WO2024076071A1 - 무선 통신 시스템에서 사이드링크 포지셔닝 데이터의 전송 방법 및 이를 위한 장치 - Google Patents

무선 통신 시스템에서 사이드링크 포지셔닝 데이터의 전송 방법 및 이를 위한 장치 Download PDF

Info

Publication number
WO2024076071A1
WO2024076071A1 PCT/KR2023/014624 KR2023014624W WO2024076071A1 WO 2024076071 A1 WO2024076071 A1 WO 2024076071A1 KR 2023014624 W KR2023014624 W KR 2023014624W WO 2024076071 A1 WO2024076071 A1 WO 2024076071A1
Authority
WO
WIPO (PCT)
Prior art keywords
data units
sidelink
data
priority
positioning
Prior art date
Application number
PCT/KR2023/014624
Other languages
English (en)
French (fr)
Inventor
남종길
고우석
서한별
이승민
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Publication of WO2024076071A1 publication Critical patent/WO2024076071A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/22Parsing or analysis of headers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/30Definitions, standards or architectural aspects of layered protocol stacks
    • H04L69/32Architecture of open systems interconnection [OSI] 7-layer type protocol stacks, e.g. the interfaces between the data link level and the physical level
    • H04L69/321Interlayer communication protocols or service data unit [SDU] definitions; Interfaces between layers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/56Allocation or scheduling criteria for wireless resources based on priority criteria
    • H04W72/566Allocation or scheduling criteria for wireless resources based on priority criteria of the information or information source or recipient
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W80/00Wireless network protocols or protocol adaptations to wireless operation
    • H04W80/02Data link layer protocols

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

본 개시는 무선 통신 시스템에서 UE (User Equipment)가 사이드링크 포지셔닝을 수행하는 방법에 관한 것이다. 구체적으로, 상기 방법은, 상위 계층으로부터 복수의 데이터 유닛들을 수신하는 단계; 상기 복수의 데이터 유닛들의 우선 순위에 기반하여, 상기 복수의 데이터 유닛들 중 하나 이상의 데이터 유닛들을 사이드링크 그랜트에 할당하는 단계; 상기 사이드링크 그랜트에 기반하여 상기 하나 이상의 데이터 유닛들을 송신하는 단계를 포함하고, 상기 복수의 데이터 유닛들 중 적어도 하나의 데이터 유닛이 사이드링크 포지셔닝과 연관된 것에 기반하여, 상기 적어도 하나의 데이터 유닛의 우선 순위는, 상기 적어도 하나의 데이터 유닛의 사전에 정의된 우선 순위와 무관하게 최우선 순위로 고려된다.

