WO2024077870A1 - 盐湖自运行的提锂装置 - Google Patents

盐湖自运行的提锂装置 Download PDF

Info

Publication number
WO2024077870A1
WO2024077870A1 PCT/CN2023/082183 CN2023082183W WO2024077870A1 WO 2024077870 A1 WO2024077870 A1 WO 2024077870A1 CN 2023082183 W CN2023082183 W CN 2023082183W WO 2024077870 A1 WO2024077870 A1 WO 2024077870A1
Authority
WO
WIPO (PCT)
Prior art keywords
partition
plate
fixedly connected
reaction tank
wall
Prior art date
Application number
PCT/CN2023/082183
Other languages
English (en)
French (fr)
Inventor
余海军
谢英豪
李爱霞
张学梅
李长东
Original Assignee
广东邦普循环科技有限公司
湖南邦普循环科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东邦普循环科技有限公司, 湖南邦普循环科技有限公司 filed Critical 广东邦普循环科技有限公司
Publication of WO2024077870A1 publication Critical patent/WO2024077870A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B26/00Obtaining alkali, alkaline earth metals or magnesium
    • C22B26/10Obtaining alkali metals
    • C22B26/12Obtaining lithium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/42Treatment or purification of solutions, e.g. obtained by leaching by ion-exchange extraction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the present application relates to the technical field of salt lake brine processing equipment, for example, to a self-operating lithium extraction device in a salt lake.
  • Lithium has many excellent physical and chemical properties. Its functions and uses are very wide. It is considered to be "the energy metal that promotes the progress of the world". Lithium products were originally mainly used in the military. With the rapid development of new energy, metallurgy, aerospace, glass manufacturing and other industries, people's demand for lithium has increased year by year, and the development of lithium extraction technology has also received increasing attention. About 80% of lithium resources are contained in salt lake brine.
  • the composition of salt lake brine is complex and contains a large amount of metal and non-metal elements.
  • the methods for extracting lithium from salt lake brine include precipitation, calcination leaching, solvent extraction, membrane separation and adsorption. Among them, the adsorption method has the characteristics of simple process, high recovery rate and environmental friendliness, and is the method with the most application prospects.
  • the continuous ion exchange device for extracting lithium includes an operating base and a plurality of adsorption columns, the operating base includes an adsorption zone, a elution zone and a desorption zone, and the plurality of adsorption columns are arranged on the operating base and distributed in the adsorption zone, the elution zone and the desorption zone.
  • the adsorption column in the adsorption zone is connected to the raw material liquid inlet pipe, the adsorption column in the elution zone is connected to the elution liquid inlet pipe, and the adsorption column in the desorption zone is connected to the desorption liquid inlet pipe.
  • the positions of the adsorption zone, the elution zone and the desorption zone on the operating base are alternated in sequence.
  • the salt lake lithium extraction device treats the lithium ions in the salt lake brine by adsorption method, it usually processes a large amount of salt lake brine at a time, and then adds adsorbents to bind the lithium ions.
  • the adsorption reaction between the brine and the adsorbent is slow, and the brine and the adsorbent are not easy to be fully mixed. It takes a long time to wait for the reaction, and the efficiency of the brine lithium extraction processing is low.
  • the present application provides a self-operating lithium extraction device for a salt lake to solve the problem that when a salt lake lithium extraction device treats lithium ions in salt lake brine by an adsorption method, a large amount of salt lake brine is usually processed at a time, and then an adsorbent is added to bind the lithium ions.
  • adsorption reaction between the brine and the adsorbent is slow, the brine and the adsorbent are not easy to be fully mixed, and a long time is required to wait for the reaction, resulting in low efficiency of lithium extraction from the brine.
  • the present application provides a self-operating lithium extraction device for a salt lake, comprising an adsorption reaction mechanism, a feeding mechanism and a supporting mechanism, wherein the feeding mechanism is connected to the top of the adsorption reaction mechanism, and the supporting mechanism is fixedly connected to the bottom of the adsorption reaction mechanism.
  • the adsorption reaction mechanism comprises a reaction tank, and a limiting plate is fixedly connected to the inner wall of the reaction tank.
  • a first partition is arranged inside the reaction tank, and a second partition is arranged below the first partition.
  • a fixed sleeve is connected through the center of the top surface of the first partition and the second partition, and an outer plate is fixedly connected to one side of the fixed sleeve.
  • the bottom surface of the reaction tank is fixed.
  • a protective shell is connected, a servo motor is fixedly installed inside the protective shell, a screw is fixedly connected to the shaft end of the servo motor, the top end of the screw passes through the interior of the fixed sleeve and is rotatably connected to a fixed support plate, one end of the fixed support plate is fixedly connected to the inner wall of the reaction tank, a telescopic groove is provided inside the outer plate, a second electric telescopic rod is fixedly installed inside the telescopic groove, one end of the second electric telescopic rod is fixedly connected to a tooth plate, one side of the tooth plate is meshed with the screw, a limit block is provided on one side of the tooth plate, and the bottom end of the limit block is fixedly connected to the inner wall of the telescopic groove.
  • a bottom plate is provided below the second partition plate, the outer wall of the bottom plate is fixedly connected to the inner wall of the reaction tank, the top surface of the bottom plate is provided with a guide groove, and the bottom surface of the inner wall of the guide groove is penetrated by a discharge port.
  • a first discharge pipe is disposed through the bottom outer wall of the reaction tank, a second discharge pipe is disposed below the first discharge pipe, and one end of the second discharge pipe penetrates the outer wall of the reaction tank and communicates with the interior of the discharge port.
  • the feeding mechanism includes a feed port, which is fixedly connected to the top surface of the reaction tank, and the top surface of the feed port is movably connected with a connecting flange, and the connecting flange and the feed port are fixedly connected by bolts, and the top surface of the connecting flange is connected to a sealing baffle, and a brine delivery pipe is penetrated through the top surface of the sealing baffle, and a feed pipe is provided on one side of the brine delivery pipe, and the bottom end of the feed pipe penetrates the top surface of the sealing baffle and is connected to the interior of the reaction tank.
  • the support mechanism includes a fixed ring plate, the inner wall of the fixed ring plate is fixedly connected to the outer wall of the reaction tank, the bottom surface of the fixed ring plate is fixedly connected to a support column, and the top surface of the fixed ring plate is fixedly installed with a control box.
