WO2024076215A1 - 수지 및 이의 제조방법 - Google Patents

수지 및 이의 제조방법 Download PDF

Info

Publication number
WO2024076215A1
WO2024076215A1 PCT/KR2023/015453 KR2023015453W WO2024076215A1 WO 2024076215 A1 WO2024076215 A1 WO 2024076215A1 KR 2023015453 W KR2023015453 W KR 2023015453W WO 2024076215 A1 WO2024076215 A1 WO 2024076215A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
group
substituted
formula
unsubstituted
Prior art date
Application number
PCT/KR2023/015453
Other languages
English (en)
French (fr)
Inventor
임혜진
최일환
김경문
배재순
백현우
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to CN202380015835.1A priority Critical patent/CN118475638A/zh
Publication of WO2024076215A1 publication Critical patent/WO2024076215A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/16Aliphatic-aromatic or araliphatic polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/64Polyesters containing both carboxylic ester groups and carbonate groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/66Polyesters containing oxygen in the form of ether groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/04Aromatic polycarbonates
    • C08G64/06Aromatic polycarbonates not containing aliphatic unsaturation
    • C08G64/08Aromatic polycarbonates not containing aliphatic unsaturation containing atoms other than carbon, hydrogen or oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/16Aliphatic-aromatic or araliphatic polycarbonates
    • C08G64/1608Aliphatic-aromatic or araliphatic polycarbonates saturated
    • C08G64/1625Aliphatic-aromatic or araliphatic polycarbonates saturated containing atoms other than carbon, hydrogen or oxygen
    • C08G64/165Aliphatic-aromatic or araliphatic polycarbonates saturated containing atoms other than carbon, hydrogen or oxygen containing sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/20General preparatory processes
    • C08G64/30General preparatory processes using carbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L69/00Compositions of polycarbonates; Compositions of derivatives of polycarbonates
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • G02B1/041Lenses
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/10Transparent films; Clear coatings; Transparent materials

