JP3764259B2 - インバータ装置 - Google Patents

インバータ装置 Download PDF

Info

Publication number
JP3764259B2
JP3764259B2 JP26872797A JP26872797A JP3764259B2 JP 3764259 B2 JP3764259 B2 JP 3764259B2 JP 26872797 A JP26872797 A JP 26872797A JP 26872797 A JP26872797 A JP 26872797A JP 3764259 B2 JP3764259 B2 JP 3764259B2
Authority
JP
Japan
Prior art keywords
circuit
igbt
current
short
gate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP26872797A
Other languages
English (en)
Other versions
JPH11113265A (ja
Inventor
直樹 高田
敏 井堀
宏 千葉
睦男 渡嘉敷
聡子 石井
雅之 広田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Industrial Equipment Systems Co Ltd
Hitachi KE Systems Ltd
Original Assignee
Hitachi Industrial Equipment Systems Co Ltd
Hitachi KE Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Industrial Equipment Systems Co Ltd, Hitachi KE Systems Ltd filed Critical Hitachi Industrial Equipment Systems Co Ltd
Priority to JP26872797A priority Critical patent/JP3764259B2/ja
Publication of JPH11113265A publication Critical patent/JPH11113265A/ja
Application granted granted Critical
Publication of JP3764259B2 publication Critical patent/JP3764259B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Power Conversion In General (AREA)
  • Inverter Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、IGBT(絶縁ゲート・バイポーラ・トランジスタ)等を主回路スイッチング素子として用いたインバータ装置に関する。
【0002】
【従来の技術】
近年、主回路スイッチング素子として、IGBTを使用したインバータ装置が広く用いられているが、このようなIGBTを用いたインバータ装置では、その出力短絡時の保護方式として、短絡電流の速やかな検出処理と、その後でのゲート電圧の緩やかな絞りによりスイッチング素子の遮断を制御する、いわゆるソフト絞り制御方式が、従来から主として採用されている。
【0003】
これは、IGBTはスイッチング速度が速いため、出力短絡発生時での大電流の通過によるIGBT破壊の虞れだけではなく、電流の遮断により発生するサージ電圧がIGBTの耐圧を越え、破壊の虞れが生じてしまうからである。
【0004】
このサージ電圧は、電流遮断時での電流変化率di/dtと配線インダクタンスに起因するものであり、短絡電流のような大電流を、IGBTの通常のスイッチング速度で遮断したとすると、IGBTの耐圧を越える大きなサージ電圧が簡単に発生してしまう。
【0005】
そこで、このサージ電圧を抑制するため、短絡電流検出時には、上記したように、IGBTのゲート電圧の絞りを緩やかにし、これによりIGBTの電流をゆっくりと減少させてゆき、電流遮断時での電流変化率di/dtを抑え、サージ電圧が大きくならないようにしているのである。
【0006】
ところで、従来技術によるインバータ装置では、図4に示すように、主回路のスイッチング素子であるIGBT3〜8の全てのゲート駆動回路15〜20に保護回路を設け、各スイッチング素子ごとに独立して短絡電流の検出を行い、短絡電流の通流と、短絡電流の遮断によるサージ電圧から各IGBT3〜8を保護するようになっている。
【0007】
この図4の従来技術によるインバータ装置において、1は整流回路、2は平滑コンデンサ、3〜8はIGBT、9〜14はフライホイールダイオード、15〜20はIGBTの駆動回路(ゲート駆動回路)、21は短絡検出用ダイオード、22はインバータ制御回路である。
なお、23は出力短絡を想定して設けたスイッチで、24は配線インダクタンスを表わし、詳しい説明については後述する。
【0008】
整流回路1は、図示のように、3相ブリッジ接続された6個のダイオードで構成され、3相交流電源から供給される3相交流電力を直流電力に変換し、平滑コンデンサ2に充電すると共に、6個のIGBT3〜8をスイッチング素子とする主回路に直流電力を供給する働きをする。