  • the outer sleeve of the screw rod is provided with a telescopic bellows, and the telescopic bellows is fixedly connected between the fixed support plate, the fixed sleeve and the bottom plate.
  • the top surfaces of the first partition and the second partition are both provided with drainage ports, and a movable cover plate is provided above the drainage port.
  • the bottom surface of the movable cover plate is movably connected to the outer walls of the first partition and the second partition, and a flexible connecting plate is fixedly connected to one side of the movable cover plate, and one end of the flexible connecting plate is fixedly connected to the top surfaces of the first partition and the second partition.
  • a first electric telescopic rod is fixedly mounted on the top surface of the second partition.
  • the first electric telescopic rod is arranged below the movable cover plate.
  • the top surfaces of the first partition plate and the second partition plate are both provided with limiting grooves, the inner walls of the limiting grooves are fixedly connected with sealing gaskets, and the outer walls of the sealing gaskets are movably connected with the outer walls of the limiting plates.
  • control box is electrically connected to the second electric telescopic rod and the servo motor.
  • FIG1 is a schematic diagram of the three-dimensional structure of a self-operating lithium extraction device for a salt lake according to the present application
  • FIG2 is a cross-sectional view of the internal structure of a self-operating lithium extraction device in a salt lake according to the present application;
  • FIG3 is an enlarged view of the structure of point A in FIG2 of a self-operating lithium extraction device for a salt lake of the present application;
  • FIG4 is an enlarged view of the structure of point B in FIG2 of a self-operating lithium extraction device for a salt lake of the present application;
  • FIG5 is a schematic structural diagram of a first separator and a second separator of a self-operating lithium extraction device of a salt lake according to the present application;
  • FIG6 is a top view of the internal structure of a self-operating lithium extraction device in a salt lake according to the present application.
  • FIG. 7 is an enlarged view of the structure at point C in FIG. 6 of a self-operating lithium extraction device for a salt lake in the present application.
  • a self-operating lithium extraction device for a salt lake comprises an adsorption reaction mechanism 1, a feeding mechanism 2 and a supporting mechanism 3, wherein the feeding mechanism 2 is connected to the top of the adsorption reaction mechanism 1, and the supporting mechanism 3 is fixedly connected to the bottom of the adsorption reaction mechanism 1, and the adsorption reaction mechanism 1 comprises a reaction tank 11, and a limiting plate 14 is fixedly connected to the inner wall of the reaction tank 11, and a first partition 4 is arranged inside the reaction tank 11, and a second partition 5 is arranged below the first partition 4, and a fixed sleeve 71 is connected to the top center of the first partition 4 and the second partition 5, and an outer plate 6 is fixedly connected to one side of the fixed sleeve 71, and the reaction tank 11 is provided with a first partition 4, and a second partition 5 is provided with a fixed sleeve 71.
  • the bottom surface of the outer plate 6 is fixedly connected to the protective shell 15, a servo motor 151 is fixedly installed inside the protective shell 15, a screw rod 152 is fixedly connected to the shaft end of the servo motor 151, the top end of the screw rod 152 passes through the interior of the fixed sleeve 71 and is rotatably connected to a fixed support plate 153, one end of the fixed support plate 153 is fixedly connected to the inner wall of the reaction tank 11, a telescopic groove 64 is provided inside the outer plate 6, a second electric telescopic rod 61 is fixedly installed inside the telescopic groove 64, one end of the second electric telescopic rod 61 is fixedly connected to a tooth plate 62, one side of the tooth plate 62 is meshed with the screw rod 152, and one side of the tooth plate 62 is provided with The limit block 63, the bottom end of which is fixedly connected to the inner wall of the telescopic groove 64, blocks the flow of brine through the first partition 4 to gather the
  • the servo motor 151 drives the screw rod 152 to rotate, and the second electric telescopic rod 61 on the second partition 5 is controlled to pull the tooth plate 62 back, and the meshing transmission between the screw rod 152 and the tooth plate 62 on the first partition 4 is used to move the first partition 4 downward, thereby causing the first electric telescopic rod 152 on the second partition 5 to move downward.
  • the rod 51 lifts up the movable cover 42 through the discharge port 41, and the brine gathered on the first partition 4 moves downward synchronously through the lifted movable cover 42 to flow onto the second partition 5, so that the reaction brine on the first partition 4 is mixed with the adsorbent again as it flows, thereby improving the degree of mixing reaction between the brine and the adsorbent.
  • the first partition 4 is lifted and reset to allow the brine to continue to react on the second partition 5, and the first partition 4 is used to re-connect the salt lake brine to react with the adsorbent.
  • the circulating reaction brine between the first partition 4 and the second partition 5 makes the combination between the brine and the adsorbent more efficient, thereby improving the efficiency of lithium extraction from the brine.
  • a bottom plate 16 is arranged below the second partition plate 5, and the outer wall of the bottom plate 16 is fixedly connected to the inner wall of the reaction tank 11, and a guide groove 161 is arranged on the top surface of the bottom plate 16, and a discharge port 162 is arranged through the bottom surface of the inner wall of the guide groove 161.
  • the brine discharged from the second partition plate 5 flows into the guide groove 161, and after the second partition plate 5 rises and resets, the second discharge pipe 13 can absorb the precipitate from the bottom plate 16 for subsequent elution treatment.
  • a first discharge pipe 12 is disposed through the bottom outer wall of the reaction tank 11, and a second discharge pipe 13 is disposed below the first discharge pipe 12.
  • One end of the second discharge pipe 13 penetrates the outer wall of the reaction tank 11 and is connected to the interior of the discharge port 162.
  • the adsorbed brine and sediment are discharged through the first discharge pipe 12 and the second discharge pipe 13 respectively for subsequent processing.
  • the feeding mechanism 2 includes a feed port 22, which is fixedly connected to the top surface of the reaction tank 11, and the top surface of the feed port 22 is movably connected to a connecting flange 21, and the connecting flange 21 and the feed port 22 are fixedly connected by bolts 26, and the top surface of the connecting flange 21 is connected to a sealing baffle 25, and the sealing baffle A brine delivery pipe 23 is penetrated through the top surface of 25, and a feed pipe 24 is arranged on one side of the brine delivery pipe 23. The bottom end of the feed pipe 24 penetrates the top surface of the sealing baffle 25 and is connected with the interior of the reaction tank 11.
