WO2024078152A1 - 防抖机构、摄像模组及电子设备 - Google Patents
防抖机构、摄像模组及电子设备 Download PDFInfo
- Publication number
- WO2024078152A1 WO2024078152A1 PCT/CN2023/114714 CN2023114714W WO2024078152A1 WO 2024078152 A1 WO2024078152 A1 WO 2024078152A1 CN 2023114714 W CN2023114714 W CN 2023114714W WO 2024078152 A1 WO2024078152 A1 WO 2024078152A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- shake mechanism
- along
- stress relief
- relief structure
- deformation
- Prior art date
Links
- 230000007246 mechanism Effects 0.000 title claims abstract description 97
- 239000004642 Polyimide Substances 0.000 claims abstract description 9
- 229920001721 polyimide Polymers 0.000 claims abstract description 9
- 239000000758 substrate Substances 0.000 claims description 9
- 230000003287 optical effect Effects 0.000 claims description 2
- 230000000694 effects Effects 0.000 abstract description 6
- 238000006243 chemical reaction Methods 0.000 description 26
- 238000010586 diagram Methods 0.000 description 10
- 239000000853 adhesive Substances 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 5
- 230000001070 adhesive effect Effects 0.000 description 4
- 238000005452 bending Methods 0.000 description 4
- 238000003384 imaging method Methods 0.000 description 4
- 238000009434 installation Methods 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 101100233916 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) KAR5 gene Proteins 0.000 description 3
- 230000002452 interceptive effect Effects 0.000 description 3
- 230000008054 signal transmission Effects 0.000 description 3
- 101000827703 Homo sapiens Polyphosphoinositide phosphatase Proteins 0.000 description 2
- 102100023591 Polyphosphoinositide phosphatase Human genes 0.000 description 2
- 230000004308 accommodation Effects 0.000 description 2
- 230000002596 correlated effect Effects 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000006073 displacement reaction Methods 0.000 description 2
- 239000000428 dust Substances 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000014509 gene expression Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 1
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 1
- 101100012902 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) FIG2 gene Proteins 0.000 description 1
- 206010044565 Tremor Diseases 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000011889 copper foil Substances 0.000 description 1
- 238000009713 electroplating Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N23/00—Cameras or camera modules comprising electronic image sensors; Control thereof
- H04N23/60—Control of cameras or camera modules
- H04N23/68—Control of cameras or camera modules for stable pick-up of the scene, e.g. compensating for camera body vibrations
- H04N23/682—Vibration or motion blur correction
- H04N23/685—Vibration or motion blur correction performed by mechanical compensation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N23/00—Cameras or camera modules comprising electronic image sensors; Control thereof
- H04N23/57—Mechanical or electrical details of cameras or camera modules specially adapted for being embedded in other devices
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N23/00—Cameras or camera modules comprising electronic image sensors; Control thereof
- H04N23/60—Control of cameras or camera modules
- H04N23/68—Control of cameras or camera modules for stable pick-up of the scene, e.g. compensating for camera body vibrations
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N23/00—Cameras or camera modules comprising electronic image sensors; Control thereof
- H04N23/60—Control of cameras or camera modules
- H04N23/68—Control of cameras or camera modules for stable pick-up of the scene, e.g. compensating for camera body vibrations
- H04N23/682—Vibration or motion blur correction
- H04N23/685—Vibration or motion blur correction performed by mechanical compensation
- H04N23/687—Vibration or motion blur correction performed by mechanical compensation by shifting the lens or sensor position
Definitions
- the present application relates to the field of camera technology, and in particular to an anti-shake mechanism, a camera module and an electronic device.
- the camera module In recent years, with the rapid development of the field of camera technology, camera has become an indispensable part of life. Users have higher and higher requirements for shooting. When users use camera modules to shoot, the shaking of hands or the shaking of the subject can easily lead to blurred images. At present, the camera module usually drives the chip component to move through the anti-shake mechanism to compensate for the displacement caused by the shaking, so as to obtain a clear image.
- the reaction force of the existing anti-shake mechanism is large when it moves, and the anti-shake effect is limited.
- Some embodiments of the present application provide an anti-shake mechanism, a camera module and an electronic device.
- the present application is introduced from multiple aspects below, and the embodiments and beneficial effects of the following aspects can be referenced to each other.
- the first aspect of the present application provides an anti-shake mechanism, which includes: a mounting portion and a deformation portion.
- the mounting portion is capable of moving along a first direction or a second direction.
- the deformation portion is arranged around the mounting portion, and the deformation portion is sideways along a third direction.
- the deformation portion includes a first part and a second part that are connected, the first part extends along the first direction, and the second part extends along the second direction.
- the first part is provided with a first stress relief structure
- the second part is provided with a second stress relief structure.
- the first stress relief structure is used to relieve stress when the first part is deformed along the third direction
- the second stress relief structure is used to relieve stress when the second part is deformed along the third direction.
- the first direction may be the X-axis direction mentioned in the following embodiments
- the second direction may be the Y-axis direction mentioned in the following embodiments
- the third direction may be the Z-axis direction mentioned in the following embodiments.
- the first direction, the second direction and the third direction are perpendicular to each other.
- the above-mentioned anti-shake mechanism can be applied to a camera module, and the camera module can be applied to an electronic device.
- the electronic device can be any electronic device with a camera function, such as a mobile phone, a tablet computer, or a laptop computer, but is not limited to it. This application does not make any specific limitations on this.
- the anti-shake mechanism when realizing the anti-shake function, prevents the deformation part from interfering with other components of the camera module (such as a motor) by setting a stress relief structure on the deformation part, thereby effectively reducing the movement reaction force when the deformation part moves along the first direction and the second direction, thereby making the anti-shake angle of the anti-shake mechanism larger and having a wide range of applications.
- the anti-shake mechanism also has the advantages of large design tolerance, low assembly difficulty, high yield rate, stable mechanical properties, etc.
- the first stress relief structure includes a row of holes spaced apart along the first direction, wherein the holes may be any one of circular holes, elliptical holes, rectangular holes and slotted holes, which are not limited in the present application.
- the first stress relief structure includes at least two rows of holes spaced apart along the first direction, and any two adjacent rows of holes are staggered in the third direction. While increasing the strength, the first stress relief structure can relieve the stress at various positions of the first part.
- the second stress relief structure includes a row of holes spaced apart along the second direction, wherein the holes may be any of circular holes, elliptical holes, rectangular holes and slotted holes, which are not limited in the present application.
- the second stress relief structure includes at least two rows of holes spaced apart along the second direction, and any two adjacent rows of holes are staggered in the third direction. While ensuring the strength of the second part of the deformation portion, the second stress relief structure can relieve stress at various positions of the second part.
- the first stress relief structure is disposed near an edge of the first portion, so that when the first portion of the deformable portion is deformed along the third direction, the first stress relief structure is disconnected in time to release the stress of the first portion.
- the second stress relief structure is disposed near an edge of the second portion, so that when the second portion of the deformation portion is deformed along a third direction, the second stress relief structure is disconnected in time to release the stress of the second portion.
- the deformation portion includes a dielectric layer and a covering layer which are stacked, wherein the dielectric layer includes a first surface and a second surface which are arranged opposite to each other along the stacking direction, and the first surface and the second surface are respectively provided with a covering layer, and the covering layer is made of photosensitive polyimide.
- the stacking direction may be the first direction or the second direction.
- the stacking direction of the first part of the deformation portion is the second direction.
- the stacking direction of the second part of the deformation portion is the first direction.
- the above-mentioned covering layer is thin and light, which can effectively reduce the thickness of the deformation part, thereby further reducing the moving reaction force of the deformation part and the driving power consumption of the motor, thereby improving the anti-shake performance of the anti-shake mechanism and making the structure of the anti-shake mechanism more compact.
- the thickness of the deformation part refers to the size of the deformation part along the stacking direction.
- the dielectric layer includes a substrate and a routing layer arranged along a stacking direction, and the routing layers are respectively arranged on the surface of the substrate along the stacking direction, and the thickness of the covering layer is greater than or equal to the thickness of the routing layer.
- the covering layer can also effectively isolate water vapor and dust, preventing the routing layer from being oxidized and damaged.
- the deformable portion is an FPC
- the deformable portion is electrically connected to the mounting portion for signal transmission, so as to transmit the electrical signal formed by the chip assembly mounted on the mounting portion to other components (eg, an image processor).
- a second aspect of the present application provides a camera module, which includes a lens, a chip assembly, a motor, and an anti-shake mechanism according to the first aspect and any possible implementation of the first aspect.
- the chip assembly is arranged relative to the lens in the direction of the optical axis of the lens, and the motor is used to drive the anti-shake mechanism, which can drive the chip assembly to move relative to the lens.
- a third aspect of the present application provides an electronic device, which includes the camera module in the second aspect.
- FIG. 1( a ) shows a perspective view of a mobile phone 1 in some embodiments of the present application
- FIG1( b ) shows an exploded view of a mobile phone 1 in some embodiments of the present application
- FIG2 is a schematic diagram of shooting with shaking of a camera module in some embodiments of the present application.
- FIG3 shows a schematic diagram of the structure of an anti-shake mechanism in some embodiments
- FIG. 4( a ) and FIG. 4( b ) are three-dimensional views of an anti-shake mechanism provided in an embodiment of the present application;
- FIG. 5( a ) and FIG. 5( b ) show stereoscopic views of camera modules in some embodiments of the present application;
- FIG5(c) shows a cross-sectional view of a camera module along the C-C section in FIG5(a) in some embodiments of the present application;
- FIG. 6( a ) to FIG. 6( d ) are schematic diagrams showing stress release of a deformation portion in some embodiments of the present application.
