WO2024067626A1 - 一类酸与盐的复合物及其制备方法 - Google Patents

一类酸与盐的复合物及其制备方法 Download PDF

Info

Publication number
WO2024067626A1
WO2024067626A1 PCT/CN2023/121701 CN2023121701W WO2024067626A1 WO 2024067626 A1 WO2024067626 A1 WO 2024067626A1 CN 2023121701 W CN2023121701 W CN 2023121701W WO 2024067626 A1 WO2024067626 A1 WO 2024067626A1
Authority
WO
WIPO (PCT)
Prior art keywords
complex
acid
hydroxybutyrate
hydroxybutyric acid
salt
Prior art date
Application number
PCT/CN2023/121701
Other languages
English (en)
French (fr)
Inventor
荣亮
朱金建
陈尤建
江龙
朱溪
廖琪林
Original Assignee
南京纽邦生物科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京纽邦生物科技有限公司 filed Critical 南京纽邦生物科技有限公司
Publication of WO2024067626A1 publication Critical patent/WO2024067626A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • A23L33/115Fatty acids or derivatives thereof; Fats or oils
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/185Acids; Anhydrides, halides or salts thereof, e.g. sulfur acids, imidic, hydrazonic or hydroximic acids
    • A61K31/19Carboxylic acids, e.g. valproic acid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/41Preparation of salts of carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C59/00Compounds having carboxyl groups bound to acyclic carbon atoms and containing any of the groups OH, O—metal, —CHO, keto, ether, groups, groups, or groups
    • C07C59/01Saturated compounds having only one carboxyl group and containing hydroxy or O-metal groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D239/00Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings
    • C07D239/02Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings
    • C07D239/24Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings having three or more double bonds between ring members or between ring members and non-ring members
    • C07D239/28Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings having three or more double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, directly attached to ring carbon atoms
    • C07D239/46Two or more oxygen, sulphur or nitrogen atoms
    • C07D239/60Three or more oxygen or sulfur atoms
    • C07D239/62Barbituric acids
    • C07D239/64Salts of organic bases; Organic double compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D239/00Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings
    • C07D239/02Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings
    • C07D239/24Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings having three or more double bonds between ring members or between ring members and non-ring members
    • C07D239/28Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings having three or more double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, directly attached to ring carbon atoms
    • C07D239/46Two or more oxygen, sulphur or nitrogen atoms
    • C07D239/60Three or more oxygen or sulfur atoms
    • C07D239/66Thiobarbituric acids
    • C07D239/68Salts of organic bases; Organic double compounds

