WO2024070427A1 - セラミック電子部品、およびセラミック電子部品の製造方法 - Google Patents

セラミック電子部品、およびセラミック電子部品の製造方法 Download PDF

Info

Publication number
WO2024070427A1
WO2024070427A1 PCT/JP2023/031317 JP2023031317W WO2024070427A1 WO 2024070427 A1 WO2024070427 A1 WO 2024070427A1 JP 2023031317 W JP2023031317 W JP 2023031317W WO 2024070427 A1 WO2024070427 A1 WO 2024070427A1
Authority
WO
WIPO (PCT)
Prior art keywords
internal electrode
electronic component
ceramic electronic
component according
external electrodes
Prior art date
Application number
PCT/JP2023/031317
Other languages
English (en)
French (fr)
Inventor
茶園広一
Original Assignee
太陽誘電株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 太陽誘電株式会社 filed Critical 太陽誘電株式会社
Publication of WO2024070427A1 publication Critical patent/WO2024070427A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/30Stacked capacitors

Definitions

  • the present invention relates to ceramic electronic components and methods for manufacturing ceramic electronic components.
  • the present invention has been made in consideration of the above problems, and aims to provide a ceramic electronic component and a manufacturing method thereof that can improve the connectivity between the internal electrode layer and the external electrode and also improve crack resistance.
  • the ceramic electronic component according to the present invention comprises a laminate in which a plurality of dielectric layers and a plurality of internal electrode layers are alternately stacked, with the plurality of internal electrode layers being alternately exposed on two opposing end faces, and a pair of external electrodes provided on the two end faces, wherein the plurality of internal electrode layers are 0.5 ⁇ m or less thick in the stacking direction, do not contain ceramic particles, and have protrusions that protrude toward the connected external electrode.
  • the main component of the internal electrode layer may be nickel, and the main component of the pair of external electrodes may be copper.
  • the dielectric layer between two internal electrode layers adjacent in the stacking direction at the two end faces may be recessed as it moves away from the two internal electrode layers in the stacking direction.
  • the protrusion may contain an alloy containing a main component of the internal electrode layer and a main component of the external electrode.
  • the internal electrode layer may be formed only from metal.
  • the protrusion may protrude toward the connected external electrode by more than half the thickness of the connected external electrode.
  • the protrusion may protrude beyond the outer surface of the connected external electrode.
  • the protrusion may be formed thicker than a portion in a capacitance region where internal electrode layers connected to different external electrodes face each other.
  • the thickness of the internal electrode layer in the stacking direction may be 0.3 ⁇ m or less.
  • the thickness of the dielectric layer in the stacking direction may be 0.4 ⁇ m or less.
  • the thickness of the dielectric layer in the stacking direction may be 0.3 ⁇ m or less.
  • the internal electrode layer having the protrusion may have a plurality of the protrusions at a predetermined interval.
  • the method for manufacturing a ceramic electronic component according to the present invention is characterized by comprising the steps of: forming an internal electrode layer having a thickness of 0.5 ⁇ m or less from the internal electrode pattern by firing a laminate in which multiple lamination units, each having an internal electrode pattern formed by a dry process, are stacked on a dielectric green sheet; and forming an external electrode on a first end face and a second end face of the laminate facing each other during or after firing the laminate, thereby forming a protrusion that protrudes from the internal electrode layer toward the external electrode.
  • the present invention provides a ceramic electronic component and a manufacturing method thereof that can improve the connectivity between the internal electrode layer and the external electrode.
  • FIG. 2 is a partial cross-sectional perspective view of a multilayer ceramic capacitor.
  • 2 is a cross-sectional view taken along line AA in FIG. 1.
  • 2 is a cross-sectional view taken along line BB in FIG. 1.
  • FIG. 4 is an enlarged cross-sectional view of the vicinity of an external electrode.
  • FIG. 13 is a diagram illustrating a protrusion.
  • FIG. 13 is a diagram illustrating a protrusion.
  • FIG. 13 is a diagram illustrating a protrusion.
  • FIG. 13 is a diagram illustrating a protrusion.
  • FIG. 13 is a diagram illustrating a protrusion.
  • 1A to 1C are diagrams illustrating a flow of a method for manufacturing a multilayer ceramic capacitor.
  • 4A and 4B are diagrams illustrating an internal electrode forming step.
  • FIG. 1 is a partially sectional perspective view of a multilayer ceramic capacitor 100 according to an embodiment.
  • FIG. 2 is a cross-sectional view taken along line A-A in FIG. 1.
  • FIG. 3 is a cross-sectional view taken along line B-B in FIG. 1.
  • the multilayer ceramic capacitor 100 includes a laminate 10 having a substantially rectangular parallelepiped shape, and external electrodes 20a, 20b provided on any two opposing end faces of the laminate 10. Of the four faces of the laminate 10 other than the two end faces, the two faces other than the top and bottom faces in the stacking direction are referred to as side faces.
  • the external electrodes 20a, 20b extend on the top, bottom and two side faces in the stacking direction of the laminate 10. However, the external electrodes 20a, 20b are spaced apart from each other.
  • the Z-axis direction is the stacking direction, and is the direction in which the internal electrode layers 12 face each other.
  • the X-axis direction is the length direction of the laminate 10, the direction in which the two end faces of the laminate 10 face each other, and the direction in which the external electrodes 20a and 20b face each other.
  • the Y-axis direction is the width direction of the internal electrode layers 12, and is the direction in which the two side faces other than the two end faces of the four side faces of the laminate 10 face each other.
  • the X-axis direction, Y-axis direction, and Z-axis direction are mutually perpendicular.
  • the laminate 10 has a configuration in which dielectric layers 11 containing a ceramic material that functions as a dielectric and internal electrode layers 12 are alternately laminated.
  • the edges of each internal electrode layer 12 are alternately exposed to the end face of the laminate 10 on which the external electrode 20a is provided and the end face on which the external electrode 20b is provided.
  • each internal electrode layer 12 is alternately conductive to the external electrode 20a and the external electrode 20b.
  • the laminated ceramic capacitor 100 has a configuration in which a plurality of dielectric layers 11 are laminated via the internal electrode layers 12.
  • the internal electrode layers 12 are arranged on both outermost layers in the lamination direction, and the outermost internal electrode layers 12 are covered by the cover layers 13.
  • the cover layers 13 are mainly composed of a ceramic material.
  • the cover layers 13 may have the same composition as the dielectric layers 11 or may have a different composition. Note that the configuration is not limited to those shown in Figures 1 to 3, as long as the internal electrode layer 12 is exposed on two different surfaces and is conductive to different external electrodes.
  • the size of the multilayer ceramic capacitor 100 is, for example, 0.25 mm long, 0.125 mm wide, and 0.125 mm high, or 0.4 mm long, 0.2 mm wide, and 0.2 mm high, or 0.6 mm long, 0.3 mm wide, and 0.3 mm high, or 1.0 mm long, 0.5 mm wide, and 0.5 mm high, or 3.2 mm long, 1.6 mm wide, and 1.6 mm high, or 4.5 mm long, 3.2 mm wide, and 2.5 mm high, but is not limited to these sizes.
  • the internal electrode layer 12 is mainly composed of base metals such as nickel (Ni), copper (Cu), and tin (Sn), or alloys of these.
  • the main component of the internal electrode layer 12 may be precious metals such as platinum (Pt), palladium (Pd), silver (Ag), and gold (Au), or alloys containing these.
  • the internal electrode layer 12 is composed only of metal components, and does not contain ceramic particles as co-materials.
  • the dielectric layer 11 has a main phase of a ceramic material having a perovskite structure represented by the general formula ABO 3.
  • the perovskite structure includes ABO 3- ⁇ , which is not a stoichiometric composition.
  • the ceramic material can be selected from at least one of barium titanate (BaTiO 3 ), calcium zirconate (CaZrO 3 ), calcium titanate (CaTiO 3 ), strontium titanate (SrTiO 3 ), magnesium titanate (MgTiO 3 ), and Ba 1-x-y Ca x Sr y Ti 1-z Zr z O 3 (0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, 0 ⁇ z ⁇ 1) that forms a perovskite structure.