Description

무선 통신 시스템에서 사이드링크 포지셔닝 데이터의 전송 방법 및 이를 위한 장치
본 명세는 무선 통신 시스템에 관한 것이다. 보다 상세하게는, 무선 통신 시스템에서 사이드링크 포지셔닝 데이터의 전송 방법 및 이를 위한 장치에 관한 것이다.
무선 통신 시스템이 음성이나 데이터 등과 같은 다양한 종류의 통신 서비스를 제공하기 위해 광범위하게 전개되고 있다. 일반적으로 무선통신 시스템은 가용한 시스템 자원(대역폭, 전송 파워 등)을 공유하여 다중 사용자와의 통신을 지원할 수 있는 다중 접속(multiple access) 시스템이다. 다중 접속 시스템의 예들로는 CDMA(code division multiple access) 시스템, FDMA(frequency division multiple access) 시스템, TDMA(time division multiple access) 시스템, OFDMA(orthogonal frequency division multiple access) 시스템, SC-FDMA(single carrier frequency division multiple access) 시스템 등이 있다.
사이드링크 (sidelink, SL)란 UE들 간에 직접적인 링크를 설정하여, BS (Base Station)을 거치지 않고, 단말 간에 음성 또는 데이터 등을 직접 주고 받는 통신 방식을 말한다. SL는 급속도로 증가하는 데이터 트래픽에 따른 기지국의 부담을 해결할 수 있는 하나의 방안으로서 고려되고 있다.
V2X(vehicle-to-everything)는 유/무선 통신을 통해 다른 차량, 보행자, 인프라가 구축된 사물 등과 정보를 교환하는 통신 기술을 의미한다. V2X는 V2V (vehicle-to-vehicle), V2I (vehicle-to-infrastructure), V2N (vehicle-to-network) 및 V2P (vehicle-to-pedestrian)와 같은 4 가지 유형으로 구분될 수 있다. V2X 통신은 PC5 인터페이스 및/또는 Uu 인터페이스를 통해 제공될 수 있다.
한편, 더욱 많은 통신 기기들이 더욱 큰 통신 용량을 요구하게 됨에 따라, 기존의 무선 액세스 기술 (Radio Access Technology, RAT)에 비해 향상된 모바일 광대역 (mobile broadband) 통신에 대한 필요성이 대두되고 있다. 이에 따라, 신뢰도 (reliability) 및 지연 (latency)에 민감한 서비스 또는 단말을 고려한 통신 시스템이 논의되고 있는데, 개선된 이동 광대역 통신, 매시브 MTC (Machine Type Communication), URLLC (Ultra-Reliable and Low Latency Communication) 등을 고려한 차세대 무선 접속 기술을 새로운 RAT (new radio access technology) 또는 NR (new radio)이라 칭할 수 있다. NR에서도 V2X (vehicle-to-everything) 통신이 지원될 수 있다.
상술한 바와 같은 논의를 바탕으로 이하에서는 무선 통신 시스템에서 사이드링크 포지셔닝 데이터의 전송 방법 및 이를 위한 장치를 제안하고자 한다.
본 명세가 이루고자 하는 기술적 과제들은 이상에서 언급한 기술적 과제들로 제한되지 않으며, 언급되지 않은 또 다른 기술적 과제들은 이하의 상세한 설명으로부터 본 명세와 관련된 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 명세의 일 양상으로, 무선 통신 시스템에서 UE (User Equipment)가 수행하는 방법이 제공된다. 상기 방법은: 상위 계층으로부터 복수의 데이터 유닛들을 수신하는 단계; 상기 복수의 데이터 유닛들의 우선 순위에 기반하여, 상기 복수의 데이터 유닛들 중 하나 이상의 데이터 유닛들을 사이드링크 그랜트에 할당하는 단계; 상기 사이드링크 그랜트에 기반하여 상기 하나 이상의 데이터 유닛들을 송신하는 단계를 포함하고, 상기 복수의 데이터 유닛들 중 적어도 하나의 데이터 유닛이 사이드링크 포지셔닝과 연관된 것에 기반하여, 상기 적어도 하나의 데이터 유닛의 우선 순위는, 상기 적어도 하나의 데이터 유닛의 사전에 정의된 우선 순위와 무관하게 최우선 순위로 고려된다.
본 명세의 다른 양상으로, 무선 통신 시스템에서 UE (User equipment)가 제공된다. 상기 UE는: 적어도 하나의 송수신기; 적어도 하나의 프로세서; 및 상기 적어도 하나의 프로세서에 동작 가능하게 연결 가능한, 그리고, 실행될 때, 상기 적어도 하나의 프로세서로 하여금 동작들을 수행하도록 하는 명령(instruction)들을 저장한, 적어도 하나의 컴퓨터 메모리를 포함한다. 상기 동작들은: 상위 계층으로부터 복수의 데이터 유닛들을 수신하는 단계; 상기 복수의 데이터 유닛들의 우선 순위에 기반하여, 상기 복수의 데이터 유닛들 중 하나 이상의 데이터 유닛들을 사이드링크 그랜트에 할당하는 단계; 상기 사이드링크 그랜트에 기반하여 상기 하나 이상의 데이터 유닛들을 송신하는 단계를 포함하고, 상기 복수의 데이터 유닛들 중 적어도 하나의 데이터 유닛이 사이드링크 포지셔닝과 연관된 것에 기반하여, 상기 적어도 하나의 데이터 유닛의 우선 순위는, 상기 적어도 하나의 데이터 유닛의 사전에 정의된 우선 순위와 무관하게 최우선 순위로 고려된다.
본 명세의 또 다른 양상으로, 무선 통신 시스템에서 프로세싱 장치가 제공된다. 상기 프로세싱 장치는: 적어도 하나의 프로세서; 및 상기 적어도 하나의 프로세서에 동작 가능하게 연결 가능한, 그리고, 실행될 때, 상기 적어도 하나의 프로세서로 하여금 UE (User Equipment)를 위한 동작들을 수행하도록 하는 명령(instruction)들을 저장한, 적어도 하나의 컴퓨터 메모리를 포함한다. 상기 동작들은: 상위 계층으로부터 복수의 데이터 유닛들을 수신하는 단계; 상기 복수의 데이터 유닛들의 우선 순위에 기반하여, 상기 복수의 데이터 유닛들 중 하나 이상의 데이터 유닛들을 사이드링크 그랜트에 할당하는 단계; 상기 사이드링크 그랜트에 기반하여 상기 하나 이상의 데이터 유닛들을 송신하는 단계를 포함하고, 상기 복수의 데이터 유닛들 중 적어도 하나의 데이터 유닛이 사이드링크 포지셔닝과 연관된 것에 기반하여, 상기 적어도 하나의 데이터 유닛의 우선 순위는, 상기 적어도 하나의 데이터 유닛의 사전에 정의된 우선 순위와 무관하게 최우선 순위로 고려된다.
본 명세의 또 다른 양상으로, 컴퓨터 판독가능한 저장 매체가 제공된다. 상기 컴퓨터 판독가능한 저장 매체는: 적어도 하나의 프로세서에 의해 실행될 때, 상기 적어도 하나의 프로세서로 하여금 UE (User Equipment)를 위한 동작들을 수행하도록 하는 지시들을 포함하는 적어도 하나의 컴퓨터 프로그램을 저장한다. 상기 동작들은: 상위 계층으로부터 복수의 데이터 유닛들을 수신하는 단계; 상기 복수의 데이터 유닛들의 우선 순위에 기반하여, 상기 복수의 데이터 유닛들 중 하나 이상의 데이터 유닛들을 사이드링크 그랜트에 할당하는 단계; 상기 사이드링크 그랜트에 기반하여 상기 하나 이상의 데이터 유닛들을 송신하는 단계를 포함하고, 상기 복수의 데이터 유닛들 중 적어도 하나의 데이터 유닛이 사이드링크 포지셔닝과 연관된 것에 기반하여, 상기 적어도 하나의 데이터 유닛의 우선 순위는, 상기 적어도 하나의 데이터 유닛의 사전에 정의된 우선 순위와 무관하게 최우선 순위로 고려된다.
본 명세의 각 양상에 있어서, 상기 하나 이상의 데이터 유닛들을 사이드링크 그랜트에 할당하는 경우, 상기 사이드링크 포지셔닝의 QoS (Quality of Service)를 측정하고, 상기 QoS와 임계치의 비교에 기반하여 상기 적어도 하나의 데이터 유닛의 우선 순위를 최우선 순위로 고려한다.
여기서, 상기 사이드링크 포지셔닝의 QoS는, 상기 사이드링크 포지셔닝의 응답 시간 및 상기 상기 사이드링크 포지셔닝 의 측정 정확도 중 적어도 하나를 포함할 수 있따.
본 명세의 각 양상에 있어서, 상기 적어도 하나의 데이터 유닛은 신속 전송 요구 레벨에 관한 정보를 포함하고, 상기 신속 전송 요구 레벨이 긴급 처리와 연관된 것에 기반하여, 상기 적어도 하나의 데이터 유닛의 우선 순위는 최우선 순위로 고려된다.
본 명세의 각 양상에 있어서, 상기 하나 이상의 데이터 유닛들을 STCH (Sidelink Traffic Channel)을 통하여 상기 상위 계층으로부터 수신된다.
상기 과제 해결방법들은 본 명세의 예들 중 일부에 불과하며, 본 명세의 기술적 특징들이 반영된 다양한 예들이 당해 기술분야의 통상적인 지식을 가진 자에 의해 이하의 상세한 설명을 기반으로 도출되고 이해될 수 있다.
본 개시에 의하면, 무선 통신 시스템에서 무선 신호 송수신을 효율적으로 수행할 수 있다.
본 개시에서 얻은 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 개시가 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 명세의 구현들에 관한 이해를 돕기 위해 상세한 설명의 일부로 포함되는, 첨부 도면은 본 명세의 구현들에 대한 예들을 제공하고, 상세한 설명과 함께 본 명세의 구현들을 설명한다:
도 1은 NR 시스템의 구조를 나타낸다.
도 2는 NG-RAN과 5GC 간의 기능적 분할을 나타낸다.
도 3은 NR 시스템의 무선 프로토콜 구조(radio protocol architecture)를 나타낸다.
도 4는 NR 시스템의 무선 프레임(radio frame)의 구조를 예시한다.
도 5는 NR 시스템의 슬롯의 자원 그리드(resource grid)를 예시한다.
도 6은 본 개시가 적용 가능한 통신 시스템(1)을 예시한다.
도 7 및 8은 본 개시의 일 실시 예에 따른, 무선 기기를 나타낸다.
도 9는 본 개시의 일 실시 예에 따른, 차량 또는 자율 주행 차량을 나타낸다.
도 10은 SL 통신을 위한 무선 프로토콜 구조(radio protocol architecture)를 나타낸다.
도 11은 V2X의 동기화 소스(synchronization source) 또는 동기화 기준(synchronization reference)을 나타낸다.
도 12는 단말이 전송 모드에 따라 V2X 또는 SL 통신을 수행하는 절차를 나타낸다.
도 13은 본 개시의 일 실시 예에 따른, 세 가지 캐스트 타입을 나타낸다.
도 14은 NG-RAN (Next Generation-Radio Access Network) 또는 E-UTRAN에 접속되는 UE에 대한 측위가 가능한, 5G 시스템에서의 아키텍처의 일 예를 나타낸다.
도 15는 UE의 위치를 측정하기 위한 네트워크의 구현 예를 나타낸다.
도 16은 LMF와 UE 간의 LPP(LTE Positioning Protocol) 메시지 전송을 지원하기 위해 사용되는 프로토콜 레이어의 일 예를 나타낸다.
도 17는 LMF와 NG-RAN 노드 간의 NRPPa (NR Positioning Protocol A) PDU 전송을 지원하는데 사용되는 프로토콜 레이어의 일 예를 나타낸다.
도 18은 본 개시의 일 실시 예에 따른 OTDOA(Observed Time Difference Of Arrival) 측위 방법을 설명하기 위한 도면이다.
도 19는 본 개시의 일 실시예에 따라 사이드링크 포지셔닝 데이터의 전송 방법을 예시하는 순서도이다.
이하의 기술은 CDMA(code division multiple access), FDMA(frequency division multiple access), TDMA(time division multiple access), OFDMA(orthogonal frequency division multiple access), SC-FDMA(single carrier frequency division multiple access) 등과 같은 다양한 무선 접속 시스템에 사용될 수 있다. CDMA는 UTRA(Universal Terrestrial Radio Access)나 CDMA2000과 같은 무선 기술(radio technology)로 구현될 수 있다. TDMA는 GSM(Global System for Mobile communications)/GPRS(General Packet Radio Service)/EDGE(Enhanced Data Rates for GSM Evolution)와 같은 무선 기술로 구현될 수 있다. OFDMA는 IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, E-UTRA(Evolved UTRA) 등과 같은 무선 기술로 구현될 수 있다. UTRA는 UMTS(Universal Mobile Telecommunications System)의 일부이다. 3GPP(3rd Generation Partnership Project) LTE(long term evolution)은 E-UTRA를 사용하는 E-UMTS(Evolved UMTS)의 일부이고 LTE-A(Advanced)는 3GPP LTE의 진화된 버전이다. 3GPP NR(New Radio or New Radio Access Technology)는 3GPP LTE/LTE-A의 진화된 버전이다.
더욱 많은 통신 기기들이 더욱 큰 통신 용량을 요구하게 됨에 따라 기존의 RAT(Radio Access Technology)에 비해 향상된 모바일 브로드밴드 통신에 대한 필요성이 대두되고 있다. 또한, 다수의 기기 및 사물들을 연결하여 언제 어디서나 다양한 서비스를 제공하는 massive MTC(Machine Type Communications)도 차세대 통신에서 고려될 주요 이슈 중 하나이다. 또한, 신뢰도(reliability) 및 지연(latency)에 민감한 서비스/단말을 고려한 통신 시스템 디자인이 논의되고 있다. 이와 같이 eMBB(enhanced Mobile BroadBand Communication), massive MTC, URLLC (Ultra-Reliable and Low Latency Communication) 등을 고려한 차세대 RAT의 도입이 논의되고 있으며, 본 개시에서는 편의상 해당 기술을 NR(New Radio 또는 New RAT)이라고 부른다.
설명을 명확하게 하기 위해, 3GPP NR을 위주로 기술하지만 본 개시의 기술적 사상이 이에 제한되는 것은 아니다.
본 명세서에서 "설정"의 표현은 "구성(configure/configuration)"의 표현으로 대체될 수 있으며, 양자는 혼용될 수 있다. 또한 조건적 표현(예를 들어, "~~이면(if)", "~~ 일 경우(in a case)" 또는 "~~일 때(when)" 등)은 "~~인 것에 기초하여(based on that ~~)" 또는 "~~인 상태에서(in a state/status)"의 표현으로 대체될 수 있다. 또한, 해당 조건의 충족에 따른 단말/기지국의 동작 또는 SW/HW 구성이 유추/이해될 수 있다. 또한, 무선 통신 장치들 (예를 들어, 기지국, 단말) 간의 신호 송수신에서 송신 (또는 수신) 측의 프로세스로부터 수신 (또는 송신) 측의 프로세스가 유추/이해될 수 있다면 그 설명이 생략될 수 있다. 예를 들어, 송신 측의 신호 결정/생성/인코딩/송신 등은 수신측의 신호 모니터링 수신/디코딩/결정 등으로 이해될 수 있다. 또한, 단말이 특정 동작을 수행한다(또는 수행하지 않는다)는 표현은, 기지국이 단말의 특정 동작 수행을 기대/가정(또는 수행하지 않는다고 기대/가정)하고 동작한다는 것으로도 해석될 수 있다. 기지국이 특정 동작을 수행한다(또는 수행하지 않는다)는 표현은, 단말이 기지국의 특정 동작 수행을 기대/가정(또는 수행하지 않는다고 기대/가정)하고 동작한다는 것으로도 해석될 수 있다.또한, 후술하는 설명에서 각 섹션, 실시예, 예시, 옵션, 방법, 방안 등의 구분과 인덱스는 설명의 편의를 위한 것이지 각각이 반드시 독립된 개시를 구성한다는 것을 의미하거나, 각각이 반드시 개별적으로만 실시되어야 한다는 것을 의미하는 의도로 해석되지 않아야 한다. 또한, 각 섹션, 실시예, 예시, 옵션, 방법, 방안 등을 설명함에 있어서 명시적으로 충돌/반대되는 기술이 없다면 이들의 적어도 일부 조합하여 함께 실시될 수도 있고, 적어도 일부가 생략된 채로 실시될 수도 있는 것으로 유추/해석될 수 있다.
도 1은 NR 시스템의 구조를 나타낸다.
도 1을 참조하면, NG-RAN(Next Generation - Radio Access Network)은 단말(10)에게 사용자 평면 및 제어 평면 프로토콜 종단(termination)을 제공하는 기지국(20)을 포함할 수 있다. 예를 들어, 기지국(20)은 gNB(next generation-Node B) 및/또는 eNB(evolved-NodeB)를 포함할 수 있다. 예를 들어, 단말(10)은 고정되거나 이동성을 가질 수 있으며, MS(Mobile Station), UT(User Terminal), SS(Subscriber Station), MT(Mobile Terminal), 무선기기(Wireless Device) 등 다른 용어로 불릴 수 있다. 예를 들어, 기지국은 단말(10)과 통신하는 고정된 지점(fixed station)일 수 있고, BTS(Base Transceiver System), 액세스 포인트(Access Point) 등 다른 용어로 불릴 수 있다.
도 1의 예는 gNB만을 포함하는 경우를 예시한다. 기지국(20)은 상호 간에 Xn 인터페이스로 연결될 수 있다. 기지국(20)은 5세대 코어 네트워크(5G Core Network: 5GC)와 NG 인터페이스를 통해 연결될 수 있다. 보다 구체적으로, 기지국(20)은 NG-C 인터페이스를 통해 AMF(access and mobility management function)(30)와 연결될 수 있고, NG-U 인터페이스를 통해 UPF(user plane function)(30)와 연결될 수 있다.
도 2는 NG-RAN과 5GC 간의 기능적 분할을 나타낸다.
도 2를 참조하면, gNB는 인터 셀 간의 무선 자원 관리(Inter Cell RRM), 무선 베어러 관리(RB control), 연결 이동성 제어(Connection Mobility Control), 무선 허용 제어(Radio Admission Control), 측정 설정 및 제공(Measurement configuration & Provision), 동적 자원 할당(dynamic resource allocation) 등의 기능을 제공할 수 있다. AMF는 NAS(Non Access Stratum) 보안, 아이들 상태 이동성 처리 등의 기능을 제공할 수 있다. UPF는 이동성 앵커링(Mobility Anchoring), PDU(Protocol Data Unit) 처리 등의 기능을 제공할 수 있다. SMF(Session Management Function)는 단말 IP(Internet Protocol) 주소 할당, PDU 세션 제어 등의 기능을 제공할 수 있다.
단말과 네트워크 사이의 무선인터페이스 프로토콜(Radio Interface Protocol)의 계층들은 통신시스템에서 널리 알려진 개방형 시스템간 상호접속(Open System Interconnection, OSI) 기준 모델의 하위 3개 계층을 바탕으로 L1(제 1 계층), L2(제 2 계층), L3(제 3 계층)로 구분될 수 있다. 이 중에서 제 1 계층에 속하는 물리 계층은 물리 채널(Physical Channel)을 이용한 정보 전송 서비스(Information Transfer Service)를 제공하며, 제 3 계층에 위치하는 RRC(Radio Resource Control) 계층은 단말과 네트워크 간에 무선 자원을 제어하는 역할을 수행한다. 이를 위해 RRC 계층은 단말과 기지국 간 RRC 메시지를 교환한다.
도 3은 NR 시스템의 무선 프로토콜 구조(radio protocol architecture)를 나타낸다. 구체적으로, 도 3의 (a)는 사용자 평면(user plane)에 대한 무선 프로토콜 구조를 나타내고, 도 3의 (b)는 제어 평면(control plane)에 대한 무선 프로토콜 구조를 나타낸다. 사용자 평면은 사용자 데이터 전송을 위한 프로토콜 스택(protocol stack)이고, 제어 평면은 제어 신호 전송을 위한 프로토콜 스택이다.