- FIG7 is a schematic diagram showing the structure of a deformation portion in some embodiments of the present application.
- FIG. 8 is a schematic structural diagram of a deformation portion in some embodiments.
- references to "one embodiment” or “some embodiments” etc. described in this specification mean that a particular feature, structure or characteristic described in conjunction with the embodiment is included in one or more embodiments of the present application.
- the phrases “in one embodiment”, “in some embodiments”, “in some other embodiments”, “in some other embodiments”, etc. appearing in different places in this specification do not necessarily all refer to the same embodiment, but mean “one or more but not all embodiments", unless otherwise specifically emphasized in other ways.
- the terms “including”, “comprising”, “having” and their variations all mean “including but not limited to”, unless otherwise specifically emphasized in other ways.
- the present application provides an electronic device, which includes at least one camera module, and the camera module includes a lens, a chip assembly, a motor and an anti-shake mechanism.
- the electronic device provided in the present application may be, but is not limited to, any electronic device with a camera function such as a mobile phone, a tablet computer or a laptop computer, and the present application does not specifically limit this.
- a mobile phone a tablet computer or a laptop computer
- the present application does not specifically limit this.
- the following will be described in detail by taking the electronic device as a mobile phone as an example.
- Figure 1(a) shows a stereoscopic view of the mobile phone 1 in some embodiments of the present application.
- Figure 1(b) shows an exploded view of the mobile phone 1 in some embodiments of the present application.
- the X-axis direction (as the first direction), the Y-axis direction (as the second direction), and the Z-axis direction (as the third direction) of the mobile phone 1 will be defined in combination with Figures 1(a) and 1(b).
- the width direction of the mobile phone 1 is the X-axis direction, where the width direction can be understood as the direction in which the user holds the phone;
- the length direction of the mobile phone 1 is the Y-axis direction, where the length The direction may be the length direction of the display screen 40, or may be understood as the direction perpendicular to the user's holding direction in the plane where the display screen 40 is located;
- the thickness direction of the mobile phone 1 is the Z-axis direction.
- the X-axis direction, the Y-axis direction, and the Z-axis direction intersect each other.
- the X-axis direction, the Y-axis direction, and the Z-axis direction are mutually perpendicular. It can be understood that the mutual perpendicularity in the present application is not absolute perpendicularity, and the approximate perpendicularity caused by processing errors and assembly errors (for example, the angle between two structural features is 89.9°) is also within the range of mutual perpendicularity in the present application. The present application does not make specific limitations on this, and the limitation of mutual perpendicularity will not be repeated in the following text.
- the mobile phone 1 includes at least one camera module 10 (a camera module 10 is shown in FIG. 1(b)), a back shell 20, a middle frame 30, a display screen 40, and a processor (not shown).
- the back shell 20, the middle frame 30, and the display screen 40 are arranged in sequence along the positive direction of the Z axis, and the back shell 20, the middle frame 30, and the display screen 40 together form an installation cavity (not shown).
- the camera module 10 is located in the installation cavity and is installed on at least one of the back shell 20, the middle frame 30, and the display screen 40.
- the camera module 10 is taken as a rear camera as an example, and a light inlet 21 is formed on the back shell 20 of the mobile phone 1.
- the camera module 10 includes a photosensitive surface (not shown), which faces the back shell 20 and is opposite to the light inlet 21 of the back shell 20.
- the projection of the photosensitive surface of the camera module 10 and the projection of the light inlet 21 completely overlap or partially overlap, so that the incident light beam i outside the mobile phone 1 can enter the interior of the camera module 10 through the light inlet 21 on the back shell 20 and irradiate the photosensitive surface of the camera module 10. Based on this, the captured scene can be transmitted to the processor through the camera module 10 for processing, and finally converted into a displayable image, thereby realizing the shooting function of the mobile phone 1.
- the structure of the camera module 10 in some embodiments will be briefly introduced below.
- the incident light beam i can pass through the light inlet 21 on the back shell 20 along the positive direction of the Z axis and enter the camera module 10.
- the side where the incident light beam i is located is defined as the light incident side, and the side opposite to the light incident side is defined as the light exit side.
- the camera module 10 includes a lens 100, a chip assembly 200 (or an "image sensor assembly"), and a motor 300.
- the motor 300 is formed with a cavity extending along the Z axis direction (i.e., the cavity 311 of the motor 300 mentioned later), and the lens 100 is arranged in the cavity 311.
- the chip assembly 200 is arranged on the light exit side of the lens 100.
- the incident light beam i enters the lens 100 from the light incident side of the lens 100, and then exits the lens 100 from the light exit side of the lens 100.
- the incident light beam i exiting the lens 100 reaches the chip assembly 200 for imaging.
- FIG. 2 is a schematic diagram of the shooting of the camera module shaking in some embodiments of the present application.
- the light of the photographed object P passes through the lens 100 to reach the chip component 200, and the above-mentioned object P forms an image P1 on the chip component 200.
- the lens 100 of the camera module 10 is displaced due to shaking during the shooting process, for example, as shown in FIG. 2, the lens 100 moves along the positive direction of the X-axis (as shown in the direction A in FIG.
- the lens 100 moves to the lens 100' shown in the dotted part.
- the above-mentioned object P forms an image P2 on the chip component 200, such as the dotted image P2 shown in FIG. 2. Therefore, the image taken by the mobile phone 1 will have the problem of ghosting and blurring, which affects the imaging effect of the camera module 10.
- the camera module 10 further includes an anti-shake mechanism 400 , which is connected to the chip
- the chip component 200 is connected to the lens 100, and the position of the chip component 200 is adjusted by the anti-shake mechanism 400 to achieve the anti-shake function.
- the imaging position shifted due to the shaking is compensated to the position on the chip component 200 before the shaking, so as to improve the imaging effect and avoid the phenomenon of blurred images.
- the anti-shake mechanism 400 can drive the chip component 200 to move along the negative direction of the X-axis (as shown in the direction B in Figure 2) to compensate for the shaking of the lens 100, thereby ensuring that the image captured by the camera module 10 is clear.
- the anti-shake mechanism is a planar anti-shake mechanism.
- FIG3 shows a schematic diagram of the structure of an anti-shake mechanism in some embodiments.
- the anti-shake mechanism 400a includes a mounting portion 410a, a deformation portion 420a, and a movable portion 430a.
- the mounting portion 410a and the movable portion 430a are both frame-shaped, the mounting portion 410a is arranged around the movable portion 430a, and the mounting portion 410a and the movable portion 430a are connected by the deformation portion 420a.
- the deformation portion 420a is formed by a plurality of metal wires 421a arranged in parallel.
- the plurality of metal wires 421a can swing along the X-axis direction and the Y-axis direction, so the deformation portion 420a can be deformed along the X-axis direction and the Y-axis direction, thereby driving the movable portion 430a to move relative to the mounting portion 410a along the X-axis direction and the Y-axis direction.
- the mounting portion 410a of the anti-shake mechanism 400a is fixedly connected to the lens (not shown) of the camera module.
- the movable portion 430a of the anti-shake mechanism 400a is fixedly connected to the chip assembly (not shown).
- the deformation portion 420a of the anti-shake mechanism 400a can deform along the X-axis direction and the Y-axis direction according to the shaking of the captured image, thereby driving the chip assembly mounted on the movable portion 430a to move along the X-axis direction and the Y-axis direction relative to the lens, thereby realizing the anti-shake function of the anti-shake mechanism 400a and avoiding the above-mentioned problem of blurred photos.
- the multiple metal wires 421a arranged in parallel can only swing along the arrangement direction of the metal wires 421a (or called "line width direction"), that is, the deformation part 420a of the anti-shake mechanism 400a can only move along the X-axis direction and the Y-axis direction. Therefore, the movement reaction force of the deformation part 420a is relatively large, resulting in limited displacement of the chip component and a small anti-shake angle of the anti-shake mechanism 400a.
- the anti-shake mechanism is an upright anti-shake mechanism.
- the anti-shake mechanism includes a mounting portion and a deformation portion.
- the deformation portion is arranged around the mounting portion, and the mounting portion and the deformation portion together form an accommodation space, and the lens, chip assembly and motor are located in the accommodation space.
- the chip assembly is arranged on the mounting portion of the anti-shake mechanism, the mounting end of the motor is connected to the lens, and the driving end of the motor is connected to the mounting portion of the anti-shake mechanism.
- the driving end of the motor can drive the mounting portion to move, so that the mounting portion drives the deformation portion and the chip assembly to move to compensate for the shaking of the lens, thereby realizing the anti-shake of the camera module by the anti-shake mechanism.
- the assembly difficulty of the anti-shake mechanism is relatively large. Due to the assembly tolerance, the deformation portion of the anti-shake mechanism is easy to interfere with other components of the camera module (such as a motor), thereby causing the movement reaction force of the deformation portion of the anti-shake mechanism to increase, and the anti-shake function of the anti-shake mechanism to fail.
- the current camera module has the problem of large movement reaction force of the deformation part of the anti-shake mechanism.
- it is necessary to optimize the structure of the anti-shake mechanism.
- the present application provides an anti-shake mechanism.
- the anti-shake mechanism provided by the present application can release stress in time when interference occurs in the deformation part by providing a stress release structure, thereby reducing the moving reaction force of the deformation part.
- the anti-shake mechanism 400 includes a mounting portion 410 , a deformation portion 420 , and a stress relief structure 430 .