  • Ba 1-x-y Ca x Sr y Ti 1-z Zr z O 3 is barium strontium titanate, barium calcium titanate, barium zirconate, barium titanate zirconate, calcium titanate zirconate, barium calcium titanate zirconate, etc.
  • the dielectric layer 11 contains 90 at % or more of the main component ceramic.
  • the average thickness of each dielectric layer 11 in the Z-axis direction is, for example, 0.4 ⁇ m or less, and preferably 0.3 ⁇ m or less.
  • the average thickness of each dielectric layer 11 in the Z-axis direction can be measured by observing the cross section of the multilayer ceramic capacitor 100 with a SEM (scanning electron microscope), measuring the thickness at 10 points for each of 10 different dielectric layers 11, and deriving the average value of all the measurement points.
  • the dielectric layer 11 may contain additives.
  • additives to the dielectric layer 11 include oxides of zirconium (Zr), hafnium (Hf), magnesium (Mg), manganese (Mn), molybdenum (Mo), vanadium (V), chromium (Cr), rare earth elements (yttrium (Y), samarium (Sm), europium (Eu), gadolinium (Gd), terbium (Tb), dysprosium (Dy), holmium (Ho), erbium (Er), thulium (Tm), and ytterbium (Yb)), oxides containing cobalt (Co), nickel (Ni), lithium (Li), boron (B), sodium (Na), potassium (K), or silicon (Si), or glasses containing cobalt, nickel, lithium, boron, sodium, potassium, or silicon.
  • Zr zirconium
  • Hf hafnium
  • Mg manganese
  • Mo molybden
  • the region where the internal electrode layer 12 connected to the external electrode 20a and the internal electrode layer 12 connected to the external electrode 20b face each other is a region that generates capacitance in the multilayer ceramic capacitor 100. Therefore, this region that generates capacitance is referred to as the capacitance section 14.
  • the capacitance section 14 is a region where adjacent internal electrode layers 12 connected to different external electrodes face each other.
  • the region where the internal electrode layers 12 connected to the external electrode 20a face each other without an internal electrode layer 12 connected to the external electrode 20b being interposed therebetween is called the end margin 15.
  • the region where the internal electrode layers 12 connected to the external electrode 20b face each other without an internal electrode layer 12 connected to the external electrode 20a being interposed therebetween is also an end margin 15.
  • the end margin 15 is the region where the internal electrode layers 12 connected to the same external electrode face each other without an internal electrode layer 12 connected to a different external electrode being interposed therebetween.
  • the end margin 15 is a region that does not generate electrical capacitance.
  • the side margin 16 is a region provided to cover the ends (ends in the Y-axis direction) of two side surfaces of the dielectric layer 11 and the internal electrode layer 12.
  • the side margin 16 is a region provided outside the capacitive section 14 in the Y-axis direction.
  • the side margin 16 is also a region that does not generate electrical capacitance.
  • FIG. 4 is an enlarged cross-sectional view of the vicinity of the external electrode 20a. Hatching is omitted in FIG. 4.
  • a plating layer 22 may be provided on the outer surface of the external electrode 20a with the external electrode 20a as a base layer.
  • the external electrode 20a is mainly composed of Cu.
  • the external electrode 20a may also contain a glass component.
  • the plating layer 22 is mainly composed of a metal such as Cu, Ni, aluminum (Al), zinc (Zn), Sn, or an alloy of two or more of these.
  • the plating layer 22 may be a plating layer of a single metal component, or may be a plurality of plating layers of different metal components.
  • the plating layer 22 has a structure in which a first plating layer 23, a second plating layer 24, and a third plating layer 25 are formed in this order from the external electrode 20a side.
  • the first plating layer 23 is, for example, a Cu plating layer.
  • the second plating layer 24 is, for example, a Ni plating layer.
  • the third plating layer 25 is, for example, a Sn plating layer.
  • FIG. 4 illustrates the external electrode 20a, the plating layer 22 may also be provided on the outer surface of the external electrode 20b.
  • the multilayer ceramic capacitor 100 has a configuration that can improve the connectivity between the internal electrode layers 12 and the external electrodes 20a, 20b and can also improve crack resistance.
  • the average thickness of each of the internal electrode layers 12 in the Z-axis direction is set to 0.5 ⁇ m or less.
  • the average thickness of each of the internal electrode layers 12 can be measured by observing the cross section of the multilayer ceramic capacitor 100 with a SEM (scanning electron microscope), measuring the thickness at 10 points for each of the 10 different internal electrode layers 12, and deriving the average value of all the measurement points.
  • the average thickness of each of the internal electrode layers 12 is preferably 0.4 ⁇ m or less, and more preferably 0.3 ⁇ m or less.
  • the internal electrode layer 12 thus thinned does not contain ceramic particles, and as illustrated in FIG. 5, has a protrusion 30 that protrudes toward the connected external electrode of the external electrodes 20a, 20b.
  • hatching that represents the cross section of each part is omitted.
  • the protrusion 30 is embedded in the external electrode 20b.
  • the internal electrode layer 12 connected to the external electrode 20a has a protrusion 30 that protrudes toward the external electrode 20a. With this configuration, the external electrodes 20a, 20b are sufficiently connected to the internal electrode layer 12. This improves the connectivity between the internal electrode layer 12 and the external electrodes 20a, 20b.
  • the dielectric layer 11 between two internal electrode layers 12 adjacent in the stacking direction at the end face of the laminate 10 is recessed as it moves away from the two internal electrode layers 12 in the stacking direction. This configuration increases the area of contact between the dielectric layer 11 and the external electrodes 20a, 20b, making it difficult for the external electrodes 20a, 20b to peel off from the laminate 10.
  • the main component of the protrusion 30 may be the same as or different from the main component of the entire internal electrode layer 12.
  • the main component of the internal electrode layer 12 is Ni and the main component of the external electrodes 20a, 20b is Cu
  • the main component of the protrusion 30 may be Ni or an alloy of Ni and Cu.
  • the protrusion 30 is preferably formed thicker than the portion in the capacitance section 14.
  • the protrusion 30 functions as a wedge for the external electrodes 20a, 20b, so that the protrusion 30 is sufficiently connected to the external electrodes 20a, 20b. This improves the connectivity between the internal electrode layer 12 and the external electrodes 20a, 20b.
  • the protrusion 30 protrudes toward the connected external electrode of the external electrodes 20a, 20b by more than half the thickness of the connected external electrode.
  • the internal electrode layer 12 and the external electrodes 20a, 20b are sufficiently connected, improving the connectivity between the internal electrode layer 12 and the external electrodes 20a, 20b. Note that hatching representing the cross sections of each part has been omitted in FIG. 6.
  • the protrusion 30 protrudes beyond the outer surface of the one of the external electrodes 20a, 20b to which it is connected.
  • the protrusion 30 penetrates the external electrode, and the internal electrode layer 12 and the external electrodes 20a, 20b are sufficiently connected, improving the connectivity between the internal electrode layer 12 and the external electrodes 20a, 20b.
  • the protrusion 30 penetrates the external electrode 20b and protrudes into the plating layer 22. Note that hatching representing the cross sections of each part has been omitted in FIG. 7.
  • each protrusion 30 acts like a nail, improving the connectivity between the internal electrode layer 12 and the external electrodes 20a, 20b.
  • each protrusion 30 is dispersed, the generation of stress can be suppressed.
  • Figure 9 is a diagram illustrating the flow of the manufacturing method of the multilayer ceramic capacitor 100.
  • a dielectric material for forming the dielectric layer 11 is prepared.
  • the A-site elements and B-site elements contained in the dielectric layer 11 are usually contained in the dielectric layer 11 in the form of a sintered body of ABO3 particles.
  • barium titanate is a tetragonal compound having a perovskite structure and exhibits a high dielectric constant.