도 3을 참조하면, 물리 계층(physical layer)은 물리 채널을 이용하여 상위 계층에게 정보 전송 서비스를 제공한다. 물리 계층은 상위 계층인 MAC(Medium Access Control) 계층과는 전송 채널(transport channel)을 통해 연결되어 있다. 전송 채널을 통해 MAC 계층과 물리 계층 사이로 데이터가 이동한다. 전송 채널은 무선 인터페이스를 통해 데이터가 어떻게 어떤 특징으로 전송되는가에 따라 분류된다.
서로 다른 물리계층 사이, 즉 송신기와 수신기의 물리 계층 사이는 물리 채널을 통해 데이터가 이동한다. 상기 물리 채널은 OFDM(Orthogonal Frequency Division Multiplexing) 방식으로 변조될 수 있고, 시간과 주파수를 무선 자원으로 활용한다.
MAC 계층은 논리 채널(logical channel)을 통해 상위 계층인 RLC(radio link control) 계층에게 서비스를 제공한다. MAC 계층은 복수의 논리 채널에서 복수의 전송 채널로의 맵핑 기능을 제공한다. 또한, MAC 계층은 복수의 논리 채널에서 단수의 전송 채널로의 맵핑에 의한 논리 채널 다중화 기능을 제공한다. MAC 부 계층은 논리 채널상의 데이터 전송 서비스를 제공한다.
RLC 계층은 RLC SDU(Service Data Unit)의 연결(concatenation), 분할(segmentation) 및 재결합(reassembly)을 수행한다. 무선 베어러(Radio Bearer, RB)가 요구하는 다양한 QoS(Quality of Service)를 보장하기 위해, RLC 계층은 투명 모드(Transparent Mode, TM), 비확인 모드(Unacknowledged Mode, UM) 및 확인 모드(Acknowledged Mode, AM)의 세 가지의 동작모드를 제공한다. AM RLC는 ARQ(automatic repeat request)를 통해 오류 정정을 제공한다.
RRC(Radio Resource Control) 계층은 제어 평면에서만 정의된다. RRC 계층은 무선 베어러들의 설정(configuration), 재설정(re-configuration) 및 해제(release)와 관련되어 논리 채널, 전송 채널 및 물리 채널들의 제어를 담당한다. RB는 단말과 네트워크간의 데이터 전달을 위해 제 1 계층(physical 계층 또는 PHY 계층) 및 제 2 계층(MAC 계층, RLC 계층, PDCP(Packet Data Convergence Protocol) 계층)에 의해 제공되는 논리적 경로를 의미한다.
사용자 평면에서의 PDCP 계층의 기능은 사용자 데이터의 전달, 헤더 압축(header compression) 및 암호화(ciphering)를 포함한다. 제어 평면에서의 PDCP 계층의 기능은 제어 평면 데이터의 전달 및 암호화/무결성 보호(integrity protection)를 포함한다.
SDAP(Service Data Adaptation Protocol) 계층은 사용자 평면에서만 정의된다. SDAP 계층은 QoS 플로우(flow)와 데이터 무선 베어러 간의 매핑, 하향링크 및 상향링크 패킷 내 QoS 플로우 식별자(ID) 마킹 등을 수행한다.
RB가 설정된다는 것은 특정 서비스를 제공하기 위해 무선 프로토콜 계층 및 채널의 특성을 규정하고, 각각의 구체적인 파라미터 및 동작 방법을 설정하는 과정을 의미한다. RB는 다시 SRB(Signaling Radio Bearer)와 DRB(Data Radio Bearer) 두 가지로 나누어 질 수 있다. SRB는 제어 평면에서 RRC 메시지를 전송하는 통로로 사용되며, DRB는 사용자 평면에서 사용자 데이터를 전송하는 통로로 사용된다.
단말의 RRC 계층과 기지국의 RRC 계층 사이에 RRC 연결(RRC connection)이 확립되면, 단말은 RRC_CONNECTED 상태에 있게 되고, 그렇지 못할 경우 RRC_IDLE 상태에 있게 된다. NR의 경우, RRC_INACTIVE 상태가 추가로 정의되었으며, RRC_INACTIVE 상태의 단말은 코어 네트워크와의 연결을 유지하는 반면 기지국과의 연결을 해지(release)할 수 있다.
네트워크에서 단말로 데이터를 전송하는 하향링크 전송 채널로는 시스템 정보를 전송하는 BCH(Broadcast Channel)과 그 이외에 사용자 트래픽이나 제어 메시지를 전송하는 하향링크 SCH(Shared Channel)이 있다. 하향링크 멀티캐스트 또는 브로드캐스트 서비스의 트래픽 또는 제어메시지의 경우 하향링크 SCH를 통해 전송될 수도 있고, 또는 별도의 하향링크 MCH(Multicast Channel)을 통해 전송될 수도 있다. 한편, 단말에서 네트워크로 데이터를 전송하는 상향링크 전송 채널로는 초기 제어메시지를 전송하는 RACH(Random Access Channel)와 그 이외에 사용자 트래픽이나 제어메시지를 전송하는 상향링크 SCH(Shared Channel)가 있다.
전송 채널 상위에 있으며, 전송 채널에 맵핑되는 논리 채널(Logical Channel)로는 BCCH(Broadcast Control Channel), PCCH(Paging Control Channel), CCCH(Common Control Channel), MCCH(Multicast Control Channel), MTCH(Multicast Traffic Channel) 등이 있다.
물리 채널(Physical Channel)은 시간 영역에서 여러 개의 OFDM 심벌과 주파수 영역에서 여러 개의 부반송파(sub-carrier)로 구성된다. 하나의 서브프레임(sub-frame)은 시간 영역에서 복수의 OFDM 심벌(symbol)들로 구성된다. 자원 블록은 자원 할당 단위로, 복수의 OFDM 심벌들과 복수의 부반송파(sub-carrier)들로 구성된다. 또한 각 서브프레임은 PDCCH(Physical Downlink Control Channel) 즉, L1/L2 제어 채널을 위해 해당 서브프레임의 특정 OFDM 심벌들(예, 첫 번째 OFDM 심볼)의 특정 부반송파들을 이용할 수 있다. TTI(Transmission Time Interval)는 서브프레임 전송의 단위시간이다.
도 4는 NR 시스템의 무선 프레임(radio frame)의 구조를 예시한다.
도 4를 참조하면, NR에서 상향링크 및 하향링크 전송은 프레임으로 구성된다. 각 무선 프레임은 10ms의 길이를 가지며, 두 개의 5ms 하프-프레임(Half-Frame, HF)으로 분할된다. 각 하프-프레임은 5개의 1ms 서브프레임(Subframe, SF)으로 분할된다. 서브프레임은 하나 이상의 슬롯으로 분할되며, 서브프레임 내 슬롯 개수는 SCS(Subcarrier Spacing)에 의존한다. 각 슬롯은 CP(cyclic prefix)에 따라 12개 또는 14개의 OFDM(Orthogonal Frequency Division Multiplexing) 심볼을 포함한다. 정규(normal) CP가 사용되는 경우, 각 슬롯은 14개의 OFDM 심볼을 포함한다. 확장(extended) CP가 사용되는 경우, 각 슬롯은 12개의 OFDM 심볼을 포함한다.
표 1은 정규 CP에 대한 SCS에 따른 슬롯별 OFDM 심볼들의 개수(N slot symb), 프레임별 슬롯의 개수(N frame,u slot) 및 서브프레임별 슬롯의 개수(N subframe,u slot)를 나타낸 것이다.
u N slot symb N frame,u slot N subframe,u slot
0 14 10 1
1 14 20 2
2 14 40 4
3 14 80 8
4 14 160 16
표 2는 확장 CP가 사용되는 경우, SCS에 따른 슬롯별 OFDM 심볼들의 개수(N slot symb), 프레임별 슬롯의 개수(N frame,u slot) 및 서브프레임별 슬롯의 개수(N subframe,u slot)를 나타낸 것이다.
u N slot symb N frame,u slot N subframe,u slot
2 12 40 4
프레임의 구조는 예시에 불과하고, 프레임에서 서브프레임의 수, 슬롯의 수, 심볼의 수는 다양하게 변경될 수 있다.
NR 시스템에서는 하나의 단말에게 병합되는 복수의 셀들간에 OFDM 뉴모놀로지(numerology)(예, SCS)가 상이하게 설정될 수 있다. 이에 따라, 동일한 개수의 심볼로 구성된 시간 자원(예, SF, 슬롯 또는 TTI)(편의상, TU(Time Unit)로 통칭)의 (절대 시간) 구간이 병합된 셀들간에 상이하게 설정될 수 있다. 여기서, 심볼은 OFDM 심볼 (혹은, CP-OFDM 심볼), SC-FDMA 심볼 (혹은, Discrete Fourier Transform-spread-OFDM, DFT-s-OFDM 심볼)을 포함할 수 있다.
도 5는 NR 시스템의 슬롯의 자원 그리드(resource grid)를 예시한다.
도 5를 참조하면, 슬롯은 시간 도메인에서 복수의 심볼을 포함한다. 예를 들어, 정규 CP의 경우 하나의 슬롯이 14개의 심볼을 포함하나, 확장 CP의 경우 하나의 슬롯이 12개의 심볼을 포함한다. 반송파는 주파수 도메인에서 복수의 부반송파를 포함한다. RB(Resource Block)는 주파수 도메인에서 복수(예, 12)의 연속한 부반송파로 정의된다. BWP(Bandwidth Part)는 주파수 도메인에서 복수의 연속한 PRB(Physical RB)로 정의되며, 하나의 뉴모놀로지(numerology)(예, SCS, CP 길이 등)에 대응될 수 있다. 반송파는 최대 N개(예, 5개)의 BWP를 포함할 수 있다. 데이터 통신은 활성화된 BWP를 통해서 수행되며, 하나의 단말한테는 하나의 BWP만 활성화 될 수 있다. 자원 그리드에서 각각의 요소는 자원요소(Resource Element, RE)로 지칭되며, 하나의 복소 심볼이 매핑될 수 있다.
도 6은 본 개시가 적용 가능한 통신 시스템(1)을 예시한다.
도 6을 참조하면, 통신 시스템(1)은 무선 기기, 기지국 및 네트워크를 포함한다. 여기서, 무선 기기는 무선 접속 기술(예, 5G NR(New RAT), LTE(Long Term Evolution))을 이용하여 통신을 수행하는 기기를 의미하며, 통신/무선/5G 기기로 지칭될 수 있다. 이로 제한되는 것은 아니지만, 무선 기기는 로봇(100a), 차량(100b-1, 100b-2), XR(eXtended Reality) 기기(100c), 휴대 기기(Hand-held device)(100d), 가전(100e), IoT(Internet of Thing) 기기(100f), AI기기/서버(400)를 포함할 수 있다. 예를 들어, 차량은 무선 통신 기능이 구비된 차량, 자율 주행 차량, 차량간 통신을 수행할 수 있는 차량 등을 포함할 수 있다. 여기서, 차량은 UAV(Unmanned Aerial Vehicle)(예, 드론)를 포함할 수 있다. XR 기기는 AR(Augmented Reality)/VR(Virtual Reality)/MR(Mixed Reality) 기기를 포함하며, HMD(Head-Mounted Device), 차량에 구비된 HUD(Head-Up Display), 텔레비전, 스마트폰, 컴퓨터, 웨어러블 디바이스, 가전 기기, 디지털 사이니지(signage), 차량, 로봇 등의 형태로 구현될 수 있다. 휴대 기기는 스마트폰, 스마트패드, 웨어러블 기기(예, 스마트워치, 스마트글래스), 컴퓨터(예, 노트북 등) 등을 포함할 수 있다. 가전은 TV, 냉장고, 세탁기 등을 포함할 수 있다. IoT 기기는 센서, 스마트미터 등을 포함할 수 있다. 예를 들어, 기지국, 네트워크는 무선 기기로도 구현될 수 있으며, 특정 무선 기기(200a)는 다른 무선 기기에게 기지국/네트워크 노드로 동작할 수도 있다.
무선 기기(100a~100f)는 기지국(200)을 통해 네트워크(300)와 연결될 수 있다. 무선 기기(100a~100f)에는 AI(Artificial Intelligence) 기술이 적용될 수 있으며, 무선 기기(100a~100f)는 네트워크(300)를 통해 AI 서버(400)와 연결될 수 있다. 네트워크(300)는 3G 네트워크, 4G(예, LTE) 네트워크 또는 5G(예, NR) 네트워크 등을 이용하여 구성될 수 있다. 무선 기기(100a~100f)는 기지국(200)/네트워크(300)를 통해 서로 통신할 수도 있지만, 기지국/네트워크를 통하지 않고 직접 통신(예를 들어, 사이드링크 통신(sidelink communication))할 수도 있다. 예를 들어, 차량들(100b-1, 100b-2)은 직접 통신(예를 들어, V2V(Vehicle to Vehicle)/V2X(Vehicle to everything) communication)을 할 수 있다. 또한, IoT 기기(예, 센서)는 다른 IoT 기기(예, 센서) 또는 다른 무선 기기(100a~100f)와 직접 통신을 할 수 있다.
무선 기기(100a~100f)/기지국(200), 기지국(200)/기지국(200) 간에는 무선 통신/연결(150a, 150b, 150c)이 이뤄질 수 있다. 여기서, 무선 통신/연결은 상향/하향링크 통신(150a)과 사이드링크 통신(150b)(또는, D2D 통신), 기지국간 통신(150c)(예를 들어, relay, IAB(Integrated Access Backhaul)과 같은 다양한 무선 접속 기술(예, 5G NR)을 통해 이뤄질 수 있다. 무선 통신/연결(150a, 150b, 150c)을 통해 무선 기기와 기지국/무선 기기, 기지국과 기지국은 서로 무선 신호를 송신/수신할 수 있다. 예를 들어, 무선 통신/연결(150a, 150b, 150c)은 다양한 물리 채널을 통해 신호를 송신/수신할 수 있다. 이를 위해, 본 개시의 다양한 제안들에 기반하여, 무선 신호의 송신/수신을 위한 다양한 구성정보 설정 과정, 다양한 신호 처리 과정(예, 채널 인코딩/디코딩, 변조/복조, 자원 매핑/디매핑 등), 자원 할당 과정 등 중 적어도 일부가 수행될 수 있다.
도 7은 본 개시의 일 실시 예에 따른, 무선 기기를 나타낸다. 도 7의 실시 예는 본 개시의 다양한 실시 예와 결합될 수 있다.
도 7을 참조하면, 제 1 무선 기기(100)와 제 2 무선 기기(200)는 다양한 무선 접속 기술(예, LTE, NR)을 통해 무선 신호를 송수신할 수 있다. 여기서, {제 1 무선 기기(100), 제 2 무선 기기(200)}은 도 6의 {무선 기기(100x), 기지국(200)} 및/또는 {무선 기기(100x), 무선 기기(100x)}에 대응할 수 있다.
제 1 무선 기기(100)는 하나 이상의 프로세서(102) 및 하나 이상의 메모리(104)를 포함하며, 추가적으로 하나 이상의 송수신기(106) 및/또는 하나 이상의 안테나(108)을 더 포함할 수 있다. 프로세서(102)는 메모리(104) 및/또는 송수신기(106)를 제어하며, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들을 구현하도록 구성될 수 있다. 예를 들어, 프로세서(102)는 메모리(104) 내의 정보를 처리하여 제 1 정보/신호를 생성한 뒤, 송수신기(106)을 통해 제 1 정보/신호를 포함하는 무선 신호를 전송할 수 있다. 또한, 프로세서(102)는 송수신기(106)를 통해 제 2 정보/신호를 포함하는 무선 신호를 수신한 뒤, 제 2 정보/신호의 신호 처리로부터 얻은 정보를 메모리(104)에 저장할 수 있다. 메모리(104)는 프로세서(102)와 연결될 수 있고, 프로세서(102)의 동작과 관련한 다양한 정보를 저장할 수 있다. 예를 들어, 메모리(104)는 프로세서(102)에 의해 제어되는 프로세스들 중 일부 또는 전부를 수행하거나, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들을 수행하기 위한 명령들을 포함하는 소프트웨어 코드를 저장할 수 있다. 여기서, 프로세서(102)와 메모리(104)는 무선 통신 기술(예, LTE, NR)을 구현하도록 설계된 통신 모뎀/회로/칩의 일부일 수 있다. 송수신기(106)는 프로세서(102)와 연결될 수 있고, 하나 이상의 안테나(108)를 통해 무선 신호를 송신 및/또는 수신할 수 있다. 송수신기(106)는 송신기 및/또는 수신기를 포함할 수 있다. 송수신기(106)는 RF(Radio Frequency) 유닛과 혼용될 수 있다. 본 개시에서 무선 기기는 통신 모뎀/회로/칩을 의미할 수도 있다.
제 2 무선 기기(200)는 하나 이상의 프로세서(202), 하나 이상의 메모리(204)를 포함하며, 추가적으로 하나 이상의 송수신기(206) 및/또는 하나 이상의 안테나(208)를 더 포함할 수 있다. 프로세서(202)는 메모리(204) 및/또는 송수신기(206)를 제어하며, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들을 구현하도록 구성될 수 있다. 예를 들어, 프로세서(202)는 메모리(204) 내의 정보를 처리하여 제3 정보/신호를 생성한 뒤, 송수신기(206)를 통해 제3 정보/신호를 포함하는 무선 신호를 전송할 수 있다. 또한, 프로세서(202)는 송수신기(206)를 통해 제4 정보/신호를 포함하는 무선 신호를 수신한 뒤, 제4 정보/신호의 신호 처리로부터 얻은 정보를 메모리(204)에 저장할 수 있다. 메모리(204)는 프로세서(202)와 연결될 수 있고, 프로세서(202)의 동작과 관련한 다양한 정보를 저장할 수 있다. 예를 들어, 메모리(204)는 프로세서(202)에 의해 제어되는 프로세스들 중 일부 또는 전부를 수행하거나, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들을 수행하기 위한 명령들을 포함하는 소프트웨어 코드를 저장할 수 있다. 여기서, 프로세서(202)와 메모리(204)는 무선 통신 기술(예, LTE, NR)을 구현하도록 설계된 통신 모뎀/회로/칩의 일부일 수 있다. 송수신기(206)는 프로세서(202)와 연결될 수 있고, 하나 이상의 안테나(208)를 통해 무선 신호를 송신 및/또는 수신할 수 있다. 송수신기(206)는 송신기 및/또는 수신기를 포함할 수 있다 송수신기(206)는 RF 유닛과 혼용될 수 있다. 본 개시에서 무선 기기는 통신 모뎀/회로/칩을 의미할 수도 있다.
이하, 무선 기기(100, 200)의 하드웨어 요소에 대해 보다 구체적으로 설명한다. 이로 제한되는 것은 아니지만, 하나 이상의 프로토콜 계층이 하나 이상의 프로세서(102, 202)에 의해 구현될 수 있다. 예를 들어, 하나 이상의 프로세서(102, 202)는 하나 이상의 계층(예, PHY, MAC, RLC, PDCP, RRC, SDAP와 같은 기능적 계층)을 구현할 수 있다. 하나 이상의 프로세서(102, 202)는 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들에 따라 하나 이상의 PDU(Protocol Data Unit) 및/또는 하나 이상의 SDU(Service Data Unit)를 생성할 수 있다. 하나 이상의 프로세서(102, 202)는 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들에 따라 메시지, 제어정보, 데이터 또는 정보를 생성할 수 있다. 하나 이상의 프로세서(102, 202)는 본 문서에 개시된 기능, 절차, 제안 및/또는 방법에 따라 PDU, SDU, 메시지, 제어정보, 데이터 또는 정보를 포함하는 신호(예, 베이스밴드 신호)를 생성하여, 하나 이상의 송수신기(106, 206)에게 제공할 수 있다. 하나 이상의 프로세서(102, 202)는 하나 이상의 송수신기(106, 206)로부터 신호(예, 베이스밴드 신호)를 수신할 수 있고, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들에 따라 PDU, SDU, 메시지, 제어정보, 데이터 또는 정보를 획득할 수 있다.
