WO2024075430A1 - エピタキシャルウエハ及びその製造方法 - Google Patents

エピタキシャルウエハ及びその製造方法 Download PDF

Info

Publication number
WO2024075430A1
WO2024075430A1 PCT/JP2023/030992 JP2023030992W WO2024075430A1 WO 2024075430 A1 WO2024075430 A1 WO 2024075430A1 JP 2023030992 W JP2023030992 W JP 2023030992W WO 2024075430 A1 WO2024075430 A1 WO 2024075430A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
gas
epitaxial wafer
single crystal
epitaxial
Prior art date
Application number
PCT/JP2023/030992
Other languages
English (en)
French (fr)
Inventor
家弘 林
公平 佐々木
Original Assignee
株式会社ノベルクリスタルテクノロジー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ノベルクリスタルテクノロジー filed Critical 株式会社ノベルクリスタルテクノロジー
Publication of WO2024075430A1 publication Critical patent/WO2024075430A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B33/00After-treatment of single crystals or homogeneous polycrystalline material with defined structure
    • C30B33/02Heat treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/20Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy

Definitions

  • the present invention relates to an epitaxial wafer and a method for manufacturing the same.
  • Patent Document 1 a technique for growing a ⁇ - Ga2O3 - based single crystal film on the main surface of a ⁇ - Ga2O3 -based single crystal substrate by HVPE (Halide Vapor Phase Epitaxy) is known (see Patent Document 1).
  • the ⁇ - Ga2O3 -based single crystal substrate is exposed to a gallium chloride-based gas as a Ga source gas and an oxygen-containing gas as an oxygen source gas, and the ⁇ - Ga2O3 -based single crystal film is epitaxially grown on the main surface of the ⁇ - Ga2O3 -based single crystal substrate.
  • Patent Document 1 discloses that if hydrogen is contained in the atmosphere when growing a ⁇ -Ga 2 O 3 -based single crystal film, the flatness of the surface of the ⁇ -Ga 2 O 3 -based single crystal film and the driving force for crystal growth are reduced, and therefore it is preferable to use O 2 gas that does not contain hydrogen as the oxygen source gas.
  • An object of the present invention is to provide a method for manufacturing an epitaxial wafer in which an epitaxial film made of ⁇ - Ga2O3 - based single crystal is formed on a substrate made of ⁇ - Ga2O3 -based single crystal, the method being capable of more effectively reactivating donor impurities in a substrate that has been inactivated by using O2 gas as an oxygen source gas for the epitaxial film in the HVPE method, and an epitaxial wafer manufactured by the method.
  • one aspect of the present invention provides the following epitaxial wafer manufacturing method and epitaxial wafer.
  • a method for manufacturing an epitaxial wafer comprising: exposing a substrate made of a ⁇ - Ga2O3 -based single crystal and containing a donor impurity to GaCl gas and O2 gas by an HVPE method, thereby growing an epitaxial film made of a ⁇ - Ga2O3 - based single crystal on a main surface of the substrate to form an epitaxial wafer; and performing an annealing treatment on the epitaxial wafer at a temperature of 1200°C or higher in a nitrogen atmosphere.
  • An epitaxial wafer comprising: a substrate made of a ⁇ -Ga 2 O 3 system single crystal and containing a donor impurity; and an epitaxial film made of the ⁇ -Ga 2 O 3 system single crystal on the substrate, wherein the donor concentration of the substrate is 80% or more of the concentration of the donor impurity, the Cl concentration of the epitaxial film is 1 ⁇ 10 14 cm -3 or more, and the H concentrations of the substrate and the epitaxial film are 3 ⁇ 10 17 cm -3 or less.
  • the variation of the donor concentration in the plane of the substrate from the midpoint between the maximum and minimum values of the donor concentration in the plane of the substrate is 10% or less.
  • a method for manufacturing an epitaxial wafer in which an epitaxial film made of ⁇ - Ga2O3 - based single crystal is formed on a substrate made of ⁇ - Ga2O3 -based single crystal, the method being capable of more effectively reactivating donor impurities in a substrate that has been inactivated by using O2 gas as an oxygen source gas for the epitaxial film in the HVPE method, and an epitaxial wafer manufactured by the method.
  • FIG. 1 is a vertical cross-sectional view of an epitaxial wafer according to an embodiment of the present invention.
  • FIG. 2 is a vertical cross-sectional view of a vapor phase growth apparatus according to an embodiment of the present invention.
  • FIG. 3 is a graph showing the temperature change in an annealing furnace when an annealing process is performed on an epitaxial wafer.
  • FIG. 4 is a graph showing the activation rate of donor impurities in a substrate before and after the epitaxial film is formed and after the annealing treatment at 1150 to 1400° C. is performed.
  • FIG. 5 is a graph showing the impurity concentration in the epitaxial wafer measured by secondary ion mass spectrometry (SIMS).
  • SIMS secondary ion mass spectrometry
  • the epitaxial wafer 1 is a vertical cross-sectional view of an epitaxial wafer 1 according to an embodiment of the present invention.
  • the epitaxial wafer 1 has a substrate 10 made of ⁇ - Ga2O3 -based single crystal containing donor impurities, and an epitaxial film 12 made of ⁇ - Ga2O3 -based single crystal formed by epitaxial crystal growth on a main surface 11 of the substrate 10.
  • the ⁇ -Ga 2 O 3 single crystal refers to a ⁇ -Ga 2 O 3 single crystal or a ⁇ -Ga 2 O 3 single crystal doped with elements such as Al and In.
  • it is a ⁇ -type (Ga x Al y In (1-x-y) ) 2 O 3 (0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, 0 ⁇ x+y ⁇ 1) single crystal, which is a ⁇ -Ga 2 O 3 single crystal doped with Al and In.
  • Al is added, the band gap becomes wider, and when In is added, the band gap becomes narrower.
  • the substrate 10 is formed by slicing a bulk crystal of a ⁇ -Ga 2 O 3 single crystal grown by a melt growth method such as the FZ (Floating Zone) method or the EFG (Edge-Defined Film-Fed Growth) method, and polishing the surface.
  • the substrate 10 contains donor impurities such as Sn, Si, and Ge.