  • This barium titanate can generally be obtained by synthesizing barium titanate by reacting a titanium raw material such as titanium dioxide with a barium raw material such as barium carbonate.
  • additive compounds include oxides of zirconium, hafnium, magnesium, manganese, molybdenum, vanadium, chromium, rare earth elements (yttrium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, and ytterbium), oxides containing cobalt, nickel, lithium, boron, sodium, potassium, or silicon, or glasses containing cobalt, nickel, lithium, boron, sodium, potassium, or silicon.
  • a compound containing an additive compound is wet mixed with a ceramic raw material powder, and then dried and pulverized to prepare a ceramic material.
  • the ceramic material obtained as described above may be pulverized as necessary to adjust the particle size, or may be combined with a classification process to adjust the particle size. Through the above steps, a dielectric material is obtained.
  • a binder such as polyvinyl butyral (PVB) resin, an organic solvent such as ethanol or toluene, and a plasticizer are added to the obtained raw material powder and wet mixed.
  • the obtained slurry is used to coat a dielectric green sheet 52 on a substrate 51 by, for example, a die coater method or a doctor blade method, and then dried.
  • the substrate 51 is, for example, a polyethylene terephthalate (PET) film.
  • PET polyethylene terephthalate
  • a diagram illustrating the coating process is omitted.
  • the thickness of the dielectric green sheet 52 is adjusted to match the thickness of the dielectric layer 11 after firing. For example, the thickness of the dielectric green sheet 52 is set to 0.5 ⁇ m or less.
  • an internal electrode pattern 53 is formed on a dielectric green sheet 52.
  • Fig. 10(a) as an example, four layers of internal electrode patterns 53 are formed on the dielectric green sheet 52 at a predetermined interval.
  • the dielectric green sheet 52 on which the internal electrode patterns 53 are formed is taken as a lamination unit.
  • the thickness of the internal electrode pattern 53 is set to 0.5 ⁇ m or less.
  • the thickness of the internal electrode layer 12 obtained from the internal electrode pattern 53 is 0.5 ⁇ m or less.
  • a metal paste of the main component metal of the internal electrode layer 12 is used for the internal electrode pattern 53.
  • the film is formed by a dry process such as sputtering, vacuum deposition, or ion plating. Using these dry processes makes it easier to thin the internal electrode pattern 53, and further improves the flatness of the internal electrode pattern 53.
  • a large film may be formed on the end of the internal electrode pattern 53 to make it easier to form the protrusion 30, or a film of an element that easily diffuses to the external electrode side, such as Ag (silver), As (arsenic), Au (gold), Co (cobalt), Cr (chromium), Cu (copper), Fe (iron), In (indium), Ir (iridium), Mg (magnesium), Mo (molybdenum), Os (osmium), Pd (palladium), Pt (platinum), Re (rhenium), Rh (rhodium), Ru (ruthenium), Se (selenium), Sn (tin), Te (tellurium), W (tungsten), Y (yttrium), or Zn (zinc), may be added to the end of the internal electrode pattern 53. When a film of these elements is added, the protrusion 30 will contain these elements.
  • an element that easily diffuses to the external electrode side such as Ag (silver), As (arsenic), Au (
  • the lamination units are laminated as shown in Fig. 10(b).
  • a predetermined number of cover sheets 54 e.g., 2 to 10 layers
  • cover sheet 54 may be of the same composition as the dielectric green sheet 52, or may have a different additive.
  • the ceramic laminate thus obtained is subjected to a binder removal process in a N2 atmosphere at 250°C to 500°C, after which a metal paste that will become the underlayer of the external electrodes 20a, 20b is applied by a dipping method, and then fired for 10 minutes to 2 hours in a reducing atmosphere with an oxygen partial pressure of 10-12 MPa to 10-9 MPa and 1100°C to 1300°C.
  • a metal paste that will become the underlayer of the external electrodes 20a, 20b is applied by a dipping method, and then fired for 10 minutes to 2 hours in a reducing atmosphere with an oxygen partial pressure of 10-12 MPa to 10-9 MPa and 1100°C to 1300°C.
  • Each compound that constitutes the dielectric green sheet is sintered and grains grow.
  • a laminate 10 is obtained in which the dielectric layers 11 and the internal electrode layers 12 made of sintered bodies are alternately laminated, and a cover layer is formed as the outermost layer.
  • Reoxidation treatment process In order to return oxygen to the barium titanate, which is the partially reduced main phase of the dielectric layer 11 fired in a reducing atmosphere, a heat treatment may be performed in a mixed gas of N2 and water vapor at about 1000°C or in the air at 500°C to 700°C, to the extent that the internal electrode layer 12 is not oxidized. This process is called a reoxidation treatment process.
  • the external electrodes 20a, 20b are used as an underlayer to perform a metal coating such as copper, nickel, or tin by plating.
  • a metal coating such as copper, nickel, or tin by plating.
  • the thickness of each of the Ni plating layer and the Sn plating layer is preferably 2 ⁇ m or more and 15 ⁇ m or less.
  • a sputtering process may be performed instead of the plating process.
  • the thickness of the internal electrode layer 12 that does not contain ceramic particles is 0.5 ⁇ m or less, the internal electrode layer 12 is thinned, and the number of layers of the internal electrode layer 12 can be increased.
  • the internal electrode pattern 53 is formed by a dry process such as sputtering, the internal electrode pattern 53 is composed of fine particles of several nm to several tens of nm, and when fired, the particles do not line up on the layer but become closer to a plate shape. In this case, the stress due to the shrinkage of the dielectric is not dispersed, and the protrusion 30 that protrudes to the external electrode side can be formed. Thereby, the external electrodes 20a, 20b are sufficiently connected to the internal electrode layer 12.
  • the ratio of the protrusion 30 and the protrusion amount of the protrusion 30 can be adjusted by the firing temperature, firing time, thickness of the internal electrode, etc.
  • the internal electrode pattern 53 by screen printing a conductive paste containing metal powder and an organic binder.
  • the metal powder is composed of multiple particles of 100 nm or more, the stress caused by the shrinkage of the dielectric is dispersed among the particles, and the protrusion 30 is not formed.
  • the external electrodes 20a, 20b are fired simultaneously when the laminate 10 is fired, but this is not limited to the above.
  • a conductive paste may be baked onto both ends of the laminate 10 to form the external electrodes 20a, 20b.
  • the conductive paste may be applied to the surface of the laminate, or a dried film of the conductive paste may be transferred onto the laminate and then fired.
  • the conductive paste may be formed on the laminate by various methods and then fired to form the electrodes.
  • a multilayer ceramic capacitor has been described as an example of a multilayer ceramic electronic component, but the present invention is not limited to this.
  • other multilayer ceramic electronic components such as varistors and thermistors may also be used.
  • the multilayer ceramic capacitor according to the embodiment was fabricated and its characteristics were investigated.
  • Barium titanate was used as the main component ceramic of the ceramic raw material powder for forming the dielectric layer.
  • the average particle size of barium titanate was 0.1 ⁇ m.
  • ethanol, toluene, and IPA isopropyl alcohol
  • the mixture was dispersed for a predetermined time using a bead mill.
  • Polyvinyl butyral (PVB) and a plasticizer were added as an organic binder to the obtained slurry and kneaded.
  • a dielectric green sheet was produced using a reverse coater.
  • An internal electrode pattern was formed on the dielectric green sheet by sputtering.
  • the mask was then removed using the lift-off method to obtain a dielectric green sheet with the internal electrode pattern formed.
  • Comparative Example 1 In Comparative Example 1, the internal electrode pattern was formed by sputtering so that the thickness of the internal electrode layer after firing was 0.6 ⁇ m.
  • Comparative Example 2 In Comparative Example 2, the internal electrode pattern was formed by screen printing so that the thickness of the internal electrode layer after firing was 0.5 ⁇ m.
  • Example and Comparative Examples 1 and 2 100 samples were measured for connectivity and crack resistance.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Ceramic Capacitors (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

