WO2022080843A1 - Nr v2x에서 자원을 결정하는 방법 및 장치 - Google Patents

Nr v2x에서 자원을 결정하는 방법 및 장치 Download PDF

Info

Publication number
WO2022080843A1
WO2022080843A1 PCT/KR2021/014072 KR2021014072W WO2022080843A1 WO 2022080843 A1 WO2022080843 A1 WO 2022080843A1 KR 2021014072 W KR2021014072 W KR 2021014072W WO 2022080843 A1 WO2022080843 A1 WO 2022080843A1
Authority
WO
WIPO (PCT)
Prior art keywords
resource
information related
period
slots
resource pool
Prior art date
Application number
PCT/KR2021/014072
Other languages
English (en)
French (fr)
Inventor
고우석
이승민
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to JP2023522467A priority Critical patent/JP7493682B2/ja
Priority to KR1020237007916A priority patent/KR102688920B1/ko
Priority to EP21880490.4A priority patent/EP4203592A4/en
Publication of WO2022080843A1 publication Critical patent/WO2022080843A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/02Selection of wireless resources by user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/40Resource management for direct mode communication, e.g. D2D or sidelink
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • H04W92/18Interfaces between hierarchically similar devices between terminal devices

Definitions

  • the present disclosure relates to a wireless communication system.
  • a sidelink refers to a communication method in which a direct link is established between user equipment (UE), and voice or data is directly exchanged between terminals without going through a base station (BS).
  • SL is being considered as a method to solve the burden of the base station due to the rapidly increasing data traffic.
  • V2X vehicle-to-everything refers to a communication technology that exchanges information with other vehicles, pedestrians, and infrastructure-built objects through wired/wireless communication.
  • V2X can be divided into four types: vehicle-to-vehicle (V2V), vehicle-to-infrastructure (V2I), vehicle-to-network (V2N), and vehicle-to-pedestrian (V2P).
  • V2X communication may be provided through a PC5 interface and/or a Uu interface.
  • RAT radio access technology
  • MTC massive machine type communication
  • URLLC Ultra-Reliable and Low Latency Communication
  • a next-generation radio access technology in consideration of the like may be referred to as a new radio access technology (RAT) or a new radio (NR).
  • RAT new radio access technology
  • NR new radio
  • V2X vehicle-to-everything
  • FIG. 1 is a diagram for explaining the comparison of V2X communication based on RAT before NR and V2X communication based on NR.
  • the embodiment of FIG. 1 may be combined with various embodiments of the present disclosure.
  • V2X message may include location information, dynamic information, attribute information, and the like.
  • the UE may transmit a periodic message type CAM and/or an event triggered message type DENM to another UE.
  • V2X scenarios are being presented in NR.
  • various V2X scenarios may include vehicle platooning, advanced driving, extended sensors, remote driving, and the like.
  • a unit of a slot to which a time offset, a period, etc. is applied (eg, a unit of a logical slot or a unit of a physical slot) needs to be clearly defined.
  • a value used for the modular operation needs to be defined. If the above is not defined, a discrepancy may occur between the SL resource used by the UE receiving the information related to the CG resource and the SL resource allocated to the UE by the base station, which is in terms of radio resource management and quality assurance of SL communication. may be undesirable in
  • a method for a first device to perform wireless communication includes: receiving information related to a time offset of a sidelink (SL) resource and information related to a first period of the SL resource from a base station; determining the number of slots belonging to the resource pool within 10240ms; obtaining information related to a second period in units of logical slots from information related to the first period based on the number of slots belonging to the resource pool; and determining the time domain of the SL resource based on the information related to the second period, the information related to the time offset, and the number of slots belonging to the resource pool.
  • SL sidelink
  • a first device for performing wireless communication may include one or more memories for storing instructions; one or more transceivers; and one or more processors connecting the one or more memories and the one or more transceivers.
  • the one or more processors execute the instructions to receive, from a base station, information related to a time offset of a sidelink (SL) resource and information related to a first period of the SL resource; determine the number of slots belonging to the resource pool within 10240 ms; acquiring information related to a second period in units of logical slots from information related to the first period based on the number of slots belonging to the resource pool; and the time domain of the SL resource may be determined based on the information related to the second period, the information related to the time offset, and the number of slots belonging to the resource pool.
  • SL sidelink
  • the terminal can efficiently perform SL communication.
  • 1 is a diagram for explaining the comparison of V2X communication based on RAT before NR and V2X communication based on NR.
  • FIG. 2 shows a structure of an NR system according to an embodiment of the present disclosure.
  • FIG 3 illustrates a radio protocol architecture according to an embodiment of the present disclosure.
  • FIG. 4 shows the structure of an NR radio frame according to an embodiment of the present disclosure.
  • FIG 5 shows a slot structure of an NR frame according to an embodiment of the present disclosure.
  • FIG. 6 shows an example of a BWP according to an embodiment of the present disclosure.
  • FIG. 7 illustrates a terminal performing V2X or SL communication, according to an embodiment of the present disclosure.
  • FIG. 8 illustrates a procedure for a terminal to perform V2X or SL communication according to a transmission mode, according to an embodiment of the present disclosure.
  • FIG 9 illustrates three types of casts according to an embodiment of the present disclosure.
  • FIG. 10 shows an example of a CG type-1 resource according to an embodiment of the present disclosure.
  • FIG. 11 shows an example of a CG type-2 resource according to an embodiment of the present disclosure.
  • FIG. 12 illustrates a procedure for a terminal to determine an SL resource based on information related to CG configuration, according to an embodiment of the present disclosure.
  • FIG. 13 illustrates a method for a first device to perform wireless communication, according to an embodiment of the present disclosure.
  • FIG. 14 illustrates a method for a base station to perform wireless communication, according to an embodiment of the present disclosure.
  • FIG. 15 shows a communication system 1 according to an embodiment of the present disclosure.
  • FIG. 16 illustrates a wireless device according to an embodiment of the present disclosure.
  • FIG. 17 illustrates a signal processing circuit for a transmission signal according to an embodiment of the present disclosure.
  • FIG. 18 illustrates a wireless device according to an embodiment of the present disclosure.
  • FIG. 19 illustrates a portable device according to an embodiment of the present disclosure.
  • FIG. 20 illustrates a vehicle or an autonomous driving vehicle according to an embodiment of the present disclosure.
  • a or B (A or B) may mean “only A”, “only B”, or “both A and B”.
  • a or B (A or B) may be interpreted as “A and/or B (A and/or B)”.
  • A, B or C(A, B or C) herein means “only A”, “only B”, “only C”, or “any and any combination of A, B and C ( any combination of A, B and C)”.
  • a slash (/) or a comma (comma) may mean “and/or”.
  • A/B may mean “A and/or B”. Accordingly, “A/B” may mean “only A”, “only B”, or “both A and B”.
  • A, B, C may mean “A, B, or C”.
  • At least one of A and B may mean “only A”, “only B”, or “both A and B”.
  • the expression “at least one of A or B” or “at least one of A and/or B” means “at least one It can be interpreted the same as “A and B (at least one of A and B)”.
  • At least one of A, B and C means “only A”, “only B”, “only C”, or “A, B and C” any combination of A, B and C”. Also, “at least one of A, B or C” or “at least one of A, B and/or C” means can mean “at least one of A, B and C”.
  • parentheses used herein may mean “for example”.
  • PDCCH control information
  • PDCCH control information
  • parentheses used herein may mean “for example”.
  • PDCCH control information
  • CDMA code division multiple access
  • FDMA frequency division multiple access
  • TDMA time division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier frequency division multiple access
  • CDMA may be implemented with a radio technology such as universal terrestrial radio access (UTRA) or CDMA2000.
  • TDMA may be implemented with a radio technology such as global system for mobile communications (GSM)/general packet radio service (GPRS)/enhanced data rates for GSM evolution (EDGE).
  • GSM global system for mobile communications
  • GPRS general packet radio service
  • EDGE enhanced data rates for GSM evolution
  • OFDMA may be implemented with a wireless technology such as Institute of Electrical and Electronics Engineers (IEEE) 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, and evolved UTRA (E-UTRA).
  • IEEE 802.16m is an evolution of IEEE 802.16e, and provides backward compatibility with a system based on IEEE 802.16e.
  • UTRA is part of the universal mobile telecommunications system (UMTS).
  • 3rd generation partnership project (3GPP) long term evolution (LTE) is a part of evolved UMTS (E-UMTS) that uses evolved-UMTS terrestrial radio access (E-UTRA), and employs OFDMA in downlink and SC in uplink - Adopt FDMA.
  • LTE-A (advanced) is an evolution of 3GPP LTE.
  • 5G NR is a successor technology of LTE-A, and is a new clean-slate type mobile communication system with characteristics such as high performance, low latency, and high availability. 5G NR can utilize all available spectrum resources, from low frequency bands below 1 GHz, to intermediate frequency bands from 1 GHz to 10 GHz, and high frequency (millimeter wave) bands above 24 GHz.
  • 5G NR is mainly described, but the technical idea according to an embodiment of the present disclosure is not limited thereto.
  • FIG. 2 shows a structure of an NR system according to an embodiment of the present disclosure.
  • the embodiment of FIG. 2 may be combined with various embodiments of the present disclosure.
  • a Next Generation-Radio Access Network may include a base station 20 that provides user plane and control plane protocol termination to the terminal 10 .
  • the base station 20 may include a next generation-Node B (gNB) and/or an evolved-NodeB (eNB).
  • the terminal 10 may be fixed or mobile, and other terms such as a mobile station (MS), a user terminal (UT), a subscriber station (SS), a mobile terminal (MT), and a wireless device can be called
  • the base station may be a fixed station communicating with the terminal 10 , and may be referred to as a base transceiver system (BTS), an access point, or other terms.
  • BTS base transceiver system
  • the embodiment of FIG. 2 exemplifies a case including only gNB.
  • the base stations 20 may be connected to each other through an Xn interface.
  • the base station 20 may be connected to a 5G core network (5G Core Network: 5GC) through an NG interface. More specifically, the base station 20 may be connected to an access and mobility management function (AMF) 30 through an NG-C interface, and may be connected to a user plane function (UPF) 30 through an NG-U interface.
  • AMF access and mobility management function
  • UPF user plane function
  • the layers of the Radio Interface Protocol between the terminal and the network are based on the lower three layers of the Open System Interconnection (OSI) standard model, which is widely known in communication systems. layer), L2 (layer 2, second layer), and L3 (layer 3, third layer).
  • OSI Open System Interconnection
  • L2 layer 2, second layer
  • L3 layer 3, third layer
  • the physical layer belonging to the first layer provides an information transfer service using a physical channel
  • the RRC (Radio Resource Control) layer located in the third layer is a radio resource between the terminal and the network. plays a role in controlling To this end, the RRC layer exchanges RRC messages between the terminal and the base station.
  • FIG. 3 illustrates a radio protocol architecture according to an embodiment of the present disclosure.
  • the embodiment of FIG. 3 may be combined with various embodiments of the present disclosure.
  • Fig. 3 (a) shows a radio protocol stack of a user plane for Uu communication
  • Fig. 3 (b) is a radio protocol of a control plane for Uu communication.
  • FIG. 3C shows a radio protocol stack of a user plane for SL communication
  • FIG. 3D shows a radio protocol stack of a control plane for SL communication.
  • a physical layer provides an information transmission service to a higher layer using a physical channel.
  • the physical layer is connected to a medium access control (MAC) layer, which is an upper layer, through a transport channel.
  • MAC medium access control
  • Data moves between the MAC layer and the physical layer through the transport channel.
  • Transmission channels are classified according to how and with what characteristics data is transmitted over the air interface.
  • the physical channel may be modulated in an Orthogonal Frequency Division Multiplexing (OFDM) scheme, and time and frequency are used as radio resources.
  • OFDM Orthogonal Frequency Division Multiplexing
  • the MAC layer provides a service to a radio link control (RLC) layer, which is an upper layer, through a logical channel.
  • RLC radio link control
  • the MAC layer provides a mapping function from a plurality of logical channels to a plurality of transport channels.
  • the MAC layer provides a logical channel multiplexing function by mapping a plurality of logical channels to a single transport channel.
  • the MAC sublayer provides data transfer services on logical channels.
  • the RLC layer performs concatenation, segmentation, and reassembly of RLC service data units (SDUs).
  • SDUs RLC service data units
  • the RLC layer has a transparent mode (Transparent Mode, TM), an unacknowledged mode (Unacknowledged Mode, UM) and an acknowledged mode (Acknowledged Mode).
  • TM Transparent Mode
  • UM Unacknowledged Mode
  • AM acknowledged Mode
  • AM RLC provides error correction through automatic repeat request (ARQ).
  • the RRC (Radio Resource Control) layer is defined only in the control plane.
  • the RRC layer is responsible for controlling logical channels, transport channels and physical channels in relation to configuration, re-configuration, and release of radio bearers.
  • RB is in the first layer (physical layer or PHY layer) and second layer (MAC layer, RLC layer, PDCP (Packet Data Convergence Protocol) layer, SDAP (Service Data Adaptation Protocol) layer) for data transfer between the terminal and the network.
  • Logical path provided by
  • Functions of the PDCP layer in the user plane include delivery of user data, header compression and ciphering.
  • Functions of the PDCP layer in the control plane include transmission of control plane data and encryption/integrity protection.
  • the SDAP Service Data Adaptation Protocol
  • the SDAP layer performs mapping between QoS flows and data radio bearers, and marking QoS flow identifiers (IDs) in downlink and uplink packets.
  • Setting the RB means defining the characteristics of a radio protocol layer and channel to provide a specific service, and setting each specific parameter and operation method.
  • the RB may be further divided into a Signaling Radio Bearer (SRB) and a Data Radio Bearer (DRB).
  • SRB Signaling Radio Bearer
  • DRB Data Radio Bearer
  • the terminal When an RRC connection is established between the RRC layer of the terminal and the RRC layer of the base station, the terminal is in the RRC_CONNECTED state, otherwise it is in the RRC_IDLE state.
  • the RRC_INACTIVE state is additionally defined, and the UE in the RRC_INACTIVE state may release the connection to the base station while maintaining the connection to the core network.
  • a downlink transmission channel for transmitting data from the network to the terminal there are a BCH (Broadcast Channel) for transmitting system information and a downlink SCH (Shared Channel) for transmitting user traffic or control messages.
  • BCH Broadcast Channel
  • SCH Shared Channel
  • downlink multicast or broadcast service traffic or control messages they may be transmitted through a downlink SCH or may be transmitted through a separate downlink multicast channel (MCH).
  • RACH random access channel
  • SCH uplink shared channel
  • the logical channels that are located above the transport channel and are mapped to the transport channel include a Broadcast Control Channel (BCCH), a Paging Control Channel (PCCH), a Common Control Channel (CCCH), a Multicast Control Channel (MCCH), and a Multicast Traffic Channel (MTCH). Channel), etc.
  • BCCH Broadcast Control Channel
  • PCCH Paging Control Channel
  • CCCH Common Control Channel
  • MCCH Multicast Control Channel
  • MTCH Multicast Traffic Channel
  • FIG. 4 shows the structure of an NR radio frame according to an embodiment of the present disclosure.
  • the embodiment of FIG. 4 may be combined with various embodiments of the present disclosure.
  • radio frames may be used in uplink and downlink transmission in NR.
  • the radio frame has a length of 10 ms and may be defined as two 5 ms half-frames (HF).
  • a half-frame may include 5 1ms subframes (Subframe, SF).
  • a subframe may be divided into one or more slots, and the number of slots in a subframe may be determined according to a subcarrier spacing (SCS).
  • SCS subcarrier spacing
  • Each slot may include 12 or 14 OFDM(A) symbols according to a cyclic prefix (CP).
  • CP cyclic prefix
  • each slot may include 14 symbols.
  • each slot may include 12 symbols.
  • the symbol may include an OFDM symbol (or a CP-OFDM symbol), a single carrier-FDMA (SC-FDMA) symbol (or a Discrete Fourier Transform-spread-OFDM (DFT-s-OFDM) symbol).
  • Table 1 below shows the number of symbols per slot (N slot symb ), the number of slots per frame (N frame,u slot ) and the number of slots per subframe (N subframe, u slot ) is exemplified.
  • Table 2 illustrates the number of symbols per slot, the number of slots per frame, and the number of slots per subframe according to SCS when the extended CP is used.
  • OFDM(A) numerology eg, SCS, CP length, etc.
  • OFDM(A) numerology eg, SCS, CP length, etc.
  • an (absolute time) interval of a time resource eg, a subframe, a slot, or a TTI
  • a TU Time Unit
  • multiple numerology or SCS to support various 5G services may be supported. For example, when SCS is 15 kHz, wide area in traditional cellular bands can be supported, and when SCS is 30 kHz/60 kHz, dense-urban, lower latency) and a wider carrier bandwidth may be supported. For SCS of 60 kHz or higher, bandwidths greater than 24.25 GHz may be supported to overcome phase noise.
  • the NR frequency band may be defined as two types of frequency ranges.
  • the two types of frequency ranges may be FR1 and FR2.
  • the numerical value of the frequency range may be changed.
  • the two types of frequency ranges may be as shown in Table 3 below.
  • FR1 may mean "sub 6GHz range”
  • FR2 may mean “above 6GHz range”
  • mmW millimeter wave
  • FR1 may include a band of 410 MHz to 7125 MHz as shown in Table 4 below. That is, FR1 may include a frequency band of 6 GHz (or 5850, 5900, 5925 MHz, etc.) or higher. For example, a frequency band of 6GHz (or 5850, 5900, 5925 MHz, etc.) or higher included in FR1 may include an unlicensed band. The unlicensed band may be used for various purposes, for example, for communication for a vehicle (eg, autonomous driving).
  • FIG. 5 shows a slot structure of an NR frame according to an embodiment of the present disclosure.
  • the embodiment of FIG. 5 may be combined with various embodiments of the present disclosure.
  • a slot includes a plurality of symbols in the time domain.
  • one slot may include 14 symbols, but in the case of an extended CP, one slot may include 12 symbols.
  • one slot may include 7 symbols, but in the case of an extended CP, one slot may include 6 symbols.
  • a carrier wave includes a plurality of subcarriers in the frequency domain.
  • a resource block (RB) may be defined as a plurality of (eg, 12) consecutive subcarriers in the frequency domain.
  • BWP Bandwidth Part
  • P Physical Resource Block
  • a carrier wave may include a maximum of N (eg, 5) BWPs. Data communication may be performed through the activated BWP.
  • Each element may be referred to as a resource element (RE) in the resource grid, and one complex symbol may be mapped.
  • RE resource element
  • a BWP (Bandwidth Part) may be a contiguous set of PRBs (physical resource blocks) in a given neurology.
  • the PRB may be selected from a contiguous subset of a common resource block (CRB) for a given neuronology on a given carrier.
  • CRB common resource block
  • the BWP may be at least one of an active BWP, an initial BWP, and/or a default BWP.
  • the UE may not monitor downlink radio link quality in a DL BWP other than an active DL BWP on a PCell (primary cell).
  • the UE may not receive a PDCCH, a physical downlink shared channel (PDSCH), or a reference signal (CSI-RS) (except for RRM) outside of the active DL BWP.
  • the UE may not trigger a CSI (Channel State Information) report for the inactive DL BWP.
  • CSI Channel State Information
  • the UE may not transmit a physical uplink control channel (PUCCH) or a physical uplink shared channel (PUSCH) outside the active UL BWP.
  • the initial BWP may be given as a set of contiguous RBs for a maintaining minimum system information (RMSI) CORESET (control resource set) (set by a physical broadcast channel (PBCH)).
  • RMSI minimum system information
  • PBCH physical broadcast channel
  • the initial BWP may be given by a system information block (SIB) for a random access procedure.
  • SIB system information block
  • the default BWP may be set by a higher layer.
  • the initial value of the default BWP may be the initial DL BWP.
  • the terminal may switch the active BWP of the terminal to the default BWP.
  • BWP may be defined for SL.
  • the same SL BWP can be used for transmission and reception.
  • the transmitting terminal may transmit an SL channel or an SL signal on a specific BWP
  • the receiving terminal may receive an SL channel or an SL signal on the specific BWP.
  • the SL BWP may be defined separately from the Uu BWP, and the SL BWP may have separate configuration signaling from the Uu BWP.
  • the terminal may receive the configuration for the SL BWP from the base station / network.
  • the terminal may receive the configuration for Uu BWP from the base station/network.
  • the SL BWP may be configured (in advance) for the out-of-coverage NR V2X terminal and the RRC_IDLE terminal within the carrier. For a UE in RRC_CONNECTED mode, at least one SL BWP may be activated in a carrier.
  • FIG. 6 shows an example of a BWP according to an embodiment of the present disclosure.
  • the embodiment of FIG. 6 may be combined with various embodiments of the present disclosure. In the embodiment of FIG. 6 , it is assumed that there are three BWPs.
  • a common resource block may be a numbered carrier resource block from one end to the other end of a carrier band.
  • the PRB may be a numbered resource block within each BWP.
  • Point A may indicate a common reference point for a resource block grid (resource block grid).
  • BWP may be set by a point A, an offset from the point A (N start BWP ), and a bandwidth (N size BWP ).
  • the point A may be an external reference point of the PRB of the carrier to which subcarrier 0 of all neumonologies (eg, all neumonologies supported by the network in that carrier) is aligned.
  • the offset may be the PRB spacing between point A and the lowest subcarrier in a given numerology.
  • the bandwidth may be the number of PRBs in a given neurology.
  • V2X or SL communication will be described.
  • a Sidelink Synchronization Signal is an SL-specific sequence and may include a Primary Sidelink Synchronization Signal (PSSS) and a Secondary Sidelink Synchronization Signal (SSSS).
  • PSSS Primary Sidelink Synchronization Signal
  • SSSS Secondary Sidelink Synchronization Signal
  • the PSSS may be referred to as a Sidelink Primary Synchronization Signal (S-PSS)
  • S-SSS Sidelink Secondary Synchronization Signal
  • S-SSS Sidelink Secondary Synchronization Signal
  • length-127 M-sequences may be used for S-PSS
  • length-127 Gold sequences may be used for S-SSS.
  • the terminal may detect an initial signal using S-PSS and may obtain synchronization.
  • the UE may acquire detailed synchronization using S-PSS and S-SSS, and may detect a synchronization signal ID.
  • PSBCH Physical Sidelink Broadcast Channel
  • PSBCH Physical Sidelink Broadcast Channel
  • the basic information is SLSS-related information, duplex mode (Duplex Mode, DM), TDD UL/DL (Time Division Duplex Uplink/Downlink) configuration, resource pool related information, type of application related to SLSS, It may be a subframe offset, broadcast information, or the like.
  • the payload size of PSBCH may be 56 bits including 24-bit CRC (Cyclic Redundancy Check).
  • S-PSS, S-SSS, and PSBCH may be included in a block format supporting periodic transmission (eg, SL SS (Synchronization Signal)/PSBCH block, hereinafter S-SSB (Sidelink-Synchronization Signal Block)).
  • the S-SSB may have the same numerology (ie, SCS and CP length) as a Physical Sidelink Control Channel (PSCCH)/Physical Sidelink Shared Channel (PSSCH) in the carrier, and the transmission bandwidth is (pre)set SL Sidelink (BWP) BWP).
  • the bandwidth of the S-SSB may be 11 resource blocks (RBs).
  • the PSBCH may span 11 RBs.
  • the frequency position of the S-SSB may be set (in advance). Therefore, the UE does not need to perform hypothesis detection in frequency in order to discover the S-SSB in the carrier.
  • FIG. 7 illustrates a terminal performing V2X or SL communication, according to an embodiment of the present disclosure.
  • the embodiment of FIG. 7 may be combined with various embodiments of the present disclosure.
  • terminal in V2X or SL communication may mainly refer to a user's terminal.
  • the base station may also be regarded as a kind of terminal.
  • terminal 1 may be the first apparatus 100
  • terminal 2 may be the second apparatus 200 .
  • UE 1 may select a resource unit corresponding to a specific resource from a resource pool indicating a set of a series of resources. And, UE 1 may transmit an SL signal using the resource unit.
  • terminal 2 which is a receiving terminal, may receive a resource pool configured for terminal 1 to transmit a signal, and may detect a signal of terminal 1 in the resource pool.
  • the base station may inform the terminal 1 of the resource pool.
  • another terminal informs terminal 1 of the resource pool, or terminal 1 may use a preset resource pool.
  • the resource pool may be composed of a plurality of resource units, and each terminal may select one or a plurality of resource units to use for its own SL signal transmission.
  • the transmission mode may be referred to as a mode or a resource allocation mode.
  • a transmission mode in LTE may be referred to as an LTE transmission mode
  • a transmission mode in NR may be referred to as an NR resource allocation mode.
  • (a) of FIG. 8 shows a terminal operation related to LTE transmission mode 1 or LTE transmission mode 3.
  • (a) of FIG. 8 shows a terminal operation related to NR resource allocation mode 1.
  • LTE transmission mode 1 may be applied to general SL communication
  • LTE transmission mode 3 may be applied to V2X communication.
  • (b) of FIG. 8 shows a terminal operation related to LTE transmission mode 2 or LTE transmission mode 4.
  • (b) of FIG. 8 shows a terminal operation related to NR resource allocation mode 2.
  • the base station may schedule an SL resource to be used by the terminal for SL transmission.
  • the base station may perform resource scheduling to UE 1 through PDCCH (eg, Downlink Control Information (DCI)) or RRC signaling (eg, Configured Grant Type 1 or Configured Grant Type 2), and UE 1 is the V2X or SL communication with UE 2 may be performed according to resource scheduling.
  • PDCCH Downlink Control Information
  • RRC signaling eg, Configured Grant Type 1 or Configured Grant Type 2
  • UE 1 is the V2X or SL communication with UE 2 may be performed according to resource scheduling.
  • UE 1 transmits SCI (Sidelink Control Information) to UE 2 through a Physical Sidelink Control Channel (PSCCH), and then transmits data based on the SCI to UE 2 through a Physical Sidelink Shared Channel (PSSCH).
  • PSSCH Physical Sidelink Shared Channel
  • the UE may be provided with or allocated resources for transmission of one or more SLs of one TB (Transport Block) from the base station through a dynamic grant.
  • the base station may provide a resource for transmission of the PSCCH and/or PSSCH to the terminal using a dynamic grant.
  • the transmitting terminal may report the SL HARQ (Hybrid Automatic Repeat Request) feedback received from the receiving terminal to the base station.
  • PUCCH resources and timing for reporting SL HARQ feedback to the base station may be determined based on an indication in the PDCCH for the base station to allocate resources for SL transmission.
  • DCI may indicate a slot offset between DCI reception and a first SL transmission scheduled by DCI.
  • the minimum gap between the DCI scheduling the SL transmission resource and the first scheduled SL transmission resource may not be smaller than the processing time of the corresponding terminal.
  • the terminal may be provided or allocated a resource set from the base station periodically for a plurality of SL transmissions through a configured grant.
  • the grant to be configured may include a configured grant type 1 or a configured grant type 2.
  • the terminal can determine the TB to transmit in each case (occasions) indicated by a given configured grant (given configured grant).
  • the base station may allocate the SL resource to the terminal on the same carrier, and may allocate the SL resource to the terminal on different carriers.
  • the terminal can determine the SL transmission resource within the SL resource set by the base station / network or the preset SL resource.
  • the configured SL resource or the preset SL resource may be a resource pool.
  • the UE may autonomously select or schedule a resource for SL transmission.
  • the UE may perform SL communication by selecting a resource by itself within a set resource pool.
  • the terminal may select a resource by itself within the selection window by performing a sensing (sensing) and resource (re)selection procedure.
  • the sensing may be performed in units of subchannels.
  • UE 1 which has selected a resource within the resource pool, transmits the SCI to UE 2 through the PSCCH, and may transmit data based on the SCI to UE 2 through the PSSCH.
  • FIG. 9 illustrates three types of casts according to an embodiment of the present disclosure.
  • the embodiment of FIG. 9 may be combined with various embodiments of the present disclosure.
  • FIG. 9(a) shows broadcast type SL communication