Definitions

  • the invention belongs to the technical field of dietary or nutritional supplements, and in particular relates to a complex of an acid and a salt and a preparation method thereof.
  • ketone bodies Normally the human body relies on glucose for energy, but when glucose supply is insufficient to meet the body's energy needs, such as during prolonged exercise, hunger, or lack of dietary carbohydrates, the body turns to consuming fat for fuel. Since the brain and central nervous system cannot directly use fat for energy, the liver produces ketone bodies from fatty acids as an alternative fuel, which are then released into the blood/plasma. Ketone bodies not only fuel the brain, but are also used by skeletal and cardiac muscles. The metabolism of ketone bodies has been associated with several beneficial effects, including anticonvulsant effects, enhanced brain metabolism, neuroprotection, protective muscle properties, and improved cognitive and physical performance. Science-based improvements in cellular metabolic efficiency, managed through ketone supplementation, can have beneficial effects on physical, cognitive health, and psychological health, and have long-term health effects targeting common avoidable diseases such as obesity, cardiovascular disease, neurodegenerative diseases, diabetes, and cancer.
  • ketone bodies directly to humans or animals as an energy source.
  • Dietary or nutritional supplements may contain carboxylic acids, for example, beta-hydroxybutyrate (also known as 3-hydroxybutyrate or BHB), which is one of the three major ketone bodies (i.e., acetoacetate, acetone, and BHB).
  • BHB 3-hydroxybutyrate
  • ⁇ -hydroxybutyrate is a source of exogenous ketones, and its well-known problem is that it is extremely acidic. Due to this acidity, the amount and concentration of ⁇ -hydroxybutyrate used in an ingestible form are limited.
  • the acidity problem of D-BHB acid has been solved in some applications by forming ⁇ -hydroxybutyrate into sodium, magnesium, calcium and potassium salts.
  • salts can solve the acidity problem, the use of ketone salts is also limited to very small amounts due to the accompanying salt overload, which can easily lead to electrolyte imbalance, and the taste is unpleasant except in small doses.
  • the above problems still exist when simply physically mixing the carboxylic acid and the salt, and it is difficult to achieve a uniform mix.
  • the present invention provides a complex comprising 3-hydroxybutyric acid; and one or more of potassium 3-hydroxybutyrate, calcium 3-hydroxybutyrate, or magnesium 3-hydroxybutyrate.
  • the anions in the structure of the complex include 3-hydroxybutyrate anions; the cations include one or more of potassium ions, calcium ions, magnesium ions, and hydrogen ions.
  • the ratio of 3-hydroxybutyric acid to one or more of potassium 3-hydroxybutyrate, or calcium 3-hydroxybutyrate, or magnesium 3-hydroxybutyrate is 1:10 to 10:1.
  • the complex contains no less than 50% of the R configuration and no more than 50% of the S configuration; or more than 50% of the S configuration and less than 50% of the R configuration.
  • the complex is 3-hydroxybutyric acid ⁇ potassium 3-hydroxybutyrate or 3-hydroxybutyric acid ⁇ calcium 3-hydroxybutyrate or 3-hydroxybutyric acid ⁇ magnesium 3-hydroxybutyrate or a mixture thereof.
  • the complex has the following structure:
  • the present invention provides a 3-hydroxybutyric acid ⁇ 3-hydroxybutyrate complex, wherein the salt is a potassium salt, a calcium salt and/or a magnesium salt.
  • the complex is R-3-hydroxybutyric acid ⁇ R-3-hydroxybutyrate and/or S-3-hydroxybutyric acid ⁇ S-3-hydroxybutyrate.
  • the complex contains not less than 50% R-3-hydroxybutyric acid ⁇ R-3-hydroxybutyrate, not more than 50% S-3-hydroxybutyric acid ⁇ S-3-hydroxybutyrate, or more than 50% S-3-hydroxybutyric acid ⁇ S-3-hydroxybutyrate, and less than 50% R-3-hydroxybutyric acid ⁇ R-3-hydroxybutyrate.
  • the complex has the following structure:
  • the complex is in crystalline form.
  • the potassium salt complex has an X-ray powder diffraction pattern comprising peaks at diffraction angles (2 ⁇ ) of 6.7 ⁇ 0.2°, 19.6 ⁇ 0.2°, 24.9 ⁇ 0.2°, and 27.1 ⁇ 0.2°.
  • the potassium salt complex has an X-ray powder diffraction pattern further comprising one or more peaks at diffraction angles (2 ⁇ ) of 13.4 ⁇ 0.2°, 21.4 ⁇ 0.2°, 26.0 ⁇ 0.2°, 32.5 ⁇ 0.2°.
  • the potassium salt complex has an X-ray powder diffraction pattern further comprising one or more peaks at diffraction angles (2 ⁇ ) of 20.2 ⁇ 0.2°, 23.4 ⁇ 0.2°, 28.2 ⁇ 0.2°, 34.0 ⁇ 0.2°.
  • the potassium salt complex has an X-ray powder diffraction pattern as shown in FIG1 .
  • the potassium salt complex has an infrared spectrum having the following absorption bands, expressed as inverse wavelength (cm "1 ) ( ⁇ 2cm “1 ): 2972, 2933, 1715, 1574, 1304, 1196, 1126, 1065, 951, 854, 474.
  • the infrared spectrum of the calcium salt complex has the following absorption bands, expressed as inverse wavelength (cm "1 ) ( ⁇ 2cm “1 ): 2974, 2936, 1715, 1558, 1506, 1300, 1196, 1126, 1065, 951, 854, 422.
  • the infrared spectrum of the magnesium salt complex has the following absorption bands, expressed as inverse wavelength (cm "1 ) ( ⁇ 2cm “1 ): 2976, 2936, 1713, 1321, 1207, 1088, 957, 912, 826, 625, 554, 411.
  • the complex is prepared as a food, beverage, supplement, or pharmaceutical formulation.
  • the present invention provides a 3-hydroxybutyric acid ⁇ 3-hydroxybutyrate complex, which is obtained by the following method:
  • step (2) adding one or more solvents selected from the group consisting of water, THF, DMF, DMSO, DMAC, alcohols, halogenated hydrocarbons, ketones, and esters to the substance B obtained in step (1), stirring and cooling to precipitate a solid;
  • solvents selected from the group consisting of water, THF, DMF, DMSO, DMAC, alcohols, halogenated hydrocarbons, ketones, and esters
  • the complex is R-3-hydroxybutyric acid ⁇ R-3-hydroxybutyrate and/or S-3-hydroxybutyric acid ⁇ S-3-hydroxybutyrate.
  • the complex is in crystalline form.
  • the present invention provides a method for preparing the above-mentioned composite, comprising the following steps:
  • step (2) adding one or more solvents selected from the group consisting of water, THF, DMF, DMSO, DMAC, alcohols, halogenated hydrocarbons, ketones, and esters to the substance B obtained in step (1), stirring and cooling to precipitate a solid;
  • solvents selected from the group consisting of water, THF, DMF, DMSO, DMAC, alcohols, halogenated hydrocarbons, ketones, and esters
  • the alcohol is methanol, ethanol, isopropanol, or n-butanol
  • the halogenated hydrocarbons are chlorobenzene, dichlorobenzene, or dichloromethane
  • the ketones are acetone, methyl butyl ketone, or methyl isobutyl ketone
  • the esters are ethyl acetate, isopropyl acetate, n-butyl acetate, or isobutyl acetate.
  • the alkaline compound in step (1) is hydroxide, carbonate, bicarbonate, methoxide, acetate or formate of potassium, calcium or magnesium;
  • the alkyl 3-hydroxybutyrate is methyl 3-hydroxybutyrate, ethyl 3-hydroxybutyrate, propyl 3-hydroxybutyrate, isopropyl 3-hydroxybutyrate, butyl 3-hydroxybutyrate or isobutyl 3-hydroxybutyrate.
  • the present invention provides a composition comprising an effective amount of the above complex and a pharmaceutically acceptable carrier.
  • the composition is used as a ketogenic substance.
  • the composition is prepared as a food, beverage, supplement, or pharmaceutical formulation.
  • the present invention provides a use of the complex for preparing a ketogenic substance for increasing or maintaining the blood ketone level of a subject.
  • the ketogenic substance is a nutritional supplement, an energy treatment, a medical treatment, or a strength and/or endurance sports supplement.
  • the present invention provides use of a composition for preparing a ketogenic substance for increasing or maintaining blood ketone levels in a subject, wherein the composition comprises the complex of the present invention and a pharmaceutically acceptable carrier.
  • the ketogenic substance is a nutritional supplement, an energy treatment, a medical treatment, or a strength and/or endurance sports supplement.
  • the present invention provides a complex of an acid and a salt, wherein the acid comprises propionic acid, butyric acid, valeric acid, hexanoic acid, and hydroxycarboxylic acid, and the salt comprises sodium salt, potassium salt, calcium salt and/or magnesium salt.
  • the hydroxycarboxylic acid is 3-hydroxyvaleric acid (BHP).
  • the anions in the structure of the complex include 3-hydroxyvalerate anions, and the cations include sodium ions and hydrogen ions.
  • the ratio of 3-hydroxyvaleric acid to sodium 3-hydroxyvalerate is from 1:10 to 10:1.
  • the complex contains no less than 50% of the R configuration and no more than 50% of the S configuration; or more than 50% of the S configuration and less than 50% of the R configuration.
  • the complex has the following structure:
  • the complex is in crystalline form.
  • the complex is R-3-hydroxyvaleric acid ⁇ R-3-hydroxyvaleric acid sodium and/or S-3-hydroxyvaleric acid ⁇ S-3-hydroxyvaleric acid sodium.
  • the complex contains not less than 50% R-3-hydroxyvaleric acid ⁇ R-3-hydroxyvaleric acid sodium, and not more than 50% S-3-hydroxyvaleric acid ⁇ S-3-hydroxyvaleric acid sodium; or more than 50% S-3-hydroxyvaleric acid ⁇ S-3-hydroxyvaleric acid sodium, and less than 50% R-3-hydroxyvaleric acid ⁇ R-3-hydroxyvaleric acid sodium.
  • the complex has the following structure: and / or
  • the infrared spectrum of the composite has the following absorption bands, expressed as inverse wavelength (cm "1 ) ( ⁇ 2 cm “1 ): 2968, 2880, 1715, 1558, 1404, 1065, 982, 912, 874, 783, 473, 426.
  • the complex is prepared as a food, beverage, supplement, or pharmaceutical formulation.
  • the present invention provides a complex of an acid and a salt, which is obtained by the following method:
  • step (2) adding one or more solvents selected from the group consisting of water, THF, DMF, DMSO, DMAC, alcohols, halogenated hydrocarbons, ketones, and esters to the substance C obtained in step (1), stirring and cooling to precipitate a solid;
  • solvents selected from the group consisting of water, THF, DMF, DMSO, DMAC, alcohols, halogenated hydrocarbons, ketones, and esters
  • the complex is propionic acid ⁇ propionic acid sodium salt, propionic acid ⁇ propionic acid potassium salt, propionic acid ⁇ propionic acid calcium salt, propionic acid ⁇ propionic acid magnesium salt, butyric acid ⁇ butyric acid sodium salt, butyric acid ⁇ butyric acid potassium salt, butyric acid ⁇ butyric acid calcium salt, butyric acid ⁇ butyric acid magnesium salt, valeric acid ⁇ valeric acid sodium salt, valeric acid ⁇ valeric acid potassium salt, valeric acid ⁇ valeric acid calcium salt, valeric acid ⁇ valeric acid magnesium salt, hexanoic acid ⁇ hexanoic acid sodium salt, hexanoic acid ⁇ hexanoic acid potassium salt, hexanoic acid ⁇ hexanoic acid calcium salt, hexanoic acid ⁇ hexanoic acid magnesium salt, 3-hydroxyvaleric acid ⁇ 3-hydroxyvaleric acid sodium salt, 3-hydroxyvaleric acid ⁇ 3-hydroxyvaleric acid potassium salt, 3-
  • the complex is in crystalline form.
  • the present invention provides a method for preparing the above-mentioned composite, comprising the following steps:
  • step (2) adding one or more solvents selected from the group consisting of water, THF, DMF, DMSO, DMAC, alcohols, halogenated hydrocarbons, ketones, and esters to the substance C obtained in step (1), stirring and cooling to precipitate a solid;
  • solvents selected from the group consisting of water, THF, DMF, DMSO, DMAC, alcohols, halogenated hydrocarbons, ketones, and esters
  • the alcohol is methanol, ethanol, isopropanol, or n-butanol
  • the halogenated hydrocarbons are chlorobenzene, dichlorobenzene, or dichloromethane
  • the ketones are acetone, methyl butyl ketone, or methyl isobutyl ketone
  • the esters are ethyl acetate, isopropyl acetate, n-butyl acetate, or isobutyl acetate.
  • the alkaline compound in step (1) is hydroxide, carbonate, bicarbonate, methoxide, acetate or formate of sodium, potassium, calcium or magnesium;
  • the alkyl ester of the acid is methyl, ethyl, propyl, isopropyl, butyl or isobutyl ester of the acid.
  • the present invention provides a composition comprising an effective amount of the above complex and a pharmaceutically acceptable carrier.
  • the composition is used as a ketogenic substance.
  • the composition is prepared as a food, beverage, supplement, or pharmaceutical formulation.
  • the present invention provides use of the above-mentioned complex in preparing a ketogenic substance for increasing or maintaining the blood ketone level of a subject.
  • the ketogenic substance is a nutritional supplement, an energy treatment, a medical treatment, or a strength and/or endurance sports supplement.
  • the present invention provides a use of a composition for preparing a ketogenic substance for increasing or maintaining the blood ketone level of a subject, wherein the composition comprises the above-mentioned complex and a pharmaceutically acceptable carrier.
  • the ketogenic substance is a nutritional supplement, an energy treatment, a medical treatment, or a strength and/or endurance sports supplement.
  • the beneficial effects of the complex of the present invention are: the complex of the present invention has no bad smell, effectively avoids the problems of acidity, hygroscopicity, salt load, intestinal side effects, electrolyte imbalance, etc.; compared with other exogenous ketones, the complex has excellent adaptability. When applied to a subject, the complex shows a better comprehensive effect than a single acid or salt or a simple physical mixed component.
  • the complex of the present invention solves the problems of strong acidity, intestinal side effects and high hygroscopicity of the acid, and solves the problem of electrolyte imbalance caused by the high salt load of the salt, and there is no problem of uneven mixing in physical mixing, so it can have a wide range of application prospects in the field of dietary supplements or food as a ketogenic substance.
  • FIG1 is an XRPD diagram of the 3-hydroxybutyric acid ⁇ potassium 3-hydroxybutyrate complex (complex I) of the present invention.
  • FIG2A is an infrared spectrum (IR) of the 3-hydroxybutyric acid ⁇ potassium 3-hydroxybutyrate complex (complex I) of the present invention.
  • FIG2B is an infrared spectrum (IR) of the 3-hydroxybutyric acid ⁇ calcium 3-hydroxybutyrate complex (complex II) of the present invention.
  • FIG2C is an infrared spectrum (IR) of the 3-hydroxybutyric acid ⁇ 3-hydroxybutyrate magnesium complex (complex III) of the present invention.
  • FIG2D is an infrared spectrum (IR) of the 3-hydroxyvaleric acid ⁇ sodium 3-hydroxyvalerate complex (complex IV) of the present invention.
  • FIG3 is a Raman spectrum of the 3-hydroxybutyric acid ⁇ potassium 3-hydroxybutyrate complex (complex I) of the present invention.
  • FIG4A is a TGA chart of the 3-hydroxybutyric acid ⁇ potassium 3-hydroxybutyrate complex (complex I) of the present invention.
  • FIG. 4B-1 to FIG. 4B-3 are TGA diagrams of the 3-hydroxybutyric acid ⁇ calcium 3-hydroxybutyrate complex (Complex II) of the present invention.
  • FIG. 4C-1 to FIG. 4C-3 are TGA diagrams of the 3-hydroxybutyric acid ⁇ 3-hydroxybutyrate magnesium complex (Complex III) of the present invention.
  • 4D is a TGA chart of the 3-hydroxyvaleric acid ⁇ sodium 3-hydroxyvalerate complex (Complex IV) of the present invention.
  • FIG5 is a DSC spectrum of the 3-hydroxybutyric acid ⁇ potassium 3-hydroxybutyrate complex (complex I) of the present invention.
  • the 3-hydroxybutyric acid ⁇ 3-hydroxybutyrate complex of the present invention comprises 3-hydroxybutyric acid and 3-hydroxybutyrate in any appropriate ratio, and the complex can be a hydrate, anhydrous, and a corresponding crystalline form with a fixed water content ratio.
  • the acid ⁇ salt complex of the present invention comprises 3-hydroxyvaleric acid (BHP), propionic acid, butyric acid, valeric acid and/or caproic acid and sodium salt, potassium salt, calcium salt and/or magnesium salt in any appropriate ratio, and the complex can be a hydrate, anhydrous, and a corresponding crystalline form with a fixed water content ratio.
  • the term "comprises” or “comprising” or variations thereof refer to the following instances where the term is used in its non-limiting sense, meaning that items following the term are included, but items not specifically mentioned are not excluded. It also includes the more restrictive verbs 'consisting essentially of' and 'consisting of'.
  • ⁇ -Hydroxybutyric acid is also called 3-hydroxybutyric acid, ⁇ HB or BHB, and refers to a compound having the general formula CH 3 CH 2 OHCH 2 COOH.
  • ⁇ -Hydroxybutyric acid derivative refers to a compound having the following chemical structure: wherein X is hydrogen, a metal ion, an amino cation (such as an amino acid), etc.
  • the compound When X is hydrogen, the compound is ⁇ -hydroxybutyric acid. When X is a metal ion or an amino cation, the compound is ⁇ -hydroxybutyrate.
  • the aforementioned compound can be in any desired physical form, such as crystals, powders, solids, liquids, solutions, suspensions or gels.
  • administering refers to the process of delivering the disclosed complex or active ingredient to a subject.
  • the complex of the present invention can be administered in various suitable ways to exert the desired effect, including oral, intragastric and parenteral (referring to intravenous and intraarterial and other suitable parenteral routes) and the like.
  • the complex of the present invention can be administered to a subject at a therapeutically effective dose and/or at a frequency of inducing or maintaining ketosis.
  • a single dose will include an amount of about 1-50 grams, or about 2-40 grams, or about 5-30 grams, or about 10-20 grams, about 0.5-25 grams, or about 0.75-20 grams, or about 1-15 grams, or about 1.5-12 grams.
  • multiple doses of the complex are administered over a period of time.
  • the frequency of administration of the complex can vary according to any of a variety of factors, such as the time of treatment from the previous treatment, the purpose of treatment, etc.
  • the duration of the administration of the complex e.g., the time period of administering the agent
  • a suitable single dose size is a dose that can achieve the above effects when administered once or multiple times within a suitable time period.
  • the term "pharmaceutically acceptable” means pharmaceutically, physiologically, dietary and/or nutritionally acceptable, and refers to those compositions or agents, materials or combinations of compositions and/or dosage forms thereof that are within the scope of sound medical judgment, suitable for contact with human and animal tissues, compatible with other ingredients of the composition, without excessive toxicity, irritation, allergic response or other problems or complications, and commensurate with a reasonable benefit/risk ratio.
  • the ⁇ -hydroxybutyrate can be R- ⁇ -hydroxybutyrate, which is endogenously produced by mammals during ketosis, so that administering R- ⁇ -hydroxybutyrate to a subject provides additional amounts and/or increased plasma levels that can be immediately used by the body, e.g., for energy production (e.g., as an alternative energy source to glucose).
  • R- ⁇ -hydroxybutyrate which is endogenously produced by mammals during ketosis, so that administering R- ⁇ -hydroxybutyrate to a subject provides additional amounts and/or increased plasma levels that can be immediately used by the body, e.g., for energy production (e.g., as an alternative energy source to glucose).
  • the complex and/or composition of the present invention can be used to prepare a ketogenic substance for increasing or maintaining the blood ketone level of a subject, increasing the ketone body level in the subject, including inducing and/or maintaining an elevated ketone body level (e.g., ketosis) at a desired level in the subject to which it is applied.
  • ketosis refers to a blood ketone level in the subject in the range of about 0.5 mmol/L to about 16 mmol/L. Ketosis can improve mitochondrial function, reduce the production of reactive oxygen species, reduce inflammation, and increase the activity of neurotrophic factors.
  • Keto adaptation refers to long-term nutritional ketosis (> 1 week) to achieve a sustained non-pathological "mild ketosis” or “therapeutic ketosis”.
  • “elevated ketone body levels” may not mean that the subject is in a "clinical ketosis” state, but still has an elevated ketone supply for generating energy and/or achieving other beneficial effects of ketone bodies.
  • Administration of the complexes and/or compositions of the present invention can increase or maintain blood ketone levels in a subject, as a ketogenic substance, producing one or more desired effects, including but not limited to appetite suppression, weight loss, fat loss, lowered blood sugar levels, improved mental alertness, increased physical energy, improved cognitive function, reduced traumatic brain injury, reduced effects of diabetes, improved neurological disorders, reduced cancer, reduced inflammation, anti-aging, anti-glycation, reduced seizures, improved mood, increased strength, increased muscle mass, or improved body composition.
  • the complex of the present invention can be prepared as a composition together with a dietary or pharmaceutically acceptable carrier.
  • the administration form of the composition is provided involving a liquid or solid filler, diluent, excipient, solvent or encapsulating material.
  • Each carrier must be "acceptable”, which means that it is compatible with the other ingredients of the composition and is harmless to the subject, that is, suitable for consumption or nutritionally acceptable.
  • the above-mentioned carriers include those non-toxic compatible substances commonly used in health foods and dietary supplements and pharmaceutical preparations, such as sugars, starches, cellulose and its derivatives, powdered tragacanth, malt, gelatin, talc, oils, glycols, polyols, esters, agar, alginic acid, pyrogen-free water, isotonic saline, etc.
  • the complexes of the present invention may be administered with other supplements, such as vitamins, minerals, nootropics, and other supplements known in the art.
  • vitamins, minerals, and herbal supplements that may be added to the ketogenic composition include one or more of vitamin A, vitamin C, vitamin D3, vitamin E, niacin, vitamin B6, folic acid, 5-MTHF, vitamin B12, iodine, zinc, copper, manganese, chromium, caffeine, theobromine, theophylline, methyltaxine, huperzine A, epicatechin, and enzymes.
  • the complex of the present invention can be provided in solid or powder form.
  • Such solid form compositions can be formulated to have sufficient ease of handling and manufacturability.
  • the complex can be provided in liquid form, such as an injection or oral spray for rapid delivery and absorption.
  • the liquid form can include one or more liquid carriers, such as water, ethanol, glycerol, propylene glycol, 1,3-propylene glycol, etc.
  • the complex of the present invention can be taken as a suppository, tablet, pill, granule, powder, film, capsule, beverage, aerosol, alcohol, tincture, tonic, liquid suspension or syrup.
  • the complex and/or composition of the present invention can be prepared into food and beverage products for human consumption, as well as nutritional supplements, energy treatments, medical treatments, or strength and/or endurance sports supplements, as ketogenic substances, thereby providing a dietary source of exogenous ketones, increasing or maintaining the subject's blood ketone level.
  • the resulting product can exhibit reduced acidity, lower hygroscopicity, better taste, better palatability, uniform appearance, and a good balance of ketogenic effects, and has no intestinal side effects, electrolyte imbalance, or high salt load.
  • the acid ⁇ sodium salt complex, acid ⁇ potassium salt complex, acid ⁇ calcium salt complex and acid ⁇ magnesium salt complex of the present invention are prepared by the same method as complexes I-IV.
  • the composites prepared in the examples were subjected to tests such as X-ray diffraction (XRD), elemental analysis, Raman spectroscopy (Raman), infrared spectroscopy (IR), TGA, DSC, and DVS.
  • XRD X-ray diffraction
  • elemental analysis Raman spectroscopy
  • IR infrared spectroscopy
  • TGA TGA
  • DSC DVS
  • DVS DVS
  • the X-ray powder diffraction pattern was obtained using a SmartLab 3KW X-ray powder diffractometer under the following conditions: diffraction line: Cu_K-beta (40KV, 40mA), scanning rate: 20.00deg/min, scanning range: 3° ⁇ 60°.
  • diffraction line Cu_K-beta (40KV, 40mA)
  • scanning rate 20.00deg/min
  • scanning range 3° ⁇ 60°.
  • the XRPD pattern of the 3-hydroxybutyric acid ⁇ potassium 3-hydroxybutyrate complex (complex I) obtained in Example 1 is shown in Figure 1, and the XRPD data obtained in Example 1 are shown in Table 1.
  • FIG2A is an infrared spectrum (IR) diagram of the composite I of Example 1.
  • the composite has characteristic absorption peaks at 2972 cm -1 , 2933 cm -1 , 1715 cm -1 , 1574 cm -1 , 1304 cm -1 , 1196 cm -1 , 1126 cm -1 , 1065 cm -1 , 951 cm -1 , 854 cm -1 , and 474 cm -1 ; the IR results of the composites prepared in Examples 2-18 are substantially consistent with those in Example 1.
  • Figure 2B is an infrared spectrum (IR) diagram of the complex II of Example 19. It can be seen from Figure 2B that the complex II has characteristic absorption peaks at 2974cm -1 , 2936cm -1 , 1715cm- 1 , 1558cm - 1 , 1506cm- 1 , 1300cm - 1 , 1196cm-1, 1126cm -1 , 1065cm- 1 , 951cm -1 , 854cm -1 , and 422cm -1 ; the IR results of the complexes obtained in Examples 20-36 are basically consistent with those in Example 19.
  • FIG. 2C is an infrared spectrum (IR) diagram of the complex III of Example 37. It can be seen from Figure 2C that complex III has characteristic absorption peaks at 2976cm - 1 , 2936cm- 1 , 1713cm -1 , 1321cm -1 , 1207cm -1 , 1088cm - 1, 957cm -1 , 912cm-1, 826cm - 1 , 625cm -1 , 554cm -1 , 411cm -1 , etc.; the IR results of the complexes obtained in Examples 38-54 are basically consistent with those in Example 37.
  • Figure 2D is an infrared spectrum (IR) diagram of the complex IV of Example 55. It can be seen from Figure 2D that the complex IV has characteristic absorption peaks at 2968cm -1 , 2880cm -1 , 1715cm -1 , 1558cm -1 , 1404cm- 1 , 1065cm - 1 , 982cm- 1 , 912cm- 1 , 874cm- 1 , 783cm -1 , 473cm -1 , and 426cm -1 ; the IR results of the complexes obtained in Examples 56-72 are basically consistent with those in Example 55.
  • the NMR ( 1 H) results of the complex IV prepared in Examples 56-72 were basically consistent with those in Example 55.
  • Example 76 Determination of metal ion content and BHB/BHP content
  • the potassium content and 3-hydroxybutyric acid content results of the complex I prepared by Examples 2-6, 8-12, and 14-18 are consistent with those of Examples 1, 7, and 13, respectively;
  • the calcium content and 3-hydroxybutyric acid content results of the complex II prepared by Examples 20-24, 26-30, and 32-36 are consistent with those of Examples 19, 25, and 31, respectively;
  • the magnesium content and 3-hydroxybutyric acid content results of the complex III prepared by Examples 38-42, 44-48, and 50-54 are consistent with those of Examples 37, 43, and 49, respectively.
  • the sodium content in the complex IV of Examples 55, 61, and 67 was measured, and the 3-hydroxyvaleric acid content in the complex was determined by HPLC. The test results were consistent with the structure of the complex, and the specific data are shown in Table 2-2 below.
  • the sodium content and 3-hydroxyvaleric acid content results of the complex IV prepared in Examples 56-60, 62-66, and 68-72 were consistent with those of Examples 55, 61, and 67, respectively.
  • the elemental analysis of the complex I of Example 1 was performed: C 39.1%, H 6.1%, and the elemental analysis results of Examples 2-18 were also consistent with those of Example 1, and the results were consistent with the structure of the 3-hydroxybutyric acid ⁇ 3-hydroxybutyrate potassium complex.
  • the elemental analysis of the complex II of Example 19 was performed: C 42.2%, H 6.6%, and the elemental analysis results of Examples 20-36 were also consistent with those of Example 19, and the results were consistent with the structure of the 3-hydroxybutyric acid ⁇ 3-hydroxybutyrate calcium complex.
  • the elemental analysis of the complex III of Example 37 was performed: C 43.8%, H 6.9%, and the elemental analysis results of Examples 38-54 were also consistent with those of Example 37, and the results were consistent with the structure of the 3-hydroxybutyric acid ⁇ 3-hydroxybutyrate magnesium complex.
  • the elemental analysis of the complex IV of Example 55 was performed: C 46.5%, H 7.3%, and the elemental analysis results of Examples 56-72 were also consistent with those of Example 55, and the results were consistent with the structure of the 3-hydroxyvaleric acid ⁇ 3-hydroxyvaleric acid sodium complex.
  • FIG3 is a Raman spectrum of the composite I of Example 1.
  • the composite I of Example 1 has characteristic absorption peaks at 3358.49 cm -1 , 2974.54 cm -1 , 2962.49 cm -1 , 2922.50 cm -1 , 2888.89 cm -1 , 2712.38 cm -1 , 1451.91 cm -1 , 1312.00 cm -1 , 1067.72 cm -1 , 912.01 cm -1 , 856.19 cm -1 , 752.02 cm -1 and the like, with an error tolerance of ⁇ 2 cm -1 .
  • the Raman spectrum results of the composites obtained in Examples 2-18 are substantially consistent with those in Example 1.
  • FIG4A is a TGA graph of the complex I of Example 1, which has a weight loss of 61.51% when heated from 30°C to 299°C, and the TGA results of the complexes prepared in Examples 2-18 are basically consistent with those in Example 1.
  • FIG4B-1 is a TGA graph of the complex II of Example 19, which has a weight loss of 2.18% when heated from 23.5°C to 100.0°C, and the TGA results of the complexes prepared in Examples 20-24 are basically consistent with those in Example 19.
  • FIG4B-2 is a TGA graph of the complex II of Example 25, which has a weight loss of 1.22% when heated from 26.8°C to 100.0°C, and the TGA results of the complexes prepared in Examples 26-30 are basically consistent with those in Example 25.
  • Figure 4B-3 is a TGA graph of complex II of Example 31, which has a weight loss of 1.47% when heated from 27.2°C to 100.0°C, and the TGA results of the complexes prepared in Examples 32-36 are basically consistent with those in Example 31.
  • Figure 4C-1 is a TGA graph of complex III of Example 37, which has a weight loss of 2.47% when heated from 26.2°C to 100.0°C, and the TGA results of the complexes prepared in Examples 38-42 are basically consistent with those in Example 37.
  • Figure 4C-2 is a TGA graph of complex III of Example 43, which has a weight loss of 2.78% when heated from 26.9°C to 100.0°C, and the TGA results of the complexes prepared in Examples 44-48 are basically consistent with those in Example 43.
  • Figure 4C-3 is a TGA graph of complex III of Example 49, which has a weight loss of 3.59% when heated from 26.6°C to 100.0°C, and the TGA results of the complexes prepared in Examples 50-54 are basically consistent with those in Example 49.
  • Figure 4D is a TGA graph of complex IV of Example 55, which has a weight loss of 2.74% when heated from 24.2°C to 120.0°C, and the TGA results of the complexes prepared in Examples 56-72 are basically consistent with those in Example 55.
  • FIG5 is a DSC spectrum of the composite I of Example 1, which includes an endothermic peak at 251.24° C. ⁇ 3° C.
  • the DSC spectrum results of the composites prepared in Examples 2-18 are basically consistent with those in Example 1.
  • Example 81 Determination of moisture content of the composite of the present invention
  • R-3-hydroxybutyric acid, potassium R-3-hydroxybutyrate, a mixture of R-3-hydroxybutyric acid and potassium R-3-hydroxybutyrate, and the R-3-hydroxybutyric acid ⁇ potassium R-3-hydroxybutyrate complex of Example 1 were taken and the moisture content at different times was tested using a KF moisture meter under certain sample placement conditions.
  • the experimental results are shown in Table 3A-1.
  • 3-hydroxybutyric acid, potassium 3-hydroxybutyrate, a mixture of 3-hydroxybutyric acid and potassium 3-hydroxybutyrate, and the 3-hydroxybutyric acid ⁇ potassium 3-hydroxybutyrate complex of Example 7 were tested for moisture content at different times using a KF moisture meter under certain sample placement conditions.
  • the experimental results are shown in Table 3A-2.
  • R-3-hydroxybutyric acid, R-3-hydroxybutyric acid calcium, a mixture of R-3-hydroxybutyric acid and R-3-hydroxybutyric acid calcium, and the R-3-hydroxybutyric acid ⁇ R-3-hydroxybutyric acid calcium complex of Example 19 were tested for moisture content at different times using a KF moisture meter under certain sample placement conditions. The experimental results are shown in Table 3B-1.
  • 3-hydroxybutyric acid, calcium 3-hydroxybutyrate, a mixture of 3-hydroxybutyric acid and calcium 3-hydroxybutyrate, and the 3-hydroxybutyric acid ⁇ calcium 3-hydroxybutyrate complex of Example 25 were tested for moisture content at different times using a KF moisture meter under certain sample placement conditions. The experimental results are shown in Table 3B-2.
  • S-3-hydroxybutyric acid, calcium S-3-hydroxybutyrate, a mixture of S-3-hydroxybutyric acid and calcium S-3-hydroxybutyrate, and the S-3-hydroxybutyric acid ⁇ calcium S-3-hydroxybutyrate complex of Example 31 were taken and the moisture content at different times was tested using a KF moisture meter under certain sample placement conditions.
  • the experimental results are shown in Table 3B-3.
  • R-3-hydroxybutyric acid, magnesium R-3-hydroxybutyrate, a mixture of R-3-hydroxybutyric acid and magnesium R-3-hydroxybutyrate, and the R-3-hydroxybutyric acid ⁇ magnesium R-3-hydroxybutyrate complex of Example 37 were tested for moisture content at different times using a KF moisture meter under certain sample placement conditions. The experimental results are shown in Table 3C-1.
  • 3-hydroxybutyric acid, magnesium 3-hydroxybutyrate, a mixture of 3-hydroxybutyric acid and magnesium 3-hydroxybutyrate, and the 3-hydroxybutyric acid ⁇ magnesium 3-hydroxybutyrate complex of Example 43 were tested for moisture content at different times using a KF moisture meter under certain sample placement conditions.
  • the experimental results are shown in Table 3C-2.
  • R-3-hydroxyvaleric acid, sodium R-3-hydroxyvalerate, a mixture of R-3-hydroxyvaleric acid and sodium R-3-hydroxyvalerate, and the R-3-hydroxyvaleric acid ⁇ sodium R-3-hydroxyvalerate complex of Example 55 were tested for moisture content at different times using a KF moisture meter under certain sample placement conditions. The experimental results are shown in Table 3D-1.
  • S-3-hydroxyvaleric acid, sodium S-3-hydroxyvalerate, a mixture of S-3-hydroxyvaleric acid and sodium S-3-hydroxyvalerate, and the S-3-hydroxyvaleric acid ⁇ sodium S-3-hydroxyvalerate complex of Example 67 were tested for moisture content at different times using a KF moisture meter under certain sample placement conditions. The experimental results are shown in Table 3D-3.
  • the water content of the complex I-IV of the present invention is significantly lower than that of the corresponding acid, salt, and acid and salt mixture, which can increase the application scenarios of the complex product.
  • the acid solid Since the acid solid has strong hygroscopicity and is easily deliquesced, it cannot be well applied to the field of solid preparations, which greatly limits its application in the field of solid nutrients and dietary supplements.
  • the water absorption performance of the complex I-IV of the present invention is significantly better than that of the corresponding acid, salt, and acid and salt mixture, and a simple mixture of acid and salt is prone to uneven mixing, which makes the application range of the complex wider, especially suitable for the preparation and application of solid preparations.
  • Example 82 Stability of the complex of the present invention
  • R-3-hydroxybutyric acid, R-3-hydroxybutyric acid calcium, a mixture of R-3-hydroxybutyric acid and R-3-hydroxybutyric acid calcium, and the R-3-hydroxybutyric acid ⁇ R-3-hydroxybutyric acid calcium complex of Example 19 were tested for their stability at temperatures of 30°C, 40°C, 60°C, 70°C, and 80°C. The experimental results are shown in Table 4B-1.
  • R-3-hydroxyvaleric acid, sodium R-3-hydroxyvalerate, a mixture of R-3-hydroxyvaleric acid and sodium R-3-hydroxyvalerate, and the R-3-hydroxyvaleric acid ⁇ sodium R-3-hydroxyvalerate complex of Example 55 were tested for their stability at temperatures of 30°C, 40°C, 60°C, 70°C, and 80°C. The experimental results are shown in Table 4D-1.
  • the present invention solves the problems of strong acidity, intestinal side effects, high hygroscopicity and poor stability of BHB acid and BHP acid, and solves the problem of electrolyte imbalance caused by high salt load of BHB and BHP salts.
  • the composite shows better comprehensive effects than individual acids or salts or simply physically mixed components, and has suitable hygroscopicity and stability, making it particularly suitable for the process preparation of solid preparations.
  • the composite of the present invention has a good ketogenic effect.
  • the composite prepared by the present invention has high purity, uniform particle size distribution, good fluidity, is not easy to stick, and has good bioavailability; and the preparation process is controllable, low cost and environmentally friendly.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Diabetes (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Hematology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Food Science & Technology (AREA)
  • Mycology (AREA)
  • Epidemiology (AREA)
  • Obesity (AREA)
  • Nutrition Science (AREA)
  • Polymers & Plastics (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)