セラミック電子部品は、複数の誘電体層と複数の内部電極層とが交互に積層され、対向する2端面に前記複数の内部電極層が交互に露出する積層体と、前記2端面に設けられた1対の外部電極と、を備え、前記複数の内部電極層は、積層方向の厚さが0.5μm以下であり、セラミック粒子を含まず、接続される外部電極に向かって突出する突出部を有することを特徴とする。 

Description

セラミック電子部品、およびセラミック電子部品の製造方法
 本発明は、セラミック電子部品、およびセラミック電子部品の製造方法に関する。
 積層セラミックコンデンサなどのセラミック電子部品について、小型大容量化に伴い、誘電体層が薄層化および多積層化された構造が開示されている(例えば、特許文献1参照)。
特開2016-143709号広報
 しかしながら、誘電体層を薄層化しようとすると、内部電極層および誘電体層の薄層化により、内部電極層と外部電極との接続も困難になる。内部電極層が厚いままであると、クラックが発生するおそれがある。
 本発明は、上記課題に鑑みなされたものであり、内部電極層と外部電極との接続性を向上させることができるとともにクラック耐性を向上させることができるセラミック電子部品およびその製造方法を提供することを目的とする。
 本発明に係るセラミック電子部品は、複数の誘電体層と複数の内部電極層とが交互に積層され、対向する2端面に前記複数の内部電極層が交互に露出する積層体と、前記2端面に設けられた1対の外部電極と、を備え、前記複数の内部電極層は、積層方向の厚さが0.5μm以下であり、セラミック粒子を含まず、接続される外部電極に向かって突出する突出部を有することを特徴とする。
 上記セラミック電子部品において、前記内部電極層の主成分は、ニッケルであり、前記1対の外部電極の主成分は、銅であってもよい。
 上記セラミック電子部品において、前記2端面において、積層方向に隣り合う2層の内部電極層の間の誘電体層が、前記2層の内部電極層から積層方向に離れるにしたがって凹んでいてもよい。
 上記セラミック電子部品において、前記突出部は、前記内部電極層の主成分と前記外部電極の主成分とを含む合金を含んでいてもよい。
 上記セラミック電子部品において、前記内部電極層は、金属のみで形成されていてもよい。
 上記セラミック電子部品において、前記突出部は、前記接続される外部電極に向かって、前記接続される外部電極の厚さの半分以上突出していてもよい。
 上記セラミック電子部品において、前記突出部は、前記接続される外部電極の外表面よりも突出していてもよい。
 上記セラミック電子部品の前記内部電極層において、前記突出部は、異なる外部電極に接続される内部電極層が対向する容量領域における部位よりも厚く形成されていてもよい。
 上記セラミック電子部品において、前記内部電極層の積層方向の厚さは、0.3μm以下であってもよい。
 上記セラミック電子部品において、前記誘電体層の積層方向の厚さは、0.4μm以下であってもよい。
 上記セラミック電子部品において、前記誘電体層の積層方向の厚さは、0.3μm以下であってもよい。
 上記セラミック電子部品において、前記突出部を有する内部電極層は、前記突出部を所定の間隔で複数有していてもよい。
 本発明に係るセラミック電子部品の製造方法は、誘電体グリーンシート上に、ドライプロセスで内部電極パターンが成膜された積層単位が、複数積層された積層体を焼成することで、前記内部電極パターンから厚さが0.5μm以下の内部電極層を形成する工程と、前記積層体を焼成する際に、または前記積層体を焼成した後に、前記積層体の互いに対向する第1端面と第2端面とに外部電極を形成し、前記内部電極層から前記外部電極に向かって突出する突出部を形成する工程と、を含むことを特徴とする。
 本発明によれば、内部電極層と外部電極との接続性を向上させることができるセラミック電子部品およびその製造方法を提供することができる。
積層セラミックコンデンサの部分断面斜視図である。 図1のA-A線断面図である。 図1のB-B線断面図である。 外部電極付近の拡大断面図である。 突出部を例示する図である。 突出部を例示する図である。 突出部を例示する図である。 突出部を例示する図である。 積層セラミックコンデンサの製造方法のフローを例示する図である。 (a)および(b)は内部電極形成工程を例示する図である。
 以下、図面を参照しつつ、実施形態について説明する。
(実施形態)
 図1は、実施形態に係る積層セラミックコンデンサ100の部分断面斜視図である。図2は、図1のA-A線断面図である。図3は、図1のB-B線断面図である。図1~図3で例示するように、積層セラミックコンデンサ100は、略直方体形状を有する積層体10と、積層体10のいずれかの対向する2端面に設けられた外部電極20a,20bとを備える。なお、積層体10の当該2端面以外の4面のうち、積層方向の上面および下面以外の2面を側面と称する。外部電極20a,20bは、積層体10の積層方向の上面、下面および2側面に延在している。ただし、外部電極20a,20bは、互いに離間している。
 なお、図1~図3において、Z軸方向は、積層方向であり、各内部電極層12が対向する方向である。X軸方向は、積層体10の長さ方向であって、積層体10の2端面が対向する方向であり、外部電極20aと外部電極20bとが対向する方向である。Y軸方向は、内部電極層12の幅方向であり、積層体10の4側面のうち2端面以外の2側面が対向する方向である。X軸方向と、Y軸方向と、Z軸方向とは、互いに直交している。
 積層体10は、誘電体として機能するセラミック材料を含む誘電体層11と、内部電極層12とが、交互に積層された構成を有する。各内部電極層12の端縁は、積層体10の外部電極20aが設けられた端面と、外部電極20bが設けられた端面とに、交互に露出している。それにより、各内部電極層12は、外部電極20aと外部電極20bとに、交互に導通している。その結果、積層セラミックコンデンサ100は、複数の誘電体層11が内部電極層12を介して積層された構成を有する。また、誘電体層11と内部電極層12との積層において、積層方向の両方の最外層には内部電極層12が配置され、当該最外層の内部電極層12は、カバー層13によって覆われている。カバー層13は、セラミック材料を主成分とする。例えば、カバー層13は、誘電体層11と組成が同じであっても、異なっていても構わない。なお、内部電極層12が異なる2つの面に露出して、異なる外部電極に導通していれば、図1から図3の構成に限られない。
 積層セラミックコンデンサ100のサイズは、例えば、長さ0.25mm、幅0.125mm、高さ0.125mmであり、または長さ0.4mm、幅0.2mm、高さ0.2mm、または長さ0.6mm、幅0.3mm、高さ0.3mmであり、または長さ1.0mm、幅0.5mm、高さ0.5mmであり、または長さ3.2mm、幅1.6mm、高さ1.6mmであり、または長さ4.5mm、幅3.2mm、高さ2.5mmであるが、これらのサイズに限定されるものではない。