Definitions

  • This specification relates to resin and its manufacturing method.
  • optical glass As an optical material used in plastic optical products such as various lenses, prisms, optical disk substrates, and optical fibers, and optical films, optical glass or optical resin is used.
  • Optical glass is excellent in heat resistance, transparency, dimensional stability, chemical resistance, etc., but has the problems of high material cost, poor molding processability, and low productivity.
  • optical materials containing optical resins can be mass-produced by injection molding.
  • optical resins polycarbonate resin, polyester resin, polyester-carbonate resin, etc. are used.
  • the optical resin has a disadvantage in that it has insufficient fluidity and thus poor processability. Therefore, it may be difficult to apply it to injection molding of articles requiring the above precision.
  • it is necessary to increase the molding temperature, mold temperature, etc., but the molding cycle becomes longer and the molding cost increases, or the resin deteriorates and the color decreases during molding.
  • methods of improving the color fluidity of the resin when molding optical materials include lowering the viscosity, lowering the weight average molecular weight, adding low molecular weight oligomers, and broadening the molecular weight distribution.
  • the excellent physical properties inherent in the resin, such as heat resistance and impact resistance, tend to deteriorate.
  • optical materials with a high refractive index generally require transparency above a certain level.
  • the range of use of polycarbonate in optical material-related fields is continuously expanding, and there is a need to provide optical materials that can effectively block yellowishness from polycarbonate.
  • One embodiment of the present specification is intended to provide a resin with a novel structure and a method for manufacturing the same.
  • Another embodiment of the present specification seeks to provide a resin composition containing a resin of a novel structure and a molded article manufactured from the resin composition.
  • An exemplary embodiment of the present specification includes a unit of the following formula (1); and a resin comprising a unit of the following formula (2).
  • L' is a substituted or unsubstituted arylene group
  • X1 to X4 are each independently O; or S,
  • Z1 and Z2 are each independently a substituted or unsubstituted alkylene group; Or a substituted or unsubstituted cycloalkylene group,
  • a and b are each independently integers from 1 to 10, and when a and b are each 2 or more, the structures in each parenthesis are the same or different,
  • R1 to R4 are each independently hydrogen; Substituted or unsubstituted alkyl group; Substituted or unsubstituted cycloalkyl group; Substituted or unsubstituted aryl group; Or a substituted or unsubstituted heteroaryl group,
  • r1 and r2 are each independently integers of 0 to 3, and when r1 and r2 are each 2 or more, R1 and R2 of 2 or more are the same or different from each other,
  • r3 and r4 are each independently integers of 0 to 4, and when r3 and r4 are each 2 or more, R3 and R4 of 2 or more are the same or different from each other,
  • L1' is a substituted or unsubstituted arylene group
  • L11 is a substituted or unsubstituted alkylene group; Substituted or unsubstituted cycloalkylene group; A substituted or unsubstituted, condensed ring group of a divalent aromatic hydrocarbon ring and an aliphatic hydrocarbon ring; Or a substituted or unsubstituted arylene group,
  • l11 is an integer from 1 to 5, and when l11 is 2 or more, the 2 or more L11 are the same or different from each other,
  • X11 to X14 are each independently O; or S,
  • Z11 and Z12 are each independently a substituted or unsubstituted alkylene group; Or a substituted or unsubstituted cycloalkylene group,
  • c and d are each independently integers from 0 to 10, and when c and d are each 2 or more, the structures in each parenthesis are the same or different,
  • * refers to the region connected to the main chain of the resin.
  • An exemplary embodiment of the present specification includes a compound of Formula 1a below; A compound of formula 2a below; and polymerizing a composition for producing a resin containing at least one of a polycarbonate precursor and a polyester precursor.
  • X1 to X4 are each independently O or S,
  • Z1 and Z2 are each independently a substituted or unsubstituted alkylene group; Or a substituted or unsubstituted cycloalkylene group,
  • a and b are each independently integers from 1 to 10, and when a and b are each 2 or more, the structures in each parenthesis are the same or different,
  • R1 to R4 are each independently hydrogen; Substituted or unsubstituted alkyl group; Substituted or unsubstituted cycloalkyl group; Substituted or unsubstituted aryl group; Or a substituted or unsubstituted heteroaryl group,
  • r1 and r2 are each independently integers of 0 to 3, and when r1 and r2 are each 2 or more, R1 and R2 of 2 or more are the same or different from each other,
  • r3 and r4 are each independently integers of 0 to 4, and when r3 and r4 are each 2 or more, R3 and R4 of 2 or more are the same or different from each other,
  • L11 is a substituted or unsubstituted alkylene group; Substituted or unsubstituted cycloalkylene group; A substituted or unsubstituted, condensed ring group of a divalent aromatic hydrocarbon ring and an aliphatic hydrocarbon ring; Or a substituted or unsubstituted arylene group,
  • l11 is an integer from 1 to 5, and when l11 is 2 or more, the 2 or more L11 are the same or different from each other,
  • X11 to X14 are each independently O or S,
  • Z11 and Z12 are each independently a substituted or unsubstituted alkylene group; Or a substituted or unsubstituted cycloalkylene group,
  • c and d are each independently integers from 0 to 10, and when c and d are each 2 or more, the structures within each parenthesis are the same or different.
  • Another embodiment of the present specification provides a resin composition containing the resin according to the above-described embodiment.
  • Another embodiment of the present specification provides a molded article containing a resin composition containing the resin according to the above-described embodiment.
  • the resin according to the exemplary embodiments of the present specification has a high refractive index and high transparency.
  • an excellent thin optical lens, optical film, optical thin film, or optical resin can be obtained.
  • an excellent optical lens, optical film, optical thin film, or optical resin with a high refractive index and a low yellowing index can be obtained.
  • the resin containing the unit represented by Formula 1 increases the electron density of the molecule from the relationship between molecular structure and refractive index known by Lorentz-Lorenz's formula, It can be seen that by reducing the molecular volume, the refractive index of the material composed of molecules increases.
  • the core structure of Formula 1 is spiro[fluorene-9,9'-xanthene], and in the case of an electron-rich core structure, the refractive index of the resin can be further improved by increasing the electron density of the structure represented by Formula 1. there is.
  • the resin contains the units represented by Formula 1 and Formula 2, thereby complementing the glass transition temperature (Tg) of the unit represented by Formula 1, or flexibly chaining the behavior of the unit represented by Formula 1.
  • Tg glass transition temperature
  • the resin according to an exemplary embodiment of the present specification has a high refractive index and high transparency, and an optical lens, optical film, or optical resin using the same can be thin and exhibit excellent optical properties.
  • the resin according to an exemplary embodiment of the present specification may be a polycarbonate resin, a polyester resin, or a polyester-carbonate resin. Unless specifically limited in this specification, the resin includes all of the above three types of resin.
  • the term "combination thereof" included in the Markushi format expression means a mixture or combination of one or more components selected from the group consisting of the components described in the Markushi format expression, It means including one or more selected from the group consisting of.
  • room temperature is the same as defined in the art, and generally refers to the temperature of a laboratory, laboratory, etc., especially when an experiment is conducted without specifying or controlling the temperature or when samples and materials are used. It refers to the temperature used when left indoors, and in the industry, it means 15 °C to 25 °C.
  • atmospheric pressure is the same as defined in the art, and generally means a pressure of about 1 atmosphere, which is the same as ordinary atmospheric pressure.
  • substitution means changing a hydrogen atom bonded to a carbon atom or nitrogen atom of a compound to another substituent, and the position to be substituted is not limited as long as it is the position where the hydrogen atom is substituted, that is, a position where the substituent can be substituted. , when two or more substituents are substituted, the two or more substituents may be the same or different from each other.
  • substituted or unsubstituted refers to deuterium; halogen group; hydroxyl group; Cyano group; Alkyl group; Cycloalkyl group; Alkoxy group; alkenyl group; Aryloxy group; arylthio group; Alkylthio group; silyl group; Aryl group; A condensed ring group of an aromatic hydrocarbon ring and an aliphatic hydrocarbon ring; It means that it is substituted with one or more substituents selected from the group consisting of a heteroaryl group, is substituted with a substituent in which two or more of the above-exemplified substituents are linked, or does not have any substituents.
  • linking two or more substituents means that the hydrogen of one substituent is linked to another substituent.
  • a phenyl group and a naphthyl group are connected. or It can be a substituent of .
  • connecting three substituents not only means that (substituent 1) - (substituent 2) - (substituent 3) are connected in succession, but also (substituent 2) and (substituent 3) are connected to (substituent 1).
  • a phenyl group, a naphthyl group, and an isopropyl group are connected, , or It can be a substituent of .
  • the above definition equally applies to those in which 4 or more substituents are connected.
  • hydrogen may be hydrogen, deuterium, or tritium.
  • parts in the chemical structure where substituents are not indicated may mean substituted with hydrogen, deuterium, or tritium.
  • halogen groups include fluorine, chlorine, bromine, or iodine.
  • the alkyl group may be straight chain or branched, and the number of carbon atoms is not particularly limited, but is preferably 1 to 30. Specific examples include methyl, ethyl, propyl, n-propyl, isopropyl, butyl, n-butyl, isobutyl, tert-butyl, sec-butyl, 1-methyl-butyl, 1-ethyl-butyl, pentyl, n-pentyl.
  • the cycloalkyl group is not particularly limited, but preferably has 3 to 30 carbon atoms, and specifically includes cyclopropyl, cyclobutyl, cyclopentyl, 3-methylcyclopentyl, 2,3-dimethylcyclopentyl, cyclohexyl, There are 3-methylcyclohexyl, 4-methylcyclohexyl, 2,3-dimethylcyclohexyl, 3,4,5-trimethylcyclohexyl, 4-tert-butylcyclohexyl, cycloheptyl, cyclooctyl, and adamantyl groups. , but is not limited to this.
  • the alkoxy group may be straight chain, branched chain, or ring chain.
  • the number of carbon atoms of the alkoxy group is not particularly limited, but is preferably 1 to 30 carbon atoms. Specifically, methoxy, ethoxy, n-propoxy, isopropoxy, n-butoxy, isobutoxy, tert-butoxy, sec-butoxy, n-pentyloxy, neopentyloxy, isopentyloxy, n.
  • -It can be hexyloxy, 3,3-dimethylbutyloxy, 2-ethylbutyloxy, n-octyloxy, n-nonyloxy, n-decyloxy, benzyloxy, p-methylbenzyloxy, etc. It is not limited.
  • the alkenyl group may be straight chain or branched, and the number of carbon atoms is not particularly limited, but is preferably 2 to 30.
  • Specific examples include vinyl, 1-propenyl, isopropenyl, 1-butenyl, 2-butenyl, 3-butenyl, 1-pentenyl, 2-pentenyl, 3-pentenyl, 3-methyl-1- Butenyl, 1,3-butadienyl, allyl, 1-phenylvinyl-1-yl, 2-phenylvinyl-1-yl, 2,2-diphenylvinyl-1-yl, 2-phenyl-2-( Naphthyl-1-yl) vinyl-1-yl, 2,2-bis (diphenyl-1-yl) vinyl-1-yl, stilbenyl group, styrenyl group, etc., but are not limited thereto.
  • the aryl group is not particularly limited, but preferably has 6 to 30 carbon atoms, and the aryl group may be monocyclic or polycyclic.
  • the aryl group is a monocyclic aryl group
  • the number of carbon atoms is not particularly limited, but is preferably 6 to 50 carbon atoms.
  • the monocyclic aryl group may be a phenyl group, a biphenyl group, or a terphenyl group, but is not limited thereto.
  • the aryl group is a polycyclic aryl group
  • the number of carbon atoms is not particularly limited. It is preferable to have 10 to 50 carbon atoms.
  • the polycyclic aryl group may be a naphthyl group, anthracene group, phenanthrene group, triphenylene group, pyrene group, phenalene group, perylene group, chrysene group, fluorene group, etc., but is not limited thereto.
  • the fluorene group may be substituted, and adjacent groups may combine with each other to form a ring.
  • an “adjacent” group may mean a substituent substituted on an atom directly connected to the atom on which the substituent is substituted, a substituent located closest to the substituent in terms of structure, or another substituent substituted on the atom on which the substituent is substituted. You can. For example, two substituents substituted at ortho positions in a benzene ring and two substituents substituted on the same carbon in an aliphatic ring can be interpreted as “adjacent” groups.
  • the heteroaryl group includes one or more non-carbon atoms and heteroatoms.
  • the heteroaryl group may include one or more atoms selected from the group consisting of O, N, Se, and S.
  • the number of carbon atoms is not particularly limited, but is preferably 2 to 30 carbon atoms, and the heteroaryl group may be monocyclic or polycyclic.
  • heteroaryl groups include thiophene group, furan group, pyrrole group, imidazole group, thiazole group, oxazole group, oxadiazole group, pyridine group, bipyridine group, pyrimidine group, triazine group, triazole group, and acridine group.
  • pyridazine group pyrazine group, quinoline group, quinazoline group, quinoxaline group, phthalazine group, pyrido pyrimidine group, pyrido pyrazine group, pyrazino pyrazine group, isoquinoline group, indole group, carbazole group, benzyl group.
  • the silyl group is an alkylsilyl group, an arylsilyl group, an alkylarylsilyl group; It may be a heteroarylsilyl group, etc.
  • the alkyl group described above may be applied to the alkyl group among the alkylsilyl groups
  • examples of the aryl group described above may be applied to the aryl group among the arylsilyl group
  • examples of the alkyl group and aryl group in the alkylarylsilyl group include the alkyl group and the aryl group.
  • Examples of may be applied, and examples of the heterocyclic group may be applied to the heteroaryl group among the heteroarylsilyl groups.
  • the hydrocarbon ring group may be an aromatic hydrocarbon ring group, an aliphatic hydrocarbon ring group, or a condensed ring group of an aromatic hydrocarbon ring and an aliphatic hydrocarbon ring, and may be selected from examples of the cycloalkyl group, an aryl group, and combinations thereof.
  • the hydrocarbon ring group includes phenyl group, cyclohexyl group, adamantyl group, bicyclo[2.2.1]heptyl group, bicyclo[2.2.1]octyl group, tetrahydronaphthalene group, tetrahydroanthracene group, 1,2, 3,4-tetrahydro-1,4-methanonaphthalene group, 1,2,3,4-tetrahydro-1,4-ethanonaphthalene group, spirocyclopentane fluorene group, spiroadamantane fluorene group , and spirocyclohexane fluorene groups, but are not limited thereto.
  • aryloxy group may be represented as -ORo, and the description of the aryl group described above applies to Ro.
  • the arylthio group may be represented as -SRs1, and the above description of the aryl group applies to Rs1.
  • alkylthio group may be represented as -SRs2, and the above description of the alkyl group applies to Rs2.
  • an alkylene group refers to an alkyl group having two bonding positions, that is, a bivalent group.
  • the description of the alkyl group described above can be applied except that each of these is a divalent group.
  • a cycloalkylene group refers to a cycloalkyl group having two bonding positions, that is, a bivalent group.
  • the description of the cycloalkyl group described above can be applied except that each of these is a divalent group.
  • the condensed ring group of a divalent aromatic hydrocarbon ring and an aliphatic hydrocarbon ring means that there are two bonding positions in the condensed ring group of the aromatic hydrocarbon ring and the aliphatic hydrocarbon ring, that is, a divalent group.
  • the description of the condensed ring group of the aromatic hydrocarbon ring and the aliphatic hydrocarbon ring described above can be applied, except that each of these is a divalent group.
  • an arylene group refers to an aryl group having two bonding positions, that is, a bivalent group.
  • the description of the aryl group described above can be applied, except that each of these is a divalent group.
  • a resin comprising a unit of the following formula (1) and a unit of the following formula (2) is provided.
  • L' is a substituted or unsubstituted arylene group
  • X1 to X4 are each independently O; or S,
  • Z1 and Z2 are each independently a substituted or unsubstituted alkylene group; Or a substituted or unsubstituted cycloalkylene group,
  • a and b are each independently integers from 1 to 10, and when a and b are each 2 or more, the structures in each parenthesis are the same or different,
  • R1 to R4 are each independently hydrogen; Substituted or unsubstituted alkyl group; Substituted or unsubstituted cycloalkyl group; Substituted or unsubstituted aryl group; Or a substituted or unsubstituted heteroaryl group,
  • r1 and r2 are each independently integers of 0 to 3, and when r1 and r2 are each 2 or more, R1 and R2 of 2 or more are the same or different from each other,
  • r3 and r4 are each independently integers of 0 to 4, and when r3 and r4 are each 2 or more, R3 and R4 of 2 or more are the same or different from each other,
  • L1' is a substituted or unsubstituted arylene group
  • L11 is a substituted or unsubstituted alkylene group; Substituted or unsubstituted cycloalkylene group; A substituted or unsubstituted, condensed ring group of a divalent aromatic hydrocarbon ring and an aliphatic hydrocarbon ring; Or a substituted or unsubstituted arylene group,
  • l11 is an integer from 1 to 5, and when l11 is 2 or more, the 2 or more L11 are the same or different from each other,
  • X11 to X14 are each independently O; or S,
  • Z11 and Z12 are each independently a substituted or unsubstituted alkylene group; Or a substituted or unsubstituted cycloalkylene group,
  • c and d are each independently integers from 0 to 10, and when c and d are each 2 or more, the structures in each parenthesis are the same or different,
  • * refers to the region connected to the main chain of the resin.
  • Formula 1 is represented by the following Formula 1-1.
  • Formula 1 is represented by any one of Formula 1-2 and Formula 1-3 below.
  • L is a direct bond
  • L is a direct bond
  • the resin is a polycarbonate resin
  • L is a direct bond
  • the resin is a polyester-carbonate resin
  • the resin is a polyester resin
  • the resin is a polyester-carbonate resin.
  • L' is a monocyclic or polycyclic arylene group having 6 to 30 carbon atoms.
  • L' is a monocyclic or polycyclic arylene group having 6 to 20 carbon atoms.
  • L' is a phenylene group; Or it is a naphthylene group.
  • L' is a phenylene group.
  • X1 to X4 are O.
  • X1 to X4 are S.
  • X1 and X2 are S, and X3 and X4 are O.
  • X1 and X2 are O
  • X3 and X4 are S.
  • X1 is O.
  • X2 is O.
  • X3 is O.
  • X4 is O.
  • X1 is S.
  • X2 is S.
  • X3 is S.
  • X4 is S.
  • a is 1.
  • b is 1.
  • a is 2.
  • b is 2.
  • a is 3.
  • b is 3.
  • the resin may have optimal fluidity and processability compared to when a and b are 0.
  • Z1 and Z2 are the same as or different from each other, and are each independently a substituted or unsubstituted straight-chain or branched alkylene group having 1 to 30 carbon atoms; Or it is a substituted or unsubstituted monocyclic or polycyclic cycloalkylene group having 3 to 30 carbon atoms.
  • Z1 and Z2 are the same as or different from each other, and are each independently a substituted or unsubstituted straight-chain or branched alkylene group having 1 to 20 carbon atoms; Or it is a substituted or unsubstituted monocyclic or polycyclic cycloalkylene group having 3 to 20 carbon atoms.
  • Z1 and Z2 are the same as or different from each other, and are each independently a substituted or unsubstituted straight-chain or branched alkylene group having 1 to 10 carbon atoms; Or it is a substituted or unsubstituted monocyclic or polycyclic cycloalkylene group having 3 to 10 carbon atoms.
  • Z1 and Z2 are the same or different from each other, and are each independently a substituted or unsubstituted straight-chain or branched alkylene group having 1 to 30 carbon atoms.
  • Z1 and Z2 are the same or different from each other, and are each independently a substituted or unsubstituted straight-chain or branched alkylene group having 1 to 20 carbon atoms.
  • Z1 and Z2 are the same or different from each other, and are each independently a substituted or unsubstituted straight-chain or branched alkylene group having 1 to 10 carbon atoms.
  • Z1 and Z2 are the same or different from each other and are each independently a substituted or unsubstituted ethylene group.
  • R1 to R4 are the same as or different from each other, and are each independently hydrogen; A substituted or unsubstituted straight-chain or branched alkyl group having 1 to 30 carbon atoms; A substituted or unsubstituted monocyclic or polycyclic cycloalkyl group having 3 to 30 carbon atoms; A substituted or unsubstituted monocyclic or polycyclic aryl group having 6 to 30 carbon atoms; or a monocyclic or polycyclic heteroaryl group having 2 to 30 carbon atoms that is substituted or unsubstituted and contains at least one of O, S, and N.
  • R1 to R4 are the same as or different from each other, and are each independently hydrogen; A substituted or unsubstituted straight-chain or branched alkyl group having 1 to 20 carbon atoms; A substituted or unsubstituted monocyclic or polycyclic cycloalkyl group having 3 to 20 carbon atoms; A substituted or unsubstituted monocyclic or polycyclic aryl group having 6 to 20 carbon atoms; or a monocyclic or polycyclic heteroaryl group having 2 to 20 carbon atoms that is substituted or unsubstituted and contains at least one of O, S, and N.
  • R1 to R4 are the same as or different from each other, and are each independently hydrogen; A substituted or unsubstituted straight-chain or branched alkyl group having 1 to 10 carbon atoms; A substituted or unsubstituted monocyclic or polycyclic cycloalkyl group having 3 to 10 carbon atoms; A substituted or unsubstituted monocyclic or polycyclic aryl group having 6 to 10 carbon atoms; or a monocyclic or polycyclic heteroaryl group having 2 to 10 carbon atoms that is substituted or unsubstituted and contains at least one of O, S, and N.
  • R1 to R4 are each independently hydrogen.
  • L1 is a direct bond.
  • L1 is a direct bond
  • the resin is a polycarbonate resin
  • L1 is a direct bond
  • the resin is a polyester-carbonate resin
  • the resin is a polyester resin
  • the resin is a polyester-carbonate resin
  • L1' is a monocyclic or polycyclic arylene group having 6 to 30 carbon atoms.
  • L1' is a monocyclic or polycyclic arylene group having 6 to 20 carbon atoms.
  • L1' is a phenylene group; Or it is a naphthylene group.
  • L1' is a phenylene group.
  • L11 is a substituted or unsubstituted straight-chain or branched alkylene group having 1 to 30 carbon atoms; A substituted or unsubstituted monocyclic or polycyclic cycloalkylene group having 3 to 30 carbon atoms; A condensed ring group of a divalent monocyclic or polycyclic aromatic hydrocarbon ring having 6 to 30 carbon atoms and an aliphatic hydrocarbon ring having 3 to 30 carbon atoms, substituted or unsubstituted with a monocyclic or polycyclic aryl group having 6 to 30 carbon atoms; or a straight-chain or branched alkyl group having 1 to 30 carbon atoms, or a monocyclic or polycyclic arylene group having 6 to 30 carbon atoms substituted or unsubstituted with a monocyclic or polycyclic aryl group having 6 to 30 carbon atoms.
  • L11 is a substituted or unsubstituted straight-chain or branched alkylene group having 1 to 20 carbon atoms; A substituted or unsubstituted monocyclic or polycyclic cycloalkylene group having 3 to 20 carbon atoms; A condensed ring group of a divalent monocyclic or polycyclic aromatic hydrocarbon ring having 6 to 20 carbon atoms and an aliphatic hydrocarbon ring having 3 to 20 carbon atoms, substituted or unsubstituted with a monocyclic or polycyclic aryl group having 6 to 20 carbon atoms; or a straight-chain or branched alkyl group having 1 to 20 carbon atoms, or a monocyclic or polycyclic arylene group having 6 to 20 carbon atoms substituted or unsubstituted with a monocyclic or polycyclic aryl group having 6 to 20 carbon atoms.
  • L11 is C(CH 3 ) 2 ; A phenylene group substituted or unsubstituted with a methyl group; Biphenylene group; divalent naphthyl group; Or it is a divalent fluorene group.
  • L11 is a divalent monocyclic or polycyclic aromatic hydrocarbon ring with 6 to 30 carbon atoms, substituted or unsubstituted with a monocyclic or polycyclic aryl group with 6 to 30 carbon atoms, and an aliphatic hydrocarbon with 3 to 30 carbon atoms. condensed ring group; or a straight-chain or branched alkyl group having 1 to 30 carbon atoms, or a monocyclic or polycyclic arylene group having 6 to 30 carbon atoms substituted or unsubstituted with a monocyclic or polycyclic aryl group having 6 to 30 carbon atoms.
  • L11 is a divalent monocyclic or polycyclic aromatic hydrocarbon ring with 6 to 20 carbon atoms, substituted or unsubstituted with a monocyclic or polycyclic aryl group with 6 to 20 carbon atoms, and an aliphatic hydrocarbon with 3 to 20 carbon atoms. condensed ring group; or a straight-chain or branched alkyl group having 1 to 20 carbon atoms, or a monocyclic or polycyclic arylene group having 6 to 20 carbon atoms substituted or unsubstituted with a monocyclic or polycyclic aryl group having 6 to 20 carbon atoms.
  • L11 is a phenylene group substituted or unsubstituted with a methyl group; Biphenylene group; A fluorene group substituted with a naphthalene group; phenylene group; Binaphthalene group; or bisphenol A.
  • l11 is 1.
  • l11 is 2, and the two L11 are the same or different from each other.
  • l11 is 3, and the three L11 are the same or different from each other.
  • l11 is 4, and the four L11 are the same or different from each other.
  • l11 is 5, and the five L11 are the same as or different from each other.
  • X11 is O.
  • X12 is O.
  • X13 is O.
  • X14 is O.
  • X11 to X14 are O.
  • Z11 and Z12 are the same as or different from each other, and are each independently a linear or branched alkylene group having 1 to 30 carbon atoms.
  • Z11 and Z12 are the same or different from each other, and are each independently a straight-chain or branched alkylene group having 1 to 20 carbon atoms.
  • Z11 and Z12 are the same or different from each other, and are each independently a linear or branched alkylene group having 1 to 10 carbon atoms.
  • Z11 and Z12 are ethylene groups.
  • c is 1.
  • d is 1.
  • c is 0.
  • d 0.
  • the resin has -OH as a terminal group; -SH; -CO 2 CH 3 ; Or it may have -OC 6 H 5 .
  • the unit of Chemical Formula 2 is at least one of the following Chemical Formulas 2-1 to 2-4.
  • X21 to X36 are the same or different from each other and are each independently O or S,
  • L21 and L22 are the same or different from each other, and are each independently a substituted or unsubstituted arylene group; Or a substituted or unsubstituted heteroarylene group,
  • Z21 to Z28 are the same or different from each other, and are each independently a substituted or unsubstituted alkylene group; Or a substituted or unsubstituted cycloalkylene group,
  • R5 to R10 and R13 to R15 are the same or different from each other, and are each independently hydrogen; Substituted or unsubstituted alkyl group; Substituted or unsubstituted cycloalkyl group; Substituted or unsubstituted aryl group; Or, it is a substituted or unsubstituted heteroaryl group, or combines with adjacent groups to form a substituted or unsubstituted aromatic hydrocarbon ring group,
  • R11 and R12 are the same or different from each other and are each independently hydrogen; Substituted or unsubstituted alkyl group; Substituted or unsubstituted cycloalkyl group; Substituted or unsubstituted aryl group; Or a substituted or unsubstituted heteroaryl group, or combined with each other to form a substituted or unsubstituted hydrocarbon ring group,
  • R101 and R102 are the same or different from each other and are each independently hydrogen; Substituted or unsubstituted alkyl group; Substituted or unsubstituted cycloalkyl group; Substituted or unsubstituted aryl group; Or a substituted or unsubstituted heteroaryl group,
  • a1 to a4 and b1 to b4 are each integers from 0 to 10,
  • r5, r6, and r15 are each integers from 0 to 4, and when r5, r6, and r15 are each 2 or more, 2 or more R5, R6, and R15 are each the same as or different from each other,
  • r13 and r14 are each integers from 0 to 6, and when r13 and r14 are each 2 or more, 2 or more R13 and R14 are each the same as or different from each other,
  • r101 and r102 are each integers from 0 to 2, and when r101 and r102 are each 2 or more, 2 or more R101 and R102 are the same or different from each other,
  • * refers to the region connected to the main chain of the resin.
  • Z21 to Z28 are the same as or different from each other, and are each independently a substituted or unsubstituted straight-chain or branched alkylene group having 1 to 30 carbon atoms; Or it is a substituted or unsubstituted monocyclic or polycyclic cycloalkylene group having 3 to 30 carbon atoms.
  • Z21 to Z28 are the same or different from each other, and are each independently a substituted or unsubstituted straight-chain or branched alkylene group having 1 to 20 carbon atoms; Or it is a substituted or unsubstituted monocyclic or polycyclic cycloalkylene group having 3 to 20 carbon atoms.
  • Z21 to Z28 are the same or different from each other, and are each independently a substituted or unsubstituted straight-chain or branched alkylene group having 1 to 10 carbon atoms; Or it is a substituted or unsubstituted monocyclic or polycyclic cycloalkylene group having 3 to 10 carbon atoms.
  • Z21 to Z28 are the same as or different from each other, and each independently represents a substituted or unsubstituted straight-chain or branched alkylene group having 1 to 30 carbon atoms.
  • Z21 to Z28 are the same as or different from each other, and are each independently a substituted or unsubstituted straight-chain or branched alkylene group having 1 to 20 carbon atoms.
  • Z21 to Z28 are the same as or different from each other, and are each independently a substituted or unsubstituted straight-chain or branched alkylene group having 1 to 10 carbon atoms.
  • Z21 to Z28 are the same or different from each other, and each independently represents a substituted or unsubstituted ethylene group.
  • R101 and R102 are the same or different from each other, and are each independently hydrogen; A substituted or unsubstituted straight-chain or branched alkyl group having 1 to 30 carbon atoms; A substituted or unsubstituted monocyclic or polycyclic cycloalkyl group having 3 to 30 carbon atoms; A substituted or unsubstituted monocyclic or polycyclic aryl group having 6 to 30 carbon atoms; or a monocyclic or polycyclic heteroaryl group having 2 to 30 carbon atoms containing one or more of substituted or unsubstituted O, S, and N.
  • R101 and R102 are the same or different from each other, and are each independently hydrogen; A substituted or unsubstituted straight-chain or branched alkyl group having 1 to 20 carbon atoms; A substituted or unsubstituted monocyclic or polycyclic cycloalkyl group having 3 to 20 carbon atoms; A substituted or unsubstituted monocyclic or polycyclic aryl group having 6 to 20 carbon atoms; or a monocyclic or polycyclic heteroaryl group having 2 to 20 carbon atoms containing one or more of substituted or unsubstituted O, S, and N.
  • R101 and R102 are the same or different from each other, and are each independently hydrogen; A substituted or unsubstituted straight-chain or branched alkyl group having 1 to 10 carbon atoms; A substituted or unsubstituted monocyclic or polycyclic cycloalkyl group having 3 to 10 carbon atoms; A substituted or unsubstituted monocyclic or polycyclic aryl group having 6 to 10 carbon atoms; or a monocyclic or polycyclic heteroaryl group having 2 to 10 carbon atoms containing one or more of substituted or unsubstituted O, S, and N.
  • R101 and R102 are each independently hydrogen.
  • X21 to X36 are O.
  • X21 to X36 are S.
  • X21 to X24 are O.
  • X25 to X28 are O.
  • X29 to X32 are O.
  • X33 to X36 are O.
  • X21 to X24 are S.
  • X25 to X28 are S.
  • X29 to X32 are S.
  • X33 to X36 are S.
  • L21 and L22 are each independently 6 carbon atoms substituted or unsubstituted with a hydroxy group, a straight-chain or branched alkyl group with 1 to 30 carbon atoms, or a monocyclic or polycyclic aryl group with 6 to 30 carbon atoms. It is a monocyclic or polycyclic arylene group of 30 to 30 members.
  • L21 and L22 are each independently 6 carbon atoms substituted or unsubstituted with a hydroxy group, a straight-chain or branched alkyl group with 1 to 20 carbon atoms, or a monocyclic or polycyclic aryl group with 6 to 20 carbon atoms. It is a monocyclic or polycyclic arylene group of 20 to 20.
  • L21 and L22 are each independently a phenylene group unsubstituted or substituted with a hydroxy group, a methyl group, a phenyl group, or a naphthyl group; Or it is a divalent naphthyl group.
  • R5 to R10 and R13 to R15 are each independently hydrogen; A straight-chain or branched alkyl group having 1 to 30 carbon atoms, a substituted or unsubstituted monocyclic or polycyclic cycloalkyl group having 3 to 30 carbon atoms; A substituted or unsubstituted monocyclic or polycyclic aryl group having 6 to 30 carbon atoms; Or, it is a monocyclic or polycyclic heteroaryl group with 2 to 30 carbon atoms containing one or more of substituted or unsubstituted O, S and N, or it combines with adjacent groups to form a monocyclic or polycyclic aromatic hydrocarbon ring with 6 to 30 carbon atoms. do.
  • R5 to R10 and R13 to R15 are the same or different from each other, and are each independently hydrogen; A straight-chain or branched alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted monocyclic or polycyclic cycloalkyl group having 3 to 20 carbon atoms; A substituted or unsubstituted monocyclic or polycyclic aryl group having 6 to 20 carbon atoms; Or, it is a monocyclic or polycyclic heteroaryl group with 2 to 20 carbon atoms containing one or more of substituted or unsubstituted O, S and N, or it combines with adjacent groups to form a monocyclic or polycyclic aromatic hydrocarbon ring with 6 to 20 carbon atoms. do.
  • R5 to R10 and R13 to R15 are the same or different from each other, and are each independently hydrogen; A substituted or unsubstituted monocyclic or polycyclic aryl group having 6 to 30 carbon atoms; Or, it is a monocyclic or polycyclic heteroaryl group having 2 to 30 carbon atoms containing one or more of substituted or unsubstituted O, S and N, or is bonded to adjacent groups to form a monocyclic or polycyclic aromatic hydrocarbon ring having 6 to 30 carbon atoms. do.
  • R5 to R10 and R13 to R15 are the same or different from each other, and are each independently hydrogen; A substituted or unsubstituted monocyclic or polycyclic aryl group having 6 to 20 carbon atoms; Or, it is a monocyclic or polycyclic heteroaryl group with 2 to 20 carbon atoms containing one or more of substituted or unsubstituted O, S and N, or it combines with adjacent groups to form a monocyclic or polycyclic aromatic hydrocarbon ring with 6 to 20 carbon atoms. do.
  • R5 to R10 and R13 to R15 are the same or different from each other, and are each independently hydrogen; A substituted or unsubstituted monocyclic or polycyclic aryl group having 6 to 30 carbon atoms; Or, it is a monocyclic or polycyclic heteroaryl group having 2 to 30 carbon atoms containing one or more of substituted or unsubstituted O, S and N, or is bonded to adjacent groups to form a monocyclic or polycyclic aromatic hydrocarbon ring having 6 to 30 carbon atoms. do.
  • R5 to R10 and R13 to R15 are the same or different from each other, and are each independently hydrogen; A substituted or unsubstituted monocyclic or polycyclic aryl group having 6 to 20 carbon atoms; Or, it is a monocyclic or polycyclic heteroaryl group with 2 to 20 carbon atoms containing one or more of substituted or unsubstituted O, S and N, or it combines with adjacent groups to form a monocyclic or polycyclic aromatic hydrocarbon ring with 6 to 20 carbon atoms. do.
  • R5 to R10 and R13 to R15 are the same or different from each other, and are each independently hydrogen; phenyl group; Or, it is a naphthyl group, or combines with adjacent groups to form benzene.
  • R5 to R10 and R13 to R15 are the same or different from each other and are each independently hydrogen.
  • R11 and R12 are the same as or different from each other, and are each independently hydrogen; A straight or branched alkyl group having 1 to 30 carbon atoms; A monocyclic or polycyclic cycloalkyl group having 6 to 30 carbon atoms; A monocyclic or polycyclic aryl group having 6 to 30 carbon atoms; Or, it is a monocyclic or polycyclic heteroaryl group having 2 to 30 carbon atoms, or is combined with each other to form a monocyclic or polycyclic aliphatic hydrocarbon ring having 6 to 30 carbon atoms, substituted or unsubstituted with a straight or branched chain alkyl group having 1 to 30 carbon atoms. .
  • R11 and R12 are the same as or different from each other, and are each independently hydrogen; A straight or branched alkyl group having 1 to 20 carbon atoms; A monocyclic or polycyclic cycloalkyl group having 6 to 20 carbon atoms; A monocyclic or polycyclic aryl group having 6 to 20 carbon atoms; Or, it is a monocyclic or polycyclic heteroaryl group having 2 to 20 carbon atoms, or is combined with each other to form a monocyclic or polycyclic aliphatic hydrocarbon ring having 6 to 20 carbon atoms, substituted or unsubstituted with a straight or branched chain alkyl group having 1 to 20 carbon atoms. .
  • R11 and R12 are the same as or different from each other, and are each independently hydrogen; methyl group; or cyclohexane that is a phenyl group or is bonded to each other and substituted or unsubstituted with a methyl group; or forms cyclododecane.
  • R11 and R12 are the same as or different from each other, and are each independently hydrogen; methyl group; Or it is a phenyl group.
  • R11 and R12 are the same or different from each other and are each independently a methyl group.
  • the resin is a polycarbonate resin, polyester resin, or polyester-carbonate resin containing the unit of Formula 1 and the unit of Formula 2.
  • the resin is a polycarbonate resin containing the unit of Formula 1 and the unit of Formula 2.
  • the resin is a polycarbonate resin
  • L in Formula 1 is a direct bond
  • L1 in Formula 2 is a direct bond
  • the resin is a polycarbonate resin
  • Formula 1 is represented by the following Formula 1-C
  • Formula 2 is represented by the following Formula 2-C.
  • the resin is a polycarbonate resin
  • Chemical Formula 1 is represented by the following Chemical Formula 1-C-1.
  • the resin is a polycarbonate resin
  • the formula 1 is one of the following formulas 1-C-2 and 1-C-3.
  • the resin is a polycarbonate resin
  • the formula 2 is represented by the following formula 3-1 or 3-2.
  • l41 and l42 are each independently integers from 1 to 5,
  • L41 is a substituted or unsubstituted monocyclic arylene group
  • L41 is a substituted or unsubstituted polycyclic arylene group
  • L42 is a substituted or unsubstituted polycyclic arylene group
  • X41 to X44 are each independently O; or S,
  • Z41 and Z42 are each independently a substituted or unsubstituted alkylene group; Or a substituted or unsubstituted cycloalkylene group,
  • e and f are each independently integers from 1 to 10, and when e and f are each 2 or more, the structures in each parenthesis are the same or different,
  • * refers to the region connected to the main chain of the resin.
  • L41 and L42 are the same as those that satisfy the above conditions in the description of L11 in Formula 2 according to the repeat number l41.
  • L41 when l41 is 1 or 2, L41 is a substituted or unsubstituted phenylene group.
  • L41 when l41 is 1 or 2, L41 is a phenylene group unsubstituted or substituted with a methyl group.
  • L41 when l41 is an integer of 3 to 5, L41 is a substituted or unsubstituted divalent naphthyl group; Or it is a substituted or unsubstituted divalent fluorene group.
  • L41 is an integer of 3 to 5
  • L41 is a divalent naphthyl group; Or it is a divalent fluorene group.
  • L42 is a substituted or unsubstituted divalent naphthyl group.
  • L42 is a divalent naphthyl group.
  • the resin is a polycarbonate resin, and when the thickness of the polycarbonate resin is 1 mm or less, the yellowing index (YI) is 20 or less.
  • Polycarbonate resin with a low yellowing index (YI) of 20 or less can be implemented in a variety of colors, so it can provide optical products in a variety of colors, and is especially suitable for optical materials that require high transparency.
  • YI yellowing index
  • the yellowing index (YI) according to an exemplary embodiment of the present specification is measured by ASTM D1925 on a specimen with a polycarbonate resin thickness of 1 mm.
  • the resin is a polycarbonate resin, and when the thickness of the polycarbonate resin is 1 mm or less, the yellowing index (YI) is 0 or more and 20 or less.
  • the resin is a polycarbonate resin, and when the thickness of the polycarbonate resin is 1 mm or less, the yellowing index (YI) is 1 or more and 19 or less, 2 or more and 18 or less, or 3 or more and 17 or less. am.
  • the resin is a polycarbonate resin, and when the thickness of the polycarbonate resin is 1 mm or less, the yellowing index (YI) is 8 or less.
  • the resin is a polycarbonate resin, and when the thickness of the polycarbonate resin is 1 mm or less, the yellowing index (YI) is 0 or more and 8 or less, or 1 or more and 8 or less.
  • the thickness of the polycarbonate resin may be 1 mm or less, 0.9 mm or less, 0.8 mm or less, 0.7 mm or less, 0.6 mm or less, or 0.5 mm or less.
  • the thickness of the polycarbonate resin may be greater than 0 mm.
  • the polycarbonate resin When the thickness of the polycarbonate resin is 1 mm or less and the yellowing index (YI) satisfies the range of 20 or less, the polycarbonate resin is capable of realizing various colors due to its low yellowing index, so optical products of various colors can be manufactured. It is especially suitable for optical materials that require high transparency.
  • YI yellowing index
  • the thickness of the polycarbonate resin is 1 mm or less and the yellowing index (YI) is in the range of more than 20, use of optical products may be limited because high transparency and color diversity cannot be expected.
  • YI yellowing index
  • the terminal of the polycarbonate resin is a phenoxy group
  • the concentration of the terminal phenoxy group is 3000 ppm or more.
  • the concentration of the terminal phenoxy group is 3,500 ppm to 5,500 ppm, more specifically 4,000 ppm to 5,000 ppm.
  • the concentration of the terminal phenoxy group can be calculated as follows. First, 0.25 g of the pellet was dried, dissolved in 10 ml of methylene chloride, then 40 ml of triethylamine was added, and then permeated with 0.04 g of anthraquinone carboxylic anhydride at room temperature to react. Afterwards, the reaction product was washed with water, excess anthraquinonecarboxylic anhydride was removed, methylene chloride was removed from the organic layer, and the obtained solid was subjected to a GPC system equipped with a UV detector (UV wavelength: 325 nm) (Showa Electric Co., Ltd. GPC analysis is performed using Shodex GPC system-11 manufactured by Co., Ltd. The peak area is determined by a one-point calibration method using a sample whose phenoxy group terminal concentration is already known, and the phenoxy group concentration is calculated from the peak area.
  • UV detector UV wavelength: 325 nm
  • the content of the terminal phenoxy group is 5% by weight or less based on 100% by weight of the polycarbonate resin.
  • the content of the terminal phenoxy group is 0% by weight to 5% by weight based on 100% by weight of the polycarbonate resin.
  • the content of the terminal phenoxy group is 1% by weight to 4% by weight, or 2% by weight to 3% by weight, based on 100% by weight of the polycarbonate resin.
  • the polycarbonate resin has improved processability and excellent injection properties.
  • the resin is a polyester resin containing the unit of Formula 1 and the unit of Formula 2.
  • the resin is a polyester resin
  • Formula 1 is represented by Formula 11
  • Formula 2 is represented by Formula 12 below.
  • the resin is a polyester resin
  • Chemical Formula 1 is represented by the following Chemical Formula 11-1.
  • the resin is a polyester resin
  • Formula 1 is one of the following Formulas 11-2 and 11-3.
  • the resin may be a polyester-carbonate resin containing the unit of Formula 1 and the unit of Formula 2.
  • the polyester-carbonate resin is advantageous in terms of heat resistance compared to the polycarbonate resin, because when it contains a polyester resin, it has a rigid chain due to an arylene group and has lower relative flexibility due to the resonance effect.
  • the resin is a polyester-carbonate resin
  • the polyester-carbonate resin includes a unit of the following formula (21).
  • L2' is a substituted or unsubstituted arylene group
  • X9 and X10 are each independently O or S,
  • Z5 is a substituted or unsubstituted alkylene group; Or a substituted or unsubstituted cycloalkylene group,
  • p is an integer from 0 to 6, and when p is 2 or more, the structures in each parenthesis are the same or different,
  • r is the mole fraction, a real number of 0 ⁇ r ⁇ 1,
  • s is the mole fraction, a real number of 0 ⁇ s ⁇ 1,
  • * refers to the region connected to the main chain of the resin.
  • the unit of Formula 21 includes the unit of Formula 1.
  • p 0.
  • p is 1.
  • L2 is a direct bond.
  • L2' is a monocyclic or polycyclic arylene group having 6 to 30 carbon atoms.
  • L2' is a monocyclic or polycyclic arylene group having 6 to 20 carbon atoms.
  • L2' is a phenylene group; Or it is a naphthylene group.
  • L2' is a phenylene group.
  • L is a direct bond
  • Z5 is a substituted or unsubstituted straight-chain or branched alkylene group having 1 to 30 carbon atoms; Or it is a substituted or unsubstituted monocyclic or polycyclic cycloalkylene group having 3 to 30 carbon atoms.
  • Z5 is a substituted or unsubstituted straight-chain or branched alkylene group having 1 to 20 carbon atoms; Or it is a substituted or unsubstituted monocyclic or polycyclic cycloalkylene group having 3 to 20 carbon atoms.
  • Z5 is a substituted or unsubstituted straight-chain or branched alkylene group having 1 to 10 carbon atoms; Or it is a substituted or unsubstituted monocyclic or polycyclic cycloalkylene group having 3 to 10 carbon atoms.
  • Z5 is a substituted or unsubstituted straight-chain or branched alkylene group having 1 to 30 carbon atoms.
  • Z5 is a substituted or unsubstituted straight-chain or branched alkylene group having 1 to 20 carbon atoms.
  • Z5 is a substituted or unsubstituted straight-chain or branched alkylene group having 1 to 10 carbon atoms.
  • Z5 is a substituted or unsubstituted ethylene group.
  • X9 and X10 are O.
  • X9 and X10 are S.
  • X1 to X4, X9, and X10 are O.
  • X1 to X4, X9, and X10 are S.
  • X1 to X4 are S, and X9 and X10 are O.
  • X1 to X4 are O, and X9 and X10 are S.
  • X9 is O.
  • X10 is O.
  • X9 is S.
  • X10 is S.
  • r is a mole fraction and is 0 to 0.999
  • s is a mole fraction and is 0.001 to 1, preferably r is 0 to 0.99, s is 0.01 to 1, and more preferably Typically, r is 0 to 0.9, and s is 0.1 to 1.
  • r is a mole fraction and is 0.001 to 0.999
  • s is a mole fraction and is 0.001 to 0.999, preferably r is 0.01 to 0.99, s is 0.01 to 0.99, and more preferably Typically, r is 0.1 to 0.9, and s is 0.1 to 0.9.
  • a polyester-carbonate resin with desired physical properties can be obtained by appropriately adjusting the mole fractions, r and s.
  • Formula 21 is any one of the following Formulas 21-A to 21-D.
  • Formula 21 is the following Formula 21-1.
  • Formula 21 is one of the following Formulas 21-2 and 21-2.
  • the resin is a polyester-carbonate resin
  • the polyester-carbonate resin includes a unit of the following formula (22).
  • L1, L11, l11, X11 to X14, Z11, Z12, c and d are the same as those defined in Formula 2 above,
  • L3' is a substituted or unsubstituted arylene group
  • X15 and X16 are each independently O or S,
  • Z13 is a substituted or unsubstituted alkylene group; Or a substituted or unsubstituted cycloalkylene group,
  • p' is an integer from 0 to 6, and when p' is 2 or more, the structures in each parenthesis are the same or different,
  • r' is the mole fraction, a real number of 0 ⁇ r' ⁇ 1,
  • s' is the mole fraction, a real number of 0 ⁇ r' ⁇ 1,
  • * refers to the region connected to the main chain of the resin.
  • the unit of Formula 22 includes the unit of Formula 2.
  • p' is 0.
  • p' is 1.