하나 이상의 프로세서(102, 202)는 컨트롤러, 마이크로 컨트롤러, 마이크로 프로세서 또는 마이크로 컴퓨터로 지칭될 수 있다. 하나 이상의 프로세서(102, 202)는 하드웨어, 펌웨어, 소프트웨어, 또는 이들의 조합에 의해 구현될 수 있다. 일 예로, 하나 이상의 ASIC(Application Specific Integrated Circuit), 하나 이상의 DSP(Digital Signal Processor), 하나 이상의 DSPD(Digital Signal Processing Device), 하나 이상의 PLD(Programmable Logic Device) 또는 하나 이상의 FPGA(Field Programmable Gate Arrays)가 하나 이상의 프로세서(102, 202)에 포함될 수 있다. 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들은 펌웨어 또는 소프트웨어를 사용하여 구현될 수 있고, 펌웨어 또는 소프트웨어는 모듈, 절차, 기능 등을 포함하도록 구현될 수 있다. 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들은 수행하도록 설정된 펌웨어 또는 소프트웨어는 하나 이상의 프로세서(102, 202)에 포함되거나, 하나 이상의 메모리(104, 204)에 저장되어 하나 이상의 프로세서(102, 202)에 의해 구동될 수 있다. 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들은 코드, 명령어 및/또는 명령어의 집합 형태로 펌웨어 또는 소프트웨어를 사용하여 구현될 수 있다.
하나 이상의 메모리(104, 204)는 하나 이상의 프로세서(102, 202)와 연결될 수 있고, 다양한 형태의 데이터, 신호, 메시지, 정보, 프로그램, 코드, 지시 및/또는 명령을 저장할 수 있다. 하나 이상의 메모리(104, 204)는 ROM, RAM, EPROM, 플래시 메모리, 하드 드라이브, 레지스터, 캐쉬 메모리, 컴퓨터 판독 저장 매체 및/또는 이들의 조합으로 구성될 수 있다. 하나 이상의 메모리(104, 204)는 하나 이상의 프로세서(102, 202)의 내부 및/또는 외부에 위치할 수 있다. 또한, 하나 이상의 메모리(104, 204)는 유선 또는 무선 연결과 같은 다양한 기술을 통해 하나 이상의 프로세서(102, 202)와 연결될 수 있다.
하나 이상의 송수신기(106, 206)는 하나 이상의 다른 장치에게 본 문서의 방법들 및/또는 동작 순서도 등에서 언급되는 사용자 데이터, 제어 정보, 무선 신호/채널 등을 전송할 수 있다. 하나 이상의 송수신기(106, 206)는 하나 이상의 다른 장치로부터 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도 등에서 언급되는 사용자 데이터, 제어 정보, 무선 신호/채널 등을 수신할 수 있다. 예를 들어, 하나 이상의 송수신기(106, 206)는 하나 이상의 프로세서(102, 202)와 연결될 수 있고, 무선 신호를 송수신할 수 있다. 예를 들어, 하나 이상의 프로세서(102, 202)는 하나 이상의 송수신기(106, 206)가 하나 이상의 다른 장치에게 사용자 데이터, 제어 정보 또는 무선 신호를 전송하도록 제어할 수 있다. 또한, 하나 이상의 프로세서(102, 202)는 하나 이상의 송수신기(106, 206)가 하나 이상의 다른 장치로부터 사용자 데이터, 제어 정보 또는 무선 신호를 수신하도록 제어할 수 있다. 또한, 하나 이상의 송수신기(106, 206)는 하나 이상의 안테나(108, 208)와 연결될 수 있고, 하나 이상의 송수신기(106, 206)는 하나 이상의 안테나(108, 208)를 통해 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도 등에서 언급되는 사용자 데이터, 제어 정보, 무선 신호/채널 등을 송수신하도록 설정될 수 있다. 본 문서에서, 하나 이상의 안테나는 복수의 물리 안테나이거나, 복수의 논리 안테나(예, 안테나 포트)일 수 있다. 하나 이상의 송수신기(106, 206)는 수신된 사용자 데이터, 제어 정보, 무선 신호/채널 등을 하나 이상의 프로세서(102, 202)를 이용하여 처리하기 위해, 수신된 무선 신호/채널 등을 RF 밴드 신호에서 베이스밴드 신호로 변환(Convert)할 수 있다. 하나 이상의 송수신기(106, 206)는 하나 이상의 프로세서(102, 202)를 이용하여 처리된 사용자 데이터, 제어 정보, 무선 신호/채널 등을 베이스밴드 신호에서 RF 밴드 신호로 변환할 수 있다. 이를 위하여, 하나 이상의 송수신기(106, 206)는 (아날로그) 오실레이터 및/또는 필터를 포함할 수 있다.
도 8은 본 개시의 일 실시 예에 따른, 무선 기기를 나타낸다. 무선 기기는 사용-예/서비스에 따라 다양한 형태로 구현될 수 있다(도 6 참조). 도 8의 실시 예는 본 개시의 다양한 실시 예와 결합될 수 있다.
도 8을 참조하면, 무선 기기(100, 200)는 도 7의 무선 기기(100,200)에 대응하며, 다양한 요소(element), 성분(component), 유닛/부(unit), 및/또는 모듈(module)로 구성될 수 있다. 예를 들어, 무선 기기(100, 200)는 통신부(110), 제어부(120), 메모리부(130) 및 추가 요소(140)를 포함할 수 있다. 통신부는 통신 회로(112) 및 송수신기(들)(114)을 포함할 수 있다. 예를 들어, 통신 회로(112)는 도 7의 하나 이상의 프로세서(102,202) 및/또는 하나 이상의 메모리(104,204) 를 포함할 수 있다. 예를 들어, 송수신기(들)(114)는 도 7의 하나 이상의 송수신기(106,206) 및/또는 하나 이상의 안테나(108,208)을 포함할 수 있다. 제어부(120)는 통신부(110), 메모리부(130) 및 추가 요소(140)와 전기적으로 연결되며 무선 기기의 제반 동작을 제어한다. 예를 들어, 제어부(120)는 메모리부(130)에 저장된 프로그램/코드/명령/정보에 기반하여 무선 기기의 전기적/기계적 동작을 제어할 수 있다. 또한, 제어부(120)는 메모리부(130)에 저장된 정보를 통신부(110)을 통해 외부(예, 다른 통신 기기)로 무선/유선 인터페이스를 통해 전송하거나, 통신부(110)를 통해 외부(예, 다른 통신 기기)로부터 무선/유선 인터페이스를 통해 수신된 정보를 메모리부(130)에 저장할 수 있다.
추가 요소(140)는 무선 기기의 종류에 따라 다양하게 구성될 수 있다. 예를 들어, 추가 요소(140)는 파워 유닛/배터리, 입출력부(I/O unit), 구동부 및 컴퓨팅부 중 적어도 하나를 포함할 수 있다. 이로 제한되는 것은 아니지만, 무선 기기는 로봇(도 6, 100a), 차량(도 6, 100b-1, 100b-2), XR 기기(도 6, 100c), 휴대 기기(도 6, 100d), 가전(도 6, 100e), IoT 기기(도 6, 100f), 디지털 방송용 단말, 홀로그램 장치, 공공 안전 장치, MTC 장치, 의료 장치, 핀테크 장치(또는 금융 장치), 보안 장치, 기후/환경 장치, AI 서버/기기(도 6, 400), 기지국(도 6, 200), 네트워크 노드 등의 형태로 구현될 수 있다. 무선 기기는 사용-예/서비스에 따라 이동 가능하거나 고정된 장소에서 사용될 수 있다.
도 8에서 무선 기기(100, 200) 내의 다양한 요소, 성분, 유닛/부, 및/또는 모듈은 전체가 유선 인터페이스를 통해 상호 연결되거나, 적어도 일부가 통신부(110)를 통해 무선으로 연결될 수 있다. 예를 들어, 무선 기기(100, 200) 내에서 제어부(120)와 통신부(110)는 유선으로 연결되며, 제어부(120)와 제 1 유닛(예, 130, 140)은 통신부(110)를 통해 무선으로 연결될 수 있다. 또한, 무선 기기(100, 200) 내의 각 요소, 성분, 유닛/부, 및/또는 모듈은 하나 이상의 요소를 더 포함할 수 있다. 예를 들어, 제어부(120)는 하나 이상의 프로세서 집합으로 구성될 수 있다. 예를 들어, 제어부(120)는 통신 제어 프로세서, 어플리케이션 프로세서(Application processor), ECU(Electronic Control Unit), 그래픽 처리 프로세서, 메모리 제어 프로세서 등의 집합으로 구성될 수 있다. 다른 예로, 메모리부(130)는 RAM(Random Access Memory), DRAM(Dynamic RAM), ROM(Read Only Memory), 플래시 메모리(flash memory), 휘발성 메모리(volatile memory), 비-휘발성 메모리(non-volatile memory) 및/또는 이들의 조합으로 구성될 수 있다.
도 9는 본 개시의 일 실시 예에 따른, 차량 또는 자율 주행 차량을 나타낸다. 차량 또는 자율 주행 차량은 이동형 로봇, 차량, 기차, 유/무인 비행체(Aerial Vehicle, AV), 선박 등으로 구현될 수 있다. 도 9의 실시 예는 본 개시의 다양한 실시 예와 결합될 수 있다.
도 9를 참조하면, 차량 또는 자율 주행 차량(100)은 안테나부(108), 통신부(110), 제어부(120), 구동부(140a), 전원공급부(140b), 센서부(140c) 및 자율 주행부(140d)를 포함할 수 있다. 안테나부(108)는 통신부(110)의 일부로 구성될 수 있다. 블록 110/130/140a~140d는 각각 도 8의 블록 110/130/140에 대응한다.
통신부(110)는 다른 차량, 기지국(e.g. 기지국, 노변 기지국(Road Side unit) 등), 서버 등의 외부 기기들과 신호(예, 데이터, 제어 신호 등)를 송수신할 수 있다. 제어부(120)는 차량 또는 자율 주행 차량(100)의 요소들을 제어하여 다양한 동작을 수행할 수 있다. 제어부(120)는 ECU(Electronic Control Unit)를 포함할 수 있다. 구동부(140a)는 차량 또는 자율 주행 차량(100)을 지상에서 주행하게 할 수 있다. 구동부(140a)는 엔진, 모터, 파워 트레인, 바퀴, 브레이크, 조향 장치 등을 포함할 수 있다. 전원공급부(140b)는 차량 또는 자율 주행 차량(100)에게 전원을 공급하며, 유/무선 충전 회로, 배터리 등을 포함할 수 있다. 센서부(140c)는 차량 상태, 주변 환경 정보, 사용자 정보 등을 얻을 수 있다. 센서부(140c)는 IMU(inertial measurement unit) 센서, 충돌 센서, 휠 센서(wheel sensor), 속도 센서, 경사 센서, 중량 감지 센서, 헤딩 센서(heading sensor), 포지션 모듈(position module), 차량 전진/후진 센서, 배터리 센서, 연료 센서, 타이어 센서, 스티어링 센서, 온도 센서, 습도 센서, 초음파 센서, 조도 센서, 페달 포지션 센서 등을 포함할 수 있다. 자율 주행부(140d)는 주행중인 차선을 유지하는 기술, 어댑티브 크루즈 컨트롤과 같이 속도를 자동으로 조절하는 기술, 정해진 경로를 따라 자동으로 주행하는 기술, 목적지가 설정되면 자동으로 경로를 설정하여 주행하는 기술 등을 구현할 수 있다.
일 예로, 통신부(110)는 외부 서버로부터 지도 데이터, 교통 정보 데이터 등을 수신할 수 있다. 자율 주행부(140d)는 획득된 데이터를 기반으로 자율 주행 경로와 드라이빙 플랜을 생성할 수 있다. 제어부(120)는 드라이빙 플랜에 따라 차량 또는 자율 주행 차량(100)이 자율 주행 경로를 따라 이동하도록 구동부(140a)를 제어할 수 있다(예, 속도/방향 조절). 자율 주행 도중에 통신부(110)는 외부 서버로부터 최신 교통 정보 데이터를 비/주기적으로 획득하며, 주변 차량으로부터 주변 교통 정보 데이터를 획득할 수 있다. 또한, 자율 주행 도중에 센서부(140c)는 차량 상태, 주변 환경 정보를 획득할 수 있다. 자율 주행부(140d)는 새로 획득된 데이터/정보에 기반하여 자율 주행 경로와 드라이빙 플랜을 갱신할 수 있다. 통신부(110)는 차량 위치, 자율 주행 경로, 드라이빙 플랜 등에 관한 정보를 외부 서버로 전달할 수 있다. 외부 서버는 차량 또는 자율 주행 차량들로부터 수집된 정보에 기반하여, AI 기술 등을 이용하여 교통 정보 데이터를 미리 예측할 수 있고, 예측된 교통 정보 데이터를 차량 또는 자율 주행 차량들에게 제공할 수 있다.
이하, V2X 또는 SL 통신에 대하여 설명한다.
도 10은 SL 통신을 위한 무선 프로토콜 구조(radio protocol architecture)를 나타낸다. 도 10의 실시 예는 본 개시의 다양한 실시 예와 결합될 수 있다. 구체적으로, 도 10의 (a)는 사용자 평면 프로토콜 스택을 나타내고, 도 10의 (b)는 제어 평면 프로토콜 스택을 나타낸다.
이하, SL 동기 신호(Sidelink Synchronization Signal, SLSS) 및 동기화 정보에 대해 설명한다.
SLSS는 SL 특정적인 시퀀스(sequence)로, PSSS(Primary Sidelink Synchronization Signal)와 SSSS(Secondary Sidelink Synchronization Signal)를 포함할 수 있다. 상기 PSSS는 S-PSS(Sidelink Primary Synchronization Signal)라고 칭할 수 있고, 상기 SSSS는 S-SSS(Sidelink Secondary Synchronization Signal)라고 칭할 수 있다. 예를 들어, 길이-127 M-시퀀스(length-127 M-sequences)가 S-PSS에 대하여 사용될 수 있고, 길이-127 골드-시퀀스(length-127 Gold sequences)가 S-SSS에 대하여 사용될 수 있다. 예를 들어, 단말은 S-PSS를 이용하여 최초 신호를 검출(signal detection)할 수 있고, 동기를 획득할 수 있다. 예를 들어, 단말은 S-PSS 및 S-SSS를 이용하여 세부 동기를 획득할 수 있고, 동기 신호 ID를 검출할 수 있다.
PSBCH(Physical Sidelink Broadcast Channel)는 SL 신호 송수신 전에 단말이 가장 먼저 알아야 하는 기본이 되는 (시스템) 정보가 전송되는 (방송) 채널일 수 있다. 예를 들어, 상기 기본이 되는 정보는 SLSS에 관련된 정보, 듀플렉스 모드(Duplex Mode, DM), TDD UL/DL(Time Division Duplex Uplink/Downlink) 구성, 리소스 풀 관련 정보, SLSS에 관련된 애플리케이션의 종류, 서브프레임 오프셋, 방송 정보 등일 수 있다. 예를 들어, PSBCH 성능의 평가를 위해, NR V2X에서, PSBCH의 페이로드 크기는 24 비트의 CRC를 포함하여 56 비트일 수 있다.
S-PSS, S-SSS 및 PSBCH는 주기적 전송을 지원하는 블록 포맷(예를 들어, SL SS(Synchronization Signal)/PSBCH 블록, 이하 S-SSB(Sidelink-Synchronization Signal Block))에 포함될 수 있다. 상기 S-SSB는 캐리어 내의 PSCCH(Physical Sidelink Control Channel)/PSSCH(Physical Sidelink Shared Channel)와 동일한 뉴머놀로지(즉, SCS 및 CP 길이)를 가질 수 있고, 전송 대역폭은 (미리) 설정된 SL BWP(Sidelink BWP) 내에 있을 수 있다. 예를 들어, S-SSB의 대역폭은 11 RB(Resource Block)일 수 있다. 예를 들어, PSBCH는 11 RB에 걸쳐있을 수 있다. 그리고, S-SSB의 주파수 위치는 (미리) 설정될 수 있다. 따라서, 단말은 캐리어에서 S-SSB를 발견하기 위해 주파수에서 가설 검출(hypothesis detection)을 수행할 필요가 없다.
이하, SL 단말의 동기 획득에 대하여 설명한다.
TDMA(time division multiple access) 및 FDMA(frequency division multiples access) 시스템에서, 정확한 시간 및 주파수 동기화는 필수적이다. 시간 및 주파수 동기화가 정확하게 되지 않으면, 심볼 간 간섭(Inter Symbol Interference, ISI) 및 반송파 간 간섭(Inter Carrier Interference, ICI)으로 인해 시스템 성능이 저하될 수 있다. 이는, V2X에서도 마찬가지이다. V2X에서는 시간/주파수 동기화를 위해, 물리 계층에서는 SL 동기 신호(sidelink synchronization signal, SLSS)를 사용할 수 있고, RLC(radio link control) 계층에서는 MIB-SL-V2X(master information block-sidelink-V2X)를 사용할 수 있다.
도 11은 V2X의 동기화 소스(synchronization source) 또는 동기화 기준(synchronization reference)을 나타낸다.
도 11을 참조하면, V2X에서, 단말은 GNSS(global navigation satellite systems)에 직접적으로 동기화 되거나, 또는 GNSS에 직접적으로 동기화된 (네트워크 커버리지 내의 또는 네트워크 커버리지 밖의) 단말을 통해 비간접적으로 GNSS에 동기화 될 수 있다. GNSS가 동기화 소스로 설정된 경우, 단말은 UTC(Coordinated Universal Time) 및 (미리) 설정된 DFN(Direct Frame Number) 오프셋을 사용하여 DFN 및 서브프레임 번호를 계산할 수 있다.
또는, 단말은 기지국에 직접 동기화되거나, 기지국에 시간/주파수 동기화된 다른 단말에게 동기화될 수 있다. 예를 들어, 상기 기지국은 eNB 또는 gNB일 수 있다. 예를 들어, 단말이 네트워크 커버리지 내에 있는 경우, 상기 단말은 기지국이 제공하는 동기화 정보를 수신하고, 상기 기지국에 직접 동기화될 수 있다. 그 후, 상기 단말은 동기화 정보를 인접한 다른 단말에게 제공할 수 있다. 기지국 타이밍이 동기화 기준으로 설정된 경우, 단말은 동기화 및 하향링크 측정을 위해 해당 주파수에 연관된 셀(상기 주파수에서 셀 커버리지 내에 있는 경우), 프라이머리 셀 또는 서빙 셀(상기 주파수에서 셀 커버리지 바깥에 있는 경우)을 따를 수 있다.
기지국(예를 들어, 서빙 셀)은 V2X 또는 SL 통신에 사용되는 반송파에 대한 동기화 설정을 제공할 수 있다. 이 경우, 단말은 상기 기지국으로부터 수신한 동기화 설정을 따를 수 있다. 만약, 단말이 상기 V2X 또는 SL 통신에 사용되는 반송파에서 어떤 셀도 검출하지 못했고, 서빙 셀로부터 동기화 설정도 수신하지 못했다면, 상기 단말은 미리 설정된 동기화 설정을 따를 수 있다.
또는, 단말은 기지국이나 GNSS로부터 직접 또는 간접적으로 동기화 정보를 획득하지 못한 다른 단말에게 동기화될 수도 있다. 동기화 소스 및 선호도는 단말에게 미리 설정될 수 있다. 또는, 동기화 소스 및 선호도는 기지국에 의하여 제공되는 제어 메시지를 통해 설정될 수 있다.
GNSS 기반의 동기화 또는 기지국 기반의 동기화를 사용할지 여부는 (미리) 설정될 수 있다. 싱글-캐리어 동작에서, 단말은 가장 높은 우선 순위를 가지는 이용 가능한 동기화 기준으로부터 상기 단말의 전송 타이밍을 유도할 수 있다.
예를 들어, 단말은 동기화 기준(synchronization reference)을 (재)선택할 수 있고, 단말은 상기 동기화 기준으로부터 동기를 획득할 수 있다. 그리고, 단말은 획득된 동기를 기반으로 SL 통신(예, PSCCH/PSSCH 송수신, PSFCH(Physical Sidelink Feedback Channel) 송수신, S-SSB 송수신, 참조 신호 송수신 등)을 수행할 수 있다.
도 12는 단말이 전송 모드에 따라 V2X 또는 SL 통신을 수행하는 절차를 나타낸다. 본 개시의 다양한 실시 예에서, 전송 모드는 모드 또는 자원 할당 모드라고 칭할 수 있다. 이하, 설명의 편의를 위해, LTE에서 전송 모드는 LTE 전송 모드라고 칭할 수 있고, NR에서 전송 모드는 NR 자원 할당 모드라고 칭할 수 있다.
예를 들어, 도 12의 (a)는 LTE 전송 모드 1 또는 LTE 전송 모드 3과 관련된 단말 동작을 나타낸다. 또는, 예를 들어, 도 12의 (a)는 NR 자원 할당 모드 1과 관련된 단말 동작을 나타낸다. 예를 들어, LTE 전송 모드 1은 일반적인 SL 통신에 적용될 수 있고, LTE 전송 모드 3은 V2X 통신에 적용될 수 있다.
예를 들어, 도 12의 (b)는 LTE 전송 모드 2 또는 LTE 전송 모드 4와 관련된 단말 동작을 나타낸다. 또는, 예를 들어, 도 12의 (b)는 NR 자원 할당 모드 2와 관련된 단말 동작을 나타낸다.
도 12의 (a)를 참조하면, LTE 전송 모드 1, LTE 전송 모드 3 또는 NR 자원 할당 모드 1에서, 기지국은 SL 전송을 위해 단말에 의해 사용될 SL 자원을 스케줄링할 수 있다. 예를 들어, 단계 S8000에서, 기지국은 제 1 단말에게 SL 자원과 관련된 정보 및/또는 UL 자원과 관련된 정보를 전송할 수 있다. 예를 들어, 상기 UL 자원은 PUCCH 자원 및/또는 PUSCH 자원을 포함할 수 있다. 예를 들어, 상기 UL 자원은 SL HARQ 피드백을 기지국에게 보고하기 위한 자원일 수 있다.
예를 들어, 제 1 단말은 DG(dynamic grant) 자원과 관련된 정보 및/또는 CG(configured grant) 자원과 관련된 정보를 기지국으로부터 수신할 수 있다. 예를 들어, CG 자원은 CG 타입 1 자원 또는 CG 타입 2 자원을 포함할 수 있다. 본 명세서에서, DG 자원은, 기지국이 DCI(downlink control information)를 통해서 제 1 단말에게 설정/할당하는 자원일 수 있다. 본 명세서에서, CG 자원은, 기지국이 DCI 및/또는 RRC 메시지를 통해서 제 1 단말에게 설정/할당하는 (주기적인) 자원일 수 있다. 예를 들어, CG 타입 1 자원의 경우, 기지국은 CG 자원과 관련된 정보를 포함하는 RRC 메시지를 제 1 단말에게 전송할 수 있다. 예를 들어, CG 타입 2 자원의 경우, 기지국은 CG 자원과 관련된 정보를 포함하는 RRC 메시지를 제 1 단말에게 전송할 수 있고, 기지국은 CG 자원의 활성화(activation) 또는 해제(release)와 관련된 DCI를 제 1 단말에게 전송할 수 있다.
단계 S8010에서, 제 1 단말은 상기 자원 스케줄링을 기반으로 PSCCH(예, SCI(Sidelink Control Information) 또는 1st-stage SCI)를 제 2 단말에게 전송할 수 있다. 단계 S8020에서, 제 1 단말은 상기 PSCCH와 관련된 PSSCH(예, 2nd-stage SCI, MAC PDU, 데이터 등)를 제 2 단말에게 전송할 수 있다. 단계 S8030에서, 제 1 단말은 PSCCH/PSSCH와 관련된 PSFCH를 제 2 단말로부터 수신할 수 있다. 예를 들어, HARQ 피드백 정보(예, NACK 정보 또는 ACK 정보)가 상기 PSFCH를 통해서 상기 제 2 단말로부터 수신될 수 있다. 단계 S8040에서, 제 1 단말은 HARQ 피드백 정보를 PUCCH 또는 PUSCH를 통해서 기지국에게 전송/보고할 수 있다. 예를 들어, 상기 기지국에게 보고되는 HARQ 피드백 정보는, 상기 제 1 단말이 상기 제 2 단말로부터 수신한 HARQ 피드백 정보를 기반으로 생성(generate)하는 정보일 수 있다. 예를 들어, 상기 기지국에게 보고되는 HARQ 피드백 정보는, 상기 제 1 단말이 사전에 설정된 규칙을 기반으로 생성(generate)하는 정보일 수 있다. 예를 들어, 상기 DCI는 SL의 스케줄링을 위한 DCI일 수 있다. 예를 들어, 상기 DCI의 포맷은 DCI 포맷 3_0 또는 DCI 포맷 3_1일 수 있다.
도 12의 (b)를 참조하면, LTE 전송 모드 2, LTE 전송 모드 4 또는 NR 자원 할당 모드 2에서, 단말은 기지국/네트워크에 의해 설정된 SL 자원 또는 미리 설정된 SL 자원 내에서 SL 전송 자원을 결정할 수 있다. 예를 들어, 상기 설정된 SL 자원 또는 미리 설정된 SL 자원은 자원 풀일 수 있다. 예를 들어, 단말은 자율적으로 SL 전송을 위한 자원을 선택 또는 스케줄링할 수 있다. 예를 들어, 단말은 설정된 자원 풀 내에서 자원을 스스로 선택하여, SL 통신을 수행할 수 있다. 예를 들어, 단말은 센싱(sensing) 및 자원 (재)선택 절차를 수행하여, 선택 윈도우 내에서 스스로 자원을 선택할 수 있다. 예를 들어, 상기 센싱은 서브채널 단위로 수행될 수 있다. 예를 들어, 단계 S8010에서, 자원 풀 내에서 자원을 스스로 선택한 제 1 단말은 상기 자원을 사용하여 PSCCH(예, SCI(Sidelink Control Information) 또는 1st-stage SCI)를 제 2 단말에게 전송할 수 있다. 단계 S8020에서, 제 1 단말은 상기 PSCCH와 관련된 PSSCH(예, 2nd-stage SCI, MAC PDU, 데이터 등)를 제 2 단말에게 전송할 수 있다. 단계 S8030에서, 제 1 단말은 PSCCH/PSSCH와 관련된 PSFCH를 제 2 단말로부터 수신할 수 있다.
도 12의 (a) 또는 도 12의 (b)를 참조하면, 예를 들어, 제 1 단말은 PSCCH 상에서 SCI를 제 2 단말에게 전송할 수 있다. 또는, 예를 들어, 제 1 단말은 PSCCH 및/또는 PSSCH 상에서 두 개의 연속적인 SCI(예, 2-stage SCI)를 제 2 단말에게 전송할 수 있다. 이 경우, 제 2 단말은 PSSCH를 제 1 단말로부터 수신하기 위해 두 개의 연속적인 SCI(예, 2-stage SCI)를 디코딩할 수 있다. 본 명세서에서, PSCCH 상에서 전송되는 SCI는 1st SCI, 제 1 SCI, 1st-stage SCI 또는 1st-stage SCI 포맷이라고 칭할 수 있고, PSSCH 상에서 전송되는 SCI는 2nd SCI, 제 2 SCI, 2nd-stage SCI 또는 2nd-stage SCI 포맷이라고 칭할 수 있다. 예를 들어, 1st-stage SCI 포맷은 SCI 포맷 1-A를 포함할 수 있고, 2nd-stage SCI 포맷은 SCI 포맷 2-A 및/또는 SCI 포맷 2-B를 포함할 수 있다.
도 12의 (a) 또는 도 12의 (b)를 참조하면, 단계 S8030에서, 제 1 단말은 PSFCH를 수신할 수 있다. 예를 들어, 제 1 단말 및 제 2 단말은 PSFCH 자원을 결정할 수 있고, 제 2 단말은 PSFCH 자원을 사용하여 HARQ 피드백을 제 1 단말에게 전송할 수 있다.
도 12의 (a)를 참조하면, 단계 S8040에서, 제 1 단말은 PUCCH 및/또는 PUSCH를 통해서 SL HARQ 피드백을 기지국에게 전송할 수 있다.
도 13은 본 개시의 일 실시 예에 따른, 세 가지 캐스트 타입을 나타낸다. 도 13의 실시 예는 본 개시의 다양한 실시 예와 결합될 수 있다.
구체적으로, 도 13의 (a)는 브로드캐스트 타입의 SL 통신을 나타내고, 도 13의 (b)는 유니캐스트 타입의 SL 통신을 나타내며, 도 13의 (c)는 그룹캐스트 타입의 SL 통신을 나타낸다. 유니캐스트 타입의 SL 통신의 경우, 단말은 다른 단말과 일 대 일 통신을 수행할 수 있다. 그룹캐스트 타입의 SL 통신의 경우, 단말은 자신이 속하는 그룹 내의 하나 이상의 단말과 SL 통신을 수행할 수 있다. 본 개시의 다양한 실시 예에서, SL 그룹캐스트 통신은 SL 멀티캐스트(multicast) 통신, SL 일 대 다(one-to-many) 통신 등으로 대체될 수 있다.
이하, HARQ(Hybrid Automatic Repeat Request) 절차에 대하여 설명한다.
예를 들어, SL HARQ 피드백은 유니캐스트에 대하여 인에이블될 수 있다. 이 경우, non-CBG(non-Code Block Group) 동작에서, 수신 단말이 상기 수신 단말을 타겟으로 하는 PSCCH를 디코딩하고, 및 수신 단말이 상기 PSCCH와 관련된 전송 블록을 성공적으로 디코딩하면, 수신 단말은 HARQ-ACK을 생성할 수 있다. 그리고, 수신 단말은 HARQ-ACK을 전송 단말에게 전송할 수 있다. 반면, 수신 단말이 상기 수신 단말을 타겟으로 하는 PSCCH를 디코딩한 이후에, 수신 단말이 상기 PSCCH와 관련된 전송 블록을 성공적으로 디코딩하지 못하면, 수신 단말은 HARQ-NACK을 생성할 수 있다. 그리고, 수신 단말은 HARQ-NACK을 전송 단말에게 전송할 수 있다.
예를 들어, SL HARQ 피드백은 그룹캐스트에 대하여 인에이블될 수 있다. 예를 들어, non-CBG 동작에서, 두 가지 HARQ 피드백 옵션이 그룹캐스트에 대하여 지원될 수 있다.
(1) 그룹캐스트 옵션 1: 수신 단말이 상기 수신 단말을 타겟으로 하는 PSCCH를 디코딩한 이후에, 수신 단말이 상기 PSCCH와 관련된 전송 블록의 디코딩에 실패하면, 수신 단말은 HARQ-NACK을 PSFCH를 통해 전송 단말에게 전송할 수 있다. 반면, 수신 단말이 상기 수신 단말을 타겟으로 하는 PSCCH를 디코딩하고, 및 수신 단말이 상기 PSCCH와 관련된 전송 블록을 성공적으로 디코딩하면, 수신 단말은 HARQ-ACK을 전송 단말에게 전송하지 않을 수 있다.
(2) 그룹캐스트 옵션 2: 수신 단말이 상기 수신 단말을 타겟으로 하는 PSCCH를 디코딩한 이후에, 수신 단말이 상기 PSCCH와 관련된 전송 블록의 디코딩에 실패하면, 수신 단말은 HARQ-NACK을 PSFCH를 통해 전송 단말에게 전송할 수 있다. 그리고, 수신 단말이 상기 수신 단말을 타겟으로 하는 PSCCH를 디코딩하고, 및 수신 단말이 상기 PSCCH와 관련된 전송 블록을 성공적으로 디코딩하면, 수신 단말은 HARQ-ACK을 PSFCH를 통해 전송 단말에게 전송할 수 있다.
예를 들어, 그룹캐스트 옵션 1이 SL HARQ 피드백에 사용되면, 그룹캐스트 통신을 수행하는 모든 단말은 PSFCH 자원을 공유할 수 있다. 예를 들어, 동일한 그룹에 속하는 단말은 동일한 PSFCH 자원을 이용하여 HARQ 피드백을 전송할 수 있다.
예를 들어, 그룹캐스트 옵션 2가 SL HARQ 피드백에 사용되면, 그룹캐스트 통신을 수행하는 각각의 단말은 HARQ 피드백 전송을 위해 서로 다른 PSFCH 자원을 사용할 수 있다. 예를 들어, 동일한 그룹에 속하는 단말은 서로 다른 PSFCH 자원을 이용하여 HARQ 피드백을 전송할 수 있다.
본 명세서에서, HARQ-ACK은 ACK, ACK 정보 또는 긍정(positive)-ACK 정보라고 칭할 수 있고, HARQ-NACK은 NACK, NACK 정보 또는 부정(negative)-ACK 정보라고 칭할 수 있다.
<포지셔닝 (positioning)>
도 14는 NG-RAN (Next Generation-Radio Access Network) 또는 E-UTRAN에 접속되는 UE에 대한 측위가 가능한, 5G 시스템에서의 아키텍처의 일 예를 나타낸다.
도 14를 참조하면, AMF는 특정 타겟 UE와 관련된 위치 서비스에 대한 요청을 GMLC(Gateway Mobile Location Center)와 같은 다른 엔티티(entity)로부터 수신하거나, AMF 자체에서 특정 타겟 UE를 대신하여 위치 서비스를 시작하기로 결정할 수 있다. 그러면, AMF는 LMF(Location Management Function)에게 위치 서비스 요청을 전송할 수 있다. 상기 위치 서비스 요청을 수신한 LMF는 상기 위치 서비스 요청을 처리하여 UE의 추정된 위치 등을 포함하는 처리 결과를 AMF에 반환할 수 있다. 한편, 위치 서비스 요청이 AMF이 이외에 GMLC와 같은 다른 엔티티로부터 수신된 경우에, AMF는 LMF로부터 수신한 처리 결과를 다른 엔티티로 전달할 수 있다.
ng-eNB(new generation evolved-NB) 및 gNB는 위치 추정을 위한 측정 결과를 제공할 수 있는 NG-RAN의 네트워크 요소이며, 타겟 UE에 대한 무선 신호를 측정하고 그 결과값을 LMF에 전달할 수 있다. 또한, ng-eNB는 원격 무선 헤드(remote radio heads)와 같은 몇몇 TP (Transmission Point)들 또는 E-UTRA를 위한 PRS(Positioning Reference Signal) 기반 비콘 시스템을 지원하는 PRS 전용 TP들을 제어할 수 있다.
LMF는 E-SMLC(Enhanced Serving Mobile Location Centre)와 연결되고, E-SMLC는 LMF가 E-UTRAN에 접속 가능하게 할 수 있다. 예를 들어, E-SMLC는 LMF가 eNB 및/또는 E-UTRAN 내의 PRS 전용 TP들로부터 전송된 신호를 통해 타겟 UE가 획득한 하향링크 측정을 이용하여 E-UTRAN의 측위 방법들 중 하나인 OTDOA (Observed Time Difference Of Arrival)을 지원하도록 할 수 있다.
한편, LMF는 SLP(SUPL Location Platform)에 연결될 수 있다. LMF는 타겟 UE들에 대한 서로 상이한 위치 결정 서비스들을 지원하고 관리할 수 있다. LMF는 UE의 위치 측정을 획득하기 위하여, 타겟 UE를 위한 서빙 ng-eNB 또는 서빙 gNB와 상호 작용할 수 있다. 타겟 UE의 측위를 위하여, LMF는 LCS(Location Service) 클라이언트 유형, 요구되는 QoS(Quality of Service), UE 측위 능력(UE positioning capabilities), gNB 측위 능력 및 ng-eNB 측위 능력 등에 기반하여 측위 방법을 결정하고, 이러한 측위 방법을 서빙 gNB 및/또는 서빙 ng-eNB에게 적용할 수 있다. 그리고, LMF는 타겟 UE에 대한 위치 추정치와 위치 추정 및 속도의 정확도와 같은 추가 정보를 결정할 수 있다. SLP는 사용자 평면(user plane)을 통해 측위를 담당하는 SUPL (Secure User Plane Location) 엔티티이다.
UE는 NG-RAN 및 E-UTRAN, 서로 상이한 GNSS(Global Navigation Satellite System), TBS(Terrestrial Beacon System), WLAN(Wireless Local Access Network) 접속 포인트, 블루투스 비콘 및 UE 기압 센서 등과 같은 소스 등을 통해 하향링크 신호를 측정할 수 있다. UE는 LCS 어플리케이션을 포함할 수도 있고, UE가 접속된 네트워크와의 통신 또는 UE에 포함된 다른 어플리케이션을 통해 LCS 어플리케이션에 접속할 수 있다. LCS 어플리케이션은 UE의 위치를 결정하는 데 필요한 측정 및 계산 기능을 포함할 수 있다. 예를 들어, UE는 GPS (Global Positioning System) 과 같은 독립적인 측위 기능을 포함할 수 있고, NG-RAN 전송과는 독립적으로 UE의 위치를 보고할 수 있다. 이러한 독립적으로 획득한 측위 정보는 네트워크로부터 획득한 측위 정보의 보조 정보로서 활용될 수도 있다.
도 15는 UE의 위치를 측정하기 위한 네트워크의 구현 예를 나타낸다.
UE가 CM-IDLE(Connection Management ? IDLE) 상태에 있을 때, AMF가 위치 서비스 요청을 수신하면, AMF는 UE와의 시그널링 연결을 수립하고, 특정 서빙 gNB 또는 ng-eNB를 할당하기 위해 네트워크 트리거 서비스를 요청할 수 있다. 이러한 동작 과정은 도 15에서는 생략되어 있다. 즉, 도 15에서는 UE가 연결 모드(connected mode)에 있는 것으로 가정할 수 있다. 하지만, 시그널링 및 데이터 비활성 등의 이유로 NG-RAN에 의해 시그널링 연결이 측위 과정이 진행되는 도중에 해제될 수도 있다.
도 15를 참조하여 구체적으로 UE의 위치를 측정하기 위한 네트워크의 동작 과정을 살펴보면, 단계 1a에서, GMLC와 같은 5GC 엔티티는 서빙 AMF로 타겟 UE의 위치를 측정하기 위한 위치 서비스를 요청할 수 있다. 다만, GMLC가 위치 서비스를 요청하지 않더라도, 단계 1b에 따라, 서빙 AMF가 타겟 UE의 위치를 측정하기 위한 위치 서비스가 필요하다고 결정할 수도 있다. 예를 들어, 긴급 호출(emergency call)을 위한 UE의 위치를 측정하기 위하여, 서빙 AMF가 직접 위치 서비스를 수행할 것을 결정할 수도 있다.
그 후, AMF는 단계 2에 따라, LMF로 위치 서비스 요청을 전송하고, 단계 3a에 따라, LMF는 위치 측정 데이터 또는 위치 측정 보조 데이터를 획득하기 위한 위치 절차(location procedures)를 서빙 ng-eNB, 서빙 gNB와 함께 시작할 수 있다. 추가적으로, 단계 3b에 따라, LMF는 UE와 함께 하향링크 측위를 위한 위치 절차(location procedures) 시작할 수 있다. 예를 들어, LMF는 UE에게 위치 보조 데이터(Assistance data defined in 3GPP TS 36.355)를 전송하거나, 위치 추정치 또는 위치 측정치를 획득할 수 있다. 한편, 단계 3b는 단계 3a가 수행된 이후 추가적으로 수행될 수도 있으나, 단계 3a에 대신하여 수행될 수도 있다.
단계 4에서 LMF는 AMF에 위치 서비스 응답을 제공할 수 있다. 또한, 위치 서비스 응답에는 UE의 위치 추정이 성공했는지 여부에 대한 정보 및 UE의 위치 추정치가 포함될 수 있다. 그 후, 단계 1a에 의해 도 15의 절차가 개시되었다면, AMF는 GMLC와 같은 5GC 엔티티에 위치 서비스 응답을 전달할 수 있으며, 단계 1b에 의해 도 15의 절차가 개시되었다면, AMF는 긴급 호출 등에 관련된 위치 서비스 제공을 위하여, 위치 서비스 응답을 이용할 수 있다.
도 16은 LMF와 UE 간의 LPP(LTE Positioning Protocol) 메시지 전송을 지원하기 위해 사용되는 프로토콜 레이어의 일 예를 나타낸다.
LPP PDU는 AMF와 UE 간의 NAS PDU를 통해 전송될 수 있다. 도 16을 참조하면, LPP는 타겟 장치(예들 들어, 제어 평면에서의 UE 또는 사용자 평면에서의 SET(SUPL Enabled Terminal))와 위치 서버(예를 들어, 제어 평면에서의 LMF 또는 사용자 평면에서의 SLP) 사이를 연결(terminated)할 수 있다. LPP 메시지는 NG-C(NG-Control Plane) 인터페이스를 통한 NGAP(NG Application Protocol), LTE-Uu 및 NR-Uu 인터페이스를 통한 NAS/RRC 등의 적절한 프로토콜을 사용하여 중간 네트워크 인터페이스를 통해 트랜스패런트(Transparent) PDU 형태로 전달될 수 있다. LPP 프로토콜은 다양항 측위 방법을 사용하여 NR 및 LTE를 위한 측위가 가능하도록 한다.
예를 들어, LPP 프로토콜을 통하여 타겟 장치 및 위치 서버는 상호 간의 성능(capability) 정보 교환, 측위를 위한 보조 데이터 교환 및/또는 위치 정보를 교환할 수 있다. 또한, LPP 메시지를 통해 에러 정보 교환 및/또는 LPP 절차의 중단 지시 등을 수행할 수도 있다.
도 17는 LMF와 NG-RAN 노드 간의 NRPPa (NR Positioning Protocol A) PDU 전송을 지원하는데 사용되는 프로토콜 레이어의 일 예를 나타낸다.
NRPPa는 NG-RAN 노드와 LMF 간의 정보 교환에 사용될 수 있다. 구체적으로 NRPPa는 ng-eNB에서 LMF로 전송되는 측정을 위한 E-CID(Enhanced-Cell ID), OTDOA 측위 방법을 지원하기 위한 데이터, NR Cell ID 측위 방법을 위한 Cell-ID 및 Cell 위치 ID 등을 교환할 수 있다. AMF는 연관된 NRPPa 트랜잭션(transaction)에 대한 정보가 없더라도, NG-C 인터페이스를 통해 연관된 LMF의 라우팅 ID를 기반으로 NRPPa PDU들을 라우팅할 수 있다.
위치 및 데이터 수집을 위한 NRPPa 프로토콜의 절차는 2가지 유형으로 구분될 수 있다. 첫 번째 유형은, 특정 UE에 대한 정보 (예를 들어, 위치 측정 정보 등)를 전달하기 위한 UE 관련 절차(UE associated procedure)이고, 두 번째 유형은, NG-RAN 노드 및 관련된 TP들에 적용 가능한 정보 (예를 들어, gNB/ng-eNB/TP 타이밍 정보 등)을 전달하기 위한 비 UE 관련 절차 (non UE associated procedure)이다. 상기 2가지 유형의 절차는 독립적으로 지원될 수도 있고, 동시에 지원될 수도 있다.
<측위 방법>
한편, NG-RAN에서 지원하는 측위 방법들에는 GNSS, OTDOA, E-CID(enhanced cell ID), 기압 센서 측위, WLAN 측위, 블루투스 측위 및 TBS (terrestrial beacon system), UTDOA(Uplink Time Difference of Arrival) 등이 있을 수 있다. 상기 측위 방법들 중, 어느 하나의 측위 방법을 이용하여 UE의 위치를 측정할 수도 있지만, 둘 이상의 측위 방법을 이용하여 UE의 위치를 측정할 수도 있다.
(1) OTDOA (Observed Time Difference Of Arrival)
도 18은 본 개시의 일 실시 예에 따른 OTDOA (Observed Time Difference Of Arrival) 측위 방법을 설명하기 위한 도면이다