Abstract

一种复合物,包括3-羟基丁酸;和3-羟基丁酸钾,或3-羟基丁酸钙,或3-羟基丁酸镁中的一种或多种。一种复合物,阴离子包括3-羟基戊酸,阳离子包括钠和氢。该复合物具有合适的吸湿性和稳定性。在适合的剂量时,复合物具有较好的生酮效果。

Description

一类酸与盐的复合物及其制备方法 技术领域
本发明属于膳食或营养补充剂技术领域,具体涉及一类酸与盐的复合物及其制备方法。
背景技术
目前,人们对膳食或营养补充剂的需求不断增长,旨在改善个体的健康状况并降低疾病风险;运动员也会使用膳食或营养补充剂来提高力量和表现。
通常人体会依赖葡萄糖来获取能量,但当葡萄糖的供应量不足以满足身体的能量需求时,例如在长时间运动、饥饿或缺乏膳食碳水化合物期间,身体会转向消耗脂肪作为燃料。由于大脑和中枢神经系统不能直接使用脂肪作为能量,肝脏从脂肪酸产生酮体作为替代燃料,然后释放到血液/血浆中。酮体不仅为大脑提供燃料,还被骨骼肌和心肌使用。酮体的代谢与若干有益作用相关,包括抗惊厥作用、增强的脑代谢、神经保护、保护肌肉特性和改善的认知和身体性能。基于科学的细胞代谢效率的提高,通过酮补充进行管理,可以对身体、认知健康和心理健康产生有益的影响,并针对常见的可避免疾病(如肥胖症、心血管疾病、神经退行性疾病、糖尿病和癌症)对健康产生长期影响。
尽管追求生酮饮食或生活方式并保持营养酮症状态有许多健康优势,但追求和保持生酮状态仍存在重大障碍。这些障碍之一是很难过渡到生酮状态。通过消耗体内的葡萄糖储备来进入酮症的最快内源性途径是通过禁食和锻炼。这在身体上和情感上都要求很高,甚至对最有动力和最自律的人来说也极具挑战性。
大量关于外源性酮的研究表明,摄入能够提高血液中酮体水平的化合物可以带来各种临床益处,包括增强身体和认知能力以及治疗心血管疾病、糖尿病、神经退行性疾病和癫痫。因此,希望直接向人类或动物提供酮体作为能源。膳食或营养补充剂可能含有羧酸,例如,β-羟基丁酸(也称为3-羟基丁酸或BHB),它是三种主要酮体(即乙酰乙酸酯、丙酮和BHB)之一。
然而,现有已知的可摄取外源性酮体具有限制其使用的缺点。β-羟基丁酸是外源酮的一个来源,其众所周知的问题是酸性极强,由于这种酸度,β-羟基丁酸以可摄取形式使用的量和浓度是有限的。通过将β-羟基丁酸形成钠、镁、钙和钾盐,已经在一些应用中解决了D-BHB酸的酸度问题。然而,虽然盐可以解决酸度问题,但由于伴随有盐超负荷,易导致电解质失衡,酮盐的使用也被限制为非常小的量,除了小剂量外,味道也令人不愉快。简单物理混合羧酸和盐时,上述问题仍然存在,并且很难实现均一混合。
因此,为了解决现有的酸的酸性强、吸湿性高以及现有的盐的盐负荷高、胃肠副作用、味道令人不愉快等问题,需要进一步寻找能够有效避免或平衡上述问题的物质,以便更好地作为膳食或营养补充剂中的生酮物质使用,尤其有利于固体颗粒的工艺制备以及颗粒剂应用。
发明内容
在一个方面,本发明提供了一种复合物,该复合物包括3-羟基丁酸;和3-羟基丁酸钾,或3-羟基丁酸钙,或3-羟基丁酸镁中的一种或多种。
在一些实施方案中,复合物的结构中的阴离子包括3-羟基丁酸阴离子;阳离子包括钾离子,钙离子,镁离子中的一种或多种,和氢离子。
在一些实施方案中,3-羟基丁酸与3-羟基丁酸钾,或3-羟基丁酸钙,或3-羟基丁酸镁中的一种或多种的比例为1:10至10:1。
在一些实施方案中,复合物中包含不小于50%的R构型、不大于50%的S构型;或大于50%的S构型、小于50%的R构型。
在一些实施方案中,复合物为3-羟基丁酸·3-羟基丁酸钾或3-羟基丁酸·3-羟基丁酸钙或3-羟基丁酸·3-羟基丁酸镁或其混合物。
在一些实施方案中,复合物具有以下结构:
或其混合物。
在一个方面,本发明提供了3-羟基丁酸·3-羟基丁酸盐复合物,盐为钾盐、钙盐和/或镁盐。
在一些实施方案中,复合物为R-3-羟基丁酸·R-3-羟基丁酸盐和/或S-3-羟基丁酸·S-3-羟基丁酸盐。
在一些实施方案中,复合物包含不小于50%的R-3-羟基丁酸·R-3-羟基丁酸盐、不大于50%的S-3-羟基丁酸·S-3-羟基丁酸盐,或大于50%的S-3-羟基丁酸·S-3-羟基丁酸盐、小于50%的R-3-羟基丁酸·R-3-羟基丁酸盐。
在一些实施方案中,复合物具有以下结构:
在一些实施方案中,复合物为结晶形式。
在一些实施方案中,钾盐复合物的X射线粉末衍射图包括位于6.7±0.2°、19.6±0.2°、24.9±0.2°和27.1±0.2°的衍射角(2θ)处的峰。
在一些实施方案中,钾盐复合物的X射线粉末衍射图还包括位于13.4±0.2°、21.4±0.2°、26.0±0.2°、32.5±0.2°的衍射角(2θ)处的一个或多个峰。
在一些实施方案中,钾盐复合物的X射线粉末衍射图还包括位于20.2±0.2°、23.4±0.2°、28.2±0.2°、34.0±0.2°的衍射角(2θ)处的一个或多个峰。
在一些实施方案中,钾盐复合物的X射线粉末衍射图如图1所示。
在一些实施方案中,钾盐复合物的红外光谱具有下列吸收光带,以波长的倒数表示(cm-1)(±2cm-1):2972、2933、1715、1574、1304、1196、1126、1065、951、854、474。
在一些实施方案中,钙盐复合物的红外光谱具有下列吸收光带,以波长的倒数表示(cm-1)(±2cm-1):2974、2936、1715、1558、1506、1300、1196、1126、1065、951、854、422。
在一些实施方案中,镁盐复合物的红外光谱具有下列吸收光带,以波长的倒数表示(cm-1)(±2cm-1):2976、2936、1713、1321、1207、1088、957、912、826、625、554、411。
在一些实施方案中,复合物制备为食品、饮料、补充剂或药物制剂。
在另一个方面,本发明提供了一种3-羟基丁酸·3-羟基丁酸盐复合物,其由如下方法获得:
(1)通过选自以下方法中的一种得到物质B:3-羟基丁酸和3-羟基丁酸盐混合;或在碱性化合物水溶液中加入3-羟基丁酸,搅拌并除水,蒸至近干;或使3-羟基丁酸烷基酯与水在催化剂存在下加热反应,冷却并过滤,在滤液中加入碱性化合物水溶液,减压蒸馏除水,蒸至近干;
(2)在步骤(1)中得到的物质B中加入选自以下一种或多种的溶剂:水、THF、DMF、DMSO、DMAC、醇类、卤化烃类、酮类、酯类,搅拌并冷却,使固体析出;
(3)将固体滤出并烘干,得到复合物。
在一些实施方案中,复合物为R-3-羟基丁酸·R-3-羟基丁酸盐和/或S-3-羟基丁酸·S-3-羟基丁酸盐。
在一些实施方案中,复合物为结晶形式。
在另一个方面,本发明提供了一种制备上述复合物的方法,其包括以下步骤:
(1)通过选自以下方法中的一种得到物质B:3-羟基丁酸和3-羟基丁酸盐混合;或在碱性化合物水溶液中加入3-羟基丁酸,搅拌并除水,蒸至近干;或使3-羟基丁酸烷基酯与水在催化剂存在下加热反应,冷却并过滤,在滤液中加入碱性化合物水溶液,减压蒸馏除水,蒸至近干;
(2)在步骤(1)中得到的物质B中加入选自以下一种或多种的溶剂:水、THF、DMF、DMSO、DMAC、醇类、卤化烃类、酮类、酯类,搅拌并冷却,使固体析出;
(3)将固体滤出并烘干,得到复合物。
在一些实施方案中,步骤(2)中醇类为甲醇、乙醇、异丙醇、正丁醇,卤化烃类为氯苯、二氯苯、二氯甲烷,酮类为丙酮、甲基丁酮、甲基异丁酮,酯类为乙酸乙酯、乙酸异丙酯、乙酸正丁酯、乙酸异丁酯。
在一些实施方案中,步骤(1)中碱性化合物为钾、钙或镁的氢氧化物、碳酸盐、碳酸氢盐、甲醇盐、乙酸盐或甲酸盐;3-羟基丁酸烷基酯为3-羟基丁酸甲酯、3-羟基丁酸乙酯、3-羟基丁酸丙酯、3-羟基丁酸异丙酯、3-羟基丁酸丁酯、3-羟基丁酸异丁酯。
在另一个方面,本发明提供了一种组合物,其包含有效量的上述复合物,和药学上可接受的载体。
在一些实施方案中,组合物作为生酮物质而应用。
在一些实施方案中,组合物制备为食品、饮料、补充剂或药物制剂。
在另一个方面,本发明提供了复合物的用途,复合物在制备升高或维持受试者血酮水平的生酮物质中的应用。
在一些实施方案中,生酮物质为营养补充剂、能量治疗、医疗治疗或力量和/或耐力运动补充剂。
在另一个方面,本发明提供了组合物在制备用于升高或维持受试者血酮水平的生酮物质中的用途,组合物包含本发明的复合物,和药学上可接受的载体。
在一些实施方案中,生酮物质为营养补充剂、能量治疗、医疗治疗或力量和/或耐力运动补充剂。
在另一个方面,本发明提供了一类酸与盐的复合物,酸包括丙酸、丁酸、戊酸、己酸、羟基羧酸,盐包括钠盐、钾盐、钙盐和/或镁盐。
在一些实施方案中,羟基羧酸为3-羟基戊酸(BHP)。
在一些实施方案中,复合物的结构中的阴离子包括3-羟基戊酸阴离子,阳离子包括钠离子和氢离子。
在一些实施方案中,3-羟基戊酸与3-羟基戊酸钠的比例为1:10至10:1。
在一些实施方案中,复合物中包含不小于50%的R构型、不大于50%的S构型;或大于50%的S构型、小于50%的R构型。
在一些实施方案中,复合物具有以下结构:
在一些实施方案中,复合物为结晶形式。
在一些实施方案中,复合物为R-3-羟基戊酸·R-3-羟基戊酸钠和/或S-3-羟基戊酸·S-3-羟基戊酸钠。
在一些实施方案中,复合物包含不小于50%的R-3-羟基戊酸·R-3-羟基戊酸钠、不大于50%的S-3-羟基戊酸·S-3-羟基戊酸钠;或大于50%的S-3-羟基戊酸·S-3-羟基戊酸钠、小于50%的R-3-羟基戊酸·R-3-羟基戊酸钠。
在一些实施方案中,复合物具有以下结构:和/或
在一些实施方案中,复合物的红外光谱具有下列吸收光带,以波长的倒数表示(cm-1)(±2cm-1):2968、2880、1715、1558、1404、1065、982、912、874、783、473、426。
在一些实施方案中,复合物制备为食品、饮料、补充剂或药物制剂。
在另一个方面,本发明提供了一类酸与盐的复合物,其由如下方法获得:
(1)通过选自以下方法中的一种得到物质C:酸和相应的盐混合;或在碱性化合物水溶液中加入酸,搅拌并除水,蒸至近干;或使酸的烷基酯与水在催化剂存在下加热反应,冷却并过滤,在滤液中加入碱性化合物水溶液,减压蒸馏除水,蒸至近干;
(2)在步骤(1)中得到的物质C中加入选自以下一种或多种的溶剂:水、THF、DMF、DMSO、DMAC、醇类、卤化烃类、酮类、酯类,搅拌并冷却,使固体析出;
(3)将固体滤出并烘干,得到复合物。
在一些实施方案中,复合物为丙酸·丙酸钠盐、丙酸·丙酸钾盐、丙酸·丙酸钙盐、丙酸·丙酸镁盐、丁酸·丁酸钠盐、丁酸·丁酸钾盐、丁酸·丁酸钙盐、丁酸·丁酸镁盐、戊酸·戊酸钠盐、戊酸·戊酸钾盐、戊酸·戊酸钙盐、戊酸·戊酸镁盐、己酸·己酸钠盐、己酸·己酸钾盐、己酸·己酸钙盐、己酸·己酸镁盐、3-羟基戊酸·3-羟基戊酸钠盐、3-羟基戊酸·3-羟基戊酸钾盐、3-羟基戊酸·3-羟基戊酸钙盐、3-羟基戊酸·3-羟基戊酸镁盐。
在一些实施方案中,复合物为结晶形式。
在另一个方面,本发明提供了一种制备上述复合物的方法,其包括以下步骤:
(1)通过选自以下方法中的一种得到物质C:酸和相应的盐混合;或在碱性化合物水溶液中加入酸,搅拌并除水,蒸至近干;或使酸的烷基酯与水在催化剂存在下加热反应,冷却并过滤,在滤液中加入碱性化合物水溶液,减压蒸馏除水,蒸至近干;
(2)在步骤(1)中得到的物质C中加入选自以下一种或多种的溶剂:水、THF、DMF、DMSO、DMAC、醇类、卤化烃类、酮类、酯类,搅拌并冷却,使固体析出;
(3)将固体滤出并烘干,得到复合物。
在一些实施方案中,步骤(2)中醇类为甲醇、乙醇、异丙醇、正丁醇,卤化烃类为氯苯、二氯苯、二氯甲烷,酮类为丙酮、甲基丁酮、甲基异丁酮,酯类为乙酸乙酯、乙酸异丙酯、乙酸正丁酯、乙酸异丁酯。
在一些实施方案中,步骤(1)中碱性化合物为钠、钾、钙或镁的氢氧化物、碳酸盐、碳酸氢盐、甲醇盐、乙酸盐或甲酸盐;酸的烷基酯为酸的甲酯、乙酯、丙酯、异丙酯、丁酯、异丁酯。
在另一个方面,本发明提供了一种组合物,其包含有效量的上述复合物,和药学上可接受的载体。
>在一些实施方案中,组合物作为生酮物质而应用。
在一些实施方案中,组合物制备为食品、饮料、补充剂或药物制剂。
在另一个方面,本发明提供了上述复合物的用途,其在制备用于升高或维持受试者血酮水平的生酮物质中的应用。
在一些实施方案中,生酮物质为营养补充剂、能量治疗、医疗治疗或力量和/或耐力运动补充剂。
在另一个方面,本发明提供了一种组合物在制备用于升高或维持受试者血酮水平的生酮物质中的用途,组合物包含上述复合物,和药学上可接受的载体。
在一些实施方案中,生酮物质为营养补充剂、能量治疗、医疗治疗或力量和/或耐力运动补充剂。
与现有技术相比,本发明的复合物有益效果是:本发明的复合物无不良气味,有效地避免酸度、吸湿性、盐负荷、肠道副作用、电解质失衡等问题;与其他外源酮相比,该复合物具有卓越的适应性。当施用于受试者时,复合物表现出比单独的酸或盐或简单物理混合的组分更好的综合效果。一方面,本发明的复合物解决了酸的酸性强、肠道副作用及吸湿性高的问题,同时解决了盐的盐负荷高导致电解质失衡,并且不存在物理混合的混合不均的问题,因此作为生酮物质可以在膳食补充剂或食品领域中具有广泛的应用前景。
附图说明
图1为本发明3-羟基丁酸·3-羟基丁酸钾复合物(复合物I)的XRPD图。
图2A为本发明3-羟基丁酸·3-羟基丁酸钾复合物(复合物I)的红外光谱(IR)图。
图2B为本发明3-羟基丁酸·3-羟基丁酸钙复合物(复合物II)的红外光谱(IR)图。
图2C为本发明3-羟基丁酸·3-羟基丁酸镁复合物(复合物III)的红外光谱(IR)图。
图2D为本发明3-羟基戊酸·3-羟基戊酸钠复合物(复合物IV)的红外光谱(IR)图。
图3为本发明3-羟基丁酸·3-羟基丁酸钾复合物(复合物I)的拉曼光谱。
图4A为本发明3-羟基丁酸·3-羟基丁酸钾复合物(复合物I)的TGA图。
[根据细则91更正 12.10.2023]
图4B-1至图4B-3为本发明3-羟基丁酸·3-羟基丁酸钙复合物(复合物II)的TGA图。
[根据细则91更正 12.10.2023]
图4C-1至图4C-3为本发明3-羟基丁酸·3-羟基丁酸镁复合物(复合物III)的TGA图。
图4D为本发明3-羟基戊酸·3-羟基戊酸钠复合物(复合物IV)的TGA图。
图5为本发明3-羟基丁酸·3-羟基丁酸钾复合物(复合物I)的DSC图谱。
具体实施方式
现将详细参考本发明的优选实施方案,进一步说明其实施例。虽然将结合优选实施方案描述本发明,但应当理解它们并不旨在将本发明限制于这些实施方案。相反,本发明旨在覆盖替代、修改和等同方案,其可以包括在如权利要求书所限定的本发明的精神和范围之内。此外,在本发明的详细描述中,阐述了许多具体细节以便提供对本发明的透彻理解。然而,对于本领域的普通技术人员显而易见的是,可以在没有这些具体细节的情况下实践本发明。在其他情况下,没有详细描述众所周知的方法、程序、组分和其他特征,以免不必要地模糊本发明的各方面。
本发明的3-羟基丁酸·3-羟基丁酸盐复合物包括任何适当比例的3-羟基丁酸与3-羟基丁酸盐,并且复合物可以是固定含水比例的水合物、非水合物,及相应的结晶型式。本发明的酸·盐复合物包括任何适当比例的3-羟基戊酸(BHP)、丙酸、丁酸、戊酸和/或己酸与钠盐、钾盐、钙盐和/或镁盐,并且复合物可以是固定含水比例的水合物、非水合物,及相应的结晶型式。
如本文所用,术语“或”旨在包括“和”和“或”。换句话说,术语“或”也可以被替换为“和/或”。
如本文所用,除非上下文另有明确指示,否则单数形式“一(a/an)”和“所述(the)”旨在也包括复数形式。
如本文所用,术语“包含”或“包括”或其变化形式指以下情况,其中该术语以其非限制性含义使用,指包括该词语后的项目,但并不排除未特别提及的项目。其还包括更限制性的动词‘基本上由……组成’和‘由……组成’。
如本文所用,术语“约”和“大致”通过提供给定值可以是“略高于”
或“小于”端点来提供数值的灵活性。该术语的灵活性可以由特定变量决定,并且在本领域技术人员的知识范围内以基于经验和本文的相关描述来确定。
“β-羟基丁酸”也称为3-羟基丁酸、βHB或BHB,是指具有通式CH3CH2OHCH2COOH的化合物。“β-羟基丁酸衍生物”是指具有以下化学结构的化合物:其中X为氢、金属离子、氨基阳离子(例如氨基酸)等。
当X是氢时,该化合物是β-羟基丁酸。当X是金属离子或氨基阳离子时,该化合物是β-羟基丁酸盐。前述化合物可以是任何所需的物理形式,例如晶体、粉末、固体、液体、溶液、悬浮液或凝胶。