  • FIG. 9(b) shows unicast type SL communication
  • FIG. 9(c) shows groupcast type SL communication.
  • the terminal may perform one-to-one communication with another terminal.
  • the terminal may perform SL communication with one or more terminals in a group to which the terminal belongs.
  • SL groupcast communication may be replaced with SL multicast communication, SL one-to-many communication, or the like.
  • HARQ Hybrid Automatic Repeat Request
  • HARQ feedback and HARQ combining in the physical layer may be supported.
  • the receiving terminal when the receiving terminal operates in resource allocation mode 1 or 2, the receiving terminal may receive a PSSCH from the transmitting terminal, and the receiving terminal may receive Sidelink Feedback Control Information (SFCI) through a Physical Sidelink Feedback Channel (PSFCH).
  • SFCI Sidelink Feedback Control Information
  • PSFCH Physical Sidelink Feedback Channel
  • HARQ feedback for the PSSCH may be transmitted to the transmitting terminal using the format.
  • SL HARQ feedback may be enabled for unicast.
  • non-CBG non-Code Block Group
  • the receiving terminal when the receiving terminal decodes the PSCCH targeting the receiving terminal, and the receiving terminal successfully decodes the transport block related to the PSCCH, the receiving terminal HARQ-ACK may be generated. And, the receiving terminal may transmit the HARQ-ACK to the transmitting terminal.
  • the receiving terminal if the receiving terminal does not successfully decode the transport block related to the PSCCH after the receiving terminal decodes the PSCCH targeting the receiving terminal, the receiving terminal may generate a HARQ-NACK. And, the receiving terminal may transmit the HARQ-NACK to the transmitting terminal.
  • SL HARQ feedback may be enabled for groupcast.
  • two HARQ feedback options may be supported for groupcast.
  • Groupcast option 1 After the receiving terminal decodes the PSCCH targeting the receiving terminal, if the receiving terminal fails to decode the transport block related to the PSCCH, the receiving terminal transmits the HARQ-NACK through the PSFCH It can be transmitted to the transmitting terminal. On the other hand, if the receiving terminal decodes the PSCCH targeting the receiving terminal, and the receiving terminal successfully decodes the transport block related to the PSCCH, the receiving terminal may not transmit the HARQ-ACK to the transmitting terminal.
  • (2) groupcast option 2 If the receiving terminal fails to decode a transport block related to the PSCCH after the receiving terminal decodes the PSCCH targeting the receiving terminal, the receiving terminal transmits a HARQ-NACK through the PSFCH It can be transmitted to the transmitting terminal. And, when the receiving terminal decodes the PSCCH targeted to the receiving terminal, and the receiving terminal successfully decodes the transport block related to the PSCCH, the receiving terminal may transmit a HARQ-ACK to the transmitting terminal through the PSFCH.
  • all terminals performing groupcast communication may share a PSFCH resource.
  • terminals belonging to the same group may transmit HARQ feedback using the same PSFCH resource.
  • each terminal performing groupcast communication may use different PSFCH resources for HARQ feedback transmission.
  • terminals belonging to the same group may transmit HARQ feedback using different PSFCH resources.
  • the receiving terminal transmits the HARQ feedback to the transmitting terminal based on the TX-RX (Transmission-Reception) distance and/or RSRP (Reference Signal Received Power).
  • TX-RX Transmission-Reception
  • RSRP Reference Signal Received Power
  • the receiving terminal may transmit HARQ feedback for the PSSCH to the transmitting terminal.
  • the receiving terminal may not transmit the HARQ feedback for the PSSCH to the transmitting terminal.
  • the transmitting terminal may notify the receiving terminal of the location of the transmitting terminal through the SCI related to the PSSCH.
  • the SCI related to the PSSCH may be the second SCI.
  • the receiving terminal may estimate or obtain the TX-RX distance based on the location of the receiving terminal and the location of the transmitting terminal.
  • the receiving terminal can know the communication range requirement used for the PSSCH by decoding the SCI related to the PSSCH.
  • the time between the PSFCH and the PSSCH may be set or preset.
  • this may be indicated to the base station by the terminal within coverage using the PUCCH.
  • the transmitting terminal may transmit an indication to the serving base station of the transmitting terminal in a form such as a Scheduling Request (SR)/Buffer Status Report (BSR) rather than the form of HARQ ACK/NACK.
  • SR Scheduling Request
  • BSR Buffer Status Report
  • the base station can schedule the SL retransmission resource to the terminal.
  • the time between the PSFCH and the PSSCH may be set or preset.
  • TDM between PSCCH/PSSCH and PSFCH may be allowed for the PSFCH format for SL in the slot.
  • a sequence-based PSFCH format having one symbol may be supported.
  • the one symbol may not be an automatic gain control (AGC) period.
  • the sequence-based PSFCH format may be applied to unicast and groupcast.
  • the PSFCH resource may be periodically set to N slot period or set in advance.
  • N may be set to one or more values of 1 or more.
  • N can be 1, 2 or 4.
  • HARQ feedback for transmission in a specific resource pool may be transmitted only through the PSFCH on the specific resource pool.
  • slot #(N + A) may include a PSFCH resource.
  • A may be the smallest integer greater than or equal to K.
  • K may be the number of logical slots. In this case, K may be the number of slots in the resource pool. Or, for example, K may be the number of physical slots. In this case, K may be the number of slots inside and outside the resource pool.
  • the receiving terminal when the receiving terminal transmits HARQ feedback on a PSFCH resource in response to one PSSCH transmitted by the transmitting terminal to the receiving terminal, the receiving terminal is based on an implicit mechanism within the configured resource pool
  • the PSFCH resource It is possible to determine a frequency domain and/or a code domain of
  • the receiving terminal is a slot index related to PSCCH / PSSCH / PSFCH, a subchannel related to PSCCH / PSSCH, and / or an identifier for distinguishing each receiving terminal in a group for HARQ feedback based on groupcast option 2 Based on at least one, a frequency domain and/or a code domain of the PSFCH resource may be determined. And/or, for example, the receiving terminal may determine the frequency domain and/or code domain of the PSFCH resource based on at least one of SL RSRP, SINR, L1 source ID, and/or location information.
  • the UE when the HARQ feedback transmission through the PSFCH of the UE and the HARQ feedback reception through the PSFCH overlap, the UE either transmits the HARQ feedback through the PSFCH or receives the HARQ feedback through the PSFCH based on the priority rule.
  • the priority rule may be based on at least a priority indication of the relevant PSCCH/PSSCH.
  • the UE may select a specific HARQ feedback transmission based on a priority rule.
  • the priority rule may be based on at least a priority indication of the relevant PSCCH/PSSCH.
  • SCI Servicelink Control Information
  • Control information transmitted by the base station to the terminal through the PDCCH may be referred to as downlink control information (DCI), whereas control information transmitted by the terminal to another terminal through the PSCCH may be referred to as SCI.
  • DCI downlink control information
  • SCI control information transmitted by the terminal to another terminal through the PSCCH
  • the UE may know the number of start symbols of the PSCCH and/or the number of symbols of the PSCCH.
  • the SCI may include SL scheduling information.
  • the UE may transmit at least one SCI to another UE to schedule the PSSCH.
  • one or more SCI formats may be defined.
  • the transmitting terminal may transmit the SCI to the receiving terminal on the PSCCH.
  • the receiving terminal may decode one SCI to receive the PSSCH from the transmitting terminal.
  • the transmitting terminal may transmit two consecutive SCIs (eg, 2-stage SCI) to the receiving terminal on the PSCCH and/or the PSSCH.
  • the receiving terminal may decode two consecutive SCIs (eg, 2-stage SCI) to receive the PSSCH from the transmitting terminal.
  • the SCI configuration fields are divided into two groups in consideration of the (relatively) high SCI payload size
  • the SCI including the first SCI configuration field group is the first SCI or the 1st SCI .
  • the SCI including the second SCI configuration field group may be referred to as a second SCI or a 2nd SCI.
  • the transmitting terminal may transmit the first SCI to the receiving terminal through the PSCCH.
  • the transmitting terminal may transmit the second SCI to the receiving terminal on the PSCCH and/or the PSSCH.
  • the second SCI may be transmitted to the receiving terminal through (independent) PSCCH or may be piggybacked and transmitted together with data through PSSCH.
  • two consecutive SCIs may be applied for different transmissions (eg, unicast, broadcast, or groupcast).
  • the transmitting terminal may transmit some or all of the following information to the receiving terminal through SCI.
  • the transmitting terminal may transmit some or all of the following information to the receiving terminal through the first SCI and/or the second SCI.
  • PSSCH and / or PSCCH related resource allocation information for example, time / frequency resource location / number, resource reservation information (eg, period), and / or
  • SL CSI transmission indicator (or SL (L1) RSRP (and / or SL (L1) RSRQ and / or SL (L1) RSSI) information transmission indicator), and / or
  • NDI New Data Indicator
  • RV Redundancy Version
  • QoS information eg, priority information, and/or
  • - Reference signal eg, DMRS, etc.
  • information related to decoding and/or channel estimation of data transmitted through PSSCH for example, information related to a pattern of (time-frequency) mapping resource of DMRS, rank (rank) ) information, antenna port index information;
  • the first SCI may include information related to channel sensing.
  • the receiving terminal may decode the second SCI by using the PSSCH DMRS.
  • a polar code used for the PDCCH may be applied to the second SCI.
  • the payload size of the first SCI may be the same for unicast, groupcast and broadcast.
  • the receiving terminal does not need to perform blind decoding of the second SCI.
  • the first SCI may include scheduling information of the second SCI.
  • the transmitting terminal since the transmitting terminal may transmit at least one of SCI, the first SCI, and/or the second SCI to the receiving terminal through the PSCCH, the PSCCH is the SCI, the first SCI and/or the first SCI. 2 may be substituted/substituted with at least one of SCI. And/or, for example, SCI may be replaced/substituted with at least one of PSCCH, first SCI, and/or second SCI. And/or, for example, since the transmitting terminal may transmit the second SCI to the receiving terminal through the PSSCH, the PSSCH may be replaced/substituted with the second SCI.
  • “configuration” or “definition” means “configuration” and It may include transmitting related information or information related to “definition” to the terminal.
  • “setting” or “definition” may include that the base station or the network sets information related to “configuration” or information related to “definition” for the terminal or sets in advance.
  • the base station transmits PSCCH, PSSCH, PSFCH-related resources and/or the UE to the base station for SL communication HARQ feedback
  • a resource related to the PUCCH to be transmitted may be determined, and the base station may allocate the determined resource to the terminal.
  • the base station may transmit information related to the timing and location of the resource to the UE through a DCI and/or RRC message.
  • the base station allocates resources to the UE may be as follows.
  • the base station can directly and dynamically allocate resources to the UE based on the DG. For example, the base station may transmit DCI including information related to the DG resource to the UE.
  • the base station may allocate a periodic transmission resource to the UE through higher layer signaling.
  • the higher layer signaling may be RRC signaling.
  • CG type-2 Configured Grant type-2
  • the base station may allocate a periodic transmission resource to the UE through higher layer signaling, and the base station transmits the periodic transmission resource through DCI It can be dynamically activated (activation) or deactivated (deactivation).
  • the higher layer signaling may be RRC signaling.
  • a resource allocated by DG may be referred to as a DG resource, and a resource allocated by a CG may be referred to as a CG resource.
  • a resource allocated by CG type-1 may be referred to as a CC type-1 resource
  • a resource allocated by CG type-2 may be referred to as a CG type-2 resource.
  • a unit of a slot to which a time offset, a period, etc. is applied (eg, a unit of a logical slot or a unit of a physical slot) needs to be clearly defined.
  • a value used for the modular operation needs to be defined. If the above is not defined, a discrepancy may occur between the SL resource used by the UE that has received the information related to the CG resource and the SL resource allocated to the UE by the base station, which is in terms of radio resource management and quality assurance of SL communication. may be undesirable in
  • a method for determining an SL transmission resource based on CG type-1 and CG type-2 in resource allocation mode 1 and an apparatus supporting the same are proposed.
  • configuration information related to CG type-1 that the base station transmits to the UE through RRC signaling may include the following.
  • configuration information related to CG type-1 transmitted by the base station to the UE through RRC signaling may be referred to as RRC configuration or RRC configuration information.
  • Timing offset timing offset for the first CG resource (timing offset)
  • Tables 5 and 6 show examples of configuration information related to CG.
  • FIG. 10 shows an example of a CG type-1 resource according to an embodiment of the present disclosure.
  • the embodiment of FIG. 10 may be combined with various embodiments of the present disclosure.
  • FIG. 11 shows an example of a CG type-2 resource according to an embodiment of the present disclosure.
  • the embodiment of FIG. 11 may be combined with various embodiments of the present disclosure.
  • the UE may determine the first SL resource corresponding to the CG type-2 resource for transmitting the PSCCH/PSSCH based on the time at which the DCI is received and the second offset signaled through the DCI.
  • the base station may limit the CG type-1 resource to a resource in the SL resource pool to be configured, and set the first offset and period to the UE in units of SL slots belonging to the SL resource pool.
  • the base station limits the CG type-1 resource to the resources in the SL resource pool to be set, and transmits information related to the first offset and information related to the period to the UE in units of SL slots belonging to the SL resource pool.
  • resources that do not belong to the SL resource pool such as S-SSB resources (eg, resources for S-SSB transmission and reception) or reserved resources, may be excluded from setting the CG type-1 resource.
  • the UE may be allocated a CG type-1 resource or a CG type-2 resource from the base station through an RRC message and/or DCI.
  • the UE may determine a CG type-1 resource or a CG type-2 resource based on Table 7.
  • the UE may determine/conside the specific SL slot as a CG type-1 resource or a CG type-2 resource, and the UE may SL communication may be performed based on a CG type-1 resource or a CG type-2 resource.
  • sl_periodCG may be a value in which the first offset is set as an absolute time value (eg, ms).
  • the base station when the base station sets the first offset as an absolute time value (eg, ms) as in the sl_periodCG , the first The number of SL logical slots belonging to the SL resource pool corresponding to the offset time may be variable.
  • the UE may calculate/obtain a final value represented by an SL logical slot belonging to the SL resource pool based on Table 8.
  • N 1 bitmap may indicate the total number of '1's in the bitmap determining the SL resource pool
  • bitmap length may indicate the total number of bits in the bitmap determining the SL resource pool
  • the UE may be allocated a CG type-1 resource or a CG type-2 resource from the base station through an RRC message and/or DCI.
  • the UE may determine a CG type-1 resource or a CG type-2 resource based on Table 9.
  • the UE may determine/conside the specific SL slot as a CG type-1 resource or a CG type-2 resource, and the UE may SL communication may be performed based on a CG type-1 resource or a CG type-2 resource.
  • the UE may expect/determine that the base station sets the numberOfSLSlotsPerFrame value to have a fixed natural number value for each physical frame. For example, the base station may transmit a numberOfSLSlotsPerFrame value having a fixed natural number value to the UE for each physical frame. For example, when the value of numberOfSLSlotsPerFrame is not a natural number, the UE may determine/convert the value of numberOfSLSlotsPerFrame to a rounded value of the value of numberOfSLSlotsPerFrame .
  • the UE may determine/convert the value of numberOfSLSlotsPerFrame to a rounded down value of the value of numberOfSLSlotsPerFrame .
  • the UE may determine/convert the value of numberOfSLSlotsPerFrame to a rounded value of the value of numberOfSLSlotsPerFrame .
  • the UE when the slot determined by the equation in Table 9 is not a resource belonging to the SL resource pool, the UE is not faster than the slot satisfying the above equation, but an SL slot belonging to the closest SL resource pool in time may be determined as a CG resource.
  • the UE may be allocated a CG type-1 resource or a CG type-2 resource from the base station through an RRC message and/or DCI.
  • the UE may determine a CG type-1 resource or a CG type-2 resource based on Table 10.
  • the UE may determine/conside the specific SL slot as a CG type-1 resource or a CG type-2 resource, and the UE may SL communication may be performed based on a CG type-1 resource or a CG type-2 resource.
  • the UE since the number of SL logical slots belonging to an SL resource pool or an SL resource that can be used for SL communication may be different for each physical frame, the UE uses an SL logical slot belonging to every i-th frame.
  • a CG type-1 resource or a CG type-2 resource may be determined based on numberofSLSlotsPerFrame i , which is the number of logical slots. Specifically, the UE considers the number of SL logical slots belonging to every i-th frame, and determines a specific SL slot satisfying the equation in Table 10 as a CG type-1 resource or a CG type-2 resource. there is.
  • the UE is information related to time offset (eg, sl-TimeOffsetCGType1), information related to a period (eg, PeriodicitySL), and information indicating to which period the CG resource belongs to at least one of information (eg, S)
  • a first value may be obtained based on , and the UE may obtain a second value that is the remaining value obtained by dividing the first value by the number of logical slots per 1024 frames. That is, the UE may obtain the second value, which is the remaining value obtained by dividing the first value by the number of slots belonging to the resource pool within 10240 ms. Thereafter, the terminal may determine that the slot corresponding to the second value is the first slot of the S-th SL grant.
  • FIG. 12 illustrates a procedure for a terminal to determine an SL resource based on information related to CG configuration, according to an embodiment of the present disclosure.
  • the embodiment of FIG. 12 may be combined with various embodiments of the present disclosure.
  • the first UE may receive information related to CG configuration from the base station.
  • information related to CG setting may be set as shown in Tables 5 and 6.
  • the information related to the CG configuration may include information related to a period of a CG resource and information related to a time offset.
  • the first UE may determine the SL resource based on the information related to the CG configuration. For example, the first UE may determine the first SL resource (ie, slot) for each period based on information related to the period of the CG resource and information related to the time offset. For example, the first UE may determine the first SL resource (ie, slot) for each period based on at least one of Tables 7 to 11.
  • the first UE may obtain the first value based on information related to the time offset and information related to the period of the CG resource (ie, information related to the period of the logical unit).
  • the first UE may obtain a residual value (ie, a second value) obtained by dividing the first value by the number of slots belonging to the resource pool (T ⁇ max ).
  • the first UE may determine that the slot corresponding to the second value is a slot including the first CG resource of the S-th period.
  • information related to the period of the CG resource may be provided by the base station in a physical time unit (eg, ms), and the first UE is based on the number of slots belonging to the resource pool within 10240 ms,
  • the period of the CG resource which is the physical time unit, may be converted into a logical time unit.
  • the number of slots belonging to the resource pool may be obtained based on Table 12.
  • step S1230 the first UE may transmit the PSCCH to the second UE based on the SL resource.
  • step S1240 the first UE may transmit the PSSCH related to the PSCCH to the second UE based on the SL resource.
  • FIG. 13 illustrates a method for a first device to perform wireless communication, according to an embodiment of the present disclosure.
  • the embodiment of FIG. 13 may be combined with various embodiments of the present disclosure.
  • the first device may receive information related to a time offset of a sidelink (SL) resource and information related to a first period of the SL resource from the base station.
  • the first device may determine the number of slots belonging to the resource pool within 10240ms.
  • the first device may obtain information related to the second period in units of logical slots from the information related to the first period based on the number of slots belonging to the resource pool.
  • the first device may determine the time domain of the SL resource based on the information related to the second period, the information related to the time offset, and the number of slots belonging to the resource pool.
  • the first device divides a value obtained based on the information related to the second period and the information related to the time offset by the number of slots belonging to the resource pool within the 10240 ms, and the remaining value can be obtained.
  • the time domain of the SL resource may be determined based on the remaining value.
  • the time domain of the SL resource may be a slot indicated by the remaining value.
  • the slot indicated by the remaining value may be the first slot of the SL grant in the period.
  • a value obtained based on the information related to the second period and information related to the time offset may be a slot index value.
  • the number of slots belonging to the resource pool within the 10240 ms is the number of slots for a sidelink-synchronization signal block (S-SSB) in the number of slots available for SL transmission belonging to the 10240 ms, and a reserved slot ( reserved slots).
  • S-SSB sidelink-synchronization signal block
  • the number of slots belonging to the resource pool within 10240 ms may be determined based on the number of bits set to 1 among bits of a bitmap related to the resource pool.
  • the first device may obtain the first value by multiplying the information related to the second period by the value of S. Additionally, for example, the first device may obtain the second value by adding information related to the time offset to the first value. Additionally, for example, the first device may obtain a third value that is the remainder obtained by dividing the second value by the number of slots belonging to the resource pool within the 10240ms.
  • the value of S may be a zero or positive integer.
  • the time domain of the SL resource may be a slot indicated by the third value.
  • the slot indicated by the third value may be the first slot of the SL grant in the S-th period.
  • the information related to the time offset may be in units of logical slots.
  • the SL resource may be a CG type-1 resource or a CG type-2 resource allocated by a configured grant (CG).
  • CG configured grant
  • the information related to the time offset and the information related to the first period may be received from the base station through a radio resource control (RRC) message.
  • RRC radio resource control
  • the information related to the first period may be received from the base station through an RRC message, and the information related to the time offset is DCI (downlink) control information) may be received from the base station.
  • the first device provides first sidelink control information (SCI) for scheduling a physical sidelink shared channel (PSSCH) through a physical sidelink control channel (PSCCH) based on the SL resource. 2 can be sent to the device. Additionally, for example, the first device may transmit a second SCI or MAC PDU (medium access control protocol data unit) to the second device through the PSSCH based on the SL resource.
  • SCI first sidelink control information
  • PSSCH physical sidelink shared channel
  • PSCCH physical sidelink control channel
  • the processor 102 of the first device 100 may control the transceiver 106 to receive information related to a time offset of a sidelink (SL) resource and information related to a first period of the SL resource from the base station. .
  • the processor 102 of the first device 100 may determine the number of slots belonging to the resource pool within 10240ms.
  • the processor 102 of the first device 100 may obtain information related to the second period in units of logical slots from the information related to the first period based on the number of slots belonging to the resource pool.
  • the processor 102 of the first device 100 may determine the time domain of the SL resource based on the information related to the second period, the information related to the time offset, and the number of slots belonging to the resource pool. there is.
  • a first device for performing wireless communication may include one or more memories for storing instructions; one or more transceivers; and one or more processors connecting the one or more memories and the one or more transceivers.
  • the one or more processors execute the instructions to receive, from a base station, information related to a time offset of a sidelink (SL) resource and information related to a first period of the SL resource; determine the number of slots belonging to the resource pool within 10240 ms; acquiring information related to a second period in units of logical slots from information related to the first period based on the number of slots belonging to the resource pool; and the time domain of the SL resource may be determined based on the information related to the second period, the information related to the time offset, and the number of slots belonging to the resource pool.
  • SL sidelink
  • a device may include one or more processors; and one or more memories operably coupled by the one or more processors and storing instructions.
  • the one or more processors execute the instructions to receive, from a base station, information related to a time offset of a sidelink (SL) resource and information related to a first period of the SL resource; determine the number of slots belonging to the resource pool within 10240 ms; acquiring information related to a second period in units of logical slots from information related to the first period based on the number of slots belonging to the resource pool; and the time domain of the SL resource may be determined based on the information related to the second period, the information related to the time offset, and the number of slots belonging to the resource pool.
  • SL sidelink
  • a non-transitory computer-readable storage medium recording instructions may be provided.
  • the instructions when executed, cause the first apparatus to: receive, from a base station, information related to a time offset of a sidelink (SL) resource and information related to a first period of the SL resource; determine the number of slots belonging to the resource pool within 10240ms; acquire information related to a second period in units of logical slots from information related to the first period based on the number of slots belonging to the resource pool; and determining the time domain of the SL resource based on the information related to the second period, the information related to the time offset, and the number of slots belonging to the resource pool.
  • SL sidelink
  • 14 illustrates a method for a base station to perform wireless communication, according to an embodiment of the present disclosure. 14 may be combined with various embodiments of the present disclosure.
  • the base station may transmit information related to a time offset of a sidelink (SL) resource and information related to a first period of the SL resource to the device.
  • SL sidelink
  • the number of slots belonging to the resource pool within 10240 ms may be determined by the device.
  • information related to the second period in units of logical slots may be obtained by the device from information related to the first period based on the number of slots belonging to the resource pool.
  • the time domain of the SL resource may be determined by the device based on the information related to the second period, the information related to the time offset, and the number of slots belonging to the resource pool.
  • the processor 202 of the base station 200 may control the transceiver 206 to transmit information related to a time offset of a sidelink (SL) resource and information related to a first period of the SL resource to a device.
  • SL sidelink
  • the number of slots belonging to the resource pool within 10240 ms may be determined by the device.
  • information related to the second period in units of logical slots may be obtained by the device from information related to the first period based on the number of slots belonging to the resource pool.
  • the time domain of the SL resource may be determined by the device based on the information related to the second period, the information related to the time offset, and the number of slots belonging to the resource pool.
  • a base station performing wireless communication may be provided.
  • the base station may include one or more memories to store instructions; one or more transceivers; and one or more processors connecting the one or more memories and the one or more transceivers.
  • the one or more processors may execute the instructions to transmit information related to a time offset of a sidelink (SL) resource and information related to a first period of the SL resource to the device.