  • the donor concentration of the substrate 10 is 80% or more of the concentration of the donor impurities contained in the substrate 10.
  • the epitaxial film 12 is formed on the substrate 10 by HVPE (Halide Vapor Phase Epitaxy).
  • the epitaxial film 12 may contain donor impurities such as Sn, Si, Ge, etc., and acceptor impurities such as Mg.
  • the epitaxial film 12 is formed by HVPE using a gas containing Cl as a source gas, and therefore contains Cl at a concentration of 1 ⁇ 10 14 cm -3 or more.
  • the epitaxial film 12 is formed using, as the oxygen source gas, O 2 gas that does not contain H. Therefore, the concentration of H contained in the substrate 10 and the epitaxial film 12 is low, at 3 ⁇ 10 17 cm ⁇ 3 or less.
  • FIG. 2 is a vertical cross-sectional view of a vapor phase growth apparatus 2 according to an embodiment of the present invention.
  • the vapor phase growth apparatus 2 is a vapor phase growth apparatus for the HVPE method, and includes a reactor 20 having a first gas introduction port 21, a second gas introduction port 22, a third gas introduction port 23, and an exhaust port 24, and a heating means 26 that is installed around the reactor 20 and heats the inside of the reactor 20.
  • the reactor 20 has a raw material reaction region R1 in which a reaction vessel 25 containing Ga raw material is placed and in which gallium raw material gas is generated, and a crystal growth region R2 in which a substrate 10 is placed and in which an epitaxial film 12 is grown.
  • the reactor 20 is made of, for example, quartz glass.
  • the reaction vessel 25 is, for example, quartz glass, and the Ga raw material contained in the reaction vessel 25 is metallic gallium.
  • the heating means 26 can heat the raw material reaction region R1 and the crystal growth region R2 of the reactor 20.
  • the heating means 26 is, for example, a resistance heating type or a radiation heating type heating device.
  • the first gas introduction port 21 is a port for introducing Cl-containing gas, such as Cl2 gas or HCl gas, into the raw material reaction region R1 of the reaction furnace 20 using an inert carrier gas ( N2 gas, Ar gas, or He gas).
  • the second gas introduction port 22 is a port for introducing O2 gas, which is an oxygen raw material gas, into the crystal growth region R2 of the reaction furnace 20 using an inert carrier gas ( N2 gas, Ar gas, or He gas).
  • the third gas introduction port 23 is a port for introducing a chloride-based gas (e.g., silicon tetrachloride, etc.) for adding a dopant such as Si to the epitaxial film 12 into the crystal growth region R2 of the reaction furnace 20 using an inert carrier gas ( N2 gas, Ar gas, or He gas).
  • a chloride-based gas e.g., silicon tetrachloride, etc.
  • an inert carrier gas N2 gas, Ar gas, or He gas
  • the ambient temperature of the raw material reaction region R1 of the reactor 20 is kept at a predetermined temperature, for example 500 to 900°C, using the heating means 26.
  • a Cl-containing gas is introduced from the first gas inlet port 21 using a carrier gas.
  • the metallic gallium in the reaction vessel 25 reacts with the Cl-containing gas at the above-mentioned ambient temperature to generate GaCl gas.
  • gallium chloride-based gases other than GaCl gas such as GaCl2 gas, GaCl3 gas, and ( GaCl3 ) 2 gas.
  • GaCl2 gas gallium chloride-based gases
  • GaCl3 gas gallium chloride-based gases
  • GaCl3 gas gases other than GaCl gas hardly contribute to the growth of Ga2O3 - based single crystals.
  • the ambient temperature in the crystal growth region R2 of the reaction furnace 20 is kept at a predetermined temperature, for example, 800 to 1100° C.
  • the GaCl gas generated in the raw material reaction region R1 is mixed with the O 2 gas introduced from the second gas introduction port 22 in the crystal growth region R2, and the substrate 10 is exposed to the mixed gas to epitaxially grow the epitaxial film 12 on the main surface 11 of the substrate 10.
  • the pressure in the crystal growth region R2 in the furnace that houses the reaction furnace 20 is kept at, for example, 1 atm.
  • a source gas of the additive element e.g., a chloride-based gas such as silicon tetrachloride ( SiCl4 )
  • SiCl4 silicon tetrachloride
  • O2 gas as the oxygen source gas, it is possible to suppress a decrease in the flatness of the surface of the epitaxial film 12 and a decrease in the driving force for crystal growth, which are caused by hydrogen contained in the atmosphere when the epitaxial film 12 is grown, compared to the case of using a gas containing hydrogen, such as H2O gas.
  • the epitaxial wafer 1 is transferred from the vapor phase growth apparatus 2 to an annealing furnace, and annealing is performed at a temperature of 1200° C. or higher in a nitrogen atmosphere in order to reactivate the donor impurities in the substrate 10 that have been inactivated by exposing the substrate 10 to O 2 gas during the formation of the epitaxial film 12.
  • Fig. 3 is a graph showing the temperature change in an annealing furnace when an annealing process is performed on the epitaxial wafer 1.
  • the temperature is increased from room temperature to an annealing temperature T a , held at the temperature T a for a time t, and then decreased to room temperature.
  • the annealing temperature T a is, for example, in the range of 1200°C or more and 1400°C or less.
  • the time t for holding the temperature T a is, for example, in the range of 1 hour or more and 10 hours or less.
  • Figure 4 is a graph showing the activation rate of donor impurities in the substrate 10 before and after deposition of the epitaxial film 12 (denoted as “before deposition” and “after deposition”) and after annealing at 1150 to 1400°C.
  • the activation rate of the donor impurities is the proportion of donor impurities that actually function as donors among all donor impurities, and is equal to the ratio of the donor concentration to the concentration of the donor impurities.
  • the donor concentration before deposition of the epitaxial film 12 is approximately equal to the concentration of the donor impurities, and the activation rate of the donor impurities is approximately 100%.
