WO2024067580A1 - 一种与沥青胶料粘结强度高的复合增强层及其制备方法 - Google Patents
一种与沥青胶料粘结强度高的复合增强层及其制备方法 Download PDFInfo
- Publication number
- WO2024067580A1 WO2024067580A1 PCT/CN2023/121514 CN2023121514W WO2024067580A1 WO 2024067580 A1 WO2024067580 A1 WO 2024067580A1 CN 2023121514 W CN2023121514 W CN 2023121514W WO 2024067580 A1 WO2024067580 A1 WO 2024067580A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- layer
- emulsion
- glass transition
- performance improvement
- transition temperature
- Prior art date
Links
- 239000002131 composite material Substances 0.000 title claims abstract description 76
- 239000010426 asphalt Substances 0.000 title claims abstract description 24
- 230000003014 reinforcing effect Effects 0.000 title abstract description 25
- 238000002360 preparation method Methods 0.000 title abstract description 19
- 239000013521 mastic Substances 0.000 title abstract 6
- 238000010077 mastication Methods 0.000 title 1
- 239000000839 emulsion Substances 0.000 claims abstract description 281
- 229920000642 polymer Polymers 0.000 claims abstract description 86
- 239000011248 coating agent Substances 0.000 claims abstract description 34
- 238000000576 coating method Methods 0.000 claims abstract description 34
- 239000000463 material Substances 0.000 claims abstract description 17
- 230000009477 glass transition Effects 0.000 claims description 147
- 239000011387 rubberized asphalt concrete Substances 0.000 claims description 70
- 230000002787 reinforcement Effects 0.000 claims description 69
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 claims description 56
- 238000002156 mixing Methods 0.000 claims description 27
- 238000000034 method Methods 0.000 claims description 13
- 239000000853 adhesive Substances 0.000 claims description 10
- 230000001070 adhesive effect Effects 0.000 claims description 10
- 239000002174 Styrene-butadiene Substances 0.000 claims description 6
- 229920003048 styrene butadiene rubber Polymers 0.000 claims description 6
- 229920001909 styrene-acrylic polymer Polymers 0.000 claims description 6
- 150000001875 compounds Chemical class 0.000 claims description 5
- MTAZNLWOLGHBHU-UHFFFAOYSA-N butadiene-styrene rubber Chemical compound C=CC=C.C=CC1=CC=CC=C1 MTAZNLWOLGHBHU-UHFFFAOYSA-N 0.000 claims description 4
- 239000011115 styrene butadiene Substances 0.000 claims description 4
- 238000004078 waterproofing Methods 0.000 claims description 3
- 239000007788 liquid Substances 0.000 claims 1
- 238000001035 drying Methods 0.000 abstract description 8
- 238000005096 rolling process Methods 0.000 abstract description 5
- 239000011159 matrix material Substances 0.000 abstract 6
- 239000010410 layer Substances 0.000 description 263
- 230000000052 comparative effect Effects 0.000 description 16
- 238000004132 cross linking Methods 0.000 description 11
- 238000004804 winding Methods 0.000 description 11
- 230000001965 increasing effect Effects 0.000 description 8
- 239000012790 adhesive layer Substances 0.000 description 6
- 238000002161 passivation Methods 0.000 description 5
- 229920002799 BoPET Polymers 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 239000013538 functional additive Substances 0.000 description 4
- 238000001816 cooling Methods 0.000 description 3
- 239000000945 filler Substances 0.000 description 3
- 239000012530 fluid Substances 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- 239000001257 hydrogen Substances 0.000 description 3
- 239000012528 membrane Substances 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 238000007761 roller coating Methods 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 229920001577 copolymer Polymers 0.000 description 2
- 239000013530 defoamer Substances 0.000 description 2
- 229920001971 elastomer Polymers 0.000 description 2
- 239000003995 emulsifying agent Substances 0.000 description 2
- 230000002708 enhancing effect Effects 0.000 description 2
- 239000003292 glue Substances 0.000 description 2
- 239000003999 initiator Substances 0.000 description 2
- 239000000178 monomer Substances 0.000 description 2
- 229920006267 polyester film Polymers 0.000 description 2
- 239000003755 preservative agent Substances 0.000 description 2
- 230000002335 preservative effect Effects 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- 239000005060 rubber Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000002562 thickening agent Substances 0.000 description 2
- 239000002699 waste material Substances 0.000 description 2
- 239000000080 wetting agent Substances 0.000 description 2
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 1
- 239000004820 Pressure-sensitive adhesive Substances 0.000 description 1
- -1 acrylic ester Chemical class 0.000 description 1
- 239000002998 adhesive polymer Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 239000007888 film coating Substances 0.000 description 1
- 238000009501 film coating Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 229920005597 polymer membrane Polymers 0.000 description 1
- 229920000307 polymer substrate Polymers 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000004575 stone Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D133/00—Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J195/00—Adhesives based on bituminous materials, e.g. asphalt, tar, pitch
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J7/00—Adhesives in the form of films or foils
- C09J7/50—Adhesives in the form of films or foils characterised by a primer layer between the carrier and the adhesive
Definitions
- the invention belongs to the technical field of polymer materials, and in particular relates to a composite reinforcement layer with high bonding strength with asphalt rubber and a preparation method thereof, and also relates to the application of the composite reinforcement layer.