如本文所用,术语“施用”是指将所公开的复合物或有效成分递送给受试者的过程。本发明的复合物可以通过各种合适的方式施用以发挥所要效果,包括口服、胃内和肠胃外(指静脉内和动脉内以及其他合适的肠胃外途径)等等。本发明的复合物可以以治疗有效剂量和/或以诱导或维持酮症的频率向受试者施用。在一些实施方案中,单剂量将包括约1-50克、或约2-40克、或约5-30克、或约10-20克、约0.5-25克、或约0.75-20克、或约1-15克、或约1.5-12克的量。在一些实施方案中,在一段时间内施用多次剂量的复合物。复合物的施用频率可根据多种因素中的任一种而变化,例如从以前的治疗开始的治疗时间、治疗目的等。复合物施用的持续时间(例如,施用药剂的时间段)可根据多种因素中的任一种而变化,包括受试者的反应、期望的治疗效果等。
如本文所用,术语“有效量”是指实现如本文所教导的效果所需的量。待施用的量可以根据诸如个体的敏感程度、个体的年龄、性别和体重、个体的特异反应等因素而变化。根据本公开,合适的单剂量大小是当在合适的时间段内施用一次或多次时能够达到上述效果的剂量。
如本文所用,术语“药学上可接受的”是指药学上、生理学上、饮食上和/或营养学上可接受的,是指在合理的医学判断的范围内的那些组合物或试剂、材料或组合物和/或其剂型的组合,其适用于与人类和动物的组织接触,与组合物的其他成分相容,没有过多的毒性、刺激性、过敏反应或其他问题或并发症,与合理的利益/风险比相称。
在一些实施方案中,β-羟基丁酸可以为R-β-羟基丁酸,R-β-羟基丁酸是由哺乳动物在酮症过程中内源性产生的,所以向受试者施用R-β-羟基丁酸提供了额外的量和/或增加的血浆水平,其可被身体立即使用,例如用于产生能量(例如,作为葡萄糖的替代能源)。
本发明的复合物和/或组合物可以用于制备用于升高或维持受试者血酮水平的生酮物质,在受试者中升高酮体水平,包括在施用其的受试者中诱导和/或维持处于所需水平的升高的酮体水平(例如酮症)。“酮症”是指受试者的血酮水平在约0.5mmol/L至约16mmol/L的范围内。酮症可以改善线粒体功能、减少活性氧种类的产生、减少炎症和增加神经营养因子的活性。“酮适应”是指长期营养酮症(>1周),以达到持续的非病理学“轻度酮症”或“治疗性酮症”。在一些情况下,“升高的酮体水平”可能并不意味着受试者处于“临床酮症”状态,但是仍然具有用于产生能量和/或实现酮体的其他有益效果的升高的酮供应。
本发明的复合物和/或组合物的施用可以升高或维持受试者血酮水平,作为生酮物质,产生一种或多种所需效果,包括但不限于食欲抑制、体重减轻、脂肪减少、血糖水平降低、精神警觉性改善、体能增加、认知功能改善、创伤性脑损伤减少、糖尿病的影响降低、神经障碍改善,癌症的减少、炎症的减少、抗衰老、抗糖化、癫痫发作减少、情绪改善、力量增加、肌肉量增加或身体组成改善。
在一些实施方案中,本发明的复合物可以与饮食上或药学上可接受的载体一起制备为组合物。在本发明中,提供组合物的施用形式涉及液体或固体填充剂、稀释剂、赋形剂、溶剂或包封材料。每种载体必须是“可接受的”,其意义在于与组合物的其他成分相容,并且对受试者无害,即适合于消耗或营养学上可接受的。上述载体包括保健食品和膳食补充剂以及药物制剂中常用的那些无毒相容物质,如糖、淀粉、纤维素及其衍生物、粉状黄蓍胶、麦芽、明胶、滑石、油、二醇、多元醇、酯、琼脂、海藻酸、无热原水、等渗盐水等。
在一些实施方案中,本发明的复合物可以与其他补充剂一起施用,例如维生素、矿物质、益智剂和本领域已知的其他补充剂。可以添加到生酮组合物中的维生素、矿物质和草药补充剂的例子包括维生素A、维生素C、维生素D3、维生素E、烟酸、维生素B6、叶酸、5-MTHF、维生素B12、碘、锌、铜、锰、铬、咖啡因、可可碱、茶碱、甲基紫杉碱、石杉碱甲、表儿茶素和酶中的一种或多种。
在一些实施方案中,本发明的复合物可以以固体或粉末形式提供。这种固体形式的组合物可以配制成具有足够的易操作性和制造性。该复合物可以液体形式提供,例如用于快速输送和吸收的注射剂或口腔喷雾剂形式。液体形式可以包括一种或多种液体载体,例如水、乙醇、甘油、丙二醇、1,3-丙二醇等。
在一些实施方案中,本发明的复合物可以作为栓剂、片剂、丸剂、颗粒剂、散剂、膜剂、胶囊剂、饮料、气雾剂、酒精、酊剂、滋补剂、液体混悬剂或糖浆。
本发明的复合物和/或组合物可以制备成用于人类消费的食品和饮料产品以及营养补充剂、能量治疗、医疗治疗或力量和/或耐力运动补充剂,作为生酮物质,从而提供外源性酮的膳食来源,升高或维持受试者血酮水平。所得产品可以表现出降低的酸度、较低的吸湿性、更好的味道、较好的适口性、均一的外观以及良好的生酮效果的平衡效果,并且无肠道副作用、电解质失衡、盐负荷高的问题。
以下实施例是对本发明的选择实施方案的说明,并不意味着限制本发明的范围。
本发明复合物的制备
实施例1.R-3-羟基丁酸·R-3-羟基丁酸钾复合物(复合物I)的制备
在1L反应瓶内加入110克R-3-羟基丁酸、110克R-3-羟基丁酸钾、440mL二氯甲烷,加热至40℃,搅拌溶清,冷却至0-10℃,析出固体,过滤,40℃烘干,得160克R-3-羟基丁酸·R-3-羟基丁酸钾复合物。
实施例2.R-3-羟基丁酸·R-3-羟基丁酸钾复合物(复合物I)的制备
在1L反应瓶内加入104克R-3-羟基丁酸、142克R-3-羟基丁酸钾、440mL丙酮,加热至60℃,搅拌溶清,冷却至0-10℃,析出固体,过滤,55℃烘干,得200克R-3-羟基丁酸·R-3-羟基丁酸钾复合物。
实施例3.R-3-羟基丁酸·R-3-羟基丁酸钾复合物(复合物I)的制备
在1L反应瓶内加入200mL水和28g氢氧化钾,搅拌溶解,冷却至25℃以下后加入104克R-3-羟基丁酸,搅拌半小时后,减压蒸馏除水,蒸至近干后,加入200mL二氯甲烷,搅拌,冷却至0-10℃,析出固体,过滤,40℃烘干,得80克R-3-羟基丁酸·R-3-羟基丁酸钾复合物。
实施例4.R-3-羟基丁酸·R-3-羟基丁酸钾复合物(复合物I)的制备
在1L反应瓶内加入200mL水和28g氢氧化钾,搅拌溶解,冷却至25℃以下后加入104克R-3-羟基丁酸,搅拌半小时后,减压蒸馏除水,蒸至近干后,加入200mL丙酮,搅拌,冷却至0-10℃,析出固体,过滤,55℃烘干,得100克R-3-羟基丁酸·R-3-羟基丁酸钾复合物。
实施例5.R-3-羟基丁酸·R-3-羟基丁酸钾复合物(复合物I)的制备
在1L反应瓶内加入60克R-3-羟基丁酸甲酯、360mL水和24克催化剂,90-95℃加热24小时至反应完全,冷却至室温,过滤掉催化剂,滤液加入13克氢氧化钾的50mL水溶液,减压蒸馏除水,蒸至近干后,加入100mL二氯甲烷,搅拌,冷却至0-10℃,析出固体,过滤,40℃烘干,得45克R-3-羟基丁酸·R-3-羟基丁酸钾复合物。
实施例6.R-3-羟基丁酸·R-3-羟基丁酸钾复合物(复合物I)的制备
在1L反应瓶内加入60克R-3-羟基丁酸甲酯、360mL水和24克催化剂,90-95℃加热24小时至反应完全,冷却至室温,过滤掉催化剂,滤液加入13克氢氧化钾的50mL水溶液,减压蒸馏除水,蒸至近干后,加入100mL丙酮,搅拌,冷却至0-10℃,析出固体,过滤,55℃烘干,得52克R-3-羟基丁酸·R-3-羟基丁酸钾复合物。
实施例7. 3-羟基丁酸·3-羟基丁酸钾复合物(复合物I)的制备
在1L反应瓶内加入110克3-羟基丁酸、110克3-羟基丁酸钾、440mL二氯甲烷,加热至40℃,搅拌溶清,冷却至0-10℃,析出固体,过滤,40℃烘干,得152克3-羟基丁酸·3-羟基丁酸钾复合物。
实施例8. 3-羟基丁酸·3-羟基丁酸钾复合物(复合物I)的制备
在1L反应瓶内加入104克3-羟基丁酸、142克3-羟基丁酸钾、440mL丙酮,加热至60℃,搅拌溶清,冷却至0-10℃,析出固体,过滤,55℃烘干,得170克3-羟基丁酸·3-羟基丁酸钾复合物。
实施例9. 3-羟基丁酸·3-羟基丁酸钾复合物(复合物I)的制备
在1L反应瓶内加入200mL水和28g氢氧化钾,搅拌溶解,冷却至25℃以下后加入104克3-羟基丁酸,搅拌半小时后,减压蒸馏除水,蒸至近干后,加入200mL丙酮,搅拌,冷却至0-10℃,析出固体,过滤,55℃烘干,得98克3-羟基丁酸·3-羟基丁酸钾复合物。
实施例10. 3-羟基丁酸·3-羟基丁酸钾复合物(复合物I)的制备
在1L反应瓶内加入200mL水和28g氢氧化钾,搅拌溶解,冷却至25℃以下后加入104克3-羟基丁酸,搅拌半小时后,减压蒸馏除水,蒸至近干后,加入200mL二氯甲烷,搅拌,冷却至0-10℃,析出固体,过滤,40℃烘干,得82克3-羟基丁酸·3-羟基丁酸钾复合物。
实施例11. 3-羟基丁酸·3-羟基丁酸钾复合物(复合物I)的制备
在1L反应瓶内加入60克3-羟基丁酸甲酯、360mL水和24克催化剂,90-100℃加热24小时至反应完全,冷却至室温,过滤掉催化剂,滤液加入13克氢氧化钾的50mL水溶液,减压蒸馏除水,蒸至近干后,加入100mL二氯甲烷,搅拌,冷却至0-10℃,析出固体,过滤,40℃烘干,得48克3-羟基丁酸·3-羟基丁酸钾复合物。
实施例12. 3-羟基丁酸·3-羟基丁酸钾复合物(复合物I)的制备
在1L反应瓶内加入60克3-羟基丁酸甲酯、360mL水和24克催化剂,90-95℃加热24小时至反应完全,冷却至室温,过滤掉催化剂,滤液加入13克氢氧化钾的50mL水溶液,减压蒸馏除水,蒸至近干后,加入100mL丙酮,搅拌,冷却至0-10℃,析出固体,过滤,55℃烘干,得58克3-羟基丁酸·3-羟基丁酸钾复合物。
实施例13.S-3-羟基丁酸·S-3-羟基丁酸钾复合物(复合物I)的制备
在1L反应瓶内加入110克S-3-羟基丁酸、110克S-3-羟基丁酸钾、440mL二氯甲烷,加热至40℃,搅拌溶清,冷却至0-10℃,析出固体,过滤,40℃烘干,得162克S-3-羟基丁酸·S-3-羟基丁酸钾复合物。
实施例14.S-3-羟基丁酸·S-3-羟基丁酸钾复合物(复合物I)的制备
在1L反应瓶内加入104克S-3-羟基丁酸、142克S-3-羟基丁酸钾、440mL丙酮,加热至60℃,搅拌溶清,冷却至0-10℃,析出固体,过滤,55℃烘干,得186克S-3-羟基丁酸·S-3-羟基丁酸钾复合物。
实施例15.S-3-羟基丁酸·S-3-羟基丁酸钾复合物(复合物I)的制备
在1L反应瓶内加入200mL水和28g氢氧化钾,搅拌溶解,冷却至25℃以下后加入104克S-3-羟基丁酸,搅拌半小时后,减压蒸馏除水,蒸至近干后,加入200mL二氯甲烷,搅拌,冷却至0-10℃,析出固体,过滤,40℃烘干,得78克S-3-羟基丁酸·S-3-羟基丁酸钾复合物。
实施例16.S-3-羟基丁酸·S-3-羟基丁酸钾复合物(复合物I)的制备
在1L反应瓶内加入200mL水和28g氢氧化钾,搅拌溶解,冷却至25℃以下后加入104克S-3-羟基丁酸,搅拌半小时后,减压蒸馏除水,蒸至近干后,加入200mL丙酮,搅拌,冷却至0-10℃,析出固体,过滤,55℃烘干,得90克S-3-羟基丁酸·S-3-羟基丁酸钾复合物。
实施例17.S-3-羟基丁酸·S-3-羟基丁酸钾复合物(复合物I)的制备
在1L反应瓶内加入60克S-3-羟基丁酸甲酯、360mL水和24克催化剂,90-95℃加热24小时至反应完全,冷却至室温,过滤掉催化剂,滤液加入13克氢氧化钾的50mL水溶液,减压蒸馏除水,蒸至近干后,加入100mL二氯甲烷,搅拌,冷却至0-10℃,析出固体,过滤,40℃烘干,得48克S-3-羟基丁酸·S-3-羟基丁酸钾复合物。
实施例18.S-3-羟基丁酸·S-3-羟基丁酸钾复合物(复合物I)的制备
在1L反应瓶内加入60克S-3-羟基丁酸甲酯、360mL水和24克催化剂,90-95℃加热24小时至反应完全,冷却至室温,过滤掉催化剂,滤液加入13克氢氧化钾的50mL水溶液,减压蒸馏除水,蒸至近干后,加入100mL丙酮,搅拌,冷却至0-10℃,析出固体,过滤,55℃烘干,得55克S-3-羟基丁酸·S-3-羟基丁酸钾复合物。
实施例19.R-3-羟基丁酸·R-3-羟基丁酸钙复合物(复合物II)的制备
在1L反应瓶内加入100克R-3-羟基丁酸、120克R-3-羟基丁酸钙、440mL二氯甲烷,加热至40℃,搅拌溶清,冷却至0-10℃,析出固体,过滤,40℃烘干,得150克R-3-羟基丁酸·R-3-羟基丁酸钙复合物。
实施例20.R-3-羟基丁酸·R-3-羟基丁酸钙复合物(复合物II)的制备
在1L反应瓶内加入104克R-3-羟基丁酸、125克R-3-羟基丁酸钙、480mL丙酮,加热至60℃,搅拌溶清,冷却至0-10℃,析出固体,过滤,55℃烘干,得140克R-3-羟基丁酸·R-3-羟基丁酸钙复合物。
实施例21.R-3-羟基丁酸·R-3-羟基丁酸钙复合物(复合物II)的制备
在1L反应瓶内加入200mL水和14g氧化钙,搅拌,升温至55℃后,滴加104克R-3-羟基丁酸,搅拌半小时后,减压蒸馏除水,蒸至近干后,加入200mL二氯甲烷,搅拌,冷却至0-10℃,析出固体,过滤,40℃烘干,得65克R-3-羟基丁酸·R-3-羟基丁酸钙复合物。
实施例22.R-3-羟基丁酸·R-3-羟基丁酸钙复合物(复合物II)的制备
在1L反应瓶内加入200mL水和14g氧化钙,搅拌,升温至55℃后,加入104克R-3-羟基丁酸,搅拌半小时后,减压蒸馏除水,蒸至近干后,加入200mL丙酮,搅拌,冷却至0-10℃,析出固体,过滤,55℃烘干,得88克R-3-羟基丁酸·R-3-羟基丁酸钙复合物。
实施例23.R-3-羟基丁酸·R-3-羟基丁酸钙复合物(复合物II)的制备
在1L反应瓶内加入60克R-3-羟基丁酸甲酯、360mL水和24克催化剂,90-95℃加热24小时至反应完全,冷却至室温,过滤掉催化剂,滤液加入7克氧化钙固体,减压蒸馏除水,蒸至近干后,加入100mL二氯甲烷,搅拌,冷却至0-10℃,析出固体,过滤,40℃烘干,得32克R-3-羟基丁酸·R-3-羟基丁酸钙复合物。
实施例24.R-3-羟基丁酸·R-3-羟基丁酸钙复合物(复合物II)的制备
在1L反应瓶内加入60克R-3-羟基丁酸甲酯、360mL水和24克催化剂,90-95℃加热24小时至反应完全,冷却至室温,过滤掉催化剂,滤液加入7克氧化钙固体,减压蒸馏除水,蒸至近干后,加入100mL丙酮,搅拌,冷却至0-10℃,析出固体,过滤,55℃烘干,得35克R-3-羟基丁酸·R-3-羟基丁酸钙复合物。
实施例25. 3-羟基丁酸·3-羟基丁酸钙复合物(复合物II)的制备
在1L反应瓶内加入100克3-羟基丁酸、120克3-羟基丁酸钙、440mL二氯甲烷,加热至40℃,搅拌溶清,冷却至0-10℃,析出固体,过滤,40℃烘干,得143克3-羟基丁酸·3-羟基丁酸钙复合物。
实施例26. 3-羟基丁酸·3-羟基丁酸钙复合物(复合物II)的制备
在1L反应瓶内加入104克3-羟基丁酸、125克3-羟基丁酸钙、480mL丙酮,加热至60℃,搅拌溶清,冷却至0-10℃,析出固体,过滤,55℃烘干,得132克3-羟基丁酸·3-羟基丁酸钙复合物。
实施例27. 3-羟基丁酸·3-羟基丁酸钙复合物(复合物II)的制备
在1L反应瓶内加入200mL水和14g氧化钙,搅拌,升温至55℃后,滴加104克3-羟基丁酸,搅拌半小时后,减压蒸馏除水,蒸至近干后,加入200mL二氯甲烷,搅拌,冷却至0-10℃,析出固体,过滤,40℃烘干,得69克3-羟基丁酸·3-羟基丁酸钙复合物。
实施例28. 3-羟基丁酸·3-羟基丁酸钙复合物(复合物II)的制备
在1L反应瓶内加入200mL水和14g氧化钙,搅拌,升温至55℃后,加入104克3-羟基丁酸,搅拌半小时后,减压蒸馏除水,蒸至近干后,加入200mL丙酮,搅拌,冷却至0-10℃,析出固体,过滤,55℃烘干,得85克3-羟基丁酸·3-羟基丁酸钙复合物。
实施例29. 3-羟基丁酸·3-羟基丁酸钙复合物(复合物II)的制备
在1L反应瓶内加入60克3-羟基丁酸甲酯、360mL水和24克催化剂,90-95℃加热24小时至反应完全,冷却至室温,过滤掉催化剂,滤液加入7克氧化钙固体,减压蒸馏除水,蒸至近干后,加入100mL二氯甲烷,搅拌,冷却至0-10℃,析出固体,过滤,40℃烘干,得37克3-羟基丁酸·3-羟基丁酸钙复合物。
实施例30. 3-羟基丁酸·3-羟基丁酸钙复合物(复合物II)的制备
在1L反应瓶内加入60克3-羟基丁酸甲酯、360mL水和24克催化剂,90-95℃加热24小时至反应完全,冷却至室温,过滤掉催化剂,滤液加入7克氧化钙固体,减压蒸馏除水,蒸至近干后,加入100mL丙酮,搅拌,冷却至0-10℃,析出固体,过滤,55℃烘干,得34克3-羟基丁酸·R-3-羟基丁酸钙复合物。
实施例31.S-3-羟基丁酸·S-3-羟基丁酸钙复合物(复合物II)的制备