  • the activation rate of the donor impurities in the substrate 10 shown in FIG. 4 was determined as the ratio of the donor concentration to the donor concentration before the formation of the epitaxial film 12.
  • the donor concentration in the substrate 10 was obtained by performing an electrochemical capacitance voltage (ECV) measurement on the substrate 10 after performing a polishing process by chemical mechanical polishing (CMP) on the substrate 10 side of the epitaxial wafer 1.
  • ECV electrochemical capacitance voltage
  • CMP chemical mechanical polishing
  • the substrate 10 in FIG. 4 is a substrate made of ⁇ -Ga 2 O 3 single crystal containing Sn and Si (Si was unintentionally contained in the raw material of the substrate 10) as donor impurities, but the same results as those in FIG. 4 can be obtained regardless of the type of ⁇ -Ga 2 O 3 single crystal constituting the substrate 10 or the type of donor impurity.
  • the activation rate of the donor impurities drops to 12% when the substrate 10 is exposed to O 2 gas during the formation of the epitaxial film 12, and the activation rate is restored by the subsequent annealing process.
  • the activation rate of the donor impurities in the substrate 10 is 80% or higher, i.e., the donor concentration is 80% or higher of the donor impurity concentration, and the higher the annealing temperature, the higher the reactivation rate.
  • the activation rates when the annealing temperatures are 1150°C, 1200°C, 1300°C, and 1400°C are 45%, 84.8%, 95.2%, and 100%, respectively.
  • the annealing temperature is preferably 1400° C. or less.
  • the amount of thermal decomposition (amount of film thickness reduction due to thermal decomposition) of the epitaxial film 12 made of the ⁇ -Ga 2 O 3 single crystal can be suppressed to 1 ⁇ m or less.
  • Table 1 shows the change in film thickness of the epitaxial film 12 before and after annealing when the annealing temperature is 1400°C.
  • Table 1 shows the change in film thickness at five different positions on the epitaxial film 12, measured by a Fourier transform infrared spectrophotometer (FTIR).
  • FTIR Fourier transform infrared spectrophotometer
  • the change in film thickness at any position is 1.0 ⁇ m or less, and it can be seen that thermal decomposition of the epitaxial film 12 is suppressed.
  • the epitaxial wafer 1 is colorless and transparent before the annealing process, but turns a light blue color after the annealing process is performed at a temperature of approximately 1200°C or higher.
  • an electric annealing furnace made of alumina is used to perform annealing at temperatures of 1200°C or higher. It is difficult to perform annealing at temperatures of 1200°C or higher in a general-purpose annealing furnace made of quartz due to the heat resistance of quartz. Normally, the maximum annealing temperature that can be performed in a general-purpose annealing furnace made of quartz is about 1150°C, and the activation rate in this case is about 45%, as shown in Figure 4.
  • the annealing furnace used in the annealing process is made of a material that does not contain Si or C, such as alumina.
  • the variation in donor concentration within the surface of the substrate 10 from the midpoint between the maximum and minimum donor concentrations within the surface of the substrate 10 was 10% or less.
  • Fig. 5 is a graph showing the impurity concentration in the epitaxial wafer 1 measured by secondary ion mass spectrometry (SIMS).
  • the substrate 10 of the epitaxial wafer 1 in Fig. 5 is a substrate made of ⁇ -Ga 2 O 3 single crystal containing Sn and Si (Si was unintentionally contained in the raw material of the substrate 10) as donor impurities
  • the epitaxial film 12 is a film made of ⁇ -Ga 2 O 3 single crystal containing Si at a concentration of 3.0 x 10 15 cm -3 as a donor impurity.
  • the horizontal axis represents the depth ( ⁇ m) from the surface 13 of the epitaxial film 12 of the epitaxial wafer 1
  • the vertical axis represents the concentration (cm ⁇ 3 ) of each impurity.
  • the depth of the interface between the substrate 10 and the epitaxial film 12 of the epitaxial wafer 1 is approximately 11.3 ⁇ m.
  • Figure 5 shows the concentrations of Si, Sn, and Cl in the epitaxial wafer 1.
  • the concentration of Sn in the epitaxial film 12 is close to the lower detection limit of the SIMS analysis device (denoted as detection limit: Sn), confirming that there is no unintended contamination of Sn into the epitaxial film 12.
  • the concentrations of Si and Sn are high in the region near the interface of the epitaxial film 12 with the substrate 10, but this is because the Si and Sn contained in the substrate 10 have diffused to the epitaxial film 12 side, and is not a problem.
  • the epitaxial film 12 contains Cl at a concentration of approximately 2.9 ⁇ 10 16 to 4.0 ⁇ 10 16 cm -3 . This is because the epitaxial film 12 is formed by the HVPE method using a Cl-containing gas. Normally, when a ⁇ -Ga 2 O 3 -based single crystal film is formed by a method that does not use a Cl-containing gas or a method that uses a Cl-containing gas other than the HVPE method (for example, the MOVPE method using SiCl 4 gas), the ⁇ -Ga 2 O 3 -based single crystal film does not contain Cl, and at least does not contain Cl of 1 ⁇ 10 14 cm -3 or more.
  • the epitaxial wafer 1 is subjected to an annealing treatment at a temperature of 1200° C. or higher in a nitrogen atmosphere, whereby the donor impurities in the substrate 10 that have been inactivated by using O2 gas as the oxygen source gas for the epitaxial film 12 in the HVPE method can be effectively reactivated.
  • the present invention provides a method for producing a ⁇ -Ga 2 O 3 -based epitaxial wafer, which can more effectively reactivate donor impurities in a substrate that has been inactivated by using O 2 gas as an oxygen source gas for an epitaxial film in an HVPE method, and an epitaxial wafer produced by the method.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Organic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