- the current improvement method mainly treats the reinforcing layer, such as using a corona method to treat the reinforcing layer or modifying the reinforcing layer to improve the bonding strength between the reinforcing layer and the asphalt adhesive layer, but the corona method has poor timeliness. Once the corona effect fades. Especially in low temperature environments, the bonding strength between the reinforcing layer and the asphalt adhesive layer will be significantly reduced. Modifying the reinforcing layer will affect the overall performance of the reinforcing layer.
- the current treatment method cannot really solve the problem of reduced low-temperature bonding performance between the reinforcing layer and the asphalt adhesive layer. It is necessary to propose a new idea to solve the above problems.
- the purpose of the present invention is to provide a composite reinforcing layer with high bonding strength with asphalt rubber and a preparation method thereof, and to set a performance improvement layer on a polymer base.
- a composite reinforcement layer with high bonding strength with asphalt rubber comprises a polymer base and a performance improvement layer, wherein the performance improvement layer is formed by uniformly covering at least one side of the polymer base with a viscous emulsion, and the coverage area of the performance improvement layer on at least one side of the polymer base is ⁇ 50%.
- the polymer substrate includes film-based materials and sheet materials, such as PVC sheets, MAC sheets, cross-laminated films (CLF films), high-temperature resistant polyester films (PET films), PE films and PP films.
- film-based materials and sheet materials such as PVC sheets, MAC sheets, cross-laminated films (CLF films), high-temperature resistant polyester films (PET films), PE films and PP films.
- the present invention is an improvement on the existing reinforcement layer, and a performance improvement layer is selectively added on the polymer base (i.e., the existing reinforcement layer).
- asphalt rubber is coated on the performance improvement layer, wherein the cross-linking density between the performance improvement layer and the polymer base and the cross-linking density between the performance improvement layer and the asphalt rubber layer are both greater than the cross-linking density between the conventional polymer base and the asphalt rubber layer. This is because the contact points between the polar groups in the polymer base (such as CLF film, PET film, polymer sheet) and the asphalt rubber and the performance improvement layer are increased, forming more chemical bonds or hydrogen bonds, thereby improving the low-temperature bonding performance of the composite reinforcement layer and the adhesive material layer.
- the present invention treats the polymer base and the performance improvement layer as a whole, and the composite reinforcement layer is generally transported or stored in a rolled-up state.
- Conventional reinforcement layers do not have the problem of being unable to be rolled up due to excessive surface viscosity, but the composite reinforcement layer of the present invention contains a viscous emulsion on the surface, which has a high viscosity and cannot be directly rolled up for transportation.
- the higher the glass transition temperature the better its viscosity.
- the present invention selects a viscous emulsion with a higher glass transition temperature to reduce the viscosity of the viscous emulsion itself without affecting the low-temperature bonding performance of the composite reinforcement layer to solve the problem of excessive surface viscosity of the composite reinforcement layer.
- the performance improvement layer has one layer, and the performance improvement layer is formed by uniformly covering the polymer base with a viscous emulsion with a glass transition temperature ⁇ 30°C.
- the performance improvement layer is formed by uniformly covering the polymer base with a viscous emulsion with a glass transition temperature ⁇ 20°C.
- the performance improvement layer is formed by uniformly covering the polymer base with a viscous emulsion with a glass transition temperature ⁇ 10°C.
- the performance improvement layer is formed by uniformly covering the polymer base with a viscous emulsion with a glass transition temperature of 0 to 10°C, wherein the viscous emulsion is an emulsion with a single glass transition temperature.
- the glass transition temperature of the present invention refers to the glass transition temperature, which is the temperature corresponding to the transition of the viscous emulsion from the glassy state to the highly elastic state.
- the present invention uses a mixed viscous emulsion to form the performance improvement layer, which can reduce the impact on the viscosity of the performance improvement layer and reduce the brittleness of the performance improvement layer, thereby obtaining a composite reinforcement layer with high bonding strength with the asphalt rubber and capable of being rolled up for transportation.
- the performance improvement layer has one layer, and the viscous emulsion is obtained by mixing two or more emulsions with different glass transition temperatures. More preferably, the viscous emulsion is formed by mixing an emulsion with a glass transition temperature ⁇ 20°C and an emulsion with a glass transition temperature ⁇ 20°C; more preferably, the viscous emulsion is formed by mixing an emulsion with a glass transition temperature ⁇ 10°C and an emulsion with a glass transition temperature ⁇ 10°C.
- the ratio of the emulsion with a glass transition temperature ⁇ 10°C to the emulsion with a glass transition temperature ⁇ 10°C is 1:(0.5-1.5).
- the number of layers of the performance improvement layer is at least two;
- the outer performance improvement layer and the inner performance improvement layer are respectively formed by coating a single-component viscous emulsion with different glass transition temperatures, or the outer performance improvement layer is formed by coating a viscous emulsion mixed with two or more emulsions with different glass transition temperatures, and the inner performance improvement layer is formed by coating a single-component viscous emulsion.