  • the number of slots belonging to the resource pool within 10240 ms may be determined by the device.
  • information related to the second period in units of logical slots may be obtained by the device from information related to the first period based on the number of slots belonging to the resource pool.
  • the time domain of the SL resource may be determined by the device based on the information related to the second period, the information related to the time offset, and the number of slots belonging to the resource pool.
  • a device may include one or more processors; and one or more memories operably coupled by the one or more processors and storing instructions.
  • the one or more processors may execute the instructions to transmit information related to a time offset of a sidelink (SL) resource and information related to a first period of the SL resource to the terminal.
  • the number of slots belonging to the resource pool within 10240 ms may be determined by the terminal.
  • information related to the second period in units of logical slots may be obtained by the terminal from information related to the first period based on the number of slots belonging to the resource pool.
  • the time domain of the SL resource may be determined by the terminal based on information related to the second period, information related to the time offset, and the number of slots belonging to the resource pool.
  • a non-transitory computer-readable storage medium recording instructions may be provided.
  • the instructions when executed, may cause the base station to transmit: information related to a time offset of a sidelink (SL) resource and information related to a first period of the SL resource to the device.
  • the number of slots belonging to the resource pool within 10240 ms may be determined by the device.
  • information related to the second period in units of logical slots may be obtained by the device from information related to the first period based on the number of slots belonging to the resource pool.
  • the time domain of the SL resource may be determined by the device based on the information related to the second period, the information related to the time offset, and the number of slots belonging to the resource pool.
  • a method for the UE to determine a CG type-1 resource or a CG type-2 resource configured by a base station as an SL logical slot resource belonging to an SL resource pool, and an apparatus supporting the same are proposed. According to the above-described various embodiments, it is possible to solve a problem in which a mismatch occurs between the SL resource used by the UE receiving the information related to the CG resource and the SL resource allocated to the UE by the base station. Accordingly, it is possible to obtain an effect in terms of radio resource management and quality assurance of SL communication.
  • FIG. 15 shows a communication system 1 according to an embodiment of the present disclosure.
  • a communication system 1 to which various embodiments of the present disclosure are applied includes a wireless device, a base station, and a network.
  • the wireless device refers to a device that performs communication using a radio access technology (eg, 5G NR (New RAT), LTE (Long Term Evolution)), and may be referred to as a communication/wireless/5G device.
  • the wireless device may include a robot 100a, a vehicle 100b-1, 100b-2, an eXtended Reality (XR) device 100c, a hand-held device 100d, and a home appliance 100e. ), an Internet of Thing (IoT) device 100f, and an AI device/server 400 .
  • the vehicle may include a vehicle equipped with a wireless communication function, an autonomous driving vehicle, a vehicle capable of performing inter-vehicle communication, and the like.
  • the vehicle may include an Unmanned Aerial Vehicle (UAV) (eg, a drone).
  • UAV Unmanned Aerial Vehicle
  • XR devices include AR (Augmented Reality)/VR (Virtual Reality)/MR (Mixed Reality) devices, and include a Head-Mounted Device (HMD), a Head-Up Display (HUD) provided in a vehicle, a television, a smartphone, It may be implemented in the form of a computer, a wearable device, a home appliance, a digital signage, a vehicle, a robot, and the like.
  • the portable device may include a smart phone, a smart pad, a wearable device (eg, a smart watch, smart glasses), a computer (eg, a laptop computer), and the like.
  • Home appliances may include a TV, a refrigerator, a washing machine, and the like.
  • the IoT device may include a sensor, a smart meter, and the like.
  • the base station and the network may be implemented as a wireless device, and the specific wireless device 200a may operate as a base station/network node to other wireless devices.
  • the wireless communication technology implemented in the wireless devices 100a to 100f of the present specification may include a narrowband Internet of Things for low-power communication as well as LTE, NR, and 6G.
  • NB-IoT technology may be an example of LPWAN (Low Power Wide Area Network) technology, and may be implemented in standards such as LTE Cat NB1 and/or LTE Cat NB2, and is limited to the above-mentioned names. not.
  • the wireless communication technology implemented in the wireless devices 100a to 100f of the present specification may perform communication based on the LTE-M technology.
  • the LTE-M technology may be an example of an LPWAN technology, and may be called various names such as enhanced machine type communication (eMTC).
  • eMTC enhanced machine type communication
  • LTE-M technology is 1) LTE CAT 0, 2) LTE Cat M1, 3) LTE Cat M2, 4) LTE non-BL (non-Bandwidth Limited), 5) LTE-MTC, 6) LTE Machine Type Communication, and/or 7) may be implemented in at least one of various standards such as LTE M, and is not limited to the above-described name.
  • the wireless communication technology implemented in the wireless devices 100a to 100f of the present specification is at least one of ZigBee, Bluetooth, and Low Power Wide Area Network (LPWAN) in consideration of low power communication.
  • LPWAN Low Power Wide Area Network
  • the ZigBee technology can create PAN (personal area networks) related to small/low-power digital communication based on various standards such as IEEE 802.15.4, and can be called by various names.
  • the wireless devices 100a to 100f may be connected to the network 300 through the base station 200 .
  • AI Artificial Intelligence
  • the network 300 may be configured using a 3G network, a 4G (eg, LTE) network, or a 5G (eg, NR) network.
  • the wireless devices 100a to 100f may communicate with each other through the base station 200/network 300, but may also communicate directly (e.g. sidelink communication) without passing through the base station/network.
  • the vehicles 100b-1 and 100b-2 may perform direct communication (e.g. Vehicle to Vehicle (V2V)/Vehicle to everything (V2X) communication).
  • the IoT device eg, sensor
  • the IoT device may communicate directly with other IoT devices (eg, sensor) or other wireless devices 100a to 100f.
  • Wireless communication/connection 150a, 150b, and 150c may be performed between the wireless devices 100a to 100f/base station 200 and the base station 200/base station 200 .
  • the wireless communication/connection includes uplink/downlink communication 150a and sidelink communication 150b (or D2D communication), communication between base stations 150c (e.g. relay, IAB (Integrated Access Backhaul), etc.)
  • This can be done through technology (eg 5G NR)
  • Wireless communication/connection 150a, 150b, 150c allows the wireless device and the base station/radio device, and the base station and the base station to transmit/receive wireless signals to each other.
  • the wireless communication/connection 150a, 150b, and 150c may transmit/receive signals through various physical channels.
  • various signal processing processes eg, channel encoding/decoding, modulation/demodulation, resource mapping/demapping, etc.
  • resource allocation processes etc.
  • FIG. 16 illustrates a wireless device according to an embodiment of the present disclosure.
  • the first wireless device 100 and the second wireless device 200 may transmit/receive wireless signals through various wireless access technologies (eg, LTE, NR).
  • ⁇ first wireless device 100, second wireless device 200 ⁇ is ⁇ wireless device 100x, base station 200 ⁇ of FIG. 15 and/or ⁇ wireless device 100x, wireless device 100x) ⁇ can be matched.
  • the first wireless device 100 includes one or more processors 102 and one or more memories 104 , and may further include one or more transceivers 106 and/or one or more antennas 108 .
  • the processor 102 controls the memory 104 and/or the transceiver 106 and may be configured to implement the descriptions, functions, procedures, suggestions, methods, and/or operational flowcharts disclosed herein.
  • the processor 102 may process information in the memory 104 to generate first information/signal, and then transmit a wireless signal including the first information/signal through the transceiver 106 .
  • the processor 102 may receive the radio signal including the second information/signal through the transceiver 106 , and then store the information obtained from the signal processing of the second information/signal in the memory 104 .
  • the memory 104 may be connected to the processor 102 and may store various information related to the operation of the processor 102 .
  • memory 104 may provide instructions for performing some or all of the processes controlled by processor 102 , or for performing descriptions, functions, procedures, suggestions, methods, and/or operational flowcharts disclosed herein. may store software code including
  • the processor 102 and the memory 104 may be part of a communication modem/circuit/chip designed to implement a wireless communication technology (eg, LTE, NR).
  • a wireless communication technology eg, LTE, NR
  • a transceiver 106 may be coupled to the processor 102 and may transmit and/or receive wireless signals via one or more antennas 108 .
  • the transceiver 106 may include a transmitter and/or a receiver.
  • the transceiver 106 may be used interchangeably with a radio frequency (RF) unit.
  • RF radio frequency
  • a wireless device may refer to a communication modem/circuit/chip.
  • the second wireless device 200 includes one or more processors 202 , one or more memories 204 , and may further include one or more transceivers 206 and/or one or more antennas 208 .
  • the processor 202 controls the memory 204 and/or the transceiver 206 and may be configured to implement the descriptions, functions, procedures, suggestions, methods, and/or flow charts disclosed herein.
  • the processor 202 may process the information in the memory 204 to generate third information/signal, and then transmit a wireless signal including the third information/signal through the transceiver 206 .
  • the processor 202 may receive the radio signal including the fourth information/signal through the transceiver 206 , and then store information obtained from signal processing of the fourth information/signal in the memory 204 .
  • the memory 204 may be connected to the processor 202 and may store various information related to the operation of the processor 202 .
  • the memory 204 may provide instructions for performing some or all of the processes controlled by the processor 202, or for performing the descriptions, functions, procedures, suggestions, methods, and/or operational flowcharts disclosed herein. may store software code including
  • the processor 202 and the memory 204 may be part of a communication modem/circuit/chip designed to implement a wireless communication technology (eg, LTE, NR).
  • the transceiver 206 may be coupled to the processor 202 and may transmit and/or receive wireless signals via one or more antennas 208 .
  • the transceiver 206 may include a transmitter and/or a receiver.
  • the transceiver 206 may be used interchangeably with an RF unit.
  • a wireless device may refer to a communication modem/circuit/chip.
  • one or more protocol layers may be implemented by one or more processors 102 , 202 .
  • one or more processors 102 , 202 may implement one or more layers (eg, functional layers such as PHY, MAC, RLC, PDCP, RRC, SDAP).
  • the one or more processors 102, 202 are configured to process one or more Protocol Data Units (PDUs) and/or one or more Service Data Units (SDUs) according to the description, function, procedure, proposal, method, and/or operational flowcharts disclosed herein.
  • PDUs Protocol Data Units
  • SDUs Service Data Units
  • One or more processors 102 , 202 may generate messages, control information, data, or information according to the description, function, procedure, proposal, method, and/or flow charts disclosed herein.
  • the one or more processors 102 and 202 generate a signal (eg, a baseband signal) including PDUs, SDUs, messages, control information, data or information according to the functions, procedures, proposals and/or methods disclosed herein. , to one or more transceivers 106 and 206 .
  • the one or more processors 102 , 202 may receive signals (eg, baseband signals) from one or more transceivers 106 , 206 , and may be described, functions, procedures, proposals, methods, and/or operational flowcharts disclosed herein.
  • PDUs, SDUs, messages, control information, data, or information may be acquired according to the fields.
  • One or more processors 102, 202 may be referred to as a controller, microcontroller, microprocessor, or microcomputer.
  • One or more processors 102 , 202 may be implemented by hardware, firmware, software, or a combination thereof.
  • ASICs Application Specific Integrated Circuits
  • DSPs Digital Signal Processors
  • DSPDs Digital Signal Processing Devices
  • PLDs Programmable Logic Devices
  • FPGAs Field Programmable Gate Arrays
  • firmware or software may be implemented using firmware or software, and the firmware or software may be implemented to include modules, procedures, functions, and the like.
  • the descriptions, functions, procedures, suggestions, methods, and/or flow charts disclosed in this document provide that firmware or software configured to perform is included in one or more processors 102 , 202 , or stored in one or more memories 104 , 204 . It may be driven by the above processors 102 and 202 .
  • the descriptions, functions, procedures, suggestions, methods, and/or flowcharts of operations disclosed herein may be implemented using firmware or software in the form of code, instructions, and/or a set of instructions.
  • One or more memories 104 , 204 may be coupled with one or more processors 102 , 202 , and may store various forms of data, signals, messages, information, programs, code, instructions, and/or instructions.
  • the one or more memories 104 and 204 may be comprised of ROM, RAM, EPROM, flash memory, hard drives, registers, cache memory, computer readable storage media, and/or combinations thereof.
  • One or more memories 104 , 204 may be located inside and/or external to one or more processors 102 , 202 . Additionally, one or more memories 104 , 204 may be coupled to one or more processors 102 , 202 through various technologies, such as wired or wireless connections.
  • One or more transceivers 106 , 206 may transmit user data, control information, radio signals/channels, etc. referred to in the methods and/or operational flowcharts of this document to one or more other devices.
  • One or more transceivers 106, 206 may receive user data, control information, radio signals/channels, etc. referred to in the descriptions, functions, procedures, suggestions, methods and/or flow charts, etc. disclosed herein, from one or more other devices. there is.
  • one or more transceivers 106 , 206 may be coupled to one or more processors 102 , 202 and may transmit and receive wireless signals.
  • one or more processors 102 , 202 may control one or more transceivers 106 , 206 to transmit user data, control information, or wireless signals to one or more other devices.
  • one or more processors 102 , 202 may control one or more transceivers 106 , 206 to receive user data, control information, or wireless signals from one or more other devices.
  • one or more transceivers 106, 206 may be coupled to one or more antennas 108, 208, and the one or more transceivers 106, 206 may be coupled via one or more antennas 108, 208 to the descriptions, functions, and functions disclosed herein. , may be set to transmit and receive user data, control information, radio signals/channels, etc.
  • one or more antennas may be a plurality of physical antennas or a plurality of logical antennas (eg, antenna ports).
  • the one or more transceivers 106, 206 convert the received radio signal/channel, etc. from the RF band signal to process the received user data, control information, radio signal/channel, etc. using the one or more processors 102, 202. It can be converted into a baseband signal.
  • One or more transceivers 106 and 206 may convert user data, control information, radio signals/channels, etc. processed using one or more processors 102 and 202 from baseband signals to RF band signals.
  • one or more transceivers 106 , 206 may include (analog) oscillators and/or filters.
  • FIG. 17 illustrates a signal processing circuit for a transmission signal according to an embodiment of the present disclosure.
  • the signal processing circuit 1000 may include a scrambler 1010 , a modulator 1020 , a layer mapper 1030 , a precoder 1040 , a resource mapper 1050 , and a signal generator 1060 .
  • the operations/functions of FIG. 17 may be performed by the processors 102 and 202 and/or the transceivers 106 and 206 of FIG. 16 .
  • the hardware elements of FIG. 17 may be implemented in processors 102 , 202 and/or transceivers 106 , 206 of FIG. 16 .
  • blocks 1010 to 1060 may be implemented in the processors 102 and 202 of FIG. 16 .
  • blocks 1010 to 1050 may be implemented in the processors 102 and 202 of FIG. 16
  • block 1060 may be implemented in the transceivers 106 and 206 of FIG. 16 .
  • the codeword may be converted into a wireless signal through the signal processing circuit 1000 of FIG. 17 .
  • the codeword is a coded bit sequence of an information block.
  • the information block may include a transport block (eg, a UL-SCH transport block, a DL-SCH transport block).
  • the radio signal may be transmitted through various physical channels (eg, PUSCH, PDSCH).
  • the codeword may be converted into a scrambled bit sequence by the scrambler 1010 .
  • a scramble sequence used for scrambling is generated based on an initialization value, and the initialization value may include ID information of a wireless device, and the like.
  • the scrambled bit sequence may be modulated by a modulator 1020 into a modulation symbol sequence.
  • the modulation method may include pi/2-Binary Phase Shift Keying (pi/2-BPSK), m-Phase Shift Keying (m-PSK), m-Quadrature Amplitude Modulation (m-QAM), and the like.
  • the complex modulation symbol sequence may be mapped to one or more transport layers by the layer mapper 1030 .
  • Modulation symbols of each transport layer may be mapped to corresponding antenna port(s) by the precoder 1040 (precoding).
  • the output z of the precoder 1040 may be obtained by multiplying the output y of the layer mapper 1030 by the precoding matrix W of N*M.
  • N is the number of antenna ports
  • M is the number of transport layers.
  • the precoder 1040 may perform precoding after performing transform precoding (eg, DFT transform) on the complex modulation symbols. Also, the precoder 1040 may perform precoding without performing transform precoding.
  • the resource mapper 1050 may map modulation symbols of each antenna port to a time-frequency resource.
  • the time-frequency resource may include a plurality of symbols (eg, a CP-OFDMA symbol, a DFT-s-OFDMA symbol) in the time domain and a plurality of subcarriers in the frequency domain.
  • CP Cyclic Prefix
  • DAC Digital-to-Analog Converter
  • a signal processing process for a received signal in the wireless device may be configured in reverse of the signal processing process 1010 to 1060 of FIG. 17 .
  • the wireless device eg, 100 and 200 in FIG. 16
  • the received radio signal may be converted into a baseband signal through a signal restorer.
  • the signal restorer may include a frequency downlink converter, an analog-to-digital converter (ADC), a CP remover, and a Fast Fourier Transform (FFT) module.
  • ADC analog-to-digital converter
  • FFT Fast Fourier Transform
  • the baseband signal may be restored to a codeword through a resource de-mapper process, a postcoding process, a demodulation process, and a descrambling process.
  • the codeword may be restored to the original information block through decoding.
  • the signal processing circuit (not shown) for the received signal may include a signal restorer, a resource de-mapper, a post coder, a demodulator, a descrambler, and a decoder.
  • the wireless device may be implemented in various forms according to use-examples/services (refer to FIG. 15 ).
  • wireless devices 100 and 200 correspond to wireless devices 100 and 200 of FIG. 16 , and various elements, components, units/units, and/or modules ) can be composed of
  • the wireless devices 100 and 200 may include a communication unit 110 , a control unit 120 , a memory unit 130 , and an additional element 140 .
  • the communication unit may include communication circuitry 112 and transceiver(s) 114 .
  • communication circuitry 112 may include one or more processors 102 , 202 and/or one or more memories 104 , 204 of FIG. 16 .
  • transceiver(s) 114 may include one or more transceivers 106 , 206 and/or one or more antennas 108 , 208 of FIG.
  • the control unit 120 is electrically connected to the communication unit 110 , the memory unit 130 , and the additional element 140 , and controls general operations of the wireless device. For example, the controller 120 may control the electrical/mechanical operation of the wireless device based on the program/code/command/information stored in the memory unit 130 . In addition, the control unit 120 transmits the information stored in the memory unit 130 to the outside (eg, another communication device) through the communication unit 110 through a wireless/wired interface, or externally (eg, through the communication unit 110) Information received through a wireless/wired interface from another communication device) may be stored in the memory unit 130 .
  • the outside eg, another communication device
  • Information received through a wireless/wired interface from another communication device may be stored in the memory unit 130 .
  • the additional element 140 may be configured in various ways according to the type of the wireless device.
  • the additional element 140 may include at least one of a power unit/battery, an input/output unit (I/O unit), a driving unit, and a computing unit.
  • a wireless device may include a robot ( FIGS. 15 and 100a ), a vehicle ( FIGS. 15 , 100b-1 , 100b-2 ), an XR device ( FIGS. 15 and 100c ), a mobile device ( FIGS. 15 and 100d ), and a home appliance. (FIG. 15, 100e), IoT device (FIG.
  • digital broadcasting terminal digital broadcasting terminal
  • hologram device public safety device
  • MTC device medical device
  • fintech device or financial device
  • security device climate/environment device
  • It may be implemented in the form of an AI server/device ( FIGS. 15 and 400 ), a base station ( FIGS. 15 and 200 ), and a network node.
  • the wireless device may be mobile or used in a fixed location depending on the use-example/service.
  • various elements, components, units/units, and/or modules in the wireless devices 100 and 200 may be entirely interconnected through a wired interface, or at least some of them may be wirelessly connected through the communication unit 110 .
  • the control unit 120 and the communication unit 110 are connected by wire, and the control unit 120 and the first unit (eg, 130 and 140 ) are connected to the communication unit 110 through the communication unit 110 . It can be connected wirelessly.
  • each element, component, unit/unit, and/or module within the wireless device 100 , 200 may further include one or more elements.
  • the controller 120 may be configured with one or more processor sets.
  • control unit 120 may be configured as a set of a communication control processor, an application processor, an electronic control unit (ECU), a graphic processing processor, a memory control processor, and the like.
  • memory unit 130 may include random access memory (RAM), dynamic RAM (DRAM), read only memory (ROM), flash memory, volatile memory, and non-volatile memory. volatile memory) and/or a combination thereof.
  • FIG. 18 will be described in more detail with reference to the drawings.
  • the portable device may include a smart phone, a smart pad, a wearable device (eg, a smart watch, smart glasses), and a portable computer (eg, a laptop computer).
  • a mobile device may be referred to as a mobile station (MS), a user terminal (UT), a mobile subscriber station (MSS), a subscriber station (SS), an advanced mobile station (AMS), or a wireless terminal (WT).
  • MS mobile station
  • UT user terminal
  • MSS mobile subscriber station
  • SS subscriber station
  • AMS advanced mobile station
  • WT wireless terminal
  • the portable device 100 includes an antenna unit 108 , a communication unit 110 , a control unit 120 , a memory unit 130 , a power supply unit 140a , an interface unit 140b , and an input/output unit 140c .
  • the antenna unit 108 may be configured as a part of the communication unit 110 .
  • Blocks 110 to 130/140a to 140c respectively correspond to blocks 110 to 130/140 of FIG. 18 .
  • the communication unit 110 may transmit and receive signals (eg, data, control signals, etc.) with other wireless devices and base stations.
  • the controller 120 may perform various operations by controlling the components of the portable device 100 .
  • the controller 120 may include an application processor (AP).
  • the memory unit 130 may store data/parameters/programs/codes/commands necessary for driving the portable device 100 . Also, the memory unit 130 may store input/output data/information.
  • the power supply unit 140a supplies power to the portable device 100 and may include a wired/wireless charging circuit, a battery, and the like.
  • the interface unit 140b may support a connection between the portable device 100 and other external devices.
  • the interface unit 140b may include various ports (eg, an audio input/output port and a video input/output port) for connection with an external device.
  • the input/output unit 140c may receive or output image information/signal, audio information/signal, data, and/or information input from a user.
  • the input/output unit 140c may include a camera, a microphone, a user input unit, a display unit 140d, a speaker, and/or a haptic module.
  • the input/output unit 140c obtains information/signals (eg, touch, text, voice, image, video) input from the user, and the obtained information/signals are stored in the memory unit 130 . can be saved.
  • the communication unit 110 may convert the information/signal stored in the memory into a wireless signal, and transmit the converted wireless signal directly to another wireless device or to a base station. Also, after receiving a radio signal from another radio device or base station, the communication unit 110 may restore the received radio signal to original information/signal. After the restored information/signal is stored in the memory unit 130 , it may be output in various forms (eg, text, voice, image, video, haptic) through the input/output unit 140c.
  • various forms eg, text, voice, image, video, haptic
  • the vehicle or autonomous driving vehicle may be implemented as a mobile robot, a vehicle, a train, an aerial vehicle (AV), a ship, and the like.
  • AV aerial vehicle
  • the vehicle or autonomous driving vehicle 100 includes an antenna unit 108 , a communication unit 110 , a control unit 120 , a driving unit 140a , a power supply unit 140b , a sensor unit 140c and autonomous driving. It may include a part 140d.
  • the antenna unit 108 may be configured as a part of the communication unit 110 .
  • Blocks 110/130/140a-140d correspond to blocks 110/130/140 of FIG. 18, respectively.
  • the communication unit 110 may transmit/receive signals (eg, data, control signals, etc.) to and from external devices such as other vehicles, base stations (e.g., base stations, roadside units, etc.), servers, and the like.
  • the controller 120 may control elements of the vehicle or the autonomous driving vehicle 100 to perform various operations.
  • the controller 120 may include an Electronic Control Unit (ECU).
  • the driving unit 140a may cause the vehicle or the autonomous driving vehicle 100 to run on the ground.
  • the driving unit 140a may include an engine, a motor, a power train, a wheel, a brake, a steering device, and the like.
  • the power supply unit 140b supplies power to the vehicle or the autonomous driving vehicle 100 , and may include a wired/wireless charging circuit, a battery, and the like.
  • the sensor unit 140c may obtain vehicle status, surrounding environment information, user information, and the like.
  • the sensor unit 140c includes an inertial measurement unit (IMU) sensor, a collision sensor, a wheel sensor, a speed sensor, an inclination sensor, a weight sensor, a heading sensor, a position module, and a vehicle forward movement.
  • IMU inertial measurement unit
  • a collision sensor a wheel sensor
  • a speed sensor a speed sensor
  • an inclination sensor a weight sensor
  • a heading sensor a position module
  • a vehicle forward movement / may include a reverse sensor, a battery sensor, a fuel sensor, a tire sensor, a steering sensor, a temperature sensor, a humidity sensor, an ultrasonic sensor, an illuminance sensor, a pedal position sensor, and the like.
  • the autonomous driving unit 140d includes a technology for maintaining a driving lane, a technology for automatically adjusting speed such as adaptive cruise control, a technology for automatically driving along a predetermined route, and a technology for automatically setting a route when a destination is set. technology can be implemented.
  • the communication unit 110 may receive map data, traffic information data, and the like from an external server.
  • the autonomous driving unit 140d may generate an autonomous driving route and a driving plan based on the acquired data.
  • the controller 120 may control the driving unit 140a to move the vehicle or the autonomous driving vehicle 100 along the autonomous driving path (eg, speed/direction adjustment) according to the driving plan.
  • the communication unit 110 may obtain the latest traffic information data from an external server non/periodically, and may acquire surrounding traffic information data from surrounding vehicles.
  • the sensor unit 140c may acquire vehicle state and surrounding environment information.
  • the autonomous driving unit 140d may update the autonomous driving route and driving plan based on the newly acquired data/information.
  • the communication unit 110 may transmit information about a vehicle location, an autonomous driving route, a driving plan, and the like to an external server.
  • the external server may predict traffic information data in advance using AI technology or the like based on information collected from the vehicle or autonomous vehicles, and may provide the predicted traffic information data to the vehicle or autonomous vehicles.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