HVPE法により、β-Ga系単結晶からなり、ドナー不純物を含む基板10をGaClガス及びOガスに曝し、基板10の主面11上にβ-Ga系単結晶からなるエピタキシャル膜12を成長させ、エピタキシャルウエハ1を形成する工程と、前記エピタキシャルウエハ1に、窒素雰囲気下で1200℃以上の温度でアニール処理を施す工程と、を含む、エピタキシャルウエハの製造方法を提供する。

Description

エピタキシャルウエハ及びその製造方法
 本発明は、エピタキシャルウエハ及びその製造方法に関する。
 従来、HVPE(Halide Vapor Phase Epitaxy)法により、β-Ga系単結晶基板の主面上にβ-Ga系単結晶膜を成長させる技術が知られている(特許文献1を参照)。特許文献1に技術においては、β-Ga系単結晶基板をGaの原料ガスとしての塩化ガリウム系ガス及び酸素の原料ガスである酸素含有ガスに曝し、β-Ga系単結晶基板の主面上にβ-Ga系単結晶膜をエピタキシャル成長させる。
 特許文献1には、β-Ga系単結晶膜を成長させる際の雰囲気に水素が含まれていると、β-Ga系単結晶膜の表面の平坦性及び結晶成長駆動力が低下するため、酸素の原料ガスとして水素を含まないOガスを用いることが好ましいことが開示されている。
特開2015-91740号公報
 しかしながら、特許文献1の技術によれば、酸素の原料ガスとしてOガスを用いる場合、β-Ga系単結晶膜のエピタキシャル成長中にβ-Ga系単結晶基板がOガスに曝されることにより、β-Ga系単結晶基板中のドナー不純物が不活性化してしまう。そのため、β-Ga系単結晶膜の形成後、窒素雰囲気下でアニール処理を施してβ-Ga系単結晶基板中のドナー不純物を再活性化する必要がある。
 本発明の目的は、β-Ga系単結晶からなる基板上にβ-Ga系単結晶からなるエピタキシャル膜が形成されたエピタキシャルウエハの製造方法であって、HVPE法におけるエピタキシャル膜の酸素の原料ガスとしてOガスを用いることにより不活性化した基板中のドナー不純物をより効果的に再活性化させることのできる方法、及びその方法により製造されたエピタキシャルウエハを提供することにある。
 本発明の一態様は、上記目的を達成するために、下記のエピタキシャルウエハの製造方法、及びエピタキシャルウエハを提供する。
[1]HVPE法により、β-Ga系単結晶からなり、ドナー不純物を含む基板をGaClガス及びOガスに曝し、前記基板の主面上にβ-Ga系単結晶からなるエピタキシャル膜を成長させ、エピタキシャルウエハを形成する工程と、前記エピタキシャルウエハに、窒素雰囲気下で1200℃以上の温度でアニール処理を施す工程と、を含む、エピタキシャルウエハの製造方法。
[2]前記アニール処理の温度が1400℃以下である、上記[1]に記載のエピタキシャルウエハの製造方法。
[3]β-Ga系単結晶からなり、ドナー不純物を含む基板と、前記基板上のβ-Ga系単結晶からなるエピタキシャル膜と、を備え、前記基板のドナー濃度が前記ドナー不純物の濃度の80%以上であり、前記エピタキシャル膜のCl濃度が1×1014cm-3以上であり、前記基板及び前記エピタキシャル膜のH濃度が3×1017cm-3以下である、エピタキシャルウエハ。
[4]前記基板の面内のドナー濃度の最大値と最小値の中心値からの、前記基板の面内のドナー濃度のばらつきが10%以下である、上記[3]に記載のエピタキシャルウエハ。
 本発明によれば、β-Ga系単結晶からなる基板上にβ-Ga系単結晶からなるエピタキシャル膜が形成されたエピタキシャルウエハの製造方法であって、HVPE法におけるエピタキシャル膜の酸素の原料ガスとしてOガスを用いることにより不活性化した基板中のドナー不純物をより効果的に再活性化させることのできる方法、及びその方法により製造されたエピタキシャルウエハを提供することができる。
図1は、本発明の実施の形態に係るエピタキシャルウエハの垂直断面図である。 図2は、本発明の実施の形態に係る気相成長装置の垂直断面図である。 図3は、エピタキシャルウエハにアニール処理を実施する際のアニール炉内の温度変化を示すグラフである。 図4は、エピタキシャル膜の成膜前後と1150~1400℃のアニール処理を施した後の基板中のドナー不純物の活性化率を示すグラフである。 図5は、二次イオン質量分析法(SIMS)により測定した、エピタキシャルウエハ中の不純物濃度を表すグラフである。
(エピタキシャルウエハの構成)