- the outer performance improvement layer and the inner performance improvement layer are formed by coating single-component viscous emulsions with different glass transition temperatures, and the glass transition temperature of the outer performance improvement layer is greater than or equal to the glass transition temperature of the inner performance improvement layer. More preferably, the glass transition temperature of the outer performance improvement layer is ⁇ 30°C, and the glass transition temperature of the inner performance improvement layer is ⁇ 20°C. More preferably, the glass transition temperature of the outer performance improvement layer is 0-20°C, and the glass transition temperature of the inner performance improvement layer is ⁇ 0°C.
- the viscous emulsion with a glass transition temperature of ⁇ 30°C is selected to directly contact the asphalt rubber, which does not reduce the low-temperature bonding performance of the product.
- the viscous emulsion with a glass transition temperature of 0-20°C is coated to form the outermost performance improvement layer, which has better passivation effect and relatively low brittleness, thereby solving the problem that the surface of the composite reinforcement layer of the present invention is too sticky and cannot be rolled up for transportation.
- the outer performance improvement layer is formed by coating a viscous emulsion mixed with two or more emulsions with different glass transition temperatures, wherein the viscous emulsion is a mixture of an emulsion with a glass transition temperature ⁇ 10°C and an emulsion with a glass transition temperature ⁇ 10°C in a ratio of 1: (0.5-1.5).
- the viscous emulsion includes one or more of acrylic emulsion, styrene-butadiene emulsion and VAE emulsion. More preferably, the viscous emulsion is a composite emulsion of styrene-acrylic copolymer emulsion and butadiene-styrene-acrylic copolymer emulsion. More preferably, the viscous emulsion is acrylic emulsion. Wherein, acrylic emulsion is mixed with acrylate monomer copolymer, functional additive and water, and the functional additive includes one or more of emulsifier, initiator, protective glue, wetting agent, preservative, thickener and defoamer. It should be noted that for the viscous emulsion including multiple emulsion components, it can be prepared by mixing acrylic emulsions with different glass transition temperatures, or by mixing emulsions with different glass transition temperatures and different types.
- the present invention provides a method for preparing a composite reinforcement layer with high bonding strength with asphalt rubber, the steps are as follows:
- the coating amount per square meter of the polymer base is not less than 20 g/m 2 , more preferably, not less than 30 g/m 2 .
- the solid content of the viscous emulsion is 40% to 60%.
- the present invention provides the use of a composite reinforcement layer having a high bonding strength with an asphalt rubber, wherein the fluid asphalt rubber is attached to the composite reinforcement layer.
- the present invention further provides a waterproof system, comprising the above-mentioned composite reinforcement layer.
- the waterproofing system takes the building surface as the base surface and comprises, from bottom to top, a first asphalt rubber layer, a first composite reinforcement layer, a second asphalt rubber layer, ..., an Nth composite reinforcement layer, an N+1th asphalt rubber layer, where N is a positive integer greater than or equal to 1.
- the present invention also provides a waterproof roll material, comprising the above-mentioned composite reinforcement layer.
- the present invention proposes a novel composite reinforcement layer, which is an integral body formed by organically combining a polymer base and a performance improvement layer.
- the low-temperature bonding performance of the coiled material with the composite reinforcement layer as a carrier is improved.
- the present invention selects a viscous emulsion with a suitable glass transition temperature to solve the problem that the surface of the composite reinforcement layer of the present invention is too sticky or too brittle, resulting in the inability to be rolled up for transportation.
- the composite reinforcement layer replaces the existing conventional reinforcement layer and is bonded with asphalt adhesive.
- the performance improvement layer in the composite reinforcement layer is non-dense. A fluid asphalt adhesive is applied on the composite reinforcement layer. When heated, the performance improvement layer is improved.
- the performance improvement layer formed by the film-forming viscosity emulsion increases the cross-linking density with the polymer base and asphalt rubber.
- the asphalt rubber will penetrate into the performance improvement layer, increasing the contact points with the polymer base and polar groups in the asphalt rubber, forming more chemical bonds or hydrogen bonds, thereby improving the interfacial compatibility between the asphalt rubber and the performance improvement layer and enhancing adhesion.
- the performance improvement layer is formed by coating with an emulsion with a suitable glass transition temperature, the composite reinforcement layer maintains its flexible performance at low temperatures, effectively solving the problem of the reduced bonding performance between the existing reinforcement layer and the asphalt rubber under low temperature conditions, resulting in a shortened service life.
- the surface polarity of the existing reinforcing layer is quite different from that of the adhesive material.
- the conventional reinforcing layer and the adhesive material can be bonded in a high temperature environment, but when used in a low temperature environment, the bonding performance between the reinforcing layer and the adhesive material is significantly reduced.
- the present invention provides a composite reinforcement layer with high bonding strength with asphalt rubber, including a polymer base and a performance improvement layer, wherein the performance improvement layer is formed by uniformly covering at least one side of the polymer base with a viscous emulsion, and the coverage area of the performance improvement layer on at least one side of the polymer base is ⁇ 50%.