  • L3 is a direct bond.
  • L3' is a monocyclic or polycyclic arylene group having 6 to 30 carbon atoms.
  • L3' is a monocyclic or polycyclic arylene group having 6 to 20 carbon atoms.
  • L3' is a monocyclic or polycyclic arylene group having 6 to 10 carbon atoms.
  • L3' is a phenylene group; Or it is a naphthylene group.
  • L3' is a phenylene group.
  • L1 and L3 are a direct bond.
  • L1 is a direct bond
  • L3 is a direct bond
  • Z13 is a substituted or unsubstituted straight-chain or branched alkylene group having 1 to 30 carbon atoms; Or it is a substituted or unsubstituted monocyclic or polycyclic cycloalkylene group having 3 to 30 carbon atoms.
  • Z13 is a substituted or unsubstituted straight-chain or branched alkylene group having 1 to 20 carbon atoms; Or it is a substituted or unsubstituted monocyclic or polycyclic cycloalkylene group having 3 to 20 carbon atoms.
  • Z13 is a substituted or unsubstituted straight-chain or branched alkylene group having 1 to 10 carbon atoms; Or it is a substituted or unsubstituted monocyclic or polycyclic cycloalkylene group having 3 to 10 carbon atoms.
  • Z13 is a substituted or unsubstituted straight-chain or branched alkylene group having 1 to 30 carbon atoms.
  • Z13 is a substituted or unsubstituted straight-chain or branched alkylene group having 1 to 20 carbon atoms.
  • Z13 is a substituted or unsubstituted straight-chain or branched alkylene group having 1 to 10 carbon atoms.
  • Z13 is a substituted or unsubstituted ethylene group.
  • X15 and X16 are O.
  • X15 and X16 are S.
  • X11 to X16 are O.
  • X11 to X16 are S.
  • X11 to X14 are S, and X15 and X16 are O.
  • X11 to X14 are O
  • X15 and X16 are S.
  • X15 is O.
  • X16 is O.
  • X15 is S.
  • X16 is S.
  • r' is a mole fraction and is 0 to 0.999
  • s' is a mole fraction and is 0.001 to 1, preferably r' is 0 to 0.99, and s' is 0.01 to 1. and, more preferably, r' is 0 to 0.9, and s' is 0.1 to 1.
  • r' is a mole fraction and is 0.001 to 0.999
  • s' is a mole fraction and is 0.001 to 0.999
  • r' is 0.01 to 0.99
  • s' is 0.01 to 0.99
  • r' is 0.1 to 0.9
  • s' is 0.1 to 0.9.
  • a polyester-carbonate resin with desired physical properties can be obtained by appropriately adjusting the mole fractions, r' and s'.
  • Formula 22 is any one of the following Formulas 22-A to 22-D.
  • the weight average molecular weight (Mw) of the resin is 5,000 g/mol to 500,000 g/mol.
  • the weight average molecular weight (Mw) of the resin and the oligomer used in its production is measured by gel permeation chromatography (GPC) using a polystyrene standard (PS standard) using the Agilent 1200 series. You can. Specifically, it can be measured using an Agilent 1200 series instrument using a Polymer Laboratories PLgel MIX-B 300 mm long column. At this time, the measurement temperature is 40 °C, the solvent used is tetrahydrofuran (THF), and the flow rate is 1. It is mL/min.
  • Samples of resin or oligomer are each prepared at a concentration of 10 mg/10 mL and then supplied in an amount of 10 ⁇ L, and the weight average molecular weight (Mw) value is derived using a calibration curve formed using a polystyrene standard.
  • Mw weight average molecular weight
  • nine types of molecular weights (g/mol) of polystyrene standard products are used: 2,000 / 10,000 / 30,000 / 70,000 / 200,000 / 700,000 / 2,000,000 / 4,000,000 / 10,000,000.
  • the weight average molecular weight of the polycarbonate resin is 3,000 g/mol to 500,000 g/mol, preferably 5,000 g/mol to 200,000 g/mol, 7,000 g/mol to 150,000 g/mol. mol, 8,000 g/mol to 100,000 g/mol. More preferably from 9,000 g/mol to 90,000 g/mol, from 10,000 g/mol to 80,000 g/mol, from 12,000 g/mol to 70,000 g/mol, from 13,000 g/mol to 60,000 g/mol, or from 13,000 g/mol It is 50,000 g/mol.
  • the weight average molecular weight of the polycarbonate resin is 5,000 g/mol to 500,000 g/mol, preferably 5,000 g/mol to 200,000 g/mol, 5,000 g/mol to 100,000 g/mol. mol, or 5,000 g/mol to 51,000 g/mol. More preferably from 7,000 g/mol to 51,000 g/mol, from 8,000 g/mol to 51,000 g/mol, from 9,000 g/mol to 51,000 g/mol, from 10,000 g/mol to 51,000 g/mol, or from 11,000 g/mol It is 51,000 g/mol.
  • the polycarbonate resin may have optimal fluidity and processability.
  • the number average molecular weight of the polycarbonate resin is 2,000 g/mol to 300,000 g/mol, 3,000 g/mol to 200,000 g/mol, 4,000 g/mol to 150,000 g/mol, 4,500 g/mol. g/mol to 100,000 g/mol, preferably 5,000 g/mol to 80,000 g/mol, 6,000 g/mol to 50,000 g/mol, 7,000 g/mol to 30,000 g/mol, or 8,000 g/mol to 27,000 g. It is /mol.
  • the number average molecular weight of the polycarbonate resin is 4,000 g/mol to 100,000 g/mol, 4,000 g/mol to 50,000 g/mol, 4,000 g/mol to 30,000 g/mol, 5,000 g /mol to 30,000 g/mol, preferably 6,000 g/mol to 30,000 g/mol.
  • the polycarbonate resin may have optimal fluidity and processability.
  • the weight average molecular weight of the polyester resin is 5,000 g/mol to 500,000 g/mol, preferably 6,000 g/mol to 400,000 g/mol, 7,000 g/mol to 300,000 g/mol. mol, 8,000 g/mol to 200,000 g/mol, or 9,000 g/mol to 100,000 g/mol. More preferably, it is 10,000 g/mol to 90,000 g/mol, 15,000 g/mol to 85,000 g/mol, 20,000 g/mol to 80,000 g/mol, or 25,000 g/mol to 75,000 g/mol.
  • the polyester resin may have optimal fluidity and processability.
  • the number average molecular weight of the polyester resin is 2,000 g/mol to 300,000 g/mol, 4,000 g/mol to 250,000 g/mol, 5,000 g/mol to 210,000 g/mol, and 6,000 g/mol. g/mol to 180,000 g/mol, 7,000 g/mol to 150,000 g/mol, 8,000 g/mol to 120,000 g/mol, 9,000 g/mol to 90,000 g/mol, preferably 10,000 g/mol to 60,000 g/ mol, 11,000 g/mol to 50,000 g/mol, or 12,000 g/mol to 45,000 g/mol.
  • the weight average molecular weight of the polyester-carbonate resin is 5,000 g/mol to 500,000 g/mol, preferably 5,000 g/mol to 300,000 g/mol, 7,000 g/mol to 250,000. g/mol, from 9,000 g/mol to 200,000 g/mol. More preferably 10,000 g/mol to 150,000 g/mol, 12,000 g/mol to 100,000 g/mol, 13,000 g/mol to 80,000 g/mol, 14,000 g/mol to 60,000 g/mol, 15,000 g/mol to 55,000 It is g/mol.
  • the polyester-carbonate resin may have optimal fluidity and processability.
  • the number average molecular weight of the polyester-carbonate resin is 2,000 g/mol to 300,000 g/mol, 3,000 g/mol to 200,000 g/mol, 4,000 g/mol to 100,000 g/mol, 5,000 g/mol to 80,000 g/mol, preferably 6,000 g/mol to 60,000 g/mol, 7,000 g/mol to 40,000 g/mol, 8,000 g/mol to 30,000 g/mol.
  • the glass transition temperature (Tg) of the resin is 90 °C to 200 °C.
  • glass transition temperature can be measured using differential scanning calorimetry (DSC). Specifically, the glass transition temperature is obtained from a graph obtained by heating a 5.5 mg to 8.5 mg polycarbonate resin sample to 270 ° C. under a nitrogen atmosphere and then heating it at a temperature increase rate of 10 ° C./min during the second heating after cooling. It can be measured.
  • the glass transition temperature (Tg) of the polycarbonate resin may be 90 °C to 200 °C. Preferably, it may be 100°C to 190°C, 120°C to 180°C, 120°C to 170°C, 125°C to 170°C, or 128°C to 160°C.
  • the polycarbonate resin satisfies the above glass transition temperature range, it has excellent heat resistance and injection properties, and when producing a polycarbonate resin composition by mixing it with a resin having a glass transition temperature different from the above-mentioned range, the glass transition temperature It is easy to control and can satisfy the physical properties desired in this specification.
  • the glass transition temperature (Tg) of the polyester resin may be 90 °C to 200 °C. Preferably, it may be 90°C to 190°C, 100°C to 185°C, or 110°C to 180°C.
  • the polyester resin satisfies the above glass transition temperature range, it has excellent heat resistance and injection properties, and when producing a polyester resin composition by mixing it with a resin having a glass transition temperature different from the above-mentioned range, the glass transition temperature It is easy to control and can satisfy the physical properties desired in this specification.
  • the glass transition temperature (Tg) of the polyester-carbonate resin may be 90 °C to 200 °C. Preferably, it may be 100°C to 190°C, 110°C to 180°C, 120°C to 170°C, or 130°C to 160°C.
  • Tg glass transition temperature
  • the polyester-carbonate resin satisfies the glass transition temperature range, it has excellent heat resistance and injection properties, and when mixing with a resin having a glass transition temperature different from the above-mentioned range to produce a polycarbonate resin composition, glass The transition temperature can be easily adjusted to satisfy the physical properties desired in this specification.
  • the refractive index of the resin measured at a wavelength of 587 nm is 1.6 to 1.8.
  • the refractive index can be confirmed from a polymerized resin sample, and the result according to the wavelength of light can be obtained using a prism-coupler.
  • the resin sample is brought into close contact with the prism of a prism-coupler, light of a specific wavelength is incident on the sample through the prism.
  • the incident angle at which the light resonates is measured, the refractive index is measured from this, the Sellmeier Coefficient that minimizes the error value is calculated, and the refractive index at the D (587nm) wavelength is confirmed after substituting it into Sellmeier's equation.
  • the refractive index of the polycarbonate resin measured at a wavelength of 587 nm is 1.5 to 1.75.
  • the refractive index may preferably be 1.55 to 1.71 or 1.65 to 1.69. If the resin satisfies the above refractive index, it is possible to manufacture a thin and light optical lens when applied to a molded product such as an optical lens.
  • the refractive index of the polycarbonate resin is 1.6 to 1.8 at 587 nm.
  • the refractive index of the polycarbonate resin may be 1.6 to 1.75, or 1.6 to 1.72, preferably 1.61 to 1.69. If the resin satisfies the above refractive index, it is possible to manufacture a thin and light optical lens when applied to a molded product such as an optical lens.
  • the refractive index of the polyester resin measured at a wavelength of 587 nm is 1.50 to 1.75.
  • the refractive index may preferably be 1.55 to 1.73, 1.6 to 1.72, 1.62 to 1.7, and 1.63 to 1.69. If the resin satisfies the above refractive index, it is possible to manufacture a thin and light optical lens when applied to a molded product such as an optical lens.
  • the refractive index of the polyester-carbonate resin measured at a wavelength of 587 nm is 1.50 to 1.75.
  • the refractive index may preferably be 1.55 to 1.74, 1.60 to 1.73, or 1.61 to 1.69. If the resin satisfies the above refractive index, it is possible to manufacture a thin and light optical lens when applied to a molded product such as an optical lens.
  • the Abbe number measured at wavelengths of 486 nm, 587 nm, and 656 nm of the resin is 5 to 45.
  • the Abbe number is specifically calculated by measuring the refractive indices (n D , n F , n C ) at D (587 nm), F (486 nm), and C (656 nm) wavelengths at 20°C, and calculating the Abbe number using the formula below. number can be obtained.
  • the Abbe number measured and calculated at wavelengths of 486, 587, and 656 nm of the polycarbonate resin may be 5 to 45, or 10 to 25. Preferably it may be 14 to 22, 15 to 24, 16 to 22, or 18 to 22.
  • the polycarbonate resin satisfies the Abbe number range, there is an effect of reducing dispersion and increasing clarity when applying the polycarbonate resin to a molded product such as an optical lens.
  • the Abbe number measured and calculated at wavelengths of 486, 587, and 656 nm of the polyester resin may be 5 to 45. Preferably it may be 7 to 40 or 9 to 35. More preferably, it may be 11 to 30, 13 to 28, 15 to 26, or 17 to 25.
  • the polyester resin satisfies the Abbe number range, there is an effect of reducing dispersion and increasing clarity when applying the polyester resin to a molded product such as an optical lens.
  • the Abbe number measured and calculated at wavelengths of 486, 587, and 656 nm of the polyester-carbonate resin may be 5 to 45. Preferably it may be 10 to 29, more preferably 14 to 26.
  • the polyester-carbonate resin satisfies the Abbe number range, there is an effect of reducing dispersion and increasing clarity when applying the polyester-carbonate resin to a molded product such as an optical lens.
  • An exemplary embodiment of the present specification includes a compound of Formula 1a below; A compound of formula 2a below; and polymerizing a composition for producing a resin containing at least one of a polycarbonate precursor and a polyester precursor.
  • X1 to X4 are each independently O or S,
  • Z1 and Z2 are each independently a substituted or unsubstituted alkylene group; Or a substituted or unsubstituted cycloalkylene group,
  • a and b are each independently integers from 1 to 10, and when a and b are each 2 or more, the structures in each parenthesis are the same or different,
  • R1 to R4 are each independently hydrogen; Substituted or unsubstituted alkyl group; Substituted or unsubstituted cycloalkyl group; Substituted or unsubstituted aryl group; Or a substituted or unsubstituted heteroaryl group,
  • r1 and r2 are each independently integers of 0 to 3, and when r1 and r2 are each 2 or more, R1 and R2 of 2 or more are the same or different from each other,
  • r3 and r4 are each independently integers of 0 to 4, and when r3 and r4 are each 2 or more, R3 and R4 of 2 or more are the same or different from each other,
  • L11 is a substituted or unsubstituted alkylene group; Substituted or unsubstituted cycloalkylene group; A substituted or unsubstituted, condensed ring group of a divalent aromatic hydrocarbon ring and an aliphatic hydrocarbon ring; Or a substituted or unsubstituted arylene group,
  • l11 is an integer from 1 to 5, and when l11 is 2 or more, the 2 or more L11 are the same or different from each other,
  • X11 to X14 are each independently O or S,
  • Z11 and Z12 are each independently a substituted or unsubstituted alkylene group; Or a substituted or unsubstituted cycloalkylene group,
  • c and d are each independently integers from 0 to 10, and when c and d are each 2 or more, the structures within each parenthesis are the same or different.
  • An exemplary embodiment of the present specification includes a compound of Formula 1a; A compound of formula 2a above; and polymerizing a composition for producing a polycarbonate resin containing a polycarbonate precursor.
  • An exemplary embodiment of the present specification includes a compound of Formula 1a; A compound of formula 2a above; and polymerizing a composition for producing a polyester resin containing a polyester precursor.
  • An exemplary embodiment of the present specification includes a compound of Formula 1a; A compound of formula 2a above; polycarbonate precursor; and polymerizing a composition for producing a polyester-carbonate resin containing a polyester precursor.
  • the ratio of the compound of Formula 1a and the compound of Formula 2a is 0.01 mole% to 99.99 mole%: 99.99 mole% to 0.01 mole%.
  • 10 mole% to 90 mole% Includes 90 mole% to 10 mole%.
  • the compounds of Formulas 1a and 2a are included in the above amounts, they are easy to polymerize, have a wide range of refractive index or a high refractive index depending on the substituent, and have a wide range of glass transition temperature.
  • the glass transition temperature (Tg) and refractive index can be adjusted, and the chain behavior of the resin can be made flexible, which has advantageous technical effects for injection processing of molded products.
  • composition for producing a resin may further include a solvent.
  • the solvent may be, for example, diphenyl ether, dimethylacetamide, or methanol, but is not limited thereto, and those applied in the art may be appropriately employed.
  • the solvent may be included in an amount of 5 to 60 parts by weight based on 100 parts by weight of the composition for producing the resin.
  • the solvent may preferably be included in an amount of 5 parts by weight to 50 parts by weight, 7 parts by weight to 45 parts by weight, or 8 parts by weight to 40 parts by weight based on 100 parts by weight of the composition for preparing the resin.
  • it may include two or more of Formula 1a.
  • the two or more formulas 1a may be the same as or different from each other.
  • the compound of Formula 1a may be the following compound, but is not limited thereto.
  • the compound of Formula 2a is a compound of Formula 2a-1 below to a compound of Formula 2a-4 below.
  • the compound of Formula 2a may be any one of the following compounds, but is not limited thereto.
  • the compound of Formula 1a may be included in an amount of 1 part by weight to 100 parts by weight and 1 part by weight to 99 parts by weight based on 100 parts by weight of the composition for producing the resin.
  • the compound of Formula 1a is preferably used in an amount of 1 to 60 parts by weight, 1 to 50 parts by weight, 1 to 40 parts by weight, 1 to 30 parts by weight, 1 to 20 parts by weight, or 1 to 1 to 60 parts by weight, based on 100 parts by weight of the composition for preparing the resin. It may be included in 10 parts by weight.
  • the compound of Formula 2a may be included in an amount of 1 to 99 parts by weight based on 100 parts by weight of the composition for producing the resin.
  • the compound of Formula 2a is preferably used in an amount of 1 to 60 parts by weight, 1 to 50 parts by weight, 1 to 40 parts by weight, 1 to 30 parts by weight, 1 to 20 parts by weight, or 1 to 1 to 60 parts by weight, based on 100 parts by weight of the composition for preparing the resin. It may be included in 10 parts by weight.
  • the polycarbonate precursor may be included in an amount of 1 to 60 parts by weight based on 100 parts by weight of the composition for producing the resin.
  • the polycarbonate precursor may preferably be included in an amount of 1 to 60 parts by weight, 1 to 55 parts by weight, 1 to 50 parts by weight, 1 to 45 parts by weight, or 1 to 40 parts by weight, based on 100 parts by weight of the composition for producing the resin.
  • the polycarbonate precursor has the following formula A.
  • Ra1 and Ra2 are each independently a halogen group; Substituted or unsubstituted alkyl group; Or a substituted or unsubstituted aryl group,
  • a1 and a2 are 0 or 1, respectively.
  • Ra1 and Ra2 are each independently a halogen group; A substituted or unsubstituted straight-chain or branched alkyl group having 1 to 30 carbon atoms; Or it is a substituted or unsubstituted monocyclic or polycyclic aryl group having 6 to 30 carbon atoms.
  • Ra1 and Ra2 are each independently a halogen group; A substituted or unsubstituted straight-chain or branched alkyl group having 1 to 20 carbon atoms; Or it is a substituted or unsubstituted monocyclic or polycyclic aryl group having 6 to 20 carbon atoms.
  • Ra1 and Ra2 are each independently a halogen group; A straight or branched alkyl group having 1 to 30 carbon atoms; Or it is a monocyclic or polycyclic aryl group having 6 to 30 carbon atoms.
  • Ra1 and Ra2 are each independently a halogen group; A straight or branched alkyl group having 1 to 20 carbon atoms; Or it is a monocyclic or polycyclic aryl group having 6 to 20 carbon atoms.
  • Ra1 and Ra2 are each independently -Cl; methyl group; ethyl group; n-propyl group; isopropyl group; n-butyl group; isobutyl group; Or it is a phenyl group.
  • Formula A is any one selected from the following compounds.
  • the polycarbonate precursor serves to connect additional comonomers as needed.
  • Other specific examples that can be applied in addition to the compound represented by Formula A include phosgene, triphosgene, diphosgene, bromophosgene, dimethyl carbonate, Diethyl carbonate, dibutyl carbonate, dicyclohexyl carbonate, ditoryl carbonate, bis (chlorophenyl) carbonate, m-cresyl carbonate, dinaphthyl carbonate, bis (diphenyl) carbonate or bishaloformate, etc. Any one or a mixture of two or more of these can be used.
  • the polyester precursor may be included in an amount of 1 to 150 parts by weight based on 100 parts by weight of the composition for producing the resin.
  • the polyester precursor may preferably be included in an amount of 1 to 140 parts by weight, 1 to 135 parts by weight, 1 to 130 parts by weight, 1 to 125 parts by weight, or 1 to 120 parts by weight, based on 100 parts by weight of the composition for producing the resin.
  • the polyester precursor has the following formula B.
  • Rb1 and Rb2 are each independently a halogen group; hydroxyl group; Substituted or unsubstituted alkyl group; Or a substituted or unsubstituted aryl group,
  • Ar1 is a substituted or unsubstituted arylene group
  • b1 and b2 are 0 or 1, respectively.
  • Rb1 and Rb2 are each independently a halogen group; hydroxyl group; A substituted or unsubstituted straight-chain or branched alkyl group having 1 to 30 carbon atoms; A substituted or unsubstituted monocyclic or polycyclic cycloalkyl group having 6 to 30 carbon atoms; Or it is a substituted or unsubstituted monocyclic or polycyclic aryl group having 6 to 30 carbon atoms.
  • Rb1 and Rb2 are each independently a halogen group; hydroxyl group; A substituted or unsubstituted straight-chain or branched alkyl group having 1 to 20 carbon atoms; A substituted or unsubstituted monocyclic or polycyclic cycloalkyl group having 6 to 20 carbon atoms; Or it is a substituted or unsubstituted monocyclic or polycyclic aryl group having 6 to 20 carbon atoms.
  • Rb1 and Rb2 are each independently a halogen group; hydroxyl group; A straight or branched alkyl group having 1 to 30 carbon atoms substituted or unsubstituted with a hydroxy group; A monocyclic or polycyclic cycloalkyl group having 6 to 30 carbon atoms; Or it is a monocyclic or polycyclic aryl group having 6 to 30 carbon atoms.
  • Rb1 and Rb2 are each independently a halogen group; hydroxyl group; A straight or branched alkyl group having 1 to 20 carbon atoms substituted or unsubstituted with a hydroxy group; A monocyclic or polycyclic cycloalkyl group having 6 to 20 carbon atoms; Or it is a monocyclic or polycyclic aryl group having 6 to 20 carbon atoms.
  • Rb1 and Rb2 are each independently -Cl; hydroxyl group; methyl group; ethyl group; n-propyl group; n-butyl group; isopropyl group; isobutyl group; hydroxyethyl group; Or it is a phenyl group.
  • La and Lb described above may be applied to the definition of Ar1.
  • Ar1 is a monocyclic or polycyclic arylene group having 6 to 30 carbon atoms.
  • Ar1 is a monocyclic or polycyclic arylene group having 6 to 20 carbon atoms.
  • Ar1 is a phenylene group; Or it is a naphthylene group.
  • Formula B is any one selected from the following compounds.
  • a compound of Formula 1a; And the unit of the above-described formula 1 can be formed by polymerizing the polycarbonate precursor of formula A or the polyester precursor of formula B, and a compound of formula 2a; And the unit of Formula 2 described above can be formed by polymerizing the polycarbonate precursor of Formula A or the polyester precursor of Formula B.
  • the resin is a polycarbonate resin
  • the polycarbonate resin is a compound of Formula 1a; A compound of formula 2a above; And it is preferably polymerized from the polycarbonate precursor of formula A.
  • the resin is a polyester resin
  • the polyester resin is a compound of Formula 1a; A compound of formula 2a above; And it is preferably polymerized from the polyester precursor of formula B.
  • Compounds of formula 1a; And the unit of the above-mentioned formula 11 can be formed by polymerizing the polyester precursor of the formula B, and the compound of the formula 2a; and the polyester precursor of Formula B may be polymerized to form the unit of Formula 12 described above.
  • the resin is a polyester-carbonate resin
  • the polyester-carbonate resin is a compound of Formula 1a; A compound of formula 2a above; A polycarbonate precursor of formula A; And it is preferably polymerized from the polyester precursor of formula B.
  • Compounds of formula 1a; A polycarbonate precursor of formula A; And the unit of the above-mentioned formula 21 can be formed by polymerizing the polyester precursor of the formula B, and the compound of the formula 2a; A polycarbonate precursor of formula A; and the polyester precursor of Formula B may be polymerized to form the unit of Formula 22 described above.
  • the precursor (terephthalate) ) molecular weight is the precursor of polycarbonate resin (carbonate ), so it accounts for a high proportion of the resin weight.
  • the precursor lowers the concentration of diol monomer that realizes high refractive index, so the refractive index of polycarbonate resin is relatively higher than that of polyester resin.
  • polyester resin compared to polycarbonate resin, polyester resin has a longer conjugate bond as a structural feature, and due to intra- and extra-molecular hydrogen bonds, it generally has a high yellow index and high heat resistance properties such as Tg.
  • the compound of Formula 1a may be used in an amount of 1 to 100 mole parts, or 1 mole part to 99 mole parts, based on 100 mole parts of the total monomers constituting the resin containing the unit of Formula 1.
  • the polycarbonate precursor of Chemical Formula A may be used in an amount of 50 to 150 molar parts based on 100 molar parts of all monomers of the compound of Chemical Formula 1a constituting the resin.
  • the polyester precursor of Chemical Formula B may be used in an amount of 1 to 150 molar parts based on 100 molar parts of the total monomers of the compound of Chemical Formula 1a constituting the resin.
  • the compound of Formula 2a may be used in an amount of 1 to 100 mole parts, or 1 mole part to 99 mole parts, based on 100 mole parts of the total monomers constituting the resin containing the unit of Formula 2.
  • the polycarbonate precursor of Chemical Formula A may be used in an amount of 50 to 150 molar parts based on 100 molar parts of the total monomers of the compound of Chemical Formula 2a constituting the resin.
  • the polyester precursor of Formula B may be used in an amount of 1 to 150 mole parts based on 100 mole parts of the total monomers of the compound of Formula 2a constituting the resin.
  • the polymerization is preferably performed by melt polycondensation.
  • a catalyst can be further applied as needed using the composition for producing the resin, and the melt polycondensation is performed while removing by-products by transesterification under heating, additionally under normal pressure or reduced pressure. It may be.
  • the catalyst may be a material generally applied in the technical field.
  • the melt polycondensation method includes the compound of Formula 1a; A compound of formula 2a above; and melting one or more of the polycarbonate precursor and the polyester precursor in a reaction vessel, and then carrying out the reaction while retaining the by-produced compound.
  • the pressure can be controlled by blocking the reaction device, reducing the pressure, or pressurizing the reactor.
  • the reaction time of this step is 20 minutes or more and 600 minutes or less, preferably 40 minutes or more and 450 minutes or less, and more preferably 60 minutes or more and 300 minutes or less.
  • the resin finally obtained has a low content of high molecular weight substances.
  • the by-produced compounds are allowed to remain in the reaction vessel for a certain period of time, the final resin obtained has a high content of high molecular weight substances.
  • the melt polycondensation method may be carried out continuously or in a batch manner.
  • the reaction device used to carry out the reaction may be a vertical type equipped with an anchor-type stirring blade, a max blend stirring blade, a helical ribbon-type stirring blade, etc., or a horizontal type equipped with a paddle blade, a grid blade, a glasses blade, etc. It may be an extruder type equipped with a screw.
  • taking into account the viscosity of the polymer it is preferably performed by using a reaction device that appropriately combines these reaction devices.
  • the catalyst may be removed or deactivated after completion of the polymerization reaction in order to maintain thermal stability and hydrolysis stability.
  • a method of deactivating the catalyst by adding an acidic substance known in the art can be preferably carried out.
  • esters such as butyl benzoate, aromatic sulfonic acids such as p-toluenesulfonic acid; Aromatic sulfonic acid esters such as butyl p-toluenesulfonate and hexyl p-toluenesulfonate; Phosphoric acids such as phosphorous acid, phosphoric acid, and phosphonic acid; phosphorous acid esters such as triphenyl phosphite, monophenyl phosphite, diphenyl phosphite, diethyl phosphite, di-n-propyl phosphite, di-n-butyl phosphite, di-n-hexyl phosphite, dioctyl phosphite, and monooctyl phosphite; Phosphate esters such as triphenyl phosphate, diphenyl
  • the acidic substance may be used in an amount of 0.1 mole part to 5 mole part, preferably 0.1 mole part to 1 mole part, based on 100 mole part of the catalyst.
  • the acidic substance is less than 0.1 mole part, the deactivating effect becomes insufficient and is not preferable. Additionally, if it exceeds 5 molar parts, the heat resistance of the resin decreases and the molded article becomes prone to coloring, which is not preferable.
  • a process of devolatilizing and removing the low boiling point compound in the resin can be further performed at a pressure of 0.1 mmHg to 1 mmHg and a temperature of 200°C to 350°C.
  • a horizontal device or a thin film evaporator equipped with stirring blades with excellent surface renewal ability, such as paddle blades, grid blades, or spectacle blades, is preferably used.
  • the resin of this specification preferably has as little foreign matter content as possible, and filtration of molten raw materials, filtration of catalyst liquid, etc. are preferably performed.
  • the mesh of the filter used for the filtration is preferably 5 ⁇ m or less, and more preferably 1 ⁇ m or less. Additionally, filtration of the resulting resin using a polymer filter is preferably performed.
  • the mesh of the polymer filter is preferably 100 ⁇ m or less, and more preferably 30 ⁇ m or less.
  • the process of collecting the resin pellets must be in a low dust environment, preferably in class 6 or lower, and more preferably in class 5 or lower.
  • examples of molding methods for molded articles containing the resin include, but are not limited to, compression molding, molding, roll processing, extrusion molding, and stretching.
  • Another embodiment of the present specification provides a resin composition containing a resin according to the above-described embodiments.
  • the resin may be included in an amount of 1 to 80 parts by weight based on 100 parts by weight of the resin composition.
  • the resin composition may further include a solvent.
  • the solvent may be, for example, dimethylacetamide or 1,2-dichlorobenzene.
  • the solvent may be included in an amount of 20 to 99 parts by weight based on 100 parts by weight of the resin composition.
  • the resin composition may further include additional monomers in addition to the compound of Formula 1a and the compound of Formula 2a.
  • the additional monomer is not particularly limited, and monomers generally applied in the art related to polycarbonate/polyester/polyester-carbonate may be appropriately employed as long as they do not change the main physical properties of the resin composition.
  • the additional monomer may be used in an amount of 1 to 50 mole parts based on 100 mole parts of the total monomers constituting the resin containing the unit of Formula 1.
  • the resin composition may optionally contain additives such as antioxidants, plasticizers, antistatic agents, nucleating agents, flame retardants, lubricants, impact modifiers, fluorescent whitening agents, and ultraviolet absorbers. , may further include one or more selected from the group consisting of pigments and dyes.
  • the additive may be included in an amount of 1 to 99 parts by weight based on 100 parts by weight of the resin composition.
  • antioxidants plasticizers, antistatic agents, nucleating agents, flame retardants, lubricants, impact modifiers, fluorescent whitening agents, ultraviolet absorbers, pigments or dyes are not particularly limited, and those applicable in the art may be appropriately employed.
  • Another embodiment of the present specification provides a molded article containing a resin composition according to the above-described embodiments.
  • the molded article may be manufactured from the resin composition or a cured product thereof.
  • the resin containing the unit of Formula 1 and the additive are mixed well using a mixer, then extruded using an extruder to produce a pellet, and the pellet is dried and then processed using an injection molding machine. It may include an injection step.
  • the molded article may be an optical lens.
  • the thickness of the optical lens may be 0.1 ⁇ m to 30 mm.
  • the optical lens is manufactured using the resin, has a thin thickness, has a high refractive index and high transparency, and can preferably be applied to a camera.
  • the molded article is an optical film or an optical thin film.
  • the optical film or optical thin film is manufactured using the polycarbonate resin, has a thin thickness, has excellent light collection and light diffusion effects, and can preferably be applied to a backlight module of a liquid crystal display, a flat lens, a metalens, etc. .
  • the thickness of the optical film or optical thin film is 0.1 nm to 10 mm.
  • the molded article is an optical resin.
  • the optical resin is manufactured using the polycarbonate resin, has a thin thickness, and has a high refractive index and low birefringence, resulting in low light loss.
  • the optical resin according to an exemplary embodiment of the present specification has a high refractive index and a low birefringence and thus has low optical loss.
  • the optical resin according to an exemplary embodiment of the present specification has a glass transition temperature of 90 °C to 200 °C, which is neither very high nor low in heat resistance compared to conventional optical materials, is easy to process, and shows excellent heat resistance. If the glass transition temperature exceeds 200 °C, the melt flow index increases, making processing difficult, and if the glass transition temperature is less than 90 °C, low heat resistance results in poor weather resistance due to the external environment. Accordingly, there are few optical resins according to an embodiment of the present specification that have appropriate thermal properties and implement a high refractive index.
  • Monomer 1-1 (45.215 g (0.100 mol)) and 21.422 g (0.100 mol) of diphenylcarbonate were melted and reacted at 250°C for 5 hours. As the reaction progressed, phenol was generated as a by-product, and the degree of reduced pressure was adjusted to a maximum of 1 Torr to remove it. After completion of the reaction, nitrogen was blown into the reactor to create an atmospheric pressure atmosphere, and Resin 1-1, a polymerized polymer molten resin, was obtained.
  • Resins 1-2 to 1-17 were obtained in the same manner as in Preparation Example 1-1, except that the following monomers were used in mole parts in Table 1 below instead of Monomer 1-1.
  • the molecular weight and molecular weight distribution of the polymerized resin sample were confirmed through gel permeation chromatography (GPC), and a thermogram was obtained using differential scanning calorimetry (DSC) to determine thermal properties.
  • tetrahydrofuran THF, stabilized without BHT (butylated hydroxytoluene)
  • BHT butylated hydroxytoluene
  • the solution prepared by filtering with a syringe filter was injected and measured at 40° C. to obtain the results, which are listed in Table 2 below.
  • a Waters RI detector was used, and two columns were Agilent PLgel MIXED-B.
  • DSC Differential scanning calorimetry
  • the refractive index measurement can be confirmed from the polymerized resin sample, and the results according to the wavelength of light were obtained using a prism-coupler.
  • the refractive index was measured at a wavelength of 587 nm
  • the Abbe number was measured by measuring the refractive indices (n D , n F , n C ) at D (587 nm), F (486 nm), and C (656 nm) wavelengths, respectively.
  • the Abbe number was obtained using the calculation formula below, and is listed in Table 2 below.
  • Mn refers to the number average molecular weight
  • Mw refers to the weight average molecular weight
  • PDI refers to the polydispersity index
  • RI refers to the refractive index
  • Tg refers to the glass transition temperature
  • the refractive index is a value measured at a wavelength of 587 nm.
  • the resins of Examples 1-1 to 1-14 include units represented by Formula 1 and Formula 2 according to an embodiment of the present invention, so that the core structure of Formula 1 is spiro[fluorene- 9,9'-xanthene] is rich in electrons and has a high electron density, thereby improving the refractive index of the polycarbonate resin containing it. Accordingly, the glass transition temperature of the unit represented by Formula 1, including the unit represented by Formula 2, It can complement (Tg) or make the chain behavior of the unit represented by Formula 1 flexible, and is advantageous for injection processing of molded products.
  • the resin of Comparative Example 1-1 does not contain the unit represented by Formula 2 according to an embodiment of the present invention, thereby supplementing the glass transition temperature (Tg) of the unit represented by Formula 1, or It was confirmed that the chain behavior of the unit represented by Chemical Formula 1 could not be made flexible, which was disadvantageous for injection processing of molded products and was insufficient, and that the refractive index was lower than that of the resins of Examples 1-1 to 1-14 of the present invention.
  • Tg glass transition temperature
  • the refractive index is at the level of the Examples, but in the case of a homopolymer (homopolymer), there is a problem in that it is difficult to satisfy physical properties suitable for injection. Specifically, in the case of homopolymers, as they have the same repeating structure, the stacking between molecules is good and the free volume is small, which makes extrusion/injection difficult due to high birefringence or poor flowability at high temperatures.
  • the resin according to an embodiment of the present invention has the advantage of being easy to extrude/inject and thermoform while having the desired refractive index. there is.
  • Monomer 1-1 (45.251 g (0.100 mol)), terephthaloyl chloride (terephthaloyl chloride) 9.710 g (0.050 mol), and isophthaloyl chloride (isophthaloyl dichloride) 9.710 g (0.050 mol) were melted at 250° C. Time responded. As the reaction progressed, ethylene glycol was generated as a by-product, and the degree of reduced pressure was adjusted to a maximum of 1 Torr to remove it. After completion of the reaction, nitrogen was blown into the reactor to create an atmospheric pressure atmosphere, and Resin 2-1, a polymerized polymer molten resin, was obtained.
  • Resins 2-2 to 2-17 were obtained in the same manner as in Preparation Example 2-1, except that the following monomers were used in molar parts in Table 3 below instead of Monomer 1-1.
  • the molecular weight and molecular weight distribution of the polymerized resin sample were confirmed through gel permeation chromatography (GPC), and a thermogram was obtained using differential scanning calorimetry (DSC) to determine thermal properties.
  • tetrahydrofuran THF, stabilized without BHT (butylated hydroxytoluene)
  • BHT butylated hydroxytoluene
  • the solution prepared by filtering with a syringe filter was injected and measured at 40° C. to obtain the results, which are listed in Table 4 below.
  • a Waters RI detector was used, and two columns were Agilent PLgel MIXED-B.
  • DSC Differential scanning calorimetry
  • the refractive index measurement can be confirmed from the polymerized resin sample, and the results according to the wavelength of light were obtained using a prism-coupler.
  • the polymerized resin was cut to a certain size, heated and pressured on a hot plate to flatten the cross section to prepare a sample, and the prepared sample was used a prism-coupler. Results were obtained according to the wavelength of light, and are listed in Table 4 below. Specifically, the refractive index was measured at a wavelength of 589 nm, and the Abbe number was measured by measuring the refractive indices (n D , n F , n C ) at D (587 nm), F (486 nm), and C (656 nm) wavelengths, respectively. The Abbe number was obtained using the calculation formula below.
  • the refractive index was measured at a wavelength of 589 nm
  • the Abbe number was measured by measuring the refractive indices (n D , n F , n C ) at D (587 nm), F (486 nm), and C (656 nm) wavelengths, respectively.
  • the Abbe number was obtained using the calculation formula below.
  • Example 2-1 Resin 2-1 32000 60300 1.89 1.643 155 22.2
  • Example 2-1 Resin 2-2 21100 38400 1.81 1.652 158 21.1
  • Example 2-2 Resin 2-3 23400 36100 1.60 1.647 155 21.8
  • Example 2-3 Resin 2-4 18100 32300 1.85 1.653 156 21.0
  • Example 2-4 Resin 2-5 17500 31200 1.87 1.653 156 20.9
  • Example 2-5 Resin 2-6 26300 51000 1.98 1.655 149 20.7
  • Example 2-6 Resin 2-7 24100 41600 1.74 1.667 157 19.3
  • Example 2-7 Resin 2-8 25900 45200 1.81 1.660 151 20.1
  • Example 2-8 Resin 2-9 27600 49100 1.77 1.663 151 19.9
  • Example 2-9 Resin 2-10 19900 35400 1.79 1.642 145 22.3
  • Example 2-10 Resin 2-11 16700 30100 1.80 1.649 115
  • Mn refers to the number average molecular weight
  • Mw refers to the weight average molecular weight
  • PDI refers to the polydispersity index
  • RI refers to the refractive index
  • Tg refers to the glass transition temperature
  • the refractive index is a value measured at a wavelength of 587 nm.
  • Examples 2-1 to 2-16 include units of Formula 1 according to an embodiment of the present invention, and in particular, the core structure of Formula 1 is spiro[fluorene-9,9'-xanthene. ], the refractive index of the polyester resin containing it is improved because the electron density is high due to the abundance of electrons.
  • the glass transition temperature (Tg) and refractive index can be adjusted, and the chain behavior of the polyester resin can be made flexible, allowing for injection processing of molded products. There are beneficial technical effects.
  • Comparative Example 2-1 it has a refractive index at the level of the Examples, but in the case of a homopolymer (homopolymer), there is a problem in that it is difficult to satisfy physical properties suitable for injection. Specifically, in the case of homopolymers, as they have the same repeating structure, the stacking between molecules is good and the free volume is small, which makes extrusion/injection difficult due to high birefringence or poor flowability at high temperatures.
  • the resin according to an embodiment of the present invention has the advantage of being easy to extrude/inject and thermoform while having the desired refractive index. there is.
  • Resins 3-2 to 3-15 were obtained in the same manner as in Preparation Example 3-1, except that the following monomers were used in the molar parts shown in Table 5 instead of Monomer 1-1.
  • PE precursor (para) refers to the molar part of terephthaloyl chloride, a polyester precursor
  • PE precursor (meta) refers to the molar part of isophthaloyl chloride, a polyester precursor.
  • the molecular weight and molecular weight distribution of the polymerized resin sample were confirmed through gel permeation chromatography (GPC), and a thermogram was obtained using differential scanning calorimetry (DSC) to determine thermal properties.
  • GPC gel permeation chromatography
  • DSC differential scanning calorimetry
  • THF tetrahydrofuran
  • BHT butylated hydroxytoluene
  • the solution prepared by filtering with a syringe filter was injected and measured at 40° C. to obtain the results, which are listed in Table 6 below.
  • a Waters RI detector was used, and two columns were Agilent PLgel MIXED-B.
  • DSC Differential scanning calorimetry
  • the refractive index and Abbe number of the resin To measure the refractive index and Abbe number of the resin, signal light with a certain wavelength is incident on the polymerized resin sample using a prism coupler, and the output light reflected from the bottom of the prism is measured to obtain results according to the wavelength of the light. After obtaining the values, they are listed in Table 6 below. Specifically, the refractive index was measured at a wavelength of 589 nm, and the Abbe number was measured by measuring the refractive indices (n D , n F , n C ) at D (587 nm), F (486 nm), and C (656 nm) wavelengths, respectively. The Abbe number was obtained using the calculation formula below.
  • Mn refers to the number average molecular weight
  • Mw refers to the weight average molecular weight
  • PDI refers to the polydispersity index
  • RI refers to the refractive index
  • Tg refers to the glass transition temperature
  • the refractive index is a value measured at a wavelength of 587 nm.
  • Examples 3-1 to 3-14 are polyester-carbonate resins according to an embodiment of the present invention and include a unit of Formula 1, and in particular, the core structure of Formula 1 is spiro[fluorene- 9,9'-xanthene], it was confirmed that the refractive index of the polyester-carbonate resin containing it was improved because it was rich in electrons and had a high electron density.
  • the glass transition temperature (Tg) and refractive index can be adjusted, and the chain behavior of the polyester-carbonate resin can be made flexible, enabling injection of molded products. There is a technical effect that is advantageous for processing.
  • the polyester-carbonate resin can be manufactured with desired physical properties by combining the characteristics of polyester resin and polycarbonate resin by appropriately adjusting the molar ratio and isomers of the polyester precursor and polycarbonate precursor.
  • Comparative Example 3-1 it has a refractive index at the level of the Examples, but in the case of a homopolymer (homopolymer), there is a problem in that it is difficult to satisfy physical properties suitable for injection. Specifically, in the case of homopolymers, as they have the same repeating structure, the stacking between molecules is good and the free volume is small, which makes extrusion/injection difficult due to high birefringence or poor flowability at high temperatures.
  • the resin according to an embodiment of the present invention has the advantage of being easy to extrude/inject and thermoform while having the desired refractive index. there is.
  • Monomer 1-1 (45.053 g (0.100 mol)) and 21.422 g (0.100 mol) of diphenylcarbonate were melted and reacted at 250°C for 5 hours. As the reaction progressed, phenol was generated as a by-product, and the degree of reduced pressure was adjusted to a maximum of 1 Torr to remove it. After completion of the reaction, nitrogen was blown into the reactor to create an atmospheric pressure atmosphere, and Resin 1, a polymerized polymer molten resin, was obtained.
  • Resins 4-2 to 4-4 were obtained in the same manner as in Preparation Example 4-1, except that the monomers listed in Table 7 below were used in the following molar parts instead of Monomer 1-1.
  • the molecular weight and molecular weight distribution of the polymerized resin sample were confirmed through gel permeation chromatography (GPC), and a thermogram was obtained using differential scanning calorimetry (DSC) to determine thermal properties.
  • tetrahydrofuran THF, stabilized with BHT (butylated hydroxytoluene)
  • BHT butylated hydroxytoluene
  • the solution prepared by filtering with a syringe filter was injected and measured at 40° C. to obtain the results, which are listed in Table 8 below.
  • a Waters RI detector was used, and two columns were Agilent PLgel MIXED-B.
  • DSC Differential scanning calorimetry
  • the refractive index measurement can be confirmed from the polymerized resin sample, and the results according to the wavelength of light were obtained using a prism-coupler.
  • the refractive index was measured at a wavelength of 587 nm
  • the Abbe number was measured by measuring the refractive indices (n D , n F , n C ) at D (587 nm), F (486 nm), and C (656 nm) wavelengths, respectively.
  • the Abbe number was obtained using the calculation formula below.
  • the YI value at room temperature (20°C) was measured using UltraScan PRO (manufactured by HunterLab) in accordance with ASTM D1925.
  • Mn is the number average molecular weight
  • Mw is the weight average molecular weight
  • PDI is the polydispersity index
  • RI is the refractive index
  • Tg is the glass transition temperature.
  • the refractive index is a value measured at a wavelength of 587 nm
  • the yellowing index is is a value measured when the thickness of the polycarbonate resin is 1mm.
  • the polycarbonate resins of Examples 4-1 to 4-3 have a yellowing index of 8 or less when the thickness of the polycarbonate resin is 1 mm or less, and various colors can be realized due to the low yellowing index. , can provide optical products in a variety of colors, and are especially suitable for optical materials that require high transparency.
  • the polycarbonate resin according to the embodiment of the present invention contains a unit of Formula 1, and in particular, the core structure of Formula 1 is spiro[fluorene-9,9'-xanthene], which is rich in electrons.
  • Polycarbonate resin containing high electron density has an improved refractive index.
  • the glass transition temperature (Tg) of the unit represented by Formula 1 can be supplemented, or the chain behavior of the unit represented by Formula 1 can be made flexible, and the chain behavior of the unit represented by Formula 1 can be made flexible. There are technical effects advantageous to injection processing.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