제 1 장치가 무선 통신을 수행하는 방법 및 이를 지원하는 장치가 제공된다. 상기 방법은, SL(sidelink) 자원의 시간 오프셋과 관련된 정보 및 상기 SL 자원의 제 1 주기와 관련된 정보를 기지국으로부터 수신하는 단계; 10240ms 내에서 자원 풀에 속하는 슬롯들의 개수를 결정하는 단계; 상기 자원 풀에 속하는 슬롯들의 개수를 기반으로, 상기 제 1 주기와 관련된 정보로부터 논리적 슬롯 단위의 제 2 주기와 관련된 정보를 획득하는 단계; 및 상기 제 2 주기와 관련된 정보, 상기 시간 오프셋과 관련된 정보 및 상기 자원 풀에 속하는 슬롯들의 개수를 기반으로, 상기 SL 자원의 시간 영역을 결정하는 단계;를 포함할 수 있다.

Description

NR V2X에서 자원을 결정하는 방법 및 장치
본 개시는 무선 통신 시스템에 관한 것이다.
사이드링크(sidelink, SL)란 단말(User Equipment, UE)들 간에 직접적인 링크를 설정하여, 기지국(Base Station, BS)을 거치지 않고, 단말 간에 음성 또는 데이터 등을 직접 주고 받는 통신 방식을 말한다. SL는 급속도로 증가하는 데이터 트래픽에 따른 기지국의 부담을 해결할 수 있는 하나의 방안으로서 고려되고 있다. V2X(vehicle-to-everything)는 유/무선 통신을 통해 다른 차량, 보행자, 인프라가 구축된 사물 등과 정보를 교환하는 통신 기술을 의미한다. V2X는 V2V(vehicle-to-vehicle), V2I(vehicle-to-infrastructure), V2N(vehicle-to- network) 및 V2P(vehicle-to-pedestrian)와 같은 4 가지 유형으로 구분될 수 있다. V2X 통신은 PC5 인터페이스 및/또는 Uu 인터페이스를 통해 제공될 수 있다.
한편, 더욱 많은 통신 기기들이 더욱 큰 통신 용량을 요구하게 됨에 따라, 기존의 무선 액세스 기술(Radio Access Technology, RAT)에 비해 향상된 모바일 광대역 (mobile broadband) 통신에 대한 필요성이 대두되고 있다. 이에 따라, 신뢰도(reliability) 및 지연(latency)에 민감한 서비스 또는 단말을 고려한 통신 시스템이 논의되고 있는데, 개선된 이동 광대역 통신, 매시브 MTC(Machine Type Communication), URLLC(Ultra-Reliable and Low Latency Communication) 등을 고려한 차세대 무선 접속 기술을 새로운 RAT(new radio access technology) 또는 NR(new radio)이라 칭할 수 있다. NR에서도 V2X(vehicle-to-everything) 통신이 지원될 수 있다.
도 1은 NR 이전의 RAT에 기반한 V2X 통신과 NR에 기반한 V2X 통신을 비교하여 설명하기 위한 도면이다. 도 1의 실시 예는 본 개시의 다양한 실시 예와 결합될 수 있다.
V2X 통신과 관련하여, NR 이전의 RAT에서는 BSM(Basic Safety Message), CAM(Cooperative Awareness Message), DENM(Decentralized Environmental Notification Message)과 같은 V2X 메시지를 기반으로, 안전 서비스(safety service)를 제공하는 방안이 주로 논의되었다. V2X 메시지는, 위치 정보, 동적 정보, 속성 정보 등을 포함할 수 있다. 예를 들어, 단말은 주기적인 메시지(periodic message) 타입의 CAM, 및/또는 이벤트 트리거 메시지(event triggered message) 타입의 DENM을 다른 단말에게 전송할 수 있다.
이후, V2X 통신과 관련하여, 다양한 V2X 시나리오들이 NR에서 제시되고 있다. 예를 들어, 다양한 V2X 시나리오들은, 차량 플라투닝(vehicle platooning), 향상된 드라이빙(advanced driving), 확장된 센서들(extended sensors), 리모트 드라이빙(remote driving) 등을 포함할 수 있다.
한편, UE가 CG 자원과 관련된 정보를 수신하는 경우, 시간 오프셋, 주기 등이 적용되는 슬롯의 단위(예, 논리적 슬롯의 단위 또는 물리적 슬롯의 단위)가 명확하게 정의될 필요가 있다. 나아가, UE가 시간 오프셋, 주기 등을 기반으로 획득된 값에 모듈러 연산을 취하여 CG 자원의 위치를 결정하는 경우, 모듈러 연산에 사용되는 값이 정의될 필요가 있다. 위 사항이 정의되지 않으면, CG 자원과 관련된 정보를 수신한 UE가 사용하는 SL 자원 및 기지국이 UE에게 할당한 SL 자원 사이에 불일치가 발생할 수 있고, 이는 무선 자원 관리 측면 및 SL 통신의 품질 보장 측면에서 바람직하지 않을 수 있다.
일 실시 예에 있어서, 제 1 장치가 무선 통신을 수행하는 방법이 제공될 수 있다. 상기 방법은, SL(sidelink) 자원의 시간 오프셋과 관련된 정보 및 상기 SL 자원의 제 1 주기와 관련된 정보를 기지국으로부터 수신하는 단계; 10240ms 내에서 자원 풀에 속하는 슬롯들의 개수를 결정하는 단계; 상기 자원 풀에 속하는 슬롯들의 개수를 기반으로, 상기 제 1 주기와 관련된 정보로부터 논리적 슬롯 단위의 제 2 주기와 관련된 정보를 획득하는 단계; 및 상기 제 2 주기와 관련된 정보, 상기 시간 오프셋과 관련된 정보 및 상기 자원 풀에 속하는 슬롯들의 개수를 기반으로, 상기 SL 자원의 시간 영역을 결정하는 단계;를 포함할 수 있다.
일 실시 예에 있어서, 무선 통신을 수행하는 제 1 장치가 제공될 수 있다. 상기 제 1 장치는 명령어들을 저장하는 하나 이상의 메모리; 하나 이상의 송수신기; 및 상기 하나 이상의 메모리와 상기 하나 이상의 송수신기를 연결하는 하나 이상의 프로세서를 포함할 수 있다. 예를 들어, 상기 하나 이상의 프로세서는 상기 명령어들을 실행하여, SL(sidelink) 자원의 시간 오프셋과 관련된 정보 및 상기 SL 자원의 제 1 주기와 관련된 정보를 기지국으로부터 수신하고; 10240ms 내에서 자원 풀에 속하는 슬롯들의 개수를 결정하고; 상기 자원 풀에 속하는 슬롯들의 개수를 기반으로, 상기 제 1 주기와 관련된 정보로부터 논리적 슬롯 단위의 제 2 주기와 관련된 정보를 획득하고; 및 상기 제 2 주기와 관련된 정보, 상기 시간 오프셋과 관련된 정보 및 상기 자원 풀에 속하는 슬롯들의 개수를 기반으로, 상기 SL 자원의 시간 영역을 결정할 수 있다.
단말이 SL 통신을 효율적으로 수행할 수 있다.
도 1은 NR 이전의 RAT에 기반한 V2X 통신과 NR에 기반한 V2X 통신을 비교하여 설명하기 위한 도면이다.
도 2는 본 개시의 일 실시 예에 따른, NR 시스템의 구조를 나타낸다.
도 3은 본 개시의 일 실시 예에 따른, 무선 프로토콜 구조(radio protocol architecture)를 나타낸다.
도 4는 본 개시의 일 실시 예에 따른, NR의 무선 프레임의 구조를 나타낸다.
도 5는 본 개시의 일 실시 예에 따른, NR 프레임의 슬롯 구조를 나타낸다.
도 6은 본 개시의 일 실시 예에 따른, BWP의 일 예를 나타낸다.
도 7은 본 개시의 일 실시 예에 따른, V2X 또는 SL 통신을 수행하는 단말을 나타낸다.
도 8은 본 개시의 일 실시 예에 따라, 단말이 전송 모드에 따라 V2X 또는 SL 통신을 수행하는 절차를 나타낸다.
도 9는 본 개시의 일 실시 예에 따른, 세 가지 캐스트 타입을 나타낸다.
도 10은 본 개시의 일 실시 예에 따른, CG 타입-1 자원의 일 예를 나타낸다.
도 11은 본 개시의 일 실시 예에 따른, CG 타입-2 자원의 일 예를 나타낸다.
도 12는 본 개시의 일 실시 예에 따라, 단말이 CG 설정과 관련된 정보를 기반으로 SL 자원을 결정하는 절차를 나타낸다.
도 13은 본 개시의 일 실시 예에 따라, 제 1 장치가 무선 통신을 수행하는 방법을 나타낸다.
도 14는 본 개시의 일 실시 예에 따라, 기지국이 무선 통신을 수행하는 방법을 나타낸다.
도 15는 본 개시의 일 실시 예에 따른, 통신 시스템(1)을 나타낸다.
도 16은 본 개시의 일 실시 예에 따른, 무선 기기를 나타낸다.
도 17은 본 개시의 일 실시 예에 따른, 전송 신호를 위한 신호 처리 회로를 나타낸다.
도 18은 본 개시의 일 실시 예에 따른, 무선 기기를 나타낸다.
도 19는 본 개시의 일 실시 예에 따른, 휴대 기기를 나타낸다.
도 20은 본 개시의 일 실시 예에 따른, 차량 또는 자율 주행 차량을 나타낸다.
본 명세서에서 "A 또는 B(A or B)"는 "오직 A", "오직 B" 또는 "A와 B 모두"를 의미할 수 있다. 달리 표현하면, 본 명세서에서 "A 또는 B(A or B)"는 "A 및/또는 B(A and/or B)"으로 해석될 수 있다. 예를 들어, 본 명세서에서 "A, B 또는 C(A, B or C)"는 "오직 A", "오직 B", "오직 C", 또는 "A, B 및 C의 임의의 모든 조합(any combination of A, B and C)"를 의미할 수 있다.
본 명세서에서 사용되는 슬래쉬(/)나 쉼표(comma)는 "및/또는(and/or)"을 의미할 수 있다. 예를 들어, "A/B"는 "A 및/또는 B"를 의미할 수 있다. 이에 따라 "A/B"는 "오직 A", "오직 B", 또는 "A와 B 모두"를 의미할 수 있다. 예를 들어, "A, B, C"는 "A, B 또는 C"를 의미할 수 있다.
본 명세서에서 "적어도 하나의 A 및 B(at least one of A and B)"는, "오직 A", "오직 B" 또는 "A와 B 모두"를 의미할 수 있다. 또한, 본 명세서에서 "적어도 하나의 A 또는 B(at least one of A or B)"나 "적어도 하나의 A 및/또는 B(at least one of A and/or B)"라는 표현은 "적어도 하나의 A 및 B(at least one of A and B)"와 동일하게 해석될 수 있다.
또한, 본 명세서에서 "적어도 하나의 A, B 및 C(at least one of A, B and C)"는, "오직 A", "오직 B", "오직 C", 또는 "A, B 및 C의 임의의 모든 조합(any combination of A, B and C)"를 의미할 수 있다. 또한, "적어도 하나의 A, B 또는 C(at least one of A, B or C)"나 "적어도 하나의 A, B 및/또는 C(at least one of A, B and/or C)"는 "적어도 하나의 A, B 및 C(at least one of A, B and C)"를 의미할 수 있다.
또한, 본 명세서에서 사용되는 괄호는 "예를 들어(for example)"를 의미할 수 있다. 구체적으로, "제어 정보(PDCCH)"로 표시된 경우, "제어 정보"의 일례로 "PDCCH"가 제안된 것일 수 있다. 달리 표현하면 본 명세서의 "제어 정보"는 "PDCCH"로 제한(limit)되지 않고, "PDDCH"가 "제어 정보"의 일례로 제안된 것일 수 있다. 또한, "제어 정보(즉, PDCCH)"로 표시된 경우에도, "제어 정보"의 일례로 "PDCCH"가 제안된 것일 수 있다.
본 명세서에서 하나의 도면 내에서 개별적으로 설명되는 기술적 특징은, 개별적으로 구현될 수도 있고, 동시에 구현될 수도 있다.
이하의 기술은 CDMA(code division multiple access), FDMA(frequency division multiple access), TDMA(time division multiple access), OFDMA(orthogonal frequency division multiple access), SC-FDMA(single carrier frequency division multiple access) 등과 같은 다양한 무선 통신 시스템에 사용될 수 있다. CDMA는 UTRA(universal terrestrial radio access)나 CDMA2000과 같은 무선 기술로 구현될 수 있다. TDMA는 GSM(global system for mobile communications)/GPRS(general packet radio service)/EDGE(enhanced data rates for GSM evolution)와 같은 무선 기술로 구현될 수 있다. OFDMA는 IEEE(institute of electrical and electronics engineers) 802.11(Wi-Fi), IEEE 802.16(WiMAX), IEEE 802-20, E-UTRA(evolved UTRA) 등과 같은 무선 기술로 구현될 수 있다. IEEE 802.16m은 IEEE 802.16e의 진화로, IEEE 802.16e에 기반한 시스템과의 하위 호환성(backward compatibility)를 제공한다. UTRA는 UMTS(universal mobile telecommunications system)의 일부이다. 3GPP(3rd generation partnership project) LTE(long term evolution)은 E-UTRA(evolved-UMTS terrestrial radio access)를 사용하는 E-UMTS(evolved UMTS)의 일부로써, 하향링크에서 OFDMA를 채용하고 상향링크에서 SC-FDMA를 채용한다. LTE-A(advanced)는 3GPP LTE의 진화이다.
5G NR은 LTE-A의 후속 기술로서, 고성능, 저지연, 고가용성 등의 특성을 가지는 새로운 Clean-slate 형태의 이동 통신 시스템이다. 5G NR은 1GHz 미만의 저주파 대역에서부터 1GHz~10GHz의 중간 주파 대역, 24GHz 이상의 고주파(밀리미터파) 대역 등 사용 가능한 모든 스펙트럼 자원을 활용할 수 있다.
설명을 명확하게 하기 위해, 5G NR을 위주로 기술하지만 본 개시의 일 실시 예에 따른 기술적 사상이 이에 제한되는 것은 아니다.
도 2는 본 개시의 일 실시 예에 따른, NR 시스템의 구조를 나타낸다. 도 2의 실시 예는 본 개시의 다양한 실시 예와 결합될 수 있다.
도 2를 참조하면, NG-RAN(Next Generation - Radio Access Network)은 단말(10)에게 사용자 평면 및 제어 평면 프로토콜 종단(termination)을 제공하는 기지국(20)을 포함할 수 있다. 예를 들어, 기지국(20)은 gNB(next generation-Node B) 및/또는 eNB(evolved-NodeB)를 포함할 수 있다. 예를 들어, 단말(10)은 고정되거나 이동성을 가질 수 있으며, MS(Mobile Station), UT(User Terminal), SS(Subscriber Station), MT(Mobile Terminal), 무선기기(Wireless Device) 등 다른 용어로 불릴 수 있다. 예를 들어, 기지국은 단말(10)과 통신하는 고정된 지점(fixed station)일 수 있고, BTS(Base Transceiver System), 액세스 포인트(Access Point) 등 다른 용어로 불릴 수 있다.
도 2의 실시 예는 gNB만을 포함하는 경우를 예시한다. 기지국(20)은 상호 간에 Xn 인터페이스로 연결될 수 있다. 기지국(20)은 5세대 코어 네트워크(5G Core Network: 5GC)와 NG 인터페이스를 통해 연결될 수 있다. 보다 구체적으로, 기지국(20)은 NG-C 인터페이스를 통해 AMF(access and mobility management function)(30)와 연결될 수 있고, NG-U 인터페이스를 통해 UPF(user plane function)(30)와 연결될 수 있다.
단말과 네트워크 사이의 무선인터페이스 프로토콜(Radio Interface Protocol)의 계층들은 통신시스템에서 널리 알려진 개방형 시스템간 상호접속(Open System Interconnection, OSI) 기준 모델의 하위 3개 계층을 바탕으로 L1(layer 1, 제 1 계층), L2(layer 2, 제 2 계층), L3(layer 3, 제 3 계층)로 구분될 수 있다. 이 중에서 제 1 계층에 속하는 물리 계층은 물리 채널(Physical Channel)을 이용한 정보 전송 서비스(Information Transfer Service)를 제공하며, 제 3 계층에 위치하는 RRC(Radio Resource Control) 계층은 단말과 네트워크 간에 무선 자원을 제어하는 역할을 수행한다. 이를 위해 RRC 계층은 단말과 기지국 간 RRC 메시지를 교환한다.
도 3은 본 개시의 일 실시 예에 따른, 무선 프로토콜 구조(radio protocol architecture)를 나타낸다. 도 3의 실시 예는 본 개시의 다양한 실시 예와 결합될 수 있다. 구체적으로, 도 3의 (a)는 Uu 통신을 위한 사용자 평면(user plane)의 무선 프로토콜 스택(stack)을 나타내고, 도 3의 (b)는 Uu 통신을 위한 제어 평면(control plane)의 무선 프로토콜 스택을 나타낸다. 도 3의 (c)는 SL 통신을 위한 사용자 평면의 무선 프로토콜 스택을 나타내고, 도 3의 (d)는 SL 통신을 위한 제어 평면의 무선 프로토콜 스택을 나타낸다.
도 3을 참조하면, 물리 계층(physical layer)은 물리 채널을 이용하여 상위 계층에게 정보 전송 서비스를 제공한다. 물리 계층은 상위 계층인 MAC(Medium Access Control) 계층과는 전송 채널(transport channel)을 통해 연결되어 있다. 전송 채널을 통해 MAC 계층과 물리 계층 사이로 데이터가 이동한다. 전송 채널은 무선 인터페이스를 통해 데이터가 어떻게 어떤 특징으로 전송되는가에 따라 분류된다.
서로 다른 물리 계층 사이, 즉 송신기와 수신기의 물리 계층 사이는 물리 채널을 통해 데이터가 이동한다. 상기 물리 채널은 OFDM(Orthogonal Frequency Division Multiplexing) 방식으로 변조될 수 있고, 시간과 주파수를 무선 자원으로 활용한다.
MAC 계층은 논리 채널(logical channel)을 통해 상위 계층인 RLC(radio link control) 계층에게 서비스를 제공한다. MAC 계층은 복수의 논리 채널에서 복수의 전송 채널로의 맵핑 기능을 제공한다. 또한, MAC 계층은 복수의 논리 채널에서 단수의 전송 채널로의 맵핑에 의한 논리 채널 다중화 기능을 제공한다. MAC 부 계층은 논리 채널상의 데이터 전송 서비스를 제공한다.
RLC 계층은 RLC SDU(Service Data Unit)의 연결(concatenation), 분할(segmentation) 및 재결합(reassembly)을 수행한다. 무선 베어러(Radio Bearer, RB)가 요구하는 다양한 QoS(Quality of Service)를 보장하기 위해, RLC 계층은 투명모드(Transparent Mode, TM), 비확인 모드(Unacknowledged Mode, UM) 및 확인모드(Acknowledged Mode, AM)의 세 가지의 동작모드를 제공한다. AM RLC는 ARQ(automatic repeat request)를 통해 오류 정정을 제공한다.
RRC(Radio Resource Control) 계층은 제어 평면에서만 정의된다. RRC 계층은 무선 베어러들의 설정(configuration), 재설정(re-configuration) 및 해제(release)와 관련되어 논리 채널, 전송 채널 및 물리 채널들의 제어를 담당한다. RB는 단말과 네트워크간의 데이터 전달을 위해 제 1 계층(physical 계층 또는 PHY 계층) 및 제 2 계층(MAC 계층, RLC 계층, PDCP(Packet Data Convergence Protocol) 계층, SDAP(Service Data Adaptation Protocol) 계층)에 의해 제공되는 논리적 경로를 의미한다.
사용자 평면에서의 PDCP 계층의 기능은 사용자 데이터의 전달, 헤더 압축(header compression) 및 암호화(ciphering)를 포함한다. 제어 평면에서의 PDCP 계층의 기능은 제어 평면 데이터의 전달 및 암호화/무결성 보호(integrity protection)를 포함한다.
SDAP(Service Data Adaptation Protocol) 계층은 사용자 평면에서만 정의된다. SDAP 계층은 QoS 플로우(flow)와 데이터 무선 베어러 간의 매핑, 하향링크 및 상향링크 패킷 내 QoS 플로우 식별자(ID) 마킹 등을 수행한다.
RB가 설정된다는 것은 특정 서비스를 제공하기 위해 무선 프로토콜 계층 및 채널의 특성을 규정하고, 각각의 구체적인 파라미터 및 동작 방법을 설정하는 과정을 의미한다. RB는 다시 SRB(Signaling Radio Bearer)와 DRB(Data Radio Bearer) 두 가지로 나누어 질 수 있다. SRB는 제어 평면에서 RRC 메시지를 전송하는 통로로 사용되며, DRB는 사용자 평면에서 사용자 데이터를 전송하는 통로로 사용된다.
단말의 RRC 계층과 기지국의 RRC 계층 사이에 RRC 연결(RRC connection)이 확립되면, 단말은 RRC_CONNECTED 상태에 있게 되고, 그렇지 못할 경우 RRC_IDLE 상태에 있게 된다. NR의 경우, RRC_INACTIVE 상태가 추가로 정의되었으며, RRC_INACTIVE 상태의 단말은 코어 네트워크와의 연결을 유지하는 반면 기지국과의 연결을 해지(release)할 수 있다.
네트워크에서 단말로 데이터를 전송하는 하향링크 전송 채널로는 시스템 정보를 전송하는 BCH(Broadcast Channel)과 그 이외에 사용자 트래픽이나 제어 메시지를 전송하는 하향링크 SCH(Shared Channel)이 있다. 하향링크 멀티캐스트 또는 브로드캐스트 서비스의 트래픽 또는 제어메시지의 경우 하향링크 SCH를 통해 전송될 수도 있고, 또는 별도의 하향링크 MCH(Multicast Channel)을 통해 전송될 수도 있다. 한편, 단말에서 네트워크로 데이터를 전송하는 상향링크 전송 채널로는 초기 제어메시지를 전송하는 RACH(Random Access Channel)와 그 이외에 사용자 트래픽이나 제어메시지를 전송하는 상향링크 SCH(Shared Channel)가 있다.
전송 채널 상위에 있으며, 전송 채널에 맵핑되는 논리 채널(Logical Channel)로는 BCCH(Broadcast Control Channel), PCCH(Paging Control Channel), CCCH(Common Control Channel), MCCH(Multicast Control Channel), MTCH(Multicast Traffic Channel) 등이 있다.
도 4는 본 개시의 일 실시 예에 따른, NR의 무선 프레임의 구조를 나타낸다. 도 4의 실시 예는 본 개시의 다양한 실시 예와 결합될 수 있다.
도 4를 참조하면, NR에서 상향링크 및 하향링크 전송에서 무선 프레임을 사용할 수 있다. 무선 프레임은 10ms의 길이를 가지며, 2개의 5ms 하프-프레임(Half-Frame, HF)으로 정의될 수 있다. 하프-프레임은 5개의 1ms 서브프레임(Subframe, SF)을 포함할 수 있다. 서브프레임은 하나 이상의 슬롯으로 분할될 수 있으며, 서브프레임 내 슬롯 개수는 부반송파 간격(Subcarrier Spacing, SCS)에 따라 결정될 수 있다. 각 슬롯은 CP(cyclic prefix)에 따라 12개 또는 14개의 OFDM(A) 심볼을 포함할 수 있다.
노멀 CP(normal CP)가 사용되는 경우, 각 슬롯은 14개의 심볼을 포함할 수 있다. 확장 CP가 사용되는 경우, 각 슬롯은 12개의 심볼을 포함할 수 있다. 여기서, 심볼은 OFDM 심볼 (또는, CP-OFDM 심볼), SC-FDMA(Single Carrier - FDMA) 심볼 (또는, DFT-s-OFDM(Discrete Fourier Transform-spread-OFDM) 심볼)을 포함할 수 있다.
다음 표 1은 노멀 CP가 사용되는 경우, SCS 설정(u)에 따라 슬롯 별 심볼의 개수(Nslot symb), 프레임 별 슬롯의 개수(Nframe,u slot)와 서브프레임 별 슬롯의 개수(Nsubframe,u slot)를 예시한다.
SCS (15*2u) Nslot symb Nframe,u slot Nsubframe,u slot
15KHz (u=0) 14 10 1
30KHz (u=1) 14 20 2
60KHz (u=2) 14 40 4
120KHz (u=3) 14 80 8
240KHz (u=4) 14 160 16
표 2는 확장 CP가 사용되는 경우, SCS에 따라 슬롯 별 심볼의 개수, 프레임 별 슬롯의 개수와 서브프레임 별 슬롯의 개수를 예시한다.
SCS (15*2u) Nslot symb Nframe,u slot Nsubframe,u slot
60KHz (u=2) 12 40 4
NR 시스템에서는 하나의 단말에게 병합되는 복수의 셀들 간에 OFDM(A) 뉴머놀로지(numerology)(예, SCS, CP 길이 등)가 상이하게 설정될 수 있다. 이에 따라, 동일한 개수의 심볼로 구성된 시간 자원(예, 서브프레임, 슬롯 또는 TTI)(편의상, TU(Time Unit)로 통칭)의 (절대 시간) 구간이 병합된 셀들 간에 상이하게 설정될 수 있다.
NR에서, 다양한 5G 서비스들을 지원하기 위한 다수의 뉴머놀로지(numerology) 또는 SCS가 지원될 수 있다. 예를 들어, SCS가 15kHz인 경우, 전통적인 셀룰러 밴드들에서의 넓은 영역(wide area)이 지원될 수 있고, SCS가 30kHz/60kHz인 경우, 밀집한-도시(dense-urban), 더 낮은 지연(lower latency) 및 더 넓은 캐리어 대역폭(wider carrier bandwidth)이 지원될 수 있다. SCS가 60kHz 또는 그보다 높은 경우, 위상 잡음(phase noise)을 극복하기 위해 24.25GHz보다 큰 대역폭이 지원될 수 있다.
NR 주파수 밴드(frequency band)는 두 가지 타입의 주파수 범위(frequency range)로 정의될 수 있다. 상기 두 가지 타입의 주파수 범위는 FR1 및 FR2일 수 있다. 주파수 범위의 수치는 변경될 수 있으며, 예를 들어, 상기 두 가지 타입의 주파수 범위는 하기 표 3과 같을 수 있다. NR 시스템에서 사용되는 주파수 범위 중 FR1은 "sub 6GHz range"를 의미할 수 있고, FR2는 "above 6GHz range"를 의미할 수 있고 밀리미터 웨이브(millimeter wave, mmW)로 불릴 수 있다.
Frequency Range designation Corresponding frequency range Subcarrier Spacing (SCS)
FR1 450MHz - 6000MHz 15, 30, 60kHz
FR2 24250MHz - 52600MHz 60, 120, 240kHz
상술한 바와 같이, NR 시스템의 주파수 범위의 수치는 변경될 수 있다. 예를 들어, FR1은 하기 표 4와 같이 410MHz 내지 7125MHz의 대역을 포함할 수 있다. 즉, FR1은 6GHz (또는 5850, 5900, 5925 MHz 등) 이상의 주파수 대역을 포함할 수 있다. 예를 들어, FR1 내에서 포함되는 6GHz (또는 5850, 5900, 5925 MHz 등) 이상의 주파수 대역은 비면허 대역(unlicensed band)을 포함할 수 있다. 비면허 대역은 다양한 용도로 사용될 수 있고, 예를 들어 차량을 위한 통신(예를 들어, 자율주행)을 위해 사용될 수 있다.
Frequency Range designation Corresponding frequency range Subcarrier Spacing (SCS)
FR1 410MHz - 7125MHz 15, 30, 60kHz
FR2 24250MHz - 52600MHz 60, 120, 240kHz
도 5는 본 개시의 일 실시 예에 따른, NR 프레임의 슬롯 구조를 나타낸다. 도 5의 실시 예는 본 개시의 다양한 실시 예와 결합될 수 있다.
도 5를 참조하면, 슬롯은 시간 영역에서 복수의 심볼들을 포함한다. 예를 들어, 노멀 CP의 경우 하나의 슬롯이 14개의 심볼을 포함하나, 확장 CP의 경우 하나의 슬롯이 12개의 심볼을 포함할 수 있다. 또는 노멀 CP의 경우 하나의 슬롯이 7개의 심볼을 포함하나, 확장 CP의 경우 하나의 슬롯이 6개의 심볼을 포함할 수 있다.
반송파는 주파수 영역에서 복수의 부반송파들을 포함한다. RB(Resource Block)는 주파수 영역에서 복수(예를 들어, 12)의 연속한 부반송파로 정의될 수 있다. BWP(Bandwidth Part)는 주파수 영역에서 복수의 연속한 (P)RB((Physical) Resource Block)로 정의될 수 있으며, 하나의 뉴머놀로지(numerology)(예, SCS, CP 길이 등)에 대응될 수 있다. 반송파는 최대 N개(예를 들어, 5개)의 BWP를 포함할 수 있다. 데이터 통신은 활성화된 BWP를 통해서 수행될 수 있다. 각각의 요소는 자원 그리드에서 자원요소(Resource Element, RE)로 지칭될 수 있고, 하나의 복소 심볼이 맵핑될 수 있다.
이하, BWP(Bandwidth Part) 및 캐리어에 대하여 설명한다.
BWP(Bandwidth Part)는 주어진 뉴머놀로지에서 PRB(physical resource block)의 연속적인 집합일 수 있다. PRB는 주어진 캐리어 상에서 주어진 뉴머놀로지에 대한 CRB(common resource block)의 연속적인 부분 집합으로부터 선택될 수 있다.