 内部電極層12は、ニッケル(Ni)、銅(Cu)、スズ(Sn)等の卑金属やこれらの合金を主成分とする。内部電極層12の主成分として、白金(Pt)、パラジウム(Pd)、銀(Ag)、金(Au)などの貴金属やこれらを含む合金を用いてもよい。内部電極層12は、金属成分だけで構成されており、共材などのセラミック粒子を含んでいない。
 誘電体層11は、例えば、一般式ABOで表されるペロブスカイト構造を有するセラミック材料を主相とする。なお、当該ペロブスカイト構造は、化学量論組成から外れたABO3-αを含む。例えば、当該セラミック材料として、チタン酸バリウム(BaTiO),ジルコン酸カルシウム(CaZrO),チタン酸カルシウム(CaTiO),チタン酸ストロンチウム(SrTiO),チタン酸マグネシウム(MgTiO),ペロブスカイト構造を形成するBa1-x-yCaSrTi1-zZr(0≦x≦1,0≦y≦1,0≦z≦1)等のうち少なくとも1つから選択して用いることができる。Ba1-x-yCaSrTi1-zZrは、チタン酸バリウムストロンチウム、チタン酸バリウムカルシウム、ジルコン酸バリウム、チタン酸ジルコン酸バリウム、チタン酸ジルコン酸カルシウムおよびチタン酸ジルコン酸バリウムカルシウムなどである。例えば、誘電体層11において、主成分セラミックは、90at%以上含まれている。Z軸方向における誘電体層11の1層あたりの平均厚みは、例えば、0.4μm以下であり、0.3μm以下であることが好ましい。Z軸方向における誘電体層11の1層あたりの平均厚みは、積層セラミックコンデンサ100の断面をSEM(走査型電子顕微鏡)で観察し、異なる10層の誘電体層11についてそれぞれ10点ずつ厚みを測定し、全測定点の平均値を導出することによって測定することができる。
 誘電体層11には、添加物が添加されていてもよい。誘電体層11への添加物として、ジルコニウム(Zr)、ハフニウム(Hf)、マグネシウム(Mg)、マンガン(Mn)、モリブデン(Mo)、バナジウム(V)、クロム(Cr)、希土類元素(イットリウム(Y)、サマリウム(Sm)、ユーロピウム(Eu)、ガドリニウム(Gd)、テルビウム(Tb)、ジスプロシウム(Dy)、ホルミウム(Ho)、エルビウム(Er)、ツリウム(Tm)およびイッテルビウム(Yb))の酸化物、または、コバルト(Co)、ニッケル(Ni)、リチウム(Li)、ホウ素(B)、ナトリウム(Na)、カリウム(K)もしくはケイ素(Si)を含む酸化物、または、コバルト、ニッケル、リチウム、ホウ素、ナトリウム、カリウムもしくはケイ素を含むガラスが挙げられる。
 図2で例示するように、外部電極20aに接続された内部電極層12と外部電極20bに接続された内部電極層12とが対向する領域は、積層セラミックコンデンサ100において電気容量を生じる領域である。そこで、当該電気容量を生じる領域を、容量部14と称する。すなわち、容量部14は、異なる外部電極に接続された隣接する内部電極層12同士が対向する領域である。
 外部電極20aに接続された内部電極層12同士が、外部電極20bに接続された内部電極層12を介さずに対向する領域を、エンドマージン15と称する。また、外部電極20bに接続された内部電極層12同士が、外部電極20aに接続された内部電極層12を介さずに対向する領域も、エンドマージン15である。すなわち、エンドマージン15は、同じ外部電極に接続された内部電極層12が異なる外部電極に接続された内部電極層12を介さずに対向する領域である。エンドマージン15は、電気容量を生じない領域である。
 図3で例示するように、積層体10において、サイドマージン16は、誘電体層11および内部電極層12の2側面側の端部(Y軸方向の端部)を覆うように設けられた領域である。すなわち、サイドマージン16は、Y軸方向において、容量部14の外側に設けられた領域である。サイドマージン16も、電気容量を生じない領域である。
 図4は、外部電極20a付近の拡大断面図である。図4では、ハッチを省略している。図4で例示するように、外部電極20aの外表面に、外部電極20aを下地層として、めっき層22が設けられていてもよい。外部電極20aは、Cuを主成分とする。外部電極20aは、ガラス成分を含んでいてもよい。めっき層22は、Cu、Ni、アルミニウム(Al)、亜鉛(Zn)、Snなどの金属またはこれらの2以上の合金を主成分とする。めっき層22は、単一金属成分のめっき層でもよく、互いに異なる金属成分の複数のめっき層でもよい。例えば、めっき層22は、外部電極20a側から順に、第1めっき層23、第2めっき層24および第3めっき層25が形成された構造を有する。第1めっき層23は、例えば、Cuめっき層である。第2めっき層24は、例えば、Niめっき層である。第3めっき層25は、例えば、Snめっき層である。なお、図4では、外部電極20aについて例示しているが、外部電極20bの外表面にも同様に、めっき層22が設けられていてもよい。
 このような構造において、積層数を増やして小型大容量化しようとすると、誘電体層11および内部電極層12の薄層化により、内部電極層12と外部電極20a,20bとの接続が困難になる。内部電極層12が厚いままであると、クラックが発生するおそれがある。本実施形態に係る積層セラミックコンデンサ100は、内部電極層12と外部電極20a,20bとの接続性を向上させることができるとともにクラック耐性を向上させることができる構成を有している。
 具体的には、Z軸方向における内部電極層12の1層あたりの平均厚みを、0.5μm以下とする。内部電極層12が薄くなると、厚さが薄くなった分、誘電体層11との収縮挙動の差による内部応力が減少し、クラックが発生し難くなる。すなわち、クラック耐性が向上する。内部電極層12の1層あたりの平均厚みは、積層セラミックコンデンサ100の断面をSEM(走査型電子顕微鏡)で観察し、異なる10層の内部電極層12についてそれぞれ10点ずつ厚みを測定し、全測定点の平均値を導出することによって測定することができる。内部電極層12が薄層化されていることで、内部電極層12の積層数を増やすことができる。内部電極層12の積層数を増やす観点から、内部電極層12の1層あたりの平均厚みは、0.4μm以下であることが好ましく、0.3μm以下であることがより好ましい。
 このように薄層化された内部電極層12は、セラミック粒子を含まず、図5で例示するように、外部電極20a,20bのうち接続される外部電極に向かって突出する突出部30を有している。図5では、各部の断面を表すハッチングを省略している。図5の例では、突出部30は、外部電極20bに対して食い込んでいる。すなわち、突出部30が外部電極20bに対して差し込まれている。同様に、外部電極20aに接続される内部電極層12では、外部電極20aに向かって突出する突出部30が設けられている。この構成により、外部電極20a,20bが、内部電極層12と十分に接続されるようになる。それにより、内部電極層12と外部電極20a,20bとの接続性が向上する。