【0009】
これにより、通常の動作時には、上位のインバータ制御回路22から供給されるPWM信号に従って、各駆動回路15〜20が、各々のIGBT3〜8をスイッチング制御し、U、V、Wの各出力端子に3相交流電力を発生させ、これらの出力端子U、V、Wに接続されているモータなどの負荷に3相交流電力を供給するようになっている。
【0010】
一方、各駆動回路15〜20は、ダイオード21により、各々のIGBT3〜8の短絡電流を検出したときは、上記したように、IGBTのゲート電圧をソフト絞り制御し、電流遮断時での電流変化率di/dtを抑え、サージ電圧が大きくならないようにすると共に、その出力Aからアラーム信号を出力し、インバータ制御回路22に供給する。
【0011】
そこで、インバータ制御回路22は、このアラーム信号に応じて各駆動回路15〜20に対するPWM信号の送出を停止し、これによりインバータ装置の非常停止を行ない、機器の保護が得られるようにするのである。
次に、図5は、現在、一般的に使用されているモジュール化された駆動回路15〜20の一例を示したものである。ここで、各駆動回路15〜20は全て同じ構成なので、駆動回路15と、駆動回路20についてだけ示し、他は省略してある。
【0012】
駆動回路15、20は、それぞれゲート駆動回路150、200と短絡検出回路151、201、ゲート絞り回路152、202、それにアラーム出力回路153、203で構成されている。
以下、IGBT3の駆動回路15を例にして説明する。
ゲート駆動回路150は、インバータ制御回路22から供給されてくるPWM信号を電気的に隔離した状態で増幅し、IGBT3のゲートを駆動する働きをする。
【0013】
短絡検出回路151は、IGBT3に流れる短絡電流を検出する働きをするもので、IGBT3がオン(導通)しているとき、そのコレクタとエミッタの間に現れる電圧、すなわちコレクタ−エミッタ電圧をダイオード21を介して取り込むことにより、短絡電流を検出するようになっている。
【0014】
IGBTがオン状態のとき、通常時は、短絡検出回路151から検出用のダイオード21を介してIGBT3に検出用の電流が流れるが、IGBT3のコレクタ−エミッタ電圧が規定値より高くなると、ダイオード12がオフして電流が流れなくなるようにしてあり、この電流が流れなくなった場合、これをIGBT3に短絡電流が流れているものと判断するようになっている。
【0015】
なお、これは、IGBTでは、それに出力短絡などによる大きな電流が流れた場合、その動作領域が飽和領域から能動領域に移行し、コレクタ−エミッタ電圧が急に上昇してしまうという特性があるのを利用したものである。
【0016】
ゲート絞り回路152は、短絡電流検出時、短絡検出回路151から供給される信号に応じて動作を開始し、上記したようにゲート駆動信号を緩やかに絞り、IGBT3をゆっくりとオンからオフ(遮断)に移行させるソフト絞り制御を実行し、これにより、サージ電圧の発生を防ぐ働きをする。
【0017】
アラーム出力回路203は、短絡電流検出時、短絡検出回路151から供給される信号に応じて動作し、フォトカプラ154a、154bを介してインバータ制御回路22にアラーム信号を供給する働きをする。
なお、ここで、フォトカプラの154aは発光側を表わし、154bは受光側表わす。
【0018】
次に、インバータ制御回路22は、制御回路220とPWM出力回路221、それに異常信号入力回路222とで構成されている。
制御回路220はマイクロコンピュータなどで構成され、インバータ全体の制御に必要な処理を実行する。
PWM出力回路221は、名称通り、IGBTをスイッチング制御するのに必要なPWM信号を発生する働きをする。
【0019】
そして、異常信号入力回路22は、各フォトカプラの受光側154bからアラーム信号を入力し、異常信号を発生して制御回路220とPWM出力回路221に供給し、過電流検出時、PWM信号の発生を停止させる働きをする。
なお、ここで、アラーム信号の伝達にフォトカプラ154a、154bを用いているのは、電気的な隔離(アイソレーション)を得るためである。
【0020】
【発明が解決しようとする課題】
上記従来技術は、各IGBTの短絡電流の検出レベルにバラツキの存在が不可避である点について配慮がされておらず、以下に説明するように、充分なサージ電圧抑制の点で問題があった。
【0021】
インバータ装置では、その出力が短絡された場合、短絡電流は、最低でも上下2箇所のIGBTを通過することになる。
従って、それぞれのIGBTの駆動回路に、前記のように、短絡電流の保護機構を組み込んでおき、短絡電流が通過するIGBTの駆動回路が各々保護動作を行えばよいことになる。
【0022】
しかし、短絡電流の検出レベルを何れのIGBTについても完全に等しくすることは、実用上はほとんど不可能に近く、バラツキの存在が不可避となり、短絡発生に際して検出動作するものと動作しないものがでてくる。
この結果、検出レベルが低く、検出回路が動作したIGBTは、ゲート電圧のソフト絞りが働くので、大きなサージ電圧は発生しないが、検出レベルが高く、検出回路が動作しかったIGBTではゲート電圧のソフト絞りが働かず、大電流を通常のスイッチング速度で遮断してしまうことになる。
【0023】
従って、従来技術では、検出回路が働かなかったIGBTには大きなサージ電圧が発生し、耐圧破壊を招いてしまう虞れを有することになり、以下、この点について、図4の従来技術のインバータ装置と、その動作を示す図6のタイミング図により説明する。
【0024】
まず、ここで、IGBT3とIGBT8がオンの状態で、その他のIGBTはオフの状態にあり、且つ、IGBT3の駆動回路15による短絡電流検出レベルの方が、IGBT8の駆動回路20による短絡電流検出レベルよりも低いものとする。
次に、出力端子Uと出力端子W間に短絡が発生した場合を想定し、スイッチ23が閉じられたとする。
【0025】
そして、この図6のタイミング図において、I23 はスイッチ23を流れる電流、I3 はIGBT3を流れる電流、I8 はIGBT8を流れる電流、I12 はダイオード12を流れる電流、VG3 はIGBT3のゲート電圧、VCE3 はIGBT3のコレクタ−エミッタ間の電圧、VG8 はIGBT8のゲート電圧、VCE8 はIGBT8のコレクタ−エミッタ間電圧を夫々示している。
【0026】
いま、時刻t0 でスイッチ23がオンされ、短絡が発生したとすると、この時点からIGBT3とIGBT8を通って短絡電流I23 が流れ始めるが、この短絡電流I23 は配線インダクタンス24により制限され、この結果、図示のように、時刻t0 から立ち上がって緩やかに大きくなっていく。
なお、この時点では、短絡電流I23 は、IGBT3を流れる電流I3 に等しくなっている。
【0027】
そして、時刻t1 に至り、ここで、短絡電流I23 が、短絡電流検出レベルが低い方のIGBT3の駆動回路15の検出レベルに達したとする。
そうすると、ここで、駆動回路15は、上位のインバータ制御回路22から供給されているPWM信号を無視し、IGBT3のゲート電圧VG3 を、部分25に示すように、緩やかに絞ってゆき、これによりIGBT3をゆっくりとオフに制御する。
【0028】
この結果、電流I3 は、部分26で示すように、比較的緩やかに遮断されるので、電圧VCE3 は、部分27に示す程度の小さいサージ電圧を伴うだけで、大きなサージ電圧を発生することはなく、従って、IGBT3については、その耐圧が脅かされる虞れは生じない。
【0029】
しかして、ここでIGBT3が遮断されても、IGBT8はオン状態のままなので、短絡電流I23 は配線インダクタンス24の働きにより残り、ダイオード12に転流して還流電流I12 となり、これが短絡電流I23 となる。
そして、この結果、時刻t1 以降も短絡電流I23 が残るが、以後は図示のように減少してゆくだけなので、IGBT8の駆動回路20は検出レベルに達しない状態のままになり、短絡電流I23は徐々に減衰しながらではあるが、依然として流れ続けている。
【0030】
ところで、時刻t1 で短絡を検出した駆動回路15は、この時点で上位のインバータ制御回路22にアラーム信号を送出しており、このため、インバータ制御回路22は、このアラーム信号に応じて、時刻t2 で全ての駆動回路15〜20に対するPWM信号の出力を停止し、これにより、駆動回路20は、このPWM信号の出力停止により、IGBT8のゲート電圧VG8 を、部分28に示すように、通常の動作時と同様、速いスイッチング速度のままで急激に遮断状態にしてしまう。
【0031】
この結果、時刻t2 で、IGBT8がオフし、そのコレクタ−エミッタ電圧VCE8 に、部分29に示すように、大きなサージ電圧が発生し、IGBT8の耐圧を越え、破壊を招いてしまうのである。
ここで、時刻t2 以降も、しばらくは電流I12 と電流I23 が流れ続けているのは、IGBT8からダイオード11に転流されてしまうからである。
【0032】
なお、この図6では、時刻t1 から時刻t2 までの時間がかなり長く描かれているが、これは判り易くするため誇張して示したものであり、実際には、もっと短く、信号の処理に必要な極く短時間の遅れを伴うに過ぎない。
【0033】
本発明の目的は、例えば短絡検出回路の検出レベルにバラツキがあっても、サージ電圧の発生が低減できるようにしたインバータ装置を提供することにある。
【0034】
【課題を解決するための手段】
上記目的は、
主回路を構成する複数のスイッチング素子と、
前記スイッチング素子のゲート駆動回路の異常電流を検出する異常電流検出回路と、
前記スイッチング素子のゲート駆動回路のゲート電圧をソフト絞りするソフト絞り制御回路とを有するインバータ装置において、
前記異常電流検出回路から異常電流検出信号を入力するオア回路を設け、
前記オア回路の出力に基づき、異常電流を検出した相以外の相のスイッチング素子の前記ゲート駆動回路に対応する前記ソフト絞り制御回路が動作するようにして達成される。
また、前記オア回路の出力に基づき、異常電流を検出した相以外の相のスイッチング素子の前記ゲート駆動回路のゲート電圧をソフト絞り動作するようにして達成される。
【0035】
何れの相で出力短絡などによる異常大電流が検出された場合、異常電流を検出した相以外の相のスイッチング素子でもサージ電圧が発生する虞れを低減することができる。
【0036】
【発明の実施の形態】
以下、本発明によるインバータ装置について、図示の実施形態により詳細に説明する。
図1は、本発明の一実施形態で、図において、30はオア(論理和)回路で、その他、各駆動回路15〜20が、出力Aだけではなく、さらに出力Bと入力Cを備えている点を除き、残りの構成要素は、図4に示した従来技術によるインバータ装置と同じである。
【0037】
そして、駆動回路15〜20において、まず出力Bは、アラーム信号の出力Aとは別に、短絡などの異常な大電流検出時に、それを表わす信号、すなわち短絡検出信号(異常電流検出信号)を出力するための端子で、次に、同じく入力Cは、内部に有するゲート絞り回路を強制的に動作させるための信号、すなわち絞り動作信号を入力するための端子である。
【0038】
従って、この実施形態における駆動回路15〜20は、夫々が対応するIGBT3〜8に短絡電流が検出されたとき、その内部に有するゲート絞り回路(ソフト絞り制御回路)を動作させるだけではなく、外部から入力Cに所定の信号、すなわち絞り動作信号が供給されたときにも、その内部にあるゲート絞り回路が動作されるように構成されていることになる。
【0039】
次に、オア回路30は、6入力のオア回路で構成され、その入力には、全ての相の駆動回路15〜20の出力Bから、短絡検出信号がそれぞれ供給されるようになっており、それらのオア論理結果を出力し、全ての駆動回路15〜20の入力Cに、絞り動作信号として供給する働きをする。
【0040】
従って、この図1の実施形態では、駆動回路15〜20の内の何れかで、対応するIGBTに短絡電流が検出されたときは、残りの駆動回路15〜20の全てに絞り動作信号が供給され、この結果、IGBT3〜IGBT8の何れか1個でも短絡電流が流れたら、全てのIGBTの駆動回路内にあるゲート絞り回路が動作し、それぞれが対応するIGBTのゲート電圧を緩やかに絞り、オフにすることになる。
【0041】
次に、この実施形態の動作について、図2のタイミング図により説明する。 このときも、図6の従来技術と場合と同じく、IGBT3とIGBT8がオンの状態で、その他のIGBTはオフの状態にあり、且つ、IGBT3の駆動回路15による短絡電流検出レベルの方が、IGBT8の駆動回路20による短絡電流検出レベルよりも低いものとし、この状態で、時刻t0 でスイッチ23が閉じられ、出力端子Uと出力端子W間に短絡が発生したものとする。
【0042】
そうすると、これも従来技術のときと同様に、時刻t1 で駆動回路15が短絡を検出し、これにより、図示の部分25のように、ゲート電圧VG3 を緩やかに絞り、IGBT3をゆっくりと遮断に移行させる。
従って、これも従来技術と同じく、時刻t1 以降、電流I3 は、部分26で示すように、比較的緩やかに遮断されるので、電圧VCE3 は、部分27に示す程度の小さいサージ電圧を伴うだけで、大きなサージ電圧を発生することはなく、従って、IGBT3の耐圧が脅かされる虞れは生じない。
【0043】
ところで、このままでは、従来技術で説明したように、やがて時刻t2 で、IGBT8は速いスイッチング速度のままで急激に遮断状態にされてしまい、耐圧破壊の虞れを生じてしまうが、しかして、この図1の実施形態では、駆動回路15がIGBT3の短絡を検出し、自らのゲート絞り回路を動作させると共に、その出力Bから短絡検出信号を送出し、それをオア回路30に供給するようになっており、この結果、時刻t1 で駆動回路15が短絡を検出してから僅かの遅れ時間後の時刻t1’、全ての駆動回路の入力Cに絞り動作信号が供給される。
【0044】
そこで、今度はIGBT8の駆動回路20のゲート絞り回路も動作し、部分40で示すように、IGBT8のゲート電圧VG8 を緩やかに絞ってゆく。
この結果、この時刻t1’以降、IGBT8の電流I8 も、部分41で示すように、比較的ゆっくりと遮断され、従って、IGBT8のコレクタ−エミッタ間電圧VCE8 も、部分42に示す程度の小さいサージ電圧を伴うだけとなり、大きなサージ電圧が発生することはない。
【0045】
また、この結果、その後、アラーム信号に応じて、時刻t2 で、インバータ制御回路22がPWM信号の発生を停止させても、もはやサージ電圧が発生する虞れは何もなく、勿論、IGBT8の耐圧が脅かされる虞れが生じよう筈もないものであり、従って、この実施形態によれば、主回路スイッチング素子であるIGBTの破壊を常に確実に阻止することができる。
【0046】
次に、一般的に用いられているIGBT駆動用モジュールを利用して、オア回路30を含む各駆動回路15〜20を実現した本発明の実施形態について、図3により説明する。
なお、この実施形態でも、各駆動回路15〜20は全て同じ構成なので、駆動回路15と、駆動回路20についてだけ示し、他は省略してある。
【0047】
この図3の実施形態は、図5の従来技術の回路において、各駆動回路15〜20の夫々に、更にフオトカプラ155〜205と、フオトカプラ156〜206を設け、これによりオア回路31の機能が得られるようにしたものであり、従って、これらのフオトカプラが付加されている以外は、図5の回路と同じであるので、詳しい説明は省略する。
【0048】
そして、この実施形態では、各駆動回路15〜20でゲート絞り回路152、202を外部から供給される絞り動作信号で動作させる方法として、短絡検出回路151、201の検出入力にフオトカプラ156〜206の受光側156b、206bを直列に接続し、検出信号を遮断することにより、強制的に短絡を検出した状態にする方法を採用したものである。
【0049】
既に説明したように、駆動回路15〜20の短絡検出回路151、201によるIGBT3〜8の短絡電流の検出動作は、各IGBTのコレクタ−エミッタ間の電圧を検出し、検出端子からIGBTのコレクタに電流が流れなくなった場合に異常と判断するようになっている。
【0050】
そこで、この実施形態では、これを利用し、フオトカプラ156〜206の受光側156b、206bにより、検出用ダイオード21から各駆動回路15〜20の入力をオン、オフするようにしたものであり、この結果、モジュール化された駆動回路15〜20の内部をいじることなく、そのまま使用できるという利点が得られる。
【0051】
このため、まず、フォトカプラ155〜205の発光側155a〜205aをそれぞれアラーム出力回路153〜203の出力に接続し、アラーム信号伝送用に設けてあるフォトカプラの発光側154a〜204aと直列にしてある。
この結果、これらフォトカプラの発光側155a〜205aは、短絡検出回路か151〜201が短絡を検出し、アラーム出力回路153〜203がアラーム信号を発生すると、フォトカプラ154〜204の発光側154a〜204aと同時に発光することになる。
【0052】
次に、これらのフオトカプラ155〜205の受光側155b、205bは線路50に共通に接続され、さらに直列抵抗51を介して電源Vcc に共通に接続されている。
そして、別のフォトカプラ156〜206の発光側156a〜206aは、それぞれの直列抵抗157、207を介して線路50に並列に接続されている。
【0053】
この結果、フォトカプラ156〜206の発光側156a〜206aは、常時は発光していて、それらの受光側156b、206bをオンにしているが、フオトカプラ155〜205の受光側155b、205bの何れか1個でもオンすると、線路50の電位がローレベルになるので、フォトカプラ156〜206の発光側156a〜206aは全て発光を停止し、それらの受光側156b、206bは、オフにされてしまうことなる。
【0054】
従って、各駆動回路15〜20の検出入力にあるフオトカプラ156〜206の受光側156b、206bのオン、オフ動作は、アラーム出力回路153〜203のアラーム信号のオア論理条件として得られることになり、オア回路31としての機能を得ることができる。
【0055】
この図3の実施形態の動作を、図2のタイミング図により説明すると、まず時刻t1 以前は、フォトカプラ156〜206の発光側156a〜206aは全て発光動作しているので、その受光側156b、206bはオン状態にあり、従って、各駆動回路15〜20による短絡電流の検出機能は全てそのまま維持されている。
従って、時刻t1 でIGBT3に短絡が発生したとき、直ちに駆動回路15の短絡検出回路151による検出機能が働き、この結果、ゲート絞り回路152とアラーム出力回路153を動作させることになる。
【0056】
そこで、フォトカプラ155の発光側155aが発光動作し、これにより、その受光側155bがオンするので、フォトカプラ156〜206の発光側156a〜206bは全て消灯されてしまう。
この結果、フォトカプラ156〜206の受光側156b〜206bは全てオフされるので、駆動回路20の短絡検出回路201の入力がダイオード21から電気的に切り離された状態になる。
【0057】
これにより、短絡検出回路201は、強制的に短絡を検出した状態にされ、時刻t1 から所定の遅れ時間経過後の時刻t1’でゲート絞り回路202が動作し、部分40で示すように、IGBT8のゲート電圧VG8 を緩やかに絞ってゆく。 この結果、この時刻t1’以降、IGBT8の電流I8 も、部分41で示すように、比較的ゆっくりと遮断され、従って、IGBT8のコレクタ−エミッタ間電圧VCE8 も、部分42に示す程度の小さいサージ電圧を伴うだけとなって、大きなサージ電圧を発生することなく、確実に短絡保護を得ることができるのである。
【0058】
従って、この実施形態によれば、短絡発生時には、全ての相の駆動回路15〜20において、そのゲート絞り回路152〜202が動作させられるようにできるので、短絡発生時でのサージ電圧の発生を抑え、IGBT3〜8が耐圧を越えて高電圧に曝される虞れを無くし、出力短絡からインバータ装置を確実に保護することができる。
【0059】
【発明の効果】
本発明によれば、インバータ装置の出力短絡等の異常電流が検出された場合、異常電流を検出した相以外の相のスイッチング素子がソフト絞り制御のもとでオフされるようにした。従って、例えば異常電流の検出レベルにバラツキがあっても、サージ電圧の発生を低減することができる
【図面の簡単な説明】
【図1】本発明によるインバータ装置の一実施形態を示す回路図である。
【図2】本発明の一実施形態の動作を説明するためのタイミング図である。
【図3】本発明の一実施形態における駆動回路の具体例を示すブロック図である。
【図4】従来技術によるインバータ装置の一例を示す回路図である。
【図5】従来技術によるインバータ装置における駆動回路の具体例を示すブロック図である。
【図6】従来技術によるインバータ装置の動作を説明するためのタイミング図である。
【符号の説明】
1 整流回路
2 平滑コンデンサ
3〜8 IGBT(絶縁ゲート・バイポーラ・トランジスタ)
9〜14 フライホイールダイオード
15〜20 駆動回路(ゲート駆動回路)
21 短絡検出用のダイオード
22 上位のインバータ制御回路
23 短絡状態を想定するためのスイッチ
24 配線インダクタンス
30 オア回路(論理和回路)

Claims (3)

  1. 主回路を構成する複数のスイッチング素子と、
    前記スイッチング素子のゲート駆動回路の異常電流を検出する異常電流検出回路と、
    前記スイッチング素子のゲート駆動回路のゲート電圧をソフト絞りするソフト絞り制御回路とを有するインバータ装置において、
    前記異常電流検出回路から異常電流検出信号を入力するオア回路を設け、
    前記オア回路の出力に基づき、異常電流を検出した相以外の相のスイッチング素子の前記ゲート駆動回路に対応する前記ソフト絞り制御回路が動作するように構成したことを特徴とするインバータ装置。
  2. 請求項1に記載のインバータ装置において、
    前記オア回路の出力に基づき、前記ゲート駆動回路の全ての前記ソフト絞り制御回路が動作するように構成したことを特徴とするインバータ装置。
  3. 請求項1に記載のインバータ装置において、
    前記オア回路の出力に基づき、異常電流を検出した相以外の相のスイッチング素子の前記ゲート駆動回路のゲート電圧をソフト絞りするように構成したことを特徴とするインバータ装置。
JP26872797A 1997-10-01 1997-10-01 インバータ装置 Expired - Lifetime JP3764259B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26872797A JP3764259B2 (ja) 1997-10-01 1997-10-01 インバータ装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26872797A JP3764259B2 (ja) 1997-10-01 1997-10-01 インバータ装置

Publications (2)

Publication Number Publication Date
JPH11113265A JPH11113265A (ja) 1999-04-23
JP3764259B2 true JP3764259B2 (ja) 2006-04-05

Family

ID=17462517

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26872797A Expired - Lifetime JP3764259B2 (ja) 1997-10-01 1997-10-01 インバータ装置

Country Status (1)

Country Link
JP (1) JP3764259B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006166676A (ja) * 2004-12-10 2006-06-22 Sumitomo Electric Ind Ltd 保護装置および当該保護装置が組み込まれた電力制御装置
JP2008017595A (ja) * 2006-07-05 2008-01-24 Matsushita Electric Ind Co Ltd 車両用インバータ装置

Also Published As

Publication number Publication date
JPH11113265A (ja) 1999-04-23

Similar Documents

Publication Publication Date Title
US5200878A (en) Drive circuit for current sense igbt
US7535283B2 (en) Gate drive circuit, semiconductor module and method for driving switching element
JP3193827B2 (ja) 半導体パワーモジュールおよび電力変換装置
US5123746A (en) Bridge type power converter with improved efficiency
US5396117A (en) Semiconductor device with independent over-current and short-circuit protection
KR100735849B1 (ko) 전력용 반도체장치
US5210479A (en) Drive circuit for an insulated gate transistor having overcurrent detecting and adjusting circuits
EP0585926B1 (en) Insulated gate semiconductor device
US6396721B1 (en) Power converter control device and power converter thereof
US5200879A (en) Drive circuit for voltage driven type semiconductor device
JP4313658B2 (ja) インバータ回路
JPH1032476A (ja) 過電流保護回路
JP2018011467A (ja) 半導体スイッチング素子のゲート駆動回路
JP2009296732A (ja) 半導体スイッチング素子用ゲート駆動装置を備えた電力変換装置
JP2004129378A (ja) 電力用半導体素子のゲート駆動回路
JPH05218836A (ja) 絶縁ゲート素子の駆動回路
JP3764259B2 (ja) インバータ装置
JP4946103B2 (ja) 電力変換装置
JPH10337046A (ja) 電力変換装置
JP2003079129A (ja) ゲート駆動回路とそれを用いた電力変換器
JP3661813B2 (ja) 電圧駆動形半導体素子の駆動回路
JP6298735B2 (ja) 半導体駆動装置ならびにそれを用いた電力変換装置
JP2006014402A (ja) 電力変換装置の過電流保護装置
JP6622405B2 (ja) インバータ駆動装置
JPH03106217A (ja) 絶縁ゲートトランジスタの駆動回路,過電流検出回路及び半導体装置

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040128

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040128

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040128

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051004

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060119

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090127

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100127

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110127

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110127

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120127

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130127

Year of fee payment: 7

EXPY Cancellation because of completion of term