예를 들어, BWP는 활성(active) BWP, 이니셜(initial) BWP 및/또는 디폴트(default) BWP 중 적어도 어느 하나일 수 있다. 예를 들어, 단말은 PCell(primary cell) 상의 활성(active) DL BWP 이외의 DL BWP에서 다운 링크 무선 링크 품질(downlink radio link quality)을 모니터링하지 않을 수 있다. 예를 들어, 단말은 활성 DL BWP의 외부에서 PDCCH, PDSCH(physical downlink shared channel) 또는 CSI-RS(reference signal)(단, RRM 제외)를 수신하지 않을 수 있다. 예를 들어, 단말은 비활성 DL BWP에 대한 CSI(Channel State Information) 보고를 트리거하지 않을 수 있다. 예를 들어, 단말은 활성 UL BWP 외부에서 PUCCH(physical uplink control channel) 또는 PUSCH(physical uplink shared channel)를 전송하지 않을 수 있다. 예를 들어, 하향링크의 경우, 이니셜 BWP는 (PBCH(physical broadcast channel)에 의해 설정된) RMSI(remaining minimum system information) CORESET(control resource set)에 대한 연속적인 RB 세트로 주어질 수 있다. 예를 들어, 상향링크의 경우, 이니셜 BWP는 랜덤 액세스 절차를 위해 SIB(system information block)에 의해 주어질 수 있다. 예를 들어, 디폴트 BWP는 상위 계층에 의해 설정될 수 있다. 예를 들어, 디폴트 BWP의 초기 값은 이니셜 DL BWP일 수 있다. 에너지 세이빙을 위해, 단말이 일정 기간 동안 DCI를 검출하지 못하면, 단말은 상기 단말의 활성 BWP를 디폴트 BWP로 스위칭할 수 있다.
한편, BWP는 SL에 대하여 정의될 수 있다. 동일한 SL BWP는 전송 및 수신에 사용될 수 있다. 예를 들어, 전송 단말은 특정 BWP 상에서 SL 채널 또는 SL 신호를 전송할 수 있고, 수신 단말은 상기 특정 BWP 상에서 SL 채널 또는 SL 신호를 수신할 수 있다. 면허 캐리어(licensed carrier)에서, SL BWP는 Uu BWP와 별도로 정의될 수 있으며, SL BWP는 Uu BWP와 별도의 설정 시그널링(separate configuration signalling)을 가질 수 있다. 예를 들어, 단말은 SL BWP를 위한 설정을 기지국/네트워크로부터 수신할 수 있다. 예를 들어, 단말은 Uu BWP를 위한 설정을 기지국/네트워크로부터 수신할 수 있다. SL BWP는 캐리어 내에서 out-of-coverage NR V2X 단말 및 RRC_IDLE 단말에 대하여 (미리) 설정될 수 있다. RRC_CONNECTED 모드의 단말에 대하여, 적어도 하나의 SL BWP가 캐리어 내에서 활성화될 수 있다.
도 6은 본 개시의 일 실시 예에 따른, BWP의 일 예를 나타낸다. 도 6의 실시 예는 본 개시의 다양한 실시 예와 결합될 수 있다. 도 6의 실시 예에서, BWP는 세 개라고 가정한다.
도 6을 참조하면, CRB(common resource block)는 캐리어 밴드의 한 쪽 끝에서부터 다른 쪽 끝까지 번호가 매겨진 캐리어 자원 블록일 수 있다. 그리고, PRB는 각 BWP 내에서 번호가 매겨진 자원 블록일 수 있다. 포인트 A는 자원 블록 그리드(resource block grid)에 대한 공통 참조 포인트(common reference point)를 지시할 수 있다.
BWP는 포인트 A, 포인트 A로부터의 오프셋(Nstart BWP) 및 대역폭(Nsize BWP)에 의해 설정될 수 있다. 예를 들어, 포인트 A는 모든 뉴머놀로지(예를 들어, 해당 캐리어에서 네트워크에 의해 지원되는 모든 뉴머놀로지)의 서브캐리어 0이 정렬되는 캐리어의 PRB의 외부 참조 포인트일 수 있다. 예를 들어, 오프셋은 주어진 뉴머놀로지에서 가장 낮은 서브캐리어와 포인트 A 사이의 PRB 간격일 수 있다. 예를 들어, 대역폭은 주어진 뉴머놀로지에서 PRB의 개수일 수 있다.
이하, V2X 또는 SL 통신에 대하여 설명한다.
SLSS(Sidelink Synchronization Signal)는 SL 특정적인 시퀀스(sequence)로, PSSS(Primary Sidelink Synchronization Signal)와 SSSS(Secondary Sidelink Synchronization Signal)를 포함할 수 있다. 상기 PSSS는 S-PSS(Sidelink Primary Synchronization Signal)라고 칭할 수 있고, 상기 SSSS는 S-SSS(Sidelink Secondary Synchronization Signal)라고 칭할 수 있다. 예를 들어, 길이-127 M-시퀀스(length-127 M-sequences)가 S-PSS에 대하여 사용될 수 있고, 길이-127 골드-시퀀스(length-127 Gold sequences)가 S-SSS에 대하여 사용될 수 있다. 예를 들어, 단말은 S-PSS를 이용하여 최초 신호를 검출(signal detection)할 수 있고, 동기를 획득할 수 있다. 예를 들어, 단말은 S-PSS 및 S-SSS를 이용하여 세부 동기를 획득할 수 있고, 동기 신호 ID를 검출할 수 있다.
PSBCH(Physical Sidelink Broadcast Channel)는 SL 신호 송수신 전에 단말이 가장 먼저 알아야 하는 기본이 되는 (시스템) 정보가 전송되는 (방송) 채널일 수 있다. 예를 들어, 상기 기본이 되는 정보는 SLSS에 관련된 정보, 듀플렉스 모드(Duplex Mode, DM), TDD UL/DL(Time Division Duplex Uplink/Downlink) 구성, 리소스 풀 관련 정보, SLSS에 관련된 애플리케이션의 종류, 서브프레임 오프셋, 방송 정보 등일 수 있다. 예를 들어, PSBCH 성능의 평가를 위해, NR V2X에서, PSBCH의 페이로드 크기는 24 비트의 CRC(Cyclic Redundancy Check)를 포함하여 56 비트일 수 있다.
S-PSS, S-SSS 및 PSBCH는 주기적 전송을 지원하는 블록 포맷(예를 들어, SL SS(Synchronization Signal)/PSBCH 블록, 이하 S-SSB(Sidelink-Synchronization Signal Block))에 포함될 수 있다. 상기 S-SSB는 캐리어 내의 PSCCH(Physical Sidelink Control Channel)/PSSCH(Physical Sidelink Shared Channel)와 동일한 뉴머놀로지(즉, SCS 및 CP 길이)를 가질 수 있고, 전송 대역폭은 (미리) 설정된 SL BWP(Sidelink BWP) 내에 있을 수 있다. 예를 들어, S-SSB의 대역폭은 11 RB(Resource Block)일 수 있다. 예를 들어, PSBCH는 11 RB에 걸쳐있을 수 있다. 그리고, S-SSB의 주파수 위치는 (미리) 설정될 수 있다. 따라서, 단말은 캐리어에서 S-SSB를 발견하기 위해 주파수에서 가설 검출(hypothesis detection)을 수행할 필요가 없다.
도 7은 본 개시의 일 실시 예에 따른, V2X 또는 SL 통신을 수행하는 단말을 나타낸다. 도 7의 실시 예는 본 개시의 다양한 실시 예와 결합될 수 있다.
도 7을 참조하면, V2X 또는 SL 통신에서 단말이라는 용어는 주로 사용자의 단말을 의미할 수 있다. 하지만, 기지국과 같은 네트워크 장비가 단말 사이의 통신 방식에 따라 신호를 송수신하는 경우, 기지국 또한 일종의 단말로 간주될 수도 있다. 예를 들어, 단말 1은 제 1 장치(100)일 수 있고, 단말 2는 제 2 장치(200)일 수 있다.
예를 들어, 단말 1은 일련의 자원의 집합을 의미하는 자원 풀(resource pool) 내에서 특정한 자원에 해당하는 자원 단위(resource unit)를 선택할 수 있다. 그리고, 단말 1은 상기 자원 단위를 사용하여 SL 신호를 전송할 수 있다. 예를 들어, 수신 단말인 단말 2는 단말 1이 신호를 전송할 수 있는 자원 풀을 설정 받을 수 있고, 상기 자원 풀 내에서 단말 1의 신호를 검출할 수 있다.
여기서, 단말 1이 기지국의 연결 범위 내에 있는 경우, 기지국이 자원 풀을 단말 1에게 알려줄 수 있다. 반면, 단말 1이 기지국의 연결 범위 밖에 있는 경우, 다른 단말이 단말 1에게 자원 풀을 알려주거나, 또는 단말 1은 사전에 설정된 자원 풀을 사용할 수 있다.
일반적으로 자원 풀은 복수의 자원 단위로 구성될 수 있고, 각 단말은 하나 또는 복수의 자원 단위를 선택하여 자신의 SL 신호 전송에 사용할 수 있다.
이하, SL에서 자원 할당(resource allocation)에 대하여 설명한다.
도 8은 본 개시의 일 실시 예에 따라, 단말이 전송 모드에 따라 V2X 또는 SL 통신을 수행하는 절차를 나타낸다. 도 8의 실시 예는 본 개시의 다양한 실시 예와 결합될 수 있다. 본 개시의 다양한 실시 예에서, 전송 모드는 모드 또는 자원 할당 모드라고 칭할 수 있다. 이하, 설명의 편의를 위해, LTE에서 전송 모드는 LTE 전송 모드라고 칭할 수 있고, NR에서 전송 모드는 NR 자원 할당 모드라고 칭할 수 있다.
예를 들어, 도 8의 (a)는 LTE 전송 모드 1 또는 LTE 전송 모드 3과 관련된 단말 동작을 나타낸다. 또는, 예를 들어, 도 8의 (a)는 NR 자원 할당 모드 1과 관련된 단말 동작을 나타낸다. 예를 들어, LTE 전송 모드 1은 일반적인 SL 통신에 적용될 수 있고, LTE 전송 모드 3은 V2X 통신에 적용될 수 있다.
예를 들어, 도 8의 (b)는 LTE 전송 모드 2 또는 LTE 전송 모드 4와 관련된 단말 동작을 나타낸다. 또는, 예를 들어, 도 8의 (b)는 NR 자원 할당 모드 2와 관련된 단말 동작을 나타낸다.
도 8의 (a)를 참조하면, LTE 전송 모드 1, LTE 전송 모드 3 또는 NR 자원 할당 모드 1에서, 기지국은 SL 전송을 위해 단말에 의해 사용될 SL 자원을 스케줄링할 수 있다. 예를 들어, 기지국은 단말 1에게 PDCCH(예, DCI(Downlink Control Information)) 또는 RRC 시그널링(예, Configured Grant Type 1 또는 Configured Grant Type 2)를 통해 자원 스케줄링을 수행할 수 있고, 단말 1은 상기 자원 스케줄링에 따라 단말 2와 V2X 또는 SL 통신을 수행할 수 있다. 예를 들어, 단말 1은 PSCCH(Physical Sidelink Control Channel)를 통해 SCI(Sidelink Control Information)를 단말 2에게 전송한 후, 상기 SCI에 기반한 데이터를 PSSCH(Physical Sidelink Shared Channel)를 통해 단말 2에게 전송할 수 있다.
예를 들어, NR 자원 할당 모드 1에서, 단말은 동적 그랜트(dynamic grant)를 통해 하나의 TB(Transport Block)의 하나 이상의 SL 전송을 위한 자원을 기지국으로부터 제공 또는 할당받을 수 있다. 예를 들어, 기지국은 동적 그랜트를 이용하여 PSCCH 및/또는 PSSCH의 전송을 위한 자원을 단말에게 제공할 수 있다. 예를 들어, 전송 단말은 수신 단말로부터 수신한 SL HARQ(Hybrid Automatic Repeat Request) 피드백을 기지국에게 보고할 수 있다. 이 경우, 기지국이 SL 전송을 위한 자원을 할당하기 위한 PDCCH 내의 지시(indication)를 기반으로, SL HARQ 피드백을 기지국에게 보고하기 위한 PUCCH 자원 및 타이밍(timing)이 결정될 수 있다.
예를 들어, DCI는 DCI 수신과 DCI에 의해 스케줄링된 첫 번째 SL 전송 사이의 슬롯 오프셋을 나타낼 수 있다. 예를 들어, SL 전송 자원을 스케줄링하는 DCI와 첫 번째 스케줄링된 SL 전송 자원 사이의 최소 갭은 해당 단말의 처리 시간(processing time)보다 작지 않을 수 있다.
예를 들어, NR 자원 할당 모드 1에서, 단말은 설정된 그랜트(configured grant)를 통해 복수의 SL 전송을 위해 주기적으로 자원 세트를 기지국으로부터 제공 또는 할당받을 수 있다. 예를 들어, 상기 설정될 그랜트는 설정된 그랜트 타입 1 또는 설정된 그랜트 타입 2를 포함할 수 있다. 예를 들어, 단말은 주어진 설정된 그랜트(given configured grant)에 의해 지시되는 각각의 경우(occasions)에서 전송할 TB를 결정할 수 있다.
예를 들어, 기지국은 동일한 캐리어 상에서 SL 자원을 단말에게 할당할 수 있고, 서로 다른 캐리어 상에서 SL 자원을 단말에게 할당할 수 있다.
도 8의 (b)를 참조하면, LTE 전송 모드 2, LTE 전송 모드 4 또는 NR 자원 할당 모드 2에서, 단말은 기지국/네트워크에 의해 설정된 SL 자원 또는 미리 설정된 SL 자원 내에서 SL 전송 자원을 결정할 수 있다. 예를 들어, 상기 설정된 SL 자원 또는 미리 설정된 SL 자원은 자원 풀일 수 있다. 예를 들어, 단말은 자율적으로 SL 전송을 위한 자원을 선택 또는 스케줄링할 수 있다. 예를 들어, 단말은 설정된 자원 풀 내에서 자원을 스스로 선택하여, SL 통신을 수행할 수 있다. 예를 들어, 단말은 센싱(sensing) 및 자원 (재)선택 절차를 수행하여, 선택 윈도우 내에서 스스로 자원을 선택할 수 있다. 예를 들어, 상기 센싱은 서브채널 단위로 수행될 수 있다. 그리고, 자원 풀 내에서 자원을 스스로 선택한 단말 1은 PSCCH를 통해 SCI를 단말 2에게 전송한 후, 상기 SCI에 기반한 데이터를 PSSCH를 통해 단말 2에게 전송할 수 있다.
도 9는 본 개시의 일 실시 예에 따른, 세 가지 캐스트 타입을 나타낸다. 도 9의 실시 예는 본 개시의 다양한 실시 예와 결합될 수 있다. 구체적으로, 도 9의 (a)는 브로드캐스트 타입의 SL 통신을 나타내고, 도 9의 (b)는 유니캐스트 타입의 SL 통신을 나타내며, 도 9의 (c)는 그룹캐스트 타입의 SL 통신을 나타낸다. 유니캐스트 타입의 SL 통신의 경우, 단말은 다른 단말과 일 대 일 통신을 수행할 수 있다. 그룹캐스트 타입의 SL 통신의 경우, 단말은 자신이 속하는 그룹 내의 하나 이상의 단말과 SL 통신을 수행할 수 있다. 본 개시의 다양한 실시 예에서, SL 그룹캐스트 통신은 SL 멀티캐스트(multicast) 통신, SL 일 대 다(one-to-many) 통신 등으로 대체될 수 있다.
이하, HARQ(Hybrid Automatic Repeat Request) 절차에 대하여 설명한다.
SL 유니캐스트 및 그룹캐스트의 경우, 물리 계층에서의 HARQ 피드백 및 HARQ 컴바이닝(combining)이 지원될 수 있다. 예를 들어, 수신 단말이 자원 할당 모드 1 또는 2로 동작하는 경우, 수신 단말은 PSSCH를 전송 단말로부터 수신할 수 있고, 수신 단말은 PSFCH(Physical Sidelink Feedback Channel)를 통해 SFCI(Sidelink Feedback Control Information) 포맷을 사용하여 PSSCH에 대한 HARQ 피드백을 전송 단말에게 전송할 수 있다.
예를 들어, SL HARQ 피드백은 유니캐스트에 대하여 인에이블될 수 있다. 이 경우, non-CBG(non-Code Block Group) 동작에서, 수신 단말이 상기 수신 단말을 타겟으로 하는 PSCCH를 디코딩하고, 및 수신 단말이 상기 PSCCH와 관련된 전송 블록을 성공적으로 디코딩하면, 수신 단말은 HARQ-ACK을 생성할 수 있다. 그리고, 수신 단말은 HARQ-ACK을 전송 단말에게 전송할 수 있다. 반면, 수신 단말이 상기 수신 단말을 타겟으로 하는 PSCCH를 디코딩한 이후에, 수신 단말이 상기 PSCCH와 관련된 전송 블록을 성공적으로 디코딩하지 못하면, 수신 단말은 HARQ-NACK을 생성할 수 있다. 그리고, 수신 단말은 HARQ-NACK을 전송 단말에게 전송할 수 있다.
예를 들어, SL HARQ 피드백은 그룹캐스트에 대하여 인에이블될 수 있다. 예를 들어, non-CBG 동작에서, 두 가지 HARQ 피드백 옵션이 그룹캐스트에 대하여 지원될 수 있다.
(1) 그룹캐스트 옵션 1: 수신 단말이 상기 수신 단말을 타겟으로 하는 PSCCH를 디코딩한 이후에, 수신 단말이 상기 PSCCH와 관련된 전송 블록의 디코딩에 실패하면, 수신 단말은 HARQ-NACK을 PSFCH를 통해 전송 단말에게 전송할 수 있다. 반면, 수신 단말이 상기 수신 단말을 타겟으로 하는 PSCCH를 디코딩하고, 및 수신 단말이 상기 PSCCH와 관련된 전송 블록을 성공적으로 디코딩하면, 수신 단말은 HARQ-ACK을 전송 단말에게 전송하지 않을 수 있다.
(2) 그룹캐스트 옵션 2: 수신 단말이 상기 수신 단말을 타겟으로 하는 PSCCH를 디코딩한 이후에, 수신 단말이 상기 PSCCH와 관련된 전송 블록의 디코딩에 실패하면, 수신 단말은 HARQ-NACK을 PSFCH를 통해 전송 단말에게 전송할 수 있다. 그리고, 수신 단말이 상기 수신 단말을 타겟으로 하는 PSCCH를 디코딩하고, 및 수신 단말이 상기 PSCCH와 관련된 전송 블록을 성공적으로 디코딩하면, 수신 단말은 HARQ-ACK을 PSFCH를 통해 전송 단말에게 전송할 수 있다.
예를 들어, 그룹캐스트 옵션 1이 SL HARQ 피드백에 사용되면, 그룹캐스트 통신을 수행하는 모든 단말은 PSFCH 자원을 공유할 수 있다. 예를 들어, 동일한 그룹에 속하는 단말은 동일한 PSFCH 자원을 이용하여 HARQ 피드백을 전송할 수 있다.
예를 들어, 그룹캐스트 옵션 2가 SL HARQ 피드백에 사용되면, 그룹캐스트 통신을 수행하는 각각의 단말은 HARQ 피드백 전송을 위해 서로 다른 PSFCH 자원을 사용할 수 있다. 예를 들어, 동일한 그룹에 속하는 단말은 서로 다른 PSFCH 자원을 이용하여 HARQ 피드백을 전송할 수 있다.
예를 들어, SL HARQ 피드백이 그룹캐스트에 대하여 인에이블될 때, 수신 단말은 TX-RX(Transmission-Reception) 거리 및/또는 RSRP(Reference Signal Received Power)를 기반으로 HARQ 피드백을 전송 단말에게 전송할지 여부를 결정할 수 있다.
예를 들어, 그룹캐스트 옵션 1에서 TX-RX 거리 기반 HARQ 피드백의 경우, TX-RX 거리가 통신 범위 요구 사항보다 작거나 같으면, 수신 단말은 PSSCH에 대한 HARQ 피드백을 전송 단말에게 전송할 수 있다. 반면, TX-RX 거리가 통신 범위 요구 사항보다 크면, 수신 단말은 PSSCH에 대한 HARQ 피드백을 전송 단말에게 전송하지 않을 수 있다. 예를 들어, 전송 단말은 상기 PSSCH와 관련된 SCI를 통해 상기 전송 단말의 위치를 수신 단말에게 알릴 수 있다. 예를 들어, 상기 PSSCH와 관련된 SCI는 제 2 SCI일 수 있다. 예를 들어, 수신 단말은 TX-RX 거리를 상기 수신 단말의 위치와 상기 전송 단말의 위치를 기반으로 추정 또는 획득할 수 있다. 예를 들어, 수신 단말은 PSSCH와 관련된 SCI를 디코딩하여, 상기 PSSCH에 사용되는 통신 범위 요구 사항을 알 수 있다.
예를 들어, 자원 할당 모드 1의 경우에, PSFCH 및 PSSCH 사이의 시간은 설정되거나, 미리 설정될 수 있다. 유니캐스트 및 그룹캐스트의 경우, SL 상에서 재전송이 필요하면, 이것은 PUCCH를 사용하는 커버리지 내의 단말에 의해 기지국에게 지시될 수 있다. 전송 단말은 HARQ ACK/NACK의 형태가 아닌 SR(Scheduling Request)/BSR(Buffer Status Report)과 같은 형태로 상기 전송 단말의 서빙 기지국에게 지시(indication)를 전송할 수도 있다. 또한, 기지국이 상기 지시를 수신하지 않더라도, 기지국은 SL 재전송 자원을 단말에게 스케줄링 할 수 있다. 예를 들어, 자원 할당 모드 2의 경우에, PSFCH 및 PSSCH 사이의 시간은 설정되거나, 미리 설정될 수 있다.
예를 들어, 캐리어에서 단말의 전송 관점에서, PSCCH/PSSCH와 PSFCH 사이의 TDM이 슬롯에서 SL를 위한 PSFCH 포맷에 대하여 허용될 수 있다. 예를 들어, 하나의 심볼을 가지는 시퀀스-기반 PSFCH 포맷이 지원될 수 있다. 여기서, 상기 하나의 심볼은 AGC(automatic gain control) 구간이 아닐 수 있다. 예를 들어, 상기 시퀀스-기반 PSFCH 포맷은 유니캐스트 및 그룹캐스트에 적용될 수 있다.
예를 들어, 자원 풀과 연관된 슬롯 내에서, PSFCH 자원은 N 슬롯 구간으로 주기적으로 설정되거나, 사전에 설정될 수 있다. 예를 들어, N은 1 이상의 하나 이상의 값으로 설정될 수 있다. 예를 들어, N은 1, 2 또는 4일 수 있다. 예를 들어, 특정 자원 풀에서의 전송에 대한 HARQ 피드백은 상기 특정 자원 풀 상의 PSFCH를 통해서만 전송될 수 있다.
예를 들어, 전송 단말이 슬롯 #X 내지 슬롯 #N에 걸쳐 PSSCH를 수신 단말에게 전송하는 경우, 수신 단말은 상기 PSSCH에 대한 HARQ 피드백을 슬롯 #(N + A)에서 전송 단말에게 전송할 수 있다. 예를 들어, 슬롯 #(N + A)은 PSFCH 자원을 포함할 수 있다. 여기서, 예를 들어, A는 K보다 크거나 같은 가장 작은 정수일 수 있다. 예를 들어, K는 논리적 슬롯의 개수일 수 있다. 이 경우, K는 자원 풀 내의 슬롯의 개수일 수 있다. 또는, 예를 들어, K는 물리적 슬롯의 개수일 수 있다. 이 경우, K는 자원 풀 내부 및 외부의 슬롯의 개수일 수 있다.
예를 들어, 전송 단말이 수신 단말에게 전송한 하나의 PSSCH에 대한 응답으로, 수신 단말이 PSFCH 자원 상에서 HARQ 피드백을 전송하는 경우, 수신 단말은 설정된 자원 풀 내에서 암시적 메커니즘을 기반으로 상기 PSFCH 자원의 주파수 영역(frequency domain) 및/또는 코드 영역(code domain)을 결정할 수 있다. 예를 들어, 수신 단말은 PSCCH/PSSCH/PSFCH와 관련된 슬롯 인덱스, PSCCH/PSSCH와 관련된 서브채널, 및/또는 그룹캐스트 옵션 2 기반의 HARQ 피드백을 위한 그룹에서 각각의 수신 단말을 구별하기 위한 식별자 중 적어도 어느 하나를 기반으로, PSFCH 자원의 주파수 영역 및/또는 코드 영역을 결정할 수 있다. 그리고/또는, 예를 들어, 수신 단말은 SL RSRP, SINR, L1 소스 ID, 및/또는 위치 정보 중 적어도 어느 하나를 기반으로, PSFCH 자원의 주파수 영역 및/또는 코드 영역을 결정할 수 있다.
예를 들어, 단말의 PSFCH를 통한 HARQ 피드백 전송과 PSFCH를 통한 HARQ 피드백 수신이 중첩되는 경우, 상기 단말은 우선 순위 규칙을 기반으로 PSFCH를 통한 HARQ 피드백 전송 또는 PSFCH를 통한 HARQ 피드백 수신 중 어느 하나를 선택할 수 있다. 예를 들어, 우선 순위 규칙은 적어도 관련 PSCCH/PSSCH의 우선 순위 지시(priority indication)를 기반으로 할 수 있다.
예를 들어, 단말의 복수의 단말에 대한 PSFCH를 통한 HARQ 피드백 전송이 중첩되는 경우, 상기 단말은 우선 순위 규칙을 기반으로 특정 HARQ 피드백 전송을 선택할 수 있다. 예를 들어, 우선 순위 규칙은 적어도 관련 PSCCH/PSSCH의 우선 순위 지시(priority indication)를 기반으로 할 수 있다.
이하, SCI(Sidelink Control Information)에 대하여 설명한다.
기지국이 PDCCH를 통해 단말에게 전송하는 제어 정보를 DCI(Downlink Control Information)라 칭하는 반면, 단말이 PSCCH를 통해 다른 단말에게 전송하는 제어 정보를 SCI라 칭할 수 있다. 예를 들어, 단말은 PSCCH를 디코딩하기 전에, PSCCH의 시작 심볼 및/또는 PSCCH의 심볼 개수를 알고 있을 수 있다. 예를 들어, SCI는 SL 스케줄링 정보를 포함할 수 있다. 예를 들어, 단말은 PSSCH를 스케줄링하기 위해 적어도 하나의 SCI를 다른 단말에게 전송할 수 있다. 예를 들어, 하나 이상의 SCI 포맷(format)이 정의될 수 있다.
예를 들어, 전송 단말은 PSCCH 상에서 SCI를 수신 단말에게 전송할 수 있다. 수신 단말은 PSSCH를 전송 단말로부터 수신하기 위해 하나의 SCI를 디코딩할 수 있다.
예를 들어, 전송 단말은 PSCCH 및/또는 PSSCH 상에서 두 개의 연속적인 SCI(예를 들어, 2-stage SCI)를 수신 단말에게 전송할 수 있다. 수신 단말은 PSSCH를 전송 단말로부터 수신하기 위해 두 개의 연속적인 SCI(예를 들어, 2-stage SCI)를 디코딩할 수 있다. 예를 들어, (상대적으로) 높은 SCI 페이로드(payload) 크기를 고려하여 SCI 구성 필드들을 두 개의 그룹으로 구분한 경우에, 제 1 SCI 구성 필드 그룹을 포함하는 SCI를 제 1 SCI 또는 1st SCI라고 칭할 수 있고, 제 2 SCI 구성 필드 그룹을 포함하는 SCI를 제 2 SCI 또는 2nd SCI라고 칭할 수 있다. 예를 들어, 전송 단말은 PSCCH를 통해서 제 1 SCI를 수신 단말에게 전송할 수 있다. 예를 들어, 전송 단말은 PSCCH 및/또는 PSSCH 상에서 제 2 SCI를 수신 단말에게 전송할 수 있다. 예를 들어, 제 2 SCI는 (독립된) PSCCH를 통해서 수신 단말에게 전송되거나, PSSCH를 통해 데이터와 함께 피기백되어 전송될 수 있다. 예를 들어, 두 개의 연속적인 SCI는 서로 다른 전송(예를 들어, 유니캐스트(unicast), 브로드캐스트(broadcast) 또는 그룹캐스트(groupcast))에 대하여 적용될 수도 있다.
예를 들어, 전송 단말은 SCI를 통해서, 아래 정보 중에 일부 또는 전부를 수신 단말에게 전송할 수 있다. 여기서, 예를 들어, 전송 단말은 아래 정보 중에 일부 또는 전부를 제 1 SCI 및/또는 제 2 SCI를 통해서 수신 단말에게 전송할 수 있다.
- PSSCH 및/또는 PSCCH 관련 자원 할당 정보, 예를 들어, 시간/주파수 자원 위치/개수, 자원 예약 정보(예를 들어, 주기), 및/또는
- SL CSI 보고 요청 지시자 또는 SL (L1) RSRP (및/또는 SL (L1) RSRQ 및/또는 SL (L1) RSSI) 보고 요청 지시자, 및/또는
- (PSSCH 상의) SL CSI 전송 지시자 (또는 SL (L1) RSRP (및/또는 SL (L1) RSRQ 및/또는 SL (L1) RSSI) 정보 전송 지시자), 및/또는
- MCS(Modulation and Coding Scheme) 정보, 및/또는
- 전송 전력 정보, 및/또는
- L1 데스티네이션(destination) ID 정보 및/또는 L1 소스(source) ID 정보, 및/또는
- SL HARQ 프로세스(process) ID 정보, 및/또는
- NDI(New Data Indicator) 정보, 및/또는
- RV(Redundancy Version) 정보, 및/또는
- (전송 트래픽/패킷 관련) QoS 정보, 예를 들어, 우선 순위 정보, 및/또는
- SL CSI-RS 전송 지시자 또는 (전송되는) SL CSI-RS 안테나 포트의 개수 정보
- 전송 단말의 위치 정보 또는 (SL HARQ 피드백이 요청되는) 타겟 수신 단말의 위치 (또는 거리 영역) 정보, 및/또는
- PSSCH를 통해 전송되는 데이터의 디코딩 및/또는 채널 추정과 관련된 참조 신호(예를 들어, DMRS 등) 정보, 예를 들어, DMRS의 (시간-주파수) 맵핑 자원의 패턴과 관련된 정보, 랭크(rank) 정보, 안테나 포트 인덱스 정보;
예를 들어, 제 1 SCI는 채널 센싱과 관련된 정보를 포함할 수 있다. 예를 들어, 수신 단말은 PSSCH DMRS를 이용하여 제 2 SCI를 디코딩할 수 있다. PDCCH에 사용되는 폴라 코드(polar code)가 제 2 SCI에 적용될 수 있다. 예를 들어, 자원 풀에서, 제 1 SCI의 페이로드 사이즈는 유니캐스트, 그룹캐스트 및 브로드캐스트에 대하여 동일할 수 있다. 제 1 SCI를 디코딩한 이후에, 수신 단말은 제 2 SCI의 블라인드 디코딩을 수행할 필요가 없다. 예를 들어, 제 1 SCI는 제 2 SCI의 스케줄링 정보를 포함할 수 있다.
한편, 본 개시의 다양한 실시 예에서, 전송 단말은 PSCCH를 통해 SCI, 제 1 SCI 및/또는 제 2 SCI 중 적어도 어느 하나를 수신 단말에게 전송할 수 있으므로, PSCCH는 SCI, 제 1 SCI 및/또는 제 2 SCI 중 적어도 어느 하나로 대체/치환될 수 있다. 그리고/또는, 예를 들어, SCI는 PSCCH, 제 1 SCI 및/또는 제 2 SCI 중 적어도 어느 하나로 대체/치환될 수 있다. 그리고/또는, 예를 들어, 전송 단말은 PSSCH를 통해 제 2 SCI를 수신 단말에게 전송할 수 있으므로, PSSCH는 제 2 SCI로 대체/치환될 수 있다.
한편, 본 개시의 다양한 실시 예에서, 예를 들어, "설정" 또는 "정의"는, 기지국 또는 네트워크가 사전에 정의된 시그널링(예를 들어, SIB, MAC, RRC 등)을 통해서 "설정"과 관련된 정보 또는 "정의"와 관련된 정보를 단말에게 전송하는 것을 포함할 수 있다. 예를 들어, "설정" 또는 "정의"는, 기지국 또는 네트워크가 "설정"과 관련된 정보 또는 "정의"와 관련된 정보를 단말에 대하여 설정하거나 사전에 설정하는 것을 포함할 수 있다.
한편, SL 통신에서 기지국에 의해서 자원이 할당되고 전송이 스케줄링(scheduling)되는 모드 1 동작에서, 기지국은 UE가 SL 통신을 위해 전송할 PSCCH, PSSCH, PSFCH와 관련된 자원 및/또는 UE가 기지국에게 HARQ 피드백을 전송할 PUCCH와 관련된 자원을 결정할 수 있고, 기지국은 상기 결정된 자원을 단말에게 할당할 수 있다. 예를 들어, 기지국은 DCI 및/또는 RRC 메시지를 통해서, 상기 자원에 대한 타이밍 및 위치와 관련된 정보를 UE에게 전송할 수 있다. 예를 들어, 모드 1 동작에서, 기지국이 UE에게 자원을 할당하는 방식은 아래와 같을 수 있다.