 図5で例示するように、積層体10の端面において、積層方向に隣り合う2層の内部電極層12の間の誘電体層11が、当該2層の内部電極層12から積層方向に離れるにしたがって凹んでいることが好ましい。この構成によれば、誘電体層11が外部電極20a、20bと接触する面積が増加し、外部電極20a,20bが積層体10からはがれにくくなるという効果が得られる。
 突出部30の主成分は、内部電極層12全体における主成分と同じであってもよく、異なっていてもよい。例えば、内部電極層12の主成分がNiであって外部電極20a,20bの主成分がCuである場合に、突出部30の主成分はNiであってもよく、NiとCuとの合金などであってもよい。
 図5で例示するように、内部電極層12において、突出部30は、容量部14における部位よりも厚く形成されていることが好ましい。この場合、突出部30が外部電極20a,20bに対して楔として機能するため、突出部30が外部電極20a,20bに対して十分に接続される。それにより、内部電極層12と外部電極20a,20bとの接続性が向上する。
 図6で例示するように、突出部30は、外部電極20a,20bのうち接続される外部電極に向かって、当該接続される外部電極の厚さの半分以上突出していることが好ましい。この場合、内部電極層12と外部電極20a,20bとが十分に接続されるようになり、内部電極層12と外部電極20a,20bとの接続性が向上する。なお、図6では、各部の断面を表すハッチングを省略している。
 図7で例示するように、突出部30は、外部電極20a,20bのうち接続される外部電極の外表面よりも突出していることが好ましい。この場合、突出部30が外部電極を貫通し、内部電極層12と外部電極20a,20bとが十分に接続されるようになり、内部電極層12と外部電極20a,20bとの接続性が向上する。図7の例では、突出部30が外部電極20bを貫通してめっき層22の内部に突出している。なお、図7では、各部の断面を表すハッチングを省略している。
 図8で例示するように、積層体10を2端面から見た場合のYZ平面において、突出部30は、所定の間隔で複数備わっていることが好ましい。この場合、各突出部30が釘のような効果を奏し、内部電極層12と外部電極20a,20bとの接続性が向上する。また、各突出部30が分散することから、応力の発生を抑制することができる。
 続いて、積層セラミックコンデンサ100の製造方法について説明する。図9は、積層セラミックコンデンサ100の製造方法のフローを例示する図である。
 (原料粉末作製工程)
 まず、誘電体層11を形成するための誘電体材料を用意する。誘電体層11に含まれるAサイト元素およびBサイト元素は、通常はABOの粒子の焼結体の形で誘電体層11に含まれる。例えば、チタン酸バリウムは、ペロブスカイト構造を有する正方晶化合物であって、高い誘電率を示す。このチタン酸バリウムは、一般的に、二酸化チタンなどのチタン原料と炭酸バリウムなどのバリウム原料とを反応させてチタン酸バリウムを合成することで得ることができる。誘電体層11の主成分セラミックの合成方法としては、従来種々の方法が知られており、例えば固相法、ゾル-ゲル法、水熱法等が知られている。本実施形態においては、これらのいずれも採用することができる。
 得られたセラミック粉末に、目的に応じて所定の添加化合物を添加する。添加化合物としては、ジルコニウム、ハフニウム、マグネシウム、マンガン、モリブデン、バナジウム、クロム、希土類元素(イットリウム、サマリウム、ユーロピウム、ガドリニウム、テルビウム、ジスプロシウム、ホルミウム、エルビウム、ツリウムおよびイッテルビウム)の酸化物、または、コバルト、ニッケル、リチウム、ホウ素、ナトリウム、カリウムもしくはケイ素を含む酸化物、または、コバルト、ニッケル、リチウム、ホウ素、ナトリウム、カリウムもしくはケイ素を含むガラスが挙げられる。
 例えば、セラミック原料粉末に添加化合物を含む化合物を湿式混合し、乾燥および粉砕してセラミック材料を調製する。例えば、上記のようにして得られたセラミック材料について、必要に応じて粉砕処理して粒径を調節し、あるいは分級処理と組み合わせることで粒径を整えてもよい。以上の工程により、誘電体材料が得られる。
(塗工工程)
 次に、得られた原料粉末に、ポリビニルブチラール(PVB)樹脂等のバインダと、エタノール、トルエン等の有機溶剤と、可塑剤とを加えて湿式混合する。得られたスラリを使用して、例えばダイコータ法やドクターブレード法により、基材51上に誘電体グリーンシート52を塗工して乾燥させる。基材51は、例えば、ポリエチレンテレフタレート(PET)フィルムである。塗工工程を例示する図は省略した。誘電体グリーンシート52の厚みは、焼成後の誘電体層11の厚みに合わせて調整する。例えば、誘電体グリーンシート52の厚みを、0.5μm以下とする。
(内部電極形成工程)
 次に、図10(a)で例示するように、誘電体グリーンシート52上に、内部電極パターン53を成膜する。図10(a)では、一例として、誘電体グリーンシート52上に4層の内部電極パターン53が所定の間隔を空けて成膜されている。内部電極パターン53が成膜された誘電体グリーンシート52を、積層単位とする。例えば、内部電極パターン53の厚みを、0.5μm以下とする。それにより、内部電極パターン53から得られる内部電極層12の厚みが0.5μm以下となる。
 内部電極パターン53には、内部電極層12の主成分金属の金属ペーストを用いる。成膜の手法は、スパッタリング法、真空蒸着法、イオンプレーティング法などのドライプロセスである。これらのドライプロセスを用いることで、内部電極パターン53の薄層化が容易となり、さらに内部電極パターン53の平坦性が向上する。なお、突出部30が形成されやすいように内部電極パターン53の端部を大きく成膜したり、内部電極パターン53の端部に、Ag(銀)、As(砒素)、Au(金)、Co(コバルト)、Cr(クロム)、Cu(銅)、Fe(鉄)、In(インジウム)、Ir(イリジウム)、Mg(マグネシウム)、Mo(モリブデン)、Os(オスミウム)、Pd(パラジウム)、Pt(白金)、Re(レニウム)、Rh(ロジウム)、Ru(ルテニウム)、Se(セレン)、Sn(スズ)、Te(テルル)、W(タングステン)、Y(イットリウム)、Zn(亜鉛)など、外部電極側に拡散しやすい元素の成膜を追加してもよい。これらの元素の成膜を追加する場合には、突出部30は、これらの元素を含むようになる。
(圧着工程)
 次に、誘電体グリーンシート52を基材51から剥がしつつ、図10(b)で例示するように、積層単位を積層する。次に、積層単位が積層されることで得られた積層体の上下にカバーシート54を所定数(例えば2~10層)だけ積層して熱圧着させ、所定チップ寸法にカットする。図10(b)の例では、点線に沿ってカットする。カバーシート54は、誘電体グリーンシート52と同じ成分であってもよく、添加物が異なっていてもよい。
(焼成工程)
 このようにして得られたセラミック積層体を、250℃~500℃のN雰囲気で脱バインダ処理した後に外部電極20a,20bの下地層となる金属ペーストをディップ法で塗布し、酸素分圧が10-12MPa~10-9MPa、1100℃~1300℃の還元雰囲気で、10分~2時間の焼成を行なう。誘電体グリーンシートを構成する各化合物が焼結して粒成長する。このようにして、焼結体からなる誘電体層11と内部電極層12とが交互に積層され、最外層として形成されるカバー層とを有する積層体10が得られる。