- the mounting portion 410 is distributed in the XOY plane.
- the mounting portion 410 can be arranged along the X-axis direction and the Y-axis direction. Axis movement.
- the deformation part 420 is a strip-shaped structure, and the deformation part 420 is arranged around the mounting part 410 and stands sideways along the Z-axis direction.
- the deformation part 420 includes a first part 421, a second part 422, a third part 423, a fourth part 424 and a signal line 425.
- the first part 421, the second part 422, the third part 423, and the fourth part 424 are connected in sequence, and the deformation part 420 is similar to a quadrilateral shape.
- the first part 421 of the deformation part 420 extends along the X-axis direction
- the second part 422 of the deformation part 420 extends along the Y-axis direction
- the third part 423 of the deformation part 420 extends along the X-axis direction
- the fourth part 424 of the deformation part 420 extends along the Y-axis direction.
- the planes where the first portion 421, the second portion 422, the third portion 423, and the fourth portion 424 of the deformation portion 420 are located are respectively perpendicular to the plane where the mounting portion 410 is located.
- the signal line 425 extends from the edge of the third portion 423 away from the mounting portion 410.
- the stress relief structure 430 is provided on the deformation part 420.
- the stress relief structure 430 includes a first stress relief structure 431 and a second stress relief structure 432.
- the first stress relief structure 431 is provided on the first part 421 of the deformation part 420, and the first stress relief structure 431 is used to relieve stress when the first part 421 is deformed along the Z-axis direction;
- the second stress relief structure 432 is provided on the second part 422 of the deformation part 420, and the second stress relief structure 432 is used to relieve stress when the second part 422 is deformed along the Z-axis direction.
- the third portion 423, the fourth portion 424 and the signal line 425 are used to implement the signal transmission function of the anti-shake mechanism 400, which will be described in detail later.
- the anti-shake and stress release functions of the anti-shake mechanism 400 are first introduced below.
- FIG. 5(a) and FIG. 5(b) show stereoscopic views of the camera module in some embodiments of the present application.
- FIG. 5(c) shows a cross-sectional view of the camera module along the C-C section in FIG. 5(a) in some embodiments of the present application.
- the camera module 10 includes a lens 100, a chip assembly 200, a motor 300, and the above-mentioned anti-shake mechanism 400.
- the mounting portion 410 and the deformable portion 420 of the anti-shake mechanism 400 together enclose an accommodating space 440, and the lens 100, the chip assembly 200 and the motor 300 are located in the accommodating space 440.
- the deformable portion 420 of the anti-shake mechanism 400 is arranged around the motor 300.
- the motor 300 includes a mounting end 310 and a driving end 320.
- the mounting end 310 of the motor 300 is formed with a cavity 311 extending along the Z-axis direction, and the lens 100 is arranged in the cavity 311.
- the driving end 320 of the motor 300 is connected to the mounting portion 410 of the anti-shake mechanism 400.
- the chip assembly 200 is arranged on the mounting portion 410 of the anti-shake mechanism 400. Exemplarily, the chip assembly 200 is bonded to the mounting portion 410 of the anti-shake mechanism 400.
- the motor 300 drives the mounting portion 410 to move along the X-axis direction, or along the Y-axis direction, or along the X-axis direction and the Y-axis direction at the same time through the driving end 320.
- the mounting portion 410 can drive the chip assembly 200 to move along the X-axis direction, or along the Y-axis direction, or along the X-axis direction and the Y-axis direction relative to the lens 100 to compensate for the shaking of the lens 100, thereby realizing the anti-shake function of the anti-shake mechanism 400.
- the mounting portion 410 will also drive the deformation portion 420 to deform, and the deformation portion 420 can ensure the stability of the movement of the chip assembly 200, further improving the anti-shake performance of the anti-shake mechanism 400.
- the deformation part 420 When assembling the camera module 10, due to the assembly tolerance, the deformation part 420 will deform along the Z-axis direction, thereby interfering with other components of the camera module 10, resulting in an increase in the moving reaction force of the deformation part 420.
- the deformation part 420 interferes with the interference area S1 of the mounting end 310 of the motor 300 shown in FIG5(c), resulting in an increase in the moving reaction force of the deformation part 420.
- the stress relief structure 430 By providing the stress relief structure 430, the deformation part 420 caused by the assembly tolerance can be relieved. The stress generated by the deformation portion 420 is avoided, thereby avoiding the above-mentioned interference problem and reducing the movement reaction force of the deformation portion 420.
- Figures 6(a) to 6(d) show schematic diagrams of stress relief of the deformation part in some embodiments of the present application.
- Figure 6(a) taking the first stress relief structure 431 provided in the first part 421 of the deformation part 420 as an example, before assembly, the deformation part 420 is in a natural state, such as the shape of the deformation part 420 shown in Figure 6(a), at this time, the deformation part 420 is not deformed.
- the stress generated by the assembly tolerance will cause the first part 421 of the deformation part 420 to deform.
- the first part 421 of the deformation part 420 is bent along the Z-axis direction, similar to an arch, and the bent first part 421 will interfere with other components of the camera module (such as a motor), resulting in an increase in the moving reaction force of the first part 421 of the deformation part 420. In other words, the movement of the first part 421 of the deformation part 420 along the Y-axis direction is hindered.
- the first stress relief structure 431 located in the bending area S2 can be disconnected to release stress.
- three first stress relief structures 431 located in the bending area S2 are disconnected by laser.
- one first stress relief structure 431 is close to the upper edge l 1 of the first part 421 of the deformation part 420
- two first stress relief structures 431 are close to the lower edge l 2 of the first part 421 of the deformation part 420.
- the three first stress relief structures 431 are changed from a hole-like structure to a "U"-shaped notch structure, thereby achieving the purpose of stress release.
- the first part 421 of the deformation part 420 changes from the arch shape in FIG6(c) to the “I” shape in FIG6(d).
- the deformation part 420 no longer deforms along the Z-axis direction, thereby avoiding the above-mentioned interference problem, reducing the moving reaction force of the first part 421, and reducing the power consumption of the motor (not shown).
- the first portion 421 of the deformable portion 420 is concave along the Z-axis direction (opposite to the bending deformation direction in FIG. 6 (b)), similar to a "U" shape.
- the first portion 421 of the deformable portion 420 interferes with the mounting portion 410, the reaction force increases, and the thrust of the motor also needs to be greater.
- the above-mentioned interference problem can be avoided by disconnecting several first stress relief structures 431. Exemplarily, three first stress relief structures 431 close to the upper edge l 1 of the first portion 421 and one first stress relief structure 431 close to the lower edge l 2 of the first portion 421 are disconnected.
- the stress relief principle of the second stress relief structure 432 is the same as the stress relief principle of the first stress relief structure 431 , and is not described in detail herein.
- the anti-shake mechanism 400 while realizing the anti-shake function, prevents the deformation part 420 from interfering with other components of the camera module 10 (such as the motor 300) by providing a stress relief structure 430 on the deformation part 420, thereby effectively reducing the moving reaction force when the deformation part 420 moves along the X-axis direction and the Y-axis direction, thereby making the anti-shake angle of the anti-shake mechanism 400 larger and having a wide range of applications.
- the anti-shake mechanism 400 also has the advantages of large design tolerance, low assembly difficulty, high yield rate, stable mechanical properties, etc.
- the stress relief structure 430 is a hole-shaped structure.
- the hole-shaped structure can be any one of a circular hole, an elliptical hole, a rectangular hole, and a slotted hole, and the present application does not limit this.
- the first stress relief structure 431 includes one or more rows of holes spaced apart along the X-axis direction, wherein any two adjacent rows of holes are staggered along the Z-axis direction, so that the first stress relief structure 431 can relieve stress at various positions of the first part 421 while ensuring the strength of the first part 421 of the deformation portion 420.
- the stress can be relieved by the first stress relief structure 431 at the S3 region.
- the stress can be released through the first stress release structure 431 in the S4 region.
- the stress can be released through the first stress release structures 431 in the S3 region and the S4 region at the same time.
- the first stress relief structure 431 is arranged near the edge of the first part 421 of the deformation portion 420 (for example, the upper edge l 1 and the lower edge l 2 of the first part 421 shown in Figure 6(c)).
- the first stress relief structure 431 is arranged in the S 5 area surrounded by the dotted line of the first part 421, so that when the first part 421 of the deformation portion 420 is deformed along the Z-axis direction, the first stress relief structure 431 can be disconnected in time to release stress.
- the second stress relief structure 432 includes one or more rows of holes spaced apart along the Y-axis direction, wherein any two adjacent rows of holes are staggered along the Z-axis direction, so that the second stress relief structure 432 can relieve stress at various positions of the second part 422 while ensuring the strength of the second part 422 of the deformation portion 420.
- the stress relief principle of the second stress relief structure 432 is the same as the stress relief principle of the first stress relief structure 431, and will not be described in detail here.
- the second stress relief structure 432 is arranged near the edges (upper edge and lower edge) of the second part 422 of the deformation portion 420.
- the second stress relief structure 432 is arranged in the S6 area surrounded by the dotted line of the second part 422, so that when the second part 422 of the deformation portion 420 is deformed along the Z-axis direction, the second stress relief structure 432 can be disconnected in time.
- first stress relief structure 431 and the second stress relief structure 432 in the above implementation are merely exemplary illustrations of the present application, and any layout forms of the first stress relief structure 431 and the second stress relief structure 432 that can achieve the above stress relief effect are within the protection scope of the present application.
- the mounting portion 410 may be a printed circuit board (PCB), and the deformable portion 420 may be a flexible printed circuit (FPC).