본 출원은 화학식 1의 단위 및 화학식 2의 단위를 포함하는 수지, 이의 제조방법, 이를 포함하는 수지 조성물 및 상기 수지 조성물을 포함하는 성형품에 관한 것이다.

Description

수지 및 이의 제조방법
본 명세서는 수지 및 이의 제조방법에 관한 것이다.
본 명세서는 2022년 10월 7일 한국 특허청에 제출된 한국 특허 제10-2022-0128853호, 제10-2022-0128859호, 및 제10-2022-0128861호, 및 2022년 11월 24일 한국 특허청에 제출된 한국 특허 제10-2022-0159379의 출원일의 이익을 주장하며, 그 내용 전부는 본 명세서에 포함된다.
각종 렌즈, 프리즘, 광디스크 기판, 광섬유 등의 플라스틱 광학 제품 및 광학 필름에 사용되는 광학 재료로서, 광학 유리 혹은 광학 수지가 사용되고 있다. 광학 유리는, 내열성, 투명성, 치수 안정성, 내약품성 등이 우수하지만, 재료 비용이 높고, 성형 가공성이 나쁘며, 생산성이 낮다는 문제점을 가지고 있다.
한편, 광학 수지를 포함하는 광학 재료는 사출 성형에 의해 대량 생산이 가능하다. 광학 수지로서 폴리카보네이트 수지, 폴리에스터 수지, 폴리에스터-카보네이트 수지 등이 사용되고 있다.
다만, 상기 광학 수지는 유동성이 불충분하여 가공성이 떨어지는 단점이 있다. 따라서, 상기 정밀함을 요구하는 물품의 사출 성형에 적용하는 것이 곤란한 경우가 있다. 상기 수지를 사출 성형에 적용하기 위해서는, 성형 온도, 금형 온도 등을 높일 필요가 있지만, 성형 사이클이 길어져 성형 비용이 높아지거나, 또는 성형 중에 수지의 열화, 색상의 저하 등이 일어나게 된다.
이를 해결하기 위하여, 광학 재료 성형 시, 수지의 색상 유동성을 개량하는 방법으로서, 점도를 낮게 하거나, 중량 평균 분자량을 낮추고, 저분자량 올리고머를 가하고, 분자량 분포를 넓게 하는 등의 방법을 들 수 있지만, 내열성, 내충격성과 같은 수지가 본래 갖는 우수한 물성이 저하되는 경향이 있다.
또한, 일반적으로 높은 굴절률의 광학 재료는 일정 수준 이상의 투명성이 요구된다. 특히, 폴리카보네이트의 투명한 특성으로 인해 광학 재료 관련 분야에서 폴리카보네이트의 사용 범위가 지속적으로 확대되어 가고 있는 추세이며, 폴리카보네이트로부터 노르스름함(yellowish)을 효과적으로 차단할 수 있는 광학 재료의 제공이 요구된다.
따라서, 수지의 장점은 유지하면서, 가공성을 높이며, 낮은 황변 지수를 나타내 다양한 색상을 구현하기 위한 시도가 계속되고 있다.
본 명세서의 일 실시상태는 신규한 구조의 수지 및 이의 제조방법을 제공하고자 한다.
본 명세서의 또 하나의 실시상태는 신규한 구조의 수지를 포함하는 수지 조성물 및 상기 수지 조성물로 제조된 성형품을 제공하고자 한다.
본 명세서의 일 실시상태는 하기 화학식 1의 단위; 및 하기 화학식 2의 단위를 포함하는 수지를 제공한다.
[화학식 1]
Figure PCTKR2023015453-appb-img-000001
상기 화학식 1에 있어서,
L은 직접결합; 또는 -L'-C(=O)-이고,
L'은 치환 또는 비치환된 아릴렌기이며,
X1 내지 X4는 각각 독립적으로 O; 또는 S이고,
Z1 및 Z2는 각각 독립적으로 치환 또는 비치환된 알킬렌기; 또는 치환 또는 비치환된 시클로알킬렌기이며,
a 및 b는 각각 독립적으로 1 내지 10의 정수이고, 상기 a 및 b가 각각 2 이상인 경우 각 괄호 안의 구조는 서로 같거나 상이하며,
R1 내지 R4는 각각 독립적으로 수소; 치환 또는 비치환된 알킬기; 치환 또는 비치환된 시클로알킬기; 치환 또는 비치환된 아릴기; 또는 치환 또는 비치환된 헤테로아릴기이고,
r1 및 r2는 각각 독립적으로 0 내지 3의 정수이며, 상기 r1 및 r2가 각각 2 이상인 경우, 상기 2 이상의 R1 및 R2는 각각 서로 같거나 상이하고,
r3 및 r4는 각각 독립적으로 0 내지 4의 정수이며, 상기 r3 및 r4가 각각 2 이상인 경우, 상기 2 이상의 R3 및 R4는 각각 서로 같거나 상이하고,
*은 수지의 주쇄에 연결되는 부위를 의미하며,
[화학식 2]
Figure PCTKR2023015453-appb-img-000002
상기 화학식 2에 있어서,
L1은 직접결합; 또는 -L1'-C(=O)-이고,
L1'은 치환 또는 비치환된 아릴렌기이며,
L11은 치환 또는 비치환된 알킬렌기; 치환 또는 비치환된 시클로알킬렌기; 치환 또는 비치환되고, 2가의 방향족 탄화수소고리와 지방족 탄화수소고리의 축합고리기; 또는 치환 또는 비치환된 아릴렌기이고,
l11은 1 내지 5의 정수이며, 상기 l11이 2 이상인 경우, 상기 2 이상의 L11은 서로 같거나 상이하며,
X11 내지 X14는 각각 독립적으로 O; 또는 S이고,
Z11 및 Z12는 각각 독립적으로 치환 또는 비치환된 알킬렌기; 또는 치환 또는 비치환된 시클로알킬렌기이며,
c 및 d는 각각 독립적으로 0 내지 10의 정수이고, 상기 c 및 d가 각각 2 이상인 경우 각 괄호 안의 구조는 서로 같거나 상이하며,
*은 수지의 주쇄에 연결되는 부위를 의미한다.
본 명세서의 일 실시상태에는 하기 화학식 1a의 화합물; 하기 화학식 2a의 화합물; 및 폴리카보네이트 전구체 및 폴리에스터 전구체 중 1 이상을 포함하는 수지 제조용 조성물을 중합하는 단계를 포함하는 전술한 실시상태에 따른 수지의 제조방법을 제공한다.
[화학식 1a]
Figure PCTKR2023015453-appb-img-000003
상기 화학식 1a에 있어서,
X1 내지 X4는 각각 독립적으로 O 또는 S이고,
Z1 및 Z2는 각각 독립적으로 치환 또는 비치환된 알킬렌기; 또는 치환 또는 비치환된 시클로알킬렌기이며,
a 및 b는 각각 독립적으로 1 내지 10의 정수이고, 상기 a 및 b가 각각 2 이상인 경우 각 괄호 안의 구조는 서로 같거나 상이하며,
R1 내지 R4는 각각 독립적으로 수소; 치환 또는 비치환된 알킬기; 치환 또는 비치환된 시클로알킬기; 치환 또는 비치환된 아릴기; 또는 치환 또는 비치환된 헤테로아릴기이고,
r1 및 r2는 각각 독립적으로 0 내지 3의 정수이며, 상기 r1 및 r2가 각각 2 이상인 경우, 상기 2 이상의 R1 및 R2는 각각 서로 같거나 상이하고,
r3 및 r4는 각각 독립적으로 0 내지 4의 정수이며, 상기 r3 및 r4가 각각 2 이상인 경우, 상기 2 이상의 R3 및 R4는 각각 서로 같거나 상이하고,
[화학식 2a]
Figure PCTKR2023015453-appb-img-000004
상기 화학식 2a에 있어서,
L11은 치환 또는 비치환된 알킬렌기; 치환 또는 비치환된 시클로알킬렌기; 치환 또는 비치환되고, 2가의 방향족 탄화수소고리와 지방족 탄화수소고리의 축합고리기; 또는 치환 또는 비치환된 아릴렌기이며,
l11은 1 내지 5의 정수이며, 상기 l11이 2 이상인 경우, 상기 2 이상의 L11은 서로 같거나 상이하고,
X11 내지 X14는 각각 독립적으로 O 또는 S이며,
Z11 및 Z12는 각각 독립적으로 치환 또는 비치환된 알킬렌기; 또는 치환 또는 비치환된 시클로알킬렌기이고,
c 및 d는 각각 독립적으로 0 내지 10의 정수이며, 상기 c 및 d가 각각 2 이상인 경우 각 괄호 안의 구조는 서로 같거나 상이하다.
본 명세서의 또 하나의 실시상태는 전술한 실시상태에 따른 수지를 포함하는 수지 조성물을 제공한다.
본 명세서의 또 하나의 실시상태는 전술한 실시상태에 따른 수지를 포함하는 수지 조성물을 포함하는 성형품을 제공한다.
본 명세서의 일 실시상태들에 따른 수지는 높은 굴절률 및 높은 투명성을 갖는다.
본 명세서의 일 실시상태들에 따른 수지를 이용함으로써, 두께가 얇은 우수한 광학 렌즈, 광학 필름, 광학 박막, 또는 광학 수지를 얻을 수 있다.
본 명세서의 일 실시상태들에 따른 수지를 이용함으로써, 굴절률이 높으며 황변 지수가 낮은 우수한 광학 렌즈, 광학 필름, 광학 박막, 또는 광학 수지를 얻을 수 있다.
이하, 본 명세서에 대하여 더욱 상세히 설명한다.
본 명세서의 일 실시상태에 따른 화학식 1로 표시되는 단위를 포함하는 수지는 로런츠-로렌츠의 식(Lorentz-Lorenz's formula)에 의하여 알려져 있는 분자 구조와 굴절률의 관계식으로부터, 분자의 전자 밀도를 높이며, 분자 체적을 줄임으로써, 분자로 구성되는 물질의 굴절률이 높아짐을 알 수 있다. 또한, 상기 화학식 1의 코어 구조는 spiro[fluorene-9,9'-xanthene]로써, 전자가 풍부한 코어 구조인 경우, 상기 화학식 1로 표시되는 구조의 전자 밀도를 높여 수지의 굴절률을 더욱 향상시킬 수 있다.
상기 수지는 화학식 1 및 화학식 2로 표시되는 단위를 포함함으로써, 상기 화학식 1로 표시되는 단위의 유리전이온도(Tg)를 보완해주거나, 상기 화학식 1로 표시되는 단위의 사슬 거동을 유연하게 할 수 있고, 성형품의 사출 가공에 유리한 기술적 효과가 있다.
따라서, 본 명세서의 일 실시상태에 따른 수지는 높은 굴절률 및 높은 투명성을 갖고, 이를 이용한 광학렌즈, 광학 필름, 또는 광학 수지는 두께가 얇고 우수한 광학특성을 나타낼 수 있다.
본 명세서의 일 실시상태에 따른 수지는 폴리카보네이트 수지, 폴리에스터 수지 또는 폴리에스터-카보네이트 수지일 수 있다. 본 명세서에서 특별히 한정하지 않는 한, 수지는 상기 3종류의 수지를 모두 포함하는 것이다.
본원 명세서 전체에서, 마쿠시 형식의 표현에 포함된 "이들의 조합"의 용어는 마쿠시 형식의 표현에 기재된 구성 요소들로 이루어진 군에서 선택되는 하나 이상의 혼합 또는 조합을 의미하는 것으로서, 상기 구성 요소들로 이루어진 군에서 선택되는 하나 이상을 포함하는 것을 의미한다.
본 명세서에 있어서, 실온(room temperature)은 당업계에서 정의하는 바와 동일하며, 일반적으로 실험실, 연구실 등의 온도를 뜻하며, 특히 온도를 지정하거나 조절을 하지 않고 실험을 진행한 경우 또는 시료와 물질을 실내에 방치한 경우에 사용되는 온도를 말하고, 당업계에서는 15 ℃ 내지 25 ℃를 의미한다.
본 명세서에 있어서, 상압은 당업계에서 정의하는 바와 동일하며, 일반적으로 보통 대기압과 같은 1기압 정도의 압력을 의미한다.
본 명세서에서 어떤 부분이 어떤 구성요소를 "포함" 한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것을 의미한다.
본 발명에서 달리 정의되지 않는 한, 본 발명에서 사용되는 모든 기술적 및 과학적 용어는 본 발명이 속하는 기술 분야의 당업자에 의해 통상적으로 이해되는 바와 동일한 의미를 갖는다. 본 발명에서 설명되는 것과 유사하거나 등가인 방법 및 재료가 본 발명의 실시 형태의 실시 또는 시험에서 사용될 수 있지만, 적합한 방법 및 재료가 후술된다. 본 발명에서 언급되는 모든 간행물, 특허 출원, 특허 및 다른 참고 문헌은 전체적으로 본 발명에 참고로 포함되며, 상충되는 경우 특정 어구(passage)가 언급되지 않으면, 정의를 비롯한 본 발명이 우선할 것이다. 게다가, 재료, 방법, 및 실시예는 단지 예시적인 것이며 제한하고자 하는 것은 아니다.
본 명세서에서 치환기의 예시들은 아래에서 설명하나, 이에 한정되는 것은 아니다.
본 명세서에 있어서,
Figure PCTKR2023015453-appb-img-000005
는 연결되는 부위를 의미한다.
본 명세서에서 상기 "치환"이라는 용어는 화합물의 탄소 원자 또는 질소 원자에 결합된 수소 원자가 다른 치환기로 바뀌는 것을 의미하며, 치환되는 위치는 수소 원자가 치환되는 위치 즉, 치환기가 치환 가능한 위치라면 한정하지 않으며, 2 이상 치환되는 경우, 2 이상의 치환기는 서로 같거나 상이할 수 있다.
본 명세서에서 "치환 또는 비치환된" 이라는 용어는 중수소; 할로겐기; 히드록시기; 시아노기; 알킬기; 시클로알킬기; 알콕시기; 알케닐기; 아릴옥시기; 아릴티오기; 알킬티오기; 실릴기; 아릴기; 방향족 탄화수소고리와 지방족 탄화수소고리의 축합고리기; 및 헤테로아릴기로 이루어진 군으로부터 선택되는 1 이상의 치환기로 치환되었거나, 상기 예시된 치환기 중 2 이상의 치환기가 연결된 치환기로 치환되거나, 또는 어떠한 치환기도 갖지 않는 것을 의미한다.
본 명세서에 있어서, 2 이상의 치환기가 연결된다는 것은 어느 하나의 치환기의 수소가 다른 치환기와 연결된 것을 말한다. 예컨대, 2개의 치환기가 연결되는 것은 페닐기와 나프틸기가 연결되어
Figure PCTKR2023015453-appb-img-000006
또는
Figure PCTKR2023015453-appb-img-000007
의 치환기가 될 수 있다. 또한, 3개의 치환기가 연결되는 것은 (치환기 1)-(치환기 2)-(치환기 3)이 연속하여 연결되는 것뿐만 아니라, (치환기 1)에 (치환기 2) 및 (치환기 3)이 연결되는 것도 포함한다. 예컨대, 페닐기, 나프틸기 및 이소프로필기가 연결되어,
Figure PCTKR2023015453-appb-img-000008
,
Figure PCTKR2023015453-appb-img-000009
또는
Figure PCTKR2023015453-appb-img-000010
의 치환기가 될 수 있다. 4 이상의 치환기가 연결되는 것에도 전술한 정의가 동일하게 적용된다.
본 명세서에 있어서, 수소는 수소, 중수소, 또는 삼중수소일 수 있다.
본 명세서에 있어서, 화학식 구조 중 치환기가 표시되지 않은 부분은 수소, 중수소, 또는 삼중수소가 치환된 것을 의미할 수 있다.
본 명세서에 있어서, 할로겐기의 예로는 불소, 염소, 브롬 또는 요오드가 있다.
본 명세서에 있어서, 알킬기는 직쇄 또는 분지쇄일 수 있고, 탄소수는 특별히 한정되지 않으나 1 내지 30인 것이 바람직하다. 구체적인 예로는 메틸, 에틸, 프로필, n-프로필, 이소프로필, 부틸, n-부틸, 이소부틸, tert-부틸, sec-부틸, 1-메틸-부틸, 1-에틸-부틸, 펜틸, n-펜틸, 이소펜틸, 네오펜틸, tert-펜틸, 헥실, n-헥실, 1-메틸펜틸, 2-메틸펜틸, 4-메틸-2-펜틸, 3,3-디메틸부틸, 2-에틸부틸, 헵틸, n-헵틸, 1-메틸헥실, 시클로펜틸메틸, 시클로헥실메틸, 옥틸, n-옥틸, tert-옥틸, 1-메틸헵틸, 2-에틸헥실, 2-프로필펜틸, n-노닐, 2,2-디메틸헵틸, 1-에틸-프로필, 1,1-디메틸-프로필, 이소헥실, 2-메틸펜틸, 4-메틸헥실, 5-메틸헥실 등이 있으나, 이에 한정되는 것은 아니다.
본 명세서에 있어서, 시클로알킬기는 특별히 한정되지 않으나, 탄소수 3 내지 30인 것이 바람직하며, 구체적으로 시클로프로필, 시클로부틸, 시클로펜틸, 3-메틸시클로펜틸, 2,3-디메틸시클로펜틸, 시클로헥실, 3-메틸시클로헥실, 4-메틸시클로헥실, 2,3-디메틸시클로헥실, 3,4,5-트리메틸시클로헥실, 4-tert-부틸시클로헥실, 시클로헵틸, 시클로옥틸, 아다만틸기 등이 있으나, 이에 한정되는 것은 아니다.
본 명세서에 있어서, 알콕시기는 직쇄, 분지쇄 또는 고리쇄일 수 있다. 알콕시기의 탄소수는 특별히 한정되지 않으나, 탄소수 1 내지 30인 것이 바람직하다. 구체적으로, 메톡시, 에톡시, n-프로폭시, 이소프로폭시, n-부톡시, 이소부톡시, tert-부톡시, sec-부톡시, n-펜틸옥시, 네오펜틸옥시, 이소펜틸옥시, n-헥실옥시, 3,3-디메틸부틸옥시, 2-에틸부틸옥시, n-옥틸옥시, n-노닐옥시, n-데실옥시, 벤질옥시, p-메틸벤질옥시 등이 될 수 있으나, 이에 한정되는 것은 아니다.
본 명세서에 있어서, 알케닐기는 직쇄 또는 분지쇄일 수 있고, 탄소수는 특별히 한정되지 않으나, 2 내지 30인 것이 바람직하다. 구체적인 예로는 비닐, 1-프로페닐, 이소프로페닐, 1-부테닐, 2-부테닐, 3-부테닐, 1-펜테닐, 2-펜테닐, 3-펜테닐, 3-메틸-1-부테닐, 1,3-부타디에닐, 알릴, 1-페닐비닐-1-일, 2-페닐비닐-1-일, 2,2-디페닐비닐-1-일, 2-페닐-2-(나프틸-1-일)비닐-1-일, 2,2-비스(디페닐-1-일)비닐-1-일, 스틸베닐기, 스티레닐기 등이 있으나, 이에 한정되는 것은 아니다.
본 명세서에 있어서, 아릴기는 특별히 한정되지 않으나, 탄소수 6 내지 30인 것이 바람직하며, 상기 아릴기는 단환식 또는 다환식일 수 있다.
상기 아릴기가 단환식 아릴기인 경우 탄소수는 특별히 한정되지 않으나, 탄소수 6 내지 50인 것이 바람직하다. 구체적으로 단환식 아릴기로는 페닐기, 바이페닐기, 터페닐기 등이 될 수 있으나, 이에 한정되는 것은 아니다.
상기 아릴기가 다환식 아릴기인 경우 탄소수는 특별히 한정되지 않으나. 탄소수 10 내지 50인 것이 바람직하다. 구체적으로 다환식 아릴기로는 나프틸기, 안트라센기, 페난트렌기, 트리페닐렌기, 파이렌기, 페날렌기, 페릴렌기, 크라이센기, 플루오렌기 등이 될 수 있으나, 이에 한정되는 것은 아니다.
본 명세서에 있어서, 상기 플루오렌기는 치환될 수 있으며, 인접한 기들이 서로 결합하여 고리를 형성할 수 있다.
상기 플루오렌기가 치환되는 경우,
Figure PCTKR2023015453-appb-img-000011
,
Figure PCTKR2023015453-appb-img-000012
,
Figure PCTKR2023015453-appb-img-000013
,
Figure PCTKR2023015453-appb-img-000014
,
Figure PCTKR2023015453-appb-img-000015
,
Figure PCTKR2023015453-appb-img-000016
,
Figure PCTKR2023015453-appb-img-000017
Figure PCTKR2023015453-appb-img-000018
등이 있으나, 이에 한정되지 않는다.
본 명세서에 있어서, "인접한" 기는 해당 치환기가 치환된 원자와 직접 연결된 원자에 치환된 치환기, 해당 치환기와 입체구조적으로 가장 가깝게 위치한 치환기, 또는 해당 치환기가 치환된 원자에 치환된 다른 치환기를 의미할 수 있다. 예컨대, 벤젠고리에서 오르토(ortho)위치로 치환된 2개의 치환기 및 지방족 고리에서 동일 탄소에 치환된 2개의 치환기는 서로 "인접한" 기로 해석될 수 있다.
본 명세서에 있어서, 헤테로아릴기는 탄소가 아닌 원자, 이종원자를 1 이상 포함하는 것으로서, 구체적으로 상기 이종 원자는 O, N, Se 및 S 등으로 이루어진 군에서 선택되는 원자를 1 이상 포함할 수 있다. 탄소수는 특별히 한정되지 않으나, 탄소수 2 내지 30인 것이 바람직하며, 상기 헤테로아릴기는 단환식 또는 다환식일 수 있다. 헤테로아릴기의 예로는 티오펜기, 퓨란기, 피롤기, 이미다졸기, 티아졸기, 옥사졸기, 옥사디아졸기, 피리딘기, 바이피리딘기, 피리미딘기, 트리아진기, 트리아졸기, 아크리딘기, 피리다진기, 피라진기, 퀴놀린기, 퀴나졸린기, 퀴녹살린기, 프탈라진기, 피리도 피리미딘기, 피리도 피라진기, 피라지노 피라진기, 이소퀴놀린기, 인돌기, 카바졸기, 벤즈옥사졸기, 벤즈이미다졸기, 벤조티아졸기, 벤조카바졸기, 벤조티오펜기, 디벤조티오펜기, 벤조퓨란기, 페난트리딘기(phenanthridine), 페난쓰롤린기(phenanthroline), 이소옥사졸기, 티아디아졸기, 디벤조퓨란기, 디벤조실롤기, 페노크산틴기(phenoxathiine), 페녹사진기(phenoxazine), 페노티아진기(phenothiazine), 디하이드로인데노카바졸기, 스피로플루오렌잔텐기, 스피로플루오렌티옥산텐기, 테트라하이드로나프토티오펜기, 테트라하이드로나프토퓨란기, 테트라하이드로벤조티오펜기, 및 테트라하이드로벤조퓨란기 등이 있으나, 이에 한정되는 것은 아니다.
본 명세서 있어서, 실릴기는 알킬실릴기, 아릴실릴기, 알킬아릴실릴기; 헤테로아릴실릴기 등일 수 있다. 상기 알킬실릴기 중 알킬기는 전술한 알킬기의 예시가 적용될 수 있고, 상기 아릴실릴기 중 아릴기는 전술한 아릴기의 예시가 적용될 수 있으며, 상기 알킬아릴실릴기 중의 알킬기 및 아릴기는 상기 알킬기 및 아릴기의 예시가 적용될 수 있고, 상기 헤테로아릴실릴기 중 헤테로아릴기는 상기 헤테로고리기의 예시가 적용될 수 있다.
본 명세서에 있어서, 탄화수소고리기는 방향족 탄화수소고리기, 지방족 탄화수소고리기, 또는 방향족 탄화수소고리와 지방족 탄화수소고리의 축합고리기일 수 있으며, 상기 시클로알킬기, 아릴기, 및 이들의 조합의 예시 중에서 선택될 수 있으며, 상기 탄화수소고리기는 페닐기, 시클로헥실기, 아다만틸기, 바이시클로[2.2.1]헵틸기, 바이시클로[2.2.1]옥틸기, 테트라하이드로나프탈렌기, 테트라하이드로안트라센기, 1,2,3,4-테트라하이드로-1,4-메타노나프탈렌기, 1,2,3,4-테트라하이드로-1,4-에타노나프탈렌기, 스피로시클로펜탄플루오렌기, 스피로아다만탄플루오렌기, 및 스피로시클로헥산플루오렌기 등이 있으나, 이에만 한정되는 것은 아니다.
본 명세서에 있어서, 아릴옥시기는 -ORo로 표시될 수 있고, 상기 Ro는 전술한 아릴기에 대한 설명이 적용된다.
본 명세서에 있어서, 아릴티오기는 -SRs1으로 표시될 수 있고, 상기 Rs1은 전술한 아릴기에 대한 설명이 적용된다.
본 명세서에 있어서, 알킬티오기는 -SRs2로 표시될 수 있고, 상기 Rs2은 전술한 알킬기에 대한 설명이 적용된다.
본 명세서에 있어서, 알킬렌기는 알킬기에 결합 위치가 두 개 있는 것, 즉 2가기를 의미한다. 이들은 각각 2가기인 것을 제외하고는 전술한 알킬기의 설명이 적용될 수 있다.
본 명세서에 있어서, 시클로알킬렌기는 시클로알킬기에 결합 위치가 두 개 있는 것, 즉 2가기를 의미한다. 이들은 각각 2가기인 것을 제외하고는 전술한 시클로알킬기의 설명이 적용될 수 있다.
본 명세서에 있어서, 2가의 방향족 탄화수소고리와 지방족 탄화수소고리의 축합고리기는 방향족 탄화수소고리와 지방족 탄화수소고리의 축합고리기에 결합 위치가 두 개 있는 것, 즉 2가기를 의미한다. 이들은 각각 2가기인 것을 제외하고는 전술한 방향족 탄화수소고리와 지방족 탄화수소고리의 축합고리기의 설명이 적용될 수 있다.
본 명세서에 있어서, 아릴렌기는 아릴기에 결합 위치가 두 개 있는 것, 즉 2가기를 의미한다. 이들은 각각 2가기인 것을 제외하고는 전술한 아릴기의 설명이 적용될 수 있다.
본 명세서의 일 실시상태에 따르면, 하기 화학식 1의 단위 및 하기 화학식 2의 단위를 포함하는 수지를 제공한다.
[화학식 1]
Figure PCTKR2023015453-appb-img-000019
상기 화학식 1에 있어서,
L은 직접결합; 또는 -L'-C(=O)-이고,
L'은 치환 또는 비치환된 아릴렌기이며,
X1 내지 X4는 각각 독립적으로 O; 또는 S이고,
Z1 및 Z2는 각각 독립적으로 치환 또는 비치환된 알킬렌기; 또는 치환 또는 비치환된 시클로알킬렌기이며,
a 및 b는 각각 독립적으로 1 내지 10의 정수이고, 상기 a 및 b가 각각 2 이상인 경우 각 괄호 안의 구조는 서로 같거나 상이하며,
R1 내지 R4는 각각 독립적으로 수소; 치환 또는 비치환된 알킬기; 치환 또는 비치환된 시클로알킬기; 치환 또는 비치환된 아릴기; 또는 치환 또는 비치환된 헤테로아릴기이고,
r1 및 r2는 각각 독립적으로 0 내지 3의 정수이며, 상기 r1 및 r2가 각각 2 이상인 경우, 상기 2 이상의 R1 및 R2는 각각 서로 같거나 상이하고,
r3 및 r4는 각각 독립적으로 0 내지 4의 정수이며, 상기 r3 및 r4가 각각 2 이상인 경우, 상기 2 이상의 R3 및 R4는 각각 서로 같거나 상이하고,
*은 수지의 주쇄에 연결되는 부위를 의미하며,
[화학식 2]
Figure PCTKR2023015453-appb-img-000020
상기 화학식 2에 있어서,
L1은 직접결합; 또는 -L1'-C(=O)-이고,
L1'은 치환 또는 비치환된 아릴렌기이며,
L11은 치환 또는 비치환된 알킬렌기; 치환 또는 비치환된 시클로알킬렌기; 치환 또는 비치환되고, 2가의 방향족 탄화수소고리와 지방족 탄화수소고리의 축합고리기; 또는 치환 또는 비치환된 아릴렌기이고,
l11은 1 내지 5의 정수이며, 상기 l11이 2 이상인 경우, 상기 2 이상의 L11은 서로 같거나 상이하며,
X11 내지 X14는 각각 독립적으로 O; 또는 S이고,
Z11 및 Z12는 각각 독립적으로 치환 또는 비치환된 알킬렌기; 또는 치환 또는 비치환된 시클로알킬렌기이며,
c 및 d는 각각 독립적으로 0 내지 10의 정수이고, 상기 c 및 d가 각각 2 이상인 경우 각 괄호 안의 구조는 서로 같거나 상이하며,
*은 수지의 주쇄에 연결되는 부위를 의미한다.
본 명세서의 일 실시상태에 따르면, 상기 화학식 1은 하기 화학식 1-1로 표시된다.
[화학식 1-1]
Figure PCTKR2023015453-appb-img-000021
상기 화학식 1-1에 있어서,
각 치환기의 정의는 상기 화학식 1에서 정의한 바와 동일하다.
본 명세서의 일 실시상태에 따르면, 상기 화학식 1은 하기 화학식 1-2 및 화학식 1-3 중 어느 하나로 표시된다.
[화학식 1-2]
Figure PCTKR2023015453-appb-img-000022
[화학식 1-3]
Figure PCTKR2023015453-appb-img-000023
상기 화학식 1-2 및 1-3에 있어서,
각 치환기의 정의는 상기 화학식 1에서 정의한 바와 동일하다.
본 명세서의 일 실시상태에 따르면, 상기 L은 직접결합이다.
본 명세서의 일 실시상태에 따르면, 상기 L은 직접결합이고, 상기 수지는 폴리카보네이트 수지이다.
본 명세서의 일 실시상태에 따르면, 상기 L은 직접결합이고, 상기 수지는 폴리에스터-카보네이트 수지이다.
본 명세서의 일 실시상태에 따르면, 상기 L은 -L'-C(=O)-이다.
본 명세서의 일 실시상태에 따르면, 상기 L은 -L'-C(=O)-이고, 상기 수지는 폴리에스터 수지이다.
본 명세서의 일 실시상태에 따르면, 상기 L은 -L'-C(=O)-이고, 상기 수지는 폴리에스터-카보네이트 수지이다.
본 명세서의 일 실시상태에 따르면, 상기 L'은 탄소수 6 내지 30의 단환 또는 다환의 아릴렌기이다.
본 명세서의 일 실시상태에 따르면, 상기 L'은 탄소수 6 내지 20의 단환 또는 다환의 아릴렌기이다.
본 명세서의 일 실시상태에 따르면, 상기 L'은 페닐렌기; 또는 나프틸렌기이다.
본 명세서의 일 실시상태에 따르면, 상기 L'은 페닐렌기이다.
본 발명의 일 실시상태에 따르면, 상기 X1 내지 X4는 O이다.
본 발명의 일 실시상태에 따르면, 상기 X1 내지 X4는 S이다.
본 명세서의 일 실시상태에 따르면, 상기 X1 및 X2는 S이고, 상기 X3 및 X4는 O이다.
본 명세서의 일 실시상태에 따르면, 상기 X1 및 X2는 O이고, 상기 X3 및 X4는 S이다.
본 명세서의 일 실시상태에 따르면, 상기 X1은 O이다.
본 명세서의 일 실시상태에 따르면, 상기 X2은 O이다.
본 명세서의 일 실시상태에 따르면, 상기 X3은 O이다.
본 명세서의 일 실시상태에 따르면, 상기 X4은 O이다.
본 명세서의 일 실시상태에 따르면, 상기 X1은 S이다.
본 명세서의 일 실시상태에 따르면, 상기 X2은 S이다.
본 명세서의 일 실시상태에 따르면, 상기 X3은 S이다.
본 명세서의 일 실시상태에 따르면, 상기 X4은 S이다.
본 명세서의 일 실시상태에 따르면, 상기 a는 1 이다.
본 명세서의 일 실시상태에 따르면, 상기 b는 1 이다.
본 명세서의 일 실시상태에 따르면, 상기 a는 2 이다.
본 명세서의 일 실시상태에 따르면, 상기 b는 2 이다.
본 명세서의 일 실시상태에 따르면, 상기 a는 3 이다.
본 명세서의 일 실시상태에 따르면, 상기 b는 3 이다.
상기 a 및 b가 1 내지 10의 정수인 경우, 상기 a 및 b가 0인 경우 대비 상기 수지는 최적의 유동성과 가공성을 가질 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 Z1 및 Z2는 서로 같거나 상이하고, 각각 독립적으로 치환 또는 비치환된 탄소수 1 내지 30의 직쇄 또는 분지쇄의 알킬렌기; 또는 치환 또는 비치환된 탄소수 3 내지 30의 단환 또는 다환의 시클로알킬렌기이다.
본 명세서의 일 실시상태에 따르면, 상기 Z1 및 Z2는 서로 같거나 상이하고, 각각 독립적으로 치환 또는 비치환된 탄소수 1 내지 20의 직쇄 또는 분지쇄의 알킬렌기; 또는 치환 또는 비치환된 탄소수 3 내지 20의 단환 또는 다환의 시클로알킬렌기이다.
본 명세서의 일 실시상태에 따르면, 상기 Z1 및 Z2는 서로 같거나 상이하고, 각각 독립적으로 치환 또는 비치환된 탄소수 1 내지 10의 직쇄 또는 분지쇄의 알킬렌기; 또는 치환 또는 비치환된 탄소수 3 내지 10의 단환 또는 다환의 시클로알킬렌기이다.
본 명세서의 일 실시상태에 따르면, 상기 Z1 및 Z2는 서로 같거나 상이하고, 각각 독립적으로 치환 또는 비치환된 탄소수 1 내지 30의 직쇄 또는 분지쇄의 알킬렌기이다.
본 명세서의 일 실시상태에 따르면, 상기 Z1 및 Z2는 서로 같거나 상이하고, 각각 독립적으로 치환 또는 비치환된 탄소수 1 내지 20의 직쇄 또는 분지쇄의 알킬렌기이다.
본 명세서의 일 실시상태에 따르면, 상기 Z1 및 Z2는 서로 같거나 상이하고, 각각 독립적으로 치환 또는 비치환된 탄소수 1 내지 10의 직쇄 또는 분지쇄의 알킬렌기이다.
본 명세서의 일 실시상태에 따르면, 상기 Z1 및 Z2는 서로 같거나 상이하고, 각각 독립적으로 치환 또는 비치환된 에틸렌기이다.
본 명세서의 일 실시상태에 따르면, 상기 R1 내지 R4는 서로 같거나 상이하고, 각각 독립적으로 수소; 치환 또는 비치환된 탄소수 1 내지 30의 직쇄 또는 분지쇄의 알킬기; 치환 또는 비치환된 탄소수 3 내지 30의 단환 또는 다환의 시클로알킬기; 치환 또는 비치환된 탄소수 6 내지 30의 단환 또는 다환의 아릴기; 또는 치환 또는 비치환되고 O, S 및 N 중 1 이상을 포함하는 탄소수 2 내지 30의 단환 또는 다환의 헤테로아릴기이다.
본 명세서의 일 실시상태에 따르면, 상기 R1 내지 R4는 서로 같거나 상이하고, 각각 독립적으로 수소; 치환 또는 비치환된 탄소수 1 내지 20의 직쇄 또는 분지쇄의 알킬기; 치환 또는 비치환된 탄소수 3 내지 20의 단환 또는 다환의 시클로알킬기; 치환 또는 비치환된 탄소수 6 내지 20의 단환 또는 다환의 아릴기; 또는 치환 또는 비치환되고 O, S 및 N 중 1 이상을 포함하는 탄소수 2 내지 20의 단환 또는 다환의 헤테로아릴기이다.
본 명세서의 일 실시상태에 따르면, 상기 R1 내지 R4는 서로 같거나 상이하고, 각각 독립적으로 수소; 치환 또는 비치환된 탄소수 1 내지 10의 직쇄 또는 분지쇄의 알킬기; 치환 또는 비치환된 탄소수 3 내지 10의 단환 또는 다환의 시클로알킬기; 치환 또는 비치환된 탄소수 6 내지 10의 단환 또는 다환의 아릴기; 또는 치환 또는 비치환되고 O, S 및 N 중 1 이상을 포함하는 탄소수 2 내지 10의 단환 또는 다환의 헤테로아릴기이다.
본 명세서의 일 실시상태에 따르면, 상기 R1 내지 R4는 각각 독립적으로 수소이다.
본 명세서의 일 실시상태에 따르면, 상기 L1은 직접결합이다.
본 명세서의 일 실시상태에 따르면, 상기 L1은 직접결합이고, 상기 수지는 폴리카보네이트 수지이다.
본 명세서의 일 실시상태에 따르면, 상기 L1은 직접결합이고, 상기 수지는 폴리에스터-카보네이트 수지이다.
본 명세서의 일 실시상태에 따르면, 상기 L1은 -L1'-C(=O)-이다.
본 명세서의 일 실시상태에 따르면, 상기 L1은 -L1'-C(=O)-이고, 상기 수지는 폴리에스터 수지이다.
본 명세서의 일 실시상태에 따르면, 상기 L1은 -L1'-C(=O)-이고, 상기 수지는 폴리에스터-카보네이트 수지이다.
본 명세서의 일 실시상태에 따르면, 상기 L1'은 탄소수 6 내지 30의 단환 또는 다환의 아릴렌기이다.
본 명세서의 일 실시상태에 따르면, 상기 L1'은 탄소수 6 내지 20의 단환 또는 다환의 아릴렌기이다.
본 명세서의 일 실시상태에 따르면, 상기 L1'은 페닐렌기; 또는 나프틸렌기이다.
본 명세서의 일 실시상태에 따르면, 상기 L1'은 페닐렌기이다.
본 명세서의 일 실시상태에 따르면, 상기 L11은 치환 또는 비치환된 탄소수 1 내지 30의 직쇄 또는 분지쇄의 알킬렌기; 치환 또는 비치환된 탄소수 3 내지 30의 단환 또는 다환의 시클로알킬렌기; 탄소수 6 내지 30의 단환 또는 다환의 아릴기로 치환 또는 비치환된 2가의 탄소수 6 내지 30의 단환 또는 다환의 방향족 탄화수소고리와 탄소수 3 내지 30의 지방족 탄화수소고리의 축합고리기; 또는 탄소수 1 내지 30의 직쇄 또는 분지쇄의 알킬기, 또는 탄소수 6 내지 30의 단환 또는 다환의 아릴기로 치환 또는 비치환된 탄소수 6 내지 30의 단환 또는 다환의 아릴렌기이다.
본 명세서의 일 실시상태에 따르면, 상기 L11은 치환 또는 비치환된 탄소수 1 내지 20의 직쇄 또는 분지쇄의 알킬렌기; 치환 또는 비치환된 탄소수 3 내지 20의 단환 또는 다환의 시클로알킬렌기; 탄소수 6 내지 20의 단환 또는 다환의 아릴기로 치환 또는 비치환된 2가의 탄소수 6 내지 20의 단환 또는 다환의 방향족 탄화수소고리와 탄소수 3 내지 20의 지방족 탄화수소고리의 축합고리기; 또는 탄소수 1 내지 20의 직쇄 또는 분지쇄의 알킬기, 또는 탄소수 6 내지 20의 단환 또는 다환의 아릴기로 치환 또는 비치환된 탄소수 6 내지 20의 단환 또는 다환의 아릴렌기이다.
본 명세서의 일 실시상태에 따르면, 상기 L11은 C(CH3)2; 메틸기로 치환 또는 비치환된 페닐렌기; 비페닐렌기; 2가의 나프틸기; 또는 2가의 플루오렌기이다.
본 명세서의 일 실시상태에 따르면, 상기 L11은 탄소수 6 내지 30의 단환 또는 다환의 아릴기로 치환 또는 비치환된 2가의 탄소수 6 내지 30의 단환 또는 다환의 방향족 탄화수소고리와 탄소수 3 내지 30의 지방족 탄화수소고리의 축합고리기; 또는 탄소수 1 내지 30의 직쇄 또는 분지쇄의 알킬기, 또는 탄소수 6 내지 30의 단환 또는 다환의 아릴기로 치환 또는 비치환된 탄소수 6 내지 30의 단환 또는 다환의 아릴렌기이다.
본 명세서의 일 실시상태에 따르면, 상기 L11은 탄소수 6 내지 20의 단환 또는 다환의 아릴기로 치환 또는 비치환된 2가의 탄소수 6 내지 20의 단환 또는 다환의 방향족 탄화수소고리와 탄소수 3 내지 20의 지방족 탄화수소고리의 축합고리기; 또는 탄소수 1 내지 20의 직쇄 또는 분지쇄의 알킬기, 또는 탄소수 6 내지 20의 단환 또는 다환의 아릴기로 치환 또는 비치환된 탄소수 6 내지 20의 단환 또는 다환의 아릴렌기이다.
본 명세서의 일 실시상태에 따르면, 상기 L11은 메틸기로 치환 또는 비치환된 페닐렌기; 비페닐렌기; 나프탈렌기로 치환된 플루오렌기; 페닐렌기; 비나프탈렌기; 또는 비스페놀 A이다.
본 명세서의 일 실시상태에 따르면, 상기 l11은 1이다.
본 명세서의 일 실시상태에 따르면, 상기 l11는 2 이고, 상기 2 개의 L11은 서로 같거나 상이하다.
본 명세서의 일 실시상태에 따르면, 상기 l11는 3 이고, 상기 3개의 L11은 서로 같거나 상이하다.
본 명세서의 일 실시상태에 따르면, 상기 l11는 4 이고, 상기 4개의 L11은 서로 같거나 상이하다.
본 명세서의 일 실시상태에 따르면, 상기 l11는 5 이고, 상기 5개의 L11은 서로 같거나 상이하다.
본 명세서의 일 실시상태에 따르면, 상기 X11은 O이다.
본 명세서의 일 실시상태에 따르면, 상기 X12는 O이다.
본 명세서의 일 실시상태에 따르면, 상기 X13는 O이다.
본 명세서의 일 실시상태에 따르면, 상기 X14는 O이다.
본 명세서의 일 실시상태에 따르면, 상기 X11 내지 X14는 O이다.
본 명세서의 일 실시상태에 따르면, 상기 Z11 및 Z12는 서로 같거나 상이하고, 각각 독립적으로 탄소수 1 내지 30의 직쇄 또는 분지쇄의 알킬렌기이다.
본 명세서의 일 실시상태에 따르면, 상기 Z11 및 Z12는 서로 같거나 상이하고, 각각 독립적으로 탄소수 1 내지 20의 직쇄 또는 분지쇄의 알킬렌기이다.
본 명세서의 일 실시상태에 따르면, 상기 Z11 및 Z12는 서로 같거나 상이하고, 각각 독립적으로 탄소수 1 내지 10의 직쇄 또는 분지쇄의 알킬렌기이다.
본 명세서의 일 실시상태에 따르면, 상기 Z11 및 Z12는 에틸렌기이다.
본 명세서의 일 실시상태에 따르면, 상기 c는 1 이다.
본 명세서의 일 실시상태에 따르면, 상기 d는 1 이다.
본 명세서의 일 실시상태에 따르면, 상기 c는 0 이다.
본 명세서의 일 실시상태에 따르면, 상기 d는 0 이다.
본 명세서의 일 실시상태에 따르면, 상기 수지는 말단기로 -OH; -SH; -CO2CH3; 또는 -OC6H5 를 가질 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 화학식 2의 단위는 하기 화학식 2-1 내지 2-4 중 적어도 어느 하나이다.
[화학식 2-1]
Figure PCTKR2023015453-appb-img-000024
[화학식 2-2]
Figure PCTKR2023015453-appb-img-000025
[화학식 2-3]
Figure PCTKR2023015453-appb-img-000026
[화학식 2-4]
Figure PCTKR2023015453-appb-img-000027
상기 화학식 2-1 내지 2-4에 있어서,
X21 내지 X36은 서로 같거나 상이하고, 각각 독립적으로 O 또는 S이며,
L21 및 L22는 서로 같거나 상이하고, 각각 독립적으로 치환 또는 비치환된 아릴렌기; 또는 치환 또는 비치환된 헤테로아릴렌기고,
Z21 내지 Z28은 서로 같거나 상이하고, 각각 독립적으로 치환 또는 비치환된 알킬렌기; 또는 치환 또는 비치환된 시클로알킬렌기이며,
R5 내지 R10 및 R13 내지 R15는 서로 같거나 상이하고, 각각 독립적으로 수소; 치환 또는 비치환된 알킬기; 치환 또는 비치환된 시클로알킬기; 치환 또는 비치환된 아릴기; 또는 치환 또는 비치환된 헤테로아릴기이거나, 인접한 기와 서로 결합하여 치환 또는 비치환된 방향족 탄화수소고리기를 형성하고,
R11 및 R12는 서로 같거나 상이하고, 각각 독립적으로 수소; 치환 또는 비치환된 알킬기; 치환 또는 비치환된 시클로알킬기; 치환 또는 비치환된 아릴기; 또는 치환 또는 비치환된 헤테로아릴기이거나, 서로 결합하여 치환 또는 비치환된 탄화수소고리기를 형성하고,
R101 및 R102는 서로 같거나 상이하고, 각각 독립적으로 수소; 치환 또는 비치환된 알킬기; 치환 또는 비치환된 시클로알킬기; 치환 또는 비치환된 아릴기; 또는 치환 또는 비치환된 헤테로아릴기이며,
a1 내지 a4 및 b1 내지 b4는 각각 0 내지 10의 정수이고,
r5, r6 및 r15는 각각 0 내지 4의 정수이고, 상기 r5, r6 및 r15가 각각 2 이상인 경우 2 이상의 R5, R6 및 R15는 각각 서로 같거나 상이하며,
r13 및 r14는 각각 0 내지 6의 정수이고, 상기 r13 및 r14가 각각 2 이상인 경우 2 이상의 R13 및 R14는 각각 서로 같거나 상이하며,
r101 및 r102는 각각 0 내지 2의 정수이고, 상기 r101 및 r102가 각각 2 이상인 경우 2 이상의 R101 및 R102는 각각 서로 같거나 상이하며,
*은 수지의 주쇄에 연결되는 부위를 의미한다.
본 명세서의 일 실시상태에 따르면, 상기 Z21 내지 Z28은 서로 같거나 상이하고, 각각 독립적으로 치환 또는 비치환된 탄소수 1 내지 30의 직쇄 또는 분지쇄의 알킬렌기; 또는 치환 또는 비치환된 탄소수 3 내지 30의 단환 또는 다환의 시클로알킬렌기이다.
본 명세서의 일 실시상태에 따르면, 상기 Z21 내지 Z28은 서로 같거나 상이하고, 각각 독립적으로 치환 또는 비치환된 탄소수 1 내지 20의 직쇄 또는 분지쇄의 알킬렌기; 또는 치환 또는 비치환된 탄소수 3 내지 20의 단환 또는 다환의 시클로알킬렌기이다.
본 명세서의 일 실시상태에 따르면, 상기 Z21 내지 Z28은 서로 같거나 상이하고, 각각 독립적으로 치환 또는 비치환된 탄소수 1 내지 10의 직쇄 또는 분지쇄의 알킬렌기; 또는 치환 또는 비치환된 탄소수 3 내지 10의 단환 또는 다환의 시클로알킬렌기이다.
본 명세서의 일 실시상태에 따르면, 상기 Z21 내지 Z28은 서로 같거나 상이하고, 각각 독립적으로 치환 또는 비치환된 탄소수 1 내지 30의 직쇄 또는 분지쇄의 알킬렌기이다.
본 명세서의 일 실시상태에 따르면, 상기 Z21 내지 Z28은 서로 같거나 상이하고, 각각 독립적으로 치환 또는 비치환된 탄소수 1 내지 20의 직쇄 또는 분지쇄의 알킬렌기이다.
본 명세서의 일 실시상태에 따르면, 상기 Z21 내지 Z28은 서로 같거나 상이하고, 각각 독립적으로 치환 또는 비치환된 탄소수 1 내지 10의 직쇄 또는 분지쇄의 알킬렌기이다.
본 명세서의 일 실시상태에 따르면, 상기 Z21 내지 Z28은 서로 같거나 상이하고, 각각 독립적으로 치환 또는 비치환된 에틸렌기이다.
본 명세서의 일 실시상태에 따르면, 상기 R101 및 R102는 서로 같거나 상이하고, 각각 독립적으로 수소; 치환 또는 비치환된 탄소수 1 내지 30의 직쇄 또는 분지쇄의 알킬기; 치환 또는 비치환된 탄소수 3 내지 30의 단환 또는 다환의 시클로알킬기; 치환 또는 비치환된 탄소수 6 내지 30의 단환 또는 다환의 아릴기; 또는 치환 또는 비치환된 O, S 및 N 중 1 이상을 포함하는 탄소수 2 내지 30의 단환 또는 다환의 헤테로아릴기이다.
본 명세서의 일 실시상태에 따르면, 상기 R101 및 R102는 서로 같거나 상이하고, 각각 독립적으로 수소; 치환 또는 비치환된 탄소수 1 내지 20의 직쇄 또는 분지쇄의 알킬기; 치환 또는 비치환된 탄소수 3 내지 20의 단환 또는 다환의 시클로알킬기; 치환 또는 비치환된 탄소수 6 내지 20의 단환 또는 다환의 아릴기; 또는 치환 또는 비치환된 O, S 및 N 중 1 이상을 포함하는 탄소수 2 내지 20의 단환 또는 다환의 헤테로아릴기이다.
본 명세서의 일 실시상태에 따르면, 상기 R101 및 R102는 서로 같거나 상이하고, 각각 독립적으로 수소; 치환 또는 비치환된 탄소수 1 내지 10의 직쇄 또는 분지쇄의 알킬기; 치환 또는 비치환된 탄소수 3 내지 10의 단환 또는 다환의 시클로알킬기; 치환 또는 비치환된 탄소수 6 내지 10의 단환 또는 다환의 아릴기; 또는 치환 또는 비치환된 O, S 및 N 중 1 이상을 포함하는 탄소수 2 내지 10의 단환 또는 다환의 헤테로아릴기이다.
본 명세서의 일 실시상태에 따르면, 상기 R101 및 R102는 각각 독립적으로 수소이다.
본 발명의 일 실시상태에 따르면, 상기 X21 내지 X36은 O이다.
본 발명의 일 실시상태에 따르면, 상기 X21 내지 X36은 S이다.
본 명세서의 일 실시상태에 따르면, 상기 X21 내지 X24는 O이다.
본 명세서의 일 실시상태에 따르면, 상기 X25 내지 X28은 O이다.
본 명세서의 일 실시상태에 따르면, 상기 X29 내지 X32는 O이다.
본 명세서의 일 실시상태에 따르면, 상기 X33 내지 X36은 O이다.
본 명세서의 일 실시상태에 따르면, 상기 X21 내지 X24는 S이다.
본 명세서의 일 실시상태에 따르면, 상기 X25 내지 X28은 S이다.
본 명세서의 일 실시상태에 따르면, 상기 X29 내지 X32는 S이다.
본 명세서의 일 실시상태에 따르면, 상기 X33 내지 X36은 S이다.
본 명세서의 일 실시상태에 따르면, 상기 L21 및 L22는 각각 독립적으로 히드록시기, 탄소수 1 내지 30의 직쇄 또는 분지쇄의 알킬기, 또는 탄소수 6 내지 30의 단환 또는 다환의 아릴기로 치환 또는 비치환된 탄소수 6 내지 30의 단환 또는 다환의 아릴렌기이다.
본 명세서의 일 실시상태에 따르면, 상기 L21 및 L22는 각각 독립적으로 히드록시기, 탄소수 1 내지 20의 직쇄 또는 분지쇄의 알킬기, 또는 탄소수 6 내지 20의 단환 또는 다환의 아릴기로 치환 또는 비치환된 탄소수 6 내지 20의 단환 또는 다환의 아릴렌기이다.
본 명세서의 일 실시상태에 따르면, 상기 L21 및 L22는 각각 독립적으로 히드록시기, 메틸기, 페닐기, 또는 나프틸기로 치환 또는 비치환된 페닐렌기; 또는 2가의 나프틸기이다.
본 명세서의 일 실시상태에 따르면, 상기 R5 내지 R10 및 R13 내지 R15는 각각 독립적으로 수소; 탄소수 1 내지 30의 직쇄 또는 분지쇄의 알킬기, 치환 또는 비치환된 탄소수 3 내지 30의 단환 또는 다환의 시클로알킬기; 치환 또는 비치환된 탄소수 6 내지 30의 단환 또는 다환의 아릴기; 또는 치환 또는 비치환된 O, S 및 N 중 1 이상을 포함하는 탄소수 2 내지 30의 단환 또는 다환의 헤테로아릴기이거나, 인접한 기와 서로 결합하여 탄소수 6 내지 30의 단환 또는 다환의 방향족 탄화수소고리를 형성한다.
본 명세서의 일 실시상태에 따르면, 상기 R5 내지 R10 및 R13 내지 R15는 서로 같거나 상이하고, 각각 독립적으로 수소; 탄소수 1 내지 20의 직쇄 또는 분지쇄의 알킬기, 치환 또는 비치환된 탄소수 3 내지 20의 단환 또는 다환의 시클로알킬기; 치환 또는 비치환된 탄소수 6 내지 20의 단환 또는 다환의 아릴기; 또는 치환 또는 비치환된 O, S 및 N 중 1 이상을 포함하는 탄소수 2 내지 20의 단환 또는 다환의 헤테로아릴기이거나, 인접한 기와 서로 결합하여 탄소수 6 내지 20의 단환 또는 다환의 방향족 탄화수소고리를 형성한다.
본 명세서의 일 실시상태에 따르면, 상기 R5 내지 R10 및 R13 내지 R15는 서로 같거나 상이하고, 각각 독립적으로 수소; 치환 또는 비치환된 탄소수 6 내지 30의 단환 또는 다환의 아릴기; 또는 치환 또는 비치환된 O, S 및 N 중 1 이상을 포함하는 탄소수 2 내지 30의 단환 또는 다환의 헤테로아릴기이거나, 인접한 기와 서로 결합하여 탄소수 6 내지 30의 단환 또는 다환의 방향족 탄화수소고리를 형성한다.
본 명세서의 일 실시상태에 따르면, 상기 R5 내지 R10 및 R13 내지 R15는 서로 같거나 상이하고, 각각 독립적으로 수소; 치환 또는 비치환된 탄소수 6 내지 20의 단환 또는 다환의 아릴기; 또는 치환 또는 비치환된 O, S 및 N 중 1 이상을 포함하는 탄소수 2 내지 20의 단환 또는 다환의 헤테로아릴기이거나, 인접한 기와 서로 결합하여 탄소수 6 내지 20의 단환 또는 다환의 방향족 탄화수소고리를 형성한다.
본 명세서의 일 실시상태에 따르면, 상기 R5 내지 R10 및 R13 내지 R15는 서로 같거나 상이하고, 각각 독립적으로 수소; 치환 또는 비치환된 탄소수 6 내지 30의 단환 또는 다환의 아릴기; 또는 치환 또는 비치환된 O, S 및 N 중 1 이상을 포함하는 탄소수 2 내지 30의 단환 또는 다환의 헤테로아릴기이거나, 인접한 기와 서로 결합하여 탄소수 6 내지 30의 단환 또는 다환의 방향족 탄화수소고리를 형성한다.
본 명세서의 일 실시상태에 따르면, 상기 R5 내지 R10 및 R13 내지 R15는 서로 같거나 상이하고, 각각 독립적으로 수소; 치환 또는 비치환된 탄소수 6 내지 20의 단환 또는 다환의 아릴기; 또는 치환 또는 비치환된 O, S 및 N 중 1 이상을 포함하는 탄소수 2 내지 20의 단환 또는 다환의 헤테로아릴기이거나, 인접한 기와 서로 결합하여 탄소수 6 내지 20의 단환 또는 다환의 방향족 탄화수소고리를 형성한다.
본 명세서의 일 실시상태에 따르면, 상기 R5 내지 R10 및 R13 내지 R15는 서로 같거나 상이하고, 각각 독립적으로 수소; 페닐기; 또는 나프틸기이거나, 인접한 기와 서로 결합하여 벤젠을 형성한다.
본 명세서의 일 실시상태에 따르면, 상기 R5 내지 R10 및 R13 내지 R15는 서로 같거나 상이하고, 각각 독립적으로 수소이다.
본 명세서의 일 실시상태에 따르면, 상기 R11 및 R12는 서로 같거나 상이하고, 각각 독립적으로 수소; 탄소수 1 내지 30의 직쇄 또는 분지쇄의 알킬기; 탄소수 6 내지 30의 단환 또는 다환의 시클로알킬기; 탄소수 6 내지 30의 단환 또는 다환의 아릴기; 또는 탄소수 2 내지 30의 단환 또는 다환의 헤테로아릴기이거나, 서로 결합하여 탄소수 1 내지 30의 직쇄 또는 분지쇄의 알킬기로 치환 또는 비치환된 탄소수 6 내지 30의 단환 또는 다환의 지방족 탄화수소고리를 형성한다.
본 명세서의 일 실시상태에 따르면, 상기 R11 및 R12는 서로 같거나 상이하고, 각각 독립적으로 수소; 탄소수 1 내지 20의 직쇄 또는 분지쇄의 알킬기; 탄소수 6 내지 20의 단환 또는 다환의 시클로알킬기; 탄소수 6 내지 20의 단환 또는 다환의 아릴기; 또는 탄소수 2 내지 20의 단환 또는 다환의 헤테로아릴기이거나, 서로 결합하여 탄소수 1 내지 20의 직쇄 또는 분지쇄의 알킬기로 치환 또는 비치환된 탄소수 6 내지 20의 단환 또는 다환의 지방족 탄화수소고리를 형성한다.
본 명세서의 일 실시상태에 따르면, 상기 R11 및 R12는 서로 같거나 상이하고, 각각 독립적으로 수소; 메틸기; 또는 페닐기이거나, 서로 결합하여 메틸기로 치환 또는 비치환된 시클로헥산; 또는 시클로도데칸을 형성한다.
본 명세서의 일 실시상태에 따르면, 상기 R11 및 R12는 서로 같거나 상이하고, 각각 독립적으로 수소; 메틸기; 또는 페닐기이다.
본 명세서의 일 실시상태에 따르면, 상기 R11 및 R12는 서로 같거나 상이하고, 각각 독립적으로 메틸기이다.
본 명세서의 일 실시상태에 따르면, 상기 수지는 상기 화학식 1의 단위 및 상기 화학식 2의 단위를 포함하는 폴리카보네이트 수지, 폴리에스터 수지, 또는 폴리에스터-카보네이트 수지이다.
본 명세서의 일 실시상태에 따르면, 상기 수지는 상기 화학식 1의 단위 및 상기 화학식 2의 단위를 포함하는 폴리카보네이트 수지이다.
본 명세서의 일 실시상태에 따르면, 상기 수지는 폴리카보네이트 수지이고, 상기 화학식 1의 L은 직접결합이며, 상기 화학식 2의 L1은 직접결합이다.
본 명세서의 일 실시상태에 따르면, 상기 수지는 폴리카보네이트 수지이고, 상기 화학식 1은 하기 화학식 1-C로 표시되며, 상기 화학식 2는 하기 화학식 2-C로 표시된다.
[화학식 1-C]
Figure PCTKR2023015453-appb-img-000028
[화학식 2-C]
Figure PCTKR2023015453-appb-img-000029
상기 화학식 1-C 및 2-C에 있어서,
각 치환기의 정의는 상기 화학식 1 및 2에서 정의한 바와 동일하다.
본 명세서의 일 실시상태에 따르면, 상기 수지는 폴리카보네이트 수지이고, 상기 화학식 1은 하기 화학식 1-C-1로 표시된다.
[화학식 1-C-1]
Figure PCTKR2023015453-appb-img-000030
상기 화학식 1-C-1에 있어서,
각 치환기의 정의는 상기 화학식 1에서 정의한 바와 동일하다.
본 명세서의 일 실시상태에 따르면, 상기 수지는 폴리카보네이트 수지이고, 상기 화학식 1은 하기 화학식 1-C-2 및 1-C-3 중 어느 하나이다.
[화학식 1-C-2]
Figure PCTKR2023015453-appb-img-000031
[화학식 1-C-3]
Figure PCTKR2023015453-appb-img-000032
상기 화학식 1-C-2 및 1-C-3에 있어서,
각 치환기의 정의는 상기 화학식 1에서 정의한 바와 동일하다.
본 명세서의 일 실시상태에 따르면, 상기 수지는 폴리카보네이트 수지이고, 상기 화학식 2는 하기 화학식 3-1 또는 3-2로 표시된다.
[화학식 3-1]
Figure PCTKR2023015453-appb-img-000033
[화학식 3-2]
Figure PCTKR2023015453-appb-img-000034
상기 화학식 3-1 및 3-2에 있어서,
l41 및 l42는 각각 독립적으로 1 내지 5의 정수이고,
l41이 1 또는 2인 경우, L41은 치환 또는 비치환된 단환의 아릴렌기이며,
l41이 3 내지 5의 정수인 경우, L41은 치환 또는 비치환된 다환의 아릴렌기이고,
L42는 치환 또는 비치환된 다환의 아릴렌기이며,
X41 내지 X44는 각각 독립적으로 O; 또는 S이고,
Z41 및 Z42는 각각 독립적으로 치환 또는 비치환된 알킬렌기; 또는 치환 또는 비치환된 시클로알킬렌기이며,
e 및 f는 각각 독립적으로 1 내지 10의 정수이고, 상기 e 및 f가 각각 2 이상인 경우 각 괄호 안의 구조는 서로 같거나 상이하며,
*은 수지의 주쇄에 연결되는 부위를 의미한다.
X41 내지 X44, Z41 및 Z42의 구체적인 설명은 상기 화학식 2에서의 X11 내지 X14, Z11 및 Z12의 설명과 동일하다.
L41 및 L42의 구체적인 설명은 반복수 l41에 따라 상기 화학식 2에서의 L11의 설명 중 상기 조건을 만족하는 것에 한하여 동일하다.
본 명세서의 일 실시상태에 따르면, 상기 l41이 1 또는 2인 경우, 상기 L41은 치환 또는 비치환된 페닐렌기이다.
본 명세서의 일 실시상태에 따르면, 상기 l41이 1 또는 2인 경우, 상기 L41은 메틸기로 치환 또는 비치환된 페닐렌기이다.
본 명세서의 일 실시상태에 따르면, 상기 l41이 3 내지 5의 정수인 경우, 상기 L41은 치환 또는 비치환된 2가의 나프틸기; 또는 치환 또는 비치환된 2가의 플루오렌기이다.
본 명세서의 일 실시상태에 따르면, 상기 l41이 3 내지 5의 정수인 경우, 상기 L41은 2가의 나프틸기; 또는 2가의 플루오렌기이다.
본 명세서의 일 실시상태에 따르면, 상기 L42는 치환 또는 비치환된 2가의 나프틸기이다.
본 명세서의 일 실시상태에 따르면, 상기 L42는 2가의 나프틸기이다.
본 명세서의 일 실시상태에 따르면, 상기 수지는 폴리카보네이트 수지이고, 상기 폴리카보네이트 수지의 두께가 1 mm 이하일 때, 황변 지수(YI)가 20 이하이다.
상기 황변 지수(YI)가 20 이하로 낮은 폴리카보네이트 수지는 다양한 색상 구현이 가능하므로, 다양한 색상의 광학 제품을 제공할 수 있으며, 특히 고투명성이 요구되는 광학 재료에 적합하다.
본 명세서의 일 실시상태에 따른 황변 지수(YI)는 폴리카보네이트 수지의 두께가 1 mm인 시편에 대하여 ASTM D1925에 의해 측정된다.
상기 시편은 2축 압출기(L/D=36, Φ=45, 배럴온도 240 ℃)에 시간당 55 kg의 속도로 폴리카보네이트 조성물을 공급하여 펠렛을 제조한 후, 이를 사출기(한국 유압기계 제조, HMW-016S-15t)로 사출 성형하여 가로, 세로 및 두께가 각각 50 mm, 50 mm 및 1 mm 이하인 시편을 제조할 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 수지는 폴리카보네이트 수지이고, 상기 폴리카보네이트 수지의 두께가 1 mm 이하일 때, 황변 지수(YI)가 0 이상 20 이하이다.
본 명세서의 일 실시상태에 따르면, 상기 수지는 폴리카보네이트 수지이고, 상기 폴리카보네이트 수지의 두께가 1 mm 이하일 때, 황변 지수(YI)가 1 이상 19 이하, 2 이상 18 이하, 또는 3 이상 17 이하이다.
본 명세서의 일 실시상태에 따르면, 상기 수지는 폴리카보네이트 수지이고, 상기 폴리카보네이트 수지의 두께가 1 mm 이하일 때, 황변 지수(YI)가 8 이하이다.
본 명세서의 일 실시상태에 따르면, 상기 수지는 폴리카보네이트 수지이고, 상기 폴리카보네이트 수지의 두께가 1 mm 이하일 때, 황변 지수(YI)가 0 이상 8 이하, 또는 1 이상 8 이하이다.
본 명세서의 일 실시상태에 따르면, 상기 폴리카보네이트 수지의 두께는 1 mm 이하, 0.9 mm 이하, 0.8 mm 이하, 0.7 mm 이하, 0.6 mm 이하, 또는 0.5 mm 이하일 수 있다. 상기 폴리카보네이트 수지의 두께는 0 mm 초과일 수 있다.
상기 폴리카보네이트 수지의 두께가 1 mm 이하일 때, 황변 지수(YI)가 20 이하의 범위를 만족하는 경우, 상기 폴리카보네이트 수지는 낮은 황변 지수로 인하여 다양한 색상 구현이 가능하므로, 다양한 색상의 광학 제품을 제공할 수 있으며, 특히 고투명성이 요구되는 광학 재료에 적합하다.
상기 폴리카보네이트 수지의 두께가 1 mm 이하일 때, 황변 지수(YI)가 20 초과의 범위인 경우, 높은 투명성 및 색상의 다양성을 기대할 수 없기 때문에 광학제품 사용에 제한적일 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 폴리카보네이트 수지의 말단은 페녹시기이고, 상기 말단 페녹시기의 농도는 3000 ppm 이상이다. 구체적으로 상기 말단 페녹시기의 농도는 3,500 ppm 내지 5,500 ppm, 더욱 구체적으로는 4,000 ppm 내지 5,000 ppm이다.
상기 말단 페녹시기의 농도가 3,000 ppm 이상인 경우, 가공성이 좋아져 사출성이 우수하다.
본 명세서에서 말단 페녹시기의 농도는 하기와 같이 산출할 수 있다. 먼저 펠릿 0.25g을 건조시키고, 염화메틸렌 10 ml에 용해한 후, 트리에틸아민 40 ml를 첨가하고, 안트라퀴논카르복실산 무수물 0.04 g과 실온에서 침투시켜 반응시킨다. 그 후, 반응물을 수세하고, 과잉의 안트라퀴논카르복실산 무수물을 제거하고, 유기층으로부터 염화메틸렌을 제거하고, 얻어진 고체에 대해 UV 검출기 (UV 파장: 325 ㎚) 를 구비한 GPC 시스템 (쇼와 전공 (주) 제조 Shodex GPC system-11) 을 이용하여 GPC 분석을 실시한다. 페녹시기 말단 농도가 이미 알려진 샘플에 의한 일점 검량선법에 의해 피크 면적을 구하고, 그 피크 면적으로부터 페녹시기 농도를 산출한다.
본 명세서의 일 실시상태에 따르면, 상기 폴리카보네이트 수지 100 중량% 기준으로 상기 말단 페녹시기의 함량은 5 중량% 이하이다.
본 명세서의 일 실시상태에 따르면, 상기 폴리카보네이트 수지 100 중량% 기준으로 상기 말단 페녹시기의 함량은 0 중량% 내지 5 중량% 이다.
본 명세서의 일 실시상태에 따르면, 상기 폴리카보네이트 수지 100 중량% 기준으로 상기 말단 페녹시기의 함량은 1 중량% 내지 4 중량%, 또는 2 중량% 내지 3 중량%이다. 상기 수지가 상기 말단 페녹시기의 함량 범위를 만족하는 경우, 상기 폴리카보네이트 수지의 가공성이 좋아져 사출성이 우수하다.
본 명세서의 일 실시상태에 따르면, 상기 수지는 상기 화학식 1의 단위 및 상기 화학식 2의 단위를 포함하는 폴리에스터 수지이다.
본 명세서의 일 실시상태에 따르면, 상기 수지는 폴리에스터 수지이고, 상기 화학식 1은 하기 화학식 11으로 표시되며, 상기 화학식 2는 하기 화학식 12로 표시된다.
[화학식 11]
Figure PCTKR2023015453-appb-img-000035
상기 화학식 11에 있어서,
각 치환기의 정의는 상기 화학식 1에서 정의한 바와 동일하고,
[화학식 12]
Figure PCTKR2023015453-appb-img-000036
상기 화학식 12에 있어서,
각 치환기의 정의는 상기 화학식 2에서 정의한 바와 동일하다.
본 명세서의 일 실시상태에 따르면, 상기 수지는 폴리에스터 수지이고, 상기 화학식 1은 하기 화학식 11-1로 표시된다.
[화학식 11-1]
Figure PCTKR2023015453-appb-img-000037
상기 화학식 11-1에 있어서,
각 치환기의 정의는 상기 화학식 1에서 정의한 바와 동일하다.
본 명세서의 일 실시상태에 따르면, 상기 수지는 폴리에스터 수지이고, 상기 화학식 1은 하기 화학식 11-2 및 11-3 중 어느 하나이다.
[화학식 11-2]
Figure PCTKR2023015453-appb-img-000038
[화학식 11-3]
Figure PCTKR2023015453-appb-img-000039
상기 화학식 11-2 및 11-3에 있어서,
각 치환기의 정의는 상기 화학식 1에서 정의한 바와 동일하다.
본 명세서의 일 실시상태에 따르면, 상기 수지는 상기 화학식 1의 단위 및 상기 화학식 2의 단위를 포함하는 폴리에스터-카보네이트 수지일 수 있다.
상기 폴리에스터-카보네이트 수지는 폴리카보네이트 수지 대비 내열성 측면에서 유리하며, 이는 폴리에스터 수지를 포함하는 경우 아릴렌기에 의한 강직쇄를 가지며 resonance 효과로 상대적인 유연성이 떨어지기 때문이다.
본 명세서의 일 실시상태에 따르면, 상기 수지는 폴리에스터-카보네이트 수지이고, 상기 폴리에스터-카보네이트 수지는 하기 화학식 21의 단위를 포함한다.
[화학식 21]
Figure PCTKR2023015453-appb-img-000040
상기 화학식 21에 있어서,
L, X1 내지 X4, Z1, Z2, a, b, R1 내지 R4 및 r1 내지 r4의 정의는 상기 화학식 1에서 정의한 바와 동일하고,
L2는 직접결합; 또는 -L2'-C(=O)-이고,
L2'는 치환 또는 비치환된 아릴렌기이며,
X9 및 X10은 각각 독립적으로 O 또는 S이고,
Z5는 치환 또는 비치환된 알킬렌기; 또는 치환 또는 비치환된 시클로알킬렌기이며,
p는 0 내지 6의 정수이고, 상기 p가 2 이상인 경우 각 괄호 안의 구조는 서로 같거나 상이하며,
r은 몰분율로서, 0 ≤ r < 1의 실수이며,
s는 몰분율로서, 0 < s ≤ 1의 실수이고,
r+s=1이며,
*은 수지의 주쇄에 연결되는 부위를 의미한다.
본 명세서의 일 실시상태에 따르면, 상기 화학식 21의 단위는 상기 화학식 1의 단위를 포함한다.
본 명세서의 일 실시상태에 따르면, 상기 p는 0이다.
본 명세서의 일 실시상태에 따르면, 상기 p는 1이다.
본 명세서의 일 실시상태에 따르면, 상기 L2는 직접결합이다.
본 명세서의 일 실시상태에 따르면, 상기 L2는 -L2'-C(=O)-이다.
본 명세서의 일 실시상태에 따르면, 상기 L2'는 탄소수 6 내지 30의 단환 또는 다환의 아릴렌기이다.
본 명세서의 일 실시상태에 따르면, 상기 L2'는 탄소수 6 내지 20의 단환 또는 다환의 아릴렌기이다.
본 명세서의 일 실시상태에 따르면, 상기 L2'는 페닐렌기; 또는 나프틸렌기이다.
본 명세서의 일 실시상태에 따르면, 상기 L2'는 페닐렌기이다.
본 명세서의 일 실시상태에 따르면, 상기 L은 직접결합이고, 상기 L2는 -L2'-C(=O)-이다.
본 명세서의 일 실시상태에 따르면, 상기 L은 -L'-C(=O)-이고, 상기 L2는 직접결합이다.
본 명세서의 일 실시상태에 따르면, 상기 Z5는 치환 또는 비치환된 탄소수 1 내지 30의 직쇄 또는 분지쇄의 알킬렌기; 또는 치환 또는 비치환된 탄소수 3 내지 30의 단환 또는 다환의 시클로알킬렌기이다.
본 명세서의 일 실시상태에 따르면, 상기 Z5는 치환 또는 비치환된 탄소수 1 내지 20의 직쇄 또는 분지쇄의 알킬렌기; 또는 치환 또는 비치환된 탄소수 3 내지 20의 단환 또는 다환의 시클로알킬렌기이다.
본 명세서의 일 실시상태에 따르면, 상기 Z5는 치환 또는 비치환된 탄소수 1 내지 10의 직쇄 또는 분지쇄의 알킬렌기; 또는 치환 또는 비치환된 탄소수 3 내지 10의 단환 또는 다환의 시클로알킬렌기이다.
본 명세서의 일 실시상태에 따르면, 상기 Z5는 치환 또는 비치환된 탄소수 1 내지 30의 직쇄 또는 분지쇄의 알킬렌기이다.
본 명세서의 일 실시상태에 따르면, 상기 Z5는 치환 또는 비치환된 탄소수 1 내지 20의 직쇄 또는 분지쇄의 알킬렌기이다.
본 명세서의 일 실시상태에 따르면, 상기 Z5는 치환 또는 비치환된 탄소수 1 내지 10의 직쇄 또는 분지쇄의 알킬렌기이다.
본 명세서의 일 실시상태에 따르면, 상기 Z5는 치환 또는 비치환된 에틸렌기이다.
본 발명의 일 실시상태에 따르면, 상기 X9 및 X10는 O이다.
본 발명의 일 실시상태에 따르면, 상기 X9 및 X10는 S이다.
본 명세서의 일 실시상태에 따르면, 상기 X1 내지 X4, X9 및 X10는 O이다.
본 명세서의 일 실시상태에 따르면, 상기 X1 내지 X4, X9 및 X10는 S이다.
본 명세서의 일 실시상태에 따르면, 상기 X1 내지 X4는 S이고, 상기 X9 및 X10는 O이다.
본 명세서의 일 실시상태에 따르면, 상기 X1 내지 X4는 O이고, 상기 X9 및 X10는 S이다.
본 명세서의 일 실시상태에 따르면, 상기 X9은 O이다.
본 명세서의 일 실시상태에 따르면, 상기 X10은 O이다.
본 명세서의 일 실시상태에 따르면, 상기 X9은 S이다.
본 명세서의 일 실시상태에 따르면, 상기 X10은 S이다.
본 명세서의 일 실시상태에 따르면, 상기 r은 몰분율로서, 0 내지 0.999이고, 상기 s는 몰분율로서, 0.001 내지 1이고, 바람직하게는 r은 0 내지 0.99이고, s는 0.01 내지 1이고, 더욱 바람직하게는 r은 0 내지 0.9이고, s는 0.1 내지 1 이다.
본 명세서의 일 실시상태에 따르면, 상기 r은 몰분율로서, 0.001 내지 0.999이고, 상기 s는 몰분율로서, 0.001 내지 0.999이고, 바람직하게는 r은 0.01 내지 0.99이고, s는 0.01 내지 0.99이고, 더욱 바람직하게는 r은 0.1 내지 0.9이고, s는 0.1 내지 0.9 이다.
상기 화학식 21의 r 및 s가 상기 범위인 경우, 몰분율인 r과 s를 적절하게 조절하여, 원하는 물성의 폴리에스터-카보네이트 수지를 얻을 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 화학식 21은 하기 화학식 21-A 내지 21-D 중 어느 하나이다.
[화학식 21-A]
Figure PCTKR2023015453-appb-img-000041
[화학식 21-B]
Figure PCTKR2023015453-appb-img-000042
[화학식 21-C]
Figure PCTKR2023015453-appb-img-000043
[화학식 21-D]
Figure PCTKR2023015453-appb-img-000044
상기 화학식 21-A 내지 21-D에 있어서,
각 치환기의 정의는 상기 화학식 21에서 정의한 바와 동일하다.
본 명세서의 일 실시상태에 따르면, 상기 화학식 21은 하기 화학식 21-1이다.
[화학식 21-1]
Figure PCTKR2023015453-appb-img-000045
상기 화학식 21-1에 있어서,
각 치환기의 정의는 상기 화학식 21에서 정의한 바와 동일하다.
본 명세서의 일 실시상태에 따르면, 상기 화학식 21은 하기 화학식 21-2 및 21-2 중 어느 하나이다.
[화학식 21-2]
Figure PCTKR2023015453-appb-img-000046
[화학식 21-3]
Figure PCTKR2023015453-appb-img-000047
상기 화학식 21-2 및 21-3에 있어서,
각 치환기의 정의는 상기 화학식 21에서 정의한 바와 동일하다.
본 명세서의 일 실시상태에 따르면, 상기 수지는 폴리에스터-카보네이트 수지이고, 상기 폴리에스터-카보네이트 수지는 하기 화학식 22의 단위를 포함한다.
[화학식 22]
Figure PCTKR2023015453-appb-img-000048
상기 화학식 22에 있어서,
L1, L11, l11, X11 내지 X14, Z11, Z12, c 및 d의 정의는 상기 화학식 2에서 정의한 바와 동일하고,
L3은 직접결합; 또는 -L3'-C(=O)-이며,
L3'은 치환 또는 비치환된 아릴렌기이고,
X15 및 X16은 각각 독립적으로 O 또는 S이며,
Z13은 치환 또는 비치환된 알킬렌기; 또는 치환 또는 비치환된 시클로알킬렌기이고,
p'는 0 내지 6의 정수이며, 상기 p'가 2 이상인 경우 각 괄호 안의 구조는 서로 같거나 상이하고,
r'은 몰분율로서, 0 ≤r'<1의 실수이며,
s'은 몰분율로서, 0 <r'≤1의 실수이고,
r'+s'=1이며,
*은 수지의 주쇄에 연결되는 부위를 의미한다.
본 명세서의 일 실시상태에 따르면, 상기 화학식 22의 단위는 상기 화학식 2의 단위를 포함한다.
본 명세서의 일 실시상태에 따르면, 상기 p'는 0이다.
본 명세서의 일 실시상태에 따르면, 상기 p'는 1이다.
본 명세서의 일 실시상태에 따르면, 상기 L3은 직접결합이다.
본 명세서의 일 실시상태에 따르면, 상기 L3은 -L3'-C(=O)-이다.
본 명세서의 일 실시상태에 따르면, 상기 L3'은 탄소수 6 내지 30의 단환 또는 다환의 아릴렌기이다.
본 명세서의 일 실시상태에 따르면, 상기 L3'은 탄소수 6 내지 20의 단환 또는 다환의 아릴렌기이다.
본 명세서의 일 실시상태에 따르면, 상기 L3'은 탄소수 6 내지 10의 단환 또는 다환의 아릴렌기이다.
본 명세서의 일 실시상태에 따르면, 상기 L3'은 페닐렌기; 또는 나프틸렌기이다.
본 명세서의 일 실시상태에 따르면, 상기 L3'은 페닐렌기이다.
본 명세서의 일 실시상태에 따르면, 상기 L1 및 L3은 직접결합이다.
본 명세서의 일 실시상태에 따르면, 상기 L1은 -L1'-C(=O)-이고, 상기 L3은 -L3'-C(=O)-이다.
본 명세서의 일 실시상태에 따르면, 상기 L1은 직접결합이고, 상기 L3 은 -L3'-C(=O)-이다.
본 명세서의 일 실시상태에 따르면, 상기 L1은 -L1'-C(=O)-이고, 상기 L3은 직접결합이다.
본 명세서의 일 실시상태에 따르면, 상기 Z13은 치환 또는 비치환된 탄소수 1 내지 30의 직쇄 또는 분지쇄의 알킬렌기; 또는 치환 또는 비치환된 탄소수 3 내지 30의 단환 또는 다환의 시클로알킬렌기이다.
본 명세서의 일 실시상태에 따르면, 상기 Z13은 치환 또는 비치환된 탄소수 1 내지 20의 직쇄 또는 분지쇄의 알킬렌기; 또는 치환 또는 비치환된 탄소수 3 내지 20의 단환 또는 다환의 시클로알킬렌기이다.
본 명세서의 일 실시상태에 따르면, 상기 Z13은 치환 또는 비치환된 탄소수 1 내지 10의 직쇄 또는 분지쇄의 알킬렌기; 또는 치환 또는 비치환된 탄소수 3 내지 10의 단환 또는 다환의 시클로알킬렌기이다.
본 명세서의 일 실시상태에 따르면, 상기 Z13은 치환 또는 비치환된 탄소수 1 내지 30의 직쇄 또는 분지쇄의 알킬렌기이다.
본 명세서의 일 실시상태에 따르면, 상기 Z13은 치환 또는 비치환된 탄소수 1 내지 20의 직쇄 또는 분지쇄의 알킬렌기이다.
본 명세서의 일 실시상태에 따르면, 상기 Z13은 치환 또는 비치환된 탄소수 1 내지 10의 직쇄 또는 분지쇄의 알킬렌기이다.
본 명세서의 일 실시상태에 따르면, 상기 Z13은 치환 또는 비치환된 에틸렌기이다.
본 발명의 일 실시상태에 따르면, 상기 X15 및 X16은 O이다.
본 발명의 일 실시상태에 따르면, 상기 X15 및 X16은 S이다.
본 명세서의 일 실시상태에 따르면, 상기 X11 내지 X16은 O이다.
본 명세서의 일 실시상태에 따르면, 상기 X11 내지 X16은 S이다.
본 명세서의 일 실시상태에 따르면, 상기 X11 내지 X14는 S이고, 상기 X15 및 X16은 O이다.
본 명세서의 일 실시상태에 따르면, 상기 X11 내지 X14는 O이고, 상기 X15 및 X16은 S이다.
본 명세서의 일 실시상태에 따르면, 상기 X15는 O이다.
본 명세서의 일 실시상태에 따르면, 상기 X16은 O이다.
본 명세서의 일 실시상태에 따르면, 상기 X15는 S이다.
본 명세서의 일 실시상태에 따르면, 상기 X16은 S이다.
본 명세서의 일 실시상태에 따르면, 상기 r'은 몰분율로서, 0 내지 0.999이고, 상기 s'는 몰분율로서, 0.001 내지 1이고, 바람직하게는 r'은 0 내지 0.99이고, s'는 0.01 내지 1이고, 더욱 바람직하게는 r'은 0 내지 0.9이고, s'는 0.1 내지 1이다.
본 명세서의 일 실시상태에 따르면, 상기 r'은 몰분율로서, 0.001 내지 0.999이고, 상기 s'는 몰분율로서, 0.001 내지 0.999이고, 바람직하게는 r'은 0.01 내지 0.99이고, s'는 0.01 내지 0.99이고, 더욱 바람직하게는 r'은 0.1 내지 0.9이고, s'는 0.1 내지 0.9 이다.