(再酸化処理工程)
 還元雰囲気で焼成された誘電体層11の部分的に還元された主相であるチタン酸バリウムに酸素を戻すために、内部電極層12を酸化させない程度に、約1000℃でNと水蒸気の混合ガス中、もしくは500℃~700℃の大気中での熱処理が行われることがある。この工程は、再酸化処理工程とよばれる。
(めっき処理工程)
 その後、外部電極20a,20bを下地層として用いて、めっき処理により、銅、ニッケル、スズ等の金属コーティングを行う。Niめっき層とSnめっき層との2層構造とする場合、Niめっき層とSnめっき層それぞれの厚みは、2μm以上15μm以下であることが好ましい。めっき処理の代わりに、スパッタリング処理を行なってもよい。以上の工程により、積層セラミックコンデンサ100が完成する。
 本実施形態に係る製造方法によれば、セラミック粒子を含まない内部電極層12の厚みが0.5μm以下となり、内部電極層12が薄層化され、内部電極層12の積層数を増やすことができる。また、内部電極パターン53をスパッタリングなどのドライプロセスで成膜するため、内部電極パターン53が数nmから数十nmの微細粒子で構成され、焼成すると粒子が層上に並ばず、板状に近くなる。この場合、誘電体の収縮による応力が分散されず、外部電極側に突出する突出部30を形成することができる。それにより、外部電極20a,20bが、内部電極層12と十分に接続されるようになる。その結果、内部電極層12と外部電極20a,20bとの接続性が向上する。突出部30の割合や、突出部30の突出量は、焼成温度や焼成時間、内部電極の厚さなどにより調整することができる。
 なお、金属粉末と有機バインダとを含む導電ペーストをスクリーン印刷によって印刷することで内部電極パターン53を成膜することが考えられる。しかしながら、この場合には、金属粉体が100nm以上の複数の粒子で構成されるため、誘電体の収縮による応力が粒子毎に分散され、突出部30が形成されない。
 なお、上記の例では積層体10を焼成する際に外部電極20a,20bを同時に焼成しているが、それに限られない。例えば、積層体10を焼成した後に、積層体10の両端部に導電ペーストを焼き付けて外部電極20a,20bを形成してもよい。また、導電性ペーストを積層体の表面に塗布するか、または導電性ペーストを乾燥させた乾燥膜を積層体上に転写した後に、焼成してもよい。その他、様々な方法により導電ペーストを積層体上に形成した後、これを焼成して形成することができる。
 なお、上記各実施形態においては、積層セラミック電子部品の一例として積層セラミックコンデンサについて説明したが、それに限られない。例えば、バリスタやサーミスタなどの、他の積層セラミック電子部品を用いてもよい。
 以下、実施形態に係る積層セラミックコンデンサを作製し、特性について調べた。
(実施例)
 誘電体層を形成するためのセラミック原料粉末の主成分セラミックとして、チタン酸バリウムを用いた。チタン酸バリウムの平均粒子径は、0.1μmであった。次に、エタノール、トルエン、IPA(イソプロピルアルコール)が3:2:1となるように混合し、添加物が配合されたチタン酸バリウムを得た。その後、ビーズミルを使用して所定時間分散した。得られたスラリに、有機バインダとしてポリビニルブチラール(PVB)および可塑剤を添加し混錬した。その後、リバースコータを用いて、誘電体グリーンシートを作成した。
 誘電体グリーンシート上に、スパッタリングで内部電極パターンを形成した。その後、リフトオフ法を用いてマスクを除去し、内部電極パターンが形成された誘電体グリーンシートを得た。
 内部電極パターンが形成された誘電体グリーンシートを200枚重ね、その上下にカバーシートをそれぞれ積層した。その後、熱圧着により、焼成前の積層体を得て、所定の形状に切断した。その後、N雰囲気中で脱バインダした後に焼成して焼結体を得た。焼成温度は、1220℃とした。金属導電ペースト中の金属成分が酸化しないように、還元雰囲気にて焼成を行った。その後、焼成後の積層体の2端面に外部電極を形成し、1005タイプ(長さ1.0mm、幅0.5mm、高さ0.5mm)の積層セラミックコンデンサを得た。内部電極層の厚さは、0.5μmであった。
(比較例1)
 比較例1では、焼成後の内部電極層の厚さが0.6μmとなるように、内部電極パターンをスパッタリング法で形成した。
(比較例2)
 比較例2では、焼成後の内部電極層の厚さが0.5μmとなるように、内部電極パターンをスクリーン印刷で形成した。
(突出部の有無)
 実施例および比較例1,2について、内部電極層が、接続される外部電極に向かって突出する突出部を有しているか否かを確認した。結果を表1に示す。表1に示すように、実施例および比較例1では、突出部が確認された。これは、スパッタリングで内部電極パターンを成膜したからであると考えられる。これに対して、比較例2では、突出部が確認されなかった。これは、スクリーン印刷で内部電極パターンを成膜したからであると考えられる。
Figure JPOXMLDOC01-appb-T000001
 実施例および比較例1,2のそれぞれについて、100個のサンプルに対して接続性およびクラック耐性を測定した。
(接続性)
 接続性は、各サンプルの狙いとした静電容量に対して、1個でも静電容量が5%以下低下した場合に不良「×」とした。静電容量が5%以上低下したサンプルが無ければ、良好「〇」とした。静電容量は、LCRメーターを使用して測定した。結果を表1に示す。
(クラック耐性)
 クラック耐性は、各サンプルを、プレッシャークッカー槽に投入し、121℃-湿度95%の雰囲気下で電圧印加を行う加速耐湿負荷試験(PCBT試験)を実施した。クラックが500時間発生しない場合を合格「〇」と判定し、500時間経過前にクラックが発生した場合を不合格「×」と判定した。結果を表1に示す。表1に示すように、実施例および比較例2では合格「〇」と判定された。これは、内部電極層の厚みが0.5μm以下となったからであると考えられる。一方、比較例2では不合格「×」と判定された。これは、内部電極層の厚みが0.5μmを上回ったからであると考えられる。
 以上の結果から、実施例では接続性およびクラック耐性の両方で良好な結果が得られた。
 以上、本発明の実施例について詳述したが、本発明は係る特定の実施例に限定されるものではなく、特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。
 10 積層体
 11 誘電体層
 12 内部電極層
 13 カバー層
 14 容量部
 15 エンドマージン
 16 サイドマージン
 20a,20b 外部電極
 30 突出部
 51 基材
 52 誘電体グリーンシート
 53 内部電極パターン
 54 カバーシート
 100 積層セラミックコンデンサ
 