  • the support mechanism 3 includes a fixed ring plate 31, the inner wall of the fixed ring plate 31 is fixedly connected to the outer wall of the reaction tank 11, the bottom surface of the fixed ring plate 31 is fixedly connected to the support column 32, and the top surface of the fixed ring plate 31 is fixedly installed with a control box 33.
  • the control box 33 Through the setting of the control box 33, the user can better control the operation of the device through the control box 33.
  • the outer sleeve of the screw rod 152 is provided with a telescopic bellows 7, and the telescopic bellows 7 is fixedly connected between the fixed support plate 153, the fixed sleeve 71 and the bottom plate 16.
  • the first partition plate 4 and the second partition plate 5 can seal and protect the outside of the screw rod 152 during the movement.
  • the top surfaces of the first partition 4 and the second partition 5 are both penetrated by a drainage port 41, and a movable cover plate 42 is arranged above the drainage port 41.
  • the bottom surface of the movable cover plate 42 is movably connected to the outer walls of the first partition 4 and the second partition 5, and a flexible connecting plate 43 is fixedly connected to one side of the movable cover plate 42.
  • One end of the flexible connecting plate 43 is fixedly connected to the top surfaces of the first partition 4 and the second partition 5.
  • a first electric telescopic rod 51 is fixedly installed on the top surface of the second partition 5.
  • the first electric telescopic rod 51 is arranged below the movable cover 42. Through the setting of the first electric telescopic rod 51, it is convenient for the user to control the height of the first partition 4 to be lowered and lifted, so that the brine can flow better to the second partition 5.
  • the top surfaces of the first partition plate 4 and the second partition plate 5 are both provided with a limiting groove 8, the inner wall of the limiting groove 8 is fixedly connected with a sealing gasket 81, and the outer wall of the sealing gasket 81 is movably connected to the outer wall of the limiting plate 14.
  • the movement of the first partition plate 4 and the second partition plate 5 is limited, which facilitates the stable transmission between the screw rod 152 and the tooth plate 62.
  • control box 33 is electrically connected to the second electric telescopic rod 61 and the servo motor 151.
  • a single-chip microcomputer is provided in the control box 33, which is convenient for the user to automatically control the start of the second electric telescopic rod 61 through the control box 33, so that the first partition 4 and the second partition 5 move up and down regularly, so that the device can operate automatically.
  • the method of use and working principle of the device are as follows: when in use, the salt lake brine pumped from the outside is connected through the brine delivery pipe 23 and delivered to the inside of the reaction tank 11. After the brine enters the reaction tank 11, it is gathered on the first partition 4. After a certain amount of brine is pumped, the adsorbent is delivered to the first partition 4 through the delivery pipe 24, so that the lithium ions in the brine gathered on the first partition 4 are combined with the adsorbent.
  • the servo motor 151 drives the screw rod 152 to rotate, and the second electric telescopic rod 61 on the second partition 5 pulls the tooth plate 62 retracts, and the meshing transmission between the screw rod 152 and the tooth plate 62 on the first partition 4 is used to move the first partition 4 downward, so that the first electric telescopic rod 51 on the second partition 5 lifts the movable cover plate 42 through the discharge port 41, and the brine gathered on the first partition 4 moves downward synchronously through the lifted movable cover plate 42 to flow to the second partition 5, so that the reaction brine on the first partition 4 is mixed with the adsorbent again as it flows, and the first partition 4 is lifted and reset to allow the brine to continue to react on the second partition 5, and the salt lake brine is re-connected to the first partition 4 to react with the adsorbent.
  • the screw rod 152 is used to lower the second partition 5 to the bottom plate 16, and the movable cover plate 42 of the second partition 5 is lifted by the top block of the bottom plate 16 to allow the brine to flow to the guide groove 161, and the adsorbed brine and sediment are discharged through the first discharge pipe 12 and the second discharge pipe 13 respectively for subsequent processing.
  • the flow of brine is blocked by the first partition 4 to make the brine gather, and the adsorbent is transported to the first partition 4 through the feed pipe 24, so that the lithium ions in the brine gathered on the first partition 4 are combined with the adsorbent.
  • the servo motor 151 drives the screw rod 152 to rotate, and the second electric telescopic rod 61 on the second partition 5 is controlled to pull the tooth plate 62 to retract, and the meshing transmission between the screw rod 152 and the tooth plate 62 on the first partition 4 is used to move the first partition 4 downward, so that the first electric telescopic rod 51 on the second partition 5 passes through
  • the discharge port 41 lifts up the movable cover 42, so that the brine flows to the second partition 5 through the lifted movable cover 42, so that the reaction brine on the first partition 4 is mixed with the adsorbent again as it flows, thereby improving the degree of mixing reaction between the brine and the adsorbent.
  • the first partition 4 is lifted and reset to allow the brine to continue to react on the second partition 5, and the first partition 4 is used to re-connect the salt lake brine to react with the adsorbent.
  • the circulating reaction brine between the first partition 4 and the second partition 5 makes the combination between the brine and the adsorbent more efficient, thereby improving the efficiency of lithium extraction from the brine.
  • the brine discharged from the second partition 5 flows into the diversion groove 161 through the setting of the diversion groove 161.
  • the second discharge pipe 13 can absorb the sediment from the bottom plate 16 for subsequent elution treatment.
  • the adsorbed brine and sediment are discharged through the first discharge pipe 12 and the second discharge pipe 13 respectively for subsequent processing.
  • the movement of the first partition 4 and the second partition 5 is limited by setting the limit groove 8, which facilitates the stable transmission between the screw rod 152 and the tooth plate 62.
  • the start of the second electric telescopic rod 61 is automatically controlled by the control box 33, so that the first partition 4 and the second partition 5 move up and down regularly, so that the present device can operate automatically.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Extraction Or Liquid Replacement (AREA)

