WO2024071276A1 - 保護回路および保護方法 - Google Patents

保護回路および保護方法 Download PDF

Info

Publication number
WO2024071276A1
WO2024071276A1 PCT/JP2023/035325 JP2023035325W WO2024071276A1 WO 2024071276 A1 WO2024071276 A1 WO 2024071276A1 JP 2023035325 W JP2023035325 W JP 2023035325W WO 2024071276 A1 WO2024071276 A1 WO 2024071276A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
unit
input
circuit
output
Prior art date
Application number
PCT/JP2023/035325
Other languages
English (en)
French (fr)
Inventor
雄介 菅野
清 仲田
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Publication of WO2024071276A1 publication Critical patent/WO2024071276A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters

Definitions

  • the present invention relates to a protection circuit and a protection method.
  • IGBTs Insulated Gate Bipolar Transistors
  • Multi-gate IGBTs have been invented as a technology to reduce IGBT losses, and their development is underway.
  • Multi-gate IGBTs have auxiliary gate electrodes that control the carrier concentration inside the IGBT, and by switching the auxiliary gate electrodes on and off, they reduce losses when the current is cut off (when turned off).
  • the IGBT when the IGBT is on, that is, when there is conduction between the collector and emitter, all gate electrodes are turned on to supply sufficient carriers (charges) into the IGBT, lowering the conduction resistance and reducing conduction losses.
  • the auxiliary gate electrodes are turned off a certain amount of time before the turn-off, reducing the carriers accumulated in the IGBT and reducing turn-off losses.
  • the gate command signal that drives the IGBT is generally generated by a higher-level controller, and the command signal from this controller is input to a buffer amplifier (hereinafter also referred to as a "gate driver") connected to the gate of the IGBT to control the gate electrode of the IGBT and drive the IGBT.
  • a buffer amplifier hereinafter also referred to as a "gate driver”
  • the higher-level controller also needs to be changed to a configuration with multiple outputs corresponding to this, making it difficult to maintain compatibility with conventional systems.
  • Patent Document 1 a gate driver for multi-gate IGBTs that is compatible with conventional controllers is disclosed in Patent Document 1.
  • the gate driver According to Patent Document 1, the gate driver generates multiple gate command signals without changing the controller, making it possible to connect a multi-gate IGBT to a conventional controller.
  • the multi-gate IGBT operates with a fixed time delay from the gate drive signal input from the upper controller. At this time, if any abnormality occurs in the power conversion device composed of the multi-gate IGBT, the upper controller detects this and turns off the gate drive signal to stop the power conversion device.
  • the gate driver of Patent Document 1 even if the gate drive command signal is stopped urgently, the gate driver operates with a fixed time delay from the gate drive command, so protective cutoff is delayed, and there is an issue that the multi-gate IGBT may be destroyed during that time.
  • the present invention solves the above problems by providing technology that can maintain the safety of systems that use multi-gate IGBTs.
  • a representative protection circuit of the present invention is a protection circuit used in a power conversion device that includes a drive circuit including a delay unit that receives at least one pulse-width modulated command signal and outputs a delayed signal that delays the command signal by a predetermined delay time, and a semiconductor circuit having at least one circuit element to which the signal output from the drive circuit is input, and is characterized in that the protection circuit outputs a cutoff determination signal for cutting off the output of the semiconductor circuit, and is connected to the drive circuit so that the cutoff determination signal is input without passing through the delay unit.
  • FIG. 1 is a diagram showing a power conversion device in which a protection circuit according to a first embodiment is used.
  • FIG. 2 is a timing chart showing the power conversion device in normal operation.
  • FIG. 3 is a timing chart showing a normal operation when the period T during which the command signal is on is shorter than the delay time d.
  • FIG. 4 is a timing chart showing a case where an abnormality is detected in the power conversion device.
  • FIG. 5 is a diagram showing a power conversion device using a protection circuit according to the second embodiment.
  • FIG. 6 is a diagram showing a timing chart of the power conversion device according to the second embodiment.
  • FIG. 7 is a diagram showing a timing chart of a power conversion device as a comparative example.
  • ON a state in which there is a signal on a signal line or a state in which a signal is input to a terminal
  • OFF a state in which there is no signal on a signal line or a state in which no signal is input to a terminal
  • ON state is also displayed as "Hi” or “H”
  • the OFF state is also displayed as "Lo” or “L”.
  • the OFF state can be 0V
  • the ON state can be a state in which a voltage is applied.
  • a current can be applied instead of a voltage.
  • a and B are "connected,” this means that a signal output from A (or B) is input to B (or A).
  • a or B is a component of a circuit or a terminal of a circuit element.
  • a power conversion device 600 using a protection circuit 002 includes a drive circuit (hereinafter also referred to as a "gate driver") 400 including a delay unit 103 that receives at least one pulse-width modulated command signal A, B, C and outputs a delayed signal obtained by delaying the command signal by a predetermined delay time, and a semiconductor circuit 500 having at least one circuit element 112 to which a signal output from the drive circuit 400 is input.
  • a drive circuit hereinafter also referred to as a "gate driver”
  • a delay unit 103 that receives at least one pulse-width modulated command signal A, B, C and outputs a delayed signal obtained by delaying the command signal by a predetermined delay time
  • semiconductor circuit 500 having at least one circuit element 112 to which a signal output from the drive circuit 400 is input.
  • the protection circuit 002 outputs a cutoff determination signal D that cuts off the output of the semiconductor circuit 500, and is connected to the drive circuit 400 so that the cutoff determination signal D is input without passing through the delay unit 103.
  • the configuration of the power conversion device 600 will be described below.
  • the upper controller 001 outputs at least one pulse width modulated (PWM) command signal.
  • PWM pulse width modulated
  • Command signal A is input to photocoupler 101 and protection circuit 002 via signal line 003, and is fed back to the upper controller 001 via signal line 004.
  • Photocoupler 101 insulates between the upper controller 001 and gate driver 400, and transmits command signal A output from the upper controller 001 to the gate driver 400.
  • command signal B is input to photocoupler 201 and protection circuit 002 via signal line 005, and is fed back to the upper controller 001 via signal line 006.
  • Command signal C is input to photocoupler 301 and protection circuit 002 via signal line 007, and is fed back to the upper controller 001 via signal line 008.
  • command signal A output from host controller 001 is input to photocoupler 101, and command signal A is input to input terminal 104b of logical product unit 104 and delay unit 103.
  • command signal A is input to gate driver 400 via photocoupler 101, but photocoupler 101 may be omitted, and host controller 001 may input command signal A to input terminal 104b of logical product unit 104 and delay unit 103.
  • photocouplers 201 and 301 may also be omitted, just like photocoupler 101.
  • the protection circuit 002 includes a first receiving unit 002a to which the command signals A, B, and C output from the upper controller 001 are input, a signal output unit 002b to which a cutoff determination signal D is output to the photocoupler 102, and a second receiving unit 002c to which the cutoff determination signal D is input.
  • the protection circuit 002 receives the command signals A, B, and C output from the upper controller 001. When the state in which all of the command signals A, B, and C are off continues for a predetermined period of time, the protection circuit 002 determines that an abnormality has occurred and switches the state of the cutoff determination signal D to stop the output of the semiconductor circuit 500, and outputs it.