(1) DG(Dynamic Grant): 기지국은 DG를 기반으로 직접 동적으로 자원을 UE에게 할당할 수 있다. 예를 들어, 기지국은 DG 자원과 관련된 정보를 포함하는 DCI를 UE에게 전송할 수 있다.
(2) CG 타입-1(Configured Grant type-1): 기지국은 상위 계층 시그널링(higher layer signaling)을 통해서 주기적인 전송 자원을 UE에게 할당할 수 있다. 예를 들어, 상기 상위 계층 시그널링은 RRC 시그널링일 수 있다.
(3) CG 타입-2(Configured Grant type-2): 기지국은 상위 계층 시그널링(higher layer signaling)을 통해서 주기적인 전송 자원을 UE에게 할당할 수 있고, 기지국은 DCI를 통해서 상기 주기적인 전송 자원을 동적으로 활성화(activation) 또는 비활성화(deactivation)할 수 있다. 예를 들어, 상기 상위 계층 시그널링은 RRC 시그널링일 수 있다.
본 개시에서, DG에 의해 할당된 자원은 DG 자원이라고 칭할 수 있고, CG에 의해 할당된 자원은 CG 자원이라고 칭할 수 있다. 나아가, CG 타입-1에 의해 할당된 자원은 CC 타입-1 자원이라고 칭할 수 있고, CG 타입-2에 의해 할당된 자원은 CG 타입-2 자원이라고 칭할 수 있다.
한편, UE가 CG 자원과 관련된 정보를 수신하는 경우, 시간 오프셋, 주기 등이 적용되는 슬롯의 단위(예, 논리적 슬롯의 단위 또는 물리적 슬롯의 단위)가 명확하게 정의될 필요가 있다. 나아가, UE가 시간 오프셋, 주기 등을 기반으로 획득된 값에 모듈러 연산을 취하여 CG 자원의 위치를 결정하는 경우, 모듈러 연산에 사용되는 값이 정의될 필요가 있다. 위 사항이 정의되지 않으면, CG 자원과 관련된 정보를 수신한 UE가 사용하는 SL 자원 및 기지국이 UE에게 할당한 SL 자원 사이에 불일치가 발생할 수 있고, 이는 무선 자원 관리 측면 및 SL 통신의 품질 보장 측면에서 바람직하지 않을 수 있다.
본 개시의 다양한 실시 예에 따라, 자원 할당 모드 1에서, CG 타입-1 및 CG 타입-2를 기반으로 SL 전송 자원을 결정하는 방법 및 이를 지원하는 장치에 대해서 제안한다.
예를 들어, 기지국이 RRC 시그널링을 통해서 UE에게 전송하는 CG 타입-1과 관련된 설정(configuration) 정보는 다음을 포함할 수 있다. 설명의 편의를 위해, 기지국이 RRC 시그널링을 통해서 UE에게 전송하는 CG 타입-1과 관련된 설정 정보는, RRC 설정(configuration) 또는 RRC 설정 정보라고 칭할 수 있다.
- 제 1 오프셋: 최초 CG 자원에 대한 타이밍 오프셋(timing offset)
- 주기(period): 기지국에 의해 주기적으로 할당된 CG 자원들 사이의 간격 주기
표 5 및 표 6은 CG와 관련된 설정 정보의 일 예를 나타낸다.
Figure PCTKR2021014072-appb-T000001
Figure PCTKR2021014072-appb-T000002
도 10은 본 개시의 일 실시 예에 따른, CG 타입-1 자원의 일 예를 나타낸다. 도 10의 실시 예는 본 개시의 다양한 실시 예와 결합될 수 있다.
도 11은 본 개시의 일 실시 예에 따른, CG 타입-2 자원의 일 예를 나타낸다. 도 11의 실시 예는 본 개시의 다양한 실시 예와 결합될 수 있다.
예를 들어, 기지국이 RRC 시그널링을 통해서 CG 타입-2 자원의 주기를 UE에게 설정하고, 및 기지국이 DCI를 통해서 CG 타입-2 자원의 활성/비활성을 위한 제 2 오프셋을 UE에게 설정한 경우, UE는 DCI를 수신한 시점과 DCI를 통해서 시그널링된 상기 제 2 오프셋을 기반으로, PSCCH/PSSCH를 전송할 CG 타입-2 자원에 해당하는 첫 번째 SL 자원을 결정할 수 있다.
예를 들어, 기지국은 상기 CG 타입-1 자원을 설정할 SL 자원 풀 내의 자원에 한정해서, 상기 SL 자원 풀에 속하는 SL 슬롯 단위로 제 1 오프셋 및 주기를 UE에게 설정할 수 있다. 예를 들어, 기지국은 상기 CG 타입-1 자원을 설정할 SL 자원 풀 내의 자원에 한정해서, 상기 SL 자원 풀에 속하는 SL 슬롯 단위로, 제 1 오프셋과 관련된 정보 및 주기와 관련된 정보를 UE에게 전송할 수 있다. 따라서, S-SSB 자원(예, S-SSB 송수신을 위한 자원) 또는 예약된 자원(reserved resource)과 같이 SL 자원 풀에 속하지 않는 자원은 CG 타입-1 자원을 설정하는 대상에서 제외될 수 있다.
예를 들어, UE는 RRC 메시지 및/또는 DCI를 통해서, CG 타입-1 자원 또는 CG 타입-2 자원을 기지국으로부터 할당 받을 수 있다. 이 경우, UE는 표 7을 기반으로 CG 타입-1 자원 또는 CG 타입-2 자원을 결정할 수 있다. 구체적으로, 예를 들어, 표 7의 수학식을 만족시키는 특정 SL 슬롯에 대하여, UE는 상기 특정 SL 슬롯을 CG 타입-1 자원 또는 CG 타입-2 자원으로 결정/간주할 수 있고, UE는 상기 CG 타입-1 자원 또는 CG 타입-2 자원을 기반으로 SL 통신을 수행할 수 있다.
Figure PCTKR2021014072-appb-T000003
표 7에서, sl_periodCG는 상기 제 1 오프셋을 절대적인 시간 값(예, ms)으로 설정한 값일 수 있다.
예를 들어, S-SSB 자원 및 예약된 자원(reserved resource)은 SL 자원 풀에 포함되지 않으므로, 기지국이 상기 sl_periodCG와 같이 제 1 오프셋을 절대적인 시간 값(예, ms)으로 설정하게 되면, 제 1 오프셋 시간에 해당하는 SL 자원 풀에 속하는 SL 논리적 슬롯(logical slot)의 개수가 변동적일 수 있다. 이러한 모호성을 해결하기 위해서, UE는 표 8을 기반으로 SL 자원 풀에 속하는 SL 논리적 슬롯(logical slot)으로 표현되는 최종적인 값을 계산/획득할 수 있다.
Figure PCTKR2021014072-appb-T000004
표 8에서, N1 bitmap은 SL 자원 풀을 결정하는 비트맵에서 '1'의 총 개수를 나타낼 수 있고, bitmap length는 SL 자원 풀을 결정하는 비트맵의 총 비트 개수를 나타낼 수 있다.
예를 들어, UE는 RRC 메시지 및/또는 DCI를 통해서, CG 타입-1 자원 또는 CG 타입-2 자원을 기지국으로부터 할당 받을 수 있다. 이 경우, UE는 표 9를 기반으로 CG 타입-1 자원 또는 CG 타입-2 자원을 결정할 수 있다. 구체적으로, 예를 들어, 표 9의 수학식을 만족시키는 특정 SL 슬롯에 대하여, UE는 상기 특정 SL 슬롯을 CG 타입-1 자원 또는 CG 타입-2 자원으로 결정/간주할 수 있고, UE는 상기 CG 타입-1 자원 또는 CG 타입-2 자원을 기반으로 SL 통신을 수행할 수 있다.
Figure PCTKR2021014072-appb-T000005
표 9에서, UE는 기지국이 numberOfSLSlotsPerFrame 값을 물리적 프레임(physical frame) 마다 고정된 자연수 값을 가지도록 설정한다고 기대/결정할 수 있다. 예를 들어, 기지국은 물리적 프레임(physical frame) 마다 고정된 자연수 값을 가지는 numberOfSLSlotsPerFrame 값을 UE에게 전송할 수 있다. 예를 들어, numberOfSLSlotsPerFrame 값이 자연수가 아닌 경우, UE는 numberOfSLSlotsPerFrame 값을 numberOfSLSlotsPerFrame 값의 올림 값으로 결정/변환할 수 있다. 예를 들어, numberOfSLSlotsPerFrame 값이 자연수가 아닌 경우, UE는 numberOfSLSlotsPerFrame 값을 numberOfSLSlotsPerFrame 값의 내림 값으로 결정/변환할 수 있다. 예를 들어, numberOfSLSlotsPerFrame 값이 자연수가 아닌 경우, UE는 numberOfSLSlotsPerFrame 값을 numberOfSLSlotsPerFrame 값의 반올림 값으로 결정/변환할 수 있다. 예를 들어, 상기 표 9의 수학식에 의해서 결정된 슬롯이 SL 자원 풀에 속하는 자원이 아닌 경우에, UE는 상기 수학식을 만족하는 슬롯보다 빠르지 않지만, 시간적으로 가장 가까운 SL 자원 풀에 속하는 SL 슬롯을 CG 자원으로 결정할 수 있다.
예를 들어, UE는 RRC 메시지 및/또는 DCI를 통해서, CG 타입-1 자원 또는 CG 타입-2 자원을 기지국으로부터 할당 받을 수 있다. 이 경우, UE는 표 10을 기반으로 CG 타입-1 자원 또는 CG 타입-2 자원을 결정할 수 있다. 구체적으로, 예를 들어, 표 10의 수학식을 만족시키는 특정 SL 슬롯에 대하여, UE는 상기 특정 SL 슬롯을 CG 타입-1 자원 또는 CG 타입-2 자원으로 결정/간주할 수 있고, UE는 상기 CG 타입-1 자원 또는 CG 타입-2 자원을 기반으로 SL 통신을 수행할 수 있다.
Figure PCTKR2021014072-appb-T000006
표 10에서, SL 자원 풀 또는 SL 통신에 사용될 수 있는 SL 자원에 속하는 SL 논리적 슬롯(logical slot)의 개수는 물리적 프레임(physical frame) 마다 상이할 수 있으므로, UE는 매 i 번째 프레임에 속하는 SL 논리적 슬롯(logical slot)의 개수인 numberofSLSlotsPerFramei를 기반으로 CG 타입-1 자원 또는 CG 타입-2 자원을 결정할 수 있다. 구체적으로, UE는 매 i 번째 프레임에 속하는 SL 논리적 슬롯(logical slot)의 개수를 고려하여, 표 10의 수학식을 만족시키는 특정 SL 슬롯을 CG 타입-1 자원 또는 CG 타입-2 자원으로 결정할 수 있다.
예를 들어, UE는 시간 오프셋과 관련된 정보(예, sl-TimeOffsetCGType1), 주기와 관련된 정보(예, PeriodicitySL) 및 CG 자원이 몇 번째 주기에 속하는 자원인지 나타내는 정보(예, S) 중 적어도 어느 하나를 기반으로 제 1 값을 획득할 수 있고, UE는 상기 제 1 값을 1024 프레임 내에 논리적 슬롯들의 개수(the number of logical slots per 1024 frames)로 나눈 나머지 값인 제 2 값을 획득할 수 있다. 즉, UE는 상기 제 1 값을 10240ms 내에서 자원 풀에 속하는 슬롯의 개수로 나눈 나머지 값인 제 2 값을 획득할 수 있다. 이후, 단말은 상기 제 2 값에 대응하는 슬롯이 S 번째 SL 그랜트의 첫 번째 슬롯이라고 결정할 수 있다.
도 12는 본 개시의 일 실시 예에 따라, 단말이 CG 설정과 관련된 정보를 기반으로 SL 자원을 결정하는 절차를 나타낸다. 도 12의 실시 예는 본 개시의 다양한 실시 예와 결합될 수 있다.
도 12를 참조하면, 단계 S1210에서, 제 1 UE는 CG 설정과 관련된 정보를 기지국으로부터 수신할 수 있다. 예를 들어, CG 설정과 관련된 정보는 표 5 및 표 6과 같이 설정될 수 있다. 예를 들어, CG 설정과 관련된 정보는 CG 자원의 주기와 관련된 정보 및 시간 오프셋과 관련된 정보를 포함할 수 있다.
단계 S1220에서, 제 1 UE는 상기 CG 설정과 관련된 정보를 기반으로 SL 자원을 결정할 수 있다. 예를 들어, 제 1 UE는 상기 CG 자원의 주기와 관련된 정보 및 상기 시간 오프셋과 관련된 정보를 기반으로, 주기 별로 첫 번째 SL 자원(즉, 슬롯)을 결정할 수 있다. 예를 들어, 제 1 UE는 표 7 내지 표 11 중 적어도 어느 하나를 기반으로, 주기 별로 첫 번째 SL 자원(즉, 슬롯)을 결정할 수 있다.
Figure PCTKR2021014072-appb-T000007
예를 들어, S 번째 주기에 대하여, 제 1 UE는 시간 오프셋과 관련된 정보 및 CG 자원의 주기와 관련된 정보(즉, 논리적 단위의 주기와 관련된 정보)를 기반으로 제 1 값을 획득할 수 있다. 그리고, 제 1 UE는 상기 제 1 값을 자원 풀에 속하는 슬롯의 개수(T`max)로 나눈 나머지 값(즉, 제 2 값)을 획득할 수 있다. 여기서, 제 1 UE는 상기 제 2 값에 대응하는 슬롯이 S 번째 주기의 첫 번째 CG 자원을 포함하는 슬롯이라고 결정할 수 있다. 상술한 실시 예에서, CG 자원의 주기와 관련된 정보는 물리적인 시간 단위(예, ms)로 기지국에 의해 제공될 수 있고, 제 1 UE는 10240ms 내에서 자원 풀에 속하는 슬롯의 개수를 기반으로, 상기 물리적인 시간 단위인 CG 자원의 주기를 논리적인 시간 단위로 변환할 수 있다. 예를 들어, 상기 자원 풀에 속하는 슬롯의 개수는 표 12를 기반으로 획득될 수 있다.
Figure PCTKR2021014072-appb-T000008
단계 S1230에서, 제 1 UE는 상기 SL 자원을 기반으로 PSCCH를 제 2 UE에게 전송할 수 있다. 단계 S1240에서, 제 1 UE는 상기 SL 자원을 기반으로 상기 PSCCH와 관련된 PSSCH를 제 2 UE에게 전송할 수 있다.
도 13은 본 개시의 일 실시 예에 따라, 제 1 장치가 무선 통신을 수행하는 방법을 나타낸다. 도 13의 실시 예는 본 개시의 다양한 실시 예와 결합될 수 있다.
도 13을 참조하면, 단계 S1310에서, 제 1 장치는 SL(sidelink) 자원의 시간 오프셋과 관련된 정보 및 상기 SL 자원의 제 1 주기와 관련된 정보를 기지국으로부터 수신할 수 있다. 단계 S1320에서, 제 1 장치는 10240ms 내에서 자원 풀에 속하는 슬롯들의 개수를 결정할 수 있다. 단계 S1330에서, 제 1 장치는 상기 자원 풀에 속하는 슬롯들의 개수를 기반으로, 상기 제 1 주기와 관련된 정보로부터 논리적 슬롯 단위의 제 2 주기와 관련된 정보를 획득할 수 있다. 단계 S1340에서, 제 1 장치는 상기 제 2 주기와 관련된 정보, 상기 시간 오프셋과 관련된 정보 및 상기 자원 풀에 속하는 슬롯들의 개수를 기반으로, 상기 SL 자원의 시간 영역을 결정할 수 있다.
부가적으로, 예를 들어, 제 1 장치는 상기 제 2 주기와 관련된 정보 및 상기 시간 오프셋과 관련된 정보를 기반으로 획득된 값을 상기 10240ms 내에서 상기 자원 풀에 속하는 슬롯들의 개수로 나누어서, 나머지 값을 획득할 수 있다. 예를 들어, 상기 SL 자원의 상기 시간 영역은 상기 나머지 값을 기반으로 결정될 수 있다. 예를 들어, 상기 SL 자원의 상기 시간 영역은 상기 나머지 값에 의해 지시되는 슬롯일 수 있다. 예를 들어, 상기 나머지 값에 의해 지시되는 상기 슬롯은 주기 내의 SL 그랜트의 첫 번째 슬롯일 수 있다. 예를 들어, 상기 제 2 주기와 관련된 정보 및 상기 시간 오프셋과 관련된 정보를 기반으로 획득된 값은 슬롯 인덱스 값일 수 있다.
예를 들어, 상기 10240ms 내에서 상기 자원 풀에 속하는 슬롯들의 개수는 상기 10240ms 내에 속하는 SL 전송에 사용 가능한 슬롯들의 개수에서 S-SSB(sidelink-synchronization signal block)를 위한 슬롯들의 개수 및 예약된 슬롯(reserved slot)들의 개수를 제외하여 결정될 수 있다. 예를 들어, 상기 10240ms 내에서 상기 자원 풀에 속하는 슬롯들의 개수는 상기 자원 풀과 관련된 비트맵의 비트들 중에서 1로 설정된 비트의 개수를 기반으로 결정될 수 있다.
부가적으로, 예를 들어, 제 1 장치는 상기 제 2 주기와 관련된 정보에 S의 값을 곱하여, 제 1 값을 획득할 수 있다. 부가적으로, 예를 들어, 제 1 장치는 상기 제 1 값에 상기 시간 오프셋과 관련된 정보를 더하여, 제 2 값을 획득할 수 있다. 부가적으로, 예를 들어, 제 1 장치는 상기 제 2 값을 상기 10240ms 내에서 상기 자원 풀에 속하는 슬롯들의 개수로 나눈 나머지 값인 제 3 값을 획득할 수 있다. 예를 들어, 상기 S의 값은 영 또는 양의 정수일 수 있다. 예를 들어, 상기 SL 자원의 상기 시간 영역은 상기 제 3 값에 의해 지시되는 슬롯일 수 있다. 예를 들어, 상기 제 3 값에 의해 지시되는 상기 슬롯은 S 번째 주기 내의 SL 그랜트의 첫 번째 슬롯일 수 있다.
예를 들어, 상기 시간 오프셋과 관련된 정보는 논리적 슬롯 단위일 수 있다.
예를 들어, 상기 SL 자원은 CG(configured grant)에 의해 할당되는 CG 타입-1 자원 또는 CG 타입-2 자원일 수 있다. 예를 들어, 상기 SL 자원이 상기 CG 타입-1 자원인 것을 기반으로, 상기 시간 오프셋과 관련된 정보 및 상기 제 1 주기와 관련된 정보는 RRC(radio resource control) 메시지를 통해서 상기 기지국으로부터 수신될 수 있다. 예를 들어, 상기 SL 자원이 상기 CG 타입-2 자원인 것을 기반으로, 상기 제 1 주기와 관련된 정보는 RRC 메시지를 통해서 상기 기지국으로부터 수신될 수 있고, 및 상기 시간 오프셋과 관련된 정보는 DCI(downlink control information)를 통해서 상기 기지국으로부터 수신될 수 있다.
부가적으로, 예를 들어, 제 1 장치는 상기 SL 자원을 기반으로, PSCCH(physical sidelink control channel)를 통해서, PSSCH(physical sidelink shared channel)를 스케줄링하기 위한 제 1 SCI(sidelink control information)를 제 2 장치에게 전송할 수 있다. 부가적으로, 예를 들어, 제 1 장치는 상기 SL 자원을 기반으로, 상기 PSSCH를 통해서, 제 2 SCI 또는 MAC PDU(medium access control protocol data unit)를 상기 제 2 장치에게 전송할 수 있다.
상기 제안 방법은 본 개시의 다양한 실시 예에 따른 장치에 적용될 수 있다. 먼저, 제 1 장치(100)의 프로세서(102)는 SL(sidelink) 자원의 시간 오프셋과 관련된 정보 및 상기 SL 자원의 제 1 주기와 관련된 정보를 기지국으로부터 수신하도록 송수신기(106)를 제어할 수 있다. 그리고, 제 1 장치(100)의 프로세서(102)는 10240ms 내에서 자원 풀에 속하는 슬롯들의 개수를 결정할 수 있다. 그리고, 제 1 장치(100)의 프로세서(102)는 상기 자원 풀에 속하는 슬롯들의 개수를 기반으로, 상기 제 1 주기와 관련된 정보로부터 논리적 슬롯 단위의 제 2 주기와 관련된 정보를 획득할 수 있다. 그리고, 제 1 장치(100)의 프로세서(102)는 상기 제 2 주기와 관련된 정보, 상기 시간 오프셋과 관련된 정보 및 상기 자원 풀에 속하는 슬롯들의 개수를 기반으로, 상기 SL 자원의 시간 영역을 결정할 수 있다.
본 개시의 일 실시 예에 따르면, 무선 통신을 수행하는 제 1 장치가 제공될 수 있다. 예를 들어, 제 1 장치는 명령어들을 저장하는 하나 이상의 메모리; 하나 이상의 송수신기; 및 상기 하나 이상의 메모리와 상기 하나 이상의 송수신기를 연결하는 하나 이상의 프로세서를 포함할 수 있다. 예를 들어, 상기 하나 이상의 프로세서는 상기 명령어들을 실행하여, SL(sidelink) 자원의 시간 오프셋과 관련된 정보 및 상기 SL 자원의 제 1 주기와 관련된 정보를 기지국으로부터 수신하고; 10240ms 내에서 자원 풀에 속하는 슬롯들의 개수를 결정하고; 상기 자원 풀에 속하는 슬롯들의 개수를 기반으로, 상기 제 1 주기와 관련된 정보로부터 논리적 슬롯 단위의 제 2 주기와 관련된 정보를 획득하고; 및 상기 제 2 주기와 관련된 정보, 상기 시간 오프셋과 관련된 정보 및 상기 자원 풀에 속하는 슬롯들의 개수를 기반으로, 상기 SL 자원의 시간 영역을 결정할 수 있다.
본 개시의 일 실시 예에 따르면, 무선 통신을 수행하는 제 1 단말을 제어하도록 설정된 장치(apparatus)가 제공될 수 있다. 예를 들어, 장치는 하나 이상의 프로세서; 및 상기 하나 이상의 프로세서에 의해 실행 가능하게 연결되고, 및 명령어들을 저장하는 하나 이상의 메모리를 포함할 수 있다. 예를 들어, 상기 하나 이상의 프로세서는 상기 명령어들을 실행하여, SL(sidelink) 자원의 시간 오프셋과 관련된 정보 및 상기 SL 자원의 제 1 주기와 관련된 정보를 기지국으로부터 수신하고; 10240ms 내에서 자원 풀에 속하는 슬롯들의 개수를 결정하고; 상기 자원 풀에 속하는 슬롯들의 개수를 기반으로, 상기 제 1 주기와 관련된 정보로부터 논리적 슬롯 단위의 제 2 주기와 관련된 정보를 획득하고; 및 상기 제 2 주기와 관련된 정보, 상기 시간 오프셋과 관련된 정보 및 상기 자원 풀에 속하는 슬롯들의 개수를 기반으로, 상기 SL 자원의 시간 영역을 결정할 수 있다.
본 개시의 일 실시 예에 따르면, 명령어들을 기록하고 있는 비일시적 컴퓨터 판독가능 저장 매체가 제공될 수 있다. 예를 들어, 상기 명령어들은, 실행될 때, 제 1 장치로 하여금: SL(sidelink) 자원의 시간 오프셋과 관련된 정보 및 상기 SL 자원의 제 1 주기와 관련된 정보를 기지국으로부터 수신하게 하고; 10240ms 내에서 자원 풀에 속하는 슬롯들의 개수를 결정하게 하고; 상기 자원 풀에 속하는 슬롯들의 개수를 기반으로, 상기 제 1 주기와 관련된 정보로부터 논리적 슬롯 단위의 제 2 주기와 관련된 정보를 획득하게 하고; 및 상기 제 2 주기와 관련된 정보, 상기 시간 오프셋과 관련된 정보 및 상기 자원 풀에 속하는 슬롯들의 개수를 기반으로, 상기 SL 자원의 시간 영역을 결정하게 할 수 있다.
도 14는 본 개시의 일 실시 예에 따라, 기지국이 무선 통신을 수행하는 방법을 나타낸다. 도 14의 실시 예는 본 개시의 다양한 실시 예와 결합될 수 있다.
도 14를 참조하면, 단계 S1410에서, 기지국은 SL(sidelink) 자원의 시간 오프셋과 관련된 정보 및 상기 SL 자원의 제 1 주기와 관련된 정보를 장치에게 전송할 수 있다. 예를 들어, 10240ms 내에서 자원 풀에 속하는 슬롯들의 개수는 상기 장치에 의해 결정될 수 있다. 예를 들어, 논리적 슬롯 단위의 제 2 주기와 관련된 정보는 상기 자원 풀에 속하는 슬롯들의 개수를 기반으로 상기 제 1 주기와 관련된 정보로부터 상기 장치에 의해 획득될 수 있다. 예를 들어, 상기 SL 자원의 시간 영역은 상기 제 2 주기와 관련된 정보, 상기 시간 오프셋과 관련된 정보 및 상기 자원 풀에 속하는 슬롯들의 개수를 기반으로 상기 장치에 의해 결정될 수 있다.
상기 제안 방법은 본 개시의 다양한 실시 예에 따른 장치에 적용될 수 있다. 먼저, 기지국(200)의 프로세서(202)는 SL(sidelink) 자원의 시간 오프셋과 관련된 정보 및 상기 SL 자원의 제 1 주기와 관련된 정보를 장치에게 전송하도록 송수신기(206)를 제어할 수 있다. 예를 들어, 10240ms 내에서 자원 풀에 속하는 슬롯들의 개수는 상기 장치에 의해 결정될 수 있다. 예를 들어, 논리적 슬롯 단위의 제 2 주기와 관련된 정보는 상기 자원 풀에 속하는 슬롯들의 개수를 기반으로 상기 제 1 주기와 관련된 정보로부터 상기 장치에 의해 획득될 수 있다. 예를 들어, 상기 SL 자원의 시간 영역은 상기 제 2 주기와 관련된 정보, 상기 시간 오프셋과 관련된 정보 및 상기 자원 풀에 속하는 슬롯들의 개수를 기반으로 상기 장치에 의해 결정될 수 있다.
본 개시의 일 실시 예에 따르면, 무선 통신을 수행하는 기지국이 제공될 수 있다. 예를 들어, 기지국은 명령어들을 저장하는 하나 이상의 메모리; 하나 이상의 송수신기; 및 상기 하나 이상의 메모리와 상기 하나 이상의 송수신기를 연결하는 하나 이상의 프로세서를 포함할 수 있다. 예를 들어, 상기 하나 이상의 프로세서는 상기 명령어들을 실행하여, SL(sidelink) 자원의 시간 오프셋과 관련된 정보 및 상기 SL 자원의 제 1 주기와 관련된 정보를 장치에게 전송할 수 있다. 예를 들어, 10240ms 내에서 자원 풀에 속하는 슬롯들의 개수는 상기 장치에 의해 결정될 수 있다. 예를 들어, 논리적 슬롯 단위의 제 2 주기와 관련된 정보는 상기 자원 풀에 속하는 슬롯들의 개수를 기반으로 상기 제 1 주기와 관련된 정보로부터 상기 장치에 의해 획득될 수 있다. 예를 들어, 상기 SL 자원의 시간 영역은 상기 제 2 주기와 관련된 정보, 상기 시간 오프셋과 관련된 정보 및 상기 자원 풀에 속하는 슬롯들의 개수를 기반으로 상기 장치에 의해 결정될 수 있다.
본 개시의 일 실시 예에 따르면, 무선 통신을 수행하는 기지국을 제어하도록 설정된 장치(apparatus)가 제공될 수 있다. 예를 들어, 장치는 하나 이상의 프로세서; 및 상기 하나 이상의 프로세서에 의해 실행 가능하게 연결되고, 및 명령어들을 저장하는 하나 이상의 메모리를 포함할 수 있다. 예를 들어, 상기 하나 이상의 프로세서는 상기 명령어들을 실행하여, SL(sidelink) 자원의 시간 오프셋과 관련된 정보 및 상기 SL 자원의 제 1 주기와 관련된 정보를 단말에게 전송할 수 있다. 예를 들어, 10240ms 내에서 자원 풀에 속하는 슬롯들의 개수는 상기 단말에 의해 결정될 수 있다. 예를 들어, 논리적 슬롯 단위의 제 2 주기와 관련된 정보는 상기 자원 풀에 속하는 슬롯들의 개수를 기반으로 상기 제 1 주기와 관련된 정보로부터 상기 단말에 의해 획득될 수 있다. 예를 들어, 상기 SL 자원의 시간 영역은 상기 제 2 주기와 관련된 정보, 상기 시간 오프셋과 관련된 정보 및 상기 자원 풀에 속하는 슬롯들의 개수를 기반으로 상기 단말에 의해 결정될 수 있다.
본 개시의 일 실시 예에 따르면, 명령어들을 기록하고 있는 비일시적 컴퓨터 판독가능 저장 매체가 제공될 수 있다. 예를 들어, 상기 명령어들은, 실행될 때, 기지국으로 하여금: SL(sidelink) 자원의 시간 오프셋과 관련된 정보 및 상기 SL 자원의 제 1 주기와 관련된 정보를 장치에게 전송하게 할 수 있다. 예를 들어, 10240ms 내에서 자원 풀에 속하는 슬롯들의 개수는 상기 장치에 의해 결정될 수 있다. 예를 들어, 논리적 슬롯 단위의 제 2 주기와 관련된 정보는 상기 자원 풀에 속하는 슬롯들의 개수를 기반으로 상기 제 1 주기와 관련된 정보로부터 상기 장치에 의해 획득될 수 있다. 예를 들어, 상기 SL 자원의 시간 영역은 상기 제 2 주기와 관련된 정보, 상기 시간 오프셋과 관련된 정보 및 상기 자원 풀에 속하는 슬롯들의 개수를 기반으로 상기 장치에 의해 결정될 수 있다.
본 개시에서는, UE가 기지국이 설정한 CG 타입-1 자원 또는 CG 타입-2 자원을 SL 자원 풀에 속하는 SL 논리적 슬롯 자원으로 결정하는 방법 및 이를 지원하는 장치를 제안하였다. 상술한 다양한 실시 예에 따르면, CG 자원과 관련된 정보를 수신한 UE가 사용하는 SL 자원 및 기지국이 UE에게 할당한 SL 자원 사이에 불일치가 발생하는 문제를 해결할 수 있다. 따라서, 무선 자원 관리 측면 및 SL 통신의 품질 보장 측면에서 효과를 얻을 수 있다.
본 개시의 다양한 실시 예는 상호 결합될 수 있다.
이하 본 개시의 다양한 실시 예가 적용될 수 있는 장치에 대하여 설명한다.
이로 제한되는 것은 아니지만, 본 문서에 개시된 다양한 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들은 기기들간에 무선 통신/연결(예, 5G)을 필요로 하는 다양한 분야에 적용될 수 있다.
이하, 도면을 참조하여 보다 구체적으로 예시한다. 이하의 도면/설명에서 동일한 도면 부호는 다르게 기술하지 않는 한, 동일하거나 대응되는 하드웨어 블록, 소프트웨어 블록 또는 기능 블록을 예시할 수 있다.
도 15는 본 개시의 일 실시 예에 따른, 통신 시스템(1)을 나타낸다.
도 15를 참조하면, 본 개시의 다양한 실시 예가 적용되는 통신 시스템(1)은 무선 기기, 기지국 및 네트워크를 포함한다. 여기서, 무선 기기는 무선 접속 기술(예, 5G NR(New RAT), LTE(Long Term Evolution))을 이용하여 통신을 수행하는 기기를 의미하며, 통신/무선/5G 기기로 지칭될 수 있다. 이로 제한되는 것은 아니지만, 무선 기기는 로봇(100a), 차량(100b-1, 100b-2), XR(eXtended Reality) 기기(100c), 휴대 기기(Hand-held device)(100d), 가전(100e), IoT(Internet of Thing) 기기(100f), AI기기/서버(400)를 포함할 수 있다. 예를 들어, 차량은 무선 통신 기능이 구비된 차량, 자율 주행 차량, 차량간 통신을 수행할 수 있는 차량 등을 포함할 수 있다. 여기서, 차량은 UAV(Unmanned Aerial Vehicle)(예, 드론)를 포함할 수 있다. XR 기기는 AR(Augmented Reality)/VR(Virtual Reality)/MR(Mixed Reality) 기기를 포함하며, HMD(Head-Mounted Device), 차량에 구비된 HUD(Head-Up Display), 텔레비전, 스마트폰, 컴퓨터, 웨어러블 디바이스, 가전 기기, 디지털 사이니지(signage), 차량, 로봇 등의 형태로 구현될 수 있다. 휴대 기기는 스마트폰, 스마트패드, 웨어러블 기기(예, 스마트워치, 스마트글래스), 컴퓨터(예, 노트북 등) 등을 포함할 수 있다. 가전은 TV, 냉장고, 세탁기 등을 포함할 수 있다. IoT 기기는 센서, 스마트미터 등을 포함할 수 있다. 예를 들어, 기지국, 네트워크는 무선 기기로도 구현될 수 있으며, 특정 무선 기기(200a)는 다른 무선 기기에게 기지국/네트워크 노드로 동작할 수도 있다.
