115746563A (zh) * 2022-10-12 2023-03-07 金发科技股份有限公司 一种pps组合物及其制备方法和应用

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130078770A (ko) * 2011-12-30 2013-07-10 코오롱플라스틱 주식회사 폴리페닐렌설파이드 수지 조성물
JP2017149797A (ja) * 2016-02-22 2017-08-31 東レ株式会社 ポリフェニレンスルフィド樹脂組成物およびそれからなる成形品
CN109651814B (zh) * 2018-11-28 2021-03-26 中广核俊尔新材料有限公司 一种高增强增韧型聚苯硫醚复合材料及其制备方法
CN111154261B (zh) * 2020-01-16 2022-02-18 金发科技股份有限公司 一种pps组合物及其制备方法
CN112724675A (zh) * 2020-12-29 2021-04-30 富海(东营)新材料科技有限公司 一种聚苯硫醚复合材料及其制备方法
CN113861687B (zh) * 2021-10-28 2023-02-03 江西聚真科技发展有限公司 一种聚苯硫醚组合物及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104672903A (zh) * 2013-12-02 2015-06-03 上海杰事杰新材料(集团)股份有限公司 一种高性能特种聚苯硫醚材料及其制备方法
CN107001798A (zh) * 2015-01-26 2017-08-01 帝人株式会社 树脂组合物
US20180265701A1 (en) * 2015-01-26 2018-09-20 Teijin Limited Resin composition
CN111574832A (zh) * 2019-02-18 2020-08-25 现代摩比斯株式会社 聚芳硫醚树脂组合物及汽车前照灯组件
US20220106486A1 (en) * 2019-02-22 2022-04-07 Dic Corporation Polyarylene sulfide resin composition, molded body of same, method for producing polyarylene sulfide resin composition, and method for producing molded body
CN115746563A (zh) * 2022-10-12 2023-03-07 金发科技股份有限公司 一种pps组合物及其制备方法和应用

Also Published As

Publication number Publication date
CN115746563A (zh) 2023-03-07
CN115746563B (zh) 2024-03-26

Similar Documents

Publication Publication Date Title
WO2024078462A1 (zh) 一种pps组合物及其制备方法和应用
CN109651814A (zh) 一种高增强增韧型聚苯硫醚复合材料及其制备方法
CN101921485A (zh) 复配纤维增强抗静电聚苯硫醚复合材料及其制备方法
CN101402793B (zh) 玻璃纤维增强尼龙6-聚对苯二甲酸丁二醇酯合金材料及其制备方法
CN104371162A (zh) 一种阻燃、耐磨的改性聚乙烯材料及其制备方法
CN102942790A (zh) 一种耐高温、高强度聚苯硫醚基反应性增强增韧复合材料
US20170096557A1 (en) Polyarylene sulfide-derived resin composition and insert molded body
CN104403258A (zh) 一种阻燃增强abs复合材料及其制备方法
CN101787190B (zh) 一种阻燃环保高强度pc-as复合材料及其制备方法
CN104231628A (zh) 一种高强度聚苯硫醚增强增韧复合材料及其制备方法
CN103059534A (zh) 一种高韧性聚碳酸酯共混材料及其制备方法
CN103709681A (zh) 一种高韧性、高耐热玻纤增强pbt复合材料及其制备方法
CN115678278B (zh) 一种pps复合材料及其制备方法和应用
CN108948510A (zh) 一种磷酸锆/聚丙烯复合材料及其制备方法
CN104629326A (zh) 一种高抗冲改性pc/abs合金及其制备方法
CN114369343B (zh) 一种pet复合材料及其制备方法和应用
CN103396643A (zh) 一种含改性剂的聚丙烯酸酯接枝氯乙烯复合树脂组合物
JPS62151460A (ja) ポリアリ−レンサルフアイド樹脂組成物
CN116003892A (zh) 一种高力学和高耐环境应力开裂性能的聚乙烯复合材料及其制备方法和应用
CN104672878A (zh) 聚碳酸酯树脂/聚苯乙烯树脂合金材料及制备方法
CN111484721A (zh) 一种耐低温冲击pc/abs复合材料及其制备方法
CN105462216A (zh) 玻纤增强增韧阻燃材料
CN113897044B (zh) 一种pc/eva组合物及其制备方法
CN115612242B (zh) 一种玻纤增强聚甲醛复合材料及其制备方法
CN110845835B (zh) 一种聚碳酸酯/聚硫酸酯合金树脂材料及其制备方法