在1L反应瓶内加入100克S-3-羟基丁酸、120克S-3-羟基丁酸钙、440mL二氯甲烷,加热至40℃,搅拌溶清,冷却至0-10℃,析出固体,过滤,40℃烘干,得148克S-3-羟基丁酸·S-3-羟基丁酸钙复合物。
实施例32.S-3-羟基丁酸·S-3-羟基丁酸钙复合物(复合物II)的制备
在1L反应瓶内加入104克S-3-羟基丁酸、125克S-3-羟基丁酸钙、480mL丙酮,加热至60℃,搅拌溶清,冷却至0-10℃,析出固体,过滤,55℃烘干,得143克S-3-羟基丁酸·S-3-羟基丁酸钙复合物。
实施例33.S-3-羟基丁酸·S-3-羟基丁酸钙复合物(复合物II)的制备
在1L反应瓶内加入200mL水和14g氧化钙,搅拌,升温至55℃后,滴加104克S-3-羟基丁酸,搅拌半小时后,减压蒸馏除水,蒸至近干后,加入200mL二氯甲烷,搅拌,冷却至0-10℃,析出固体,过滤,40℃烘干,得59克S-3-羟基丁酸·S-3-羟基丁酸钙复合物。
实施例34.S-3-羟基丁酸·S-3-羟基丁酸钙复合物(复合物II)的制备
在1L反应瓶内加入200mL水和14g氧化钙,搅拌,升温至55℃后,加入104克S-3-羟基丁酸,搅拌半小时后,减压蒸馏除水,蒸至近干后,加入200mL丙酮,搅拌,冷却至0-10℃,析出固体,过滤,55℃烘干,得83克S-3-羟基丁酸·S-3-羟基丁酸钙复合物。
实施例35.S-3-羟基丁酸·S-3-羟基丁酸钙复合物(复合物II)的制备
在1L反应瓶内加入60克S-3-羟基丁酸甲酯、360mL水和24克催化剂,90-95℃加热24小时至反应完全,冷却至室温,过滤掉催化剂,滤液加入7克氧化钙固体,减压蒸馏除水,蒸至近干后,加入100mL二氯甲烷,搅拌,冷却至0-10℃,析出固体,过滤,40℃烘干,得30克S-3-羟基丁酸·S-3-羟基丁酸钙复合物。
实施例36.S-3-羟基丁酸·S-3-羟基丁酸钙复合物(复合物II)的制备
在1L反应瓶内加入60克S-3-羟基丁酸甲酯、360mL水和24克催化剂,90-95℃加热24小时至反应完全,冷却至室温,过滤掉催化剂,滤液加入7克氧化钙固体,减压蒸馏除水,蒸至近干后,加入100mL丙酮,搅拌,冷却至0-10℃,析出固体,过滤,55℃烘干,得32克S-3-羟基丁酸·S-3-羟基丁酸钙复合物。
实施例37.R-3-羟基丁酸·R-3-羟基丁酸镁复合物(复合物III)的制备
在1L反应瓶内加入100克R-3-羟基丁酸、110克R-3-羟基丁酸镁、440mL二氯甲烷,加热至40℃,搅拌溶清,冷却至0-10℃,析出固体,过滤,40℃烘干,得148克R-3-羟基丁酸·R-3-羟基丁酸镁复合物。
实施例38.R-3-羟基丁酸·R-3-羟基丁酸镁复合物(复合物III)的制备
在1L反应瓶内加入104克R-3-羟基丁酸、116克R-3-羟基丁酸镁、480mL丙酮,加热至60℃,搅拌溶清,冷却至0-10℃,析出固体,过滤,55℃烘干,得140克R-3-羟基丁酸·R-3-羟基丁酸镁复合物。
实施例39.R-3-羟基丁酸·R-3-羟基丁酸镁复合物(复合物III)的制备
在1L反应瓶内加入200mL水和12g氧化镁,搅拌,升温至55℃后,滴加104克R-3-羟基丁酸,搅拌半小时后,减压蒸馏除水,蒸至近干后,加入200mL二氯甲烷,搅拌,冷却至0-10℃,析出固体,过滤,40℃烘干,得62克R-3-羟基丁酸·R-3-羟基丁酸镁复合物。
实施例40.R-3-羟基丁酸·R-3-羟基丁酸镁复合物(复合物III)的制备
在1L反应瓶内加入200mL水和12g氧化镁,搅拌,升温至55℃后,加入104克R-3-羟基丁酸,搅拌半小时后,减压蒸馏除水,蒸至近干后,加入200mL丙酮,搅拌,冷却至0-10℃,析出固体,过滤,55℃烘干,得82克R-3-羟基丁酸·R-3-羟基丁酸镁复合物。
实施例41.R-3-羟基丁酸·R-3-羟基丁酸镁复合物(复合物III)的制备
在1L反应瓶内加入60克R-3-羟基丁酸甲酯、360mL水和24克催化剂,90-95℃加热24小时至反应完全,冷却至室温,过滤掉催化剂,滤液加入7克氧化镁固体,减压蒸馏除水,蒸至近干后,加入100mL二氯甲烷,搅拌,冷却至0-10℃,析出固体,过滤,40℃烘干,得32克R-3-羟基丁酸·R-3-羟基丁酸镁复合物。
实施例42.R-3-羟基丁酸·R-3-羟基丁酸镁复合物(复合物III)的制备
在1L反应瓶内加入60克R-3-羟基丁酸甲酯、360mL水和24克催化剂,90-95℃加热24小时至反应完全,冷却至室温,过滤掉催化剂,滤液加入7克氧化镁固体,减压蒸馏除水,蒸至近干后,加入100mL丙酮,搅拌,冷却至0-10℃,析出固体,过滤,55℃烘干,得35克R-3-羟基丁酸·R-3-羟基丁酸镁复合物。
实施例43. 3-羟基丁酸·3-羟基丁酸镁复合物(复合物III)的制备
在1L反应瓶内加入100克3-羟基丁酸、110克3-羟基丁酸镁、440mL二氯甲烷,加热至40℃,搅拌溶清,冷却至0-10℃,析出固体,过滤,40℃烘干,得145克3-羟基丁酸·3-羟基丁酸镁复合物。
实施例44. 3-羟基丁酸·3-羟基丁酸镁复合物(复合物III)的制备
在1L反应瓶内加入104克3-羟基丁酸、116克3-羟基丁酸镁、480mL丙酮,加热至60℃,搅拌溶清,冷却至0-10℃,析出固体,过滤,55℃烘干,得148克3-羟基丁酸·3-羟基丁酸镁复合物。
实施例45. 3-羟基丁酸·3-羟基丁酸镁复合物(复合物III)的制备
在1L反应瓶内加入200mL水和12g氧化镁,搅拌,升温至55℃后,滴加104克3-羟基丁酸,搅拌半小时后,减压蒸馏除水,蒸至近干后,加入200mL二氯甲烷,搅拌,冷却至0-10℃,析出固体,过滤,40℃烘干,得67克3-羟基丁酸·3-羟基丁酸镁复合物。
实施例46. 3-羟基丁酸·3-羟基丁酸镁复合物(复合物III)的制备
在1L反应瓶内加入200mL水和12g氧化镁,搅拌,升温至55℃后,加入104克3-羟基丁酸,搅拌半小时后,减压蒸馏除水,蒸至近干后,加入200mL丙酮,搅拌,冷却至0-10℃,析出固体,过滤,55℃烘干,得76克3-羟基丁酸·3-羟基丁酸镁复合物。
实施例47. 3-羟基丁酸·3-羟基丁酸镁复合物(复合物III)的制备
在1L反应瓶内加入60克3-羟基丁酸甲酯、360mL水和24克催化剂,90-95℃加热24小时至反应完全,冷却至室温,过滤掉催化剂,滤液加入7克氧化镁固体,减压蒸馏除水,蒸至近干后,加入100mL二氯甲烷,搅拌,冷却至0-10℃,析出固体,过滤,40℃烘干,得35克3-羟基丁酸·3-羟基丁酸镁复合物。
实施例48. 3-羟基丁酸·3-羟基丁酸镁复合物(复合物III)的制备
在1L反应瓶内加入60克3-羟基丁酸甲酯、360mL水和24克催化剂,90-95℃加热24小时至反应完全,冷却至室温,过滤掉催化剂,滤液加入7克氧化镁固体,减压蒸馏除水,蒸至近干后,加入100mL丙酮,搅拌,冷却至0-10℃,析出固体,过滤,55℃烘干,得36克3-羟基丁酸·3-羟基丁酸镁复合物。
实施例49.S-3-羟基丁酸·S-3-羟基丁酸镁复合物(复合物III)的制备
在1L反应瓶内加入100克S-3-羟基丁酸、110克S-3-羟基丁酸镁、440mL二氯甲烷,加热至40℃,搅拌溶清,冷却至0-10℃,析出固体,过滤,40℃烘干,得145克S-3-羟基丁酸·S-3-羟基丁酸镁复合物。
实施例50.S-3-羟基丁酸·S-3-羟基丁酸镁复合物(复合物III)的制备
在1L反应瓶内加入104克S-3-羟基丁酸、116克S-3-羟基丁酸镁、480mL丙酮,加热至60℃,搅拌溶清,冷却至0-10℃,析出固体,过滤,55℃烘干,得138克S-3-羟基丁酸·S-3-羟基丁酸镁复合物。
实施例51.S-3-羟基丁酸·S-3-羟基丁酸镁复合物(复合物III)的制备
在1L反应瓶内加入200mL水和12g氧化镁,搅拌,升温至55℃后,滴加104克S-3-羟基丁酸,搅拌半小时后,减压蒸馏除水,蒸至近干后,加入200mL二氯甲烷,搅拌,冷却至0-10℃,析出固体,过滤,40℃烘干,得58克S-3-羟基丁酸·S-3-羟基丁酸镁复合物。
实施例52.S-3-羟基丁酸·S-3-羟基丁酸镁复合物(复合物III)的制备
在1L反应瓶内加入200mL水和12g氧化镁,搅拌,升温至55℃后,加入104克S-3-羟基丁酸,搅拌半小时后,减压蒸馏除水,蒸至近干后,加入200mL丙酮,搅拌,冷却至0-10℃,析出固体,过滤,55℃烘干,得83克S-3-羟基丁酸·S-3-羟基丁酸镁复合物。
实施例53.S-3-羟基丁酸·S-3-羟基丁酸镁复合物(复合物III)的制备
在1L反应瓶内加入60克S-3-羟基丁酸甲酯、360mL水和24克催化剂,90-95℃加热24小时至反应完全,冷却至室温,过滤掉催化剂,滤液加入7克氧化镁固体,减压蒸馏除水,蒸至近干后,加入100mL二氯甲烷,搅拌,冷却至0-10℃,析出固体,过滤,40℃烘干,得34克S-3-羟基丁酸·S-3-羟基丁酸镁复合物。
实施例54.S-3-羟基丁酸·S-3-羟基丁酸镁复合物(复合物III)的制备
在1L反应瓶内加入60克S-3-羟基丁酸甲酯、360mL水和24克催化剂,90-95℃加热24小时至反应完全,冷却至室温,过滤掉催化剂,滤液加入7克氧化镁固体,减压蒸馏除水,蒸至近干后,加入100mL丙酮,搅拌,冷却至0-10℃,析出固体,过滤,55℃烘干,得36克S-3-羟基丁酸·S-3-羟基丁酸镁复合物。
实施例55.R-3-羟基戊酸·R-3-羟基戊酸钠复合物(复合物IV)的制备
在1L反应瓶内加入118克R-3-羟基戊酸、140克R-3-羟基戊酸钠、450mL二氯甲烷,加热至40℃,搅拌溶清,冷却至0-10℃,析出固体,过滤,40℃烘干,得148克R-3-羟基戊酸·R-3-羟基戊酸钠复合物。
实施例56.R-3-羟基戊酸·R-3-羟基戊酸钠复合物(复合物IV)的制备
在1L反应瓶内加入118克3-羟基戊酸、140克3-羟基戊酸钠、480mL丙酮,加热至60℃,搅拌溶清,冷却至0-10℃,析出固体,过滤,55℃烘干,得140克R-3-羟基戊酸·R-3-羟基戊酸钠复合物。
实施例57.R-3-羟基戊酸·R-3-羟基戊酸钠复合物(复合物IV)的制备
在1L反应瓶内加入200mL水和20g氢氧化钠,搅拌溶解,冷却至25℃以下后加入120克R-3-羟基戊酸,搅拌半小时后,减压蒸馏除水,蒸至近干后,加入200mL二氯甲烷,搅拌,冷却至0-10℃,析出固体,过滤,40℃烘干,得75克R-3-羟基戊酸·R-3-羟基戊酸钠复合物。
实施例58.R-3-羟基戊酸·R-3-羟基戊酸钠复合物(复合物IV)的制备
在1L反应瓶内加入200mL水和20g氢氧化钠,搅拌溶解,冷却至25℃以下后加入120克R-3-羟基戊酸,搅拌半小时后,减压蒸馏除水,蒸至近干后,加入200mL丙酮,搅拌,冷却至0-10℃,析出固体,过滤,55℃烘干,得98克R-3-羟基戊酸·R-3-羟基戊酸钠复合物。
实施例59.R-3-羟基戊酸·R-3-羟基戊酸钠复合物(复合物IV)的制备
在1L反应瓶内加入65克R-3-羟基戊酸甲酯、360mL水和24克催化剂,90-95℃加热24小时至反应完全,冷却至室温,过滤掉催化剂,滤液加入9克氢氧化钠的50mL水溶液,减压蒸馏除水,蒸至近干后,加入100mL二氯甲烷,搅拌,冷却至0-10℃,析出固体,过滤,40℃烘干,得40克R-3-羟基戊酸·R-3-羟基戊酸钠复合物。
实施例60.R-3-羟基戊酸·R-3-羟基戊酸钠复合物(复合物IV)的制备
在1L反应瓶内加入65克R-3-羟基戊酸甲酯、360mL水和24克催化剂,90-95℃加热24小时至反应完全,冷却至室温,过滤掉催化剂,滤液加入9克氢氧化钠的50mL水溶液,减压蒸馏除水,蒸至近干后,加入100mL丙酮,搅拌,冷却至0-10℃,析出固体,过滤,55℃烘干,得50克R-3-羟基戊酸·R-3-羟基戊酸钠复合物。
实施例61. 3-羟基戊酸·3-羟基戊酸钠复合物(复合物IV)的制备
在1L反应瓶内加入118克3-羟基戊酸、140克3-羟基戊酸钠、450mL二氯甲烷,加热至40℃,搅拌溶清,冷却至0-10℃,析出固体,过滤,40℃烘干,得139克3-羟基戊酸·3-羟基戊酸钠复合物。
实施例62. 3-羟基戊酸·3-羟基戊酸钠复合物(复合物IV)的制备
在1L反应瓶内加入118克3-羟基戊酸、140克3-羟基戊酸钠、480mL丙酮,加热至60℃,搅拌溶清,冷却至0-10℃,析出固体,过滤,55℃烘干,得124克3-羟基戊酸·3-羟基戊酸钠复合物。
实施例63. 3-羟基戊酸·3-羟基戊酸钠复合物(复合物IV)的制备
在1L反应瓶内加入200mL水和20g氢氧化钠,搅拌溶解,冷却至25℃以下后加入120克3-羟基戊酸,搅拌半小时后,减压蒸馏除水,蒸至近干后,加入200mL二氯甲烷,搅拌,冷却至0-10℃,析出固体,过滤,40℃烘干,得72克3-羟基戊酸·3-羟基戊酸钠复合物。
实施例64. 3-羟基戊酸·3-羟基戊酸钠复合物(复合物IV)的制备
在1L反应瓶内加入200mL水和20g氢氧化钠,搅拌溶解,冷却至25℃以下后加入120克3-羟基戊酸,搅拌半小时后,减压蒸馏除水,蒸至近干后,加入200mL丙酮,搅拌,冷却至0-10℃,析出固体,过滤,55℃烘干,得68克3-羟基戊酸·3-羟基戊酸钠复合物。
实施例65. 3-羟基戊酸·3-羟基戊酸钠复合物(复合物IV)的制备
在1L反应瓶内加入65克3-羟基戊酸甲酯、360mL水和24克催化剂,90-95℃加热24小时至反应完全,冷却至室温,过滤掉催化剂,滤液加入9克氢氧化钠的50mL水溶液,减压蒸馏除水,蒸至近干后,加入100mL二氯甲烷,搅拌,冷却至0-10℃,析出固体,过滤,40℃烘干,得45克3-羟基戊酸·3-羟基戊酸钠复合物。
实施例66. 3-羟基戊酸·3-羟基戊酸钠复合物(复合物IV)的制备
在1L反应瓶内加入65克3-羟基戊酸甲酯、360mL水和24克催化剂,90-95℃加热24小时至反应完全,冷却至室温,过滤掉催化剂,滤液加入9克氢氧化钠的50mL水溶液,减压蒸馏除水,蒸至近干后,加入100mL丙酮,搅拌,冷却至0-10℃,析出固体,过滤,55℃烘干,得46克3-羟基戊酸·3-羟基戊酸钠复合物。
实施例67.S-3-羟基戊酸·S-3-羟基戊酸钠复合物(复合物IV)的制备
在1L反应瓶内加入118克S-3-羟基戊酸、140克S-3-羟基戊酸钠、450mL二氯甲烷,加热至40℃,搅拌溶清,冷却至0-10℃,析出固体,过滤,40℃烘干,得147克S-3-羟基戊酸·S-3-羟基戊酸钠复合物。
实施例68.S-3-羟基戊酸·S-3-羟基戊酸钠复合物(复合物IV)的制备
在1L反应瓶内加入118克S-3-羟基戊酸、140克S-3-羟基戊酸钠、480mL丙酮,加热至60℃,搅拌溶清,冷却至0-10℃,析出固体,过滤,55℃烘干,得138克S-3-羟基戊酸·S-3-羟基戊酸钠复合物。
实施例69.S-3-羟基戊酸·S-3-羟基戊酸钠复合物(复合物IV)的制备
在1L反应瓶内加入200mL水和20g氢氧化钠,搅拌溶解,冷却至25℃以下后加入120克S-3-羟基戊酸,搅拌半小时后,减压蒸馏除水,蒸至近干后,加入200mL二氯甲烷,搅拌,冷却至0-10℃,析出固体,过滤,40℃烘干,得68克S-3-羟基戊酸·S-3-羟基戊酸钠复合物。
实施例70.S-3-羟基戊酸·S-3-羟基戊酸钠复合物(复合物IV)的制备
在1L反应瓶内加入200mL水和20g氢氧化钠,搅拌溶解,冷却至25℃以下后加入120克S-3-羟基戊酸,搅拌半小时后,减压蒸馏除水,蒸至近干后,加入200mL丙酮,搅拌,冷却至0-10℃,析出固体,过滤,55℃烘干,得92克S-3-羟基戊酸·S-3-羟基戊酸钠复合物。
实施例71.S-3-羟基戊酸·S-3-羟基戊酸钠复合物(复合物IV)的制备
在1L反应瓶内加入65克S-3-羟基戊酸甲酯、360mL水和24克催化剂,90-95℃加热24小时至反应完全,冷却至室温,过滤掉催化剂,滤液加入9克氢氧化钠的50mL水溶液,减压蒸馏除水,蒸至近干后,加入100mL二氯甲烷,搅拌,冷却至0-10℃,析出固体,过滤,40℃烘干,得41克S-3-羟基戊酸·S-3-羟基戊酸钠复合物。
实施例72.S-3-羟基戊酸·S-3-羟基戊酸钠复合物(复合物IV)的制备
在1L反应瓶内加入65克S-3-羟基戊酸甲酯、360mL水和24克催化剂,90-95℃加热24小时至反应完全,冷却至室温,过滤掉催化剂,滤液加入9克氢氧化钠的50mL水溶液,减压蒸馏除水,蒸至近干后,加入100mL丙酮,搅拌,冷却至0-10℃,析出固体,过滤,55℃烘干,得48克S-3-羟基戊酸·S-3-羟基戊酸钠复合物。