여기서, 본 명세서의 무선 기기(100a~100f)에서 구현되는 무선 통신 기술은 LTE, NR 및 6G뿐만 아니라 저전력 통신을 위한 Narrowband Internet of Things를 포함할 수 있다. 이때, 예를 들어 NB-IoT 기술은 LPWAN(Low Power Wide Area Network) 기술의 일례일 수 있고, LTE Cat NB1 및/또는 LTE Cat NB2 등의 규격으로 구현될 수 있으며, 상술한 명칭에 한정되는 것은 아니다. 추가적으로 또는 대체적으로, 본 명세서의 무선 기기(100a~100f)에서 구현되는 무선 통신 기술은 LTE-M 기술을 기반으로 통신을 수행할 수 있다. 이때, 일 예로, LTE-M 기술은 LPWAN 기술의 일례일 수 있고, eMTC(enhanced Machine Type Communication) 등의 다양한 명칭으로 불릴 수 있다. 예를 들어, LTE-M 기술은 1) LTE CAT 0, 2) LTE Cat M1, 3) LTE Cat M2, 4) LTE non-BL(non-Bandwidth Limited), 5) LTE-MTC, 6) LTE Machine Type Communication, 및/또는 7) LTE M 등의 다양한 규격 중 적어도 어느 하나로 구현될 수 있으며 상술한 명칭에 한정되는 것은 아니다. 추가적으로 또는 대체적으로, 본 명세서의 무선 기기(100a~100f)에서 구현되는 무선 통신 기술은 저전력 통신을 고려한 지그비(ZigBee), 블루투스(Bluetooth) 및 저전력 광역 통신망(Low Power Wide Area Network, LPWAN) 중 적어도 어느 하나를 포함할 수 있으며, 상술한 명칭에 한정되는 것은 아니다. 일 예로 ZigBee 기술은 IEEE 802.15.4 등의 다양한 규격을 기반으로 소형/저-파워 디지털 통신에 관련된 PAN(personal area networks)을 생성할 수 있으며, 다양한 명칭으로 불릴 수 있다.
무선 기기(100a~100f)는 기지국(200)을 통해 네트워크(300)와 연결될 수 있다. 무선 기기(100a~100f)에는 AI(Artificial Intelligence) 기술이 적용될 수 있으며, 무선 기기(100a~100f)는 네트워크(300)를 통해 AI 서버(400)와 연결될 수 있다. 네트워크(300)는 3G 네트워크, 4G(예, LTE) 네트워크 또는 5G(예, NR) 네트워크 등을 이용하여 구성될 수 있다. 무선 기기(100a~100f)는 기지국(200)/네트워크(300)를 통해 서로 통신할 수도 있지만, 기지국/네트워크를 통하지 않고 직접 통신(e.g. 사이드링크 통신(sidelink communication))할 수도 있다. 예를 들어, 차량들(100b-1, 100b-2)은 직접 통신(e.g. V2V(Vehicle to Vehicle)/V2X(Vehicle to everything) communication)을 할 수 있다. 또한, IoT 기기(예, 센서)는 다른 IoT 기기(예, 센서) 또는 다른 무선 기기(100a~100f)와 직접 통신을 할 수 있다.
무선 기기(100a~100f)/기지국(200), 기지국(200)/기지국(200) 간에는 무선 통신/연결(150a, 150b, 150c)이 이뤄질 수 있다. 여기서, 무선 통신/연결은 상향/하향링크 통신(150a)과 사이드링크 통신(150b)(또는, D2D 통신), 기지국간 통신(150c)(e.g. relay, IAB(Integrated Access Backhaul)과 같은 다양한 무선 접속 기술(예, 5G NR)을 통해 이뤄질 수 있다. 무선 통신/연결(150a, 150b, 150c)을 통해 무선 기기와 기지국/무선 기기, 기지국과 기지국은 서로 무선 신호를 송신/수신할 수 있다. 예를 들어, 무선 통신/연결(150a, 150b, 150c)은 다양한 물리 채널을 통해 신호를 송신/수신할 수 있다. 이를 위해, 본 개시의 다양한 제안들에 기반하여, 무선 신호의 송신/수신을 위한 다양한 구성정보 설정 과정, 다양한 신호 처리 과정(예, 채널 인코딩/디코딩, 변조/복조, 자원 매핑/디매핑 등), 자원 할당 과정 등 중 적어도 일부가 수행될 수 있다.
도 16은 본 개시의 일 실시 예에 따른, 무선 기기를 나타낸다.
도 16을 참조하면, 제 1 무선 기기(100)와 제 2 무선 기기(200)는 다양한 무선 접속 기술(예, LTE, NR)을 통해 무선 신호를 송수신할 수 있다. 여기서, {제 1 무선 기기(100), 제 2 무선 기기(200)}은 도 15의 {무선 기기(100x), 기지국(200)} 및/또는 {무선 기기(100x), 무선 기기(100x)}에 대응할 수 있다.
제 1 무선 기기(100)는 하나 이상의 프로세서(102) 및 하나 이상의 메모리(104)를 포함하며, 추가적으로 하나 이상의 송수신기(106) 및/또는 하나 이상의 안테나(108)을 더 포함할 수 있다. 프로세서(102)는 메모리(104) 및/또는 송수신기(106)를 제어하며, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들을 구현하도록 구성될 수 있다. 예를 들어, 프로세서(102)는 메모리(104) 내의 정보를 처리하여 제 1 정보/신호를 생성한 뒤, 송수신기(106)을 통해 제 1 정보/신호를 포함하는 무선 신호를 전송할 수 있다. 또한, 프로세서(102)는 송수신기(106)를 통해 제 2 정보/신호를 포함하는 무선 신호를 수신한 뒤, 제 2 정보/신호의 신호 처리로부터 얻은 정보를 메모리(104)에 저장할 수 있다. 메모리(104)는 프로세서(102)와 연결될 수 있고, 프로세서(102)의 동작과 관련한 다양한 정보를 저장할 수 있다. 예를 들어, 메모리(104)는 프로세서(102)에 의해 제어되는 프로세스들 중 일부 또는 전부를 수행하거나, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들을 수행하기 위한 명령들을 포함하는 소프트웨어 코드를 저장할 수 있다. 여기서, 프로세서(102)와 메모리(104)는 무선 통신 기술(예, LTE, NR)을 구현하도록 설계된 통신 모뎀/회로/칩의 일부일 수 있다. 송수신기(106)는 프로세서(102)와 연결될 수 있고, 하나 이상의 안테나(108)를 통해 무선 신호를 송신 및/또는 수신할 수 있다. 송수신기(106)는 송신기 및/또는 수신기를 포함할 수 있다. 송수신기(106)는 RF(Radio Frequency) 유닛과 혼용될 수 있다. 본 개시에서 무선 기기는 통신 모뎀/회로/칩을 의미할 수도 있다.
제 2 무선 기기(200)는 하나 이상의 프로세서(202), 하나 이상의 메모리(204)를 포함하며, 추가적으로 하나 이상의 송수신기(206) 및/또는 하나 이상의 안테나(208)를 더 포함할 수 있다. 프로세서(202)는 메모리(204) 및/또는 송수신기(206)를 제어하며, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들을 구현하도록 구성될 수 있다. 예를 들어, 프로세서(202)는 메모리(204) 내의 정보를 처리하여 제3 정보/신호를 생성한 뒤, 송수신기(206)를 통해 제3 정보/신호를 포함하는 무선 신호를 전송할 수 있다. 또한, 프로세서(202)는 송수신기(206)를 통해 제4 정보/신호를 포함하는 무선 신호를 수신한 뒤, 제4 정보/신호의 신호 처리로부터 얻은 정보를 메모리(204)에 저장할 수 있다. 메모리(204)는 프로세서(202)와 연결될 수 있고, 프로세서(202)의 동작과 관련한 다양한 정보를 저장할 수 있다. 예를 들어, 메모리(204)는 프로세서(202)에 의해 제어되는 프로세스들 중 일부 또는 전부를 수행하거나, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들을 수행하기 위한 명령들을 포함하는 소프트웨어 코드를 저장할 수 있다. 여기서, 프로세서(202)와 메모리(204)는 무선 통신 기술(예, LTE, NR)을 구현하도록 설계된 통신 모뎀/회로/칩의 일부일 수 있다. 송수신기(206)는 프로세서(202)와 연결될 수 있고, 하나 이상의 안테나(208)를 통해 무선 신호를 송신 및/또는 수신할 수 있다. 송수신기(206)는 송신기 및/또는 수신기를 포함할 수 있다 송수신기(206)는 RF 유닛과 혼용될 수 있다. 본 개시에서 무선 기기는 통신 모뎀/회로/칩을 의미할 수도 있다.
이하, 무선 기기(100, 200)의 하드웨어 요소에 대해 보다 구체적으로 설명한다. 이로 제한되는 것은 아니지만, 하나 이상의 프로토콜 계층이 하나 이상의 프로세서(102, 202)에 의해 구현될 수 있다. 예를 들어, 하나 이상의 프로세서(102, 202)는 하나 이상의 계층(예, PHY, MAC, RLC, PDCP, RRC, SDAP와 같은 기능적 계층)을 구현할 수 있다. 하나 이상의 프로세서(102, 202)는 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들에 따라 하나 이상의 PDU(Protocol Data Unit) 및/또는 하나 이상의 SDU(Service Data Unit)를 생성할 수 있다. 하나 이상의 프로세서(102, 202)는 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들에 따라 메시지, 제어정보, 데이터 또는 정보를 생성할 수 있다. 하나 이상의 프로세서(102, 202)는 본 문서에 개시된 기능, 절차, 제안 및/또는 방법에 따라 PDU, SDU, 메시지, 제어정보, 데이터 또는 정보를 포함하는 신호(예, 베이스밴드 신호)를 생성하여, 하나 이상의 송수신기(106, 206)에게 제공할 수 있다. 하나 이상의 프로세서(102, 202)는 하나 이상의 송수신기(106, 206)로부터 신호(예, 베이스밴드 신호)를 수신할 수 있고, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들에 따라 PDU, SDU, 메시지, 제어정보, 데이터 또는 정보를 획득할 수 있다.
하나 이상의 프로세서(102, 202)는 컨트롤러, 마이크로 컨트롤러, 마이크로 프로세서 또는 마이크로 컴퓨터로 지칭될 수 있다. 하나 이상의 프로세서(102, 202)는 하드웨어, 펌웨어, 소프트웨어, 또는 이들의 조합에 의해 구현될 수 있다. 일 예로, 하나 이상의 ASIC(Application Specific Integrated Circuit), 하나 이상의 DSP(Digital Signal Processor), 하나 이상의 DSPD(Digital Signal Processing Device), 하나 이상의 PLD(Programmable Logic Device) 또는 하나 이상의 FPGA(Field Programmable Gate Arrays)가 하나 이상의 프로세서(102, 202)에 포함될 수 있다. 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들은 펌웨어 또는 소프트웨어를 사용하여 구현될 수 있고, 펌웨어 또는 소프트웨어는 모듈, 절차, 기능 등을 포함하도록 구현될 수 있다. 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들은 수행하도록 설정된 펌웨어 또는 소프트웨어는 하나 이상의 프로세서(102, 202)에 포함되거나, 하나 이상의 메모리(104, 204)에 저장되어 하나 이상의 프로세서(102, 202)에 의해 구동될 수 있다. 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들은 코드, 명령어 및/또는 명령어의 집합 형태로 펌웨어 또는 소프트웨어를 사용하여 구현될 수 있다.
하나 이상의 메모리(104, 204)는 하나 이상의 프로세서(102, 202)와 연결될 수 있고, 다양한 형태의 데이터, 신호, 메시지, 정보, 프로그램, 코드, 지시 및/또는 명령을 저장할 수 있다. 하나 이상의 메모리(104, 204)는 ROM, RAM, EPROM, 플래시 메모리, 하드 드라이브, 레지스터, 캐쉬 메모리, 컴퓨터 판독 저장 매체 및/또는 이들의 조합으로 구성될 수 있다. 하나 이상의 메모리(104, 204)는 하나 이상의 프로세서(102, 202)의 내부 및/또는 외부에 위치할 수 있다. 또한, 하나 이상의 메모리(104, 204)는 유선 또는 무선 연결과 같은 다양한 기술을 통해 하나 이상의 프로세서(102, 202)와 연결될 수 있다.
하나 이상의 송수신기(106, 206)는 하나 이상의 다른 장치에게 본 문서의 방법들 및/또는 동작 순서도 등에서 언급되는 사용자 데이터, 제어 정보, 무선 신호/채널 등을 전송할 수 있다. 하나 이상의 송수신기(106, 206)는 하나 이상의 다른 장치로부터 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도 등에서 언급되는 사용자 데이터, 제어 정보, 무선 신호/채널 등을 수신할 수 있다. 예를 들어, 하나 이상의 송수신기(106, 206)는 하나 이상의 프로세서(102, 202)와 연결될 수 있고, 무선 신호를 송수신할 수 있다. 예를 들어, 하나 이상의 프로세서(102, 202)는 하나 이상의 송수신기(106, 206)가 하나 이상의 다른 장치에게 사용자 데이터, 제어 정보 또는 무선 신호를 전송하도록 제어할 수 있다. 또한, 하나 이상의 프로세서(102, 202)는 하나 이상의 송수신기(106, 206)가 하나 이상의 다른 장치로부터 사용자 데이터, 제어 정보 또는 무선 신호를 수신하도록 제어할 수 있다. 또한, 하나 이상의 송수신기(106, 206)는 하나 이상의 안테나(108, 208)와 연결될 수 있고, 하나 이상의 송수신기(106, 206)는 하나 이상의 안테나(108, 208)를 통해 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도 등에서 언급되는 사용자 데이터, 제어 정보, 무선 신호/채널 등을 송수신하도록 설정될 수 있다. 본 문서에서, 하나 이상의 안테나는 복수의 물리 안테나이거나, 복수의 논리 안테나(예, 안테나 포트)일 수 있다. 하나 이상의 송수신기(106, 206)는 수신된 사용자 데이터, 제어 정보, 무선 신호/채널 등을 하나 이상의 프로세서(102, 202)를 이용하여 처리하기 위해, 수신된 무선 신호/채널 등을 RF 밴드 신호에서 베이스밴드 신호로 변환(Convert)할 수 있다. 하나 이상의 송수신기(106, 206)는 하나 이상의 프로세서(102, 202)를 이용하여 처리된 사용자 데이터, 제어 정보, 무선 신호/채널 등을 베이스밴드 신호에서 RF 밴드 신호로 변환할 수 있다. 이를 위하여, 하나 이상의 송수신기(106, 206)는 (아날로그) 오실레이터 및/또는 필터를 포함할 수 있다.
도 17은 본 개시의 일 실시 예에 따른, 전송 신호를 위한 신호 처리 회로를 나타낸다.
도 17을 참조하면, 신호 처리 회로(1000)는 스크램블러(1010), 변조기(1020), 레이어 매퍼(1030), 프리코더(1040), 자원 매퍼(1050), 신호 생성기(1060)를 포함할 수 있다. 이로 제한되는 것은 아니지만, 도 17의 동작/기능은 도 16의 프로세서(102, 202) 및/또는 송수신기(106, 206)에서 수행될 수 있다. 도 17의 하드웨어 요소는 도 16의 프로세서(102, 202) 및/또는 송수신기(106, 206)에서 구현될 수 있다. 예를 들어, 블록 1010~1060은 도 16의 프로세서(102, 202)에서 구현될 수 있다. 또한, 블록 1010~1050은 도 16의 프로세서(102, 202)에서 구현되고, 블록 1060은 도 16의 송수신기(106, 206)에서 구현될 수 있다.
코드워드는 도 17의 신호 처리 회로(1000)를 거쳐 무선 신호로 변환될 수 있다. 여기서, 코드워드는 정보블록의 부호화된 비트 시퀀스이다. 정보블록은 전송블록(예, UL-SCH 전송블록, DL-SCH 전송블록)을 포함할 수 있다. 무선 신호는 다양한 물리 채널(예, PUSCH, PDSCH)을 통해 전송될 수 있다.
구체적으로, 코드워드는 스크램블러(1010)에 의해 스크램블된 비트 시퀀스로 변환될 수 있다. 스크램블에 사용되는 스크램블 시퀀스는 초기화 값에 기반하여 생성되며, 초기화 값은 무선 기기의 ID 정보 등이 포함될 수 있다. 스크램블된 비트 시퀀스는 변조기(1020)에 의해 변조 심볼 시퀀스로 변조될 수 있다. 변조 방식은 pi/2-BPSK(pi/2-Binary Phase Shift Keying), m-PSK(m-Phase Shift Keying), m-QAM(m-Quadrature Amplitude Modulation) 등을 포함할 수 있다. 복소 변조 심볼 시퀀스는 레이어 매퍼(1030)에 의해 하나 이상의 전송 레이어로 매핑될 수 있다. 각 전송 레이어의 변조 심볼들은 프리코더(1040)에 의해 해당 안테나 포트(들)로 매핑될 수 있다(프리코딩). 프리코더(1040)의 출력 z는 레이어 매퍼(1030)의 출력 y를 N*M의 프리코딩 행렬 W와 곱해 얻을 수 있다. 여기서, N은 안테나 포트의 개수, M은 전송 레이어의 개수이다. 여기서, 프리코더(1040)는 복소 변조 심볼들에 대한 트랜스폼(transform) 프리코딩(예, DFT 변환)을 수행한 이후에 프리코딩을 수행할 수 있다. 또한, 프리코더(1040)는 트랜스폼 프리코딩을 수행하지 않고 프리코딩을 수행할 수 있다.
자원 매퍼(1050)는 각 안테나 포트의 변조 심볼들을 시간-주파수 자원에 매핑할 수 있다. 시간-주파수 자원은 시간 도메인에서 복수의 심볼(예, CP-OFDMA 심볼, DFT-s-OFDMA 심볼)을 포함하고, 주파수 도메인에서 복수의 부반송파를 포함할 수 있다. 신호 생성기(1060)는 매핑된 변조 심볼들로부터 무선 신호를 생성하며, 생성된 무선 신호는 각 안테나를 통해 다른 기기로 전송될 수 있다. 이를 위해, 신호 생성기(1060)는 IFFT(Inverse Fast Fourier Transform) 모듈 및 CP(Cyclic Prefix) 삽입기, DAC(Digital-to-Analog Converter), 주파수 상향 변환기(frequency uplink converter) 등을 포함할 수 있다.
무선 기기에서 수신 신호를 위한 신호 처리 과정은 도 17의 신호 처리 과정(1010~1060)의 역으로 구성될 수 있다. 예를 들어, 무선 기기(예, 도 16의 100, 200)는 안테나 포트/송수신기를 통해 외부로부터 무선 신호를 수신할 수 있다. 수신된 무선 신호는 신호 복원기를 통해 베이스밴드 신호로 변환될 수 있다. 이를 위해, 신호 복원기는 주파수 하향 변환기(frequency downlink converter), ADC(analog-to-digital converter), CP 제거기, FFT(Fast Fourier Transform) 모듈을 포함할 수 있다. 이후, 베이스밴드 신호는 자원 디-매퍼 과정, 포스트코딩(postcoding) 과정, 복조 과정 및 디-스크램블 과정을 거쳐 코드워드로 복원될 수 있다. 코드워드는 복호(decoding)를 거쳐 원래의 정보블록으로 복원될 수 있다. 따라서, 수신 신호를 위한 신호 처리 회로(미도시)는 신호 복원기, 자원 디-매퍼, 포스트코더, 복조기, 디-스크램블러 및 복호기를 포함할 수 있다.
도 18은 본 개시의 일 실시 예에 따른, 무선 기기를 나타낸다. 무선 기기는 사용-예/서비스에 따라 다양한 형태로 구현될 수 있다(도 15 참조).
도 18을 참조하면, 무선 기기(100, 200)는 도 16의 무선 기기(100,200)에 대응하며, 다양한 요소(element), 성분(component), 유닛/부(unit), 및/또는 모듈(module)로 구성될 수 있다. 예를 들어, 무선 기기(100, 200)는 통신부(110), 제어부(120), 메모리부(130) 및 추가 요소(140)를 포함할 수 있다. 통신부는 통신 회로(112) 및 송수신기(들)(114)을 포함할 수 있다. 예를 들어, 통신 회로(112)는 도 16의 하나 이상의 프로세서(102,202) 및/또는 하나 이상의 메모리(104,204)를 포함할 수 있다. 예를 들어, 송수신기(들)(114)는 도 16의 하나 이상의 송수신기(106,206) 및/또는 하나 이상의 안테나(108,208)을 포함할 수 있다. 제어부(120)는 통신부(110), 메모리부(130) 및 추가 요소(140)와 전기적으로 연결되며 무선 기기의 제반 동작을 제어한다. 예를 들어, 제어부(120)는 메모리부(130)에 저장된 프로그램/코드/명령/정보에 기반하여 무선 기기의 전기적/기계적 동작을 제어할 수 있다. 또한, 제어부(120)는 메모리부(130)에 저장된 정보를 통신부(110)을 통해 외부(예, 다른 통신 기기)로 무선/유선 인터페이스를 통해 전송하거나, 통신부(110)를 통해 외부(예, 다른 통신 기기)로부터 무선/유선 인터페이스를 통해 수신된 정보를 메모리부(130)에 저장할 수 있다.
추가 요소(140)는 무선 기기의 종류에 따라 다양하게 구성될 수 있다. 예를 들어, 추가 요소(140)는 파워 유닛/배터리, 입출력부(I/O unit), 구동부 및 컴퓨팅부 중 적어도 하나를 포함할 수 있다. 이로 제한되는 것은 아니지만, 무선 기기는 로봇(도 15, 100a), 차량(도 15, 100b-1, 100b-2), XR 기기(도 15, 100c), 휴대 기기(도 15, 100d), 가전(도 15, 100e), IoT 기기(도 15, 100f), 디지털 방송용 단말, 홀로그램 장치, 공공 안전 장치, MTC 장치, 의료 장치, 핀테크 장치(또는 금융 장치), 보안 장치, 기후/환경 장치, AI 서버/기기(도 15, 400), 기지국(도 15, 200), 네트워크 노드 등의 형태로 구현될 수 있다. 무선 기기는 사용-예/서비스에 따라 이동 가능하거나 고정된 장소에서 사용될 수 있다.
도 18에서 무선 기기(100, 200) 내의 다양한 요소, 성분, 유닛/부, 및/또는 모듈은 전체가 유선 인터페이스를 통해 상호 연결되거나, 적어도 일부가 통신부(110)를 통해 무선으로 연결될 수 있다. 예를 들어, 무선 기기(100, 200) 내에서 제어부(120)와 통신부(110)는 유선으로 연결되며, 제어부(120)와 제 1 유닛(예, 130, 140)은 통신부(110)를 통해 무선으로 연결될 수 있다. 또한, 무선 기기(100, 200) 내의 각 요소, 성분, 유닛/부, 및/또는 모듈은 하나 이상의 요소를 더 포함할 수 있다. 예를 들어, 제어부(120)는 하나 이상의 프로세서 집합으로 구성될 수 있다. 예를 들어, 제어부(120)는 통신 제어 프로세서, 어플리케이션 프로세서(Application processor), ECU(Electronic Control Unit), 그래픽 처리 프로세서, 메모리 제어 프로세서 등의 집합으로 구성될 수 있다. 다른 예로, 메모리부(130)는 RAM(Random Access Memory), DRAM(Dynamic RAM), ROM(Read Only Memory), 플래시 메모리(flash memory), 휘발성 메모리(volatile memory), 비-휘발성 메모리(non-volatile memory) 및/또는 이들의 조합으로 구성될 수 있다.
이하, 도 18의 구현 예에 대해 도면을 참조하여 보다 자세히 설명한다.
도 19는 본 개시의 일 실시 예에 따른, 휴대 기기를 나타낸다. 휴대 기기는 스마트폰, 스마트패드, 웨어러블 기기(예, 스마트워치, 스마트글래스), 휴대용 컴퓨터(예, 노트북 등)을 포함할 수 있다. 휴대 기기는 MS(Mobile Station), UT(user terminal), MSS(Mobile Subscriber Station), SS(Subscriber Station), AMS(Advanced Mobile Station) 또는 WT(Wireless terminal)로 지칭될 수 있다.
도 19를 참조하면, 휴대 기기(100)는 안테나부(108), 통신부(110), 제어부(120), 메모리부(130), 전원공급부(140a), 인터페이스부(140b) 및 입출력부(140c)를 포함할 수 있다. 안테나부(108)는 통신부(110)의 일부로 구성될 수 있다. 블록 110~130/140a~140c는 각각 도 18의 블록 110~130/140에 대응한다.
통신부(110)는 다른 무선 기기, 기지국들과 신호(예, 데이터, 제어 신호 등)를 송수신할 수 있다. 제어부(120)는 휴대 기기(100)의 구성 요소들을 제어하여 다양한 동작을 수행할 수 있다. 제어부(120)는 AP(Application Processor)를 포함할 수 있다. 메모리부(130)는 휴대 기기(100)의 구동에 필요한 데이터/파라미터/프로그램/코드/명령을 저장할 수 있다. 또한, 메모리부(130)는 입/출력되는 데이터/정보 등을 저장할 수 있다. 전원공급부(140a)는 휴대 기기(100)에게 전원을 공급하며, 유/무선 충전 회로, 배터리 등을 포함할 수 있다. 인터페이스부(140b)는 휴대 기기(100)와 다른 외부 기기의 연결을 지원할 수 있다. 인터페이스부(140b)는 외부 기기와의 연결을 위한 다양한 포트(예, 오디오 입/출력 포트, 비디오 입/출력 포트)를 포함할 수 있다. 입출력부(140c)는 영상 정보/신호, 오디오 정보/신호, 데이터, 및/또는 사용자로부터 입력되는 정보를 입력 받거나 출력할 수 있다. 입출력부(140c)는 카메라, 마이크로폰, 사용자 입력부, 디스플레이부(140d), 스피커 및/또는 햅틱 모듈 등을 포함할 수 있다.
일 예로, 데이터 통신의 경우, 입출력부(140c)는 사용자로부터 입력된 정보/신호(예, 터치, 문자, 음성, 이미지, 비디오)를 획득하며, 획득된 정보/신호는 메모리부(130)에 저장될 수 있다. 통신부(110)는 메모리에 저장된 정보/신호를 무선 신호로 변환하고, 변환된 무선 신호를 다른 무선 기기에게 직접 전송하거나 기지국에게 전송할 수 있다. 또한, 통신부(110)는 다른 무선 기기 또는 기지국으로부터 무선 신호를 수신한 뒤, 수신된 무선 신호를 원래의 정보/신호로 복원할 수 있다. 복원된 정보/신호는 메모리부(130)에 저장된 뒤, 입출력부(140c)를 통해 다양한 형태(예, 문자, 음성, 이미지, 비디오, 헵틱)로 출력될 수 있다.
도 20은 본 개시의 일 실시 예에 따른, 차량 또는 자율 주행 차량을 나타낸다. 차량 또는 자율 주행 차량은 이동형 로봇, 차량, 기차, 유/무인 비행체(Aerial Vehicle, AV), 선박 등으로 구현될 수 있다.
도 20을 참조하면, 차량 또는 자율 주행 차량(100)은 안테나부(108), 통신부(110), 제어부(120), 구동부(140a), 전원공급부(140b), 센서부(140c) 및 자율 주행부(140d)를 포함할 수 있다. 안테나부(108)는 통신부(110)의 일부로 구성될 수 있다. 블록 110/130/140a~140d는 각각 도 18의 블록 110/130/140에 대응한다.
통신부(110)는 다른 차량, 기지국(e.g. 기지국, 노변 기지국(Road Side unit) 등), 서버 등의 외부 기기들과 신호(예, 데이터, 제어 신호 등)를 송수신할 수 있다. 제어부(120)는 차량 또는 자율 주행 차량(100)의 요소들을 제어하여 다양한 동작을 수행할 수 있다. 제어부(120)는 ECU(Electronic Control Unit)를 포함할 수 있다. 구동부(140a)는 차량 또는 자율 주행 차량(100)을 지상에서 주행하게 할 수 있다. 구동부(140a)는 엔진, 모터, 파워 트레인, 바퀴, 브레이크, 조향 장치 등을 포함할 수 있다. 전원공급부(140b)는 차량 또는 자율 주행 차량(100)에게 전원을 공급하며, 유/무선 충전 회로, 배터리 등을 포함할 수 있다. 센서부(140c)는 차량 상태, 주변 환경 정보, 사용자 정보 등을 얻을 수 있다. 센서부(140c)는 IMU(inertial measurement unit) 센서, 충돌 센서, 휠 센서(wheel sensor), 속도 센서, 경사 센서, 중량 감지 센서, 헤딩 센서(heading sensor), 포지션 모듈(position module), 차량 전진/후진 센서, 배터리 센서, 연료 센서, 타이어 센서, 스티어링 센서, 온도 센서, 습도 센서, 초음파 센서, 조도 센서, 페달 포지션 센서 등을 포함할 수 있다. 자율 주행부(140d)는 주행중인 차선을 유지하는 기술, 어댑티브 크루즈 컨트롤과 같이 속도를 자동으로 조절하는 기술, 정해진 경로를 따라 자동으로 주행하는 기술, 목적지가 설정되면 자동으로 경로를 설정하여 주행하는 기술 등을 구현할 수 있다.
일 예로, 통신부(110)는 외부 서버로부터 지도 데이터, 교통 정보 데이터 등을 수신할 수 있다. 자율 주행부(140d)는 획득된 데이터를 기반으로 자율 주행 경로와 드라이빙 플랜을 생성할 수 있다. 제어부(120)는 드라이빙 플랜에 따라 차량 또는 자율 주행 차량(100)이 자율 주행 경로를 따라 이동하도록 구동부(140a)를 제어할 수 있다(예, 속도/방향 조절). 자율 주행 도중에 통신부(110)는 외부 서버로부터 최신 교통 정보 데이터를 비/주기적으로 획득하며, 주변 차량으로부터 주변 교통 정보 데이터를 획득할 수 있다. 또한, 자율 주행 도중에 센서부(140c)는 차량 상태, 주변 환경 정보를 획득할 수 있다. 자율 주행부(140d)는 새로 획득된 데이터/정보에 기반하여 자율 주행 경로와 드라이빙 플랜을 갱신할 수 있다. 통신부(110)는 차량 위치, 자율 주행 경로, 드라이빙 플랜 등에 관한 정보를 외부 서버로 전달할 수 있다. 외부 서버는 차량 또는 자율 주행 차량들로부터 수집된 정보에 기반하여, AI 기술 등을 이용하여 교통 정보 데이터를 미리 예측할 수 있고, 예측된 교통 정보 데이터를 차량 또는 자율 주행 차량들에게 제공할 수 있다.
본 명세서에 기재된 청구항들은 다양한 방식으로 조합될 수 있다. 예를 들어, 본 명세서의 방법 청구항의 기술적 특징이 조합되어 장치로 구현될 수 있고, 본 명세서의 장치 청구항의 기술적 특징이 조합되어 방법으로 구현될 수 있다. 또한, 본 명세서의 방법 청구항의 기술적 특징과 장치 청구항의 기술적 특징이 조합되어 장치로 구현될 수 있고, 본 명세서의 방법 청구항의 기술적 특징과 장치 청구항의 기술적 특징이 조합되어 방법으로 구현될 수 있다.