  • the protection circuit 002 is connected to the gate driver 400 so that the cutoff determination signal D is input without passing through the delay unit 103, and the cutoff determination signal D is used to cut off the output of the delayed signal output from the gate driver 400.
  • the shutoff determination signal D is input to the photocouplers 102, 202, and 302, which are connected in a daisy chain, via signal line 009, and is returned to the protection circuit 002 via signal line 010.
  • photocoupler 102 receives cutoff determination signal D output from protection circuit 002, and cutoff determination signal D is input to input terminal 105b of logical product unit 105 and input terminal 106b of logical product unit 106.
  • cutoff determination signal D is input to gate driver 400 via photocoupler 102, but photocoupler 102 may be omitted, and protection circuit 002 may input cutoff determination signal D to input terminal 105b of logical product unit 105 and input terminal 106b of logical product unit 106.
  • photocouplers 202 and 302 may also be omitted, like photocoupler 102.
  • the gate driver 400 includes a set of circuits including logical product units 104, 105, 106 and a delay unit 103, and the number of sets of circuits is the same as the number of circuit elements included in the semiconductor circuit 500.
  • the gate driver 400 receives a command signal via photocouplers 101, 201, 301, and outputs a delayed signal delayed by a predetermined delay time to drive the downstream semiconductor circuit 500.
  • the set of circuits included in the gate driver 400 includes a delay unit 103 that outputs a delayed signal obtained by delaying command signal A by a predetermined delay time, a first AND unit 105 that calculates the logical product of inputs between a first input terminal 105a and a second input terminal 105b and outputs the result from a first output terminal 105c, a second AND unit 106 that calculates the logical product of inputs between a third input terminal 106a and a fourth input terminal 106b and outputs the result from a second output terminal 106c, and a third AND unit 104 that calculates the logical product of inputs between a fifth input terminal 104a and a sixth input terminal 104b and outputs the result from a third output terminal 104c.
  • delay unit 203 and logical product units 205, 206, and 209 form one circuit
  • the third output terminal 104c of the third AND unit 104 is connected to the third input terminal 106a of the second AND unit 106.
  • the delay unit 103 is connected to the first input terminal 105a of the first AND unit 105 and the fifth input terminal 104a of the third AND unit 104.
  • the second input terminal 105b of the first AND unit 105 and the fourth input terminal 106b of the second AND unit 106 are connected to the protection circuit 002.
  • the sixth input terminal 104b of the third AND unit 104 receives the command signal A.
  • the gate driver 400 is controlled by two input signals.
  • the first input signal is a command signal.
  • Command signal A passes through signal line 003 and is input to the gate driver 400 via photocoupler 101.
  • command signal B passes through signal line 005 and is input to the gate driver 400 via photocoupler 201.
  • Command signal C is input to the gate driver 400 via photocoupler 301.
  • These command signals are delayed by a predetermined delay time through the gate driver 400 and become delayed signals, which control the voltage of the gate electrode of the dual gate IGBT included in the semiconductor circuit 500.
  • the second input signal is a cutoff determination signal D.
  • Buffer unit 115 is a circuit element that has an output when photocoupler 101 emits light and has no output when it is off.
  • the relationship between buffer unit 115 and photocoupler 101 also holds true between buffer unit 116 and photocoupler 102, buffer unit 215 and photocoupler 201, buffer unit 216 and photocoupler 202, buffer unit 315 and photocoupler 301, and buffer unit 316 and photocoupler 302.
  • the circuit element 112 is a multi-gate semiconductor element having a first gate electrode (hereinafter also referred to as a "control terminal") 110 and a second gate electrode 111. A similar structure is also provided in the circuit elements 212 and 312.
  • the multi-gate semiconductor element is, for example, a dual IGBT.
  • the multi-gate semiconductor elements 112 and 212 are connected in two series between a positive power supply line 011 and a negative power supply line 013 to form an inverter circuit.
  • the input/output line 012 of the inverter circuit is connected to the connection point of the two series multi-gate semiconductor elements.
  • a typical three-phase AC inverter is formed by connecting three of these two series inverter circuits in parallel to a power supply line.
  • the inverter circuit composed of the above-mentioned multi-gate semiconductor elements 112 and 212 is shown as an example of a U-phase inverter circuit out of three phases, and the multi-gate semiconductor element 312 can be used to configure the dual-gate IGBT on the positive power line side of two serial inverter circuits for other phases, for example the V-phase.
  • Command signals A, B, and C are also input to protection circuit 002, and when they are all turned off, the output of protection circuit 002 is also turned off. Normally, as described above, except during dead times, one of the multi-gate semiconductor elements in the inverter circuit is always outputting, and the cutoff determination signal D, which is the output of protection circuit 002, is on.
  • (Timing chart for normal operation) 2 is a diagram showing a timing chart during normal operation of the power conversion device.
  • the charts of command signals A, B, and C show the cases where they are detected in the signal lines 003, 005, and 007 of FIG. 1, respectively.
  • the chart of the interruption determination signal D shows the case where it is detected in the signal line 009.
  • the chart of the delayed signal E shows the case where it is detected in the signal line 107.
  • the chart of the signal F shows the case where it is detected between the third AND unit 104 and the second AND unit 106.
  • the chart of the signal G shows the signal input to the first gate electrode 110 of the multi-gate semiconductor element 112.
  • the chart of the signal H shows the signal input to the second gate electrode 111 of the multi-gate semiconductor element 112.
  • the collector current Z is a current flowing from the collector 113 to the emitter 114 of the multi-gate semiconductor element 112.
  • the second gate electrode 111 is a terminal that controls the increase or decrease in carrier density accumulated inside the IGBT, and the on or off of the multi-gate semiconductor element, i.e., the passage or cut-off of the collector current Z, is controlled by the first gate electrode 110.
  • the voltage applied to the first gate electrode 110 of the multi-gate semiconductor element 112 exceeds the dual gate on threshold, the multi-gate semiconductor element 112 is driven, and the collector current Z becomes Hi and a current flows.
  • the command signal A turns on, and at time t2, delayed by the delay time d, the delay signal E turns on.
  • the cutoff determination signal D of the protection circuit 002 is on. Since the output of the buffer unit 116 on the signal line 108 also turns on, the signal G output from the first AND unit 105 also turns on at the same time that the signal E turns on, and the first gate electrode 110 is turned on. Furthermore, since the signal F output from the third AND unit 104 also turns on at the same time that the signal E turns on, the signal H output from the second AND unit 106 is turned on, and the second gate electrode 111 is also turned on. The first gate electrode 110 turns on, and a state in which the carrier density is controlled by the second gate electrode 111 is formed. As a result, in the multi-gate semiconductor element 112, the collector current Z becomes Hi and a current flows.
  • the dead time corresponds to the period Td between t3 and t3d.
  • This period Td is set based on the rated voltage and rated current of the multi-gate semiconductor element 112, and is generally in the range of approximately 5 ⁇ s to 10 ⁇ s.
  • This delay time d is set based on the rated voltage and rated current of the applied multi-gate semiconductor element, and is in the range of 5 ⁇ s to 100 ⁇ s.
  • FIG. 3 shows a timing chart of normal operation when the period T during which the command signal is on is shorter than the delay time d.
  • the signal G input to the first gate electrode 110 corresponds to the behavior of the delayed signal E.
  • the signal G turns on or off with a delay of the delay time d from the command signal output from the upper controller 001 during normal operation.
  • the signal H input to the second gate electrode 111 behaves differently from the case shown in FIG. 2.
  • the time period before the timing t1a when the command signal A falls the time that has elapsed since the command signal A rose is less than the delay time d, so no signal is output from the delay unit 103.
  • the input terminal 104b of the third AND unit 104 which does not pass through the delay unit 103, is off. Therefore, the signal F output from the third AND unit 104 and the signal H output from the second AND unit 106 remain off, and the signal H of the second gate electrode 111 is also off. In this way, the present invention can be applied even when the period T is shorter than the delay time d.
  • FIG. 4 is a timing chart showing a case where an abnormality is detected in the power conversion device.
  • command signal A turns on at time t1
  • collector current Z of dual gate IGBT 112 turns on at time t2, which is delayed by delay time d, in the same way as in the case shown in FIG. 2.
  • the power conversion device 600 has an abnormality detection unit that turns off the output of the host controller 001 when detecting an abnormality in the system.
  • the abnormality detection unit detects some kind of abnormality (e.g., overcurrent, overvoltage, overtemperature, etc.)
  • command signals A, B, and C output from the host controller 001 are all turned off.
  • the operation of delay unit 103 causes signal E on signal line 107 of delay unit 103 to remain on even after time t7.
  • delay units 203 and 303 also remain on.
  • the protection circuit 002 determines that an abnormality has occurred in the power conversion device 600 when all command signals output from the upper controller 001 are turned off.
  • the protection circuit 002 switches the state of the cutoff determination signal D from on to off.
  • the cutoff determination signal D is turned off, the photocouplers 102, 202, and 302 are turned off and the outputs of the buffer units 116, 216, and 316 are turned off.
  • the outputs of the logical product units 105, 106, 205, 206, 305, and 306 are turned off, and the gate voltages of all the multi-gate semiconductors are turned off and cut off.
  • the collector current of the multi-gate semiconductor device can be cut off without delay, thereby maintaining the safety of the power conversion device as a system using the multi-gate semiconductor device.
  • the signal lines from the upper controller that are input to the protection circuit 002 are input in pairs, for example, 003 and 004, but this is not limited to this. If the signal lines 004, 006, and 008 to which the command signals A, B, and C respectively return are electrically connected, and the signal lines 004, 006, and 008 have a common potential, the protection circuit 002 only needs to be connected to the signal lines 003, 005, and 007 and the ground potential lines for these signals, thus making it possible to reduce the number of wires in the power conversion device 600.
  • photocouplers 101, 201, 301, 102, 202, and 302 are used to ensure insulation between the host controller 001 and the gate driver 400 to which a high voltage is applied, but this is not limited to this. Any means that allows signal transmission while ensuring electrical insulation, such as optical fiber or a pulse transformer, can provide the same effect.
  • the cutoff determination signal D of the protection circuit 002 is input to a daisy-chain diode, but it is also possible to adopt a means of transmitting signals in parallel by providing individual wiring for each photocoupler.
  • the logic is configured so that the ON state of the cutoff determination signal D represents a normal operating state. This is to provide a fail-safe configuration in which, if an optical component with a short life span such as a photocoupler breaks down, the cutoff determination signal D automatically turns OFF, stopping the system. It is also possible to invert the logic configuration so that the OFF state of the cutoff determination signal D represents a normal operating state, and the ON state represents an abnormality detection state.
  • the shutoff determination signal D is input to photocouplers connected in a daisy chain. This is because if an abnormality occurs anywhere in the daisy chain, no current flows through the photocouplers, making it possible to automatically shut down the system.
  • the second embodiment is different from the first embodiment in that it determines that an abnormality has occurred in the protection circuit 002 when the state in which all of the command signals are off continues for a predetermined period of time.
  • the predetermined period is a dead time.
  • composition 5 is a diagram showing a power conversion device using a protection circuit according to the second embodiment.
  • the protection circuit 0021 has A/D conversion units 401, 402, and 403, a logical OR unit 404, a timer counter 405, and a D/A conversion unit 406.
  • the A/D conversion units 401, 402, and 403 function as a first receiving unit 0021a to which a command signal output from the upper controller 001 is input.
  • the D/A conversion unit 406 generates a shutoff determination signal D for stopping the output of the multi-gate semiconductor element included in the semiconductor circuit 500.
  • the shutoff determination signal D is output from the output unit 012b to the photocouplers 102, 202, and 302, and is fed back to the receiving unit 0021c.
  • A/D conversion unit 401 operates to output Hi or Lo depending on the voltage between signal lines 003 and 004, which indicates whether command signal A is on or off. Similarly, A/D conversion unit 402 outputs Hi or Lo based on the voltage between signal lines 005 and 006, and A/D conversion unit 403 outputs Hi or Lo based on the voltage between signal lines 007 and 008.
  • the digital signals generated in the A/D conversion units 401, 402, and 403 are input to the logical OR unit 404.
  • the logical OR unit 404 outputs a Hi signal if at least one of the signals output from the A/D conversion units contains a Hi signal, and outputs a Lo signal if all of the signals are Lo.
  • the timer counter 405 is connected to the logical OR unit 404.
  • the timer counter 405 outputs a Lo signal if the period during which the input signal is in the Lo state continues longer than the dead time Td, and outputs a Hi signal otherwise.
  • the D/A conversion unit 406 converts the signal output from the timer counter 405 into an analog signal and outputs it as a cutoff determination signal D.
  • the protection circuit 0021 when any of the command signals A to C is on, or when the command signals A to C include a signal that is turned off but the off period is equal to or shorter than the dead time Td, the protection circuit 0021 outputs a signal in the Hi state as the shutoff determination signal D. On the other hand, when the state in which all of the command signals A to C are off continues for longer than the dead time Td, the protection circuit 0021 outputs a signal in the Lo state as the shutoff determination signal D. In this way, the protection circuit 0021 detects an abnormality based on the state of the command signals.
  • Fig. 6 is a diagram showing a timing chart of the power conversion device according to the second embodiment
  • Fig. 7 is a diagram showing a timing chart of a power conversion device as a comparative example.
  • a period called dead time is provided in which both elements connected in series are off to prevent elements connected in series from turning on at the same time and causing a power supply short circuit.
  • This dead time may overlap between the U phase, V phase, and W phase, causing all command signals to temporarily turn off, depending on the design of the control commands.
  • An example is shown in Figure 7.
  • command signals A and B are both off during the dead time from time t3 to t3d, and command signal C is also off.
  • protection circuit 002 operates at this point and shuts off the multi-gate semiconductor elements.
  • the protection circuit 002 determines that an abnormality has occurred.
  • the command signals A to C are all off between t7 and t7d, and the off state continues for longer than the dead time Td.
  • the protection circuit 002 switches the state of the cutoff determination signal D from on to off and outputs it, thereby stopping the power conversion device 600.
  • the protection technology for power conversion devices has been described above in the first and second embodiments in which a dual-gate IGBT is used, but the present invention is not limited to this. It is also possible to apply the technology to a multi-gate IGBT having three or more gates.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)
  • Power Conversion In General (AREA)

Abstract

本発明は、マルチゲートIGBTを用いるシステムの安全を維持することができる技術を提供するものである。 本発明の代表的な保護回路は、少なくとも1つのパルス幅変調された指令信号が入力し、前記指令信号を所定の遅延時間だけ遅延させた遅延信号を出力する遅延部を含む駆動回路と、前記駆動回路から出力された信号が入力する少なくとも1つの回路素子を有する半導体回路と、を備える電力変換装置に用いられる保護回路であって、前記半導体回路の出力を遮断させるための遮断判定信号を出力し、かつ前記遮断判定信号が前記遅延部を介さずに入力するように前記駆動回路と接続されている、ことを特徴とする。

Description

保護回路および保護方法
 本発明は、保護回路および保護方法に関する。
 IGBT(Insulated Gate Bipolar Transistor)は、GTO(Gate Turn Off Thyristor)に代わる電力変換装置用のパワー半導体素子として登場して以来、開発がすすめられ高耐圧化、低損失化されてきた。
 近年、IGBTの損失を低減する技術としてマルチゲートIGBTが考案され、開発が進められている。マルチゲートIGBTは、IGBT内部のキャリア濃度を制御する補助ゲート電極を有し、補助ゲート電極のオン、オフを切り換えることにより、電流遮断時(ターンオフ時)の損失を低減するものである。具体的にはIGBTがオン、すなわちコレクタとエミッタの間が導通状態のときには、すべてのゲート電極をオンにすることでIGBT内に十分なキャリア(電荷)を供給し、導通抵抗を下げて導通損失を低減する。電流のターンオフ時には、ターンオフの一定時間前に補助ゲート電極をオフにすることによって、IGBT内に蓄積されたキャリアを減らし、ターンオフ損失を低減している。
 マルチゲートIGBTを駆動するためには、上述のとおりオンまたはオフの複数のパルスパターンを有するゲート指令信号をIGBTに与える必要がある。IGBTを駆動するゲート指令信号は一般に上位のコントローラにて生成され、このコントローラからの指令信号をIGBTのゲートに接続されたバッファアンプ(以下、「ゲートドライバ」ともいう)に入力することで、IGBTのゲート電極を制御しIGBTを駆動している。マルチゲートIGBTでは上述のとおり複数のゲート指令信号が必要となることから、上位のコントローラもこれに対応した複数出力を有する構成に変更する必要が生じ、従来システムとの互換性を維持することが難しくなる。この対策として、従来コントローラと互換性を有するマルチゲートIGBT用のゲートドライバが特許文献1に開示されている。特許文献1によればコントローラは変更せずにゲートドライバにて複数のゲート指令信号を生成するため、従来のコントローラに、マルチゲートIGBTを接続することが可能となる。
特開2019-103286号公報
 特許文献1の手法によると、上位のコントローラから入力されるゲート駆動信号に対して、マルチゲートIGBTは一定時間遅延して動作する。このとき、マルチゲートIGBTにより構成されている電力変換装置に何らかの異常が発生した場合には、上位のコントローラがこれを検知し電力変換装置を停止させるためにゲート駆動信号をオフにする。しかしながら、特許文献1のゲートドライバではゲート駆動指令信号が緊急に停止されても、当該ゲートドライバはゲート駆動指令に対して一定時間遅延して動作するために保護遮断が遅れてしまい、その間にマルチゲートIGBTが破壊するという課題があった。
 本発明は上記課題を解決するものであって、マルチゲートIGBTを用いるシステムの安全を維持することができる技術を提供するものである。
 上記の課題を解決するために、本発明の代表的な保護回路は、少なくとも1つのパルス幅変調された指令信号が入力し、前記指令信号を所定の遅延時間だけ遅延させた遅延信号を出力する遅延部を含む駆動回路と、前記駆動回路から出力された信号が入力する少なくとも1つの回路素子を有する半導体回路と、を備える電力変換装置に用いられる保護回路であって、前記半導体回路の出力を遮断させるための遮断判定信号を出力し、かつ前記遮断判定信号が前記遅延部を介さずに入力するように前記駆動回路と接続されている、ことを特徴とする。
 本発明によれば、マルチゲートIGBTを用いるシステムの安全を維持することができる。
 上記した以外の課題、構成および効果は、以下の実施をするための形態における説明により明らかにされる。
図1は、第1実施形態に係る保護回路が用いられる電力変換装置を示す図である。 図2は、電力変換装置の健全動作時におけるタイミングチャートを示す図である。 図3は、指令信号がオンである期間Tが遅延時間dよりも短い場合の健全動作時のタイミングチャートを示す図である。 図4は、電力変換装置において、異常が検知された場合のタイミングチャートを示す図である。 図5は、第2実施形態に係る保護回路が用いられる電力変換装置を示す図である。 図6は、第2実施形態に係る電力変換装置のタイミングチャートを示す図である。 図7は、比較例としての電力変換装置のタイミングチャートを示す図である。
 以下では、図面を参照して、本発明の実施形態を説明する。
 本開示において、信号線に信号がある状態または端子に信号が入力された状態をON(以下、「オン」という。)とし、また、信号線に信号がない状態または端子に信号が入力されていない状態をOFF(以下、「オフ」という。)とする。オンの場合は「Hi」または「H」とも表示し、オフの場合を「Lo」または「L」とも表示する。例えば、オフの状態を0Vとし、オンの状態を電圧が印加された状態とすることができる。ただし、0Vに限定されず、基準となる電位を用いてもよい。また、電圧でなく電流を適用してもよい。
 また、AとBが「接続」するとは、A(またはB)から出力する信号がB(またはA)に入力する関係をいう。AまたはBは回路の構成要素または回路素子の端子である。
[第1実施形態]
(構成)
 図1は、第1実施形態に係る保護回路が用いられる電力変換装置を示す図である。保護回路002が用いられる電力変換装置600は、少なくとも1つのパルス幅変調された指令信号A、B、Cが入力し、指令信号を所定の遅延時間だけ遅延させた遅延信号を出力する遅延部103を含む駆動回路(以下、「ゲートドライバ」ともいう。)400と、駆動回路400から出力された信号が入力する少なくとも1つの回路素子112を有する半導体回路500とを備える。保護回路002は、半導体回路500の出力を遮断させる遮断判定信号Dを出力し、かつ遮断判定信号Dが遅延部103を介さずに入力するように駆動回路400と接続されている。以下、電力変換装置600の構成を説明する。
 上位コントローラ001は、少なくとも1つのパルス幅変調(PWM、Pulse Width Modulation)がされた指令信号を出力する。ここでは、3つの指令信号A、B、Cが生成される様子が示される。指令信号Aは、信号線003を介してフォトカプラ101および保護回路002に入力され、信号線004を介して上位コントローラ001に帰還する。フォトカプラ101は、上位コントローラ001とゲートドライバ400の間を絶縁し、かつ上位コントローラ001から出力された指令信号Aをゲートドライバ400に伝達する。同様に、指令信号Bは、信号線005を介してフォトカプラ201および保護回路002に入力され、信号線006を介して上位コントローラ001に帰還する。指令信号Cは、信号線007を介してフォトカプラ301および保護回路002に入力され、信号線008を介して上位コントローラ001に帰還する。
 なお、ここでは、フォトカプラ101は上位コントローラ001から出力された指令信号Aが入力され、指令信号Aは論理積部104の入力端子104bおよび遅延部103に入力する。このように、指令信号Aがフォトカプラ101を介してゲートドライバ400に入力する構成が示されているが、フォトカプラ101を省略し、上位コントローラ001が論理積部104の入力端子104bおよび遅延部103に指令信号Aを入力する構成としてもよい。同様に、フォトカプラ201と301についても、フォトカプラ101と同様に、省略する構成としてもよい。
 保護回路002は、上位コントローラ001から出力される指令信号A、B、Cが入力される第1受信部002aと、フォトカプラ102へ遮断判定信号Dを出力する信号出力部002bと、遮断判定信号Dが入力される第2受信部002cを備える。保護回路002は、上位コントローラ001から出力される指令信号A、B、Cを受信する。保護回路002は、指令信号A、B、Cのすべてがオフとなる状態が所定期間だけ継続した場合、異常が発生したと判定し、半導体回路500の出力を停止させるための遮断判定信号Dの状態を切り替えて出力する。保護回路002は遮断判定信号Dが遅延部103を介さずに入力するようにゲートドライバ400と接続されており、また、遮断判定信号Dはゲートドライバ400から出力される遅延信号の出力を遮断するために用いられる。遮断判定信号Dは、信号線009を介してデイジーチェーン状に接続されたフォトカプラ102、202、302に入力し、信号線010を介して保護回路002に帰還する。
 なお、ここでは、フォトカプラ102は保護回路002から出力された遮断判定信号Dが入力され、遮断判定信号Dは論理積部105の入力端子105bおよび論理積部106の入力端子106bに入力する。このように、遮断判定信号Dがフォトカプラ102を介してゲートドライバ400に入力する構成が示されているが、フォトカプラ102を省略し、保護回路002が論理積部105の入力端子105bおよび論理積部106の入力端子106bに遮断判定信号Dを入力する構成としてもよい。同様に、フォトカプラ202と302についても、フォトカプラ102と同様に、省略する構成としてもよい。
 ゲートドライバ400には、論理積部104、105、106と遅延部103とを含む1組の回路が含まれており、この1組の回路が、半導体回路500に含まれる回路素子の数と同数設けられている。ゲートドライバ400は、フォトカプラ101、201、301を介して指令信号が入力され、所定の遅延時間だけ遅延させた遅延信号を出力して、後段の半導体回路500を駆動させる。
 次に、ゲートドライバ400に含まれる回路について、名称と符号を付けて詳細に説明する。ゲートドライバ400に含まれる1組の回路は、指令信号Aを所定の遅延時間だけ遅延させた遅延信号を出力する遅延部103と、第1の入力端子105aと第2の入力端子105bの間の入力の論理積を算出し、第1の出力端子105cから出力する第1の論理積部105と、第3の入力端子106aと第4の入力端子106bの間の入力の論理積を算出し、第2の出力端子106cから出力する第2の論理積部106と、第5の入力端子104aと第6の入力端子104bの間の入力の論理積を算出し、第3の出力端子104cから出力する第3の論理積部104と、を有する。同様に、遅延部203と論理積部205、206、209が1組の回路を構成し、遅延部303と論理積部305、306、304が1組の回路を構成する。
 接続関係について説明すると、第3の論理積部104の第3の出力端子104cは、第2の論理積部106の第3の入力端子106aと接続する。遅延部103は、第1の論理積部105の第1の入力端子105aおよび第3の論理積部104の第5の入力端子104aに接続される。また、第1の論理積部105の第2の入力端子105bおよび第2の論理積部106の第4の入力端子106bは、保護回路002に接続する。前記指令信号Aは、第3の論理積部104の第6の入力端子104bは、指令信号Aが入力される。
 ゲートドライバ400は、2つの入力信号により制御される。1つめの入力信号は指令信号である。指令信号Aは、信号線003を通り、フォトカプラ101を介してゲートドライバ400に入力する。同様に、指令信号Bは、信号線005を通り、フォトカプラ201を介してゲートドライバ400に入力する。指令信号Cは、フォトカプラ301を介してゲートドライバ400に入力する。これらの指令信号は、ゲートドライバ400を経由して所定の遅延時間だけ遅延された遅延信号となり、半導体回路500に含まれるデュアルゲートIGBTのゲート電極の電圧を制御する。2つめの入力信号は、遮断判定信号Dである。上位コントローラ001とゲートドライバ400と半導体回路500を含む電力変換装置のシステムが健全動作時には遮断判定信号Dはオンであり、システムの異常動作時には遮断判定信号Dはオフとなる。遮断判定信号Dがフォトカプラ102、202、302を介してゲートドライバ400に入力される。バッファ部115は、フォトカプラ101の発光時に出力があり、消灯時に出力がない回路素子である。バッファ部115とフォトカプラ101の間の関係は、バッファ部116はフォトカプラ102、バッファ部215とフォトカプラ201、バッファ部216とフォトカプラ202、バッファ部315とフォトカプラ301、バッファ部316とフォトカプラ302、の間にも同様に成立する。
 次に、半導体回路500に含まれる、回路素子112と212、312について説明する。回路素子112は、第1のゲート電極(以下、「制御端子」ともいう)110および第2のゲート電極111を有するマルチゲート半導体素子である。同様の構造は、回路素子212と312にも備えられている。マルチゲート半導体素子は、たとえばデュアルIGBTである。マルチゲート半導体素子112と212は、プラス電源線011とマイナス電源線013との間に2直列で接続され、インバータ回路を構成している。インバータ回路の入出力線012は2直列のマルチゲート半導体素子の接続点に接続されている。一般的な3相交流用インバータは、この2直列のインバータ回路を3つ並列に電源線に接続することで構成する。上述のマルチゲート半導体素子112と212から構成されるインバータ回路は3相のうちの例えばU相を構成した例を図示しており、マルチゲート半導体素子312はその他の相、例えばV相のインバータ回路の2直列のプラス電源線側のデュアルゲートIGBTを構成することができる。
 次にデッドタイムについて説明する。インバータ回路を構成するマルチゲート半導体素子112と212の指令信号AとBは、同時にオンになるとマルチゲート半導体素子112と212が同時にオンとなりプラス電源線011とマイナス電源線013の間を短絡してしまうために、一方がオンの場合にはもう一方は必ずオフにする。このオンからオフへの切り替えの際に、指令信号AとBの出力を同時に切り替えると、制御のばらつきなどで一方のオフが遅れた際にもう一方がオンになってしまい、両方が同時にオンになる場合が生じることが懸念される。このため、出力を切り替える時には、指令信号AとBの両方をオフにする期間、いわゆるデッドタイムが設定されている。デッドタイムは、上位コントローラ001において予め設定される。指令信号AとBは、上述のようにそれぞれデッドタイムを挟んでオンまたはオフを繰り返している。
 指令信号A、B、Cは、保護回路002にも入力されており、これらが全てオフになると保護回路002の出力もオフになる。通常は上述した様にデッドタイム以外は必ずインバータ回路のどちらかのマルチゲート半導体素子が出力をしており、保護回路002の出力である遮断判定信号Dはオンとなっている。
(健全動作時のタイミングチャート)
 図2は、電力変換装置の健全動作時におけるタイミングチャートを示す図である。指令信号A、B、Cのチャートは、それぞれ図1の信号線003、005、007において検出される場合を示す。遮断判定信号Dのチャートは、信号線009において検出される場合を示す。遅延信号Eのチャートは、信号線107において検出される場合を示す。信号Fのチャートは、第3の論理積部104と第2の論理積部106の間において検出される場合を示す。信号Gのチャートは、マルチゲート半導体素子112の第1のゲート電極110に入力される信号を示す。信号Hのチャートは、マルチゲート半導体素子112の第2のゲート電極111に入力される信号を示す。コレクタ電流Zは、マルチゲート半導体素子112のコレクタ113からエミッタ114に流れる電流である。ここで、第2のゲート電極111はIGBT内部に蓄積されたキャリア密度の増減を制御する端子であり、マルチゲート半導体素子のオンまたはオフ、すなわちコレクタ電流Zの通電または遮断は、第1のゲート電極110によって制御される。例えば、マルチゲート半導体素子112の第1のゲート電極110に印加される電圧がデュアルゲートオンの閾値を超えると、マルチゲート半導体素子112が駆動し、コレクタ電流ZはHiになり電流が流れる。
 時刻t1において指令信号Aがオンし、遅延時間dだけ遅れた時刻t2において、遅延信号Eがオンに反転する。この時、健全動作状態であるのため、保護回路002の遮断判定信号Dはオンになっている。信号線108におけるバッファ部116の出力もオンになるため、信号Eがオンに反転すると同時に第1の論理積部105から出力される信号Gもオンに反転し、第1のゲート電極110がオンにされる。また、信号Eがオンになると同時に第3の論理積部104から出力される信号Fもオンになるため、第2の論理積部106から出力される信号Hがオンに反転し、第2のゲート電極111もオンにされる。第1のゲート電極110がオンになり、かつ第2のゲート電極111によってキャリア密度が制御された状態が形成される。結果として、マルチゲート半導体素子112において、コレクタ電流ZはHiになり電流が流れる。
 なお、デッドタイムは、t3とt3dの間の期間Tdに該当する。この期間Tdはマルチゲート半導体素子112の定格電圧および定格電流に基づいて設定されるものであり、一般的にはおおむね5μs~10μsの範囲である。
 次に時刻t3において指令信号Aがオフになると、バッファ部115から出力される信号がオフになり、第3の論理積部104から出力される信号Fがオフになる。その結果、第2の論理積部106から出力される信号Hもオフになり、第2のゲート電極111がオフにされる。遅延時間dが経過した時刻t4において、遅延部103から出力される信号Eがオフになり、第1の論理積部105から出力される信号Gがオフになる。その結果、第1のゲート電極110もオフにされ、コレクタ電流ZがLoになりはマルチゲート半導体素子112が遮断される。このように第1のゲート電極110に先立ち第2のゲート電極111をオフにさせることにより、デュアルゲートIGBT112内に蓄積されたキャリアを減らし、電流遮断時の損失を低減させる。この遅延時間dは適用されるはマルチゲート半導体素子の定格電圧および定格電流などに基づいて設定され、5μs~100μsの範囲である。
 なお、PWM制御において、指令信号がオンである期間Tが遅延時間dよりも短い場合を説明する。図3は、指令信号がオンである期間Tが遅延時間dよりも短い場合の健全動作時のタイミングチャートを示す図である。
 この場合、第1のゲート電極110に入力される信号Gは、遅延信号Eの挙動に対応する。図2に示される場合と同様に、信号Gは、健全動作時において上位コントローラ001から出力される指令信号に対して遅延時間dだけ遅れてオン、またはオフとなる。
 一方で、第2のゲート電極111に入力される信号Hは、図2に示される場合と異なる動作をする。指令信号Aが立ち下がるt1aのタイミングより前の時間帯においては、指令信号Aの立ち上がりからの経過時間が遅延時間dに満たないため、遅延部103から信号は出力されない。また、t1a以降は指令信号Aがオフのため、遅延部103を介しない第3の論理積部104の入力端子104bはオフとなる。したがって第3の論理積部104から出力される信号Fおよび第2の論理積部106から出力される信号Hはオフのままとなり、第2のゲート電極111の信号Hもオフとなる。このように、期間Tが遅延時間dよりも短い場合においても、本発明を適用することが可能である。
(異常検知時のタイミングチャート)
 続いて、異常検知時に、遅延判定信号Dにより電力変換装置600の動作を停止させる場合を説明する。
 図4は、電力変換装置において、異常が検知された場合のタイミングチャートを示す図である。まず、時刻t1において指令信号Aがオンになると、図2に示される場合と同様に、遅延時間dだけ遅れた時刻t2において、デュアルゲートIGBT112のコレクタ電流Zがオンになる。
 ここで、電力変換装置600は、システムの異常検知に、上位コントローラ001の出力をオフにする異常検知部を有する。時刻t7において、異常検知部により何らかの異常(例えば、過電流や過電圧、過温度など)が検知されると、上位コントローラ001から出力される指令信号A、B、Cが全てオフになる。しかしながら指令信号A、B、Cがオフにされても、遅延部103の動作により遅延部103の信号線107における信号Eは、時刻t7以降もオンを保持してしまう。同様に、遅延部203、303についても、オンを保持してしまう。
 そこで第1実施形態では、保護回路002は、上位コントローラ001から出力される指令信号が全てオフとなった場合に、電力変換装置600に異常が発生したと判定する。保護回路002は、遮断判定信号Dの状態をオンからオフに切り替える。遮断判定信号Dがオフになると、フォトカプラ102、202、302が消灯され、バッファ部116、216、316の出力がオフとなる。論理積部105、106、205、206、305、306の出力がオフにされ、全てのマルチゲート半導体のゲート電圧がオフになり遮断される。
(作用・効果)
 上述のように実施形態に係る電力変換装置用の保護回路においては、異常が検知された場合に、遅滞なくマルチゲート半導体素子のコレクタ電流を遮断することができる。これにより、マルチゲート半導体素子を用いたシステムとしての電力変換装置の安全を維持することができる。
 なお、図1では保護回路002に入力する上位コントローラからの信号線は2本1組、例えば003と004の組合せで保護回路002に入力しているが、これに限られるものではない。指令信号A、B、Cそれぞれが帰還する信号線004、006、008が電気的に接続されており、かつ信号線004、006、008が共通の電位を有している場合、保護回路002の接続は信号線003、005、007およびそれらの信号のグランド電位線だけでよい、こうして、電力変換装置600における配線数を減らすことが可能となる。
 また、第1実施形態では上位コントローラ001と高電圧が印加されるゲートドライバ400との絶縁確保のためにフォトカプラ101、201、301、102、202、302を用いた形態を示したが、これに限定されるものではない。光ファイバやパルストランスなどの電気的な絶縁を確保したうえで信号伝達を可能とする手段であれば、同様の効果を得られる。さらに、図1において保護回路002の遮断判定信号Dはデイジーチェーン状のダイオードに入力されているが、それぞれのフォトカプラに対する配線を個別に設けてパラレルに信号を伝達する手段を採用することも可能である。
 なお、上述の例では遮断判定信号Dがオンの状態を健全動作状態となる様に論理を構成しているが、これは寿命が短いフォトカプラなどの光部品が故障した場合に、自ずと遮断判定信号Dがオフとなり、システムを停止させるフェールセーフ構成とするためである。論理構成を反転させて遮断判定信号Dがオフの状態を健全動作状態、オンの状態を異常検知状態とすることも可能である。
 さらに、第1実施形態では遮断判定信号Dをデイジーチェーン状に接続されたフォトカプラに入力させている。このことは、デイジーチェーン上のいずれかの箇所で異常があった場合にフォトカプラに電流が流れなくなり、システムを自ずと停止させることを可能とするためである。
[第2実施形態]
 第2実施形態の特徴は、指令信号の全てがオフになる状態が所定期間より長く継続した場合に保護回路002において異常が発生したと判定する点で、第1実施形態と異なる。ここで、所定期間はデッドタイムである。以下の説明において、上述の第1実施形態と同一又は同等の構成要素については同一の符号を付し、その説明を簡略又は省略する。
(構成)
 図5は、第2実施形態に係る保護回路が用いられる電力変換装置を示す図である。図5に示されるように、保護回路0021は、A/D変換部401、402、403、論理和部404、タイマカウンタ405、D/A変換部406を有する。A/D変換部401、402、403は、上位コントローラ001から出力される指令信号が入力する第1受信部0021aとして機能する。D/A変換部406は、半導体回路500に含まれるマルチゲート半導体素子の出力を停止させるための遮断判定信号Dを生成する。遮断判定信号Dは、出力部012bからフォトカプラ102、202、302へ出力され、受信部0021cへ帰還する。
 A/D変換部401は、指令信号Aのオンまたはオフを示す信号線003と004の間の電圧に応じて、HiまたはLoを出力するように動作する。同様に、A/D変換部402は信号線005と006の間の電圧に基づいてHiまたはLoを出力し、A/D変換部403は信号線007と008の間の電圧に基づいてHiまたはLoを出力する。
 A/D変換部401、402、403において生成されたディジタル信号は、論理和部404に入力される。論理和部404は、A/D変換部から出力される信号の少なくとも1つにHiが含まれる場合にHiの信号を出力し、いずれもがLoの場合にLoの信号を出力する。
 タイマカウンタ405は、論理和部404に接続される。タイマカウンタ405は、入力される信号がLoの状態である期間がデッドタイムTdより長く継続した場合にLoの信号を出力し、それ以外の場合はHiの信号を出力する。D/A変換部406は、タイマカウンタ405から出力される信号をアナログ信号に変換し、遮断判定信号Dとして出力する。
 このような構成により、指令信号AからCのうちのいずれかがオンである場合、または指令信号AからCのうちにオフになる信号が含まれていてもオフの期間がデッドタイムTd以下である場合、保護回路0021は、遮断判定信号DとしてHiの状態の信号を出力する。一方で、指令信号AからCが全てオフになる状態がデッドタイムTdより長く継続した場合、保護回路0021は、遮断判定信号DとしてLoの状態の信号を出力する。このように、保護回路0021において、指令信号の状態に基づいて、異常の検知が行われる。
(タイミングチャート)
 図6は、第2実施形態に係る電力変換装置のタイミングチャートを示す図である。また、図7は、比較例としての電力変換装置のタイミングチャートを示す図である。
 インバータ回路を有するシステムにおいては、上述したように直列に接続された素子が同時にオンしてしまって電源短絡を発生させないように、デッドタイムという直列接続の素子の両方がオフになる期間を設けている。このデッドタイムがU相、V相、W相の間で重なってしまい、一時的に全ての指令信号がオフになることが、制御指令の設計によっては発生する場合がある。図7にその例を示す。図7において時刻t3からt3dの間は指令信号AおよびBはいずれもデッドタイム中のため両方ともオフであり、また、指令信号Cもオフになっている。このため、時刻t3において、全てのマルチゲート半導体素子がオフすることとなる。第1実施形態では、この時点で保護回路002が動作してマルチゲート半導体素子を遮断してしまう。
 上述のような誤作動が発生することを防止するため、第2実施形態においては、図6に示される様に、指令信号A、B、Cの全てがオフになる状態がデッドタイムTdより長く継続した場合、保護回路002は、異常が発生したと判定する。図6において、t7からt7dの間、指令信号AからCが全てオフになり、オフの状態がデッドタイムTd以上継続している。保護回路002は、指令信号が全てオフになる状態がデッドタイムTdより長く継続した後に、遮断判定信号Dの状態をオンからオフに切り替えて出力し、電力変換装置600を停止させる。
(作用・効果)
 上述のように、インバータ回路を有するシステムにおいては、デッドタイムを設けることが必要である。第2実施形態において、デッドタイムがある場合でも、異常が発生しているかどうか判定することができ、マルチゲートIGBTを用いたシステムとしての電力変換装置の安全を維持することができる。
 また、この構成によれば、様々なオンおよびオフの制御が必要になるパルスパターンのインバータシステムに適用した際にも、誤検知無く異常を判定して確実にシステムを停止でき、マルチゲートIGBTを用いたシステムとしての電力変換装置の安全を維持することができる。
 以上、電力変換装置用の保護技術について、第1実施形態および第2実施形態においてはデュアルゲートIGBTを適用した場合を説明したが、本発明はこれに限定されるものではない。3つ以上のゲートを有するマルチゲートIGBTの場合に適用することも可能である。
 以上、本発明の実施の形態について説明したが、本発明は、上述した実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲において種々の変更が可能である。
001:上位コントローラ
002、0021:保護回路
003、005、007:指令信号の信号線
004、006、008:指令信号が帰還する信号線
009:遮断判定信号の信号線
010:遮断判定信号が帰還する信号線
011:プラス電源線
012:入出力線
013:マイナス電源線
101、201、301、102、202、302:フォトカプラ
103、203、303:遮断判定信号の遅延部
104、105、106、204、205、206、304、305、306:論理積部
107、207、307:遅延信号の信号線
108、208、308:遮断判定信号の信号線
109、209、309:論理積部の出力側の信号線
110、210、310:第1のゲート電極
111、211、311:第2のゲート電極
112、212、312:マルチゲート半導体素子
113、213、313:コレクタ端子
114、214、314:エミッタ端子
115、116、215、216、315、316:バッファ部
400:ゲートドライバ
401、402、403:A/D変換部
404:論理和部
405:タイマカウンタ
406:D/A変換部
500:半導体回路
600:電力変換装置

Claims (8)

  1.  少なくとも1つのパルス幅変調された指令信号が入力し、前記指令信号を所定の遅延時間だけ遅延させた遅延信号を出力する遅延部を含む駆動回路と、前記駆動回路から出力された信号が入力する少なくとも1つの回路素子を有する半導体回路と、を備える電力変換装置に用いられる保護回路であって、
     前記半導体回路の出力を遮断させるための遮断判定信号を出力し、かつ前記遮断判定信号が前記遅延部を介さずに入力するように前記駆動回路と接続されている、ことを特徴とする保護回路。
  2.  前記遮断判定信号は、前記指令信号が全てオフになる状態が所定期間より長く継続した後に、状態が切り替えられる、ことを特徴とする請求項1に記載の保護回路。
  3.  前記回路素子は、第1の制御端子および第2の制御端子を有するマルチゲート半導体素子である、ことを特徴とする請求項1または請求項2に記載の保護回路。
  4.  前記駆動回路は、
     第1の入力端子と第2の入力端子の間の入力の論理積を演算し、第1の出力端子から出力する第1の論理積部と、
     第3の入力端子と第4の入力端子の間の入力の論理積を演算し、第2の出力端子から出力する第2の論理積部と、
     第5の入力端子と第6の入力端子の間の入力の論理積を演算し、第3の出力端子から出力する第3の論理積部と、
    を有し、
     前記第3の論理積部の前記第3の出力端子は、前記第2の論理積部の前記第3の入力端子と接続し、
     前記遅延部は、前記第1の論理積部の前記第1の入力端子および前記第3の論理積部の前記第5の入力端子に接続され、
     前記保護回路は、前記第1の論理積部の前記第2の入力端子および前記第2の論理積部の前記第4の入力端子に接続され、
     前記指令信号は、前記第3の論理積部の前記第6の入力端子に入力し、
     前記マルチゲート半導体素子の前記第1の制御端子は、前記第1の論理積部の前記第1の出力端子と接続し、
     前記マルチゲート半導体素子の前記第2の制御端子は、前記第2の論理積部の前記第2の出力端子と接続する、ことを特徴とする請求項3に記載の保護回路。
  5.  前記保護回路は、
     前記指令信号が入力するA/D変換部と、
     前記A/D変換部と接続し、前記指令信号が全てオフの状態である場合に、オンの状態の信号を出力する論理和部と、
     前記論理和部と接続し、前記オフの状態である期間が所定期間より長く継続した後に、前記遮断判定信号の状態を切り替えて出力するタイマカウンタと、を有することを特徴とする請求項1から請求項4のいずれか1項に記載の保護回路。
  6.  前記指令信号は、第1のフォトカプラを介して前記駆動回路に入力し、
     前記遮断判定信号は、第2のフォトカプラを介して前記駆動回路に入力する、ことを特徴とする請求項1から請求項5のいずれか1項に記載の保護回路。
  7.  少なくとも1つのパルス幅変調された指令信号が入力し、前記指令信号を所定の遅延時間だけ遅延させた遅延信号を出力する遅延部を含む駆動回路と、前記駆動回路から出力された信号が入力する少なくとも1つの回路素子を有する半導体回路と、を備える電力変換装置に用いられる保護方法であって、
     前記半導体回路の出力を遮断させるための遮断判定信号を出力し、かつ前記遮断判定信号を前記遅延部を介さずに前記駆動回路に入力させる遮断判定ステップと、を有することを特徴とする保護方法。
  8.  前記遮断判定ステップにおいて、
     前記遮断判定信号は、前記指令信号が全てオフになる状態が所定期間より長く継続した後に、状態が切り替えられる、ことを特徴とする請求項7に記載の保護方法。
PCT/JP2023/035325 2022-09-30 2023-09-28 保護回路および保護方法 WO2024071276A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022157845 2022-09-30
JP2022-157845 2022-09-30

Publications (1)

Publication Number Publication Date
WO2024071276A1 true WO2024071276A1 (ja) 2024-04-04

Family

ID=90478024

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/035325 WO2024071276A1 (ja) 2022-09-30 2023-09-28 保護回路および保護方法

Country Status (1)

Country Link
WO (1) WO2024071276A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07122983A (ja) * 1993-10-28 1995-05-12 Fuji Electric Co Ltd ダブルゲ−ト型半導体装置の制御装置
JP2018201335A (ja) * 2018-09-27 2018-12-20 株式会社デンソー 半導体装置
JP2019103286A (ja) * 2017-12-05 2019-06-24 株式会社 日立パワーデバイス 半導体装置、半導体装置の制御方法、および半導体装置の制御回路
JP2019161720A (ja) * 2018-03-08 2019-09-19 株式会社日立製作所 インバータ装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07122983A (ja) * 1993-10-28 1995-05-12 Fuji Electric Co Ltd ダブルゲ−ト型半導体装置の制御装置
JP2019103286A (ja) * 2017-12-05 2019-06-24 株式会社 日立パワーデバイス 半導体装置、半導体装置の制御方法、および半導体装置の制御回路
JP2019161720A (ja) * 2018-03-08 2019-09-19 株式会社日立製作所 インバータ装置
JP2018201335A (ja) * 2018-09-27 2018-12-20 株式会社デンソー 半導体装置

Similar Documents

Publication Publication Date Title
JP5983274B2 (ja) 半導体スイッチ素子の故障検知回路を有したゲート駆動回路
EP1056205B1 (en) Semiconductor apparatus
CN103548266B (zh) 用于运行功率输出级的方法和装置
JP2008118834A (ja) サージ低減回路およびサージ低減回路を備えたインバータ装置
WO2012120567A1 (ja) 電力変換装置
US11444551B2 (en) Power conversion device with inverter circuit
JPH09129821A (ja) 半導体パワーモジュールおよび複合パワーモジュール
WO2024071276A1 (ja) 保護回路および保護方法
US6788014B2 (en) Drive control system for a multiphase motor powered by a power converter
EP2405568B1 (en) Electronic power apparatus for controlling the movement of alternating current (AC) electric motors stopping such motors in a safe way
JP4946103B2 (ja) 電力変換装置
JP2000333468A (ja) パワースイッチング装置及びインバータ装置
EP4160899A1 (en) Fault detection device and method therefor
EP2815491A2 (en) Gate driver for a power converter
JP3180961B2 (ja) ブリッジ形変換器の保護装置
WO2023286627A1 (ja) 電力変換装置および電力変換方法
JP2005185003A (ja) 電力変換装置の保護装置
JPH09233827A (ja) Pwmインバータ用出力回路
JP3558324B2 (ja) 電圧駆動型素子のゲート駆動装置
JP7373424B2 (ja) 電力変換装置
WO2024053303A1 (ja) 電力変換装置および電力変換方法
JP2004260981A (ja) 電力変換装置及びこれを用いた電機システム
JPH03106217A (ja) 絶縁ゲートトランジスタの駆動回路,過電流検出回路及び半導体装置
WO2023187863A1 (ja) 駆動回路、駆動回路の制御方法
JP3764259B2 (ja) インバータ装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23872498

Country of ref document: EP

Kind code of ref document: A1