- the polymer base includes film-based materials and sheet materials, such as PVC sheets, MAC sheets, cross-laminated films (CLF films), high-temperature resistant polyester films (PET films), PE films and PP films;
- the viscous emulsion refers to an existing conventional organic emulsion with viscous properties, for example, the viscous emulsion can be one or more of the existing conventional acrylic emulsions, styrene-butadiene emulsions and VAE emulsions.
- the The viscous emulsion is a composite emulsion of styrene-acrylic copolymer emulsion and butadiene-styrene-acrylic copolymer emulsion. More preferably, in the present invention, the viscous emulsion adopts acrylic emulsion.
- Acrylic emulsion is mixed with acrylic ester monomer copolymer, functional additive and water, and the functional additive includes one or more of emulsifier, initiator, protective glue, wetting agent, preservative, thickener and defoamer.
- the viscous emulsion including multiple emulsion components can be prepared by mixing acrylic emulsions with different glass transition temperatures, or by mixing emulsions with different glass transition temperatures and different types.
- the viscous emulsion including multiple emulsion components is prepared by mixing two or more acrylic emulsions with different glass transition temperatures; or, the viscous emulsion including multiple emulsion components is prepared by mixing acrylic emulsions and styrene-butadiene emulsions with different glass transition temperatures.
- the present invention selects to add a performance improvement layer on the polymer base, and when applying the present invention, asphalt rubber is coated on the performance improvement layer, wherein the crosslinking density between the performance improvement layer and the polymer base and the crosslinking density between the performance improvement layer and the asphalt rubber layer are both greater than the crosslinking density between the conventional polymer base and the asphalt rubber layer.
- the contact points between the polar groups in the polymer base (such as CLF film, PET film) and the asphalt rubber and the performance improvement layer are increased, forming more chemical bonds or hydrogen bonds, thereby improving the low-temperature bonding performance of the composite reinforcement layer and the adhesive material layer.
- the present invention prepares a new type of composite reinforcement layer, and the problems to be solved are mainly the following two points: First, the performance improvement layer needs to have good bonding performance with the polymer base, and also needs to have good bonding performance with the asphalt rubber; Second, the performance improvement layer cannot affect the normal winding and unfolding of the composite reinforcement layer, and the composite reinforcement layer must be practical and processable.
- the composite reinforcement layer needs to have the performance of being easy to roll up for transportation or storage, but the coating of viscous emulsion on the polymer base may have a negative impact on the winding, such as the surface of the composite reinforcement layer is too sticky, and it cannot be fully unfolded and used again after winding. However, if a viscous emulsion with less viscosity is used, the viscous emulsion cannot play a role in improving the low-temperature bonding performance between the polymer base and the asphalt rubber.
- the present invention balances the bonding strength between the viscous emulsion and the polymer base and the convenience of winding and transportation, and uses a viscous emulsion with a glass transition temperature of ⁇ 30°C to coat the polymer base to form a performance improvement layer. More preferably, the performance improvement layer is formed by uniformly covering the polymer base with a viscous emulsion with a glass transition temperature of ⁇ 20°C, and more preferably, the performance improvement layer is formed by uniformly covering the polymer base with a viscous emulsion with a glass transition temperature of ⁇ 10°C. It is easy to understand that for the viscous emulsion of the present invention, the lower the glass transition temperature, the better its viscosity.
- the present invention selects a viscous emulsion with a higher glass transition temperature to reduce the viscosity of the viscous emulsion itself without affecting the low-temperature bonding performance of the product to solve the problem of excessive viscosity on the surface of the polymer base. Based on the fact that the temperature of the coiled material is generally room temperature to sub-zero temperature, considering the requirement for the convenience of winding, it is more appropriate to select a viscous emulsion with a glass transition temperature of 0 to 10°C.
- the above-mentioned viscous emulsion is an emulsion with a single glass transition temperature, that is, the viscous emulsion is Single component organic emulsion.
- the present invention also provides an application of a composite reinforcement layer with high bonding strength with asphalt rubber, wherein the composite reinforcement layer is bonded to a fluidized asphalt rubber, preferably, the composite reinforcement layer is bonded to a fluidized asphalt rubber at 145 to 170°C.
- the high temperature (145 to 170°C) asphalt rubber provides sufficient heat to heat the performance improvement layer, so that the crosslinking density between the performance improvement layer and the polymer base is further increased, and the crosslinking density between the heated performance improvement layer and the asphalt rubber is also increased.
- the present invention utilizes the bonding strength between the viscous emulsion itself and the asphalt rubber, and on the other hand, improves the bonding strength between the viscous emulsion and the polymer base through the good compatibility between the viscous emulsion and the polymer base.
- the bonding principle is not a simple superposition of the two, but a composite effect of mutual influence, namely: at a high temperature of 145°C to 170°C (i.e., the temperature of the asphalt rubber), the cross-linking density between the performance improvement layer and the polymer base increases, and the bonding strength between the performance improvement layer and the polymer base is improved, while the asphalt rubber itself has good bonding strength with the viscous emulsion.