Claims (20)

  1. 제 1 장치가 무선 통신을 수행하는 방법에 있어서,
    SL(sidelink) 자원의 시간 오프셋과 관련된 정보 및 상기 SL 자원의 제 1 주기와 관련된 정보를 기지국으로부터 수신하는 단계;
    10240ms 내에서 자원 풀에 속하는 슬롯들의 개수를 결정하는 단계;
    상기 자원 풀에 속하는 슬롯들의 개수를 기반으로, 상기 제 1 주기와 관련된 정보로부터 논리적 슬롯 단위의 제 2 주기와 관련된 정보를 획득하는 단계; 및
    상기 제 2 주기와 관련된 정보, 상기 시간 오프셋과 관련된 정보 및 상기 자원 풀에 속하는 슬롯들의 개수를 기반으로, 상기 SL 자원의 시간 영역을 결정하는 단계;를 포함하는, 방법.
  2. 제 1 항에 있어서,
    상기 제 2 주기와 관련된 정보 및 상기 시간 오프셋과 관련된 정보를 기반으로 획득된 값을 상기 10240ms 내에서 상기 자원 풀에 속하는 슬롯들의 개수로 나누어서, 나머지 값을 획득하는 단계;를 더 포함하되,
    상기 SL 자원의 상기 시간 영역은 상기 나머지 값을 기반으로 결정되는, 방법.
  3. 제 2 항에 있어서,
    상기 SL 자원의 상기 시간 영역은 상기 나머지 값에 의해 지시되는 슬롯인, 방법.
  4. 제 3 항에 있어서,
    상기 나머지 값에 의해 지시되는 상기 슬롯은 주기 내의 SL 그랜트의 첫 번째 슬롯인, 방법.
  5. 제 1 항에 있어서,
    상기 10240ms 내에서 상기 자원 풀에 속하는 슬롯들의 개수는 상기 10240ms 내에 속하는 SL 전송에 사용 가능한 슬롯들의 개수에서 S-SSB(sidelink-synchronization signal block)를 위한 슬롯들의 개수 및 예약된 슬롯(reserved slot)들의 개수를 제외하여 결정되는, 방법.
  6. 제 5 항에 있어서,
    상기 10240ms 내에서 상기 자원 풀에 속하는 슬롯들의 개수는 상기 자원 풀과 관련된 비트맵의 비트들 중에서 1로 설정된 비트의 개수를 기반으로 결정되는, 방법.
  7. 제 1 항에 있어서,
    상기 제 2 주기와 관련된 정보에 S의 값을 곱하여, 제 1 값을 획득하는 단계;
    상기 제 1 값에 상기 시간 오프셋과 관련된 정보를 더하여, 제 2 값을 획득하는 단계; 및
    상기 제 2 값을 상기 10240ms 내에서 상기 자원 풀에 속하는 슬롯들의 개수로 나눈 나머지 값인 제 3 값을 획득하는 단계;를 더 포함하되,
    상기 S의 값은 영 또는 양의 정수인, 방법.
  8. 제 7 항에 있어서,
    상기 SL 자원의 상기 시간 영역은 상기 제 3 값에 의해 지시되는 슬롯인, 방법.
  9. 제 8 항에 있어서,
    상기 제 3 값에 의해 지시되는 상기 슬롯은 S 번째 주기 내의 SL 그랜트의 첫 번째 슬롯인, 방법.
  10. 제 1 항에 있어서,
    상기 시간 오프셋과 관련된 정보는 논리적 슬롯 단위인, 방법.
  11. 제 1 항에 있어서,
    상기 SL 자원은 CG(configured grant)에 의해 할당되는 CG 타입-1 자원 또는 CG 타입-2 자원인, 방법.
  12. 제 11 항에 있어서,
    상기 SL 자원이 상기 CG 타입-1 자원인 것을 기반으로, 상기 시간 오프셋과 관련된 정보 및 상기 제 1 주기와 관련된 정보는 RRC(radio resource control) 메시지를 통해서 상기 기지국으로부터 수신되고, 및
    상기 SL 자원이 상기 CG 타입-2 자원인 것을 기반으로, 상기 제 1 주기와 관련된 정보는 RRC 메시지를 통해서 상기 기지국으로부터 수신되고, 및 상기 시간 오프셋과 관련된 정보는 DCI(downlink control information)를 통해서 상기 기지국으로부터 수신되는, 방법.
  13. 제 1 항에 있어서,
    상기 SL 자원을 기반으로, PSCCH(physical sidelink control channel)를 통해서, PSSCH(physical sidelink shared channel)를 스케줄링하기 위한 제 1 SCI(sidelink control information)를 제 2 장치에게 전송하는 단계; 및
    상기 SL 자원을 기반으로, 상기 PSSCH를 통해서, 제 2 SCI 또는 MAC PDU(medium access control protocol data unit)를 상기 제 2 장치에게 전송하는 단계;를 더 포함하는, 방법.
  14. 무선 통신을 수행하는 제 1 장치에 있어서,
    명령어들을 저장하는 하나 이상의 메모리;
    하나 이상의 송수신기; 및
    상기 하나 이상의 메모리와 상기 하나 이상의 송수신기를 연결하는 하나 이상의 프로세서를 포함하되, 상기 하나 이상의 프로세서는 상기 명령어들을 실행하여,
    SL(sidelink) 자원의 시간 오프셋과 관련된 정보 및 상기 SL 자원의 제 1 주기와 관련된 정보를 기지국으로부터 수신하고;
    10240ms 내에서 자원 풀에 속하는 슬롯들의 개수를 결정하고;
    상기 자원 풀에 속하는 슬롯들의 개수를 기반으로, 상기 제 1 주기와 관련된 정보로부터 논리적 슬롯 단위의 제 2 주기와 관련된 정보를 획득하고; 및
    상기 제 2 주기와 관련된 정보, 상기 시간 오프셋과 관련된 정보 및 상기 자원 풀에 속하는 슬롯들의 개수를 기반으로, 상기 SL 자원의 시간 영역을 결정하는, 제 1 장치.
  15. 제 1 단말을 제어하도록 설정된 장치(apparatus)에 있어서,
    하나 이상의 프로세서; 및
    상기 하나 이상의 프로세서에 의해 실행 가능하게 연결되고, 및 명령어들을 저장하는 하나 이상의 메모리를 포함하되, 상기 하나 이상의 프로세서는 상기 명령어들을 실행하여,
    SL(sidelink) 자원의 시간 오프셋과 관련된 정보 및 상기 SL 자원의 제 1 주기와 관련된 정보를 기지국으로부터 수신하고;
    10240ms 내에서 자원 풀에 속하는 슬롯들의 개수를 결정하고;
    상기 자원 풀에 속하는 슬롯들의 개수를 기반으로, 상기 제 1 주기와 관련된 정보로부터 논리적 슬롯 단위의 제 2 주기와 관련된 정보를 획득하고; 및
    상기 제 2 주기와 관련된 정보, 상기 시간 오프셋과 관련된 정보 및 상기 자원 풀에 속하는 슬롯들의 개수를 기반으로, 상기 SL 자원의 시간 영역을 결정하는, 장치.
  16. 명령어들을 기록하고 있는 비일시적 컴퓨터 판독가능 저장 매체로서,
    상기 명령어들은, 실행될 때, 제 1 장치로 하여금:
    SL(sidelink) 자원의 시간 오프셋과 관련된 정보 및 상기 SL 자원의 제 1 주기와 관련된 정보를 기지국으로부터 수신하게 하고;
    10240ms 내에서 자원 풀에 속하는 슬롯들의 개수를 결정하게 하고;
    상기 자원 풀에 속하는 슬롯들의 개수를 기반으로, 상기 제 1 주기와 관련된 정보로부터 논리적 슬롯 단위의 제 2 주기와 관련된 정보를 획득하게 하고; 및
    상기 제 2 주기와 관련된 정보, 상기 시간 오프셋과 관련된 정보 및 상기 자원 풀에 속하는 슬롯들의 개수를 기반으로, 상기 SL 자원의 시간 영역을 결정하게 하는, 비일시적 컴퓨터 판독가능 저장 매체.
  17. 기지국이 무선 통신을 수행하는 방법에 있어서,
    SL(sidelink) 자원의 시간 오프셋과 관련된 정보 및 상기 SL 자원의 제 1 주기와 관련된 정보를 장치에게 전송하는 단계;를 포함하되,
    10240ms 내에서 자원 풀에 속하는 슬롯들의 개수는 상기 장치에 의해 결정되고,
    논리적 슬롯 단위의 제 2 주기와 관련된 정보는 상기 자원 풀에 속하는 슬롯들의 개수를 기반으로 상기 제 1 주기와 관련된 정보로부터 상기 장치에 의해 획득되고, 및
    상기 SL 자원의 시간 영역은 상기 제 2 주기와 관련된 정보, 상기 시간 오프셋과 관련된 정보 및 상기 자원 풀에 속하는 슬롯들의 개수를 기반으로 상기 장치에 의해 결정되는, 방법.
  18. 무선 통신을 수행하는 기지국에 있어서,
    명령어들을 저장하는 하나 이상의 메모리;
    하나 이상의 송수신기; 및
    상기 하나 이상의 메모리와 상기 하나 이상의 송수신기를 연결하는 하나 이상의 프로세서를 포함하되, 상기 하나 이상의 프로세서는 상기 명령어들을 실행하여,
    SL(sidelink) 자원의 시간 오프셋과 관련된 정보 및 상기 SL 자원의 제 1 주기와 관련된 정보를 장치에게 전송하되,
    10240ms 내에서 자원 풀에 속하는 슬롯들의 개수는 상기 장치에 의해 결정되고,
    논리적 슬롯 단위의 제 2 주기와 관련된 정보는 상기 자원 풀에 속하는 슬롯들의 개수를 기반으로 상기 제 1 주기와 관련된 정보로부터 상기 장치에 의해 획득되고, 및
    상기 SL 자원의 시간 영역은 상기 제 2 주기와 관련된 정보, 상기 시간 오프셋과 관련된 정보 및 상기 자원 풀에 속하는 슬롯들의 개수를 기반으로 상기 장치에 의해 결정되는, 기지국.
  19. 기지국을 제어하도록 설정된 장치(apparatus)에 있어서,
    하나 이상의 프로세서; 및
    상기 하나 이상의 프로세서에 의해 실행 가능하게 연결되고, 및 명령어들을 저장하는 하나 이상의 메모리를 포함하되, 상기 하나 이상의 프로세서는 상기 명령어들을 실행하여,
    SL(sidelink) 자원의 시간 오프셋과 관련된 정보 및 상기 SL 자원의 제 1 주기와 관련된 정보를 단말에게 전송하되,
    10240ms 내에서 자원 풀에 속하는 슬롯들의 개수는 상기 단말에 의해 결정되고,
    논리적 슬롯 단위의 제 2 주기와 관련된 정보는 상기 자원 풀에 속하는 슬롯들의 개수를 기반으로 상기 제 1 주기와 관련된 정보로부터 상기 단말에 의해 획득되고, 및
    상기 SL 자원의 시간 영역은 상기 제 2 주기와 관련된 정보, 상기 시간 오프셋과 관련된 정보 및 상기 자원 풀에 속하는 슬롯들의 개수를 기반으로 상기 단말에 의해 결정되는, 장치.
  20. 명령어들을 기록하고 있는 비일시적 컴퓨터 판독가능 저장 매체로서,
    상기 명령어들은, 실행될 때, 기지국으로 하여금:
    SL(sidelink) 자원의 시간 오프셋과 관련된 정보 및 상기 SL 자원의 제 1 주기와 관련된 정보를 장치에게 전송하게 하되,
    10240ms 내에서 자원 풀에 속하는 슬롯들의 개수는 상기 장치에 의해 결정되고,
    논리적 슬롯 단위의 제 2 주기와 관련된 정보는 상기 자원 풀에 속하는 슬롯들의 개수를 기반으로 상기 제 1 주기와 관련된 정보로부터 상기 장치에 의해 획득되고, 및
    상기 SL 자원의 시간 영역은 상기 제 2 주기와 관련된 정보, 상기 시간 오프셋과 관련된 정보 및 상기 자원 풀에 속하는 슬롯들의 개수를 기반으로 상기 장치에 의해 결정되는, 비일시적 컴퓨터 판독가능 저장 매체.
PCT/KR2021/014072 2020-10-13 2021-10-13 Nr v2x에서 자원을 결정하는 방법 및 장치 WO2022080843A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2023522467A JP7493682B2 (ja) 2020-10-13 2021-10-13 Nr v2xにおけるリソースを決定する方法及び装置
KR1020237007916A KR102688920B1 (ko) 2020-10-13 2021-10-13 Nr v2x에서 자원을 결정하는 방법 및 장치
EP21880490.4A EP4203592A4 (en) 2020-10-13 2021-10-13 METHOD AND DEVICE FOR DETERMINING A RESOURCE IN NR V2X

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2020-0131966 2020-10-13
KR20200131966 2020-10-13

Publications (1)

Publication Number Publication Date
WO2022080843A1 true WO2022080843A1 (ko) 2022-04-21

Family

ID=81185814

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/014072 WO2022080843A1 (ko) 2020-10-13 2021-10-13 Nr v2x에서 자원을 결정하는 방법 및 장치

Country Status (5)

Country Link
US (1) US12041584B2 (ko)
EP (1) EP4203592A4 (ko)
JP (1) JP7493682B2 (ko)
KR (1) KR102688920B1 (ko)
WO (1) WO2022080843A1 (ko)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11690048B2 (en) * 2020-09-21 2023-06-27 Samsung Electronics Co., Ltd. Method and apparatus for inter-user equipment coordination signaling
WO2024000598A1 (en) * 2022-07-01 2024-01-04 Zte Corporation Parameter configuration in wireless communication
US20240334357A1 (en) * 2023-03-27 2024-10-03 Samsung Electronics Co., Ltd. Multiple timing advance groups for multi-transmission/reception point

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200128580A1 (en) * 2015-01-23 2020-04-23 Lg Electronics Inc. Method for selecting of sidelink grant for a d2d ue in a d2d communication system and device therefor

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10506535B2 (en) * 2017-01-13 2019-12-10 Lg Electronics Inc. Method for terminal transmitting sidelink in wireless communication system, and terminal using same
EP3876620A4 (en) 2018-11-01 2021-11-24 Fujitsu Limited METHOD AND DEVICE FOR RESOURCE DISPLAY AND COMMUNICATION SYSTEM
US11304180B2 (en) 2019-03-28 2022-04-12 Samsung Electronics Co., Ltd Method and device of resource allocation for sidelink transmission in wireless communication system
US12004201B2 (en) * 2019-08-16 2024-06-04 Huawei Technologies Co., Ltd. Sidelink configured grant resource configuration and signalling
US11082954B2 (en) * 2019-12-03 2021-08-03 Asustek Computer Inc. Method and apparatus for generating device-to-device sidelink HARQ-ACK in a wireless communication system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200128580A1 (en) * 2015-01-23 2020-04-23 Lg Electronics Inc. Method for selecting of sidelink grant for a d2d ue in a d2d communication system and device therefor

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
HUAWEI, HISILICON: "Remaining details of sidelink resource allocation mode 1", 3GPP DRAFT; R1-2001551, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Online Meeting ;20200420 - 20200430, 11 April 2020 (2020-04-11), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051875142 *
LG ELECTRONICS: "Discussion on physical layer structure for NR sidelink", 3GPP DRAFT; R1-2001884, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Online Meeting ;20200420 - 20200430, 11 April 2020 (2020-04-11), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051875320 *
MODERATOR (ERICSSON): "Feature lead summary#2 on Resource allocation for NR sidelink Mode 1", 3GPP DRAFT; R1-2006961, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. eMeeting; 20200817 - 20200828, 1 September 2020 (2020-09-01), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051927138 *
OPPO: "Remaining issues of mode 1 resource allocation for NR-V2X", 3GPP DRAFT; R1-2001746, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20200420 - 20200430, 11 April 2020 (2020-04-11), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051875245 *
See also references of EP4203592A4 *

Also Published As

Publication number Publication date
EP4203592A1 (en) 2023-06-28
JP2023546846A (ja) 2023-11-08
JP7493682B2 (ja) 2024-05-31
KR102688920B1 (ko) 2024-07-29
US12041584B2 (en) 2024-07-16
US20220124682A1 (en) 2022-04-21
EP4203592A4 (en) 2024-01-10
KR20230042382A (ko) 2023-03-28

Similar Documents

Publication Publication Date Title
WO2021235705A1 (ko) Nr v2x에서 rlf를 위한 방법 및 장치
WO2021230672A1 (ko) Nr v2x에서 dtx 기반의 rlf 동작을 수행하는 방법 및 장치
WO2021066599A1 (ko) Nr v2x에서 harq 피드백을 기지국에게 보고하는 방법 및 장치
WO2022019540A1 (ko) Nr v2x에서 보조 정보를 기반으로 sl 통신을 수행하는 방법 및 장치
WO2021040370A1 (ko) Nr v2x에서 sci를 전송하는 방법 및 장치
WO2020222434A1 (ko) Nr v2x에서 harq 피드백 옵션을 결정하는 방법 및 장치
WO2020190065A1 (ko) 무선 통신 시스템에서 재전송 결과 기반으로 비주기적 사이드링크 채널 상태 정보 측정/보고를 트리거링 하는 방법 및 장치
WO2020171634A1 (ko) Nr v2x에서 위치 기반으로 사이드링크 통신을 수행하는 방법 및 장치
WO2021091289A1 (ko) Nr v2x에서 사이드링크 자원을 할당하는 방법 및 장치
WO2022139510A1 (ko) Nr v2x에서 sl drx mac ce를 전송하는 방법 및 장치
WO2021075829A1 (ko) Nr v2x에서 tdd 슬롯 설정과 관련된 정보를 시그널링하는 방법 및 장치
WO2020209676A1 (ko) 무선 통신 시스템에서 harq 피드백을 수행하는 방법 및 장치
WO2022080843A1 (ko) Nr v2x에서 자원을 결정하는 방법 및 장치
WO2021206528A1 (ko) Nr v2x에서 sci 상의 ndi 값을 결정하는 방법 및 장치
WO2021075768A1 (ko) Nr v2x에서 harq 피드백을 보고하는 방법 및 장치
WO2020246843A1 (ko) Nr v2x에서 harq 피드백을 수행하는 방법 및 장치
WO2021162442A1 (ko) Nr v2x에서 혼잡 제어를 수행하는 방법 및 장치
WO2021215757A1 (ko) Nr v2x에서 pucch 프로세싱 시간에 기반하여 사이드링크 전송을 수행하는 방법 및 장치
WO2022030975A1 (ko) Nr v2x에서 기지국에 의해 할당되는 자원을 기반으로 sl 통신을 수행하는 방법 및 장치
WO2020171675A1 (ko) Nr v2x에서 데이터 링크를 기반으로 사이드링크 통신을 수행하는 방법 및 장치
WO2022055191A1 (ko) 상이한 rat을 기반으로 sl 통신 및 ul 전송을 수행하는 방법 및 장치
WO2022014877A1 (ko) 데이터 비활성 타이머를 기반으로 중계를 수행하는 방법 및 장치
WO2021206483A1 (ko) Nr v2x에서 사이드링크 자원을 할당하는 방법 및 장치
WO2022014860A1 (ko) 전력 절약 모드를 기반으로 통신을 수행하는 방법 및 장치
WO2021230569A1 (ko) Nr v2x에서 자원 예약 방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21880490

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20237007916

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021880490

Country of ref document: EP

Effective date: 20230322

WWE Wipo information: entry into national phase

Ref document number: 2023522467

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE