WO2024053303A1 - 電力変換装置および電力変換方法 - Google Patents

電力変換装置および電力変換方法 Download PDF

Info

Publication number
WO2024053303A1
WO2024053303A1 PCT/JP2023/028538 JP2023028538W WO2024053303A1 WO 2024053303 A1 WO2024053303 A1 WO 2024053303A1 JP 2023028538 W JP2023028538 W JP 2023028538W WO 2024053303 A1 WO2024053303 A1 WO 2024053303A1
Authority
WO
WIPO (PCT)
Prior art keywords
command
pwm
gate
power
power conversion
Prior art date
Application number
PCT/JP2023/028538
Other languages
English (en)
French (fr)
Inventor
直樹 栗原
邦晃 大塚
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Publication of WO2024053303A1 publication Critical patent/WO2024053303A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode

Definitions

  • the present invention relates to a power conversion device and a power conversion method that employ power semiconductor elements.
  • Power converters used to control motors in railway vehicles and other vehicles control high voltage and large currents, so if a component power semiconductor element fails, the power semiconductors connected in series will turn on. If this occurs, a power short circuit may occur and the device may be severely damaged. Therefore, when an abnormal state of the power semiconductor element is detected, it is necessary to immediately stop the device to avoid damage to the device.
  • the switching command (PWM command) of the power semiconductor element is compared with the actual on/off state of the power semiconductor element, and when a mismatch occurs, the power semiconductor element or the power semiconductor element is A method is adopted in which it is determined that there is an abnormality in the driving circuit and the operation of the gate drive circuit is stopped.
  • multi-gate semiconductor devices driving technology for power semiconductor devices having multiple gate control terminals (hereinafter referred to as “multi-gate semiconductor devices”) has been developed as a technology to reduce the loss of power semiconductor devices, and the following two cases have been developed: technology has been disclosed.
  • the first one is a dual gate IGBT described in Patent Document 2.
  • a dual-gate IGBT has one collector terminal and one emitter terminal, and two gate terminals (switching gate terminal Gs and carrier control gate Gc). By controlling the gate commands input to the two gate terminals according to a predetermined sequence, the switching loss can be reduced more than in the conventional IGBT.
  • the second item is a MOS controlled diode described in Patent Document 3.
  • a MOS control diode has the effect of controlling the amount of internal charge and reducing diode loss by providing an insulated gate Gd of a MOS structure on the diode and applying a voltage to Gd in a predetermined sequence.
  • a multi-gate semiconductor device in addition to a means for generating a PWM command, it is necessary to add a means for generating multiple gate commands based on the PWM command, and to switch the multi-gate semiconductor device based on the multiple gate commands. . Therefore, the plurality of gate commands are generated with a predetermined time delay with respect to the PWM command.
  • the power conversion device takes countermeasures by stopping switching of the PWM command and stopping switching of the semiconductor element.
  • simply stopping the switching of the PWM command means that the switching of the multi-gate semiconductor will be stopped after a predetermined time delay. Therefore, the longer the predetermined delay time, the longer the switching stop of the multi-gate semiconductor is delayed, and the higher the possibility that the power conversion device will be destroyed.
  • multi-gate semiconductor devices require a method that takes into consideration the sequence of multiple commands and then stops the switching of the device in an emergency.
  • the switching of the multi-gate semiconductor element is immediately stopped, and when the voltage applied to the power semiconductor exceeds the specified range in the stopping method, the flowing current is within the specified range.
  • the objective is to provide a technology that uses different stopping methods in two cases: when the power consumption exceeds the limit, when an abnormality occurs in the various devices that make up the power converter, and when an abnormality occurs in the power semiconductor. do.
  • one of the typical power conversion devices of the present invention includes a control logic section that generates a PWM command for switching a power semiconductor element having one or more gate control terminals, and a control logic section that generates a PWM command for switching a power semiconductor element having one or more gate control terminals.
  • a gate drive unit that generates a gate command to drive a gate control terminal by delaying a PWM command from a logic unit for a predetermined time, and is composed of a power semiconductor element, and the power semiconductor element is switched in accordance with the gate command and supplied to the load.
  • the control logic unit upon receiving an abnormality detection signal of the power converter, monitors the pulse state of the PWM command and determines the minimum on-time specified in the usage conditions of the power semiconductor device. A pulse signal is superimposed on the PWM command as an emergency stop command at a timing that satisfies This is to stop the switching operation of the semiconductor element.
  • the present invention when a device abnormality occurs in a power conversion device using a multi-gate semiconductor element, switching of the multi-gate semiconductor element can be optimally and promptly stopped depending on the type of abnormality, and the product life is not affected.
  • the safety of the power converter can be improved without any problems. Problems, configurations, and effects other than those described above will be made clear by the description in the following detailed description.
  • FIG. 1 is a diagram showing an example of the configuration of a three-phase inverter system using a power conversion device according to Example 1 of the present invention.
  • FIG. 2 is a diagram showing an example of the configuration of a three-phase inverter system using a power conversion device according to Example 2 of the present invention.
  • FIG. 7 is a diagram showing an example of a time chart of PWM commands between U-phase upper and lower arms generated by a PWM command generation unit.
  • FIG. 7 is a diagram showing a normal time chart of signals generated via the control logic unit and the gate drive unit while the U-phase upper arm is on in Example 1;
  • FIG. 7 is a diagram showing a time chart when an abnormality occurs in a signal generated via a control logic unit and a gate drive unit while the U-phase upper arm is on in Example 1;
  • FIG. 3 is a diagram showing a time chart when an abnormality occurs in a signal generated via a control logic unit and a gate drive unit while the U-phase upper arm is off in Example 1;
  • FIG. 7 is a diagram showing a normal time chart of signals generated via the control logic unit and the gate drive unit while the U-phase upper arm is on in Example 2;
  • FIG. 7 is a diagram showing a time chart when an abnormality occurs in a signal generated via a control logic unit and a gate drive unit while the U-phase upper arm is on in Example 2; 7 is a diagram showing a time chart when an abnormality occurs in a signal generated via a control logic unit and a gate drive unit while the U-phase upper arm is off in Example 2.
  • FIG. 7 is a diagram showing a time chart when an abnormality occurs in a signal generated via a control logic unit and a gate drive unit while the U-phase upper arm is off in Example 2.
  • FIG. 1 is a diagram showing an example of the configuration of a three-phase inverter system using a power conversion device according to Example 1 of the present invention.
  • the three-phase AC motor 4 is controlled at variable speed by the power converter according to the first embodiment.
  • the power conversion device includes a control logic section 1, a power unit 2, a DC power supply 3, current sensors 38 to 40, and a voltage sensor 41 as main components.
  • the power unit 2 is composed of multi-gate semiconductor elements 32 to 37 and gate drive units 21 to 26, and is connected to a three-phase positive potential side (hereinafter referred to as the "upper arm”) and a three-phase positive potential side with respect to the DC power supply 3. On the negative potential side (hereinafter referred to as "lower arm”), gate drive sections 21 to 26 and multi-gate semiconductor elements 32 to 37 are arranged.
  • the multi-gate semiconductor elements 32 to 37 are semiconductor elements composed of a dual-gate IGBT 27 and a MOS control diode 28, and include a Gs terminal 29 for switching command, a Gc terminal 30 for carrier control, and a MOS control diode.
  • the Gd terminal 31 has three gate terminals.
  • the gate drive units 21 to 26 include a control command generation unit 18 that generates gate commands to be applied to the Gs terminal 29, Gc terminal 30, and Gd terminal 31 based on the PWM command input from the control logic unit 1, and a control command generation unit.
  • a gate drive circuit 19 is provided which converts the 18 gate commands into a voltage that can drive the multi-gate semiconductor element 32.
  • the PWM commands input to the gate drive units 21 to 26 of the three-phase upper and lower arms are respectively PWM_u1, PWM_u2, PWM_v1, PWM_v2, PWM_w1, and PWM_w2.
  • the control logic unit 1 includes a voltage command generation unit 5 that generates a voltage command for controlling a three-phase AC motor, and a switching command (PWM command) for the multi-gate semiconductor elements 32 to 37 based on the voltage command of the voltage command generation unit 5. ) and an emergency stop command generating section 10 to 15 that generates an emergency stop command for the multi-gate semiconductor devices 32 to 37.
  • the three-phase upper and lower arm PWM commands output by the PWM command generation section 6 are assumed to be PWM_u1', PWM_u2', PWM_v1', PWM_v2', PWM_w1', and PWM_w2'.
  • the voltage command generation unit 5 converts the three-phase motor currents Iu, Iv, and Iw obtained from the current sensors 38 to 40 and the voltage Vdc of the DC power supply 3 obtained from the voltage sensor 41 into analog-to-digital (AD) conversion. Using the AD-converted detected values of Vdc, Iu, Iv, and Iw, voltage commands for setting Iu, Iv, and Iw to predetermined currents are calculated by feedback control.
  • FIG. 3 is a diagram showing an example of a time chart of PWM commands (PWM_u1', PWM_u2') for the U-phase upper and lower arms generated by the PWM command generation unit 6.
  • FIG. 3 is a time chart for the U phase
  • the time chart for the V phase is shifted by 120 degrees from the time chart shown in FIG. 3 (not shown)
  • the time chart for the W phase is as shown in FIG.
  • the phase is shifted by 240 degrees from the time chart shown in (not shown).
  • the PWM commands (PWM_u1' and PWM_u2') for the upper and lower arms generated by the PWM command generation unit 6 have a time period in which they are turned on and off in opposite phases to each other, and a time period in which the upper and lower arms are turned on at the same time before switching on and off. It has non-wrapping times 42 and 43 that are turned off simultaneously to prevent short circuit current from flowing.
  • FIG. 4 is a diagram showing a normal time chart of signals generated via the control logic section 1 and the gate drive section 21 while the U-phase upper arm is on. Further, the U-phase lower arm, the V-phase upper and lower arms, and the W-phase upper and lower arms also operate in the same manner as in FIG. 4.
  • the PWM command PWM_u1′ input from the PWM command generation unit 6 is outputted as PWM_u1 via the emergency stop command generation unit 10, and is input to the control command generation unit 18 in the gate drive unit 21. be done.
  • the control command generation unit 18 in the gate drive unit 21 generates a gate command Gs_u1 for the Gs terminal 29, a gate command Gc_u1 for the Gc terminal 30, and a gate command Gd_u1 for the Gd terminal 31, based on the PWM_u1.
  • Gs_u1 needs to be the same as the ON width of PWM_u1 in order to provide the three-phase AC motor 4 with an AC voltage according to the voltage command from the voltage command generation unit 5.
  • Gc_u1 and Gd_u1 which are auxiliary gate commands, two control times 45 and 46 are provided before and after the edge of Gs_u1. Note that the time charts of Gs_u1, Gc_u1, and Gd_u1 are the same as those described in Patent Document 2 and Patent Document 3, so a description thereof will be omitted here.
  • the gate drive circuit 19 converts the gate commands Gs_u1, Gc_u1 and Gd_u1 into predetermined command voltages, and then inputs them to three gate terminals (Gs terminal 29, Gc terminal 30 and Gd terminal 31) of the multi-gate semiconductor element 32, The multi-gate semiconductor element 32 is switched based on the command of Gs_u1.
  • FIG. 5 is a diagram showing a time chart when an abnormality occurs in the signal generated via the control logic section 1 and the gate drive section 21 while the U-phase upper arm is on.
  • the EMERG_STOP signal (input signal from the upper left of the control logic unit 1 shown in FIG. 1) is input to the emergency stop command generation unit 10 in the control logic unit 1, and the occurrence of the abnormality is transmitted.
  • the PWM command verification unit 9 in the emergency stop command generation unit 10 constantly observes the PWM command PWM_u1′, and determines whether or not the minimum on-time specified for the multi-gate semiconductor device is satisfied at the Gs terminal 29 when an abnormality occurs. do.
  • the PWM command comparison unit 9 determines that the minimum on-time is satisfied, it outputs an emergency stop command to the command superimposition unit 8.
  • the command superimposition unit 8 When the command superimposition unit 8 receives an emergency stop command while the multi-gate semiconductor element is on, it superimposes the one-shot off pulse 53 on PWM_u1' to generate PWM_u1.
  • the control command generation unit 18 in the gate drive unit 21 detects the one-shot off pulse 53 in the PWM_u1, and generates three gate commands at timing 58 shown in FIG. (Gs_u1, Gc_u1 and Gd_u1) are turned off.
  • the on-pulse width 65 applied to the Gs terminal 29 satisfies a time longer than the minimum on-time of the multi-gate semiconductor, and switching is stopped.
  • FIG. 6 is a diagram showing a time chart when an abnormality occurs in the signal generated via the control logic section 1 and the gate drive section 21 while the U-phase upper arm is off.
  • the command superimposition unit 8 superimposes the one-shot on pulse 60 shown in FIG. 6 on PWM_u1. Similar to the pulse width 55, the pulse width 62 of the one-shot on pulse 60 is shorter than the minimum on-pulse width of the PWM command so that it can be distinguished from the PWM command, and the control command generation unit 18 of the gate drive unit 21 The pulse width should be recognizable.
  • the control command generation unit 18 in the gate drive unit 21 detects the one-shot on pulse 60 in the PWM_u1, and generates three gate commands at timing 64 shown in FIG. (Gs_u1, Gc_u1 and Gd_u1) are turned off. Note that the EMERG_STOP signal safely stops the power converter by simultaneously transmitting an abnormality to the three-phase upper and lower arms.
  • Example 1 In a power conversion device using multi-gate semiconductor devices, it is necessary to generate multiple gate commands based on the PWM command generated by the control logic unit 1. ) is a concern.
  • the gate driving section 21 inside the power unit generates a plurality of gate commands.
  • the number of wiring lines can be reduced, and the size of the device can be suppressed.
  • the EMERG_STOP signal shown in FIG. 1 notifies the emergency stop command unit 10 that an abnormality has occurred.
  • the emergency stop command section 10 constantly monitors the time from when the Gs terminal 29 is turned on until the minimum on time elapses, and the Outputs an emergency stop at a timing that satisfies the on time.
  • the switching operation can be stopped promptly while satisfying the minimum on-time regulation of the multi-gate semiconductor element. That is, since the use regulations for multi-gate semiconductor devices are satisfied, excessive stress is not applied to the multi-gate semiconductor devices, and the product life of the power conversion device is not adversely affected.
  • FIG. 2 is a diagram showing an example of the configuration of a three-phase inverter system using a power conversion device according to Example 2 of the present invention.
  • the gate drive section 21 detects the on/off state of the multi-gate semiconductor element 32 based on the voltage applied to the Gs terminal 29 and converts it into a binary feedback signal.
  • a feedback signal generation section 20 is additionally provided.
  • the feedback signals outputted from the three-phase upper and lower arm gate drive units 21 to 26 via the feedback signal generation unit 20 are respectively FB_u1, FB_u2, FB_v1, FB_v2, FB_w1, and FB_w2.
  • control logic unit 201 includes an OR circuit 16 that performs an OR operation on the emergency stop detection flags of the emergency stop command generation units 10 to 15.
  • the emergency stop flags output from the emergency stop command generation units 10 to 15 are respectively designated as Flg_u1, Flg_u2, Flg_v1, Flg_v2, Flg_w1, and Flg_w2.
  • the emergency stop command generation unit 10 includes a PWM command delay unit 7 that delays a PWM command, a PWM command matching unit 9 that matches the PWM command and a feedback signal, and a command superimposition unit 8 that superimposes an emergency stop command on the PWM command. It is arranged for each phase upper and lower arm (emergency stop command generation units 10 to 15).
  • PWM commands (PWM_u1 to PWM_w2) output from the emergency stop command generation units 10 to 15 and feedback signals (FB_u1 to FB_w2) output from the gate drive units 21 to 26 are transmitted between the control logic unit 201 and the power unit 202. It is transmitted via the wiring 17 of.
  • FIG. 7 is a diagram showing a normal time chart of signals generated via the control logic section 201 and the gate drive section 21 while the U-phase upper arm is on.
  • the feedback signal has PWM_u1 due to the delay times 44 and 45 shown in FIG. After being outputted, the signal is input to the PWM command matching section 9 with a delay of about 85 ⁇ s.
  • the signal PWM_u1d to be compared in the PWM command comparison unit 9 is generated by the PWM command delay unit 7 as a signal delayed by 82 ⁇ s from PWM_u1, taking into account the variation in delay of the feedback signal. Due to variations in delay, 7 ⁇ s from the change in PWM_u1 is a comparison mask period in which superimposition of an emergency stop signal due to a comparison mismatch is prohibited.
  • FIG. 8 is a diagram showing a time chart when an abnormality occurs in the signal generated via the control logic section 201 and the gate drive section 21 while the U-phase upper arm is on.
  • command superimposition unit 8 When the command superimposition unit 8 receives the emergency stop command, it superimposes the one-shot off pulse 53 on the PWM command PWM_u1′ to generate PWM_u1, outputs it to the gate drive unit 21, and instructs the gate drive unit 21 to stop switching. do.
  • the PWM command collation unit 9 generates an emergency stop flag Flg_u1, and the abnormality detection is also transmitted to the OR circuit 16.
  • PWM_u2, PWM_v1, PWM_v2, PWM_w1 and PWM_w2 are generated by superimposing one-shot pulses on PWM commands PWM_u2', PWM_v1', PWM_v2', PWM_w1' and PWM_w2'.
  • the gate drive units 22 to 26 are also instructed to stop switching.
  • FIG. 9 is a diagram showing a time chart when an abnormality occurs in the signal generated via the control logic section 201 and the gate drive section 21 while the U-phase upper arm is off.
  • the emergency stop flags (Flg_u1 to Flg_w2) control the switching operations of all multi-gate semiconductors by superimposing a one-shot on pulse, whether the output is on as shown in Figure 8 or the output is off as shown in Figure 9. make it stop. This makes it possible to stop the power conversion device and prevent damage to the device while minimizing the short-circuit time.
  • the first and second embodiments of the present invention have been described above, and although the present invention is advantageously applied to power conversion devices using multi-gate power semiconductors, it is not limited to multi-gate power semiconductors. It can be easily confirmed from the fact that one gate command is generated from the control logic section that the present invention can be applied to a power conversion device using a power semiconductor having one or more gate control terminals including a single gate. , does not prevent this.
  • the present invention is not limited to the first and second embodiments described above, and various changes can be made without departing from the gist of the present invention.
  • Control logic section 2 202: Power unit 3: DC power supply 4: 3-phase AC motor 5: Voltage command generation section 6: PWM command generation section 7: PWM command delay section 8: Command superimposition section 9: PWM command verification Units 10, 11, 12, 13, 14, 15: Emergency stop command generation unit 16: OR circuit 17: Wiring 18: Control command generation unit 19: Gate drive circuit 20: Feedback signal generation unit 21, 22, 23, 24, 25, 26: Gate drive section 27: Dual gate IGBT 28: MOS control diode 29: Gs terminal 30: Gc terminal 31: Gd terminal 32, 33, 34, 35, 36, 37: Multi-gate semiconductor element 38, 39, 40: Current sensor 41: Voltage sensor

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)

Abstract

1以上のゲートを有するパワー半導体素子を用いた電力変換装置の異常発生時に、パワー半導体素子のスイッチングを装置寿命に悪影響を与えることなく速やかに停止させるために、パワー半導体素子から構成され当該パワー半導体素子をゲート指令によりスイッチング動作させて負荷に供給する電力を制御する電力変換装置であって、1以上のゲート制御端子を有するパワー半導体素子をスイッチングさせるPWM指令を生成する制御論理部と、PWM指令を所定時間遅延させてゲート指令を生成するゲート駆動部とを備え、制御論理部は、電力変換装置の異常検知信号を受け取るとPWM指令のパルス状態を観測し、パワー半導体素子の使用条件に規定された最小オン時間を満足するタイミングでPWM指令に緊急停止指令としてパルス信号を重畳し、ゲート駆動部は、緊急停止指令を重畳したPWM指令に基づいて1以上のゲート制御端子へのゲート指令をオフする。

Description

電力変換装置および電力変換方法
 本発明は、パワー半導体素子を採用した電力変換装置および電力変換方法に関する。
 鉄道車両などのモータ制御に用いられる電力変換装置では、高圧大電流の制御を行うため、構成されるパワー半導体素子がオン固渋故障した場合に、直列に接続されたパワー半導体がターンオンしてしまうと、電源短絡が発生し装置が激しく破壊される可能性がある。したがって、パワー半導体素子の状態異常を検出した場合、早急に装置を停止させ装置の損傷を避ける必要がある。
 このため、例えば特許文献1に示すように、パワー半導体素子のスイッチング指令(PWM指令)と、実際のパワー半導体素子のオンオフ状態を比較し、不一致が生じた際にパワー半導体素子またはパワー半導体素子を駆動する回路の異常と判定し、ゲート駆動回路の動作を停止させる方式が採用されている。
 また、パワー半導体へのPWM指令と実際のパワー半導体素子のオンオフ状態の比較不一致以外でも、パワー半導体に印加する電圧が規定範囲を超過した場合、パワー半導体に流れる電流が規定範囲を超過した場合および電力変換装置を構成する各種装置の異常を検知した場合、ゲート駆動回路の動作を速やかに停止させる必要がある。
 ここで、パワー半導体の異常の場合は、先に述べたとおり短絡の恐れがあり、パワー半導体に規定されたタイミングを無視してでも直ちに停止させることが最重要である。しかし、短絡の恐れがない異常の場合には、パワー半導体に規定されたタイミングを遵守して速やかに停止させることで、素子の劣化に起因する製品寿命への影響を防ぐのが一般的である。
 一方で近年、パワー半導体素子の損失を低減する技術として、複数のゲート制御端子を有するパワー半導体素子(以下、「マルチゲート半導体素子」と称す)の駆動技術が開発されており、以下の2件の技術が開示されている。
 1件目は、特許文献2に記載されたデュアルゲートIGBTである。デュアルゲートIGBTは、一つのコレクタ端子と一つのエミッタ端子に対し、二つのゲート端子(スイッチングゲート端子Gsとキャリア制御ゲートGc)を有する。所定のシーケンスによって二つのゲート端子に入力するゲート指令を制御することにより、従来のIGBTよりもスイッチング損失を低減できる効果を有する。
 2件目は、特許文献3に記載されたMOS制御ダイオードである。MOS制御ダイオードは、ダイオードにMOS構造の絶縁ゲートGdを設け、所定のシーケンスでGdに電圧を印加することにより、内部の電荷量を制御し、ダイオード損失を低減できる効果を有する。
特開2009-201311号公報 特開2019-161720号公報 特開2015-204723号公報
 マルチゲート半導体素子においては、PWM指令を生成する手段に加えてPWM指令を基に複数のゲート指令を生成する手段を追加し、複数のゲート指令に基づいてマルチゲート半導体素子をスイッチングさせる必要がある。このため、複数のゲート指令は、PWM指令に対して所定の時間遅延して生成される。
 様々な異常を検知した際に、電力変換装置は、PWM指令のスイッチングを停止させて半導体素子のスイッチングを停止させて対応を図る。しかし、マルチゲート半導体素子の場合は、PWM指令のスイッチングを停止させただけでは、所定の時間遅延してからマルチゲート半導体のスイッチングを停止することになる。そのため、所定の遅延時間が長ければ長い程、マルチゲート半導体のスイッチング停止が遅れ、電力変換装置の破壊に至る可能性が高くなる。
 してみると、マルチゲート半導体素子では、複数指令のシーケンスを考慮した上で素子のスイッチングを緊急停止させる方式が必要となる。
 そこで、本発明では、装置に異常が発生した際に、マルチゲート半導体素子のスイッチングを速やかに停止させ、その停止方法においてパワー半導体に印加する電圧が規定範囲を超過した場合、流れる電流が規定範囲を超過した場合および電力変換装置を構成する各種装置の異常が発生した場合と、パワー半導体に異常が発生している場合と、の2つのケースで停止方法を使い分ける技術を提供することを目的とする。
 上記の課題を解決するために、代表的な本発明の電力変換装置の一つは、1以上のゲート制御端子を有するパワー半導体素子をスイッチングさせるためのPWM指令を生成する制御論理部と、制御論理部からのPWM指令を所定時間遅延させてゲート制御端子を駆動するゲート指令を生成するゲート駆動部とを備え、パワー半導体素子から構成されパワー半導体素子をゲート指令によりスイッチング動作させて負荷に供給する電力を制御する電力変換装置であって、制御論理部は、電力変換装置の異常検知信号を受け取ると、PWM指令のパルス状態を観測し、パワー半導体素子の使用条件に規定された最小オン時間を満足するタイミングで、PWM指令に緊急停止指令としてパルス信号を重畳し、ゲート駆動部は、緊急停止指令を重畳したPWM指令に基づいて1以上のゲート制御端子へのゲート指令をオフしてパワー半導体素子のスイッチング動作を停止させるものである。
 本発明によれば、マルチゲート半導体素子を用いた電力変換装置の装置異常が発生した際に、マルチゲート半導体素子のスイッチングを異常の種類により最適に速やかに停止でき、製品寿命に影響を与えることなく電力変換装置の安全性を高めることができる。
 上記した以外の課題、構成および効果は、以下の実施をするための形態における説明により明らかにされる。
本発明の実施例1に係る電力変換装置を用いた3相インバータシステムの構成の一例を示す図である。 本発明の実施例2に係る電力変換装置を用いた3相インバータシステムの構成の一例を示す図である。 PWM指令生成部が生成するU相上下アーム間のPWM指令のタイムチャートの一例を示す図である。 実施例1で、U相上アームのオン中における、制御論理部およびゲート駆動部を介して生成される信号の正常時のタイムチャートを示す図である。 実施例1で、U相上アームのオン中における、制御論理部およびゲート駆動部を介して生成される信号の異常発生時のタイムチャートを示す図である。 実施例1で、U相上アームのオフ中における、制御論理部およびゲート駆動部を介して生成される信号の異常発生時のタイムチャートを示す図である。 実施例2で、U相上アームのオン中における、制御論理部およびゲート駆動部を介して生成される信号の正常時のタイムチャートを示す図である。 実施例2で、U相上アームのオン中における、制御論理部およびゲート駆動部を介して生成される信号の異常発生時のタイムチャートを示す図である。 実施例2で、U相上アームのオフ中における、制御論理部およびゲート駆動部を介して生成される信号の異常発生時のタイムチャートを示す図である。
 以下、図面を参照して、本発明を実施するための形態として実施例1および2について説明する。なお、これら実施例により本発明が限定されるものではない。また、図面の記載において、同一部分には同一の符号を付して示している。
 図1は、本発明の実施例1に係る電力変換装置を用いた3相インバータシステムの構成の一例を示す図である。実施例1に係る電力変換装置により、3相交流モータ4が可変速制御される。
 実施例1に係る電力変換装置は、主たる構成要素として、制御論理部1、パワーユニット2、直流電源3、電流センサ38~40および電圧センサ41を備える。
 パワーユニット2は、マルチゲート半導体素子32~37とゲート駆動部21~26とで構成され、直流電源3に対して、3相のプラス電位側(以下、「上アーム」と称す)および3相のマイナス電位側(以下、「下アーム」と称す)それぞれに、符号21~26で示すゲート駆動部と符合32~37で示すマルチゲート半導体素子を配置している。
 ここで、マルチゲート半導体素子32~37は、デュアルゲートIGBT27とMOS制御ダイオード28とで構成される半導体素子であり、スイッチング指令用のGs端子29、キャリア制御用のGc端子30およびMOS制御ダイオード用のGd端子31の3つのゲート端子を備える。
 ゲート駆動部21~26は、制御論理部1から入力されるPWM指令に基づいてGs端子29、Gc端子30およびGd端子31に与えるゲート指令を生成する制御指令生成部18と、制御指令生成部18のゲート指令からマルチゲート半導体素子32を駆動可能な電圧に変換するゲート駆動回路19を備える。ここで、図1に示すように、3相上下アームのゲート駆動部21~26に入力されるPWM指令をそれぞれ、PWM_u1、PWM_u2、PWM_v1、PWM_v2、PWM_w1およびPWM_w2とする。
 制御論理部1は、3相交流モータを制御するための電圧指令を生成する電圧指令生成部5、電圧指令生成部5の電圧指令に基づいてマルチゲート半導体素子32~37のスイッチング指令(PWM指令)を生成するPWM指令生成部6およびマルチゲート半導体素子32~37の緊急停止指令を生成する緊急停止指令生成部10~15を備える。ここで、図1に示すように、PWM指令生成部6が出力する3相上下アームのPWM指令を、PWM_u1′、PWM_u2′、PWM_v1′、PWM_v2′、PWM_w1′およびPWM_w2′とする。
 電圧指令生成部5は、電流センサ38~40から得た3相モータ電流Iu、IvおよびIwと電圧センサ41から得た直流電源3の電圧Vdcをアナログデジタル(AD)変換する。AD変換したVdc、Iu、IvおよびIwの検出値を用いて、Iu、IvおよびIwを所定の電流とするための電圧指令をフィードバック制御によって演算する。
 次に、実施例1に係る電力変換装置の正常時の動作について、図3および図4を用いて説明する。
 図3は、PWM指令生成部6が生成するU相上下アームのPWM指令(PWM_u1′、PWM_u2′)のタイムチャートの一例を示す図である。
 なお、図3は、U相に対するタイムチャートであるが、V相については、図3に示すタイムチャートに対し位相が120度ずらしたもの(図示せず)、また、W相については、図3に示すタイムチャートに対し位相が240度ずらしたもの(図示せず)、である。
 図3に示すように、PWM指令生成部6が生成する上下アームの各PWM指令(PWM_u1′およびPWM_u2′)は、互いに逆相でオンオフする時間と、オンオフする切替え前に上下アームが同時オンとなって短絡電流が流れるのを防ぐために同時オフにする非ラップ時間42および43を有す。
 図4は、U相上アームのオン中における、制御論理部1およびゲート駆動部21を介して生成される信号の正常時のタイムチャートを示す図である。また、U相下アーム、V相上下アームおよびW相上下アームについても、図4と同じ動作態様である。
 正常時は、PWM指令生成部6から入力されるPWM指令PWM_u1′が、PWM_u1として緊急停止指令生成部10を介してそのままの状態で出力され、ゲート駆動部21内の制御指令生成部18に入力される。
 このとき、PWM_u1のオフオン変化時においては、緊急停止指令生成部10の出力からゲート駆動部21の入力に至るまでに、PWM_u1のターンオン/オフ遅延44が発生する。
 ゲート駆動部21内の制御指令生成部18は、PWM_u1に基づいて、Gs端子29用のゲート指令Gs_u1、Gc端子30用のゲート指令Gc_u1およびGd端子31用のゲート指令Gd_u1を生成する。このとき、3相交流モータ4に対して、電圧指令生成部5の電圧指令どおりの交流電圧を与えるため、Gs_u1は、PWM_u1のオン幅と同じである必要がある。また、補助的なゲート指令である、Gc_u1およびGd_u1を生成するため、Gs_u1のエッジ前後に2つの制御時間45および46を設ける。なお、Gs_u1、Gc_u1およびGd_u1のタイムチャートについては、先の特許文献2および特許文献3で説明されている態様と同じであるので、ここでは省略する。
 ゲート駆動回路19は、ゲート指令Gs_u1、Gc_u1およびGd_u1を所定の指令電圧に変換した後、マルチゲート半導体素子32の3つのゲート端子(Gs端子29、Gc端子30およびGd端子31)に入力し、Gs_u1の指令に基づいてマルチゲート半導体素子32をスイッチングさせる。
 次に、実施例1に係る電力変換装置の異常発生時のスイッチング停止について、図5および図6を用いて説明する。
 図5は、U相上アームのオン中における、制御論理部1およびゲート駆動部21を介して生成される信号の異常発生時のタイムチャートを示す図である。
 異常発生時に、EMERG_STOP信号(図1に示す制御論理部1の左上部からの入力信号)が制御論理部1内の緊急停止指令生成部10に入力され、異常の発生が伝達される。
 緊急停止指令生成部10内のPWM指令照合部9は、PWM指令PWM_u1′を常に観測し、異常発生時にGs端子29においてマルチゲート半導体素子に規定された最小オン時間を満足するか否かを判定する。
 PWM指令照合部9は、最小オン時間を満足すると判定すると、指令重畳部8に対して緊急停止指令を出力する。
 指令重畳部8は、マルチゲート半導体素子がオン中に緊急停止指令が受け取ると、PWM_u1′にワンショットオフパルス53を重畳してPWM_u1を生成する。ここで、図5に示すワンショットオフパルス53のパルス幅55は、PWM指令と区別できるように、PWM指令の最小オフパルス幅より短い幅で、且つゲート駆動部21の制御指令生成部18がパルスと認識可能なパルス幅とする。
 ゲート駆動部21内の制御指令生成部18は、緊急停止指令が重畳されたPWM_u1が入力されると、PWM_u1中のワンショットオフパルス53を検出し、図5に示すタイミング58で3つのゲート指令(Gs_u1、Gc_u1およびGd_u1)をオフする。
 この結果、Gs端子29に印加されるオンパルス幅65は、マルチゲート半導体の最小オン時間以上の時間を満足してスイッチングを停止する。
 図6は、U相上アームのオフ中における、制御論理部1およびゲート駆動部21を介して生成される信号の異常発生時のタイムチャートを示す図である。
 指令重畳部8は、PWM指令PWM_u1′のオフ中に緊急停止指令が入力されると、PWM_u1に図6に示すワンショットオンパルス60を重畳する。パルス幅55と同様、ワンショットオンパルス60のパルス幅62は、PWM指令と区別できるように、PWM指令の最小オンパルス幅より短い幅で、且つゲート駆動部21の制御指令生成部18がパルスと認識可能なパルス幅とする。
 ゲート駆動部21内の制御指令生成部18は、緊急停止指令が重畳されたPWM_u1が入力されると、PWM_u1中のワンショットオンパルス60を検出し、図6に示すタイミング64で3つのゲート指令(Gs_u1、Gc_u1およびGd_u1)をオフする。なお、EMERG_STOP信号は、3相上下アームに同時に異常を伝達することで、電力変換装置を安全に停止させる。
 ここで、実施例1による効果について説明する。
 マルチゲート半導体素子を適用した電力変換装置では、制御論理部1が生成するPWM指令に基づいて複数のゲート指令を生成する必要があるため、ゲート指令の増加に伴う配線の増加(装置の大型化)が懸念される。
 実施例1を含めた本発明では、パワーユニット内部のゲート駆動部21で複数のゲート指令を生成するため、制御論理部1で複数のゲート指令を生成するよりも制御論理部1とパワーユニットとの間の配線数を少なくでき、装置の大型化を抑制できる。
 その一方で、パワーユニット内部のゲート駆動部21で複数のゲート指令を生成するため、異常発生時にパワーユニットに異常を伝達する手段と、異常発生時に複数のゲート指令を速やかに停止する手段が必要となる。
 そこで本発明では、異常発生時に、PWM指令に対してPWM指令と区別可能な幅狭のワンショットパルスを重畳することにより、マルチゲート半導体素子のスイッチングを緊急停止させる。PWM指令に装置の異常を示す信号を重畳するため、異常を伝達するための配線が不要となり、装置の大型化を抑制できる。
 通常のパワー半導体を用いた電力変換装置では、異常発生時にはPWM指令PWM_u1からオフ指令を出せば、3μs程度でスイッチングを停止させることができるため、特別な緊急停止シーケンスを必要としない。
 一方で、マルチゲート半導体素子を用いた実施例1による構成では、ゲート駆動部21で、Gs_u1、Gc_u1およびGd_u1のタイミングを生成するために、通常の方法でスイッチングを停止させたのでは、図4に示す2つの時間44と45の時間分だけ、停止時間が遅れてしまう。2つの時間44と45との合計が73μsとすると、パワー半導体に印加する電圧が規定範囲を超過した場合や流れる電流が規定範囲を超過した場合等では、停止時間が73μs程度となってしまい、異常状態に装置が耐え切れずに故障に至る危険性が高まる。
 これを防ぐために、異常発生時に、図1に示すEMERG_STOP信号から緊急停止指令部10に異常が発生したことを通知する。先に述べたとおり、緊急停止指令部10では、Gs端子29がオンになってからの時間を最小オン時間が経過するまでを常時観測し、Gs端子29がマルチゲート半導体素子に規定された最小オン時間を満たすタイミングで緊急停止出力する。
 これにより、マルチゲート半導体素子の最小オン時間の規定を満足しつつ速やかにスイッチング動作を停止することができる。すなわち、マルチゲート半導体素子の使用規定を満足するため、マルチゲート半導体素子に過度なストレスを与えることが無く、電力変換装置の製品寿命に悪影響を与えない効果が得られる。
 図2は、本発明の実施例2に係る電力変換装置を用いた3相インバータシステムの構成の一例を示す図である。
 実施例2では、実施例1と比較して、ゲート駆動部21の内部に、Gs端子29の印加電圧に基づいてマルチゲート半導体素子32のオンオフ状態を検出して2値のフィードバック信号に変換するフィードバック信号生成部20を追加して備える。
 ここで、フィードバック信号生成部20を介して3相上下アームのゲート駆動部21~26から出力されるフィードバック信号それぞれを、FB_u1、FB_u2、FB_v1、FB_v2、FB_w1およびFB_w2とする。
 また、制御論理部201内に、緊急停止指令生成部10~15の緊急停止検知フラグのORをとるOR回路16を備える。
 ここで、緊急停止指令生成部10~15から出力される緊急停止フラグそれぞれを、Flg_u1、Flg_u2、Flg_v1、Flg_v2、Flg_w1およびFlg_w2とする。
 緊急停止指令生成部10は、PWM指令を遅延させるPWM指令遅延部7、PWM指令とフィードバック信号を照合するPWM指令照合部9およびPWM指令に緊急停止指令を重畳させる指令重畳部8を備え、3相上下アーム毎(緊急停止指令生成部10~15)に配置される。
 また、緊急停止指令生成部10~15から出力されるPWM指令(PWM_u1~PWM_w2)と、ゲート駆動部21~26から出力されるフィードバック信号(FB_u1~FB_w2)は、制御論理部201とパワーユニット202間の配線17を介して伝送される。
 図7は、U相上アームのオン中における、制御論理部201およびゲート駆動部21を介して生成される信号の正常時のタイムチャートを示す図である。
 ここで、フィードバック信号は、図7に示す遅延時間44と45、Gs端子29のゲート容量の充電時間やフィードバック信号生成部20によるフィードバック信号のターンオン遅延47およびフィードバック信号のターンオフ遅延48により、PWM_u1を出力してから85μs程度遅れてPWM指令照合部9に入力される。
 このため、PWM指令照合部9で比較する信号PWM_u1dは、PWM指令遅延部7により、フィードバック信号の遅延のバラツキを考慮して、PWM_u1から82μs遅れた信号として生成される。遅延のバラツキのため、PWM_u1の変化から7μsは、比較マスク期間として比較不一致による緊急停止信号の重畳を禁止する。
 図8は、U相上アームのオン中における、制御論理部201およびゲート駆動部21を介して生成される信号の異常発生時のタイムチャートを示す図である。
 PWM指令照合部9は、PWM指令遅延部7で生成されるPWM_u1dおよびフィードバック信号FB_u1を照合した結果が不一致となり、図8に示すフィードバック信号FB_u1の誤オフ発生52の場合は、直ちに指令重畳部8対して緊急停止指令を出力する。
 指令重畳部8は、緊急停止指令が受け取ると、PWM指令PWM_u1′にワンショットオフパルス53を重畳してPWM_u1を生成してゲート駆動部21へ出力し、ゲート駆動部21にスイッチングの停止を指示する。
 更にこれと同時に、PWM指令照合部9は、緊急停止フラグFlg_u1を生成し、異常検知がOR回路16にも伝達される。
 OR回路16の出力Flg_Gate_err信号を受信した他の緊急停止指令生成部11~15は、マルチゲート半導体素子の最小オン時間を考慮することなくゲート駆動部22~26に対して、直ちに緊急停止信号としてワンショットパルスをPWM指令PWM_u2′、PWM_v1′、PWM_v2′、PWM_w1′およびPWM_w2′に重畳したPWM_u2、PWM_v1、PWM_v2、PWM_w1およびPWM_w2を生成する。これにより、ゲート駆動部22~26に対してもスイッチングの停止が指示される。
 図9は、U相上アームのオフ中における、制御論理部201およびゲート駆動部21を介して生成される信号の異常発生時のタイムチャートを示す図である。
 緊急停止フラグ(Flg_u1~Flg_w2)は、図8に示す出力オンである場合でも、図9に示す出力オフである場合でも、ワンショットオンパルスを重畳することですべてのマルチゲート半導体のスイッチング動作を停止させる。これにより、短絡時間を最小としつつ、電力変換装置を停止させて装置の破壊を防ぐことができる。
 なお、EMERG_STOP信号と緊急停止フラグ(Flg_u1~Flg_w2)が同時に発生した場合では、Flg_u1~Flg_w2の処理がより緊急を要するため、Flg_u1~Flg_w2による処理を優先して実行する。
 上記したとおり、通常のパワー半導体を用いた電力変換装置では、PWM_u1、PWM_u2、PWM_v1、PWM_v2、PWM_w1およびPWM_w2の各信号にオフ指令を出せば、3μs程度でスイッチング停止を開始させることが可能であるが、実施例1および実施例2の構成では、オフ指令を出すだけではマルチゲート半導体素子がスイッチング停止を開始するのに73μs程度の時間が掛かる。この時間を短くするために、Flg_Gate_err信号でスイッチングを停止することにより、通常のパワー半導体を停止する場合に比べてもパルス幅3μs程度の増加、すなわち6μs程度で電力変換装置の停止を実現することができる。
 以上、本発明の実施例1および2について説明したが、本発明は、マルチゲートのパワー半導体を用いた電力変換装置への適用が有利であるが、マルチゲートのパワー半導体の限定されるものではなく、シングルゲートを含む1以上のゲート制御端子を有するパワー半導体を用いた電力変換装置への適用も可能であることは、制御論理部から1つのゲート指令を生成することからも容易に首肯でき、これを妨げるものではない。
 更にまた、本発明は、上述した実施例1および2に限定されるものではなく、本発明の要旨を逸脱しない範囲において種々の変更が可能である。
1、201:制御論理部
2、202:パワーユニット
3:直流電源
4:3相交流モータ
5:電圧指令生成部
6:PWM指令生成部
7:PWM指令遅延部
8:指令重畳部
9:PWM指令照合部
10、11、12、13、14、15:緊急停止指令生成部
16:OR回路
17:配線
18:制御指令生成部
19:ゲート駆動回路
20:フィードバック信号生成部
21、22、23、24、25、26:ゲート駆動部
27:デュアルゲートIGBT
28:MOS制御ダイオード
29:Gs端子
30:Gc端子
31:Gd端子
32、33、34、35、36、37:マルチゲート半導体素子
38、39、40:電流センサ
41:電圧センサ

Claims (9)

  1.  1以上のゲート制御端子を有するパワー半導体素子をスイッチングさせるためのPWM指令を生成する制御論理部と、前記制御論理部からの前記PWM指令を所定時間遅延させて前記ゲート制御端子を駆動するゲート指令を生成するゲート駆動部とを備え、前記パワー半導体素子から構成され前記パワー半導体素子を前記ゲート指令によりスイッチング動作させて負荷に供給する電力を制御する電力変換装置であって、
     前記制御論理部は、前記電力変換装置の異常検知信号を受け取ると、前記PWM指令のパルス状態を観測し、前記パワー半導体素子の使用条件に規定された最小オン時間を満足するタイミングで、前記PWM指令に緊急停止指令としてパルス信号を重畳し、
     前記ゲート駆動部は、前記緊急停止指令を重畳した前記PWM指令に基づいて前記1以上のゲート制御端子への前記ゲート指令をオフして前記パワー半導体素子のスイッチング動作を停止させる
    ことを特徴とする電力変換装置。
  2.  請求項1に記載の電力変換装置であって、
     前記パワー半導体素子のオンオフ状態を検知してフィードバック信号を生成するフィードバック信号生成部を更に備え、
     前記制御論理部は、前記PWM指令と前記フィードバック信号とを比較照合し、前記PWM指令と前記フィードバック信号との照合不一致を検知すると、第2の緊急停止指令としてパルス信号を前記PWM指令に重畳し、
     前記ゲート駆動部は、前記第2の緊急停止指令を重畳した前記PWM指令に基づいて前記1以上のゲート制御端子への前記ゲート指令をオフして前記パワー半導体素子のスイッチング動作を停止させる
    ことを特徴とする電力変換装置。
  3.  請求項2に記載の電力変換装置であって、
     前記制御論理部は、前記フィードバック信号と照合する前記PWM指令を、前記フィードバック信号の遅延のバラツキを考慮して所定時間遅延させる
    ことを特徴とする電力変換装置。
  4.  請求項1から請求項3のいずれか1項に記載の電力変換装置であって、
     前記制御論理部は、
     前記PWM指令がオフ指令の時に前記異常検知信号を受け取るかまたは前記照合不一致を検知すると、前記パルス信号をワンショットのオンパルスとし、当該パルス信号を出力後は当該PWM指令の前記オフ指令を維持し、
     前記PWM指令がオン指令の時に前記異常検知信号を受け取るかまたは前記照合不一致を検知すると、前記パルス信号をワンショットのオフパルスとし、当該パルス信号を出力後は当該PWM指令をオフ指令にする
    ことを特徴とする電力変換装置。
  5.  請求項4に記載の電力変換装置であって、
     前記ワンショットのオンパルスの幅が、前記PWM指令の最小オンパルス幅より短く、
     前記ワンショットのオフパルスの幅が、前記PWM指令の最小オフパルス幅より短く、
     前記オンパルスおよび前記オフパルスそれぞれの幅が、前記ゲート駆動部がパルス信号と認識可能なパルス幅である
    ことを特徴とする電力変換装置。
  6.  1以上のゲート制御端子を有するパワー半導体素子から構成される電力変換装置の当該パワー半導体素子をスイッチングさせるためのPWM指令を所定時間遅延させて生成したゲート指令により前記1以上のゲート制御端子を駆動して負荷に供給する電力を制御する電力変換方法であって、
     前記電力変換装置の異常検知信号を受け取ると、前記PWM指令のパルス状態を観測し、前記パワー半導体素子の使用条件に規定された最小オン時間を満足するタイミングで、前記PWM指令に緊急停止指令としてパルス信号を重畳し、前記緊急停止指令を重畳した前記PWM指令に基づいて前記1以上のゲート制御端子への前記ゲート指令をオフして前記パワー半導体素子のスイッチング動作を停止させる
    ことを特徴とする電力変換方法。
  7.  請求項6に記載の電力変換方法であって、
     前記パワー半導体素子のオンオフ状態を検知してフィードバック信号を生成し、前記PWM指令と前記フィードバック信号とを比較照合し、前記PWM指令と前記フィードバック信号との照合不一致を検知すると、第2の緊急停止指令としてパルス信号を前記PWM指令に重畳し、前記第2の緊急停止指令を重畳した前記PWM指令に基づいて前記1以上のゲート制御端子への前記ゲート指令をオフして前記パワー半導体素子のスイッチング動作を停止させる
    ことを特徴とする電力変換方法。
  8.  請求項7に記載の電力変換方法であって、
     前記フィードバック信号と照合する前記PWM指令を、前記フィードバック信号の遅延のバラツキを考慮して所定時間遅延させる
    ことを特徴とする電力変換方法。
  9.  請求項6から請求項8のいずれか1項に記載の電力変換方法であって、
     前記PWM指令がオフ指令の時に前記異常検知信号を受け取るかまたは前記照合不一致を検知すると、前記パルス信号をワンショットのオンパルスとし、当該パルス信号を出力後は当該PWM指令の前記オフ指令を維持し、
     前記PWM指令がオン指令の時に前記異常検知信号を受け取るかまたは前記照合不一致を検知すると、前記パルス信号をワンショットのオフパルスとし、当該パルス信号を出力後は当該PWM指令をオフ指令にする
    ことを特徴とする電力変換方法。
PCT/JP2023/028538 2022-09-06 2023-08-04 電力変換装置および電力変換方法 WO2024053303A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022141394 2022-09-06
JP2022-141394 2022-09-06