 図1は、本発明の実施の形態に係るエピタキシャルウエハ1の垂直断面図である。エピタキシャルウエハ1は、β-Ga系単結晶からなり、ドナー不純物を含む基板10と、基板10の主面11上にエピタキシャル結晶成長により形成された、β-Ga系単結晶からなるエピタキシャル膜12を有する。
 ここで、β-Ga系単結晶とは、β-Ga単結晶、又は、Al、In等の元素が添加されたβ-Ga単結晶をいう。例えば、Al及びInが添加されたβ-Ga単結晶である、β型の(GaAlIn(1-x-y)(0<x≦1、0≦y≦1、0<x+y≦1)単結晶である。Alを添加した場合にはバンドギャップが広がり、Inを添加した場合にはバンドギャップが狭くなる。
 基板10は、例えば、FZ(Floating Zone)法やEFG(Edge-Defined Film-Fed Growth)法等の融液成長法により育成したβ-Ga単結晶のバルク結晶をスライスし、表面を研磨することにより形成される。基板10は、Sn、Si、Ge等のドナー不純物を含む。基板10のドナー濃度は、基板10に含まれるドナー不純物の濃度の80%以上である。
 エピタキシャル膜12は、HVPE(Halide Vapor Phase Epitaxy)法により、基板10上に成膜される。エピタキシャル膜12は、Sn、Si、Ge等のドナー不純物や、Mg等のアクセプター不純物を含んでもよい。エピタキシャル膜12は、Clが含まれるガスを原料ガスとして用いるHVPE法により形成されるため、1×1014cm-3以上の濃度のClを含む。
 また、エピタキシャル膜12は、酸素の原料ガスとして、Hを含まないOガスを用いて形成される。このため、基板10及びエピタキシャル膜12に含まれるHの濃度は低く、3×1017cm-3以下である。
(気相成長装置の構造)
 以下に、本発明の本実施の形態に係るエピタキシャル膜12の成長に用いる気相成長装置の構造の一例について説明する。
 図2は、本発明の実施の形態に係る気相成長装置2の垂直断面図である。気相成長装置2は、HVPE法用の気相成長装置であり、第1のガス導入ポート21、第2のガス導入ポート22、第3のガス導入ポート23、及び排気ポート24を有する反応炉20と、反応炉20の周囲に設置され、反応炉20の内部を加熱する加熱手段26を有する。
 反応炉20は、Ga原料が収容された反応容器25が配置され、ガリウムの原料ガスが生成される原料反応領域R1と、基板10が配置され、エピタキシャル膜12の成長が行われる結晶成長領域R2を有する。反応炉20は、例えば、石英ガラスからなる。
 反応容器25は、例えば、石英ガラスであり、反応容器25に収容されるGa原料は金属ガリウムである。
 加熱手段26は、反応炉20の原料反応領域R1と結晶成長領域R2を加熱することができる。加熱手段26は、例えば、抵抗加熱式や輻射加熱式の加熱装置である。
 第1のガス導入ポート21は、Clガス又はHClガスであるCl含有ガスを不活性ガスであるキャリアガス(Nガス、Arガス又はHeガス)を用いて反応炉20の原料反応領域R1内に導入するためのポートである。第2のガス導入ポート22は、酸素の原料ガスであるOガスを不活性ガスであるキャリアガス(Nガス、Arガス又はHeガス)を用いて反応炉20の結晶成長領域R2へ導入するためのポートである。第3のガス導入ポート23は、エピタキシャル膜12にSi等のドーパントを添加するための塩化物系ガス(例えば、四塩化ケイ素等)を不活性ガスであるキャリアガス(Nガス、Arガス又はHeガス)を用いて反応炉20の結晶成長領域R2へ導入するためのポートである。
(エピタキシャル膜の成長)
 以下に、本実施の形態に係るエピタキシャル膜12の成長工程の一例について説明する。
 まず、加熱手段26を用いて反応炉20の原料反応領域R1の雰囲気温度を所定の温度、例えば500~900℃に保った状態で、第1のガス導入ポート21からキャリアガスを用いてCl含有ガスを導入し、原料反応領域R1において、上記の雰囲気温度下で反応容器25内の金属ガリウムとCl含有ガスを反応させ、GaClガスを生成する。
 なお、エピタキシャル膜12を成長させる際の雰囲気に水素が含まれていると、エピタキシャル膜12の表面の平坦性及び結晶成長駆動力が低下するため、水素を含まないClガスをCl含有ガスとして用いることが好ましい。
 また、金属ガリウムとCl含有ガスの反応から、GaClガス以外の塩化ガリウム系ガスであるGaClガス、GaClガス、及び(GaClガスも生成されるが、これらの塩化ガリウム系ガスのうちでGaClガスの分圧が圧倒的に高くなるため、GaClガス以外のガスはGa系単結晶の成長にほとんど寄与しない。