Abstract

一种盐湖自运行的提锂装置,包括吸附反应机构(1)、输料机构(2)和支撑机构(3),输料机构(2)连接在吸附反应机构(1)的顶部,支撑机构(3)固定连接在吸附反应机构(1)的底部,吸附反应机构(1)包括反应罐(11),反应罐(11)的内壁固定连接有限位板(14),反应罐(11)的内部设置有第一隔板(4),第一隔板(4)的下方设置有第二隔板(5)。

Description

盐湖自运行的提锂装置
本申请要求在2022年10月12日提交中国专利局、申请号为202211244745.3的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及盐湖卤水加工装置技术领域,例如涉及一种盐湖自运行的提锂装置。
背景技术
锂具有诸多优良的物理化学性质,锂的功能和用途十分广泛,被认为是“推动世界进步的能源金属”,锂产品最初主要应用于军事上,随着新能源、冶金、航天航空以及玻璃制造等行业的快速发展,人们对锂的需求量逐年攀升,提锂工艺技术的发展也日益受到重视,约80%的锂资源蕴含于盐湖卤水中,盐湖卤水成分复杂,含有大量金属和非金属元素,从盐湖卤水中提取锂的方法包括沉淀法、煅烧浸出法、溶剂萃取法、膜分离法以及吸附法等,其中吸附法具有工艺简单、回收率高以及环境友好等特点,是最具应用前景的方法。
相关技术中,如中国专利号为:CN107058735B的“一种提取锂的连续离子交换装置和提锂工艺”,提取锂的连续离子交换装置包括运行基座和多个吸附柱,运行基座包括吸附区、淋洗区和脱附区,多个吸附柱排布在运行基座上,并分布在吸附区、淋洗区和脱附区中设置,吸附区中的吸附柱与原料进液管连通,淋洗区中的吸附柱与淋洗进液管连通,脱附区中的吸附柱与脱附进液管连通,运行基座上的吸附区、淋洗区和脱附区的位置依次更替。
但相关技术中,盐湖提锂装置在通过吸附法处理盐湖卤水中锂离子时,通常会单次加工大量的盐湖卤水,然后添加吸附剂来结合锂离子,但是该种方式卤水与吸附剂之间吸附反应缓慢,卤水与吸附剂之间不易充分混合,需要较长时间来等待反应,卤水提锂加工效率低。
发明内容
本申请提供一种盐湖自运行的提锂装置,以解决盐湖提锂装置在通过吸附法处理盐湖卤水中锂离子时,通常会单次加工大量的盐湖卤水,然后添加吸附剂来结合锂离子,但是该种方式卤水与吸附剂之间吸附反应缓慢,卤水与吸附剂之间不易充分混合,需要较长时间来等待反应,卤水提锂加工效率低的问题。
本申请提供了一种盐湖自运行的提锂装置,包括吸附反应机构、输料机构和支撑机构,所述输料机构连接在吸附反应机构的顶部,所述支撑机构固定连接在吸附反应机构的底部,所述吸附反应机构包括反应罐,所述反应罐的内壁固定连接有限位板,所述反应罐的内部设置有第一隔板,所述第一隔板的下方设置有第二隔板,所述第一隔板和第二隔板顶面中心均贯穿连接有固定套管,所述固定套管的一侧固定连接有外板,所述反应罐的底面固定连接防护外壳,所述防护外壳的内部固定安装有伺服电机,所述伺服电机的轴端固定连接有丝杆,所述丝杆的顶端贯穿固定套管的内部转动连接有固定支板,所述固定支板的一端与反应罐的内壁固定连接,所述外板的内部设置有伸缩槽,所述伸缩槽的内部固定安装有第二电动伸缩杆,所述第二电动伸缩杆的一端固定连接有齿板,所述齿板的一侧与丝杆之间啮合连接,所述齿板的一侧设置有限位块,所述限位块的底端与伸缩槽的内壁固定连接。
在一个或多个实施例中,所述第二隔板的下方设置有底板,所述底板的外壁与反应罐的内壁固定连接,所述底板的顶面设置有导流槽,所述导流槽的内壁底面贯穿设置有排料口。
在一个或多个实施例中,所述反应罐的底部外壁贯穿设置有第一排料管,所述第一排料管的下方设置有第二排料管,所述第二排料管的一端贯穿反应罐的外壁与排料口的内部连通。
在一个或多个实施例中,所述输料机构包括进料口,所述进料口固定连接在反应罐的顶面,所述进料口的顶面活动连接有连接法兰,所述连接法兰与进料口之间通过螺栓固定连接,所述连接法兰的顶面连接有密封隔板,所述密封隔板的顶面贯穿设置有卤水输送管,所述卤水输送管的一侧设置有输料管,所述输料管的底端贯穿密封隔板的顶面与反应罐的内部连通。
在一个或多个实施例中,所述支撑机构包括固定环板,所述固定环板的内壁与反应罐的外壁固定连接,所述固定环板的底面固定连接有支撑柱,所述固定环板的顶面固定安装有控制箱。
在一个或多个实施例中,所述丝杆的外部套设有伸缩波纹管,所述伸缩波纹管固定连接在固定支板、固定套管和底板之间。
在一个或多个实施例中,所述第一隔板和第二隔板的顶面均贯穿设置有排流口,所述排流口的上方设置有活动盖板,所述活动盖板的底面与第一隔板和第二隔板的外壁活动连接,所述活动盖板的一侧固定连接有柔性连板,所述柔性连板的一端与第一隔板和第二隔板的顶面固定连接。
在一个或多个实施例中,所述第二隔板的顶面固定安装有第一电动伸缩杆, 所述第一电动伸缩杆设置在活动盖板的下方。
在一个或多个实施例中,所述第一隔板和第二隔板的顶面均开设有限位槽,所述限位槽的内壁固定连接有密封垫,所述密封垫的外壁与限位板的外壁活动连接。
在一个或多个实施例中,所述控制箱与第二电动伸缩杆以及伺服电机之间电性连接。
附图说明
图1为本申请一种盐湖自运行的提锂装置的立体结构示意图;
图2为本申请一种盐湖自运行的提锂装置的内部结构剖视图;
图3为本申请一种盐湖自运行的提锂装置图2中A处结构放大图;
图4为本申请一种盐湖自运行的提锂装置图2中B处结构放大图;
图5为本申请一种盐湖自运行的提锂装置的第一隔板和第二隔板的结构示意图;
图6为本申请一种盐湖自运行的提锂装置的俯视内部结构剖视图;
图7为本申请一种盐湖自运行的提锂装置的图6中C处结构放大图。
图中:
1、吸附反应机构;11、反应罐;12、第一排料管;13、第二排料管;14、限位板;15、防护外壳;151、伺服电机;152、丝杆;153、固定支板;16、底板;161、导流槽;162、排料口;2、输料机构;21、连接法兰;22、进料口;23、卤水输送管;24、输料管;25、密封隔板;26、螺栓;3、支撑机构;31、固定环板;32、支撑柱;33、控制箱;4、第一隔板;41、排流口;42、活动盖板;43、柔性连板;5、第二隔板;51、第一电动伸缩杆;6、外板;61、第二电动伸缩杆;62、齿板;63、限位块;64、伸缩槽;7、伸缩波纹管;71、固定套管;8、限位槽;81、密封垫。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,所描述的实施条例仅仅是本申请一部分实施例,而不是全部的实施例。