- the principle of improving the bonding strength between the polymer base and the asphalt rubber can be summarized as follows: the asphalt coating bonds to the performance improvement layer, and the performance improvement layer bonds to the polymer base, thereby improving the peeling strength between the asphalt coating and the polymer base.
- the present invention needs to coat the performance improvement layer with a flowing asphalt rubber when it is used, the high-temperature asphalt rubber provides sufficient heat to the performance improvement layer, further improving the bonding strength between the performance improvement layer and the polymer base (i.e., increasing the cross-linking density), making it feasible to use a viscous emulsion with a higher glass transition temperature; in addition, the bonding strength between the asphalt rubber and the viscous emulsion is already very good, and under heating conditions, the bonding strength between the asphalt rubber layer and the performance improvement layer is further improved.
- a viscous emulsion with a glass transition temperature that is too high cannot be used, because the brittleness of the viscous emulsion with a glass transition temperature that is too high is significantly increased, and it also has a negative impact on the winding of the composite reinforcement layer, and cracks or even breakage will occur during winding.
- the viscous emulsion is prepared by mixing two or more emulsions with different glass transition temperatures.
- the viscous emulsion is formed by mixing an emulsion with a glass transition temperature ⁇ 20°C and an emulsion with a glass transition temperature ⁇ 20°C; further, the viscous emulsion is formed by mixing an emulsion with a glass transition temperature ⁇ 10°C and an emulsion with a glass transition temperature ⁇ 10°C, wherein the ratio of the emulsion with a glass transition temperature ⁇ 10°C to the emulsion with a glass transition temperature ⁇ 10°C is 1:(0.5 ⁇ 1.5).
- the high glass transition temperature emulsion can reduce the viscosity of the low glass transition temperature emulsion.
- the low glass transition temperature emulsion can also reduce the brittleness of the high glass transition temperature emulsion, thereby balancing the viscosity and brittleness of the viscous emulsion.
- the ratio of the emulsion with a glass transition temperature ⁇ 10°C to the emulsion with a glass transition temperature ⁇ 10°C is 1:(0.5 ⁇ 1).
- the ratio of the emulsion with a glass transition temperature ⁇ 10°C to the emulsion with a glass transition temperature ⁇ 10°C is 1:(0.5 ⁇ 1).
- the ratio is 1:(1-1.5).
- the emulsion with a glass transition temperature ⁇ 10°C plays a major role
- the emulsion with a glass transition temperature ⁇ 10°C plays an auxiliary role.
- the ratio of the two is related to their specific glass transition temperatures. For example, an emulsion with a lower glass transition temperature needs to be mixed with an emulsion with a higher glass transition temperature, or with more emulsions with a lower glass transition temperature.
- the viscous emulsion can be formed by mixing multiple emulsions of different types and different glass transition temperatures, or by mixing multiple emulsions of the same type but different glass transition temperatures. In the present invention, it is preferred to mix multiple emulsions of the same type but different glass transition temperatures to prepare the viscous emulsion for use.
- the viscous emulsion may be a single-component emulsion or a multi-component emulsion.
- the viscous emulsion may be a single-component emulsion or a multi-component emulsion.
- the present invention provides a method for preparing a composite reinforcement layer having high low-temperature bonding strength with asphalt rubber, the steps of which are as follows:
- Unfolding the polymer base coating the polymer base with a viscous emulsion having a solid content of 40% to 60% as a performance improvement layer, and rolling up the performance improvement layer for standby use after it is dried;
- the amount of polymer base coated per square meter is not less than 20 g/m 2 , more preferably not less than 30 g/m 2 .
- the last layer of viscous emulsion is applied, it is dried at a temperature of 100-140°C, more preferably at 120°C, at a drying speed of 15-30 m/min, more preferably at 20 m/min.
- two or more layers of viscous emulsion can be coated on the same surface of the polymer base.
- the two or more layers of viscous emulsion or performance improvement layer mentioned below are all formed by coating on the same surface of the polymer base. Specifically, taking coating two layers of viscous emulsion as an example, firstly coat a layer of viscous emulsion on the surface of the polymer base, and then coat the second layer without waiting for the first layer to completely dry. For example, after curing at room temperature for 5 seconds, coat the second layer of viscous emulsion, and finally dry it quickly at high temperature.
- the present invention also provides two solutions, as shown below:
- the outer performance improvement layer and the inner performance improvement layer are formed by coating with single-component viscous emulsions with different glass transition temperatures.
- the glass transition temperature of the outer performance improvement layer is greater than the glass transition temperature of the inner performance improvement layer.
- the glass transition temperature of the outer performance improvement layer is 0-20°C
- the glass transition temperature of the inner performance improvement layer is ⁇ 0°C. Since the adhesion between the viscous emulsion and the asphalt rubber is relatively high, the outer layer is coated with a viscous emulsion with a higher glass transition temperature, which is equivalent to a passivation effect. The bonding strength between the composite reinforcement layer and the asphalt rubber can still be maintained, and the viscosity of the outer layer is lower than that of the inner layer, which is convenient for winding.