 次に、加熱手段26を用いて反応炉20の結晶成長領域R2の雰囲気温度を所定の温度、例えば800~1100℃に保った状態で、結晶成長領域R2において、原料反応領域R1で生成されたGaClガスと、第2のガス導入ポート22から導入されたOガスとを混合させ、その混合ガスに基板10を曝し、基板10の主面11上にエピタキシャル膜12をエピタキシャル成長させる。このとき、反応炉20を収容する炉内の結晶成長領域R2における圧力を、例えば、1atmに保つ。
 ここで、Si、Al等の添加元素を含むエピタキシャル膜12を形成する場合には、GaClガス及びOガスに併せて、第3のガス導入ポート23より、添加元素の原料ガス(例えば、四塩化ケイ素(SiCl)等の塩化物系ガス)も結晶成長領域R2に導入する。
 酸素の原料ガスとしてOガスを用いることにより、HOガス等の水素を含むガスを用いる場合と比較して、エピタキシャル膜12を成長させる際の雰囲気に含まれる水素に起因する、エピタキシャル膜12の表面の平坦性及び結晶成長駆動力の低下を抑えることができる。
 次に、エピタキシャルウエハ1を気相成長装置2からアニール炉へ移し、エピタキシャル膜12の成膜中に基板10がOガスに曝されることにより不活性化した基板10中のドナー不純物を再活性化するために、窒素雰囲気下で1200℃以上の温度でアニール処理を施す。
 図3は、エピタキシャルウエハ1にアニール処理を実施する際のアニール炉内の温度変化を示すグラフである。図3に示されるように、室温からアニール処理の温度Tまで温度を上昇させ、温度Tで時間tの間保持し、その後、室温まで下降させる。ここで、アニール処理の温度Tは例えば、1200℃以上、1400℃以下の範囲内にある。また、温度Tを保持する時間tは、例えば、1時間以上、10時間以下の範囲内にある。
 図4は、エピタキシャル膜12の成膜前後(成膜前、成膜後と表記)と1150~1400℃のアニール処理を施した後の基板10中のドナー不純物の活性化率を示すグラフである。
 ドナー不純物の活性化率は、全てのドナー不純物のうちの実際にドナーとして機能しているドナー不純物の割合であり、ドナー不純物の濃度に対するドナー濃度の割合に等しい。エピタキシャル膜12の成膜前のドナー濃度はドナー不純物の濃度にほぼ等しく、ドナー不純物の活性化率はほぼ100%である。
 図4に示される基板10のドナー不純物の活性化率は、エピタキシャル膜12の成膜前のドナー濃度に対するドナー濃度の割合として求めた。基板10のドナー濃度は、エピタキシャルウエハ1の基板10側に化学機械研磨(CMP)による研磨処理を施した後、基板10に電気化学的容量電圧(ECV)測定を実施することにより得た。
 なお、図4に係る基板10は、ドナー不純物としてのSn、Si(Siは基板10の原料に意図せずに含まれていたもの)を含むβ-Ga単結晶からなる基板であるが、基板10を構成するβ-Ga系単結晶の種類やドナー不純物の種類によらず、図4と同様の結果が得られる。
 図4によれば、エピタキシャル膜12の成膜の際に基板10がOガスに曝されることによりドナー不純物の活性化率が12%まで下り、その後のアニール処理によって活性化率が回復している。
 また、図4によれば、アニール処理の温度が1200℃以上であるときには、基板10中のドナー不純物の活性化率が80%以上、すなわちドナー濃度がドナー不純物の濃度の80%以上になり、また、アニール処理の温度が大きいほど再活性化率が大きくなる。図4におけるアニール処理の温度が1150℃、1200℃、1300℃、1400℃のときの活性化率は、それぞれ45%、84.8%、95.2%、100%である。
 アニール処理の温度が1400℃を超えるとβ-Ga系単結晶の熱分解量が多くなるため、アニール処理の温度は1400℃以下であることが好ましい。アニール処理の温度が1400℃以下であるときには、β-Ga系単結晶からなるエピタキシャル膜12の熱分解量(熱分解による膜厚の減少量)を1μm以下に抑えることができる。
 次の表1に、アニール処理の温度が1400℃であるときの、アニール処理の前後のエピタキシャル膜12の膜厚の変化量を示す。表1は、フーリエ変換赤外分光光度計(FTIR)により測定された、エピタキシャル膜12上の5つの異なる位置での膜厚の変化量を示している。
Figure JPOXMLDOC01-appb-T000001