参照图1-7所示:一种盐湖自运行的提锂装置,包括吸附反应机构1、输料机构2和支撑机构3,输料机构2连接在吸附反应机构1的顶部,支撑机构3固定连接在吸附反应机构1的底部,吸附反应机构1包括反应罐11,反应罐11的内壁固定连接有限位板14,反应罐11的内部设置有第一隔板4,第一隔板4的下方设置有第二隔板5,第一隔板4和第二隔板5顶面中心均贯穿连接有固定套管71,固定套管71的一侧固定连接有外板6,反应罐11的底面固定连接防护外壳15,防护外壳15的内部固定安装有伺服电机151,伺服电机151的轴端固定连接有丝杆152,丝杆152的顶端贯穿固定套管71的内部转动连接有固定支板153,固定支板153的一端与反应罐11的内壁固定连接,外板6的内部设置有伸缩槽64,伸缩槽64的内部固定安装有第二电动伸缩杆61,第二电动伸缩杆61的一端固定连接有齿板62,齿板62的一侧与丝杆152之间啮合连接,齿板62的一侧设置有限位块63,限位块63的底端与伸缩槽64的内壁固定连接,通过第一隔板4隔断卤水的流动使卤水聚集,通过输料管24向第一隔板4上输送吸附剂,使第一隔板4上聚集的卤水中锂离子与吸附剂结合,在吸附反应一段时间后通过伺服电机151带动丝杆152转动,通过控制第二隔板5上的第二电动伸缩杆61牵引齿板62回缩,利用丝杆152与第一隔板4上的齿板62之间的啮合传动,使第一隔板4向下移动,进而使第二隔板5上的第一电动伸缩杆51通过排流口41将活动盖板42顶起,第一隔板4上聚集的卤水同步下移通过被顶起的活动盖板42流向第二隔板5上,从而使得第一隔板4上的反应卤水随着流动与吸附剂之间再次混合,提高了卤水与吸附剂之间混合反应的程度,将第一隔板4提升复位使卤水在第二隔板5上继续反应,利用第一隔板4重新接入盐湖卤水与吸附剂反应,利用第一隔板4和第二隔板5之间的循环反应卤水,使得卤水与吸附剂之间结合得更加高效,提高了卤水提锂的效率。
根据图4所示,第二隔板5的下方设置有底板16,底板16的外壁与反应罐11的内壁固定连接,底板16的顶面设置有导流槽161,导流槽161的内壁底面贯穿设置有排料口162,通过导流槽161的设置,使第二隔板5排出的卤水流向导流槽161内,待第二隔板5上升复位后以便第二排料管13从底板16上吸取沉淀物以便后续洗脱处理。
根据图1和图4所示,反应罐11的底部外壁贯穿设置有第一排料管12,第一排料管12的下方设置有第二排料管13,第二排料管13的一端贯穿反应罐11的外壁与排料口162的内部连通,通过第一排料管12和第二排料管13分别将吸附后的卤水和沉淀物排出进行后续的加工。
根据图1所示,输料机构2包括进料口22,进料口22固定连接在反应罐11的顶面,进料口22的顶面活动连接有连接法兰21,连接法兰21与进料口22之间通过螺栓26固定连接,连接法兰21的顶面连接有密封隔板25,密封隔板 25的顶面贯穿设置有卤水输送管23,卤水输送管23的一侧设置有输料管24,输料管24的底端贯穿密封隔板25的顶面与反应罐11的内部连通,通过连接法兰21和密封隔板25的设置,使得卤水输送管23和输料管24与反应罐11之间能稳固密封连接,便于反应罐11内卤水的稳定反应。
根据图1所示,支撑机构3包括固定环板31,固定环板31的内壁与反应罐11的外壁固定连接,固定环板31的底面固定连接有支撑柱32,固定环板31的顶面固定安装有控制箱33,通过控制箱33的设置,使得使用者可以通过控制箱33更好的控制本装置的运行。
根据图5所示,丝杆152的外部套设有伸缩波纹管7,伸缩波纹管7固定连接在固定支板153、固定套管71和底板16之间,通过伸缩波纹管7的设置,使得第一隔板4和第二隔板5在移动过程中对丝杆152外部进行密封保护。
根据图5所示,第一隔板4和第二隔板5的顶面均贯穿设置有排流口41,排流口41的上方设置有活动盖板42,活动盖板42的底面与第一隔板4和第二隔板5的外壁活动连接,活动盖板42的一侧固定连接有柔性连板43,柔性连板43的一端与第一隔板4和第二隔板5的顶面固定连接,通过活动盖板42和柔性连板43的设置,使得对第一隔板4上聚集的卤水进行阻挡从而保证了第一隔板4的密封性。
根据图5所示,第二隔板5的顶面固定安装有第一电动伸缩杆51,第一电动伸缩杆51设置在活动盖板42的下方,通过第一电动伸缩杆51的设置,便于使用者控制第一隔板4下降被顶起的高度,以便卤水更好的流向第二隔板5上。
根据图5-图7所示,第一隔板4和第二隔板5的顶面均开设有限位槽8,限位槽8的内壁固定连接有密封垫81,密封垫81的外壁与限位板14的外壁活动连接,通过限位槽8的设置,对第一隔板4和第二隔板5的移动进行限位,便于丝杆152与齿板62之间稳定的传动。
根据图1-图3所示,控制箱33与第二电动伸缩杆61以及伺服电机151之间电性连接,控制箱33内设置有单片机,便于使用者通过控制箱33自动控制第二电动伸缩杆61的启动,使第一隔板4和第二隔板5定时上下移动,使本装置能够自动运行。
本装置的使用方法及工作原理为:使用时,通过卤水输送管23接入外部泵送的盐湖卤水输送到反应罐11内部,卤水进入到反应罐11内后在第一隔板4上聚集,在泵送一定量的卤水后通过输料管24向第一隔板4上输送吸附剂,使第一隔板4上聚集的卤水中锂离子与吸附剂结合,在吸附反应一段时间后通过伺服电机151带动丝杆152转动,第二隔板5上的第二电动伸缩杆61牵引齿板 62回缩,利用丝杆152与第一隔板4上的齿板62之间的啮合传动,使第一隔板4向下移动,进而使第二隔板5上的第一电动伸缩杆51通过排流口41将活动盖板42顶起,第一隔板4上聚集的卤水同步下移通过被顶起的活动盖板42流向第二隔板5上,从而使得第一隔板4上的反应卤水随着流动与吸附剂之间再次混合,将第一隔板4提升复位使卤水在第二隔板5上继续反应,利用第一隔板4重新接入盐湖卤水与吸附剂反应,第二隔板5上的卤水反应完后通过丝杆152使第二隔板5下降到底板16上,被底板16的顶块将第二隔板5的活动盖板42顶起使卤水流向导流槽161上,通过第一排料管12和第二排料管13分别将吸附后的卤水和沉淀物排出进行后续的加工。
本申请具有如下效果。
1、本申请中,通过第一隔板4隔断卤水的流动使卤水聚集,通过输料管24向第一隔板4上输送吸附剂,使第一隔板4上聚集的卤水中锂离子与吸附剂结合,在吸附反应一段时间后通过伺服电机151带动丝杆152转动,通过控制第二隔板5上的第二电动伸缩杆61牵引齿板62回缩,利用丝杆152与第一隔板4上的齿板62之间的啮合传动,使第一隔板4向下移动,进而使第二隔板5上的第一电动伸缩杆51通过排流口41将活动盖板42顶起,使卤水通过被顶起的活动盖板42流向第二隔板5上,从而使得第一隔板4上的反应卤水随着流动与吸附剂之间再次混合,提高了卤水与吸附剂之间混合反应的程度,将第一隔板4提升复位使卤水在第二隔板5上继续反应,利用第一隔板4重新接入盐湖卤水与吸附剂反应,利用第一隔板4和第二隔板5之间的循环反应卤水,使得卤水与吸附剂之间结合得更加高效,提高了卤水提锂的效率。
2、本申请中,通过导流槽161的设置,使第二隔板5排出的卤水流向导流槽161内,待第二隔板5上升复位后以便第二排料管13从底板16上吸取沉淀物以便后续洗脱处理,通过第一排料管12和第二排料管13分别将吸附后的卤水和沉淀物排出进行后续的加工。
3、本申请中,通过限位槽8的设置,对第一隔板4和第二隔板5的移动进行限位,便于丝杆152与齿板62之间稳定的传动,通过控制箱33自动控制第二电动伸缩杆61的启动,使第一隔板4和第二隔板5定时上下移动,使本装置能够自动运行。
尽管参照前述实施例对本申请进行了说明,其依然可以对前述多个实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (10)