本发明的酸·钠盐复合物、酸·钾盐复合物、酸·钙盐复合物和酸·镁盐复合物采用与复合物I-IV基本相同的方法制备得到。
本发明复合物的表征
对实施例所制得的复合物分别进行X射线衍射(XRD)、元素分析、拉曼光谱(Raman)、红外光谱(IR)、TGA、DSC、DVS等测试。
实施例73.X射线衍射
采用SmartLab 3KW X射线粉末衍射仪在以下条件下得到X射线粉末衍射图:衍射线:Cu_K-beta(40KV,40mA),扫描速率:20.00deg/min,扫描范围:3°~60°。实施例1所得的3-羟基丁酸·3-羟基丁酸钾复合物(复合物I)的XRPD图如图1所示,实施例1所得的XRPD数据如表1所示。
表1
实施例2-6所制得的复合物XRPD结果与实施例1基本一致。
实施例74.红外光谱
用岛津(SHIMADZU)的傅里叶变换衰减全反射红外光谱仪对实施例1的复合物I进行红外光谱分析,图2A为实施例1的复合物I的红外光谱(IR)图,从图2A中可以看出复合物在2972cm-1、2933cm-1、1715cm-1、1574cm-1、1304cm-1、1196cm-1、1126cm-1、1065cm-1、951cm-1、854cm-1、474cm-1处有特征吸收峰;实施例2-18所制得的复合物IR结果与实施例1基本一致。对实施例19的复合物II进行红外光谱分析,图2B为实施例19的复合物II的红外光谱(IR)图,从图2B中可以看出复合物II在2974cm-1、2936cm-1、1715cm-1、1558cm- 1、1506cm-1、1300cm-1、1196cm-1、1126cm-1、1065cm-1、951cm-1、854cm-1、422cm-1处有特征吸收峰;实施例20-36所制得的复合物IR结果与实施例19基本一致。对实施例37的复合物III进行红外光谱分析,图2C为实施例37的复合物III的红外光谱(IR)图,从图2C中可以看出复合物III在2976cm-1、2936cm- 1、1713cm-1、1321cm-1、1207cm-1、1088cm-1、957cm-1、912cm-1、826cm-1、625cm-1、554cm-1、411cm-1等处有特征吸收峰;实施例38-54所制得的复合物IR结果与实施例37基本一致。对实施例55的复合物IV进行红外光谱分析,图2D为实施例55的复合物IV的红外光谱(IR)图,从图2D中可以看出复合物IV在2968cm-1、2880cm-1、1715cm-1、1558cm-1、1404cm-1、1065cm-1、982cm- 1、912cm-1、874cm-1、783cm-1、473cm-1、426cm-1处有特征吸收峰;实施例56-72所制得的复合物IR结果与实施例55基本一致。
实施例75.NMR(1H/13C)测定
在AVIII-HD-400光谱仪中记录实施例1的复合物I的1H NMR和13C NMR谱:1H NMR(400MHz,DMSO-d6)δ7.61(s,1H),3.89(dt,J=7.1,5.9Hz,1H),2.20–2.06(m,2H),1.04(d,J=6.2Hz,3H)。13C NMR(101MHz,DMSO-d6)δ175.58,64.24,45.69,23.80。实施例2-18所制得的复合物I的NMR(1H/13C)结果与实施例1基本一致。记录实施例19的复合物II的1H NMR谱:1H NMR(400MHz,D2O)δ4.06(h,J=6.4Hz,1H),2.32(d,J=6.6Hz,2H),1.09(d,J=6.3Hz,3H)。实施例20-36所制得的复合物II和实施例37-54所制得的复合物III的NMR(1H)结果与实施例19基本一致。记录实施例55的复合物IV的1H NMR谱:1H NMR(400MHz,DMSO-d6)δ3.68–3.53(m,1H),2.17(dd,J=14.8,4.3Hz,1H),2.03(dd,J=14.8,8.5Hz,1H),1.40–1.26(m,2H),0.84(t,J=7.4Hz,3H)。实施例56-72所制得的复合物IV的NMR(1H)结果与实施例55基本一致。
实施例76.金属离子含量和BHB/BHP含量测定
测得实施例1、7、13的复合物I中的钾含量、实施例19、25、31的复合物II中的钙含量、实施例37、43、49的复合物III中的镁含量,并用HPLC方法测定各复合物中的3-羟基丁酸含量,检测结果与该复合物结构符合,具体数据如下表2-1所示。实施例2-6、8-12、14-18所制得的复合物I的钾含量和3-羟基丁酸含量结果分别与实施例1、7、13一致;实施例20-24、26-30、32-36所制得的复合物II的钙含量和3-羟基丁酸含量结果分别与实施例19、25、31一致;实施例38-42、44-48、50-54所制得的复合物III的镁含量和3-羟基丁酸含量结果分别与实施例37、43、49一致。测得实施例55、61、67的复合物IV中的钠含量,并用HPLC方法测定复合物中的3-羟基戊酸含量,检测结果与该复合物结构符合,具体数据如下表2-2所示。实施例56-60、62-66、68-72所制得的复合物IV的钠含量和3-羟基戊酸含量结果分别与实施例55、61、67一致。
表2-1
表2-2
实施例77.元素分析
对实施例1的复合物I进行元素分析:C 39.1%,H 6.1%,实施例2-18的元素分析结果也与实施例1一致,结果与3-羟基丁酸·3-羟基丁酸钾复合物的结构一致。对实施例19的复合物II进行元素分析:C 42.2%,H 6.6%,实施例20-36的元素分析结果也与实施例19一致,结果与3-羟基丁酸·3-羟基丁酸钙复合物的结构一致。对实施例37的复合物III进行元素分析:C 43.8%,H 6.9%,实施例38-54的元素分析结果也与实施例37一致,结果与3-羟基丁酸·3-羟基丁酸镁复合物的结构一致。对实施例55的复合物IV进行元素分析:C 46.5%,H7.3%,实施例56-72的元素分析结果也与实施例55一致,结果与3-羟基戊酸·3-羟基戊酸钠复合物的结构一致。
实施例78.拉曼光谱
通过拉曼光谱分析,可得到复合物的特征拉曼光谱。图3为实施例1的复合物I的拉曼光谱,实施例1的复合物I在3358.49cm-1、2974.54cm-1、2962.49cm-1、2922.50cm-1、2888.89cm-1、2712.38cm-1、1451.91cm-1、1312.00cm-1、1067.72cm-1、912.01cm-1、856.19cm-1、752.02cm-1等处有特征吸收峰,存在±2cm- 1的误差容限,实施例2-18所制得的复合物拉曼光谱结果与实施例1基本一致。
实施例79.热重分析(TGA)
图4A为实施例1的复合物I的TGA图,该复合物在从30℃加热至299℃时有61.51%的重量损失,实施例2-18所制得的复合物TGA结果与实施例1基本一致。图4B-1为实施例19的复合物II的TGA图,该复合物在从23.5℃加热至100.0℃时有2.18%的重量损失,实施例20-24所制得的复合物TGA结果与实施例19基本一致。图4B-2为实施例25的复合物II的TGA图,该复合物在从26.8℃加热至100.0℃时有1.22%的重量损失,实施例26-30所制得的复合物TGA结果与实施例25基本一致。图4B-3为实施例31的复合物II的TGA图,该复合物在从27.2℃加热至100.0℃时有1.47%的重量损失,实施例32-36所制得的复合物TGA结果与实施例31基本一致。图4C-1为实施例37的复合物III的TGA图,该复合物在从26.2℃加热至100.0℃时有2.47%的重量损失,实施例38-42所制得的复合物TGA结果与实施例37基本一致。图4C-2为实施例43的复合物III的TGA图,该复合物在从26.9℃加热至100.0℃时有2.78%的重量损失,实施例44-48所制得的复合物TGA结果与实施例43基本一致。图4C-3为实施例49的复合物III的TGA图,该复合物在从26.6℃加热至100.0℃时有3.59%的重量损失,实施例50-54所制得的复合物TGA结果与实施例49基本一致。图4D为实施例55的复合物IV的TGA图,该复合物在从24.2℃加热至120.0℃时有2.74%的重量损失,实施例56-72所制得的复合物TGA结果与实施例55基本一致。
实施例80.差示扫描量热法(DSC)
图5为实施例1的复合物I的DSC图谱,其包含251.24℃±3℃的吸热峰,实施例2-18所制得的复合物DSC图谱结果与实施例1基本一致。
本发明复合物的性质测定
实施例81.本发明复合物的水分含量测定
取R-3-羟基丁酸、R-3-羟基丁酸钾、R-3-羟基丁酸和R-3-羟基丁酸钾混合物以及实施例1的R-3-羟基丁酸·R-3-羟基丁酸钾复合物,在一定的放样条件下,采用KF水分仪测试不同时间的水分含量。实验结果如表3A-1所示。
表3A-1
取3-羟基丁酸、3-羟基丁酸钾、3-羟基丁酸和3-羟基丁酸钾混合物以及实施例7的3-羟基丁酸·3-羟基丁酸钾复合物,在一定的放样条件下,采用KF水分仪测试不同时间的水分含量。实验结果如表3A-2所示。
表3A-2
取S-3-羟基丁酸、S-3-羟基丁酸钾、S-3-羟基丁酸和S-3-羟基丁酸钾混合物以及实施例13的S-3-羟基丁酸·S-3-羟基丁酸钾复合物,在一定的放样条件下,采用KF水分仪测试不同时间的水分含量。实验结果如表3A-3所示。
表3A-3
取R-3-羟基丁酸、R-3-羟基丁酸钙、R-3-羟基丁酸和R-3-羟基丁酸钙混合物以及实施例19的R-3-羟基丁酸·R-3-羟基丁酸钙复合物,在一定的放样条件下,采用KF水分仪测试不同时间的水分含量。实验结果如表3B-1所示。
表3B-1
取3-羟基丁酸、3-羟基丁酸钙、3-羟基丁酸和3-羟基丁酸钙混合物以及实施例25的3-羟基丁酸·3-羟基丁酸钙复合物,在一定的放样条件下,采用KF水分仪测试不同时间的水分含量。实验结果如表3B-2所示。
表3B-2
取S-3-羟基丁酸、S-3-羟基丁酸钙、S-3-羟基丁酸和S-3-羟基丁酸钙混合物以及实施例31的S-3-羟基丁酸·S-3-羟基丁酸钙复合物,在一定的放样条件下,采用KF水分仪测试不同时间的水分含量。实验结果如表3B-3所示。
表3B-3
取R-3-羟基丁酸、R-3-羟基丁酸镁、R-3-羟基丁酸和R-3-羟基丁酸镁混合物以及实施例37的R-3-羟基丁酸·R-3-羟基丁酸镁复合物,在一定的放样条件下,采用KF水分仪测试不同时间的水分含量。实验结果如表3C-1所示。
表3C-1
取3-羟基丁酸、3-羟基丁酸镁、3-羟基丁酸和3-羟基丁酸镁混合物以及实施例43的3-羟基丁酸·3-羟基丁酸镁复合物,在一定的放样条件下,采用KF水分仪测试不同时间的水分含量。实验结果如表3C-2所示。
表3C-2
取S-3-羟基丁酸、S-3-羟基丁酸镁、S-3-羟基丁酸和S-3-羟基丁酸镁混合物以及实施例49的S-3-羟基丁酸·S-3-羟基丁酸镁复合物,在一定的放样条件下,采用KF水分仪测试不同时间的水分含量。实验结果如表3C-3所示。
表3C-3
取R-3-羟基戊酸、R-3-羟基戊酸钠、R-3-羟基戊酸和R-3-羟基戊酸钠混合物以及实施例55的R-3-羟基戊酸·R-3-羟基戊酸钠复合物,在一定的放样条件下,采用KF水分仪测试不同时间的水分含量。实验结果如表3D-1所示。
表3D-1
取3-羟基戊酸、3-羟基戊酸钠、3-羟基戊酸和3-羟基戊酸钠混合物以及实施例61的3-羟基戊酸·3-羟基戊酸钠复合物,在一定的放样条件下,采用KF水分仪测试不同时间的水分含量。实验结果如表3D-2所示。
表3D-2
取S-3-羟基戊酸、S-3-羟基戊酸钠、S-3-羟基戊酸和S-3-羟基戊酸钠混合物以及实施例67的S-3-羟基戊酸·S-3-羟基戊酸钠复合物,在一定的放样条件下,采用KF水分仪测试不同时间的水分含量。实验结果如表3D-3所示。
表3D-3
以上结果显示,本发明复合物I-IV的水分含量均明显低于相应的酸、盐、酸和盐混合物三者,能够增加复合物产品的应用场景。由于酸固体吸湿性很强,很容易潮解,无法很好的应用于固体制剂领域,极大地限制了其在固体营养品、膳食补充剂领域的应用,而本发明的复合物I-IV的吸水性能明显优于相应的酸、盐、酸和盐混合物三者,并且简单的酸与盐的混合物容易存在混合不均匀的问题,使复合物的应用范围更广,尤其适合固体制剂的制备和应用。
实施例82.本发明复合物的稳定性
取R-3-羟基丁酸、R-3-羟基丁酸钾、R-3-羟基丁酸和R-3-羟基丁酸钾混合物以及实施例1的R-3-羟基丁酸·R-3-羟基丁酸钾复合物测定在温度30℃、40℃、60℃、70℃、80℃下的稳定性,实验结果如表4A-1所示。
表4A-1
取3-羟基丁酸、3-羟基丁酸钾、3-羟基丁酸和3-羟基丁酸钾混合物以及实施例7的3-羟基丁酸·3-羟基丁酸钾复合物测定在温度30℃、40℃、60℃、70℃、80℃下的稳定性,实验结果如表4A-2所示。
表4A-2
取S-3-羟基丁酸、S-3-羟基丁酸钾、S-3-羟基丁酸和S-3-羟基丁酸钾混合物以及实施例13的S-3-羟基丁酸·S-3-羟基丁酸钾复合物测定在温度30℃、40℃、60℃、70℃、80℃下的稳定性,实验结果如表4A-3所示。
表4A-3
取R-3-羟基丁酸、R-3-羟基丁酸钙、R-3-羟基丁酸和R-3-羟基丁酸钙混合物以及实施例19的R-3-羟基丁酸·R-3-羟基丁酸钙复合物测定在温度30℃、40℃、60℃、70℃、80℃下的稳定性,实验结果如表4B-1所示。
表4B-1
取3-羟基丁酸、3-羟基丁酸钙、3-羟基丁酸和3-羟基丁酸钙混合物以及实施例25的3-羟基丁酸·3-羟基丁酸钙复合物测定在温度30℃、40℃、60℃、70℃、80℃下的稳定性,实验结果如表4B-2所示。
表4B-2
取S-3-羟基丁酸、S-3-羟基丁酸钙、S-3-羟基丁酸和S-3-羟基丁酸钙混合物以及实施例31的S-3-羟基丁酸·S-3-羟基丁酸钙复合物测定在温度30℃、40℃、60℃、70℃、80℃下的稳定性,实验结果如表4B-3所示。
表4B-3
取R-3-羟基丁酸、R-3-羟基丁酸镁、R-3-羟基丁酸和R-3-羟基丁酸镁混合物以及实施例37的R-3-羟基丁酸·R-3-羟基丁酸镁复合物测定在温度30℃、40℃、60℃、70℃、80℃下的稳定性,实验结果如表4C-1所示。
表4C-1
取3-羟基丁酸、3-羟基丁酸镁、3-羟基丁酸和3-羟基丁酸镁混合物以及实施例43的3-羟基丁酸·3-羟基丁酸镁复合物测定在温度30℃、40℃、60℃、70℃、80℃下的稳定性,实验结果如表4C-2所示。
表4C-2
取S-3-羟基丁酸、S-3-羟基丁酸镁、S-3-羟基丁酸和S-3-羟基丁酸镁混合物以及实施例49的S-3-羟基丁酸·S-3-羟基丁酸镁复合物测定在温度30℃、40℃、60℃、70℃、80℃下的稳定性,实验结果如表4C-3所示。
表4C-3
取R-3-羟基戊酸、R-3-羟基戊酸钠、R-3-羟基戊酸和R-3-羟基戊酸钠混合物以及实施例55的R-3-羟基戊酸·R-3-羟基戊酸钠复合物测定在温度30℃、40℃、60℃、70℃、80℃下的稳定性,实验结果如表4D-1所示。
表4D-1
取3-羟基戊酸、3-羟基戊酸钠、3-羟基戊酸和3-羟基戊酸钠混合物以及实施例61的3-羟基戊酸·3-羟基戊酸钠复合物测定在温度30℃、40℃、60℃、70℃、80℃下的稳定性,实验结果如表4D-2所示。
表4D-2
取S-3-羟基戊酸、S-3-羟基戊酸钠、S-3-羟基戊酸和S-3-羟基戊酸钠混合物以及实施例67的S-3-羟基戊酸·S-3-羟基戊酸钠复合物测定在温度30℃、40℃、60℃、70℃、80℃下的稳定性,实验结果如表4D-3所示。
表4D-3
以上结果显示,本发明复合物I-IV的稳定性很高,显著优于相应的酸以及酸和盐混合物。
本发明解决了BHB酸和BHP酸的酸性强、肠道副作用及吸湿性高、稳定性差的问题,同时解决了BHB和BHP盐的盐负荷高导致电解质失衡,复合物表现出比单独的酸或盐或简单物理混合的组分更好的综合效果,具有合适的吸湿性和稳定性,使其特别适合于固体制剂的工艺制备。在适合的剂量时,本发明的复合物具有较好的生酮效果。另外,本发明制得的复合物纯度高,粒径分布均匀,流动性好,不易黏结,具有较好的生物利用度;且制备过程可控,成本较低并且环境友好。
以上所述仅是本发明的优选实施例而已,并非用以限定本发明,任何熟悉本专业的技术人员,在不脱离本发明的原理和宗旨的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由权利要求和其等同物限定。