 表1によれば、いずれの位置での膜厚の変化量も1.0μm以下であり、エピタキシャル膜12の熱分解が抑えられていることがわかる。なお、アニール処理前のエピタキシャルウエハ1は無色透明であるが、およそ1200℃以上の温度でアニール処理を施した後には、薄い水色に変化する。
 1200℃以上の温度でのアニール処理を行うためには、例えば、アルミナ製の電気アニール炉を用いる。石英製の汎用のアニール炉では、石英の耐熱温度のために、1200℃以上のアニール処理を実施することは困難である。通常、石英製の汎用のアニール炉で実施することができるアニール処理の温度は最高で1150℃程度であり、この場合の活性化率は、図4に示されるように、45%程度である。
 また、エピタキシャルウエハ1の汚染を抑えるため、アニール処理に用いるアニール炉は、アルミナのようなSiやCを含まない材料からなることが好ましい。
 1200℃以上、1400℃以下の温度でのアニール処理を施した場合、基板10の面内のドナー濃度の最大値と最小値の中心値からの、基板10の面内のドナー濃度のばらつきが10%以下であった。
 図5は、二次イオン質量分析法(SIMS)により測定した、エピタキシャルウエハ1中の不純物濃度を表すグラフである。図5に係るエピタキシャルウエハ1の基板10は、Sn、Si(Siは基板10の原料に意図せずに含まれていたもの)をドナー不純物として含む、β-Ga単結晶からなる基板であり、エピタキシャル膜12は、3.0×1015cm-3の濃度のSiをドナー不純物として含む、β-Ga単結晶からなる膜である。
 図5の横軸はエピタキシャルウエハ1のエピタキシャル膜12の表面13からの深さ(μm)を表し、縦軸は各不純物の濃度(cm-3)を表す。ここで、エピタキシャルウエハ1の基板10とエピタキシャル膜12の界面の深さは、およそ11.3μmである。
 図5は、Si、Sn、Clのエピタキシャルウエハ1中の濃度を表す。図5によれば、エピタキシャル膜12中のSnの濃度はSIMS分析装置の検出下限値(検出下限:Snと表記)に近く、Snのエピタキシャル膜12への意図しない混入が生じていないことが確かめられた。エピタキシャル膜12の基板10との界面付近の領域のSi、Snの濃度が高くなっているが、これは基板10に含まれるSi、Snがエピタキシャル膜12側に拡散したためであり、問題はない。
 また、図5によれば、エピタキシャル膜12中におよそ2.9×1016~4.0×1016cm-3の濃度のClが含まれている。これは、エピタキシャル膜12がCl含有ガスを用いるHVPE法により形成されることに起因する。通常、Cl含有ガスを用いない方法やHVPE法以外のCl含有ガスを用いる方法(例えば、SiClガスを用いるMOVPE法)によりβ-Ga系単結晶膜を形成する場合には、β-Ga系単結晶膜中にClが含まれることはなく、少なくとも、1×1014cm-3以上のClが含まれることはない。
(実施の形態の効果)
 上記本発明の実施の形態によれば、エピタキシャル膜12の成膜後に、窒素雰囲気下で1200℃以上の温度でアニール処理をエピタキシャルウエハ1に施すことにより、HVPE法におけるエピタキシャル膜12の酸素の原料ガスとしてOガスを用いることにより不活性化した基板10中のドナー不純物を効果的に再活性化させることができる。
 以上、本発明の実施の形態を説明したが、本発明は、上記実施の形態に限定されず、発明の主旨を逸脱しない範囲内において種々変形実施が可能である。また、発明の主旨を逸脱しない範囲内において上記実施の形態の構成要素を任意に組み合わせることができる。また、上記に記載した実施の形態は特許請求の範囲に係る発明を限定するものではない。また、実施の形態の中で説明した特徴の組合せの全てが発明の課題を解決するための手段に必須であるとは限らない点に留意すべきである。
 β-Ga系のエピタキシャルウエハの製造方法であって、HVPE法におけるエピタキシャル膜の酸素の原料ガスとしてOガスを用いることにより不活性化した基板中のドナー不純物をより効果的に再活性化させることのできるエピタキシャルウエハの製造方法、及びその方法により製造されたエピタキシャルウエハを提供する。
1…エピタキシャルウエハ、 10…基板、 11…主面、 12…エピタキシャル膜、 2…気相成長装置、 20…反応炉、 21…第1のガス導入ポート、 22…第2のガス導入ポート、 23…第3のガス導入ポート、 24…排気ポート、 25…反応容器、 26…加熱手段