OTDOA 측위 방법은 UE가 eNB, ng-eNB 및 PRS 전용 TP를 포함하는 다수의 TP들로부터 수신된 하향링크 신호들의 측정 타이밍을 이용한다. UE는 위치 서버로부터 수신된 위치 보조 데이터를 이용하여 수신된 하향링크 신호들의 타이밍을 측정한다. 그리고 이러한 측정 결과 및 이웃 TP들의 지리적 좌표들을 기반으로 UE의 위치를 결정할 수 있다.
gNB에 연결된 UE는 TP로부터 OTDOA 측정을 위한 측정 갭(gap)을 요청할 수 있다. 만약, UE가 OTDOA 보조 데이터 내의 적어도 하나의 TP를 위한 SFN(Single Frequency Network)을 인지하지 못하면, UE는 RSTD(Reference Signal Time Difference) 측정(Measurement)을 수행하기 위한 측정 갭을 요청하기 전에 OTDOA 참조 셀(reference cell)의 SFN을 획득하기 위해 자율적인 갭(autonomous gap)을 사용할 수 있다.
여기서, RSTD는 참조 셀과 측정 셀로부터 각각 수신된 2개의 서브프레임들의 경계 간의 가장 작은 상대적인 시간 차를 기반으로 정의될 수 있다. 즉, 측정 셀로부터 수신된 서브 프레임의 시작 시간에 가장 가까운 참조 셀의 서브프레임의 시작 시간 간의 상대적인 시간 차이를 기반으로 계산될 수 있다. 한편, 참조 셀은 UE에 의해 선택될 수 있다.
정확한 OTDOA 측정을 위해서는 지리적으로 분산된 3개 이상의 TP들 또는 기지국들로부터 수신된 신호의 TOA(time of arrival)을 측정하는 것이 필요하다. 예를 들어, TP 1, TP 2 및 TP 3 각각에 대한 TOA를 측정하고, 3개의 TOA를 기반으로 TP 1?TP 2에 대한 RSTD, TP 2-TP 3에 대한 RSTD 및 TP 3-TP 1에 대한 RSTD를 계산하여, 이를 기반으로 기하학적 쌍곡선을 결정하고, 이러한 쌍곡선이 교차하는 지점을 UE의 위치로 추정할 수 있다. 이 때, 각 TOA 측정에 대한 정확도 및/또는 불확실성이 생길 수 있는 바, 추정된 UE의 위치는 측정 불확실성에 따른 특정 범위로 알려질 수도 있다.
(2) E-CID (Enhanced Cell ID)
셀 ID (CID) 측위 방법에서, UE의 위치는 UE의 서빙 ng-eNB, 서빙 gNB 및/또는 서빙 셀의 지리적 정보를 통해 측정될 수 있다. 예를 들어, 서빙 ng-eNB, 서빙 gNB 및/또는 서빙 셀의 지리적 정보는 페이징(paging), 등록(registration) 등을 통해 획득될 수 있다.
한편, E-CID 측위 방법은 CID 측위 방법에 더하여 UE 위치 추정치를 향상 시키기 위한 추가적인 UE 측정 및/또는 NG-RAN 무선 자원 등을 이용할 수 있다. E-CID 측위 방법에서, RRC 프로토콜의 측정 제어 시스템과 동일한 측정 방법들 중 일부를 사용할 수 있지만, 일반적으로 UE의 위치 측정만을 위하여 추가적인 측정을 하지 않는다. 다시 말해, UE의 위치를 측정하기 위하여 별도의 측정 설정 (measurement configuration) 또는 측정 제어 메시지(measurement control message)는 제공되지 않을 수 있으며, UE 또한 위치 측정만을 위한 추가적인 측정 동작이 요청될 것을 기대하지 않고, UE가 일반적으로 측정 가능한 측정 방법들을 통해 획득된 측정값을 보고할 수 있다.
(3) UTDOA (Uplink Time Difference of Arrival)
UTDOA는 SRS의 도달 시간을 추정하여 UE의 위치를 결정하는 방법이다. 추정된 SRS 도달 시간을 산출할 때, 서빙 셀이 참조 셀로 사용하여, 다른 셀 (혹은 기지국/TP)와의 도달 시간 차이를 통해 UE의 위치를 추정할 수 있다. UTDOA를 구현하기 위해 E-SMLC는 타겟 UE에게 SRS 전송을 지시하기 위해, 타겟 UE의 서빙 셀을 지시할 수 있다. 또한, E-SMLC는 SRS의 주기적/비주기적 여부, 대역폭 및 주파수/그룹/시퀀스 호핑 등과 같은 설정(configuration)을 제공할 수 있다.
<사이드링크 포지셔닝>
기존 3GPP NR 표준 릴리즈 17까지에서 논의된 NR 포지셔닝에서는 네트워크 기반의 Uu 포지셔닝만 지원하였으며, SL (sidelink) 통신을 이용한 포지셔닝 동작은 지원하지 않으나, 최근 3GPP NR 표준 릴리즈 18에서부터는 SL 포지셔닝을 지원할 예정이다.
종래의 Uu 포지셔닝은 타겟 UE와 기지국 (gNB/LMF) 간 연결하에 위치 탐색을 하던 방식이지만, SL 포지셔닝은 타겟 UE와 하나 이상의 앵커 UE 간의 연결로 위치 탐색을 하는 새로운 방식이다.
SL 포지셔닝에서 앵커 UE 결정은 아래와 같은 과정을 거쳐 진행되는 것으로 논의된 상태이다.
1) 디스커버리 탐색 과정을 거처, 타겟 UE는 주변의 SL 통신이 가능한 UE 들 (이하, 후보 UE)과 SL 통신을 통해 서로의 성능 정보 (UE capability)를 교환한다. 이때, 탐색된 UE 들이 SL 포지셔닝을 지원하는지 여부와 같은 기본적인 정보를 교환하게 되고, 앵커 UE의 결정은 해당 UE가 SL 포지셔닝을 지원하는 경우에 한정된다.
2) 타겟 UE와 후보 UE는 기본적인 정보 교환 후에 네고시에이션을 통해 최종 앵커 UE를 결정한다. SL 포지셔닝을 위한 네고시에이션을 수행을 할 경우, 앵커 UE의 결정은 네고시에이션 과정에서 앵커 UE로의 역할 수행 요청을 거절하지 않은 경우에 한정된다 (negotiation success).
3) 추가적으로, 앵커 UE는 자신의 위치 정보를 파악할 수 있는지 여부에 관한 정보를 타겟 UE로 제공하게 된다. 절대 위치 (Absolute positioning) 파악을 위해서는 앵커 UE는 자신의 위치를 이미 알고 있거나, 또는 Uu 포지셔닝으로 측정 가능한 경우에 한정한다.
<MAC 단에서의 LCP 절차>
한편, UE은 UL 그랜트를 수신한 후 새로운 전송이 수행될 때마다 LCP (Logical Channel Prioritization) 절차를 수행한다. MAC 엔티티별 각 논리 채널에 대해, 다음 파라미터들이 사용되어 상향링크 데이터의 스케줄링을 제어한다. 그러나, 아래 파라미터에는 MAC CE가 적용되지 않는다.
- 증가하는 우선 순위 값이 더 낮은 우선 순위 수준을 표시하는 우선 순위;
- PBR (Prioritized Bit Rate)을 설정하는 prioritisedBitRate;
- BSD (Bucket Size Duration)를 설정하는 bucketSizeDuration;
- 전송을 위해 허용된 Subcarrier Spacing(들)을 설정하는 allowedSCS-List;
- 전송을 위해 허용된 최대 PUSCH 지속시간을 설정하는 maxPUSCH-Duration;
- 구성된 그랜트 유형 1이 전송을 위해 사용될 수 있는지 여부를 설정하는 configuredGrantType1Allowed;
- 전송을 위해 허용된 셀(들)을 설정하는 allowedServingCells.
논리 채널은 다음 순서에 따라 우선 순위가 지정된단 (가장 높은 우선 순위가 먼저 나열됨):
1) C-RNTI MAC CE 또는 UL-CCCH 데이터;
2) Configured Grant Confirmation MAC CE;
3) 패딩을 위해 포함된 BSR을 제외한 BSR용 MAC CE;
4) Single Entry PHR MAC CE 또는 Multiple Entry PHR MAC CE;
5) UL-CCCH 데이터를 제외한 모든 논리 채널의 데이터;
6) 권장 비트 전송률 쿼리에 대한 MAC CE;
7) 패딩을 위해 포함된 BSR용 MAC CE.
UE이 UL 그랜트를 수신하면, UL 그랜트는 상기 우선 순위에 따라 MAC CE 및 논리 채널들에 할당된다. 상기 우선 순위에 따라, 전송을 위해 보류 중인 MAC CE (예, BSR용 BSR MAC CE, PHR MAC CE)가 있는 경우, LCP는 해당 MAC CE들에 먼저 적절한 UL 그랜트를 제공한 다음 나머지 UL 승인을 사용하여 전송용 데이터를 가진 모든 논리 채널들을 배분한다.
한편, 사이드링크에서도 MAC 단에서는 LCH (Logical Channel)인 사용자 영역 데이터 (User plane data)를 전달하는 STCH (Sidelink Traffic Channel), 제어 영역 데이터 (Control plane data)를 전달하는 SCCH (Sidelink Control Channel)와 MAC CE를 LCP 기법을 이용하여 다중화하고, 이를 트랜스포트 채널인 SL-SCH로 PHY 단으로 전달한다. 여기서, 우선 순위는 SCCH, MAC CE 및 STCH의 순서로 부여된다.
SCCH 또는 STCH 내에서는 데이터 자체의 우선 순위가 부여될 수 있지만, 현 시점에서 SCCH 와 STCH 간에는 우선 순위 조절이 불가능한 상황이다. 따라서, STCH의 priority를 높게 설정하여도 SCCH의 데이터 보다는 전송 우선 순위가 높을 수 없다.
사이드링크 포지셔닝 프로토콜 (SLPP) 데이터는 종래 포지셔닝 프로토콜과 같이 제어 영역 데이터로 전송될 수도 있고, 사용자 영역 데이터로 전송될 수도 있다.
SLPP 데이터가 제어 영역 데이터로 전송되는 것이라면, 이는 SRB에 맵핑된다는 것으로, SCCH 채널을 통하여 MAC 단으로 전달된다. 반면에, SLPP 데이터가 사용자 영역 데이터로 전송되는 것이라면, 이는 DRB에 맵핑된다는 것으로, STCH 채널을 통하여 MAC 단으로 전달된다.
그러나, SLPP 데이터가 STCH 채널을 통하여 MAC 단으로 전달되는 경우, STCH의 낮은 전송 우선 순위로 인해 전송 보장이 어렵다는 문제점이 있다. 특히, 보낼 데이터가 많은 경우라면, SLPP 데이터 전달이 지연될 수 있다. 포지셔닝 자체에서 응답 시간, 즉 레이턴시(Latency)는 매우 중요한 QoS 항목으로서, SLPP 데이터 전달 지연은 포지셔닝 레이턴시 (Latency) 자체를 증가시키는 큰 문제가 발생할 수 있다.
이러한 문제점을 해결하기 위하여, 아래와 같은 방안들을 제안한다.
<제 1 실시예>
본 개시의 제 1 실시예에서는 논리 채널에 부여된 태그 (Tag) 정보를 바탕으로 MAC 다중화 전송의 우선 순위를 결정하는 방법, 즉 LCP 기법의 개선을 제안한다.
여기서, 태그 정보는 MAC 단으로 전달되는 (또는 MAC 단에서 생성되는) 데이터나 메시지의 특성이나 우선 순위를 구분짓기 위한 정보를 의미한다.
본 개시에서 제안하는 태그의 특성은 아래와 같다.
태그 정보는 메시지의 특성에 대응하여 구성된다.
1) 태그 정보는 레벨로 구분될 수 있다. 예를 들어, 긴급 (urgent), 일반 (normal) 등과 같이 전송 신속 요구 정도에 따라 레벨이 부여될 수 있다.
2) 태그 정보는 메세지 특성으로 구분될 수 있다. 예를 들어, 제어 시그널링 (control signaling), 사이드링크 포지셔닝 데이터, 사이드링크 포지셔닝 컨트롤 등으로 구분될 수도 있다.
태그 정보는 RLC SDU에 포함될 수 있다. 또는, 태그 정보는 상위 계층에서 전달된 RLC PDU의 헤더에 포함된 하나의 정보일 수 있다. 물론, 태그 정보는 MAC 단에서 생성하여 MAC PDU에 포함시킬 수도 있다.
상술한 바와 같이, 태그 정보는 MAC 단에서 전송 우선 순위를 결정하기 위한 참조용 변수로서, 이를 기반으로, MAC 단은 LCP 수행을 위한 우선 순위를 결정한다.
예를 들어, 태그 정보가 레벨로 구분되는 경우라면, MAC 단에서 판단된 태그 정보가 높다면, 즉 긴급 전송 요구에 대한 태그 정보를 가지고 있는 데이터라면, 다른 논리 채널의 데이터보다 선순위의 우선 순위를 부여하여 LCP를 적용한다.
다른 예로, 태그 정보가 메세지 특성으로 구분된다면, STCH 데이터지만 SCCH 데이타와 동일 (또는 이상) 우선 순위 또는 그 보다 더 선순위를 부여하여 LCP를 적용한다.
여기서, 사이드링크 포지셔닝과 무관한 경우 혹은, 긴급 처리가 필요하지 않은 경우라면 태그 정보가 존재하지 않을 수도 있다. 태그 정보가 존재하지 않는 경우는 기존 LCP 절차를 따른다.
<제 2 실시예>
본 개시의 제 2 실시예에서는 (사이드링크) 포지셔닝 관련 QoS 기반의 MAC 다중화 전송 우선 순위를 결정 방법을 제안한다.
(사이드링크) 포지셔닝에서는 포지셔닝의 품질을 결정하는 다양한 QoS 파라미터가 존재한다. 본 개시에서 QoS 정보는 다음 중 적어도 하나 이상의 파라미터를 포함할 수 있다.
- 위치 정확성 (integrity, accuracy) 정보
- 위치 응답 시간 (response time)
QoS 품질이 좋지 않다면, (사이드링크) 포지셔닝 성능이 떨어지거나 실패할 확률이 높다. 따라서 QoS 기반으로 전송 우선 순위를 정하는것은 QoS 개선에 도움이 된다.
본 개시의 제 2 실시예에서 제안하는 LCP 과정은 아래와 같다.
우선, LCP 과정에서 적용할 우선 순위, 즉 MAC 다중화 전송 우선 순위를 결정하기 전에 QoS 값을 확인하여, 확인된 QoS 값을 기반으로 MAC 다중화 전송 우선 순위를 결정한다. 여기서, QoS 값을 기반으로 한다는 의미는 QoS 값이 일정 임계치 (threshold) 보다 이상 또는 이하인 경우를 말한다.
예를 들어, 고려하는 QoS 정보가 위치 정확성 정보라면, 본 개시의 제 2 실시예에 적용되는 경우는 임계치 이하인 경우를 의미할 수 있다.
예를 들어, 고려하는 QoS 정보가 위치 응답 시간 (response time) 정보라면, 본 개시의 제 2 실시예에 적용되는 경우는 임계치 이상인 경우를 의미할 수 있다.
또한, 임계치는 네트워크나 단말이 설정하는 값일 수 있지만, 사전에 정의된, 예를 들어 3GPP 표준 문서에서 정의된 값일 수도 있다.
또한, MAC 다중화 전송 우선 순위를 결정한다는 것은 임의로 우선 순위를 조정 (높이거나 낮춘다는) 의미로 해석하는 것이 바람직하다. 즉, 기존에 부여되거나 정의된 우선 순위와 무관하게, 우선 순위를 부여한다는 것으로 해석할 수 있다.
예를 들어, 우선 순위를 높인다는 것은 STCH 데이터를 SCCH와 동일하게 처리한다는 의미일 수 있다. 반면에, 우선 순위를 높인다는 것은 top priority로 처리한다는 의미일 수 있다.
물론, 고려하는 QoS 정보가 위치 정확성 정보일 때, (사이드링크) 포지셔닝 관련 QoS가 임계치 이상이라면, 기존 LCP 절차에 따라 다중화 절차를 수행한다. 또한, 고려하는 QoS 정보가 응답 시간 (response time) 정보일 때, (사이드링크) 포지셔닝 관련 QoS가 임계치 이하이라면, 기존 LCP 절차에 따라 다중화 절차를 수행한다.
보다 구체적인 구현예로서, 고려하는 QoS 정보가 응답 시간 (response time) 정보일 때, 측정된 응답 시간이 임계치 이상이라면 QoS가 나빠지거나 위치 획득에 실패할 확률이 높다. 이 경우, SLPP 메세지의 우선 순위를 높여서 전송 보장을 할 수 있으며, 이로 인하여 빠른 위치 획득이 가능하도록 할 수 있다.
예를 들어, MAC 단에 구비된 버퍼에 location information transfer (즉, 위치 측정 데이터 혹은 위치 산출 값)이 pending 되어 있다면, 해당 데이터에 최우선 순위를 부여하여 전송함으로써, QoS 상승을 기대할 수 있다.
또 다른 구현예로, 고려하는 QoS 정보가 위치 정확성 (integrity, accuracy) 정보일 때, 정확성 값이 임계치 이하하면, QoS가 나빠지거나 위치 획득에 실패할 확률이 높다. 이 경우, SLPP 메세지의 우선 순위를 높여서 전송 보장을 할 수 있으며, 이로 인하여 빠른 위치 획득이 가능하도록 할 수 있다.
예를 들어, 상술한 측위 방법 들 중 하나로 위치 측정 중 위치 정확성 값이 임계치 이하하면, 다른 측위 방법으로 변경하기 위한 SLPP 메시지를 송신하되, 이 SLPP 메시지의 우선 순위를 높여서 전송 보장을 할 수 있고, 빠른 측위 방법 변경 및 빠른 위치 획득이 가능하도록 할 수 있다.
도 19는 본 개시의 일 실시예에 따라 사이드링크 포지셔닝 데이터의 전송 방법을 예시하는 순서도이다.
도 19를 참조하면, 단계 A05에서 UE의 MAC 단 (혹은 MAC 엔티티)는 상위 계층, 예를 들어 RLC 단으로부터 복수의 데이터 유닛들을 수신한다.
다음으로, 단계 A10에서 UE의 MAC 단 (혹은 MAC 엔티티)는 사이드링크 그랜트를 생성한다. 여기서 사이드링크 그랜트는 사이드링크 전송 모드에 따라 UE 스스로 결정하거나 네트워크가 결정하여 제공할 수 있다.
계속하여, 단계 A15에서 UE의 MAC 단 (혹은 MAC 엔티티)는 상기 복수의 데이터 유닛들의 우선 순위에 기반하여, 상기 복수의 데이터 유닛들 중 하나 이상의 데이터 유닛들을 사이드링크 그랜트에 할당하고, 즉 LCP를 수행하고, MAC PDU를 생성한다.
특히, 상기 복수의 데이터 유닛들 중 적어도 하나의 데이터 유닛이 사이드링크 포지셔닝과 연관되었다면, 상기 적어도 하나의 데이터 유닛의 우선 순위는, 상기 적어도 하나의 데이터 유닛의 사전에 정의된 우선 순위와 무관하게 최우선 순위로 고려된다.
바람직하게는, 상기 사이드링크 포지셔닝의 QoS (Quality of Service)와 임계치의 비교에 기반하여, 상기 적어도 하나의 데이터 유닛, 즉 사이드링크 포지셔닝과 연관된 적어도 하나의 데이터 유닛의 우선 순위를 최우선 순위로 고려할 수 있다. 여기서, 상기 사이드링크 포지셔닝의 QoS는 상기 사이드링크 포지셔닝의 응답 시간 및 상기 상기 사이드링크 포지셔닝의 측정 정확도 중 적어도 하나를 포함한다.
추가적으로, 상기 복수의 데이터 유닛들 중 적어도 하나의 데이터 유닛이 사이드링크 포지셔닝과 연관되었다는 점은 복수의 데이터 유닛들에 포함된 태그 정보에 기반하여 판단될 수 있다. 특히, 상기 적어도 하나의 데이터 유닛은 신속 전송 요구 레벨에 관한 정보를 포함할 수 있다. 예를 들어, 상기 신속 전송 요구 레벨이 긴급 처리와 연관되었다면, 사이드링크 포지셔닝과 연관된 것이므로, 상기 적어도 하나의 데이터 유닛의 우선 순위는 최우선 순위로 고려된다.
참고로, 사이드링크 포지셔닝과 연관된 상기 적어도 하나의 데이터 유닛은 STCH (Sidelink Traffic Channel)을 통하여 상기 상위 계층된다. 즉, 상기 적어도 하나의 데이터 유닛의 사전에 정의된 우선 순위는 SCCH로부터 수신되는 데이터 유닛 및 MAC CE 보다 낮은 우선 순위를 갖도록 설정되지만, 본 개시에 의하면 사이드링크 포지셔닝과 연관되어 있는 경우, 혹은 사이드링크 포지셔닝과 연관되어 있고 QoS 조건이 소정의 임계치 이하인 경우 혹은 소정의 임계치 이상인 경우라면 최우선순위로 간주될 수 있다.
마지막으로, 단계 A20에서 UE의 MAC 단 (혹은 MAC 엔티티)는 생성된 MAC PDU를 하위 계층으로 제공하고, 하위 계층, 즉 UE의 PHY 단은 상기 하나 이상의 데이터 유닛들 포함하는 MAC PDU를 상기 사이드링크 그랜트에 기반하여 송신한다.
이상에서 설명된 실시예들은 본 개시의 구성요소들과 특징들이 소정 형태로 결합된 것들이다. 각 구성요소 또는 특징은 별도의 명시적 언급이 없는 한 선택적인 것으로 고려되어야 한다. 각 구성요소 또는 특징은 다른 구성요소나 특징과 결합되지 않은 형태로 실시될 수 있다. 또한, 일부 구성요소들 및/또는 특징들을 결합하여 본 개시의 실시예를 구성하는 것도 가능하다. 본 개시의 실시예들에서 설명되는 동작들의 순서는 변경될 수 있다. 어느 실시예의 일부 구성이나 특징은 다른 실시예에 포함될 수 있고, 또는 다른 실시예의 대응하는 구성 또는 특징과 교체될 수 있다. 특허청구범위에서 명시적인 인용 관계가 있지 않은 청구항들을 결합하여 실시예를 구성하거나 출원 후의 보정에 의해 새로운 청구항으로 포함시킬 수 있음은 자명하다.
본 개시는 본 개시의 특징을 벗어나지 않는 범위에서 다른 특정한 형태로 구체화될 수 있음은 당업자에게 자명하다. 따라서, 상기의 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니되고 예시적인 것으로 고려되어야 한다. 본 개시의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 개시의 등가적 범위 내에서의 모든 변경은 본 개시의 범위에 포함된다.
본 개시는 무선 이동 통신 시스템의 단말기, 기지국, 또는 기타 다른 장비에 사용될 수 있다.