상기 화학식 22의 r' 및 s'가 상기 범위인 경우, 몰분율인 r'과 s'를 적절하게 조절하여, 원하는 물성의 폴리에스터-카보네이트 수지를 얻을 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 화학식 22는 하기 화학식 22-A 내지 22-D 중 어느 하나이다.
[화학식 22-A]
Figure PCTKR2023015453-appb-img-000049
[화학식 22-B]
Figure PCTKR2023015453-appb-img-000050
[화학식 22-C]
Figure PCTKR2023015453-appb-img-000051
[화학식 22-D]
Figure PCTKR2023015453-appb-img-000052
상기 화학식 22-A 내지 22-D에 있어서,
각 치환기의 정의는 상기 화학식 22에서 정의한 바와 동일하다.
본 명세서의 일 실시상태에 따르면, 상기 수지의 중량평균 분자량(Mw)은 5,000 g/mol 내지 500,000 g/mol이다.
본 명세서에 있어서, 수지 및 이의 제조에 사용되는 올리고머의 중량평균 분자량(Mw)은 Agilent 1200 series를 이용하여, 폴리스티렌 표준(PS standard)을 이용한 겔 투과 크로마토그래피(gel permeation chromatograph; GPC)로 측정할 수 있다. 구체적으로는 Polymer Laboratories PLgel MIX-B 300 mm 길이 칼럼을 이용하여 Agilent 1200 series기기를 이용하여 측정할 수 있으며, 이때 측정 온도는 40 ℃이고, 사용 용매는 테트라하이드로퓨란(THF)이며, 유속은 1 mL/min이다. 수지 또는 올리고머의 샘플은 각각 10mg/10mL의 농도로 조제한 후, 10 μL 의 양으로 공급하고, 폴리스티렌 표준을 이용하여 형성된 검정 곡선을 이용하여 중량평균 분자량(Mw) 값을 유도한다. 이때 폴리스티렌 표준 품의 분자량(g/mol)은 2,000 / 10,000 / 30,000 / 70,000 / 200,000 / 700,000 / 2,000,000 / 4,000,000 / 10,000,000의 9종을 사용한다.
본 명세서의 일 실시상태에 있어서, 상기 폴리카보네이트 수지의 중량평균 분자량은 3,000g/mol 내지 500,000 g/mol 이며, 바람직하게는 5,000 g/mol 내지 200,000 g/mol, 7,000 g/mol 내지 150,000 g/mol, 8,000 g/mol 내지 100,000 g/mol이다. 더욱 바람직하게는 9,000 g/mol 내지 90,000 g/mol, 10,000 g/mol 내지 80,000 g/mol, 12,000 g/mol 내지 70,000 g/mol, 13,000 g/mol 내지 60,000 g/mol, 또는 13,000 g/mol 내지 50,000 g/mol 이다.
본 명세서의 일 실시상태에 따르면, 상기 폴리카보네이트 수지의 중량평균 분자량은 5,000g/mol 내지 500,000 g/mol 이며, 바람직하게는 5,000 g/mol 내지 200,000 g/mol, 5,000 g/mol 내지 100,000 g/mol, 또는 5,000 g/mol 내지 51,000 g/mol이다. 더욱 바람직하게는 7,000 g/mol 내지 51,000 g/mol, 8,000 g/mol 내지 51,000 g/mol, 9,000 g/mol 내지 51,000 g/mol, 10,000 g/mol 내지 51,000 g/mol, 또는 11,000 g/mol 내지 51,000 g/mol이다. 상기 폴리카보네이트 수지가 전술한 중량평균 분자량 범위를 만족하는 경우, 상기 폴리카보네이트 수지는 최적의 유동성과 가공성을 가질 수 있다.
본 발명의 일 실시상태에 있어서, 상기 폴리카보네이트 수지의 수평균 분자량은 2,000g/mol 내지 300,000 g/mol 이며, 3,000g/mol 내지 200,000 g/mol, 4,000g/mol 내지 150,000 g/mol, 4,500g/mol 내지 100,000 g/mol, 바람직하게는 5,000g/mol 내지 80,000 g/mol, 6,000g/mol 내지 50,000 g/mol, 7,000g/mol 내지 30,000 g/mol, 또는 8,000g/mol 내지 27,000 g/mol 이다.
본 발명의 일 실시상태에 따르면, 상기 폴리카보네이트 수지의 수평균 분자량은 4,000 g/mol 내지 100,000 g/mol, 4,000 g/mol 내지 50,000 g/mol, 4,000 g/mol 내지 30,000 g/mol, 5,000 g/mol 내지 30,000 g/mol, 바람직하게는 6,000 g/mol 내지 30,000 g/mol이다. 상기 폴리카보네이트 수지가 전술한 수평균 분자량 범위를 만족하는 경우, 상기 폴리카보네이트 수지는 최적의 유동성과 가공성을 가질 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 폴리에스터 수지의 중량평균 분자량은 5,000g/mol 내지 500,000 g/mol 이며, 바람직하게는 6,000 g/mol 내지 400,000 g/mol, 7,000 g/mol 내지 300,000 g/mol, 8,000 g/mol 내지 200,000 g/mol, 또는 9,000 g/mol 내지 100,000 g/mol 이다. 더욱 바람직하게는 10,000 g/mol 내지 90,000 g/mol, 15,000 g/mol 내지 85,000 g/mol, 20,000 g/mol 내지 80,000 g/mol, 또는 25,000 g/mol 내지 75,000 g/mol 이다. 상기 폴리에스터 수지가 전술한 중량평균 분자량 범위를 만족하는 경우, 상기 폴리에스터 수지는 최적의 유동성과 가공성을 가질 수 있다.
본 발명의 일 실시상태에 따르면, 상기 폴리에스터 수지의 수평균 분자량은 2,000 g/mol 내지 300,000 g/mol 이며, 4,000 g/mol 내지 250,000 g/mol, 5,000 g/mol 내지 210,000 g/mol, 6,000 g/mol 내지 180,000 g/mol, 7,000 g/mol 내지 150,000 g/mol, 8,000 g/mol 내지 120,000 g/mol, 9,000 g/mol 내지 90,000 g/mol, 바람직하게는 10,000 g/mol 내지 60,000 g/mol, 11,000 g/mol 내지 50,000 g/mol, 또는 12,000 g/mol 내지 45,000 g/mol 이다.
본 명세서의 일 실시상태에 따르면, 상기 폴리에스터-카보네이트 수지의 중량평균 분자량은 5,000 g/mol 내지 500,000 g/mol 이며, 바람직하게는 5,000 g/mol 내지 300,000 g/mol, 7,000 g/mol 내지 250,000 g/mol, 9,000 g/mol 내지 200,000 g/mol이다. 더욱 바람직하게는 10,000 g/mol 내지 150,000 g/mol, 12,000 g/mol 내지 100,000 g/mol, 13,000 g/mol 내지 80,000 g/mol, 14,000 g/mol 내지 60,000 g/mol, 15,000 g/mol 내지 55,000 g/mol 이다. 상기 폴리에스터-카보네이트 수지가 전술한 중량평균 분자량 범위를 만족하는 경우, 상기 폴리에스터-카보네이트 수지는 최적의 유동성과 가공성을 가질 수 있다.
본 발명의 일 실시상태에 따르면, 상기 폴리에스터-카보네이트 수지의 수평균 분자량은 2,000 g/mol 내지 300,000 g/mol, 3,000 g/mol 내지 200,000 g/mol, 4,000 g/mol 내지 100,000 g/mol, 5,000 g/mol 내지 80,000 g/mol, 바람직하게는 6,000 g/mol 내지 60,000 g/mol, 7,000 g/mol 내지 40,000 g/mol, 8,000 g/mol 내지 30,000 g/mol 이다.
본 명세서의 일 실시상태에 따르면, 상기 수지의 유리 전이 온도(Tg)는 90 ℃ 내지 200 ℃이다.
본 명세서에 있어서, 유리전이온도(Tg)는 시차주사열량계(DSC)로 측정할 수 있다. 구체적으로, 상기 유리전이온도는 5.5 mg 내지 8.5 mg의 상기 폴리카보네이트 수지 시료를 질소 분위기 하에 270 ℃까지 가열한 다음 냉각 후 두 번째 가열 시 10 ℃/min의 승온 속도로 가열하며 스캔하여 얻은 그래프로부터 측정할 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 폴리카보네이트 수지의 유리전이온도(Tg)는 90 ℃ 내지 200 ℃일 수 있다. 바람직하게는 100 ℃ 내지 190 ℃, 120 ℃ 내지 180 ℃, 120 ℃ 내지 170 ℃, 125 ℃ 내지 170 ℃, 또는 128 ℃ 내지 160 ℃일 수 있다. 상기 폴리카보네이트 수지가 상기 유리전이온도 범위를 만족하는 경우, 내열성 및 사출성이 우수하며, 전술한 범위와는 다른 유리전이온도를 가지는 수지와 혼합하여 폴리카보네이트 수지 조성물을 제조할 때, 유리전이온도의 조절이 용이하여 본 명세서에서 목적하는 물성을 만족시킬 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 폴리에스터 수지의 유리전이온도(Tg)는 90 ℃ 내지 200 ℃일 수 있다. 바람직하게는 90 ℃ 내지 190 ℃, 100 ℃ 내지 185 ℃, 110 ℃ 내지 180 ℃일 수 있다. 상기 폴리에스터 수지가 상기 유리전이온도 범위를 만족하는 경우, 내열성 및 사출성이 우수하며, 전술한 범위와는 다른 유리전이온도를 가지는 수지와 혼합하여 폴리에스터 수지 조성물을 제조할 때, 유리전이온도의 조절이 용이하여 본 명세서에서 목적하는 물성을 만족시킬 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 폴리에스터-카보네이트 수지의 유리전이온도(Tg)는 90 ℃ 내지 200 ℃일 수 있다. 바람직하게는 100 ℃ 내지 190 ℃, 110 ℃ 내지 180 ℃, 120 ℃ 내지 170 ℃, 또는 130 ℃ 내지 160 ℃일 수 있다. 상기 폴리에스터-카보네이트 수지가 상기 유리전이온도 범위를 만족하는 경우, 내열성 및 사출성이 우수하며, 전술한 범위와는 다른 유리전이온도를 가지는 수지와 혼합하여 폴리카보네이트 수지 조성물을 제조할 때, 유리전이온도의 조절이 용이하여 본 명세서에서 목적하는 물성을 만족시킬 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 수지의 파장 587nm에서 측정된 굴절률은 1.6 내지 1.8이다.
본 명세서에 있어서, 굴절률은 중합한 수지 시료로부터 확인될 수 있으며, 프리즘 커플러(prism-coupler)를 이용하여 빛의 파장에 따른 결과값을 얻을 수 있다. 상기 수지 시료를 프리즘 커플러(prism-coupler)의 프리즘에 밀착시킨 뒤, 특정파장의 광을 프리즘을 통해 시료에 입사시켜 준다. 그 후 광이 공진되는 입사각을 측정하여 이로부터 굴절률을 측정 후 오차값을 최소화하는 Sellmeier Coefficient를 구하고 Sellmeier's equation에 대입한 후, D(587nm)파장에서의 굴절률을 확인할 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 폴리카보네이트 수지의 파장 587nm에서 측정된 굴절률은 1.5 내지 1.75이다. 상기 굴절률은 바람직하게 1.55 내지 1.71 또는 1.65 내지 1.69일 수 있다. 상기 수지가 상기 굴절률을 만족하는 경우, 이를 광학 렌즈와 같은 성형품에 적용할 때 얇고 가벼운 광학 렌즈의 제조가 가능하다.
본 명세서의 일 실시상태에 따르면, 상기 폴리카보네이트 수지의 굴절률은 587nm에서 1.6 내지 1.8이다.
본 명세서의 일 실시상태에 따르면, 상기 폴리카보네이트 수지의 굴절률은 1.6 내지 1.75, 또는 1.6 내지 1.72, 바람직하게 1.61 내지 1.69 일 수 있다. 상기 수지가 상기 굴절률을 만족하는 경우, 이를 광학 렌즈와 같은 성형품에 적용할 때 얇고 가벼운 광학 렌즈의 제조가 가능하다.
본 명세서의 일 실시상태에 따르면, 상기 폴리에스터 수지의 파장 587nm에서 측정된 굴절률은 1.50 내지 1.75이다. 상기 굴절률은 바람직하게 1.55 내지 1.73, 1.6 내지 1.72, 1.62 내지 1.7, 1.63 내지 1.69 일 수 있다. 상기 수지가 상기 굴절률을 만족하는 경우, 이를 광학 렌즈와 같은 성형품에 적용할 때 얇고 가벼운 광학 렌즈의 제조가 가능하다.
본 명세서의 일 실시상태에 따르면, 상기 폴리에스터-카보네이트 수지의 파장 587 nm에서 측정된 굴절률은 1.50 내지 1.75이다. 상기 굴절률은 바람직하게 1.55 내지 1.74, 1.60 내지 1.73, 1.61 내지 1.69일 수 있다. 상기 수지가 상기 굴절률을 만족하는 경우, 이를 광학 렌즈와 같은 성형품에 적용할 때 얇고 가벼운 광학 렌즈의 제조가 가능하다.
본 명세서의 일 실시상태에 따르면, 상기 수지의 파장 486nm, 587nm, 및 656nm에서 측정된 아베수는 5 내지 45이다.
상기 아베수는 구체적으로 20 ℃에서 D(587 nm), F(486 nm), C(656 nm)파장에서의 굴절률(nD, nF, nC)을 각각 측정하여 아래의 계산식에 의해 아베수를 얻을 수 있다.
아베수=(nD-1)/(nF - nC)
본 명세서의 일 실시상태에 따르면, 상기 폴리카보네이트 수지의 파장 486, 587, 및 656 nm 에서 측정 및 계산된 아베수는 5 내지 45, 또는 10 내지 25 일 수 있다. 바람직하게 14 내지 22, 15 내지 24, 16 내지 22, 또는 18 내지 22 일 수 있다. 상기 폴리카보네이트 수지가 상기 아베수 범위를 만족하는 경우, 상기 폴리카보네이트 수지를 광학 렌즈와 같은 성형품에 적용할 때 분산이 적으며 선명도가 높아지는 효과가 있다.
본 명세서의 일 실시상태에 따르면, 상기 폴리에스터 수지의 파장 486, 587, 및 656 nm 에서 측정 및 계산된 아베수는 5 내지 45일 수 있다. 바람직하게 7 내지 40, 9 내지 35일 수 있다. 더욱 바람직하게는 11 내지 30, 13 내지 28, 15 내지 26, 또는 17 내지 25일 수 있다. 상기 폴리에스터 수지가 상기 아베수 범위를 만족하는 경우, 상기 폴리에스터 수지를 광학 렌즈와 같은 성형품에 적용할 때 분산이 적으며 선명도가 높아지는 효과가 있다.
본 명세서의 일 실시상태에 따르면, 상기 폴리에스터-카보네이트 수지의 파장 486, 587, 및 656 nm 에서 측정 및 계산된 아베수는 5 내지 45일 수 있다. 바람직하게 10 내지 29, 더욱 바람직하게는 14 내지 26일 수 있다. 상기 폴리에스터-카보네이트 수지가 상기 아베수 범위를 만족하는 경우, 상기 폴리에스터-카보네이트 수지를 광학 렌즈와 같은 성형품에 적용할 때 분산이 적으며 선명도가 높아지는 효과가 있다.
본 명세서의 일 실시상태는 하기 화학식 1a의 화합물; 하기 화학식 2a의 화합물; 및 폴리카보네이트 전구체 및 폴리에스터 전구체 중 1 이상을 포함하는 수지 제조용 조성물을 중합하는 단계를 포함하는 상기 수지의 제조방법을 제공한다.
[화학식 1a]
Figure PCTKR2023015453-appb-img-000053
상기 화학식 1a에 있어서,
X1 내지 X4는 각각 독립적으로 O 또는 S이고,
Z1 및 Z2는 각각 독립적으로 치환 또는 비치환된 알킬렌기; 또는 치환 또는 비치환된 시클로알킬렌기이며,
a 및 b는 각각 독립적으로 1 내지 10의 정수이고, 상기 a 및 b가 각각 2 이상인 경우 각 괄호 안의 구조는 서로 같거나 상이하며,
R1 내지 R4는 각각 독립적으로 수소; 치환 또는 비치환된 알킬기; 치환 또는 비치환된 시클로알킬기; 치환 또는 비치환된 아릴기; 또는 치환 또는 비치환된 헤테로아릴기이고,
r1 및 r2는 각각 독립적으로 0 내지 3의 정수이며, 상기 r1 및 r2가 각각 2 이상인 경우, 상기 2 이상의 R1 및 R2는 각각 서로 같거나 상이하고,
r3 및 r4는 각각 독립적으로 0 내지 4의 정수이며, 상기 r3 및 r4가 각각 2 이상인 경우, 상기 2 이상의 R3 및 R4는 각각 서로 같거나 상이하고,
[화학식 2a]
Figure PCTKR2023015453-appb-img-000054
상기 화학식 2a에 있어서,
L11은 치환 또는 비치환된 알킬렌기; 치환 또는 비치환된 시클로알킬렌기; 치환 또는 비치환되고, 2가의 방향족 탄화수소고리와 지방족 탄화수소고리의 축합고리기; 또는 치환 또는 비치환된 아릴렌기이며,
l11은 1 내지 5의 정수이며, 상기 l11이 2 이상인 경우, 상기 2 이상의 L11은 서로 같거나 상이하고,
X11 내지 X14는 각각 독립적으로 O 또는 S이며,
Z11 및 Z12는 각각 독립적으로 치환 또는 비치환된 알킬렌기; 또는 치환 또는 비치환된 시클로알킬렌기이고,
c 및 d는 각각 독립적으로 0 내지 10의 정수이며, 상기 c 및 d가 각각 2 이상인 경우 각 괄호 안의 구조는 서로 같거나 상이하다.
상기 화학식 1a의 화합물을 포함하는 경우, 중합이 용이하고, 치환기에 따라 다양한 범위의 굴절률, 또는 높은 굴절률을 갖고, 넓은 범위의 유리 전이온도를 갖는다.
본 명세서의 일 실시상태는 상기 화학식 1a의 화합물; 상기 화학식 2a의 화합물; 및 폴리카보네이트 전구체를 포함하는 폴리카보네이트 수지 제조용 조성물을 중합하는 단계를 포함하는 상기 폴리카보네이트 수지의 제조방법을 제공한다.
본 명세서의 일 실시상태는 상기 화학식 1a의 화합물; 상기 화학식 2a의 화합물; 및 폴리에스터 전구체를 포함하는 폴리에스터 수지 제조용 조성물을 중합하는 단계를 포함하는 상기 폴리에스터 수지의 제조방법을 제공한다.
본 명세서의 일 실시상태는 상기 화학식 1a의 화합물; 상기 화학식 2a의 화합물; 폴리카보네이트 전구체; 및 폴리에스터 전구체를 포함하는 폴리에스터-카보네이트 수지 제조용 조성물을 중합하는 단계를 포함하는 상기 폴리에스터-카보네이트 수지의 제조방법을 제공한다.
본 명세서의 일 실시상태에 따르면, 상기 화학식 1a의 화합물 및 상기 화학식 2a의 화합물의 비는 0.01 mole% 내지 99.99 mole% : 99.99 mole% 내지 0.01 mole% 이다. 구체적으로, 0.1 mole% 내지 99.9 mole% : 99.9 mole% 내지 0.1mole%, 1 mole% 내지 99 mole% : 99 mole% 내지 1mole%, 5 mole% 내지 95 mole% : 95 mole% 내지 5mole%, 또는 10 mole% 내지 90 mole%: 90 mole% 내지 10 mole% 포함된다.
상기 화학식 1a 및 2a의 화합물이 상기 함량으로 포함되는 경우, 중합이 용이하고, 치환기에 따라 다양한 범위의 굴절률, 또는 높은 굴절률을 갖고, 넓은 범위의 유리 전이온도를 갖는다. 또한, 유리전이온도(Tg)와 굴절률의 조절이 가능하고, 상기 수지의 사슬 거동을 유연하게 할 수 있어 성형품의 사출 가공에 유리한 기술적 효과가 있다.
상기 수지 제조용 조성물은 용매를 더 포함할 수 있다.
상기 용매는 예컨대, 디페닐에터, 디메틸아세트아마이드 또는 메탄올일 수 있으나, 이에 한정되지 않고 당 기술분야에서 적용되는 것들이 적절히 채용될 수 있다.
상기 용매는 상기 수지 제조용 조성물 100 중량부에 대하여 5 중량부 내지 60 중량부로 포함될 수 있다.
상기 용매는 상기 수지 제조용 조성물 100 중량부에 대하여 바람직하게 5 중량부 내지 50 중량부, 7 중량부 내지 45 중량부 또는 8 중량부 내지 40 중량부로 포함될 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 화학식 1a를 2 이상 포함할 수 있다. 상기 2 이상의 화학식 1a는 서로 같거나 상이하다.
본 명세서의 일 실시상태에 따르면, 상기 화학식 1a의 화합물은 하기 화합물일 수 있으나, 이에 한정되는 것은 아니다.
Figure PCTKR2023015453-appb-img-000055
본 명세서의 일 실시상태에 있어서, 상기 화학식 2a의 화합물은 하기 화학식 2a-1의 화합물 내지 하기 화학식 2a-4의 화합물이다.
[화학식 2a-1]
Figure PCTKR2023015453-appb-img-000056
[화학식 2a-2]
Figure PCTKR2023015453-appb-img-000057
[화학식 2a-3]
Figure PCTKR2023015453-appb-img-000058
[화학식 2a-4]
Figure PCTKR2023015453-appb-img-000059
상기 화학식 2a-1 내지 2a-4에 있어서,
X21 내지 X36, L21 및 L22, Z21 내지 Z28, R5 내지 R15, R101, R102, a1 내지 a4, b1 내지 b4, r5, r6, r15, r13, r14, r101 및 r102의 정의는 상기 화학식 2-1 내지 화학식 2-4에서 정의한 바와 동일하다.
본 명세서의 일 실시상태에 따르면, 상기 화학식 2a의 화합물은 하기 화합물 중 어느 하나일 수 있으나, 이에 한정되는 것은 아니다.
Figure PCTKR2023015453-appb-img-000060
본 명세서의 일 실시상태에 따르면, 상기 화학식 1a의 화합물은 상기 수지 제조용 조성물 100 중량부에 대하여 1 중량부 내지 100 중량부, 1 중량부 내지 99 중량부로 포함될 수 있다.
상기 화학식 1a의 화합물은 상기 수지 제조용 조성물 100 중량부에 대하여 바람직하게 1 내지 60 중량부, 1 내지 50 중량부, 1 내지 40 중량부, 1 내지 30 중량부, 1 내지 20 중량부, 또는 1 내지 10 중량부로 포함될 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 화학식 2a의 화합물은 상기 수지 제조용 조성물 100 중량부에 대하여 1 중량부 내지 99 중량부로 포함될 수 있다.
상기 화학식 2a의 화합물은 상기 수지 제조용 조성물 100 중량부에 대하여 바람직하게 1 내지 60 중량부, 1 내지 50 중량부, 1 내지 40 중량부, 1 내지 30 중량부, 1 내지 20 중량부, 또는 1 내지 10 중량부로 포함될 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 폴리카보네이트 전구체는 상기 수지 제조용 조성물 100 중량부에 대하여 1 중량부 내지 60 중량부로 포함될 수 있다.
상기 폴리카보네이트 전구체는 상기 수지 제조용 조성물 100 중량부에 대하여 바람직하게 1 내지 60 중량부, 1 내지 55 중량부, 1 내지 50 중량부, 1 내지 45 중량부 또는 1 내지 40 중량부로 포함될 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 폴리카보네이트 전구체는 하기 화학식 A이다.
[화학식 A]
Figure PCTKR2023015453-appb-img-000061
상기 화학식 A에 있어서,
Ra1 및 Ra2는 각각 독립적으로 할로겐기; 치환 또는 비치환된 알킬기; 또는 치환 또는 비치환된 아릴기이고,
a1 및 a2는 각각 0 또는 1이다.
본 명세서의 일 실시상태에 따르면, 상기 Ra1 및 Ra2는 각각 독립적으로 할로겐기; 치환 또는 비치환된 탄소수 1 내지 30의 직쇄 또는 분지쇄의 알킬기; 또는 치환 또는 비치환된 탄소수 6 내지 30의 단환 또는 다환의 아릴기이다.
본 명세서의 일 실시상태에 따르면, 상기 Ra1 및 Ra2는 각각 독립적으로 할로겐기; 치환 또는 비치환된 탄소수 1 내지 20의 직쇄 또는 분지쇄의 알킬기; 또는 치환 또는 비치환된 탄소수 6 내지 20의 단환 또는 다환의 아릴기이다.
본 명세서의 일 실시상태에 따르면, 상기 Ra1 및 Ra2는 각각 독립적으로 할로겐기; 탄소수 1 내지 30의 직쇄 또는 분지쇄의 알킬기; 또는 탄소수 6 내지 30의 단환 또는 다환의 아릴기이다.
본 명세서의 일 실시상태에 따르면, 상기 Ra1 및 Ra2는 각각 독립적으로 할로겐기; 탄소수 1 내지 20의 직쇄 또는 분지쇄의 알킬기; 또는 탄소수 6 내지 20의 단환 또는 다환의 아릴기이다.
본 명세서의 일 실시상태에 따르면, 상기 Ra1 및 Ra2는 각각 독립적으로 -Cl; 메틸기; 에틸기; n-프로필기; 이소프로필기; n-부틸기; 이소부틸기; 또는 페닐기이다.
본 명세서의 일 실시상태에 따르면, 상기 화학식 A는 하기 화합물 중에서 선택되는 어느 하나이다.
Figure PCTKR2023015453-appb-img-000062
상기 폴리카보네이트 전구체는 필요에 따라 추가의 공단량체를 연결하는 역할을 하는 것으로, 상기 화학식 A로 표시되는 화합물 외에 적용될 수 있는 다른 구체적인 예로는 포스겐, 트리포스겐, 디포스겐, 브로모포스겐, 디메틸 카보네이트, 디에틸 카보네이트, 디부틸 카보네이트, 디시클로헥실 카보네이트, 디토릴 카보네이트, 비스(클로로페닐) 카보네이트, m-크레실 카보네이트, 디나프틸카보네이트, 비스(디페닐) 카보네이트 또는 비스할로포르메이트 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물을 사용할 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 폴리에스터 전구체는 상기 수지 제조용 조성물 100 중량부에 대하여 1 중량부 내지 150 중량부로 포함될 수 있다.
상기 폴리에스터 전구체는 상기 수지 제조용 조성물 100 중량부에 대하여 바람직하게 1 내지 140 중량부, 1 내지 135 중량부, 1 내지 130 중량부, 1 내지 125 중량부 또는 1 내지 120로 포함될 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 폴리에스터 전구체는 하기 화학식 B이다.
[화학식 B]
Figure PCTKR2023015453-appb-img-000063
상기 화학식 B에 있어서,
Rb1 및 Rb2는 각각 독립적으로 할로겐기; 히드록시기; 치환 또는 비치환된 알킬기; 또는 치환 또는 비치환된 아릴기이고,
Ar1은 치환 또는 비치환된 아릴렌기이며,
b1 및 b2는 각각 0 또는 1이다.
본 명세서의 일 실시상태에 따르면, 상기 Rb1 및 Rb2는 각각 독립적으로 할로겐기; 히드록시기; 치환 또는 비치환된 탄소수 1 내지 30의 직쇄 또는 분지쇄의 알킬기; 치환 또는 비치환된 탄소수 6 내지 30의 단환 또는 다환의 시클로알킬기; 또는 치환 또는 비치환된 탄소수 6 내지 30의 단환 또는 다환의 아릴기이다.
본 명세서의 일 실시상태에 따르면, 상기 Rb1 및 Rb2는 각각 독립적으로 할로겐기; 히드록시기; 치환 또는 비치환된 탄소수 1 내지 20의 직쇄 또는 분지쇄의 알킬기; 치환 또는 비치환된 탄소수 6 내지 20의 단환 또는 다환의 시클로알킬기; 또는 치환 또는 비치환된 탄소수 6 내지 20의 단환 또는 다환의 아릴기이다.
본 명세서의 일 실시상태에 따르면, 상기 Rb1 및 Rb2는 각각 독립적으로 할로겐기; 히드록시기; 히드록시기로 치환 또는 비치환된 탄소수 1 내지 30의 직쇄 또는 분지쇄의 알킬기; 탄소수 6 내지 30의 단환 또는 다환의 시클로알킬기; 또는 탄소수 6 내지 30의 단환 또는 다환의 아릴기이다.
본 명세서의 일 실시상태에 따르면, 상기 Rb1 및 Rb2는 각각 독립적으로 할로겐기; 히드록시기; 히드록시기로 치환 또는 비치환된 탄소수 1 내지 20의 직쇄 또는 분지쇄의 알킬기; 탄소수 6 내지 20의 단환 또는 다환의 시클로알킬기; 또는 탄소수 6 내지 20의 단환 또는 다환의 아릴기이다.
본 명세서의 일 실시상태에 따르면, 상기 Rb1 및 Rb2는 각각 독립적으로 -Cl; 히드록시기; 메틸기; 에틸기; n-프로필기; n-부틸기; 이소프로필기; 이소부틸기; 히드록시에틸기; 또는 페닐기이다.
본 명세서의 일 실시상태에 따르면, 상기 Ar1의 정의는 전술한 La 및 Lb의 정의가 적용될 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 Ar1는 탄소수 6 내지 30의 단환 또는 다환의 아릴렌기이다.
본 명세서의 일 실시상태에 따르면, 상기 Ar1는 탄소수 6 내지 20의 단환 또는 다환의 아릴렌기이다.
본 명세서의 일 실시상태에 따르면, 상기 Ar1는 페닐렌기; 또는 나프틸렌기이다.
본 명세서의 일 실시상태에 따르면, 상기 화학식 B는 하기 화합물 중에서 선택되는 어느 하나이다.
Figure PCTKR2023015453-appb-img-000064
본 명세서의 일 실시상태에 따르면, 상기 화학식 1a의 화합물; 및 상기 화학식 A의 폴리카보네이트 전구체 또는 상기 화학식 B의 폴리에스터 전구체를 중합함으로써 전술한 화학식 1의 단위를 형성할 수 있고, 상기 화학식 2a의 화합물; 및 상기 화학식 A의 폴리카보네이트 전구체 또는 상기 화학식 B의 폴리에스터 전구체를 중합함으로써 전술한 화학식 2의 단위를 형성할 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 수지는 폴리카보네이트 수지이고, 상기 폴리카보네이트 수지는 상기 화학식 1a의 화합물; 상기 화학식 2a의 화합물; 및 상기 화학식 A의 폴리카보네이트 전구체로부터 중합되는 것이 바람직하다.
상기 화학식 1a의 화합물; 및 상기 화학식 A의 폴리카보네이트 전구체를 중합함으로써 전술한 화학식 1-C의 단위를 형성할 수 있고, 상기 화학식 2a의 화합물; 및 상기 화학식 A의 폴리카보네이트 전구체를 중합함으로써 전술한 화학식 2-C의 단위를 형성할 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 수지는 폴리에스터 수지이고, 상기 폴리에스터 수지는 상기 화학식 1a의 화합물; 상기 화학식 2a의 화합물; 및 상기 화학식 B의 폴리에스터 전구체로부터 중합되는 것이 바람직하다.
상기 화학식 1a의 화합물; 및 상기 화학식 B의 폴리에스터 전구체를 중합함으로써 전술한 화학식 11의 단위를 형성할 수 있고, 상기 화학식 2a의 화합물; 및 상기 화학식 B의 폴리에스터 전구체를 중합함으로써 전술한 화학식 12의 단위를 형성할 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 수지는 폴리에스터-카보네이트 수지이고, 상기 폴리에스터-카보네이트 수지는 상기 화학식 1a의 화합물; 상기 화학식 2a의 화합물; 상기 화학식 A의 폴리카보네이트 전구체; 및 상기 화학식 B의 폴리에스터 전구체로부터 중합되는 것이 바람직하다.
상기 화학식 1a의 화합물; 상기 화학식 A의 폴리카보네이트 전구체; 및 상기 화학식 B의 폴리에스터 전구체를 중합함으로써 전술한 화학식 21의 단위를 형성할 수 있고, 상기 화학식 2a의 화합물; 상기 화학식 A의 폴리카보네이트 전구체; 및 상기 화학식 B의 폴리에스터 전구체를 중합함으로써 전술한 화학식 22의 단위를 형성할 수 있다.
폴리에스테르 수지의 경우 전구체(terephthalate
Figure PCTKR2023015453-appb-img-000065
)의 분자량이 폴리카보네이트 수지의 전구체(carbonate
Figure PCTKR2023015453-appb-img-000066
)보다 높아 수지 중량에서 차지하는 비중이 높다. 상기 전구체는 고굴절을 구현하는 디올 모노머(diol monomer)의 농도를 낮추므로 폴리카보네이트 수지의 굴절률이 폴리에스테르 수지 보다 상대적으로 높다. 또한, 폴리카보네이트 수지에 비해 폴리에스테르 수지의 구조적 특징으로 공액결합의 길이가 길며, 분자내/외 수소결합으로 인해 일반적으로 황색지수(yellow index)가 높고, Tg 등 내열 특성이 높은 성질을 보인다.
상기 화학식 1a의 화합물은 상기 화학식 1의 단위를 포함하는 수지를 구성하는 전체 단량체 100 몰부 대비 1 몰부 내지 100 몰부, 1 몰부 내지 99 몰부로 사용될 수 있다.
상기 화학식 A의 폴리카보네이트 전구체는 상기 수지를 구성하는 상기 화학식 1a의 화합물 전체 단량체 100 몰부 대비 50 몰부 내지 150 몰부로 사용될 수 있다.
상기 화학식 B의 폴리에스터 전구체는 상기 수지를 구성하는 상기 화학식 1a의 화합물 전체 단량체 100 몰부 대비 1 몰부 내지 150 몰부로 사용될 수 있다.
상기 화학식 2a의 화합물은 상기 화학식 2의 단위를 포함하는 수지를 구성하는 전체 단량체 100 몰부 대비 1 몰부 내지 100 몰부, 1 몰부 내지 99 몰부로 사용될 수 있다.
상기 화학식 A의 폴리카보네이트 전구체는 상기 수지를 구성하는 상기 화학식 2a의 화합물 전체 단량체 100 몰부 대비 50 몰부 내지 150 몰부로 사용될 수 있다.
상기 화학식 B의 폴리에스터 전구체는 상기 수지를 구성하는 상기 화학식 2a의 화합물 전체 단량체 100 몰부 대비 1 몰부 내지 150 몰부로 사용될 수 있다.
본 명세서에 따른 수지의 중합은 당 기술분야에 알려져 있는 방법이 이용될 수 있다.
상기 중합은 용융 중축합법으로 수행하는 것이 바람직하다.
상기 용융 중축합법은 상기 수지 제조용 조성물을 사용하여, 필요에 따라 촉매를 더 적용할 수 있고, 가열 하에서, 추가로 상압 또는 감압 하에서, 에스터 교환 반응에 의해 부생성물을 제거하면서 용융 중축합을 수행하는 것일 수 있다. 상기 촉매는 당 기술분야에 일반적으로 적용되는 물질이 채용될 수 있다.
구체적으로 상기 용융 중축합법은 상기 화학식 1a의 화합물; 상기 화학식 2a의 화합물; 및 상기 폴리카보네이트 전구체 및 폴리에스터 전구체 중 1 이상을 반응 용기 중에서 용융 후, 부생하는 화합물을 체류시킨 상태에서, 반응을 실시하는 것이 바람직하다. 상기 부생하는 화합물을 체류시키기 위해서, 반응 장치를 폐색하거나, 감압하거나 가압하는 등 압력을 제어할 수 있다.
이 공정의 반응 시간은, 20 분 이상 600 분 이하이고, 바람직하게는 40 분 이상 450 분 이하, 더욱 바람직하게는 60 분 이상 300 분 이하이다.
이 때, 부생하는 화합물을 생성 후 곧바로 증류 제거하면, 최종적으로 얻어지는 수지는 고분자량체의 함유량이 적다. 그러나 부생하는 화합물을 반응 용기 중에 일정 시간 체류시키면, 최종적으로 얻어지는 수지는 고분자량체의 함유량이 많은 것이 얻어진다.
상기 용융 중축합법은, 연속식으로 실시해도 되고 또한 배치식으로 실시해도 된다. 반응을 실시하는 데에 있어서 사용되는 반응 장치는, 닻형 교반 날개, 맥스 블렌드 교반 날개, 헤리칼 리본형 교반 날개 등을 장비한 종형일 수 있고, 패들 날개, 격자 날개, 안경 날개 등을 장비한 횡형일 수 있으며, 스크루를 장비한 압출기형일 수 있다. 또한, 중합물의 점도를 감안하여 이들 반응 장치를 적절히 조합한 반응 장치를 사용하는 것이 바람직하게 실시된다.
본 명세서에 사용되는 수지의 제조 방법에서는, 중합 반응 종료 후, 열 안정성 및 가수 분해 안정성을 유지하기 위하여, 촉매를 제거 또는 실활시켜도 된다. 당 기술분야에서 공지된 산성 물질의 첨가에 의한 촉매의 실활을 실시하는 방법을 바람직하게 실시할 수 있다.
상기 산성 물질로는 예컨대, 벤조산부틸 등의 에스테르류, p-톨루엔술폰산 등의 방향족 술폰산류; p-톨루엔술폰산부틸, p-톨루엔술폰산헥실 등의 방향족 술폰산에스테르류; 아인산, 인산, 포스폰산 등의 인산류; 아인산트리페닐, 아인산모노페닐, 아인산디페닐, 아인산디에틸, 아인산디 n-프로필, 아인산디 n-부틸, 아인산디 n-헥실, 아인산디옥틸, 아인산모노옥틸 등의 아인산에스테르류; 인산트리페닐, 인산디페닐, 인산모노페닐, 인산디부틸, 인산디옥틸, 인산모노옥틸 등의 인산에스테르류; 디페닐포스폰산, 디옥틸포스폰산, 디부틸포스폰산 등의 포스폰산류; 페닐포스폰산디에틸 등의 포스폰산에스테르류; 트리페닐포스핀, 비스(디페닐포스피노)에탄 등의 포스핀류; 붕산, 페닐붕산 등의 붕산류; 도데실벤젠술폰산 테트라부틸포스포늄염 등의 방향족 술폰산염류; 스테아르산클로라이드, 염화벤조일, p-톨루엔술폰산클로라이드 등의 유기 할로겐화물; 디메틸황산 등의 알킬황산; 염화벤질 등의 유기 할로겐화물 등이 바람직하게 사용된다.
상기 산성 물질은 상기 촉매 100 몰부에 대하여 0.1 몰부 내지 5 몰부, 바람직하게는 0.1 몰부 내지 1 몰부로 사용될 수 있다.
상기 산성 물질이 0.1 몰부 미만이면, 실활 효과가 불충분해져 바람직하지 않다. 또한, 5 몰부 초과이면 수지의 내열성이 저하하고, 성형품이 착색되기 쉬워지기 때문에 바람직하지 않다.
촉매 실활 후, 수지 중의 저비점 화합물을, 0.1 mmHg 내지 1 mmHg 의 압력, 200 ℃ 내지 350 ℃의 온도에서 탈휘 제거하는 공정을 더 수행할 수 있다. 이 공정에는, 패들 날개, 격자 날개, 안경 날개 등, 표면 갱신능이 우수한 교반날개를 구비한 횡형 장치, 혹은 박막 증발기가 바람직하게 사용된다.
본 명세서의 수지는, 이물질 함유량이 최대한 적은 것이 바람직하고, 용융 원료의 여과, 촉매액의 여과 등이 바람직하게 실시된다.
상기 여과에 사용되는 필터의 메시는, 5 ㎛ 이하인 것이 바람직하고, 보다 바람직하게는 1 ㎛ 이하이다. 또한, 생성되는 수지의 폴리머 필터에 의한 여과가 바람직하게 실시된다. 상기 폴리머 필터의 메시는, 100 ㎛ 이하인 것이 바람직하고, 보다 바람직하게는 30 ㎛ 이하이다. 또한, 수지 펠릿을 채취하는 공정은, 저더스트 환경이어야 하고, 클래스 6 이하인 것이 바람직하고, 보다 바람직하게는 클래스 5 이하이다.
또한, 상기 수지를 포함하는 성형품의 성형 방법으로는, 사출 성형 외에, 압축 성형, 주형, 롤 가공, 압출 성형, 연신 등이 예시되지만 이것에 한정되지 않는다.
본 명세서의 또 하나의 실시상태는 전술한 실시상태들에 따른 수지를 포함하는 수지 조성물을 제공한다.
본 명세서의 일 실시상태에 따르면, 상기 수지는 상기 수지 조성물 100 중량부를 기준으로 1 중량부 내지 80 중량부로 포함될 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 수지 조성물은 용매를 더 포함할 수 있다. 상기 용매는 예컨대, 디메틸아세트아마이드 또는 1,2-디클로로벤젠일 수 있다.
상기 용매는 상기 수지 조성물 100 중량부를 기준으로 20 중량부 내지 99 중량부로 포함될 수 있다.
상기 수지 조성물은 상기 화학식 1a의 화합물 및 상기 화학식 2a의 화합물 외에 추가의 단량체를 더 포함할 수 있다. 상기 추가의 단량체는 특별히 제한되지 않으며, 상기 수지 조성물의 주요한 물성을 변화시키지 않는 범위에서 폴리카보네이트/폴리에스터/폴리에스터-카보네이트 관련 당 기술분야에서 일반적으로 적용되는 단량체가 적절히 채용될 수 있다. 상기 추가의 단량체는 상기 화학식 1의 단위를 포함하는 수지를 구성하는 전체 단량체 100 몰부 대비 1몰부 내지 50 몰부로 사용될 수 있다.
상기 수지 조성물은 상기 화학식 1의 단위 및 상기 화학식 2의 단위를 포함하는 수지 외에, 필요에 따라 첨가제, 예컨대 산화방지제, 가소제, 대전방지제, 핵제, 난연제, 활제, 충격보강제, 형광증백제, 자외선흡수제, 안료 및 염료로 이루어진 군으로부터 선택된 1종 이상을 추가로 포함할 수 있다.
상기 첨가제는 상기 수지 조성물 100 중량부를 기준으로 1 중량부 내지 99 중량부로 포함될 수 있다.
상기 산화방지제, 가소제, 대전방지제, 핵제, 난연제, 활제, 충격보강제, 형광증백제, 자외선흡수제, 안료 또는 염료의 종류는 특별히 한정되지 않으며, 당 기술분야에서 적용되는 것들이 적절히 채용될 수 있다.
본 명세서의 또 하나의 실시상태는 전술한 실시상태들에 따른 수지 조성물을 포함하는 성형품을 제공한다.
본 명세서의 일 실시상태에 따르면, 상기 성형품은 상기 수지 조성물 또는 이의 경화물로부터 제조될 수 있다.
상기 성형품의 제조 방법의 일례로, 상기 화학식 1의 단위를 포함하는 수지와 상기 첨가제를 믹서를 이용하여 잘 혼합한 후에, 압출기로 압출 성형하여 펠릿으로 제조하고, 상기 펠릿을 건조시킨 다음 사출 성형기로 사출하는 단계를 포함할 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 성형품은 광학 렌즈일 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 광학 렌즈의 두께는 0.1 ㎛ 내지 30 mm일 수 있다.
상기 광학 렌즈는 상기 수지를 이용하여 제조되는 것으로, 두께가 얇고, 고굴절률 및 고투명성을 가지며, 바람직하게는 카메라에 적용될 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 성형품은 광학 필름, 또는 광학 박막이다. 상기 광학 필름, 또는 광학 박막은 상기 폴리카보네이트 수지를 이용하여 제조되는 것으로, 두께가 얇고, 집광효과 및 광확산효과 우수하며, 바람직하게는 액정 디스플레이의 백라이트 모듈, 평면렌즈, 메타렌즈 등에 적용될 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 광학 필름, 또는 광학 박막의 두께는 0.1 nm 내지 10 mm이다.
본 명세서의 일 시상태에 있어서, 상기 성형품은 광학 수지이다. 상기 광학 수지는 상기 폴리카보네이트 수지를 이용하여 제조되는 것으로 두께가 얇고, 고굴절률 및 저복굴절률을 가져 광손실이 낮다.
본 명세서의 일 실시상태에 따른 광학 수지는 고굴절률 및 저복굴절률을 가져 광손실이 낮다. 본 명세서의 일 실시상태에 따른 광학 수지는 종래의 일반적인 광학재료에 비해 내열 특성이 매우 높거나 낮지 않은 90 ℃ 내지 200 ℃의 유리전이온도를 가져 가공이 용이하고, 우수한 내열특성을 보인다. 유리전이온도가 200 ℃을 초과하는 경우, 용융흐름지수가 상승하여 가공이 어려우며, 유리전이온도가 90 ℃ 미만인 경우 낮은 내열특성으로 외부 환경에 의해 내후성이 떨어지는 결과를 초래한다. 이에 따라 적절한 열특성을 가지며, 높은 굴절률을 구현하는 본 명세서의 일 실시상태에 따른 광학 수지는 적다.
이하, 실시예를 통하여, 본 명세서를 더욱 상세하게 예시한다.
제조예 1. 폴리카보네이트 수지의 제조
제조예 1-1. 수지 1-1의 제조
모노머 1-1(45.215g(0.100 mol)), 디페닐카보네이트(diphenylcarbonate) 21.422g(0.100 mol)를 용융하여 250 ℃에서 5시간 반응하였다. 반응이 진행되면서 페놀(Phenol)이 부산물로 발생하였으며, 이를 제거해주기 위해 감압도를 최대 1 Torr까지 조절하였다. 반응 종료 후, 반응기 내에 질소를 불어넣어 상압 분위기를 조성하여 중합된 고분자 용융 수지인 수지 1-1을 수득하였다.
모노머 1-1:
Figure PCTKR2023015453-appb-img-000067
MS: [M+H]+=453
제조예 1-2 내지 1-17. 수지 1-2 내지 1-17의 제조
상기 제조예 1-1에서 모노머 1-1 대신 하기 모노머를 하기 표 1의 몰부로 사용한 것을 제외하고는 상기 제조예 1-1과 동일하게 제조하여 수지 1-2 내지 1-17을 얻었다.
모노머 A:
Figure PCTKR2023015453-appb-img-000068
Figure PCTKR2023015453-appb-img-000069
[표 1]
Figure PCTKR2023015453-appb-img-000070
실험예 1.
중합한 수지 시료의 분자량 및 분자량 분포를 겔 투과크로마토그래피(GPC)를 통해 확인하였고 열적 특성을 알아보기 위해 시차주사열량계(DSC)를 이용하여 서모그램(thermogram)을 얻었다.
겔투과크로마토그래피(GPC)를 통한 분자량은 테트라하이드로퓨란(tetrahydrofuran (THF, stabilized without BHT(butylated hydroxytoluene)))을 용매로 사용하였고 수지 시료를 테트라하이드로퓨란에 1.0mg/1ml의 농도로 용해시켜 시린지 필터(syringe filter)로 여과하여 만든 용액을 주입하여 40 ℃에서 측정하여 결과를 얻었으며, 이를 하기 표 2에 기재하였다. Waters RI detector를 사용하였고 칼럼(column)은 Agilent PLgel MIXED-B 2개를 사용하였다.
수지의 유리전이온도(Tg)를 알아보기 위해 시차주사열량계(DSC)를 측정하였다. 5.5 mg 내지 8.5 mg의 수지 시료를 N2 flow 하에 270 ℃까지 가열했다가 냉각 후 두 번째 가열 시 10 ℃/min의 승온 속도로 가열하며 스캔하여 얻은 그래프 상에서 유리전이온도(Tg)를 구하였고, 이를 하기 표 2에 기재하였다.
상기 굴절률 측정은 중합한 수지 시료로부터 확인될 수 있으며, 프리즘 커플러(prism-coupler)를 이용하여 빛의 파장에 따른 결과값을 얻었다.
상기 수지 시료를 프리즘 커플러(prism-coupler)의 프리즘에 밀착시킨 뒤, 특정파장의 광을 프리즘을 통해 시료에 입사시켜준다. 그 후 광이 공진되는 입사각을 측정하여 이로부터 굴절률을 측정 후 오차값을 최소화하는 Sellmeier Coefficient를 구하고 Sellmeier's equation에 대입한 후, D(587nm)파장에서의 굴절률을 확인하였다.
구체적으로 굴절률은 파장 587 nm 에서 측정한 것이고, 아베수는 D(587 nm), F(486 nm), C(656 nm)파장에서의 굴절률(nD, nF, nC)을 각각 측정하여 아래의 계산식에 의해 아베수를 얻었으며, 이를 하기 표 2에 기재하였다.
아베수=(nD-1)/(nF - nC)
폴리카보네이트
수지
Mn
(g/mol)
Mw
(g/mol)
PDI RI
(587nm)
Tg(℃) 아베수
비교예 1-1 수지 1-1 17400 33400 1.90 1.647 142 22.4
비교예 1-2 수지 1-2 5700 11000 1.92 1.671 207 18.7
비교예 1-3 수지 1-3 10000 17000 1.70 1.686 168 19.0
실시예 1-1 수지 1-4 7900 13200 1.67 1.651 152 20.4
실시예 1-2 수지 1-5 26500 46400 1.75 1.655 138 21.4
실시예 1-3 수지 1-6 9120 15500 1.70 1.652 134 19.4
실시예 1-4 수지 1-7 12500 21800 1.74 1.661 131 21.3
실시예 1-5 수지 1-8 15100 24800 1.64 1.651 129 19.1
실시예 1-6 수지 1-9 15800 26700 1.69 1.663 126 19.7
실시예 1-7 수지 1-10 13200 21200 1.61 1.656 146 19.8
실시예 1-8 수지 1-11 14200 24500 1.73 1.652 143 20.6
실시예 1-9 수지 1-12 21200 35400 1.67 1.671 126 20.2
실시예 1-10 수지 1-13 18700 31600 1.69 1.658 143 19.8
실시예 1-11 수지 1-14 24500 42100 1.72 1.682 153 18.3
실시예 1-12 수지 1-15 28600 48500 1.70 1.676 138 18.8
실시예 1-13 수지 1-16 26500 46400 1.75 1.689 149 19.5
실시예 1-14 수지 1-17 29700 50100 1.69 1.661 168 19.3
상기 표 2에 있어서, Mn은 수평균 분자량, Mw는 중량평균 분자량, PDI는 다분산성 지수, RI는 굴절률, Tg는 유리전이온도를 의미하며, 굴절률은 파장 587 nm에서 측정한 값이다.
상기 표 2에 의하면, 실시예 1-1 내지 1-14의 수지는 본 발명의 일 실시상태에 따른 화학식 1 및 화학식 2로 표시되는 단위를 포함함으로써, 상기 화학식 1의 코어 구조가 spiro[fluorene-9,9'-xanthene]로 전자가 풍부하여 전자 밀도가 높아 이를 포함하는 폴리카보네이트 수지의 굴절률이 향상되며, 이에 상기 화학식 2로 표시되는 단위를 포함하여 상기 화학식 1로 표시되는 단위의 유리전이온도(Tg)를 보완해주거나, 상기 화학식 1로 표시되는 단위의 사슬 거동을 유연하게 할 수 있고, 성형품의 사출 가공에 유리하다.
반면, 비교예 1-1의 수지는 본 발명의 일 실시상태에 따른 상기 화학식 2로 표시되는 단위를 포함하지 않음으로써, 상기 화학식 1로 표시되는 단위의 유리전이온도(Tg)를 보완해주거나, 상기 화학식 1로 표시되는 단위의 사슬 거동을 유연하게 할 수 없어, 성형품의 사출 가공에 불리하여 부족하여 본 발명의 실시예 1-1 내지 1-14의 수지보다 굴절률이 낮음을 확인할 수 있었다.
본 발명의 실시상태에 따른 수지를 광학 렌즈와 같은 성형품에 적절하게 적용하기 위해서는 높은 굴절률이 우선적으로 요구되며, 비교예 1-1의 경우 실시예 1-1 내지 1-14 보다 아베수가 높더라도 굴절률이 매우 낮으므로, 실시예 1-1 내지 1-14는 비교예 1-1보다 광학 재료로서 더 우수함을 확인할 수 있었다.
비교예 1-2 및 1-3의 경우, 실시예 수준의 굴절률을 가지나, 호모폴리머(단일중합체)인 경우, 사출에 용이한 물성을 만족하기 어려운 문제가 있다. 구체적으로 호모폴리머의 경우, 동일한 반복구조를 가짐으로써 분자 간의 쌓임이 좋아 자유부피(free volume)가 적어, 복굴절이 높거나 고온에서의 흐름성이 좋지 않아 압출/사출이 어려운 특징들을 갖게 된다. 따라서 압출/사출, 열성형이 용이한 고분자 수지를 제조하기 위해서는 굴절률 이외에도 적절한 물성들이 요구되며, 본 발명의 실시상태에 따른 수지는 목적하는 굴절률을 가지면서도 압출/사출 및 열성형이 용이한 장점이 있다.
제조예 2. 폴리에스터 수지의 제조
제조예 2-1. 수지 2-1의 제조
모노머 1-1(45.251g(0.100 mol)), 테레프탈로일 클로라이드(terephthaloyl chloride) 9.710g(0.050 mol), 아이소탈로일 클로라이드(isophthaloyl dichloride) 9.710g(0.050 mol)를 용융하여 250 ℃에서 5시간 반응하였다. 반응이 진행되면서 에틸렌 글라이콜(ethylene glycol)이 부산물로 발생하였으며, 이를 제거해주기 위해 감압도를 최대 1 Torr까지 조절하였다. 반응 종료 후, 반응기 내에 질소를 불어넣어 상압 분위기를 조성하여 중합된 고분자 용융 수지인 수지 2-1을 수득하였다.
모노머 1-1:
Figure PCTKR2023015453-appb-img-000071
MS: [M+H]+=453
제조예 2-2 내지 2-17. 수지 2-2 내지 2-17의 제조
상기 제조예 2-1에서 모노머 1-1 대신 하기 모노머를 하기 표 3의 몰부로 사용한 것을 제외하고는 상기 제조예 2-1과 동일하게 제조하여 수지 2-2 내지 2-17을 얻었다.
Figure PCTKR2023015453-appb-img-000072
No 수지의 조성(몰부)
(* 모노머 합계 100몰 기준)
모노머 1-1 모노머 2-1 모노머 2-2 모노머 2-3 모노머 2-4 모노머 2-5 모노머 2-6 모노머 2-7 모노머 2-8 모노머 2-9
수지 2-1 100
수지 2-2 70 15 15
수지 2-3 70 21 4 5
수지 2-4 50 35 10 5
수지 2-5 50 35 5 10
수지 2-6 34 11 47 8
수지 2-7 24 32 39 5
수지 2-8 20 30 43 7
수지 2-9 20 23 10 47
수지 2-10 13 27 41 19
수지 2-11 11 39 50
수지 2-12 10 32 9 49
수지 2-13 8 36 49 7
수지 2-14 8 36 49 7
수지 2-15 1 34 21 44
수지 2-16 1 23 31 45
수지 2-17 1 33 36 30
실험예 2.
중합한 수지 시료의 분자량 및 분자량 분포를 겔 투과크로마토그래피(GPC)를 통해 확인하였고 열적 특성을 알아보기 위해 시차주사열량계(DSC)를 이용하여 서모그램(thermogram)을 얻었다.
겔투과크로마토그래피(GPC)를 통한 분자량은 테트라하이드로퓨란(tetrahydrofuran (THF, stabilized without BHT(butylated hydroxytoluene)))을 용매로 사용하였고 수지 시료를 테트라하이드로퓨란에 1.0mg/1ml의 농도로 용해시켜 시린지 필터(syringe filter)로 여과하여 만든 용액을 주입하여 40 ℃에서 측정하여 결과를 얻었으며, 이를 하기 표 4에 기재하였다. Waters RI detector를 사용하였고 칼럼(column)은 Agilent PLgel MIXED-B 2개를 사용하였다.
수지의 유리전이온도(Tg)를 알아보기 위해 시차주사열량계(DSC)를 측정하였다. 5.5mg~8.5mg의 수지 시료를 N2 flow 하에 270 ℃까지 가열했다가 냉각 후 두 번째 가열 시 10 ℃/min의 승온 속도로 가열하며 스캔하여 얻은 그래프 상에서 유리전이온도(Tg)를 구하였고, 이를 하기 표 4에 기재하였다.
상기 굴절률 측정은 중합한 수지 시료로부터 확인될 수 있으며, 프리즘 커플러(prism-coupler)를 이용하여 빛의 파장에 따른 결과값을 얻었다.
상기 수지 시료를 프리즘 커플러(prism-coupler)의 프리즘에 밀착시킨 뒤, 특정파장의 광을 프리즘을 통해 시료에 입사시켜준다. 그 후 광이 공진되는 입사각을 측정하여 이로부터 굴절률을 측정 후 오차값을 최소화 하는 Sellmeier Coefficient를 구하고 Sellmeier's equation에 대입한 후, D(587nm)파장에서의 굴절률을 확인하였다.
수지의 굴절률 및 아베수를 측정하기 위해 중합하여 얻은 수지를 일정 크기로 절단하고, 핫플레이트에서 가열 및 압력가하여 단면을 평평하게 만들어 시료를 제조하였고 준비된 시료를 프리즘 커플러(prism-coupler)를 이용하여 빛의 파장에 따른 결과값을 얻었고, 이를 하기 표 4에 기재하였다. 구체적으로 굴절률은 파장 589 nm에서 측정한 것이고, 아베수는 D(587 nm), F(486 nm), C(656 nm)파장에서의 굴절률(nD, nF, nC)을 각각 측정하여 아래의 계산식에 의해 아베수를 얻었다.
구체적으로 굴절률은 파장 589 nm에서 측정한 것이고, 아베수는 D(587 nm), F(486 nm), C(656 nm)파장에서의 굴절률(nD, nF, nC)을 각각 측정하여 아래의 계산식에 의해 아베수를 얻었다.
아베수=(nD-1)/(nF - nC)
폴리에스터
수지
Mn
(g/mol)
Mw
(g/mol)
PDI RI
(587nm)
Tg(℃) 아베수
비교예 2-1 수지 2-1 32000 60300 1.89 1.643 155 22.2
실시예 2-1 수지 2-2 21100 38400 1.81 1.652 158 21.1
실시예 2-2 수지 2-3 23400 36100 1.60 1.647 155 21.8
실시예 2-3 수지 2-4 18100 32300 1.85 1.653 156 21.0
실시예 2-4 수지 2-5 17500 31200 1.87 1.653 156 20.9
실시예 2-5 수지 2-6 26300 51000 1.98 1.655 149 20.7
실시예 2-6 수지 2-7 24100 41600 1.74 1.667 157 19.3
실시예 2-7 수지 2-8 25900 45200 1.81 1.660 151 20.1
실시예 2-8 수지 2-9 27600 49100 1.77 1.663 151 19.9
실시예 2-9 수지 2-10 19900 35400 1.79 1.642 145 22.3
실시예 2-10 수지 2-11 16700 30100 1.80 1.649 115 21.5
실시예 2-11 수지 2-12 27100 49800 1.88 1.667 153 19.3
실시예 2-12 수지 2-13 30900 55000 1.81 1.667 154 19.3
실시예 2-13 수지 2-14 27400 48700 1.83 1.668 148 19.2
실시예 2-14 수지 2-15 40200 74900 1.85 1.667 158 19.3
실시예 2-15 수지 2-16 14200 26100 1.79 1.662 142 24.6
실시예 2-16 수지 2-17 22900 39200 1.74 1.678 171 18.0
상기 표 4에 있어서, Mn은 수평균 분자량, Mw는 중량평균 분자량, PDI는 다분산성 지수, RI는 굴절률, Tg는 유리전이온도를 의미하며, 굴절률은 파장 587 nm에서 측정한 값이다.
상기 표 4에 의하면, 실시예 2-1 내지 2-16은 본 발명의 일 실시상태에 따른 화학식 1의 단위를 포함하며, 특히 상기 화학식 1의 코어 구조가 spiro[fluorene-9,9'-xanthene]로써, 전자가 풍부하여 전자 밀도가 높아 이를 포함하는 폴리에스터 수지의 굴절률이 향상된다.
또한, 상기 화학식 1의 단위에 상기 화학식 2의 단위를 더 포함하여, 유리전이온도(Tg)와 굴절률의 조절이 가능하고, 상기 폴리에스터 수지의 사슬 거동을 유연하게 할 수 있어 성형품의 사출 가공에 유리한 기술적 효과가 있다.
본 발명의 실시상태에 따른 수지를 광학 렌즈와 같은 성형품에 적절하게 적용하기 위해서는 높은 굴절률이 우선적으로 요구되며, 실시예 2-1 내지 2-16은 굴절률이 매우 높으므로, 광학 재료로서 우수함을 확인할 수 있었다.
비교예 2-1의 경우, 실시예 수준의 굴절률을 가지나, 호모폴리머(단일중합체)인 경우, 사출에 용이한 물성을 만족하기 어려운 문제가 있다. 구체적으로 호모폴리머의 경우, 동일한 반복구조를 가짐으로써 분자 간의 쌓임이 좋아 자유부피(free volume)가 적어, 복굴절이 높거나 고온에서의 흐름성이 좋지 않아 압출/사출이 어려운 특징들을 갖게 된다. 따라서 압출/사출, 열성형이 용이한 고분자 수지를 제조하기 위해서는 굴절률 이외에도 적절한 물성들이 요구되며, 본 발명의 실시상태에 따른 수지는 목적하는 굴절률을 가지면서도 압출/사출 및 열성형이 용이한 장점이 있다.
제조예 3. 폴리에스터-카보네이트 수지의 제조
제조예 3-1. 수지 3-1의 제조
모노머 1-1(45.251g(0.100 mol)), 디페닐카보네이트(diphenylcarbonate) 14.995g(0.070 mol), 테레프탈로일클로라이드(terephthaloyl chloride) 5.826g(0.030 mol)를 용융하여 250 ℃에서 5 시간 반응하였다. 반응이 진행되면서 페놀(Phenol) 및 염산이 부산물로 발생하였으며, 이를 제거해주기 위해 감압도를 최대 1 Torr까지 조절하였다. 반응 종료 후, 반응기 내에 질소를 불어넣어 상압 분위기를 조성하여 중합된 고분자 용융 수지인 수지 3-1을 수득하였다.
모노머 1-1:
Figure PCTKR2023015453-appb-img-000073
MS: [M+H]+=453
제조예 3-2 내지 3-15. 수지 3-2 내지 3-15의 제조
상기 제조예 3-1에서 모노머 1-1 대신 하기 모노머를 하기 표 5의 몰부로 사용한 것을 제외하고는 상기 제조예 3-1과 동일하게 제조하여 수지 3-2 내지 3-15를 얻었다.
Figure PCTKR2023015453-appb-img-000074
No 수지의 조성(몰부)
(* 모노머 합계 100몰 기준)
모노머 1-1 모노머 2-1 모노머 2-2 모노머
2-3
모노머 2-4 모노머 2-5 모노머 2-6 모노머 2-7 모노머 2-8 PC전구체 PE 전구체
(para)
PE 전구체
(meta)
수지 3-1 100 70 30
수지 3-2 80 20 70 30
수지 3-3 70 10 20 70 30
수지 3-4 70 30 70 30
수지 3-5 50 10 5 35 30 50 20
수지 3-6 50 49 1 30 50 20
수지 3-7 30 52 18 30 50 20
수지 3-8 30 70 30 50 20
수지 3-9 20 50 30 80 20
수지 3-10 20 30 50 60 30 10
수지 3-11 5 50 30 15 50 30 20
수지 3-12 5 35 15 45 50 25 25
수지 3-13 1 24 30 45 50 20 30
수지 3-14 1 50 34 15 40 45 15
수지 3-15 1 29 33 37 20 60 20
상기 표 5에는 수지 3-1 내지 3-15에 포함되는 각 모노머의 몰부가 기재되어 있다. 또한, 상기 PE전구체(para)는 폴리에스터 전구체인 테레프탈로일클로라이드(terephthaloyl chloride)의 몰부를 의미하고, PE전구체(meta)는 폴리에스터 전구체인 이소프탈로일 클로라이드(isophthaloyl chloride)의 몰부를 의미한다.
실험예 3.
중합한 수지 시료의 분자량 및 분자량 분포를 겔 투과크로마토그래피(GPC)를 통해 확인하였고 열적 특성을 알아보기 위해 시차주사열량계(DSC)를 이용하여 서모그램(thermogram)을 얻었다. 겔투과크로마토그래피(GPC)를 통한 분자량은 테트라하이드로퓨란(tetrahydrofuran (THF, stabilized without BHT(butylated hydroxytoluene)))을 용매로 사용하였고 수지 시료를 테트라하이드로퓨란에 1.0mg/1ml의 농도로 용해시켜 시린지 필터(syringe filter)로 여과하여 만든 용액을 주입하여 40 ℃에서 측정하여 결과를 얻었으며, 이를 하기 표 6에 기재하였다. Waters RI detector를 사용하였고 칼럼(column)은 Agilent PLgel MIXED-B 2개를 사용하였다.
수지의 유리전이온도(Tg)를 알아보기 위해 시차주사열량계(DSC)를 측정하였다. 5.5 mg 내지 8.5 mg의 수지 시료를 N2 flow 하에 270 ℃까지 가열했다가 냉각 후 두 번째 가열 시 10 ℃/min의 승온 속도로 가열하며 스캔하여 얻은 그래프 상에서 유리전이온도(Tg)를 구하였고, 이를 하기 표 6에 기재하였다.
수지의 굴절률 및 아베수를 측정하기 위해 프리즘커플러(prism coupler)를 사용하여 일정한 파장을 갖는 신호광을 중합하여 얻은 수지 시료에 입사시키고, 프리즘 밑면에서 반사되는 출력광을 측정하여 빛에 파장에 따른 결과값을 얻은 후, 이를 하기 표 6에 기재하였다. 구체적으로 굴절률은 파장 589 nm에서 측정한 것이고, 아베수는 D(587 nm), F(486 nm), C(656 nm)파장에서의 굴절률(nD, nF, nC)을 각각 측정하여 아래의 계산식에 의해 아베수를 얻었다.
아베수=(nD-1)/(nF - nC)
No. Mn
(g/mol)
Mw
(g/mol)
PDI RI
(587nm)
Tg(℃) 아베수
비교예 3-1 수지 3-1 18300 33400 1.74 1.645 145 22.2
실시예 3-1 수지 3-2 20500 37500 1.80 1.647 148 21.5
실시예 3-2 수지 3-3 12700 21600 1.76 1.680 156 21.7
실시예 3-3 수지 3-4 25300 43500 1.77 1.627 146 24.3
실시예 3-4 수지 3-5 26100 48400 1.72 1.634 126 23.6
실시예 3-5 수지 3-6 15100 27200 1.77 1.664 160 19.5
실시예 3-6 수지 3-7 26200 46200 1.79 1.611 146 25.8
실시예 3-7 수지 3-8 25800 47300 1.78 1.659 138 20.6
실시예 3-8 수지 3-9 25400 46800 1.77 1.654 113 20.7
실시예 3-9 수지 3-10 10500 17700 1.77 1.654 174 20.8
실시예 3-10 수지 3-11 26200 49000 1.75 1.651 128 21.5
실시예 3-11 수지 3-12 13200 23100 1.76 1.675 154 18.3
실시예 3-12 수지 3-13 29000 53300 1.79 1.667 150 19.1
실시예 3-13 수지 3-14 9800 16700 1.80 1.680 175 17.7
실시예 3-14 수지 3-15 11000 18900 1.81 1.630 145 22.9
상기 표 6에 있어서, Mn은 수평균 분자량, Mw는 중량평균 분자량, PDI는 다분산성 지수, RI는 굴절률, Tg는 유리전이온도를 의미하며, 굴절률은 파장 587 nm에서 측정한 값이다.
상기 표 6에 의하면, 실시예 3-1 내지 3-14는 본 발명의 일 실시상태에 따른 폴리에스터-카보네이트 수지로서 화학식 1의 단위를 포함하며, 특히 상기 화학식 1의 코어 구조가 spiro[fluorene-9,9'-xanthene]로써, 전자가 풍부하여 전자 밀도가 높아 이를 포함하는 폴리에스터-카보네이트 수지의 굴절률이 향상됨을 확인할 수 있었다.
또한, 상기 화학식 1의 단위에 상기 화학식 2의 단위를 더 포함하여, 유리전이온도(Tg)와 굴절률의 조절이 가능하고, 상기 폴리에스터-카보네이트 수지의 사슬 거동을 유연하게 할 수 있어 성형품의 사출 가공에 유리한 기술적 효과가 있다.
상기 폴리에스터-카보네이트 수지는 폴리에스터 전구체와 폴리카보네이트 전구체의 몰비, 이성질체를 적절하게 조절하여 폴리에스터 수지 및 폴리카보네이트 수지가 가진 특징을 조합하여 원하는 물성의 폴리에스터-카보네이트 수지를 제조할 수 있다.
본 발명의 실시상태에 따른 수지를 광학 렌즈와 같은 성형품에 적절하게 적용하기 위해서는 높은 굴절률이 우선적으로 요구되며, 실시예 3-1 내지 3-14는 굴절률이 매우 높으므로, 광학 재료로서 우수함을 확인할 수 있었다.
비교예 3-1의 경우, 실시예 수준의 굴절률을 가지나, 호모폴리머(단일중합체)인 경우, 사출에 용이한 물성을 만족하기 어려운 문제가 있다. 구체적으로 호모폴리머의 경우, 동일한 반복구조를 가짐으로써 분자 간의 쌓임이 좋아 자유부피(free volume)가 적어, 복굴절이 높거나 고온에서의 흐름성이 좋지 않아 압출/사출이 어려운 특징들을 갖게 된다. 따라서 압출/사출, 열성형이 용이한 고분자 수지를 제조하기 위해서는 굴절률 이외에도 적절한 물성들이 요구되며, 본 발명의 실시상태에 따른 수지는 목적하는 굴절률을 가지면서도 압출/사출 및 열성형이 용이한 장점이 있다.
제조예 4. 폴리카보네이트 수지의 제조
제조예 4-1. 수지 4-1의 제조
모노머 1-1(45.053g(0.100 mol)), 디페닐카보네이트(diphenylcarbonate) 21.422g(0.100 mol)를 용융하여 250 ℃에서 5시간 반응하였다. 반응이 진행되면서 페놀(Phenol)이 부산물로 발생하였으며, 이를 제거해주기 위해 감압도를 최대 1 Torr까지 조절하였다. 반응 종료 후, 반응기 내에 질소를 불어넣어 상압 분위기를 조성하여 중합된 고분자 용융 수지인 수지 1을 수득하였다.
모노머 1-1:
Figure PCTKR2023015453-appb-img-000075
MS: [M+H]+=450
제조예 4-2 내지 4-4. 수지 4-2 내지 4-4의 제조
상기 제조예 4-1에서 모노머 1-1 대신 하기 표 7에 기재된 모노머를 하기 몰부로 사용한 것을 제외하고는 상기 제조예 4-1과 동일하게 제조하여 수지 4-2 내지 4-4를 얻었다.
Figure PCTKR2023015453-appb-img-000076
No 수지의 조성(몰부)
모노머 1-1 모노머 2-1 모노머 2-2 모노머
2-3
모노머 2-4 모노머 2-5 모노머 2-6 모노머 2-7 모노머 2-8
수지 4-1 100
수지 4-2 60 20 15 5
수지 4-3 20 25 45 10
수지 4-4 5 40 45 10
실험예 4.
중합한 수지 시료의 분자량 및 분자량 분포를 겔 투과크로마토그래피(GPC)를 통해 확인하였고 열적 특성을 알아보기 위해 시차주사열량계(DSC)를 이용하여 서모그램(thermogram)을 얻었다.
겔투과크로마토그래피(GPC)를 통한 분자량은 테트라하이드로퓨란(tetrahydrofuran (THF, stabilized with BHT(butylated hydroxytoluene)))을 용매로 사용하였고 수지 시료를 테트라하이드로퓨란에 1.0mg/1ml의 농도로 용해시켜 시린지 필터(syringe filter)로 여과하여 만든 용액을 주입하여 40 ℃에서 측정하여 결과를 얻었으며, 이를 하기 표 8에 기재하였다. Waters RI detector를 사용하였고 칼럼(column)은 Agilent PLgel MIXED-B 2개를 사용하였다.
수지의 유리전이온도(Tg)를 알아보기 위해 시차주사열량계(DSC)를 측정하였다. 5.5 mg 내지 8.5 mg의 수지 시료를 N2 flow 하에 270 ℃까지 가열했다가 냉각 후 두 번째 가열 시 10 ℃/min의 승온 속도로 가열하며 스캔하여 얻은 그래프 상에서 유리전이온도(Tg)를 구하였고, 이를 하기 표 8에 기재하였다.
상기 굴절률 측정은 중합한 수지 시료로부터 확인될 수 있으며, 프리즘 커플러(prism-coupler)를 이용하여 빛의 파장에 따른 결과값을 얻었다.
상기 수지 시료를 프리즘 커플러(prism-coupler)의 프리즘에 밀착시킨 뒤, 특정파장의 광을 프리즘을 통해 시료에 입사시켜준다. 그 후 광이 공진되는 입사각을 측정하여 이로부터 굴절률을 측정 후 오차값을 최소화 하는 Sellmeier Coefficient를 구하고 Sellmeier's equation에 대입한 후, D(587nm)파장에서의 굴절률을 확인하였다.
구체적으로 굴절률은 파장 587 nm에서 측정한 것이고, 아베수는 D(587 nm), F(486 nm), C(656 nm)파장에서의 굴절률(nD, nF, nC)을 각각 측정하여 아래의 계산식에 의해 아베수를 얻었다.
아베수=(nD-1)/(nF - nC)
하기 기재된 방법으로 실시예에서 제조한 폴리카보네이트 조성물로부터 시편을 제조한 후 이의 황변 지수를 평가하고 그 결과를 표 8에 나타내었다.
1) 시편의 제조
2축 압출기(L/D=36, Φ=45, 배럴온도 240 ℃)에 시간당 55 kg의 속도로 폴리카보네이트 조성물을 공급하여 펠렛을 제조한 후, 이를 사출기(한국 유압기계 제조, HMW-016S-15t)로 사출 성형하여 가로, 세로 및 두께가 각각 50 mm, 50 mm 및 1 mm인 시편을 제조하였다.
2) 황변 지수(Yellow Index; YI) 측정
ASTM D1925에 의거하여 UltraScan PRO (HunterLab사 제조)를 이용하여 상온(20 ℃)에서의 YI 값을 측정하였다.
폴리카보네이트
수지
Mn
(g/mol)
Mw
(g/mol)
PDI RI
(587nm)
Tg(℃) 아베수 황변 지수
(1 mm)
비교예 4-1 수지 4-1 26500 45100 1.84 1.647 142 21.7 8.43
실시예 4-1 수지 4-2 15200 27100 1.83 1.652 144 21.1 6.33
실시예 4-2 수지 4-3 9400 16000 1.88 1.657 135 20.5 5.21
실시예 4-3 수지 4-4 22700 34200 1.90 1.653 138 21.0 6.04
상기 표 8에 있어서, Mn은 수평균 분자량, Mw는 중량평균 분자량, PDI는 다분산성 지수, RI는 굴절률, Tg는 유리전이온도를 의미하며, 굴절률은 파장 587 nm에서 측정한 값이고, 황변 지수는 폴리카보네이트 수지의 두께가 1mm일 때 측정한 값이다.
상기 표 8에 의하면, 실시예 4-1 내지 4-3의 폴리카보네이트 수지는 폴리카보네이트 수지의 두께가 1 mm 이하일 때, 황변 지수가 8 이하인 것으로써, 낮은 황변 지수로 인하여 다양한 색상 구현이 가능하므로, 다양한 색상의 광학 제품을 제공할 수 있으며, 특히 고투명성이 요구되는 광학 재료에 적합하다.
상기 표 8에 의하면, 본 발명의 실시상태에 따른 폴리카보네이트 수지는 화학식 1의 단위를 포함하며, 특히 상기 화학식 1의 코어 구조가 spiro[fluorene-9,9'-xanthene]로써, 전자가 풍부하여 전자 밀도가 높아 이를 포함하는 폴리카보네이트 수지는 굴절률이 향상된다.
또한, 화학식 2로 표시되는 단위를 포함함으로써, 상기 화학식 1로 표시되는 단위의 유리전이온도(Tg)를 보완해주거나, 상기 화학식 1로 표시되는 단위의 사슬 거동을 유연하게 할 수 있고, 성형품의 사출 가공에 유리한 기술적 효과가 있다.