Claims (4)

  1.  HVPE法により、β-Ga系単結晶からなり、ドナー不純物を含む基板をGaClガス及びOガスに曝し、前記基板の主面上にβ-Ga系単結晶からなるエピタキシャル膜を成長させ、エピタキシャルウエハを形成する工程と、
     前記エピタキシャルウエハに、窒素雰囲気下で1200℃以上の温度でアニール処理を施す工程と、
     を含む、
     エピタキシャルウエハの製造方法。
  2.  前記アニール処理の温度が1400℃以下である、
     請求項1に記載のエピタキシャルウエハの製造方法。
  3.  β-Ga系単結晶からなり、ドナー不純物を含む基板と、
     前記基板上のβ-Ga系単結晶からなるエピタキシャル膜と、
     を備え、
     前記基板のドナー濃度が前記ドナー不純物の濃度の80%以上であり、
     前記エピタキシャル膜のCl濃度が1×1014cm-3以上であり、
     前記基板及び前記エピタキシャル膜のH濃度が3×1017cm-3以下である、
     エピタキシャルウエハ。
  4.  前記基板の面内のドナー濃度の最大値と最小値の中心値からの、前記基板の面内のドナー濃度のばらつきが10%以下である、
     請求項3に記載のエピタキシャルウエハ。
     
PCT/JP2023/030992 2022-10-03 2023-08-28 エピタキシャルウエハ及びその製造方法 WO2024075430A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-159685 2022-10-03
JP2022159685A JP2024053416A (ja) 2022-10-03 2022-10-03 エピタキシャルウエハ及びその製造方法

Publications (1)

Publication Number Publication Date
WO2024075430A1 true WO2024075430A1 (ja) 2024-04-11

Family

ID=90608028

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/030992 WO2024075430A1 (ja) 2022-10-03 2023-08-28 エピタキシャルウエハ及びその製造方法

Country Status (2)

Country Link
JP (1) JP2024053416A (ja)
WO (1) WO2024075430A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013058636A (ja) * 2011-09-08 2013-03-28 Tamura Seisakusho Co Ltd β−Ga2O3系基板、LED素子、及びLED素子の製造方法
JP2014210707A (ja) * 2014-06-25 2014-11-13 株式会社タムラ製作所 β−Ga2O3系単結晶基板、及び結晶積層構造体
JP2015091740A (ja) * 2013-09-30 2015-05-14 株式会社タムラ製作所 β−Ga2O3系単結晶膜の成長方法、及び結晶積層構造体
JP2016039194A (ja) * 2014-08-06 2016-03-22 株式会社タムラ製作所 Ga2O3系単結晶の高抵抗領域形成方法、並びに、結晶積層構造体及び半導体素子
CN109056058A (zh) * 2017-08-14 2018-12-21 南京大学 一种制备GaN衬底材料的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013058636A (ja) * 2011-09-08 2013-03-28 Tamura Seisakusho Co Ltd β−Ga2O3系基板、LED素子、及びLED素子の製造方法
JP2015091740A (ja) * 2013-09-30 2015-05-14 株式会社タムラ製作所 β−Ga2O3系単結晶膜の成長方法、及び結晶積層構造体
JP2014210707A (ja) * 2014-06-25 2014-11-13 株式会社タムラ製作所 β−Ga2O3系単結晶基板、及び結晶積層構造体
JP2016039194A (ja) * 2014-08-06 2016-03-22 株式会社タムラ製作所 Ga2O3系単結晶の高抵抗領域形成方法、並びに、結晶積層構造体及び半導体素子
CN109056058A (zh) * 2017-08-14 2018-12-21 南京大学 一种制备GaN衬底材料的方法

Also Published As

Publication number Publication date
JP2024053416A (ja) 2024-04-15

Similar Documents

Publication Publication Date Title
US11982016B2 (en) Method for growing beta-Ga2O3-based single crystal film, and crystalline layered structure
US11047067B2 (en) Crystal laminate structure
US7279040B1 (en) Method and apparatus for zinc oxide single crystal boule growth
US20050191826A1 (en) Germanium deposition
US8557628B2 (en) Method for production of zinc oxide single crystals
US20070062441A1 (en) Method for epitaxial growth of silicon carbide
WO2023013696A1 (ja) 半導体基板、半導体ウエハ、及び半導体ウエハの製造方法
JP6875708B2 (ja) 結晶積層構造体、及びそれを製造する方法
WO2024075430A1 (ja) エピタキシャルウエハ及びその製造方法
Burns Low‐temperature native oxide removal from silicon using nitrogen trifluoride prior to low‐temperature silicon epitaxy
WO2022059669A1 (ja) β-Ga2O3系単結晶膜及びその製造方法
US3290181A (en) Method of producing pure semiconductor material by chemical transport reaction using h2s/h2 system
JPS6226569B2 (ja)
WO2024034512A1 (ja) β-Ga2O3系単結晶膜の成長方法
JP2024066706A (ja) 結晶膜の製造方法及び結晶膜の製造装置
WO2024009705A1 (ja) エピタキシャルウェーハの製造方法
JP2593148B2 (ja) 化合物半導体の単結晶の育成方法
JPS62128531A (ja) シリコン基板およびその製造方法
Wang et al. Reduction of carbon contamination in triethylphosphorus OMVPE GaP layers by Pt/Al2O3 catalyst
JPS5858316B2 (ja) 3−5 ゾクカゴウブツノキソウセイチヨウホウホウ
JPS63278340A (ja) 2−6族化合物薄膜の製造方法
JPH0222199A (ja) 気相エピタキシャル成長方法
JPS5919917B2 (ja) エキソウエピタキシヤルセイチヨウホウ
JPS62293712A (ja) エピタキシヤル成長法
JPH0269399A (ja) 化合物半導体の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23874562

Country of ref document: EP

Kind code of ref document: A1