Claims (57)

  1. 一种复合物,其特征在于,所述复合物包括3-羟基丁酸;和3-羟基丁酸钾,或3-羟基丁酸钙,或3-羟基丁酸镁中的一种或多种。
  2. 根据权利要求1所述的复合物,其特征在于,所述复合物的结构中的阴离子包括3-羟基丁酸阴离子;阳离子包括钾离子,钙离子,镁离子中的一种或多种,和氢离子。
  3. 根据权利要求1或2所述的复合物,其特征在于,所述3-羟基丁酸与3-羟基丁酸钾,或3-羟基丁酸钙,或3-羟基丁酸镁中的一种或多种的比例为1:10至10:1。
  4. 根据权利要求1-3中任一项所述的复合物,其特征在于,所述复合物中包含不小于50%的R构型、不大于50%的S构型;或大于50%的S构型、小于50%的R构型。
  5. 根据权利要求1-4中任一项所述的复合物,其特征在于,所述复合物为3-羟基丁酸·3-羟基丁酸钾或3-羟基丁酸·3-羟基丁酸钙或3-羟基丁酸·3-羟基丁酸镁或其混合物。
  6. 根据权利要求1-5中任一项所述的复合物,其特征在于,所述复合物具有以下结构:
    或其混合物。
  7. 3-羟基丁酸·3-羟基丁酸盐复合物,其特征在于,所述盐为钾盐、钙盐和/或镁盐。
  8. 根据权利要求1-7中任一项所述的复合物,其特征在于,所述复合物为R-3-羟基丁酸·R-3-羟基丁酸盐和/或S-3-羟基丁酸·S-3-羟基丁酸盐。
  9. 根据权利要求1-7中任一项所述的复合物,其特征在于,所述复合物包含不小于50%的R-3-羟基丁酸·R-3-羟基丁酸盐、不大于50%的S-3-羟基丁酸·S-3-羟基丁酸盐,或大于50%的S-3-羟基丁酸·S-3-羟基丁酸盐、小于50%的R-3-羟基丁酸·R-3-羟基丁酸盐。
  10. 根据权利要求8或9所述的复合物,其特征在于,所述复合物具有以下结构:
  11. 根据权利要求1-10中任一项所述的复合物,其特征在于,所述复合物为结晶形式。
  12. 根据权利要求1-11中任一项所述的复合物,其特征在于,所述钾盐复合物的X射线粉末衍射图包括位于6.7±0.2°、19.6±0.2°、24.9±0.2°和27.1±0.2°的衍射角(2θ)处的峰。
  13. 根据权利要求12所述的复合物,其特征在于,所述钾盐复合物的X射线粉末衍射图还包括位于13.4±0.2°、21.4±0.2°、26.0±0.2°、32.5±0.2°的衍射角(2θ)处的一个或多个峰。
  14. 根据权利要求12或13所述的复合物,其特征在于,所述钾盐复合物的X射线粉末衍射图还包括位于20.2±0.2°、23.4±0.2°、28.2±0.2°、34.0±0.2°的衍射角(2θ)处的一个或多个峰。
  15. 根据权利要求1-14中任一项所述的复合物,其特征在于,所述钾盐复合物的X射线粉末衍射图如图1所示。
  16. 根据权利要求1-15中任一项所述的复合物,其特征在于,所述钾盐复合物的红外光谱具有下列吸收光带,以波长的倒数表示(cm-1)(±2cm-1):2972、2933、1715、1574、1304、1196、1126、1065、951、854。
  17. 根据权利要求1-11中任一项所述的复合物,其特征在于,所述钙盐复合物的红外光谱具有下列吸收光带,以波长的倒数表示(cm-1)(±2cm-1):2974、2936、1715、1558、1506、1300、1196、1126、1065、951、854。
  18. 根据权利要求1-11中任一项所述的复合物,其特征在于,所述镁盐复合物的红外光谱具有下列吸收光带,以波长的倒数表示(cm-1)(±2cm-1):2976、2936、1713、1321、1207、1088、957、912、826。
  19. 根据权利要求1-18中任一项所述的复合物,其特征在于,所述复合物制备为食品、饮料、补充剂或药物制剂。
  20. 一种3-羟基丁酸·3-羟基丁酸盐复合物,其特征在于,所述复合物由如下方法获得:
    (1)通过选自以下方法中的一种得到物质B:3-羟基丁酸和3-羟基丁酸盐混合;或在碱性化合物水溶液中加入3-羟基丁酸,搅拌并除水,蒸至近干;或使3-羟基丁酸烷基酯与水在催化剂存在下加热反应,冷却并过滤,在滤液中加入碱性化合物水溶液,减压蒸馏除水,蒸至近干;
    (2)在步骤(1)中得到的物质B中加入选自以下一种或多种的溶剂:水、THF、DMF、DMSO、DMAC、醇类、卤化烃类、酮类、酯类,搅拌并冷却,使固体析出;
    (3)将所述固体滤出并烘干,得到所述复合物。
  21. 根据权利要求20所述的复合物,其特征在于,所述复合物为R-3-羟基丁酸·R-3-羟基丁酸盐和/或S-3-羟基丁酸·S-3-羟基丁酸盐。
  22. 根据权利要求20或21所述的复合物,其特征在于,所述复合物为结晶形式。
  23. 一种制备如权利要求1-11中任一项所述的复合物的方法,其特征在于,所述方法包括以下步骤:
    (1)通过选自以下方法中的一种得到物质B:3-羟基丁酸和3-羟基丁酸盐混合;或在碱性化合物水溶液中加入3-羟基丁酸,搅拌并除水,蒸至近干;或使3-羟基丁酸烷基酯与水在催化剂存在下加热反应,冷却并过滤,在滤液中加入碱性化合物水溶液,减压蒸馏除水,蒸至近干;
    (2)在步骤(1)中得到的物质B中加入选自以下一种或多种的溶剂:水、THF、DMF、DMSO、DMAC、醇类、卤化烃类、酮类、酯类,搅拌并冷却,使固体析出;
    (3)将所述固体滤出并烘干,得到所述复合物。
  24. 根据权利要求23所述的方法,其特征在于,步骤(2)中所述醇类为甲醇、乙醇、异丙醇、正丁醇,所述卤化烃类为氯苯、二氯苯、二氯甲烷,所述酮类为丙酮、甲基丁酮、甲基异丁酮,所述酯类为乙酸乙酯、乙酸异丙酯、乙酸正丁酯、乙酸异丁酯。
  25. 根据权利要求23或24所述的方法,其特征在于,步骤(1)中所述碱性化合物为钾、钙或镁的氢氧化物、碳酸盐、碳酸氢盐、甲醇盐、乙酸盐或甲酸盐;所述3-羟基丁酸烷基酯为3-羟基丁酸甲酯、3-羟基丁酸乙酯、3-羟基丁酸丙酯、3-羟基丁酸异丙酯、3-羟基丁酸丁酯、3-羟基丁酸异丁酯。
  26. 一种组合物,其特征在于,所述组合物包含有效量的如权利要求1-22中任一项所述的复合物,和药学上可接受的载体。
  27. 根据权利要求26所述的组合物,其特征在于,所述组合物作为生酮物质而应用。
  28. 根据权利要求26或27所述的组合物,其特征在于,所述组合物制备为食品、饮料、补充剂或药物制剂。
  29. 如权利要求1-22中任一项所述的复合物的用途,其特征在于,所述复合物在制备用于升高或维持受试者血酮水平的生酮物质中的应用。
  30. 根据权利要求29所述的用途,其特征在于,所述生酮物质为营养补充剂、能量治疗、医疗治疗或力量和/或耐力运动补充剂。
  31. 一种组合物在制备用于升高或维持受试者血酮水平的生酮物质中的用途,其特征在于,所述组合物包含如权利要求1-22中任一项所述的复合物,和药学上可接受的载体。
  32. 根据权利要求31所述的用途,其特征在于,所述生酮物质为营养补充剂、能量治疗、医疗治疗或力量和/或耐力运动补充剂。
  33. 一类酸与盐的复合物,其特征在于,所述酸包括丙酸、丁酸、戊酸、己酸、羟基羧酸,所述盐包括钠盐、钾盐、钙盐和/或镁盐。
  34. 根据权利要求33所述的复合物,其特征在于,所述羟基羧酸为3-羟基戊酸(BHP)。
  35. 根据权利要求33或34所述的复合物,其特征在于,所述复合物的结构中的阴离子包括3-羟基戊酸阴离子,阳离子包括钠离子和氢离子。
  36. 根据权利要求35所述的复合物,其特征在于,所述3-羟基戊酸与3-羟基戊酸钠的比例为1:10至10:1。
  37. 根据权利要求33-36中任一项所述的复合物,其特征在于,所述复合物中包含不小于50%的R构型、不大于50%的S构型;或大于50%的S构型、小于50%的R构型。
  38. 根据权利要求33-37中任一项所述的复合物,其特征在于,所述复合物具有以下结构:
  39. 根据权利要求33-38中任一项所述的复合物,其特征在于,所述复合物为结晶形式。
  40. 根据权利要求33-39中任一项所述的复合物,其特征在于,所述复合物为R-3-羟基戊酸·R-3-羟基戊酸钠和/或S-3-羟基戊酸·S-3-羟基戊酸钠。
  41. 根据权利要求33-40中任一项所述的复合物,其特征在于,所述复合物包含不小于50%的R-3-羟基戊酸·R-3-羟基戊酸钠、不大于50%的S-3-羟基戊酸·S-3-羟基戊酸钠;或大于50%的S-3-羟基戊酸·S-3-羟基戊酸钠、小于50%的R-3-羟基戊酸·R-3-羟基戊酸钠。
  42. 根据权利要求40或41所述的复合物,其特征在于,所述复合物具有以下结构:
  43. 根据权利要求33-42中任一项所述的复合物,其特征在于,所述复合物的红外光谱具有下列吸收光带,以波长的倒数表示(cm-1)(±2cm-1):2968、2880、1715、1558、1404、1065、982、912、874、783、。
  44. 根据权利要求33-43中任一项所述的复合物,其特征在于,所述复合物制备为食品、饮料、补充剂或药物制剂。
  45. 一类酸与盐的复合物,其特征在于,所述复合物由如下方法获得:
    (1)通过选自以下方法中的一种得到物质C:酸和相应的盐混合;或在碱性化合物水溶液中加入酸,搅拌并除水,蒸至近干;或使所述酸的烷基酯与水在催化剂存在下加热反应,冷却并过滤,在滤液中加入碱性化合物水溶液,减压蒸馏除水,蒸至近干;
    (2)在步骤(1)中得到的物质C中加入选自以下一种或多种的溶剂:水、THF、DMF、DMSO、DMAC、醇类、卤化烃类、酮类、酯类,搅拌并冷却,使固体析出;
    (3)将所述固体滤出并烘干,得到所述复合物。
  46. 根据权利要求45所述的复合物,其特征在于,所述复合物为丙酸·丙酸钠盐、丙酸·丙酸钾盐、丙酸·丙酸钙盐、丙酸·丙酸镁盐、丁酸·丁酸钠盐、丁酸·丁酸钾盐、丁酸·丁酸钙盐、丁酸·丁酸镁盐、戊酸·戊酸钠盐、戊酸·戊酸钾盐、戊酸·戊酸钙盐、戊酸·戊酸镁盐、己酸·己酸钠盐、己酸·己酸钾盐、己酸·己酸钙盐、己酸·己酸镁盐、3-羟基戊酸·3-羟基戊酸钠盐、3-羟基戊酸·3-羟基戊酸钾盐、3-羟基戊酸·3-羟基戊酸钙盐、3-羟基戊酸·3-羟基戊酸镁盐。
  47. 根据权利要求45或46所述的复合物,其特征在于,所述复合物为结晶形式。
  48. 一种制备如权利要求33所述的复合物的方法,其特征在于,所述方法包括以下步骤:
    (1)通过选自以下方法中的一种得到物质C:酸和相应的盐混合;或在碱性化合物水溶液中加入酸,搅拌并除水,蒸至近干;或使所述酸的烷基酯与水在催化剂存在下加热反应,冷却并过滤,在滤液中加入碱性化合物水溶液,减压蒸馏除水,蒸至近干;
    (2)在步骤(1)中得到的物质C中加入选自以下一种或多种的溶剂:水、THF、DMF、DMSO、DMAC、醇类、卤化烃类、酮类、酯类,搅拌并冷却,使固体析出;
    (3)将所述固体滤出并烘干,得到所述复合物。
  49. 根据权利要求48所述的方法,其特征在于,步骤(2)中所述醇类为甲醇、乙醇、异丙醇、正丁醇,所述卤化烃类为氯苯、二氯苯、二氯甲烷,所述酮类为丙酮、甲基丁酮、甲基异丁酮,所述酯类为乙酸乙酯、乙酸异丙酯、乙酸正丁酯、乙酸异丁酯。
  50. 根据权利要求48或49所述的方法,其特征在于,步骤(1)中所述碱性化合物为钠、钾、钙或镁的氢氧化物、碳酸盐、碳酸氢盐、甲醇盐、乙酸盐或甲酸盐;所述酸的烷基酯为酸的甲酯、乙酯、丙酯、异丙酯、丁酯、异丁酯。
  51. 一种组合物,其特征在于,所述组合物包含有效量的如权利要求33-47中任一项所述的复合物,和药学上可接受的载体。
  52. 根据权利要求51所述的组合物,其特征在于,所述组合物作为生酮物质而应用。
  53. 根据权利要求51或52所述的组合物,其特征在于,所述组合物制备为食品、饮料、补充剂或药物制剂。
  54. 如权利要求33-47中任一项所述的复合物的用途,其特征在于,所述复合物在制备用于升高或维持受试者血酮水平的生酮物质中的应用。
  55. 根据权利要求54所述的用途,其特征在于,所述生酮物质为营养补充剂、能量治疗、医疗治疗或力量和/或耐力运动补充剂。
  56. 一种组合物在制备用于升高或维持受试者血酮水平的生酮物质中的用途,其特征在于,所述组合物包含如权利要求33-47中任一项所述的复合物,和药学上可接受的载体。
  57. 根据权利要求56所述的用途,其特征在于,所述生酮物质为营养补充剂、能量治疗、医疗治疗或力量和/或耐力运动补充剂。
PCT/CN2023/121701 2022-09-27 2023-09-26 一类酸与盐的复合物及其制备方法 WO2024067626A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CNPCT/CN2022/121699 2022-09-27
CN2022121699 2022-09-27