- the performance improvement layer in the inner layer can be formed by coating with a viscous emulsion having a lower glass transition temperature.
- the glass transition temperature of the viscous emulsion in the inner layer is lower than 0°C.
- the glass transition temperature of the outer performance improvement layer in Scheme 1 is 10-20°C, which is higher than the 0-10°C of a single-component viscous emulsion coated with only one layer. This is because, for the structure of multiple layers of improved performance layers, the outermost layer can tend to focus on the convenience of winding, and the adhesion with the polymer base is maintained by the inner layer.
- Solution 2 The outer performance improvement layer is formed by coating a viscous emulsion mixed with two or more emulsions with different glass transition temperatures, and the inner performance improvement layer is formed by coating a viscous emulsion of a single component.
- the viscosity and brittleness of the outer performance improvement layer are balanced, and the performance is easy to roll up.
- the outer performance improvement layer is equivalent to a passivation function.
- the composition of the viscous emulsion of the outer layer is the same as the composition of the viscous emulsion coated with only one layer of mixed components.
- the performance improvement layer in the inner layer can be formed by coating a single-component viscous emulsion with a lower glass transition temperature.
- the glass transition temperature of the viscous emulsion of the inner layer is lower than 10°C, or even lower than 0°C.
- the key to improving the low-temperature bonding performance of the coiled material made by using the composite reinforcement layer of the present invention lies in the bonding strength between the performance improvement layer and the polymer base and between the performance improvement layer and the modified asphalt rubber.
- the performance improvement layer coated with a viscous emulsion with a lower glass transition temperature as the inner layer is directly in contact with the polymer base, while the outer performance improvement layer is used as a passivation layer.
- the performance improvement layer has good bonding performance with the asphalt rubber, so even if the outer layer is in contact with the asphalt rubber, it can still maintain a large bonding strength.
- the type of viscous emulsion coated on each performance improvement layer may also be different.
- the first performance improvement layer serves to enhance the bonding strength with the polymer base
- the last performance improvement layer is used as a passivation layer
- the performance improvement layer located in the middle layer serves to tightly bond the two adjacent performance improvement layers.
- the first emulsion that has the best bonding with the polymer base and has a lower glass transition temperature is used.
- the second layer of viscous emulsion the second emulsion that has the best bonding with the first emulsion is used.
- the third layer of viscous emulsion the third emulsion that has a better bonding with the second emulsion and a higher glass transition temperature is used.
- the composite reinforcement layer is bonded to the modified asphalt rubber compound to test the peel strength.
- the modified asphalt rubber compound is prepared by 55 parts of asphalt, 13 parts of softening oil (i.e., oil product), 7 parts of SBS3411, 3 parts of SBR, 5 parts of waste rubber powder, 0.75 parts of stabilizer (i.e., modification aid), 2 parts of carbon black (i.e., filler) and 20 parts of stone powder (i.e., filler) in parts by mass.
- the preparation method is as follows: after mixing the asphalt and the oil product, the temperature is raised to 150-180°C, SBS and SBR are added, and after stirring for 1-2 hours to disperse evenly, waste rubber powder and modification aid are added, modified for 1 hour, and after grinding and dispersing evenly, fillers are added, and the modified asphalt rubber compound is prepared by physical mixing for 1.5 hours; the temperature is maintained at 145-170°C to keep the modified asphalt rubber compound in a fluid state for standby use.
- the preparation method is the same as that of Example 1, wherein the glass transition temperature of the acrylic emulsion is 9°C
- the preparation method is the same as that of Example 1, wherein the acrylic emulsion is prepared by mixing an emulsion with a glass transition temperature of -7°C and an emulsion with a glass transition temperature of 56°C in a mass ratio of 1:1.
- the preparation method is the same as that of Example 1, wherein the acrylic emulsion is prepared by mixing an emulsion with a glass transition temperature of -15°C and an emulsion with a glass transition temperature of 105°C in a mass ratio of 1:1.2.
- the preparation method is the same as that of Example 1, wherein the acrylic emulsion is prepared by mixing an emulsion with a glass transition temperature of 9° C. and an emulsion with a glass transition temperature of 20° C. in a mass ratio of 1:0.8.
- the polymer base is unfolded, and the first layer of acrylic emulsion is applied first. After curing at room temperature for 5 seconds, the second layer of acrylic emulsion is applied, and the coating amount is 40g/ m2 . Then, the new composite reinforcement layer is obtained by drying at a drying temperature of 125°C and a drying speed of 18m/min, and then rolled up for standby use;
- the glass transition temperature of the inner layer acrylic emulsion is 9°C, and the glass transition temperature of the outer layer acrylic emulsion is 20°C.
- the preparation method is the same as that of Example 6, wherein the glass transition temperature of the inner layer acrylic emulsion is -15°C, and the glass transition temperature of the outer layer acrylic emulsion is 9°C.
- the inner layer is a single-component acrylic emulsion
- the outer layer is a mixed-component acrylic emulsion
- the preparation method is the same as that of Example 6, wherein the glass transition temperature of the inner layer acrylic emulsion is -15°C, and the outer layer acrylic emulsion is prepared by mixing an emulsion with a glass transition temperature of -7°C and an emulsion with a glass transition temperature of 56°C in a mass ratio of 1:1.