Claims (12)

  1. 무선 통신 시스템에서 UE (User Equipment)에 의하여 수행되는 방법으로서,
    상위 계층으로부터 복수의 데이터 유닛들을 수신하는 단계;
    상기 복수의 데이터 유닛들의 우선 순위에 기반하여, 상기 복수의 데이터 유닛들 중 하나 이상의 데이터 유닛들을 사이드링크 그랜트에 할당하는 단계;
    상기 사이드링크 그랜트에 기반하여 상기 하나 이상의 데이터 유닛들을 송신하는 단계를 포함하고,
    상기 복수의 데이터 유닛들 중 적어도 하나의 데이터 유닛이 사이드링크 포지셔닝과 연관된 것에 기반하여, 상기 적어도 하나의 데이터 유닛의 우선 순위는, 상기 적어도 하나의 데이터 유닛의 사전에 정의된 우선 순위와 무관하게 최우선 순위로 고려되는,
    방법.
  2. 제 1 항에 있어서,
    상기 하나 이상의 데이터 유닛들을 사이드링크 그랜트에 할당하는 단계는,
    상기 사이드링크 포지셔닝의 QoS (Quality of Service)를 측정하는 단계;
    상기 QoS와 임계치의 비교에 기반하여, 상기 적어도 하나의 데이터 유닛의 우선 순위를 최우선 순위로 고려하는 단계를 포함하는,
    방법.
  3. 제 2 항에 있어서,
    상기 사이드링크 포지셔닝의 QoS는,
    상기 사이드링크 포지셔닝의 응답 시간 및 상기 상기 사이드링크 포지셔닝 의 측정 정확도 중 적어도 하나를 포함하는,
    방법.
  4. 제 1 항에 있어서,
    상기 적어도 하나의 데이터 유닛은 신속 전송 요구 레벨에 관한 정보를 포함하고,
    상기 신속 전송 요구 레벨이 긴급 처리와 연관된 것에 기반하여, 상기 적어도 하나의 데이터 유닛의 우선 순위는 최우선 순위로 고려되는,
    방법.
  5. 제 1 항에 있어서,
    상기 하나 이상의 데이터 유닛들을 STCH (Sidelink Traffic Channel)을 통하여 상기 상위 계층으로부터 수신되는,
    방법.
  6. 무선 통신 시스템에서 UE (User equipment)로서,
    적어도 하나의 송수신기;
    적어도 하나의 프로세서; 및
    상기 적어도 하나의 프로세서에 동작 가능하게 연결 가능한, 그리고, 실행될 때, 상기 적어도 하나의 프로세서로 하여금 동작들을 수행하도록 하는 명령(instruction)들을 저장한, 적어도 하나의 컴퓨터 메모리를 포함하며, 상기 동작들은:
    상위 계층으로부터 복수의 데이터 유닛들을 수신하는 단계;
    상기 복수의 데이터 유닛들의 우선 순위에 기반하여, 상기 복수의 데이터 유닛들 중 하나 이상의 데이터 유닛들을 사이드링크 그랜트에 할당하는 단계;
    상기 사이드링크 그랜트에 기반하여 상기 하나 이상의 데이터 유닛들을 송신하는 단계를 포함하고,
    상기 복수의 데이터 유닛들 중 적어도 하나의 데이터 유닛이 사이드링크 포지셔닝과 연관된 것에 기반하여, 상기 적어도 하나의 데이터 유닛의 우선 순위는, 상기 적어도 하나의 데이터 유닛의 사전에 정의된 우선 순위와 무관하게 최우선 순위로 고려되는,
    UE.
  7. 제 6 항에 있어서,
    상기 하나 이상의 데이터 유닛들을 사이드링크 그랜트에 할당하는 단계는,
    상기 사이드링크 포지셔닝의 QoS (Quality of Service)를 측정하는 단계;
    상기 QoS와 임계치의 비교에 기반하여, 상기 적어도 하나의 데이터 유닛의 우선 순위를 최우선 순위로 고려하는 단계를 포함하는,
    UE.
  8. 제 7 항에 있어서,
    상기 사이드링크 포지셔닝의 QoS는,
    상기 사이드링크 포지셔닝의 응답 시간 및 상기 상기 사이드링크 포지셔닝 의 측정 정확도 중 적어도 하나를 포함하는,
    UE.
  9. 제 6 항에 있어서,
    상기 적어도 하나의 데이터 유닛은 신속 전송 요구 레벨에 관한 정보를 포함하고,
    상기 신속 전송 요구 레벨이 긴급 처리와 연관된 것에 기반하여, 상기 적어도 하나의 데이터 유닛의 우선 순위는 최우선 순위로 고려되는,
    방법.
  10. 제 6 항에 있어서,
    상기 하나 이상의 데이터 유닛들을 STCH (Sidelink Traffic Channel)을 통하여 상기 상위 계층으로부터 수신되는,
    UE.
  11. 무선 통신 시스템에서 프로세싱 장치에 있어서,
    적어도 하나의 프로세서; 및
    상기 적어도 하나의 프로세서에 동작 가능하게 연결 가능한, 그리고, 실행될 때, 상기 적어도 하나의 프로세서로 하여금 UE (User Equipment)를 위한 동작들을 수행하도록 하는 명령(instruction)들을 저장한, 적어도 하나의 컴퓨터 메모리를 포함하며, 상기 동작들은:
    상위 계층으로부터 복수의 데이터 유닛들을 수신하는 단계;
    상기 복수의 데이터 유닛들의 우선 순위에 기반하여, 상기 복수의 데이터 유닛들 중 하나 이상의 데이터 유닛들을 사이드링크 그랜트에 할당하는 단계;
    상기 사이드링크 그랜트에 기반하여 상기 하나 이상의 데이터 유닛들을 송신하는 단계를 포함하고,
    상기 복수의 데이터 유닛들 중 적어도 하나의 데이터 유닛이 사이드링크 포지셔닝과 연관된 것에 기반하여, 상기 적어도 하나의 데이터 유닛의 우선 순위는, 상기 적어도 하나의 데이터 유닛의 사전에 정의된 우선 순위와 무관하게 최우선 순위로 고려되는,
    프로세싱 장치.
  12. 컴퓨터 판독가능한 저장 매체에 있어서,
    상기 저장 매체는 실행될 때 적어도 하나의 프로세서로 하여금 UE (User Equipment)를 위한 동작들을 수행하도록 하는 지시들을 포함하는 적어도 하나의 프로그램 코드를 저장하고, 상기 동작들은:
    상위 계층으로부터 복수의 데이터 유닛들을 수신하는 단계;
    상기 복수의 데이터 유닛들의 우선 순위에 기반하여, 상기 복수의 데이터 유닛들 중 하나 이상의 데이터 유닛들을 사이드링크 그랜트에 할당하는 단계;
    상기 사이드링크 그랜트에 기반하여 상기 하나 이상의 데이터 유닛들을 송신하는 단계를 포함하고,
    상기 복수의 데이터 유닛들 중 적어도 하나의 데이터 유닛이 사이드링크 포지셔닝과 연관된 것에 기반하여, 상기 적어도 하나의 데이터 유닛의 우선 순위는, 상기 적어도 하나의 데이터 유닛의 사전에 정의된 우선 순위와 무관하게 최우선 순위로 고려되는,
    저장매체.
PCT/KR2023/014624 2022-10-06 2023-09-25 무선 통신 시스템에서 사이드링크 포지셔닝 데이터의 전송 방법 및 이를 위한 장치 WO2024076071A1 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2022-0127973 2022-10-06
KR20220127973 2022-10-06
KR20220127970 2022-10-06
KR10-2022-0127970 2022-10-06