Publications (1)

Publication Number Publication Date
WO2024067626A1 true WO2024067626A1 (zh) 2024-04-04

Family

ID=90476340

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/121701 WO2024067626A1 (zh) 2022-09-27 2023-09-26 一类酸与盐的复合物及其制备方法

Country Status (1)

Country Link
WO (1) WO2024067626A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170296501A1 (en) * 2016-04-19 2017-10-19 Keto Patent Group, Inc. Administration of butyrate, beta-hydroxybutyrate, and related compounds in humans
CN109369372A (zh) * 2018-11-28 2019-02-22 上海欣海国际贸易有限公司 一种制备3-羟基丁酸盐的方法
CN109734575A (zh) * 2019-01-04 2019-05-10 上海欣海国际贸易有限公司 一种制备3-羟基丁酸氨基酸盐复合物的方法
CN110862316A (zh) * 2018-08-27 2020-03-06 浙江华睿生物技术有限公司 一种(r)-3-羟基丁酸的晶型及其应用
CN112334155A (zh) * 2018-06-12 2021-02-05 柯特费布(9211-3133魁北克股份有限公司) 新型生酮化合物、组合物、方法和其用途
US20210196658A1 (en) * 2016-03-11 2021-07-01 Axcess Global Sciences, Llc Beta-hydroxybutyrate mixed salt compositions and methods of use
CN113660930A (zh) * 2019-02-11 2021-11-16 阿克塞斯全球科学有限责任公司 β-羟基丁酸盐混合盐-酸组合物和使用方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210196658A1 (en) * 2016-03-11 2021-07-01 Axcess Global Sciences, Llc Beta-hydroxybutyrate mixed salt compositions and methods of use
US20170296501A1 (en) * 2016-04-19 2017-10-19 Keto Patent Group, Inc. Administration of butyrate, beta-hydroxybutyrate, and related compounds in humans
CN112334155A (zh) * 2018-06-12 2021-02-05 柯特费布(9211-3133魁北克股份有限公司) 新型生酮化合物、组合物、方法和其用途
CN110862316A (zh) * 2018-08-27 2020-03-06 浙江华睿生物技术有限公司 一种(r)-3-羟基丁酸的晶型及其应用
CN109369372A (zh) * 2018-11-28 2019-02-22 上海欣海国际贸易有限公司 一种制备3-羟基丁酸盐的方法
CN109734575A (zh) * 2019-01-04 2019-05-10 上海欣海国际贸易有限公司 一种制备3-羟基丁酸氨基酸盐复合物的方法
CN113660930A (zh) * 2019-02-11 2021-11-16 阿克塞斯全球科学有限责任公司 β-羟基丁酸盐混合盐-酸组合物和使用方法

Similar Documents

Publication Publication Date Title
JP6190079B2 (ja) 3,5−二置換ベンゼンアルキニル化合物の結晶
WO2013185780A1 (en) Enhancing the stability and purity and increasing the bioavailability of human milk oligosaccharides or precursors or blends thereof
JPH07501830A (ja) ピルビン酸イオンの投与方法及びピルビン酸イオン前駆物質の合成方法
WO2013104317A1 (zh) 一种前列腺素类似物的晶型及其制备方法和用途
CA2776342A1 (en) Agomelatine and pharmaceutical compositions thereof
CN101959846A (zh) 新的o-去甲基-文拉法辛盐
WO2019034112A1 (zh) 一种包含左旋肉碱和β-羟基丁酸化合物的组合物
JP7362646B2 (ja) 共結晶
WO2024067626A1 (zh) 一类酸与盐的复合物及其制备方法
WO2024067584A1 (zh) 3-羟基丁酸与3-羟基丁酸钠的复合物及其制备方法
TW201808961A (zh) 光學活性吡喃並苯並吡喃基苯酚衍生物及包含其的醫藥組成物
JP2010502682A (ja) 1,6−ビス[3−(3−カルボキシメチルフェニル)−4−(2−α−D−マンノピラノシルオキシ)−フェニル]ヘキサンの結晶形態
WO2012129942A1 (zh) 手性3-羟基吡啶-4-酮类衍生物及其合成和用途
CN103626722B (zh) 一氧化氮供体型降血糖化合物、其制备方法和用途
JP2020189888A (ja) キノロン類似体及びその塩の結晶形
WO2019034114A1 (zh) 一种包含左旋肉碱-β-羟基丁酸盐的组合物及制备方法
CN1962614A (zh) 联苯乙酸对乙酰氨基酚酯及其制备方法
CN104447721A (zh) 坎格列净无水化合物
WO2022194160A1 (zh) 非索替尼固体形式及其制备方法
US20220306582A1 (en) Anhydrous Crystal of Monosodium N-(2-Ethylsulfonylamino-5-Trifluoromethyl-3-Pyridyl)Cyclohexane Carboxamide
WO2004101551A1 (ja) ベンズイミダゾール誘導体の結晶及びその製造方法
WO2014067281A1 (zh) 盐酸他喷他多晶型c及其制备方法和应用
US20060052338A1 (en) N-Acyl and quaternary ammonium modified polysaccharide fibers
WO2018050099A1 (zh) 二醇型人参皂苷衍生物及其制备方法和应用
US11420953B2 (en) Co-crystal and/or eutectic crystal of kojic acid, compositions comprising the same, process of producing the same, and uses thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23870854

Country of ref document: EP

Kind code of ref document: A1