Publications (1)

Publication Number Publication Date
WO2024053303A1 true WO2024053303A1 (ja) 2024-03-14

Family

ID=90191040

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/028538 WO2024053303A1 (ja) 2022-09-06 2023-08-04 電力変換装置および電力変換方法

Country Status (1)

Country Link
WO (1) WO2024053303A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06125256A (ja) * 1992-05-01 1994-05-06 Fuji Electric Co Ltd ダブルゲート型半導体装置の制御装置
JP2009201311A (ja) * 2008-02-25 2009-09-03 Hitachi Ltd 電力変換器制御装置
JP2015204723A (ja) * 2014-04-16 2015-11-16 株式会社日立製作所 半導体装置及びそれを用いた電力変換装置
JP2017028811A (ja) * 2015-07-20 2017-02-02 株式会社デンソー 半導体装置
JP2019161720A (ja) * 2018-03-08 2019-09-19 株式会社日立製作所 インバータ装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06125256A (ja) * 1992-05-01 1994-05-06 Fuji Electric Co Ltd ダブルゲート型半導体装置の制御装置
JP2009201311A (ja) * 2008-02-25 2009-09-03 Hitachi Ltd 電力変換器制御装置
JP2015204723A (ja) * 2014-04-16 2015-11-16 株式会社日立製作所 半導体装置及びそれを用いた電力変換装置
JP2017028811A (ja) * 2015-07-20 2017-02-02 株式会社デンソー 半導体装置
JP2019161720A (ja) * 2018-03-08 2019-09-19 株式会社日立製作所 インバータ装置

Similar Documents

Publication Publication Date Title
US9154051B2 (en) Operating state circuit for an inverter and method for setting operating states of an inverter
US10291168B2 (en) Power conversion control apparatus
US8269450B2 (en) Winding switching apparatus and winding switching system
EP3016261B1 (en) Power supply device
JP6291899B2 (ja) 回転電機制御装置
JP6646086B2 (ja) Dcリンク部のコンデンサの短絡判定部を有するモータ駆動装置
US11444551B2 (en) Power conversion device with inverter circuit
JP2018074794A (ja) 共通の順変換器を有するモータ駆動装置
JP2008118834A (ja) サージ低減回路およびサージ低減回路を備えたインバータ装置
JP2008236907A (ja) 電力変換装置のゲート制御回路及びゲート制御方法
WO2024053303A1 (ja) 電力変換装置および電力変換方法
US11894791B2 (en) Control device, motor driving apparatus, and motor driving system
JP5481088B2 (ja) 鉄道車両駆動制御装置
US20120217918A1 (en) Inverter
WO2023286627A1 (ja) 電力変換装置および電力変換方法
JP6455719B2 (ja) 無停電電源システム
US11012021B2 (en) Inverter device and control circuit therefor, and motor driving system
JP7373424B2 (ja) 電力変換装置
JP7460508B2 (ja) 電力変換装置
WO2024071276A1 (ja) 保護回路および保護方法
JP2024052294A (ja) パワー半導体素子の駆動装置、電力変換装置
JP7414380B2 (ja) 電力変換装置
WO2024057504A1 (ja) 電力変換装置
KR20170050605A (ko) 고장 회피 회로를 가지는 멀티레벨 인버터

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23862846

Country of ref document: EP

Kind code of ref document: A1