- the deformable portion 420 is electrically connected to the mounting portion 410 for signal transmission.
- the third portion 423 and the fourth portion 424 are electrically connected to the mounting portion 410
- the signal line 425 is electrically connected to other components (e.g., an image processor).
- the deformable portion 420 transmits the electrical signal formed by the chip assembly 200 mounted on the mounting portion 410 to other components (e.g., an image processor) through the third portion 423, the fourth portion 424, and the signal line 425.
- the following takes the deformation portion 420 as an example of an FPC to describe the deformation portion 420 in detail.
- FIG7 shows a schematic diagram of the structure of the deformation part in some embodiments of the present application.
- the deformation part 420 includes a dielectric layer 426 and a cover layer 427 stacked in sequence along the stacking direction.
- the stacking direction may be the X-axis direction or the Y-axis direction.
- the stacking direction of the first part 421 of the deformation part 420 is the Y-axis direction.
- the stacking direction of the second part 422 of the deformation part 420 is the X-axis direction.
- the following is an exemplary description taking the stacking direction as the Y-axis direction as an example.
- the dielectric layer 426 is formed with a first surface 4261 and a second surface 4262 that are arranged opposite to each other, and the first surface 4261 and the second surface 4262 are respectively provided with a covering layer 427.
- the dielectric layer 426 includes a substrate 4263 and a wiring layer 4264 that are arranged along the stacking direction.
- the substrate 4263 is polyimide (PI) and the wiring layer 4264 is copper foil.
- the wiring layer 4264 can be formed by etching or electroplating on the substrate 4263, with low manufacturing cost and wide application range.
- the moving reaction force of the deformation part 420 is inversely proportional to the deflection deformation amount f of the deformation part 420.
- the moving reaction force of the deformable part 420 decreases by 1 times.
- the moving reaction force of the deformable part 420 decreases by 2 times.
- the deflection deformation f of the deformable part 420 and various parameters of the deformable part 420 satisfy the following relationship:
- f is the deflection deformation of the deformation part 420;
- E is the elastic modulus of the deformation part 420;
- b is the width of the deformation part 420 (that is, the dimension of the deformation part 420 along the Z-axis direction);
- h is the thickness of the deformation part 420 (that is, the dimension of the deformation part 420 along the stacking direction);
- P is the external load on the deformation part 420;
- l is the length of the deformation part 420 (that is, the dimension of the deformation part 420 along the extension direction (shown in the D direction in Figure 4)).
- the deflection deformation amount f of the deformation part 420 is negatively correlated with the elastic modulus E of the deformation part 420 and the thickness h of the deformation part 420, and the movement reaction force of the deformation part 420 is positively correlated with the elastic modulus E of the deformation part 420 and the thickness h of the deformation part 420.
- the covering layer 427 is photosensitive polyimide (Photo Sensitive Poly Imide, PSPI).
- PSPI Photo Sensitive Poly Imide
- the covering layer 427 is coated on the first surface 4261 and the second surface 4262 of the dielectric layer 426 by a coating process.
- the covering layer 427 has the characteristics of being light and thin, and can effectively reduce the thickness h of the deformation part 420, thereby further reducing the moving reaction force of the deformation part 420 and the driving power consumption of the motor, and thus improving the anti-shake performance of the anti-shake mechanism 400.
- FIG8 shows a schematic diagram of the structure of the deformation part in some embodiments.
- the deformation part 420 includes a dielectric layer 426 and a covering layer 427' stacked in sequence along the stacking direction (as shown in the Y direction in FIG8).
- the dielectric layer 426 includes a substrate 4263 and a wiring layer 4264 arranged along the stacking direction
- the covering layer 427' includes a covering film 428 and an adhesive 429 arranged along the stacking direction.
- the covering layer 427' is covered on two surfaces of the wiring layer 4264 that are arranged opposite to each other.
- the covering film 428 is bonded to the two surfaces of the wiring layer 4264 that are arranged opposite to each other through the adhesive 429.
- the adhesive 429 cannot be too thin, so the thickness h of the deformation part 420 is difficult to reduce, resulting in a large movement reaction force of the deformation part 420.
- the dimension of the cover layer 427 along the stacking direction is defined as the thickness d 1 of the cover layer 427
- the dimension of the routing layer 4264 along the stacking direction is defined as the thickness d 2 of the routing layer 4264 .
- the deformation part 420 of the present application uses a covering layer 427 made of photosensitive polyimide material, and the covering layer 427 does not need to be bonded to the medium layer 426 through an adhesive 429, so the thickness d1 of the covering layer 427 is effectively reduced, thereby reducing the thickness h of the deformation part 420 by one third, and reducing the elastic modulus E of the deformation part 420 by 1 times. Based on this, the movement reaction force of the deformation part 420 of the present application is reduced by 4 times.
- the anti-shake mechanism 400 of the present application has a more compact structure, occupies less space, and has a wider range of applications.
- the cover layer 427 While ensuring the compactness of the structure of the anti-shake mechanism 400, the cover layer 427 also needs to effectively isolate water vapor and dust to prevent the wiring layer 4264 from being oxidized and damaged, further improving the service life of the anti-shake mechanism 400.
- the thickness d 1 of the cover layer 427 is greater than or equal to the thickness d 2 of the routing layer 4264 .
- the thickness d1 of the cover layer 427 is ⁇ 3 ⁇ m, which ensures that the anti-shake mechanism 400 has a compact structure and further improves the service life of the anti-shake mechanism 400.
- the thickness d1 of the cover layer 427 is 3 ⁇ m, for another example, the thickness d1 of the cover layer 427 is 4 ⁇ m, and for another example, the thickness d1 of the cover layer 427 is 5 ⁇ m.
- the anti-shake mechanism provided by the present application can release stress when the deformation part is deformed along the Z-axis direction by arranging a stress release mechanism at the deformation part, thereby avoiding interference between the deformation part and other components, thereby reducing the movement reaction force of the anti-shake mechanism and the power consumption of the motor.
- the cover layer of the deformation part adopts photosensitive polyimide material, which effectively reduces the thickness of the deformation part, further reduces the movement reaction force of the anti-shake mechanism, and the anti-shake mechanism has a compact structure and a wide range of applications.
Landscapes
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Studio Devices (AREA)
- Adjustment Of Camera Lenses (AREA)
Abstract
本申请涉及摄像技术领域,特别涉及一种防抖机构、摄像模组及电子设备。防抖机构包括安装部和形变部。其中,安装部能够沿第一方向或第二方向移动。形变部围设于安装部,形变部沿第三方向侧立,形变部的覆盖层为光敏聚酰亚胺。形变部包括相连接的第一部分和第二部分,第一部分沿第一方向延伸,第二部分沿第二方向延伸。第一部分设有第一应力泄放结构,第二部分设有第二应力泄放结构,第一应力泄放结构用于在第一部分沿第三方向发生形变时泄放应力,第二应力泄放结构用于在第二部分沿第三方向发生形变时泄放应力。本申请提供的防抖机构能够在实现防抖功能的情况下,有效减小防抖机构的移动反力和马达功耗,进而提升防抖机构对摄像模组的防抖效果。
Description
本申请要求于2022年10月13日提交中国专利局、申请号为202211262907.6、申请名称为“防抖机构、摄像模组及电子设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本申请涉及摄像技术领域,尤其涉及一种防抖机构、摄像模组及电子设备。
近年来,随着摄像技术领域的快速发展,摄像已经成为生活中不可或缺的一部分。用户对拍摄的要求也越来越高,用户在使用摄像模组进行拍摄时,由于手的抖动或者拍摄对象的抖动,容易导致拍摄图像模糊的问题。目前,摄像模组通常通过防抖机构带动芯片组件移动,以补偿因抖动而产生的位移量,从而获得清晰的图像。但是现有的防抖机构移动时的反力较大,防抖效果有限。
发明内容
本申请的一些实施方式提供了一种防抖机构、摄像模组及电子设备,以下从多个方面介绍本申请,以下多个方面的实施方式和有益效果可互相参考。
本申请的第一方面提供了一种防抖机构,该防抖机构包括:安装部和形变部。其中,安装部能够沿第一方向或第二方向移动。形变部围设于安装部,形变部沿第三方向侧立,形变部包括相连接的第一部分和第二部分,第一部分沿第一方向延伸,第二部分沿第二方向延伸。第一部分设有第一应力泄放结构,第二部分设有第二应力泄放结构,第一应力泄放结构用于在第一部分沿第三方向发生形变时泄放应力,第二应力泄放结构用于在第二部分沿第三方向发生形变时泄放应力。
例如,上述第一方向可以为后文实施例中提及的X轴方向,上述第二方向可以为后文实施例中提及的Y轴方向,上述第三方向可以为后文实施例中提及的Z轴方向。
示例性地,第一方向、第二方向和第三方向相互垂直。
可以理解,上述防抖机构可以应用于摄像模组中,摄像模组可以应用于电子设备中,电子设备可以是但不限于手机、平板电脑或笔记本电脑等具有摄像功能的电子设备中的任意一种,本申请对此不作具体限定。
上述防抖机构,在实现防抖功能的情况下,通过在形变部上设置应力泄放结构,避免形变部与摄像模组的其他部件(例如马达)产生干涉,从而有效降低了形变部沿第一方向和第二方向移动时的移动反力,进而使得防抖机构的防抖角度更大,适用范围广。此外,上述防抖机构还具有设计容差大,组装难度低,良品率高,力学性能稳定等优点。
在上述第一方面一种可能的实现中,第一应力泄放结构包括一排沿第一方向间隔设置的孔。其中,孔可以为圆孔,椭圆孔、矩形孔以及槽形孔中的任意一种,本申请对此不作限制。
在上述第一方面一种可能的实现中,第一应力泄放结构包括至少两排分别沿第一方向间隔设置的孔,任意相邻两排的孔在第三方向错开设置。在确保形变部的第一部分的
强度的同时,使得第一应力泄放结构能够泄放第一部分各个位置的应力。
在上述第一方面一种可能的实现中,第二应力泄放结构包括一排沿第二方向间隔设置的孔。其中,孔可以为圆孔,椭圆孔、矩形孔以及槽形孔中的任意一种,本申请对此不作限制。
在上述第一方面一种可能的实现中,第二应力泄放结构包括至少两排分别沿第二方向间隔设置的孔,任意相邻两排的孔在第三方向错开设置。在确保形变部的第二部分的强度的同时,使得第二应力泄放结构能够泄放第二部分各个位置的应力。
在上述第一方面一种可能的实现中,第一应力泄放结构靠近第一部分的边缘设置。以便于在形变部的第一部分沿第三方向发生形变时,及时断开第一应力泄放结构,泄放第一部分的应力。
在上述第一方面一种可能的实现中,第二应力泄放结构靠近第二部分的边缘设置。以便于在形变部的第二部分沿第三方向发生形变时,及时断开第二应力泄放结构,泄放第二部分的应力。
在上述第一方面一种可能的实现中,形变部包括层叠设置的介质层和覆盖层,其中,介质层沿层叠方向包括相背设置的第一表面和第二表面,第一表面和第二表面分别设有覆盖层,覆盖层由光敏聚酰亚胺制成。
其中,层叠方向为可以为第一方向或第二方向。例如,形变部的第一部分的层叠方向为第二方向。再例如,形变部的第二部分的层叠方向为第一方向。
上述覆盖层具有轻薄的特性,能够有效降低形变部的厚度,从而进一步降低形变部的移动反力和马达的驱动功耗,进而提升防抖机构的防抖性能,使得防抖机构的结构更为紧凑。可以理解,形变部的厚度是指形变部沿层叠方向的尺寸。
在上述第一方面一种可能的实现中,介质层包括沿层叠方向设置的基底和走线层,沿层叠方向,走线层分别设于基底的表面,覆盖层的厚度大于或等于走线层的厚度。
基于此,在确保防抖机构结构的紧凑性的同时,覆盖层还能够有效隔绝水汽和灰尘,避免走线层被氧化和损坏。
在上述第一方面一种可能的实现中,形变部为FPC。形变部与安装部电连接,以进行信号传输,将安装于安装部的芯片组件形成的电信号传输到其他元器件(例如图像处理器)上。
本申请的第二方面提供了一种摄像模组,该摄像模组包括镜头、芯片组件、马达以及上述第一方面和上述第一方面的可能的实现中的任意一种防抖机构。
其中,芯片组件在镜头的光轴方向上与镜头相对设置,马达用于驱动防抖机构,防抖机构能够带动芯片组件相对镜头运动。
本申请的第三方面提供了一种电子设备,该电子设备包括上述第二方面中的摄像模组。
图1(a)示出了本申请一些实施例中的手机1的立体图;
图1(b)示出了本申请一些实施例中的手机1的爆炸图;
图2为本申请一些实施例中摄像模组抖动的拍摄示意图;
图3示出了一些实施例中一种防抖机构结构示意图;
图4(a)和图4(b)示出了本申请实施例提供的防抖机构的立体图;
图5(a)和图5(b)示出了本申请一些实施例中摄像模组的立体图;
图5(c)示出了本申请一些实施例中摄像模组沿图5(a)中C-C剖面的剖视图;
图6(a)至图6(d)至示出了本申请一些实施例中形变部应力泄放示意图;
图7示出了本申请一些实施例中形变部的结构示意图;
图8示出了一些实施例中形变部的结构示意图。
附图标记:1-手机;10-摄像模组;100-摄像头;100'-摄像头;200-芯片组件;300-马达;310-安装端;311-腔体;320-驱动端;400-防抖机构;410-安装部;420-形变部;421-第一部分;422-第二部分;423-第三部分;424-第四部分;425-信号线;426-介质层;4261-第一表面;4262-第二表面;4263-基底;4264-走线层;427-覆盖层;427'-覆盖层;428-覆盖膜;429-胶粘剂;430-应力泄放结构;431-第一应力泄放结构;432-第二应力泄放结构;440-容置空间;4;400a-防抖机构;410a-安装部;420a-形变部;421a-金属线;430a-活动部;20-背壳;21-进光孔;30-中框;40-显示屏;S1-安装端干涉区域;S2-弯曲区域;S3-形变区域;S4-形变区域;S5-第一部分边缘区域;S6-第二部分边缘区域;i-入射光束;P-拍摄物体;P1-图像;P2-图像;l1-第一部分上边缘;l2-第一部分下边缘。
为了使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请作进一步地详细描述。
以下实施例中所使用的术语只是为了描述特定实施例的目的,而并非旨在作为对本申请的限制。如在本申请的说明书和所附权利要求书中所使用的那样,单数表达形式“一个”、“一种”、“所述”、“上述”、“该”和“这一”旨在也包括例如“一个或多个”这种表达形式,除非其上下文中明确地有相反指示。
在本说明书中描述的参考“一个实施例”或“一些实施例”等意味着在本申请的一个或多个实施例中包括结合该实施例描述的特定特征、结构或特点。由此,在本说明书中的不同之处出现的语句“在一个实施例中”、“在一些实施例中”、“在其他一些实施例中”、“在另外一些实施例中”等不是必然都参考相同的实施例,而是意味着“一个或多个但不是所有的实施例”,除非是以其他方式另外特别强调。术语“包括”、“包含”、“具有”及它们的变形都意味着“包括但不限于”,除非是以其他方式另外特别强调。
本申请提供一种电子设备,该电子设备包括至少一组摄像模组,该摄像模组包括镜头、芯片组件、马达和防抖机构。
可以理解,本申请提供的电子设备可以是但不限于手机、平板电脑或笔记本电脑等具有摄像功能的电子设备中的任意一种,本申请对此不作具体限定。为便于描述,下面将以电子设备是手机为例进行详细描述。
图1(a)示出了本申请一些实施例中的手机1的立体图。图1(b)示出了本申请一些实施例中的手机1的爆炸图。为了便于下文描述及理解,下面将结合图1(a)和图1(b)对手机1的X轴方向(作为第一方向)、Y轴方向(作为第二方向)以及Z轴方向(作为第三方向)进行定义。如图1(a)和图1(b)所示,手机1的宽度方为X轴方向,其中,宽度方向可以理解为用户握持的方向;手机1的长度方向为Y轴方向,其中长度
方向可以是显示屏40的长度方向,也可以理解为显示屏40所在平面内与用户握持的方向垂直的方向;手机1的厚度方向为Z轴方向。示例性地,X轴方向、Y轴方向和Z轴方向两两相交。
在本申请一些实现方式中,X轴方向、Y轴方向和Z轴方向两两相互垂直。可以理解,本申请中的相互垂直并非绝对的垂直,由于加工误差和装配误差导致的近似垂直(例如,两结构特征之间的夹角为89.9°)也在本申请中的相互垂直的范围之内。本申请对此不作具体限定,后文对相互垂直的限定不作重复描述。
结合图1(a)和图1(b)可知,在本申请一些实施例中,手机1包括至少一组摄像模组10(图1中(b)示出一组摄像模组10)、背壳20、中框30、显示屏40以及处理器(未图示)。其中,背壳20、中框30以及显示屏40沿Z轴正方向依次布局,且背壳20、中框30以及显示屏40共同形成安装腔(未标示)。摄像头模组10位于该安装腔内,并安装于背壳20、中框30以及显示屏40中的至少一个部件上。
本申请实施例以摄像模组10为后置摄像头为例,手机1的背壳20上形成有进光孔21,摄像模组10包括感光面(未图示),感光面朝向背壳20,且与背壳20的进光孔21位置相对。也就是说,沿Z轴方向,摄像模组10的感光面的投影和进光孔21的投影完全重合或部分重合,进而使得手机1外部的入射光束i能够通过背壳20上的进光孔21进入摄像模组10的内部,并照射至摄像模组10的感光面。基于此,拍摄的景物可通过摄像模组10传送到处理器中进行处理,最终转换成可显示的图像,进而实现手机1的拍摄功能。
可以理解,上述实现方式仅是示出了手机1具体结构的部分示例,其他包括摄像头模组10的手机1也在本申请的保护范围之内,对此不作具体限定。
为了进一步理解本申请的技术方案,下面将简要介绍一些实施例中摄像模组10的结构。
继续参阅图1(b),入射光束i可以沿着Z轴正方向穿过背壳20上的进光孔21射入摄像模组10中。为便于下文描述,现将入射光束i所在的一侧定义为入光侧,将与入光侧相对的一侧定义为出光侧。如图1(b)所示,摄像模组10包括镜头100、芯片组件200(或称“图像传感器组件”)以及马达300。其中,马达300形成有沿Z轴方向延伸的腔体(即,后文所提及的马达300的腔体311),镜头100设于腔体311内。芯片组件200设于镜头100的出光侧。入射光束i从镜头100的入光侧进入镜头100,再从镜头100的出光侧射出镜头100,射出镜头100的入射光束i到达芯片组件200处进行成像。
用户利用手机1拍照时,常常会由于手部握持不稳或拍摄对象抖动而使手机1中的摄像模组10产生抖动,导致拍摄出的图像模糊不清。图2为本申请一些实施例中摄像模组抖动的拍摄示意图。如图2所示,在抖动之前,拍摄物体P的的光线穿过镜头100到达芯片组件200,上述物体P在芯片组件200上形成图像P1。若拍摄过程中,摄像模组10的镜头100因抖动而产生位移,例如图2所示,镜头100因抖动沿X轴正方向(图2中A方向所示)移动,镜头100移动至虚线部分所示的镜头100'处。此时,上述物体P在芯片组件200上形成图像P2例如图2中示出的虚线图像P2。因此,手机1拍摄的图像会出现重影模糊的问题,影响摄像模组10的成像效果。
为此,如图1(b)所示,摄像模组10还包括防抖机构400,防抖机构400与芯片
组件200相连,通过防抖机构400来调节芯片组件200的位置以实现防抖功能。具体地,通过调节芯片组件200的位置,以补偿镜头100的抖动量,从而将由于抖动而偏移的成像位置,补偿至抖动前在芯片组件200上的位置,以提升成像效果,避免出现拍摄图像模糊的现象。示例性地,结合图1(b)和图2可知,当镜头100沿X轴正方向发生抖动时,防抖机构400能够带动芯片组件200沿X轴负方向(图2中B方向所示)移动,以补偿镜头100的抖动,进而确保摄像模组10拍摄出来的图像清晰。
为了实现防抖机构对摄像模组的防抖,目前主要包括以下几种防抖机构。
在一些应用场景下,防抖机构为平面式防抖机构。图3示出了一些实施例中一种防抖机构结构示意图。如图3所示,防抖机构400a包括安装部410a、形变部420a以及活动部430a。其中,安装部410a和活动部430a均为框状,安装部410a围设于活动部430a四周,安装部410a和活动部430a通过形变部420a相连接。形变部420a由多条金属线421a并列排布而成。多条金属线421a能够沿着X轴方向和Y轴方向摆动,因此,形变部420a能够沿X轴方向和Y轴方向发生形变,从而带动活动部430a相对于安装部410a沿X轴方向和Y轴方向运动。
防抖机构400a的安装部410a与摄像模组的镜头(未图示)固定连接。防抖机构400a的活动部430a与芯片组件(未图示)固定连接。防抖机构400a的形变部420a能够根据拍摄画面的抖动情况,对应沿X轴方向和Y轴方向发生形变,从而带动安装于活动部430a上的芯片组件相对于镜头沿X轴方向和Y轴方向运动,进而实现防抖机构400a的防抖功能,避免上述拍照模糊的问题。
根据上述防抖机构400a的结构不难发现,多条并列排布的金属线421a只能沿着金属线421a排布的方向(或称“线宽方向“)摆动,也就是说防抖机构400a的形变部420a只能沿X轴方向和Y轴方向移动,因此形变部420a的移动反力较大,导致芯片组件的位移有限,防抖机构400a的防抖角度小。
在另一些应用场景下,防抖机构为直立式防抖机构。该防抖机构包括安装部和形变部。其中,形变部围设于安装部的四周,安装部和形变部共同形成容置空间,镜头、芯片组件以及马达位于该容置空间内。其中,芯片组件设于防抖机构的安装部上,马达的安装端与镜头相连,马达的驱动端与防抖机构的安装部相连,马达的驱动端能够驱动安装部运动,从而使得安装部带动形变部和芯片组件运动,以补偿镜头的抖动,进而实现防抖机构对摄像模组的防抖。该防抖机构的组装难度较大,由于组装公差,防抖机构的形变部容易与摄像模组的其他部件(例如马达)发生干涉,从而导致防抖机构的形变部的移动反力增大,防抖机构的防抖功能失效。
综上,目前的摄像模组中存在防抖机构的形变部的移动反力较大的问题,为了提升防抖机构对摄像模组的防抖效果,需要优化防抖机构的结构。
为解决上述问题,本申请提供一种防抖机构。本申请提供的防抖机构通过开设应力泄放结构,能够在形变部发生干涉时及时泄放应力,进而降低形变部的移动反力。下面将结合附图详细描述。
图4(a)和图4(b)示出了本申请实施例提供的防抖机构的立体图。结合图4(a)和图4(b)可知,防抖机构400包括安装部410、形变部420以及应力泄放结构430。
其中,安装部410分布于XOY平面内,示例性地,安装部410能够沿X轴方向和Y
轴方向移动。
本申请实施例中,形变部420为带状结构,形变部420围设于安装部410的四周,并沿Z轴方向侧立。示例性地,形变部420包括第一部分421、第二部分422、第三部分423、第四部分424以及信号线425。第一部分421、第二部分422、第三部分423、第四部分424依次连接,形变部420类似呈四边形状。其中,形变部420的第一部分421沿X轴方向延伸,形变部420的第二部分422沿Y轴方向延伸,形变部420的第三部分423沿X轴方向延伸,形变部420的第四部分424沿Y轴方向延伸。可以理解,在形变部420自然状态下(即,形变部420不发生形变的状态下),形变部420的第一部分421、第二部分422、第三部分423以及第四部分424所在的平面分别与安装部410所在的平面互相垂直。沿Z轴方向,信号线425从第三部分423远离安装部410的边缘处延伸出。
应力泄放结构430设于形变部420上。具体地,应力泄放结构430包括第一应力泄放结构431以及第二应力泄放结构432。第一应力泄放结构431设于形变部420的第一部分421,第一应力泄放结构431用于在第一部分421沿Z轴方向发生形变时泄放应力;第二应力泄放结构432设于形变部420的第二部分422,第二应力泄放结构432用于在第二部分422沿Z轴方向发生形变时泄放应力。
示例性地,上述的第三部分423、第四部分424以及信号线425用于实现防抖机构400的信号传输功能,将会在后文进行详细描述。以下先介绍防抖机构400的防抖和应力泄放功能。
为便于理解本申请提供的防抖机构的防抖原理和应力泄放原理,下面结合摄像模组进行描述。
图5(a)和图5(b)示出了本申请一些实施例中摄像模组的立体图。图5(c)示出了本申请一些实施例中摄像模组沿图5(a)中C-C剖面的剖视图。结合图4至图5(c)可知,摄像模组10包括镜头100、芯片组件200、马达300以及上述防抖机构400。
防抖机构400的安装部410和形变部420共同围成容置空间440,镜头100、芯片组件200以及马达300位于容置空间440内。其中,防抖机构400的形变部420围设于马达300的四周。马达300包括安装端310和驱动端320。马达300的安装端310形成有沿Z轴方向延伸的腔体311,镜头100设于腔体311内。马达300的驱动端320与防抖机构400的安装部410相连。芯片组件200设于防抖机构400的安装部410上,示例性地,芯片组件200与防抖机构400的安装部410粘接。
基于此,在摄像模组10的镜头100发生抖动时,马达300通过驱动端320驱动安装部410沿X轴方向移动,或沿Y轴方向移动,或者同时沿X轴方向和Y轴方向移动,相应地,安装部410能够带动芯片组件200相对于镜头100沿X轴方向移动,或沿Y轴方向移动,或者同时沿X轴方向和Y轴方向移动,以弥补镜头100的抖动,进而实现防抖机构400的防抖功能。同时,安装部410还会带动形变部420发生形变,形变部420能够确保芯片组件200移动的稳定性,进一步提升防抖机构400的防抖性能。
在组装摄像模组10时,因为存在组装公差,形变部420会沿Z轴方向发生形变,从而与摄像模组10的其他部件发生干涉,导致形变部420的移动反力增大。例如,形变部420与图5(c)示出的马达300的安装端310的干涉区域S1发生干涉,导致形变部420的移动反力增大。通过设置应力泄放结构430,能够泄放形变部420因组装公差而产
生的应力,从而避免上述干涉问题,降低形变部420的移动反力。
具体地,图6(a)至图6(d)至示出了本申请一些实施例中形变部应力泄放示意图。如图6(a)所示,以设于形变部420的第一部分421的第一应力泄放结构431为例,在组装之前,形变部420处于自然状态,例如图6(a)所示的形变部420的形态,此时,形变部420未发生形变。在组装过程中,由于组装公差产生的应力会导致形变部420的第一部分421发生形变,例如图6(b)所示,形变部420的第一部分421沿Z轴方向弯曲,类似呈拱形,弯曲的第一部分421会与摄像模组的其他部件(例如马达)发生干涉,导致形变部420的第一部分421的移动反力增大。也就是说,形变部420的第一部分421沿Y轴方向的运动受阻。
此时,可以将位于弯曲区域S2内的第一应力泄放结构431断开,以泄放应力,例如图6(c)所示,在一些实施例中,通过激光将位于弯曲区域S2内的三个第一应力泄放结构431断开。示例性地,上述三个第一应力泄放结构431中,一个第一应力泄放结构431靠近形变部420的第一部分421的上边缘l1,两个第一应力泄放结构431靠近形变部420的第一部分421的下边缘l2。上述三个第一应力泄放结构431从孔状结构变成类似“U”形缺口结构,从而达到泄放应力的目的。
上述三个第一应力泄放结构431将应力泄放之后,形变部420的第一部分421由图6(c)的拱形变成了图6(d)中的“一”字形。也就是说,上述三个第一应力泄放结构431将应力泄放之后,形变部420不再沿Z轴方向发生形变,从而避免上述干涉问题,能够减小第一部分421的移动反力,降低马达(未图示)功耗。
在另一些实施例中,形变部420的第一部分421沿Z轴方向凹陷(与图6中(b)的弯曲变形方向相反),类似呈“U”形,此时形变部420的第一部分421与安装部410产生干涉,反力增大,马达的推力也需要更大。同理,可以通过断开若干个第一应力泄放结构431,以避免上述干涉问题。示例性地,断开三个靠近第一部分421的上边缘l1的第一应力泄放结构431,以及一个靠近第一部分421的下边缘l2的第一应力泄放结构431。
第二应力泄放结构432的应力泄放原理与上述第一应力泄放结构431的应力泄放原理相同,在此不作赘述。
上述防抖机构400,在实现防抖功能的同时,通过在形变部420上开设应力泄放结构430,避免形变部420与摄像模组10的其他部件(例如马达300)产生干涉,从而有效降低了形变部420沿X轴方向和Y轴方向移动时的移动反力,进而使得防抖机构400的防抖角度更大,适用范围广。此外,上述防抖机构400还具有设计容差大,组装难度低,良品率高,力学性能稳定等优点。
在本申请一些实施例中,应力泄放结构430为孔状结构。示例性地,孔状结构可以为圆孔,椭圆孔、矩形孔以及槽形孔中的任意一种,本申请对此不作限制。
在其中一些实现方式中,第一应力泄放结构431包括一排或多排沿X轴方向间隔设置的孔,其中,任意相邻两排的孔沿Z轴方向错开分布,在确保形变部420的第一部分421的强度的同时,使得第一应力泄放结构431能够泄放第一部分421各个位置的应力。示例性地,如图6(a)所示,在一些实施例中,当第一部分421的S3区域因应力作用而产生形变,可以通过S3区域处的第一应力泄放结构431泄放应力。在另一些实施例中,
当第一部分421的S4区域处因应力作用而产生沿Z轴方向的形变,可以通过S4区域处的第一应力泄放结构431泄放应力。或者,在其它一些实施例中,当第一部分421的S3区域和S4区域同时受到应力作用而产生沿Z轴方向的形变,可以同时通过S3区域和S4区域处的第一应力泄放结构431泄放应力。
在其中一些实现方式中,第一应力泄放结构431靠近形变部420的第一部分421的边缘(例如图6(c)示出的第一部分421的上边缘l1和下边缘l2)设置,例如图4所示,第一应力泄放结构431设于第一部分421虚线围成的S5区域,以便于在形变部420的第一部分421沿Z轴方向发生形变时,及时断开第一应力泄放结构431,泄放应力。
在其中一些实现方式中,第二应力泄放结构432包括一排或多排沿Y轴方向间隔设置的孔,其中,任意相邻两排的孔沿Z轴方向错开分布,在确保形变部420的第二部分422的强度的同时,使得第二应力泄放结构432能够泄放第二部分422各个位置的应力。第二应力泄放结构432的应力泄放原理与上述第一应力泄放结构431的应力泄放原理相同,在此不作赘述。
在其中一些实现方式中,第二应力泄放结构432靠近形变部420的第二部分422的边缘(上边缘和下边缘)设置,例如图4所示,第二应力泄放结构432设于第二部分422虚线围成的S6区域,以便于在形变部420的第二部分422沿Z轴方向发生形变时,及时断开第二应力泄放结构432。
可以理解,上述实现方式中第一应力泄放结构431和第二应力泄放结构432的布局位置仅为本申请的示例性说明,任何能够实现上述应力泄放效果的第一应力泄放结构431和第二应力泄放结构432的布局形式,均在本申请的保护范围之内。
在一些实施例中,上述的安装部410可以为印制电路板(Printed Circuit Board,PCB),形变部420可以为柔性电路板(Flexible Printed Circuit,FPC)。形变部420与安装部410电连接,以进行信号传输。示例性地,上述第三部分423和第四部分424与安装部410电连接,信号线425与其他元器件(例如图像处理器)电连接,形变部420通过上述第三部分423、第四部分424以及信号线425,将安装于安装部410的芯片组件200形成的电信号传输到其他元器件(例如图像处理器)上。
下面以形变部420为FPC作为示例详细介绍形变部420。
图7示出了本申请一些实施例中形变部的结构示意图。如图7所示,形变部420包括沿层叠方向依次层叠设置的介质层426和覆盖层427。其中,层叠方向可以为X轴方向或Y轴方向,例如图4所示,形变部420的第一部分421的层叠方向为Y轴方向,再例如图4所示,形变部420的第二部分422的层叠方向为X轴方向。以下以层叠方向为Y轴方向为例进行示例性说明。
具体地,沿层叠方向(即Y轴方向),介质层426形成有相背设置的第一表面4261和第二表面4262,第一表面4261和第二表面4262分别设有覆盖层427。其中,介质层426包括沿层叠方向设置的基底4263和走线层4264。示例性地,沿层叠方向,基底4263的相反的两个表面分别覆盖有走线层4264。本申请一些实施例中,基底4263为聚酰亚胺(polyimide,PI),走线层4264为铜箔。示例性地,走线层4264可以通过在基底4263上刻蚀或电镀的成型方式成型,制作成本低,适用范围广。
形变部420的移动反力与形变部420的挠度形变量f成反比例关系。例如,形变部
420的挠度形变量f增加1倍,形变部420的移动反力随之降低1倍。再例如,形变部420的挠度形变量f增加2倍,形变部420的移动反力随之降低2倍。其中,形变部420的挠度形变量f与形变部420的各项参数满足如下关系式:
其中,f为形变部420的挠度变形量;E为形变部420的弹性模量;b为形变部420的宽度(即,形变部420沿Z轴方向的尺寸);h为形变部420的厚度(即,形变部420沿层叠方向的尺寸);P为形变部420受到的外界载荷;l为形变部420的长度(即,形变部420沿延伸方向(图4中的D方向所示)的尺寸)。
综上可知,形变部420的挠度形变量f与形变部420的弹性模量E以及形变部420的厚度h为负相关关系,形变部420的移动反力与形变部420的弹性模量E以及形变部420的厚度h为正相关的关系。也就是说,形变部420的弹性模量E以及形变部420的厚度h越大,形变部420的挠度形变量f越小,移动反力随之越大;形变部420的弹性模量E以及形变部420的厚度h越小,形变部420的挠度形变量f越大,移动反力随之越小。
为进一步降低形变部420的厚度h,进而降低形变部420的移动反力。在本申请一些实施例中,覆盖层427为光敏聚酰亚胺(Photo Sensitive Poly Imide,PSPI)。示例性地,上述覆盖层427通过涂布工艺覆设于介质层426的第一表面4261和第二表面4262。上述覆盖层427具有轻薄的特性,能够有效降低形变部420的厚度h,从而进一步降低形变部420的移动反力和马达的驱动功耗,进而提升防抖机构400的防抖性能。
例如,图8示出了一些实施例中形变部的结构示意图。如图8所示,在其他一些技术方案中,形变部420包括沿层叠方向(图8中Y方向所示)依次层叠的介质层426和覆盖层427'。其中,介质层426包括沿层叠方向设置的基底4263和走线层4264,覆盖层427'包括沿层叠方向设置的覆盖膜428和胶粘剂429。沿层叠方向,覆盖层427'覆设于走线层4264相背设置的两个表面上。示例性地,覆盖膜428通过胶粘剂429与走线层4264相背设置的两个表面粘接。为确保覆盖膜428与走线层4264能够稳固粘接,胶粘剂429不能过薄,因此,形变部420的厚度h难以降低,从而导致形变部420的移动反力大。
继续参阅图7、图8以及上式(1),为便于描述,现将覆盖层427沿层叠方向的尺寸定义为覆盖层427的厚度d1,将走线层4264沿层叠方向的尺寸定义为走线层4264的厚度d2。
与现有技术方案相比,本申请的形变部420采用光敏聚酰亚胺材质的覆盖层427,覆盖层427无需通过胶粘剂429与介质层426粘接,因此覆盖层427的厚度d1有效减小,进而使得形变部420的厚度h降低了三分之一,形变部420的弹性模量E降低1倍,基于此,本申请的形变部420的移动反力降低了4倍。此外,与现有技术相比,本申请的防抖机构400的结构更为紧凑,占用空间更小,适用范围更大。
在确保防抖机构400结构的紧凑性的同时,覆盖层427还需要有效隔绝水汽和灰尘,以避免走线层4264被氧化和损坏,进一步提升防抖机构400的使用寿命。因此,在本申
请的实施例中,覆盖层427的厚度d1大于等于走线层4264的厚度d2。
在其中一些实现方式中,覆盖层427的厚度d1≥3μm,在确保防抖机构400结构紧凑的同时,也进一步提升了防抖机构400的使用寿命。例如,覆盖层427的厚度d1为3μm,再例如,覆盖层427的厚度d1为4μm,再例如,覆盖层427的厚度d1为5μm。
综上,本申请提供的防抖机构通过在形变部处设置应力泄放机构,能够在形变部沿Z轴方向发生形变时泄放应力,从而避免形变部与其他部件产生干涉,进而减小了防抖机构的移动反力和马达功耗。同时,形变部的覆盖层采用光敏聚酰亚胺材料,有效降低了形变部的厚度,进一步减小了防抖机构的移动反力,防抖机构结构紧凑,适用范围广。
Claims (10)
- 一种防抖机构,其特征在于,所述防抖机构包括安装部和形变部;所述安装部能够沿第一方向或第二方向移动;所述形变部围设于所述安装部,所述形变部沿第三方向侧立,所述形变部包括相连接的第一部分和第二部分,所述第一部分沿所述第一方向延伸,所述第二部分沿所述第二方向延伸;所述第一部分设有第一应力泄放结构,所述第二部分设有第二应力泄放结构,所述第一应力泄放结构用于在所述第一部分沿所述第三方向发生形变时泄放应力,所述第二应力泄放结构用于在所述第二部分沿所述第三方向发生形变时泄放应力;其中,所述第一应力泄放机构包括一排沿第一方向间隔设置的第一孔,各个所述第一孔与所述第一部分的第一侧边间隔设置,并且,各个所述第一孔的孔壁能够被断开,以在所述第一侧边形成缺口,从而在所述第一部分发生沿所述第三方向的形变时泄放应力。
- 根据权利要求1所述的防抖机构,其特征在于,所述第一应力泄放结构包括至少两排分别沿所述第一方向间隔设置的第一孔,任意相邻两排的所述第一孔在所述第三方向错开设置。
- 根据权利要求1所述的防抖机构,其特征在于,所述第二应力泄放结构包括一排沿所述第二方向间隔设置的第二孔。
- 根据权利要求1所述的防抖机构,其特征在于,所述第二应力泄放结构包括至少两排分别沿所述第二方向间隔设置的第二孔,任意相邻两排的所述第二孔在所述第三方向错开设置。
- 根据权利要求1至4任一项所述的防抖机构,其特征在于,所述第二应力泄放结构靠近所述第二部分的边缘设置。
- 根据权利要求1至4任一项所述的防抖机构,其特征在于,所述形变部包括层叠设置的介质层和覆盖层,其中,所述介质层沿层叠方向包括相背设置的第一表面和第二表面,所述第一表面和所述第二表面分别设有所述覆盖层,所述覆盖层由光敏聚酰亚胺制成。
- 根据权利要求6所述的防抖机构,其特征在于,所述介质层包括沿所述层叠方向设置的基底和走线层,沿所述层叠方向,所述走线层分别设于所述基底的表面;所述覆盖层的厚度大于或等于所述走线层的厚度。
- 根据权利要求1至4任一项所述的防抖机构,其特征在于,所述形变部为FPC。
- 一种摄像模组,其特征在于,所述摄像模组包括镜头、芯片组件、马达以及权利要求1至8任一项所述的防抖机构;其中,所述芯片组件在所述镜头的光轴方向上与所述镜头相对设置,所述马达用于驱动所述防抖机构,所述防抖机构能够带动所述芯片组件相对所述镜头运动。
- 一种电子设备,其特征在于,包括权利要求9所述的摄像模组。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211262907.6 | 2022-10-13 | ||
CN202211262907.6A CN116033267B (zh) | 2022-10-13 | 2022-10-13 | 防抖机构、摄像模组及电子设备 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024078152A1 true WO2024078152A1 (zh) | 2024-04-18 |
Family
ID=86078406
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2023/114714 WO2024078152A1 (zh) | 2022-10-13 | 2023-08-24 | 防抖机构、摄像模组及电子设备 |
Country Status (2)
Country | Link |
---|---|
CN (2) | CN116033267B (zh) |
WO (1) | WO2024078152A1 (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116033267B (zh) * | 2022-10-13 | 2023-10-24 | 荣耀终端有限公司 | 防抖机构、摄像模组及电子设备 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090266586A1 (en) * | 2005-09-14 | 2009-10-29 | Nec Corporation | Printed circuit board and semiconductor package |
CN213028255U (zh) * | 2020-09-23 | 2021-04-20 | 东莞市亚登电子有限公司 | 感光芯片的电路结构及摄像模块和电子设备 |
CN114257716A (zh) * | 2020-09-25 | 2022-03-29 | 维沃移动通信有限公司 | 防抖模组、摄像模组和电子设备 |
CN114496350A (zh) * | 2020-10-23 | 2022-05-13 | 荣耀终端有限公司 | 一种电极、电子器件和装置 |
CN115016191A (zh) * | 2021-09-24 | 2022-09-06 | 新思考电机有限公司 | 带电路防抖平面动框、透镜驱动装置和摄像装置 |
CN116033267A (zh) * | 2022-10-13 | 2023-04-28 | 荣耀终端有限公司 | 防抖机构、摄像模组及电子设备 |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101684181B (zh) * | 2008-09-26 | 2011-12-14 | 比亚迪股份有限公司 | 一种光敏聚酰亚胺及其柔性线路板 |
CN205566782U (zh) * | 2016-02-22 | 2016-09-07 | 江西联星显示创新体有限公司 | 柔性电路板 |
CN206412156U (zh) * | 2016-12-20 | 2017-08-15 | 昆山骏鼎达电子科技有限公司 | 一种新式自平衡冲击力硅胶热缩套管 |
CN110958761A (zh) * | 2018-09-27 | 2020-04-03 | 北京小米移动软件有限公司 | 柔性电路板、终端设备 |
CN210242534U (zh) * | 2019-06-21 | 2020-04-03 | 无锡宏盛换热器制造股份有限公司 | 带有应力释放槽的散热器盖板结构 |
CN113055554B (zh) * | 2019-12-26 | 2023-01-10 | 华为技术有限公司 | 一种摄像头组件及电子设备 |
CN114449158B (zh) * | 2020-11-06 | 2023-08-18 | 宁波舜宇光电信息有限公司 | 光学防抖摄像模组 |
CN214045750U (zh) * | 2020-11-06 | 2021-08-24 | 广东海德亚科技有限公司 | 柔性电路板和摄像头模组 |
CN112965318B (zh) * | 2021-03-02 | 2022-07-15 | 维沃移动通信有限公司 | 基于图像传感器的防抖模组、镜头模组和电子设备 |
CN113259568A (zh) * | 2021-05-20 | 2021-08-13 | 江西晶浩光学有限公司 | 一种电路板组件、摄像模组及电子设备 |
CN115016192B (zh) * | 2021-09-24 | 2023-12-26 | 新思考电机有限公司 | 带电路防抖立体动框、透镜驱动装置和摄像装置 |
CN114513606B (zh) * | 2022-01-25 | 2023-10-24 | Oppo广东移动通信有限公司 | 摄像模组及电子设备 |
-
2022
- 2022-10-13 CN CN202211262907.6A patent/CN116033267B/zh active Active
- 2022-10-13 CN CN202311470221.0A patent/CN117676335A/zh active Pending
-
2023
- 2023-08-24 WO PCT/CN2023/114714 patent/WO2024078152A1/zh unknown
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090266586A1 (en) * | 2005-09-14 | 2009-10-29 | Nec Corporation | Printed circuit board and semiconductor package |
CN213028255U (zh) * | 2020-09-23 | 2021-04-20 | 东莞市亚登电子有限公司 | 感光芯片的电路结构及摄像模块和电子设备 |
CN114257716A (zh) * | 2020-09-25 | 2022-03-29 | 维沃移动通信有限公司 | 防抖模组、摄像模组和电子设备 |
CN114496350A (zh) * | 2020-10-23 | 2022-05-13 | 荣耀终端有限公司 | 一种电极、电子器件和装置 |
CN115016191A (zh) * | 2021-09-24 | 2022-09-06 | 新思考电机有限公司 | 带电路防抖平面动框、透镜驱动装置和摄像装置 |
CN116033267A (zh) * | 2022-10-13 | 2023-04-28 | 荣耀终端有限公司 | 防抖机构、摄像模组及电子设备 |
Also Published As
Publication number | Publication date |
---|---|
CN116033267A (zh) | 2023-04-28 |
CN117676335A (zh) | 2024-03-08 |
CN116033267B (zh) | 2023-10-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20190237380A1 (en) | Imaging unit and imaging apparatus | |
EP2496988B1 (en) | Camera module with fold-over flexible circuit and cavity substrate | |
WO2024078152A1 (zh) | 防抖机构、摄像模组及电子设备 | |
TWI830903B (zh) | 感光元件驅動機構 | |
WO2021104402A1 (zh) | 一种摄像头模组及电子设备 | |
KR20230170763A (ko) | 촬영 장치 및 전자기기 | |
US11895793B2 (en) | Image pickup unit and imaging apparatus | |
CN114531523A (zh) | 光学防抖摄像模组 | |
WO2024104119A1 (zh) | 镜头马达、摄像模组以及电子设备 | |
WO2023124783A1 (zh) | 摄像组件和电子设备 | |
CN215301034U (zh) | 线路板组件、芯片模组、摄像模组及电子设备 | |
WO2019077990A1 (ja) | 基板積層体、および、撮像装置 | |
TW202243464A (zh) | 相機模組 | |
CN109525690B (zh) | 摄像头组件及电子装置 | |
WO2023072133A1 (zh) | 光学防抖装置、摄像头模组及电子设备 | |
CN113497868A (zh) | 感光组件、摄像头模组及电子设备 | |
CN215581381U (zh) | 线路板组件、摄像模组及电子设备 | |
US20230371170A1 (en) | Camera module | |
WO2024063522A1 (ko) | 카메라 모듈 및 광학기기 | |
WO2022147839A1 (zh) | 线路板组件、摄像头模组及电子设备 | |
WO2022241684A1 (zh) | 一种电路板组件、摄像模组及电子设备 | |
TWI805404B (zh) | 鏡頭模組及電子裝置 | |
WO2023169291A1 (zh) | 一种摄像模组及电子设备 | |
CN214544470U (zh) | 一种潜望式摄像模组及电子设备 | |
CN217283086U (zh) | 电路板、底座、摄像模组及电子设备 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23876357 Country of ref document: EP Kind code of ref document: A1 |