  1. 一种盐湖自运行的提锂装置,包括吸附反应机构(1)、输料机构(2)和支撑机构(3),所述输料机构(2)连接在所述吸附反应机构(1)的顶部,所述支撑机构(3)固定连接在所述吸附反应机构(1)的底部,其中,所述吸附反应机构(1)包括反应罐(11),所述反应罐(11)的内壁固定连接有限位板(14),所述反应罐(11)的内部设置有第一隔板(4),所述第一隔板(4)的下方设置有第二隔板(5),所述第一隔板(4)和所述第二隔板(5)顶面中心均贯穿连接有固定套管(71),所述固定套管(71)的一侧固定连接有外板(6),所述反应罐(11)的底面固定连接防护外壳(15),所述防护外壳(15)的内部固定安装有伺服电机(151),所述伺服电机(151)的轴端固定连接有丝杆(152),所述丝杆(152)的顶端贯穿所述固定套管(71)的内部转动连接有固定支板(153),所述固定支板(153)的一端与所述反应罐(11)的内壁固定连接,所述外板(6)的内部设置有伸缩槽(64),所述伸缩槽(64)的内部固定安装有第二电动伸缩杆(61),所述第二电动伸缩杆(61)的一端固定连接有齿板(62),所述齿板(62)的一侧与所述丝杆(152)之间啮合连接,所述齿板(62)的一侧设置有限位块(63),所述限位块(63)的底端与所述伸缩槽(64)的内壁固定连接。
  2. 根据权利要求1所述的装置,其中,所述第二隔板(5)的下方设置有底板(16),所述底板(16)的外壁与所述反应罐(11)的内壁固定连接,所述底板(16)的顶面设置有导流槽(161),所述导流槽(161)的内壁底面贯穿设置有排料口(162)。
  3. 根据权利要求2所述的装置,其中,所述反应罐(11)的底部外壁贯穿设置有第一排料管(12),所述第一排料管(12)的下方设置有第二排料管(13),所述第二排料管(13)的一端贯穿所述反应罐(11)的外壁与所述排料口(162)的内部连通。
  4. 根据权利要求1所述的装置,其中,所述输料机构(2)包括进料口(22),所述进料口(22)固定连接在所述反应罐(11)的顶面,所述进料口(22)的顶面活动连接有连接法兰(21),所述连接法兰(21)与所述进料口(22)之间通过螺栓(26)固定连接,所述连接法兰(21)的顶面连接有密封隔板(25),所述密封隔板(25)的顶面贯穿设置有卤水输送管(23),所述卤水输送管(23)的一侧设置有输料管(24),所述输料管(24)的底端贯穿所述密封隔板(25)的顶面与所述反应罐(11)的内部连通。
  5. 根据权利要求1所述的装置,其中,所述支撑机构(3)包括固定环板(31),所述固定环板(31)的内壁与所述反应罐(11)的外壁固定连接,所述固定环板(31)的底面固定连接有支撑柱(32),所述固定环板(31)的顶 面固定安装有控制箱(33)。
  6. 根据权利要求1所述的装置,其中,所述丝杆(152)的外部套设有伸缩波纹管(7),所述伸缩波纹管(7)固定连接在所述固定支板(153)、所述固定套管(71)和底板(16)之间。
  7. 根据权利要求1所述的装置,其中,所述第一隔板(4)和所述第二隔板(5)的顶面均贯穿设置有排流口(41),所述排流口(41)的上方设置有活动盖板(42),所述活动盖板(42)的底面与所述第一隔板(4)和所述第二隔板(5)的外壁活动连接,所述活动盖板(42)的一侧固定连接有柔性连板(43),所述柔性连板(43)的一端与所述第一隔板(4)和所述第二隔板(5)的顶面固定连接。
  8. 根据权利要求7所述的装置,其中,所述第二隔板(5)的顶面固定安装有第一电动伸缩杆(51),所述第一电动伸缩杆(51)设置在所述活动盖板(42)的下方。
  9. 根据权利要求1所述的装置,其中,所述第一隔板(4)和所述第二隔板(5)的顶面均开设有限位槽(8),所述限位槽(8)的内壁固定连接有密封垫(81),所述密封垫(81)的外壁与所述限位板(14)的外壁活动连接。
  10. 根据权利要求5所述的装置,其中,所述控制箱(33)与所述第二电动伸缩杆(61)以及所述伺服电机(151)之间电性连接。
PCT/CN2023/082183 2022-10-12 2023-03-17 盐湖自运行的提锂装置 WO2024077870A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211244745.3A CN115433839B (zh) 2022-10-12 2022-10-12 一种盐湖自运行的提锂装置
CN202211244745.3 2022-10-12