Claims (13)

  1.  複数の誘電体層と複数の内部電極層とが交互に積層され、対向する2端面に前記複数の内部電極層が交互に露出する積層体と、
     前記2端面に設けられた1対の外部電極と、を備え、
     前記複数の内部電極層は、積層方向の厚さが0.5μm以下であり、セラミック粒子を含まず、接続される外部電極に向かって突出する突出部を有することを特徴とするセラミック電子部品。
  2.  前記内部電極層の主成分は、ニッケルであり、
     前記1対の外部電極の主成分は、銅であることを特徴とする請求項1に記載のセラミック電子部品。
  3.  前記2端面において、積層方向に隣り合う2層の内部電極層の間の誘電体層が、前記2層の内部電極層から積層方向に離れるにしたがって凹んでいることを特徴とする請求項1または請求項2に記載のセラミック電子部品。
  4.  前記突出部は、前記内部電極層の主成分と前記外部電極の主成分とを含む合金を含むことを特徴とする請求項1または請求項2に記載のセラミック電子部品。
  5.  前記内部電極層は、金属のみで形成されることを特徴とする請求項1または請求項2に記載のセラミック電子部品。
  6.  前記突出部は、前記接続される外部電極に向かって、前記接続される外部電極の厚さの半分以上突出することを特徴とする請求項1または請求項2に記載のセラミック電子部品。
  7.  前記突出部は、前記接続される外部電極の外表面よりも突出していることを特徴とする請求項1または請求項2に記載のセラミック電子部品。
  8.  前記内部電極層において、前記突出部は、異なる外部電極に接続される内部電極層が対向する容量領域における部位よりも厚いことを特徴とする請求項1または請求項2に記載のセラミック電子部品。
  9.  前記内部電極層の積層方向の厚さは、0.3μm以下であることを特徴とする請求項7に記載のセラミック電子部品。
  10.  前記誘電体層の積層方向の厚さは、0.4μm以下であることを特徴とする請求項1または請求項2に記載のセラミック電子部品。
  11.  前記誘電体層の積層方向の厚さは、0.3μm以下であることを特徴とする請求項1または請求項2に記載のセラミック電子部品。
  12.  前記突出部を有する内部電極層は、前記突出部を所定の間隔で複数有することを特徴とする請求項1または請求項2に記載のセラミック電子部品。
  13.  誘電体グリーンシート上に、ドライプロセスで内部電極パターンが成膜された積層単位が、複数積層された積層体を焼成することで、前記内部電極パターンから厚さが0.5μm以下の内部電極層を形成する工程と、
     前記積層体を焼成する際に、または前記積層体を焼成した後に、前記積層体の互いに対向する第1端面と第2端面とに外部電極を形成し、前記内部電極層から前記外部電極に向かって突出する突出部を形成する工程と、を含むことを特徴とするセラミック電子部品の製造方法。
     
PCT/JP2023/031317 2022-09-26 2023-08-29 セラミック電子部品、およびセラミック電子部品の製造方法 WO2024070427A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-152692 2022-09-26
JP2022152692 2022-09-26

Publications (1)

Publication Number Publication Date
WO2024070427A1 true WO2024070427A1 (ja) 2024-04-04

Family

ID=90477163

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/031317 WO2024070427A1 (ja) 2022-09-26 2023-08-29 セラミック電子部品、およびセラミック電子部品の製造方法

Country Status (1)

Country Link
WO (1) WO2024070427A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0878274A (ja) * 1994-08-31 1996-03-22 Taiyo Yuden Co Ltd セラミック電子部品の製造方法
JP2016143764A (ja) * 2015-02-02 2016-08-08 太陽誘電株式会社 積層コンデンサ
JP2021158132A (ja) * 2020-03-25 2021-10-07 太陽誘電株式会社 積層セラミック電子部品の製造方法及び積層セラミック電子部品

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0878274A (ja) * 1994-08-31 1996-03-22 Taiyo Yuden Co Ltd セラミック電子部品の製造方法
JP2016143764A (ja) * 2015-02-02 2016-08-08 太陽誘電株式会社 積層コンデンサ
JP2021158132A (ja) * 2020-03-25 2021-10-07 太陽誘電株式会社 積層セラミック電子部品の製造方法及び積層セラミック電子部品

Similar Documents

Publication Publication Date Title
JP6955363B2 (ja) 積層セラミックコンデンサおよびその製造方法
JP7227690B2 (ja) 積層セラミックコンデンサおよびその製造方法
JP7290914B2 (ja) 積層セラミックコンデンサの製造方法
TWI790686B (zh) 陶瓷電子零件及其製造方法
KR102412983B1 (ko) 적층 세라믹 콘덴서 및 그 제조 방법
TWI790267B (zh) 積層陶瓷電容器及其製造方法
JP2019201161A (ja) 積層セラミックコンデンサおよびその製造方法
JP2021015877A (ja) セラミック電子部品およびその製造方法
TW202124332A (zh) 陶瓷電子零件及其製造方法
CN113963952A (zh) 陶瓷电子部件及其制造方法
JP7477080B2 (ja) セラミック電子部品の製造方法
KR20230109095A (ko) 적층 세라믹 전자 부품 및 그 제조 방법
JP2023150118A (ja) セラミック電子部品およびその製造方法
WO2024070427A1 (ja) セラミック電子部品、およびセラミック電子部品の製造方法
JP2023063887A (ja) セラミック電子部品
WO2024070428A1 (ja) セラミック電子部品、およびセラミック電子部品の製造方法
JP7169069B2 (ja) 積層セラミックコンデンサおよびその製造方法
WO2024070416A1 (ja) セラミック電子部品、およびセラミック電子部品の製造方法
JP2020178114A (ja) セラミック電子部品、回路基板、およびセラミック電子部品の製造方法
JP2021061291A (ja) セラミック電子部品の製造方法、およびシート部材
JP2021082644A (ja) セラミック電子部品の製造方法
WO2024101307A1 (ja) セラミック電子部品およびその製造方法
WO2024116935A1 (ja) セラミック電子部品、およびセラミック電子部品の製造方法
WO2024070485A1 (ja) セラミック電子部品およびその製造方法
JP2023143031A (ja) セラミック電子部品およびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23871668

Country of ref document: EP

Kind code of ref document: A1