- Example 1 Compared with Example 1, no acrylic emulsion is applied. Specifically, the polymer base is unfolded, and a modified asphalt rubber at 150° C. is applied on the surface of the polymer base using a roller coating process, followed by film coating, cooling, and winding.
- a layer of a single-component acrylic emulsion was applied.
- the preparation method was the same as in Example 1.
- the glass transition temperature of the coated acrylic emulsion was -5°C.
- a layer of a single-component acrylic emulsion was applied.
- the preparation method was the same as in Example 1.
- the glass transition temperature of the coated acrylic emulsion was 40°C.
- a layer of mixed acrylic emulsion is applied.
- the preparation method is the same as that in Example 1.
- the coated acrylic emulsion is prepared by mixing an emulsion with a glass transition temperature of -4°C and an emulsion with a glass transition temperature of 9°C in a mass ratio of 1:1.5.
- a layer of mixed acrylic emulsion is applied.
- the preparation method is the same as that in Example 1.
- the coated acrylic emulsion is prepared by mixing an emulsion with a glass transition temperature of -15°C and an emulsion with a glass transition temperature of 65°C in a mass ratio of 1:2.
- a layer of mixed acrylic emulsion is applied.
- the preparation method is the same as that in Example 1.
- the coated acrylic emulsion is prepared by mixing an emulsion with a glass transition temperature of -22°C and an emulsion with a glass transition temperature of 105°C in a mass ratio of 1:0.2.
- Two layers of single-component acrylic emulsion were applied.
- the preparation method was the same as that of Example 6, wherein the glass transition temperature of the inner layer acrylic emulsion was -15°C and the glass transition temperature of the outer layer acrylic emulsion was -4°C.
- the preparation method is the same as that of Example 6, wherein the glass transition temperature of the inner layer acrylic emulsion is -15°C, and the outer layer acrylic emulsion is prepared by mixing an emulsion with a glass transition temperature of -15°C and an emulsion with a glass transition temperature of 65°C in a mass ratio of 1:2.
- the low-temperature bonding performance of the waterproof membranes prepared in Examples 1-8 meets the requirements.
- Comparative Example 2 Although the low-temperature peel strength of Comparative Example 2 is higher than that of Examples, the surface of the polymer base is extremely sticky and cannot be rolled up. That is, the composite reinforcement layer prepared by using a viscous emulsion with a lower glass transition temperature cannot be rolled up and is not practical.
- Comparative Example 3 uses a viscous emulsion with a higher glass transition temperature. Although it solves the problem of viscosity, its brittleness is significantly increased, and it cannot be rolled up. In addition, its peel strength is reduced. This is because the viscosity of the acrylic emulsion with a high glass transition temperature is reduced, and its bonding strength with the polymer base and modified asphalt rubber is reduced.
- Comparative Example 4 uses a viscous emulsion of mixed components, but the glass temperatures of the two components are both less than 10°C, especially the glass transition temperature of one of the emulsions is lower than 0°C, and the surface viscosity of the composite reinforcement layer obtained is still too large to be rolled up.
- Comparative Examples 5 and 6 the ratio of the low glass transition temperature to the high glass transition temperature is outside the scope of the present invention, and the composite reinforcement layers obtained are not practical.
- the present invention also provides a waterproof system, including the above-mentioned composite reinforcement layer, the waterproof system takes the building surface as the base surface and includes, from bottom to top, a first asphalt rubber layer, a first composite reinforcement layer, a second asphalt rubber layer, ..., an Nth composite reinforcement layer, an N+1th asphalt rubber layer, where N is a positive integer greater than or equal to 1.