Publications (1)

Publication Number Publication Date
WO2024077870A1 true WO2024077870A1 (zh) 2024-04-18

Family

ID=84251359

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/082183 WO2024077870A1 (zh) 2022-10-12 2023-03-17 盐湖自运行的提锂装置

Country Status (3)

Country Link
CN (1) CN115433839B (zh)
CL (1) CL2023002875A1 (zh)
WO (1) WO2024077870A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115433839B (zh) * 2022-10-12 2023-11-03 广东邦普循环科技有限公司 一种盐湖自运行的提锂装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109110860A (zh) * 2018-09-11 2019-01-01 中国科学院青海盐湖研究所 一种通过分截式吸附装置提取锂的方法
US20200010927A1 (en) * 2018-07-06 2020-01-09 Korea Institute Of Geoscience And Mineral Resources Lithium adsorption-desorption apparatus and lithium adsorption-desorption method using the same
CN215310484U (zh) * 2021-04-25 2021-12-28 江西金辉锂业有限公司 一种具有筛分功能的碳酸锂提取装置
CN215429001U (zh) * 2021-05-26 2022-01-07 江西睿锋环保有限公司 一种用于低镍料预处理工艺的反应罐
CN114751535A (zh) * 2022-03-08 2022-07-15 格尔木藏格锂业有限公司 一种盐湖提锂过程中的含锂溶液杂质控制系统与方法
CN115054944A (zh) * 2022-07-18 2022-09-16 海安发达石油仪器科技有限公司 一种超临界萃取反应釜
CN115433839A (zh) * 2022-10-12 2022-12-06 广东邦普循环科技有限公司 一种盐湖自运行的提锂装置