Claims (18)

  1. 하기 화학식 1의 단위 및 하기 화학식 2의 단위를 포함하는 수지:
    [화학식 1]
    Figure PCTKR2023015453-appb-img-000077
    상기 화학식 1에 있어서,
    L은 직접결합; 또는 -L'-C(=O)-이고,
    L'은 치환 또는 비치환된 아릴렌기이며,
    X1 내지 X4는 각각 독립적으로 O; 또는 S이고,
    Z1 및 Z2는 각각 독립적으로 치환 또는 비치환된 알킬렌기; 또는 치환 또는 비치환된 시클로알킬렌기이며,
    a 및 b는 각각 독립적으로 1 내지 10의 정수이고, 상기 a 및 b가 각각 2 이상인 경우 각 괄호 안의 구조는 서로 같거나 상이하며,
    R1 내지 R4는 각각 독립적으로 수소; 치환 또는 비치환된 알킬기; 치환 또는 비치환된 시클로알킬기; 치환 또는 비치환된 아릴기; 또는 치환 또는 비치환된 헤테로아릴기이고,
    r1 및 r2는 각각 독립적으로 0 내지 3의 정수이며, 상기 r1 및 r2가 각각 2 이상인 경우, 상기 2 이상의 R1 및 R2는 각각 서로 같거나 상이하고,
    r3 및 r4는 각각 독립적으로 0 내지 4의 정수이며, 상기 r3 및 r4가 각각 2 이상인 경우, 상기 2 이상의 R3 및 R4는 각각 서로 같거나 상이하고,
    *은 수지의 주쇄에 연결되는 부위를 의미하며,
    [화학식 2]
    Figure PCTKR2023015453-appb-img-000078
    상기 화학식 2에 있어서,
    L1은 직접결합; 또는 -L1'-C(=O)-이고,
    L1'은 치환 또는 비치환된 아릴렌기이며,
    L11은 치환 또는 비치환된 알킬렌기; 치환 또는 비치환된 시클로알킬렌기; 치환 또는 비치환되고, 2가의 방향족 탄화수소고리와 지방족 탄화수소고리의 축합고리기; 또는 치환 또는 비치환된 아릴렌기이고,
    l11은 1 내지 5의 정수이며, 상기 l11이 2 이상인 경우, 상기 2 이상의 L11은 서로 같거나 상이하며,
    X11 내지 X14는 각각 독립적으로 O; 또는 S이고,
    Z11 및 Z12는 각각 독립적으로 치환 또는 비치환된 알킬렌기; 또는 치환 또는 비치환된 시클로알킬렌기이며,
    c 및 d는 각각 독립적으로 0 내지 10의 정수이고, 상기 c 및 d가 각각 2 이상인 경우 각 괄호 안의 구조는 서로 같거나 상이하며,
    *은 수지의 주쇄에 연결되는 부위를 의미한다.
  2. 청구항 1에 있어서, 상기 수지는 폴리카보네이트 수지이고,
    상기 화학식 2는 하기 화학식 3-1 또는 3-2로 표시되는 것인 수지:
    [화학식 3-1]
    Figure PCTKR2023015453-appb-img-000079
    [화학식 3-2]
    Figure PCTKR2023015453-appb-img-000080
    상기 화학식 3-1 및 3-2에 있어서,
    l41 및 l42는 각각 독립적으로 1 내지 5의 정수이고,
    l41이 1 또는 2인 경우, L41은 치환 또는 비치환된 단환의 아릴렌기이며,
    l41이 3 내지 5의 정수인 경우, L41은 치환 또는 비치환된 다환의 아릴렌기이고,
    L42는 치환 또는 비치환된 다환의 아릴렌기이며,
    X41 내지 X44는 각각 독립적으로 O; 또는 S이고,
    Z41 및 Z42는 각각 독립적으로 치환 또는 비치환된 알킬렌기; 또는 치환 또는 비치환된 시클로알킬렌기이며,
    e 및 f는 각각 독립적으로 1 내지 10의 정수이고, 상기 e 및 f가 각각 2 이상인 경우 각 괄호 안의 구조는 서로 같거나 상이하며,
    *은 수지의 주쇄에 연결되는 부위를 의미한다.
  3. 청구항 1에 있어서, 상기 수지는 폴리카보네이트 수지이고,
    상기 폴리카보네이트 수지의 두께가 1mm 이하일 때, 황변 지수(YI)가 20 이하인 수지.
  4. 청구항 1에 있어서, 상기 수지는 폴리에스터 수지이고,
    상기 화학식 1은 하기 화학식 11으로 표시되며,
    상기 화학식 2는 하기 화학식 12로 표시되는 것인 수지:
    [화학식 11]
    Figure PCTKR2023015453-appb-img-000081
    상기 화학식 11에 있어서,
    각 치환기의 정의는 상기 화학식 1에서 정의한 바와 동일하고,
    [화학식 12]
    Figure PCTKR2023015453-appb-img-000082
    상기 화학식 12에 있어서,
    각 치환기의 정의는 상기 화학식 2에서 정의한 바와 동일하다.
  5. 청구항 1에 있어서, 상기 수지는 폴리에스터-카보네이트 수지이고,
    상기 폴리에스터-카보네이트 수지는 하기 화학식 21의 단위를 포함하는 것인 수지:
    [화학식 21]
    Figure PCTKR2023015453-appb-img-000083
    상기 화학식 21에 있어서,
    L, X1 내지 X4, Z1, Z2, a, b, R1 내지 R4 및 r1 내지 r4의 정의는 상기 화학식 1에서 정의한 바와 동일하고,
    L2는 직접결합; 또는 -L2'-C(=O)-이고,
    L2'는 치환 또는 비치환된 아릴렌기이며,
    X9 및 X10은 각각 독립적으로 O 또는 S이고,
    Z5는 치환 또는 비치환된 알킬렌기; 또는 치환 또는 비치환된 시클로알킬렌기이며,
    p는 0 내지 6의 정수이고, 상기 p가 2 이상인 경우 각 괄호 안의 구조는 서로 같거나 상이하며,
    r은 몰분율로서, 0 ≤ r < 1의 실수이며,
    s는 몰분율로서, 0 < s ≤ 1의 실수이고,
    r+s=1이며,
    *은 수지의 주쇄에 연결되는 부위를 의미한다.
  6. 청구항 1에 있어서, 상기 화학식 1은 하기 화학식 1-1인 것인 수지:
    [화학식 1-1]
    Figure PCTKR2023015453-appb-img-000084
    상기 화학식 1-1에 있어서,
    각 치환기의 정의는 상기 화학식 1에서 정의한 바와 동일하다.
  7. 청구항 1에 있어서, 상기 Z1 및 Z2는 각각 독립적으로 치환 또는 비치환된 에틸렌기인 것인 수지.
  8. 청구항 1에 있어서, 상기 X1 내지 X4는 O인 것인 수지.
  9. 청구항 1에 있어서, 상기 수지의 중량평균 분자량(Mw)은 5,000 g/mol 내지 500,000 g/mol인 것인 수지.
  10. 청구항 1에 있어서, 상기 수지의 파장 587nm에서 측정된 굴절률은 1.6 내지 1.8인 것인 수지.
  11. 청구항 1에 있어서, 상기 수지의 유리 전이 온도(Tg)는 90℃ 내지 200℃인 것인 수지.
  12. 청구항 1에 있어서, 상기 수지의 파장 486nm, 587nm, 및 656nm에서 측정된 아베수는 5 내지 45인 것인 수지.
  13. 하기 화학식 1a의 화합물; 하기 화학식 2a의 화합물; 및 폴리카보네이트 전구체 및 폴리에스터 전구체 중 1 이상을 포함하는 수지 제조용 조성물을 중합하는 단계를 포함하는 청구항 1 내지 12 중 어느 한 항에 따른 수지의 제조방법:
    [화학식 1a]
    Figure PCTKR2023015453-appb-img-000085
    상기 화학식 1a에 있어서,
    X1 내지 X4는 각각 독립적으로 O 또는 S이고,
    Z1 및 Z2는 각각 독립적으로 치환 또는 비치환된 알킬렌기; 또는 치환 또는 비치환된 시클로알킬렌기이며,
    a 및 b는 각각 독립적으로 1 내지 10의 정수이고, 상기 a 및 b가 각각 2 이상인 경우 각 괄호 안의 구조는 서로 같거나 상이하며,
    R1 내지 R4는 각각 독립적으로 수소; 치환 또는 비치환된 알킬기; 치환 또는 비치환된 시클로알킬기; 치환 또는 비치환된 아릴기; 또는 치환 또는 비치환된 헤테로아릴기이고,
    r1 및 r2는 각각 독립적으로 0 내지 3의 정수이며, 상기 r1 및 r2가 각각 2 이상인 경우, 상기 2 이상의 R1 및 R2는 각각 서로 같거나 상이하고,
    r3 및 r4는 각각 독립적으로 0 내지 4의 정수이며, 상기 r3 및 r4가 각각 2 이상인 경우, 상기 2 이상의 R3 및 R4는 각각 서로 같거나 상이하고,
    [화학식 2a]
    Figure PCTKR2023015453-appb-img-000086
    상기 화학식 2a에 있어서,
    L11은 치환 또는 비치환된 알킬렌기; 치환 또는 비치환된 시클로알킬렌기; 치환 또는 비치환되고, 2가의 방향족 탄화수소고리와 지방족 탄화수소고리의 축합고리기; 또는 치환 또는 비치환된 아릴렌기이며,
    l11은 1 내지 5의 정수이며, 상기 l11이 2 이상인 경우, 상기 2 이상의 L11은 서로 같거나 상이하고,
    X11 내지 X14는 각각 독립적으로 O 또는 S이며,
    Z11 및 Z12는 각각 독립적으로 치환 또는 비치환된 알킬렌기; 또는 치환 또는 비치환된 시클로알킬렌기이고,
    c 및 d는 각각 독립적으로 0 내지 10의 정수이며, 상기 c 및 d가 각각 2 이상인 경우 각 괄호 안의 구조는 서로 같거나 상이하다.
  14. 청구항 13에 있어서, 상기 화학식 1a의 화합물 및 상기 화학식 2a의 화합물의 비는 0.01 mole% 내지 99.99 mole% : 99.99 mole% 내지 0.01 mole% 인 것인 수지의 제조방법.
  15. 청구항 13에 있어서, 상기 폴리카보네이트 전구체는 하기 화학식 A인 것인 수지의 제조방법:
    [화학식 A]
    Figure PCTKR2023015453-appb-img-000087
    상기 화학식 A에 있어서,
    Rb1 및 Rb2는 각각 독립적으로 할로겐기; 치환 또는 비치환된 알킬기; 또는 치환 또는 비치환된 아릴기이고,
    a1 및 a2는 각각 0 또는 1이다.
  16. 청구항 13에 있어서, 상기 폴리에스터 전구체는 하기 화학식 B인 것인 수지의 제조방법:
    [화학식 B]
    Figure PCTKR2023015453-appb-img-000088
    상기 화학식 B에 있어서,
    Ra1 및 Ra2 는 각각 독립적으로 할로겐기; 히드록시기; 치환 또는 비치환된 알킬기; 또는 치환 또는 비치환된 아릴기이고,
    Ar1은 치환 또는 비치환된 아릴렌기이며,
    a1 및 a2는 각각 0 또는 1이다.
  17. 청구항 1 내지 12 중 어느 한 항에 따른 수지를 포함하는 수지 조성물.
  18. 청구항 17에 따른 수지 조성물을 포함하는 성형품.
PCT/KR2023/015453 2022-10-07 2023-10-06 수지 및 이의 제조방법 WO2024076215A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202380015835.1A CN118475638A (zh) 2022-10-07 2023-10-06 树脂及其制备方法

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
KR10-2022-0128859 2022-10-07
KR10-2022-0128853 2022-10-07
KR20220128861 2022-10-07
KR20220128859 2022-10-07
KR20220128853 2022-10-07
KR10-2022-0128861 2022-10-07
KR20220159379 2022-11-24
KR10-2022-0159379 2022-11-24

Publications (1)

Publication Number Publication Date
WO2024076215A1 true WO2024076215A1 (ko) 2024-04-11

Family

ID=90608433

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/015453 WO2024076215A1 (ko) 2022-10-07 2023-10-06 수지 및 이의 제조방법

Country Status (3)

Country Link
KR (1) KR20240049200A (ko)
TW (1) TW202424040A (ko)
WO (1) WO2024076215A1 (ko)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003040995A (ja) * 2001-07-31 2003-02-13 Dainippon Ink & Chem Inc 新規ポリカーボネート樹脂とその製造方法
JP2003313280A (ja) * 2002-04-24 2003-11-06 Dainippon Ink & Chem Inc ポリアリレートの製造方法及びポリアリレート
JP2018076419A (ja) * 2016-11-09 2018-05-17 田岡化学工業株式会社 フルオレン骨格を有する新規なポリアリレート樹脂
CN109456298A (zh) * 2018-12-11 2019-03-12 常州南京大学高新技术研究院 一种螺环类二醇化合物和螺环类聚碳酸酯及其制备方法
JP2020114907A (ja) * 2019-01-18 2020-07-30 東ソー株式会社 ポリカーボネート樹脂および光学フィルム
KR20220128859A (ko) 2021-03-15 2022-09-22 김구용 반자동 벌통 내검기
KR20220128861A (ko) 2021-03-15 2022-09-22 박명재 다국어를 지원하는 홈 카페 콘텐츠 제공 방법 및 장치
KR20220128853A (ko) 2021-03-15 2022-09-22 주식회사 케이티 화재 대응 솔루션을 제공하는 솔루션 제공 서버
KR20220159379A (ko) 2020-02-27 2022-12-02 자프 에너지 시스템즈, 인코포레이티드. 집전체 상에 보호층 및 락킹층을 갖는 전극

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102579925B1 (ko) 2018-09-21 2023-09-15 주식회사 엘지화학 폴리우레탄 (공)중합체 및 이를 포함하는 광학 렌즈

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003040995A (ja) * 2001-07-31 2003-02-13 Dainippon Ink & Chem Inc 新規ポリカーボネート樹脂とその製造方法
JP2003313280A (ja) * 2002-04-24 2003-11-06 Dainippon Ink & Chem Inc ポリアリレートの製造方法及びポリアリレート
JP2018076419A (ja) * 2016-11-09 2018-05-17 田岡化学工業株式会社 フルオレン骨格を有する新規なポリアリレート樹脂
CN109456298A (zh) * 2018-12-11 2019-03-12 常州南京大学高新技术研究院 一种螺环类二醇化合物和螺环类聚碳酸酯及其制备方法
JP2020114907A (ja) * 2019-01-18 2020-07-30 東ソー株式会社 ポリカーボネート樹脂および光学フィルム
KR20220159379A (ko) 2020-02-27 2022-12-02 자프 에너지 시스템즈, 인코포레이티드. 집전체 상에 보호층 및 락킹층을 갖는 전극
KR20220128859A (ko) 2021-03-15 2022-09-22 김구용 반자동 벌통 내검기
KR20220128861A (ko) 2021-03-15 2022-09-22 박명재 다국어를 지원하는 홈 카페 콘텐츠 제공 방법 및 장치
KR20220128853A (ko) 2021-03-15 2022-09-22 주식회사 케이티 화재 대응 솔루션을 제공하는 솔루션 제공 서버

Also Published As

Publication number Publication date
KR20240049200A (ko) 2024-04-16
TW202424040A (zh) 2024-06-16

Similar Documents

Publication Publication Date Title
WO2023018307A1 (ko) 수지 및 이의 제조방법, 수지 조성물 및 성형품
WO2017111300A1 (ko) 신규 구조의 디아민 모노머를 적용한 폴리아믹산 용액 및 이를 포함하는 폴리이미드 필름
WO2014104557A1 (ko) 낮은 열팽창 계수를 갖는 신규한 폴리아미드이미드
WO2018105907A1 (ko) 내열성과 유동성이 우수한 폴리카보네이트 수지 조성물 및 이를 포함하는 성형품
WO2023033596A1 (ko) 수지, 이의 제조방법, 수지 조성물 및 성형품
WO2020149574A1 (ko) 액정 배향제 조성물, 이를 이용한 액정 배향막의 제조 방법, 이를 이용한 액정 배향막 및 액정표시소자
WO2016085087A9 (ko) 고굴절률 (메트)아크릴계 화합물, 이의 제조방법, 이를 포함하는 광학시트 및 이를 포함하는 광학표시장치
WO2024076215A1 (ko) 수지 및 이의 제조방법
WO2022245079A1 (ko) 수지 및 이의 제조방법
WO2024053804A1 (ko) 수지 및 이의 제조방법
WO2020159086A1 (ko) 폴리아미드 수지 필름 및 이를 이용한 수지 적층체
WO2020105933A1 (ko) 액정 배향제 조성물, 이를 이용한 액정 배향막의 제조 방법, 이를 이용한 액정 배향막 및 액정표시소자
WO2024010302A1 (ko) 수지 및 이의 제조방법
WO2023182589A1 (ko) 폴리카보네이트 수지 및 이의 제조방법
WO2024043663A1 (ko) 폴리카보네이트 수지 및 이의 제조방법
WO2024147465A1 (ko) 수지 및 이의 제조방법
WO2024076115A1 (ko) 폴리카보네이트 수지 및 이의 제조방법법
WO2024010276A1 (ko) 수지 및 이의 제조방법
WO2018097630A1 (ko) 중합성 화합물 및 이를 포함하는 액정 조성물
WO2023277347A1 (ko) 트리사이클로데칸 디메탄올 조성물 및 이의 제조방법
WO2023182652A1 (ko) 폴리카보네이트 수지 및 이의 제조방법
WO2020060262A1 (ko) 프탈로니트릴 올리고머를 포함하는 경화성 수지 조성물 및 이의 프리폴리머
WO2024010300A1 (ko) 폴리카보네이트 수지 및 이의 제조방법
WO2020184972A1 (ko) 폴리이미드 공중합체, 폴리이미드 공중합체의 제조방법, 이를 이용한 감광성 수지 조성물, 감광성 수지 필름 및 광학 장치
WO2023182597A1 (ko) 폴리카보네이트 수지 및 이의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23875276

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023875276

Country of ref document: EP

Effective date: 20240715