Publications (1)

Publication Number Publication Date
WO2024076071A1 true WO2024076071A1 (ko) 2024-04-11

Family

ID=90608323

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/014624 WO2024076071A1 (ko) 2022-10-06 2023-09-25 무선 통신 시스템에서 사이드링크 포지셔닝 데이터의 전송 방법 및 이를 위한 장치

Country Status (1)

Country Link
WO (1) WO2024076071A1 (ko)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021194269A1 (en) * 2020-03-26 2021-09-30 Lg Electronics Inc. Harq feedback based on communication range and location of devices
KR20220005582A (ko) * 2019-06-05 2022-01-13 엘지전자 주식회사 Nr v2x에서 단일 단말의 prs 전송에 기반한 사이드링크 포지셔닝
WO2022034485A1 (en) * 2020-08-10 2022-02-17 Lenovo (Singapore) Pte. Ltd. Autonomous sidelink resource selection

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220005582A (ko) * 2019-06-05 2022-01-13 엘지전자 주식회사 Nr v2x에서 단일 단말의 prs 전송에 기반한 사이드링크 포지셔닝
WO2021194269A1 (en) * 2020-03-26 2021-09-30 Lg Electronics Inc. Harq feedback based on communication range and location of devices
WO2022034485A1 (en) * 2020-08-10 2022-02-17 Lenovo (Singapore) Pte. Ltd. Autonomous sidelink resource selection

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LG ELECTRONICS: "Discussion on potential solutions for SL positioning", 3GPP TSG RAN WG1 MEETING #110BIS-E, R1-2209483, 30 September 2022 (2022-09-30), XP052277402 *
SPREADTRUM COMMUNICATIONS: "Discussion on potential solutions for SL positioning", 3GPP TSG RAN WG1 #110B, R1-2208558, 30 September 2022 (2022-09-30), XP052276478 *

Similar Documents

Publication Publication Date Title
WO2020251318A1 (ko) Nr v2x에서 서버 단말의 prs 전송에 기반한 사이드링크 포지셔닝
WO2020246842A1 (ko) Nr v2x에서 단일 단말의 prs 전송에 기반한 사이드링크 포지셔닝
WO2021133104A1 (ko) 사이드링크 측위를 위한 사전 구성된 prs 전송 방법 및 이를 위한 장치
WO2022045798A1 (ko) 네트워크 설정 기반의 사이드링크 측위 방법 및 장치
WO2021141404A1 (ko) 사이드링크 기반의 측위를 수행하는 방법 및 장치
WO2021091245A1 (ko) 사이드링크를 이용한 측위 방법 및 이를 위한 장치
WO2021125631A1 (en) Method and apparatus for efficient assistance data transfer in nr positioning
WO2021221352A1 (ko) 무선 통신 시스템에서 빔포밍된 신호를 이용하여 측위를 수행하기 위한 방법 및 장치
WO2021221463A1 (ko) Nr v2x에서 비-독립적 비면허 대역 기반의 측위 방법 및 장치
WO2020159326A1 (ko) 무선 통신 시스템에서 단말의 위치를 측정하는 방법 및 단말
WO2021215771A1 (ko) 무선 통신 시스템에서 단말의 위치 결정 방법 및 장치
WO2020159325A1 (ko) 무선 통신 시스템에서 단말의 위치를 측정하는 방법 및 단말
WO2022080843A1 (ko) Nr v2x에서 자원을 결정하는 방법 및 장치
WO2022019593A1 (ko) 무선 통신 시스템에서 신호 전송 방법 및 장치
WO2022005052A1 (ko) 무선 통신 시스템에서 신호 전송 방법 및 장치
WO2021206483A1 (ko) Nr v2x에서 사이드링크 자원을 할당하는 방법 및 장치
WO2021206500A1 (ko) Nr v2x에서 nr 모듈과 lte 모듈이 공존하는 단말의 사이드링크 통신 방법
WO2021040432A1 (ko) Nr v2x에서 동기화 기준을 선택하는 방법 및 장치
WO2023014129A1 (ko) Nr v2x에서 sl drx 동작을 수행하는 방법 및 장치
WO2022005094A1 (ko) 무선 통신 시스템에서 신호 전송 방법 및 장치
WO2021225418A1 (ko) 무선 통신 시스템에서 신호 전송 방법 및 장치
WO2021225386A1 (ko) 무선 통신 시스템에서 위치 정보 전송 방법 및 장치
WO2024076071A1 (ko) 무선 통신 시스템에서 사이드링크 포지셔닝 데이터의 전송 방법 및 이를 위한 장치
WO2024085496A1 (ko) 무선 통신 시스템에서 사이드링크 포지셔닝 참조 신호를 송신하는 방법 및 이를 위한 장치
WO2024080629A1 (ko) 무선 통신 시스템에서 사이드링크 포지셔닝을 수행하는 방법 및 이를 위한 장치