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2835251Y (zh) * 2005-11-14 2006-11-08 赵晓冬 制备金属锂用的还原反应罐
JP2012504190A (ja) * 2008-09-29 2012-02-16 韓国地質資源研究院 分離膜貯留層を用いるリチウム回収装置、これを用いるリチウム回収方法、及びこれを用いるリチウム吸脱着システム
CN107058735B (zh) * 2016-12-14 2019-01-18 青海盐湖工业股份有限公司 一种提取锂的连续离子交换装置和提锂工艺
KR101780248B1 (ko) * 2017-03-31 2017-09-20 한국지질자원연구원 리튬 이온 흡탈착 공정을 위한 육상형 리튬회수장치 및 이를 이용한 리튬회수방법
CN108658100B (zh) * 2017-08-10 2019-04-02 青海盐湖工业股份有限公司 一种盐湖卤水生产氯化锂的新工艺及装备
WO2019066156A1 (ko) * 2017-09-26 2019-04-04 주식회사 한강이앰피 고효율 반응조 및 이를 이용한 유기성 슬러지 고속 건조화 시스템
CN108264067A (zh) * 2018-03-22 2018-07-10 何朋飞 一种盐湖卤水生产氯化锂的新工艺及装备
CN208454512U (zh) * 2018-07-24 2019-02-01 高超 一种由卤水提取电池级锂的装置
CN109354043B (zh) * 2018-11-14 2021-03-23 格尔木藏格锂业有限公司 从超低浓度含锂卤水中除杂提锂的方法
CN110004307B (zh) * 2019-04-10 2021-08-17 温州睿之教育信息咨询有限公司 一种基于离子浓差极化效应的盐湖提锂装置
AR119183A1 (es) * 2019-06-18 2021-12-01 Schlumberger Technology Bv Extracción de litio
CN111621640B (zh) * 2020-07-13 2021-09-14 礼思(上海)材料科技有限公司 一种从盐湖卤水中提锂的吸附塔及提锂方法
CN214436685U (zh) * 2021-01-21 2021-10-22 成都泰利创富锂业科技有限公司 一种用于工业提锂的连续吸附解析反应系统
CN113136494A (zh) * 2021-04-24 2021-07-20 张雪梅 一种自动控制系统及金属锂蒸馏自动控制设备
CN214765463U (zh) * 2021-06-02 2021-11-19 武汉市华鼎成新材料有限公司 一种沥青乳化剂生产的反应釜装置
CN216039111U (zh) * 2021-09-17 2022-03-15 安顺远景新材料有限公司 一种碳酸锂除杂下料装置
CN114931915A (zh) * 2022-06-14 2022-08-23 王艳芳 一种醚类反应釜
CN114797171A (zh) * 2022-06-24 2022-07-29 北京化工大学 一种高效吸附法卤水提锂的生产装置和生产工艺

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200010927A1 (en) * 2018-07-06 2020-01-09 Korea Institute Of Geoscience And Mineral Resources Lithium adsorption-desorption apparatus and lithium adsorption-desorption method using the same
CN109110860A (zh) * 2018-09-11 2019-01-01 中国科学院青海盐湖研究所 一种通过分截式吸附装置提取锂的方法
CN215310484U (zh) * 2021-04-25 2021-12-28 江西金辉锂业有限公司 一种具有筛分功能的碳酸锂提取装置
CN215429001U (zh) * 2021-05-26 2022-01-07 江西睿锋环保有限公司 一种用于低镍料预处理工艺的反应罐
CN114751535A (zh) * 2022-03-08 2022-07-15 格尔木藏格锂业有限公司 一种盐湖提锂过程中的含锂溶液杂质控制系统与方法
CN115054944A (zh) * 2022-07-18 2022-09-16 海安发达石油仪器科技有限公司 一种超临界萃取反应釜
CN115433839A (zh) * 2022-10-12 2022-12-06 广东邦普循环科技有限公司 一种盐湖自运行的提锂装置

Also Published As

Publication number Publication date
CN115433839B (zh) 2023-11-03
CN115433839A (zh) 2022-12-06
CL2023002875A1 (es) 2024-07-26

Similar Documents

Publication Publication Date Title
WO2024077870A1 (zh) 盐湖自运行的提锂装置
CN112808251A (zh) 盐湖提锂用吸附剂及其制备方法
CN102167422B (zh) 一种工业废酸的回收工艺
CN106256426A (zh) 一种用于催化臭氧氧化的催化剂及其制备方法
CN211226773U (zh) 一种用于绿色建筑施工用废水处理装置
CN208667335U (zh) 一种稀土废料回收用稀土废水综合处理装置
CN211339648U (zh) 一种锂云母浸出液净化除杂装置
CN115300981A (zh) 一种含铁废水的处理装置
CN214210030U (zh) 一种化工反应釜用废气处理装置
CN216337197U (zh) 一种市政污泥处理装置
CN209989448U (zh) 一种用于液体硫酸锌生产用净化装置
RU61583U1 (ru) Система выносной регенерации ионитов водоподготовительных установок
CN206494791U (zh) 一体化含镍废水深度处理系统
CN206538242U (zh) 一种从含铜废水中回收纯净铜盐的回收系统
CN208889342U (zh) 一种以c3n4为吸附剂的含铀废水处理系统
CN111020195A (zh) 废溴化汞试剂回收方法
CN110372125A (zh) 一种废水中难去除金属离子综合处理装置
CN217732883U (zh) 一种废弃金属污水处理设备
CN220269945U (zh) 一种磷酸铵盐干燥装置
CN218794462U (zh) 一种多级污水循环过滤装置
CN205313243U (zh) 一种碳酸锶生产用废水处理装置
CN116059967B (zh) 生物炭类吸附材料的生产工艺
CN204958597U (zh) 一种搅拌式工业废水净化装置
CN220079151U (zh) 用于吸附法卤水提锂的设备
CN206793183U (zh) 一种碱性废蚀刻液循环再生用回收装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23876083

Country of ref document: EP

Kind code of ref document: A1