- the present invention also provides a waterproof roll material, including the above-mentioned composite reinforcement layer.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Wood Science & Technology (AREA)
- Laminated Bodies (AREA)
Abstract
本发明公开了一种与沥青胶料粘接强度高的复合增强层及其制备方法,复合增强层包括高分子胎基和改善性能层,性能改善层由粘性乳液均匀覆盖在高分子胎基上形成,制备方法是将高分子胎基展开,在高分子胎基上涂覆粘性乳液,然后烘干收卷待用。本发明将复合增强层与沥青胶料粘接,制得的沥青卷材的低温粘接性能得到明显提高。本发明在高分子胎基上涂覆粘性乳液,利用粘性乳液与高分子胎基的粘接强度及粘性乳液与沥青胶料层良好的粘接力,有效地提升了复合增强层与沥青胶料层的低温剥离强度,解决了以现有增强层与沥青胶料层的粘结性能在低温环境明显下降的问题。
Description
本发明属于高分子材料技术领域,具体涉及一种与沥青胶料粘结强度高的复合增强层及其制备方法,也涉及该复合增强层的应用。
在防水材料中,由于沥青、压敏胶等防水胶料层物理强度不足,通常需要添加高分子膜、高分子片材、网格胎基等增强层,但由于增强层与沥青胶料层的表面极性差异极大,在一般的使用场景,增强层与沥青胶料层仍能保持较好的结合,但是在低温条件下,其粘接性能明显下降,容易分离产生窜水层,限制了产品在寒冷低温环境的使用。可见,是有必要对增强层进行改进,以提高增强层与沥青胶料的粘结强度,目前的改进方式主要针对增强层进行处理,比如采用电晕方式处理增强层或对增强层进行改性,以提高增强层与沥青胶料层的结合强度,但是电晕方式时效性较差,一旦电晕效果消退。特别是在低温环境下,增强层与沥青胶料层的粘接强度会明显下降。对增强层进行改性则会对增强层的整体性能有所影响。目前的处理方式并不能真正解决增强层与沥青胶料层的低温粘结性能下降的问题,有必要提出一种新思路解决上述问题。
发明内容
为解决上述技术问题,本发明的目的在于提供一种与沥青胶料粘结强度高的复合增强层及其制备方法,在高分子胎基上设置性能改善层,利用性能改善层与高分子胎基的粘结强度及性能改善层与沥青胶料层良好的粘结力,有效地提升了复合增强层与沥青胶料层的低温剥离强度,解决了以现有增强层与沥青胶料层的粘结性能在低温环境明显下降的问题。
为实现上述发明目的,本发明采取的技术方案如下:
在本发明的第一方面,一种与沥青胶料粘结强度高的复合增强层,包括高分子胎基和性能改善层,所述性能改善层由粘性乳液均匀覆盖在高分子胎基的至少一面上形成,所述性能改善层在高分子胎基至少一面的覆盖面积≥50%。
其中,所述高分子胎基包括膜基材料和片材材料,比如PVC片材、MAC片材、交叉层压膜(CLF膜)、耐高温聚酯薄膜(PET膜)、PE膜和PP膜。
本发明是对现有增强层的改进,选择在高分子胎基(即现有增强层)上增加性能改善层,在应用本发明时,再在性能改善层上涂覆沥青胶料,其中,性能改善层与高分子胎基的交联密度及性能改善层与沥青胶料层的交联密度均大于常规的高分子胎基与沥青胶料层的交联密度,这是因为高分子胎基(比如CLF膜、PET膜、高分子片材)及沥青胶料中的极性基团与性能改善层的接触点增加,形成了更多的化学键或氢键,使复合增强层与粘接材料层的低温粘结性能得到提升。
需要说明的是,本发明是将高分子胎基和性能改善层作为一个整体,复合增强层一般是以收卷状态来进行运输或存放,常规的增强层不存在表面粘性过高导致无法收卷的问题,但是本发明的复合增强层表面含有粘性乳液,粘性较大,是无法直接收卷运输的。对于粘性乳液来说,玻璃化温度越高,其粘性越好,基于此,本发明选择玻璃化温度较高的粘性乳液,在不影响复合增强层的低温粘结性能的前提下,以降低粘性乳液自身粘性来解决复合增强层表面过黏的问题。优选的,在所述高分子胎基的同一面上,所述性能改善层的层数为一层,所述性能改善层由玻璃化温度≤30℃的粘性乳液均匀覆盖在高分子胎基上形成,优选的,所述性能改善层由玻璃化温度≤20℃的粘性乳液均匀覆盖在高分子胎基上形成,更优选的,所述性能改善层由玻璃化温度≤10℃的粘性乳液均匀覆盖在高分子胎基上形成,比如,性能改善层由玻璃化温度0~10℃的粘性乳液均匀覆盖在高分子胎基上形成,其中,所述粘性乳液是单一玻璃化温度的乳液。
本发明的玻璃化温度,是指玻璃化转变温度,是粘性乳液由玻璃态转变为高弹态所对应的温度。
当采用更高玻璃化温度的粘性乳液时,虽然高分子胎基表面过黏导致不能收卷的问题得到解决,但是高玻璃化温度的粘性乳液会导致性能改善层的脆性增加,收卷时性能改善层会出现裂痕甚至破碎的情况,为了进一步平衡性能改善层的粘性和脆性,优选的,本发明使用混合的粘性乳液来形成性能改善层,既能减少对性能改善层粘性的影响,也能降低性能改善层的脆性,得到与沥青胶料粘结强度高并可以收卷运输的复合增强层,在所述高分子胎基的同一面上,所述性能改善层的层数为一层,所述粘性乳液是两种或两种以上的玻璃化温度不同的乳液混合制得,更优选的,所述粘性乳液由玻璃化温度≤20℃的乳液和玻璃化温度≥20℃的乳液混合而成;更优选的,所述粘性乳液由玻璃化温度≤10℃的乳液和玻璃化温度≥10℃的乳液混合而成。
优选的,玻璃化温度≤10℃的乳液和玻璃化温度≥10℃的乳液的比例是1:(0.5~1.5)。
进一步地,在所述高分子胎基的同一面上,所述性能改善层的层数至少是两层;
外层的性能改善层及内层的性能改善层是分别由玻璃化温度不同的单一组分粘性乳液涂覆形成,或,外层的性能改善层由两种或两种以上不同玻璃化温度乳液混合的粘性乳液涂覆形成,内层的性能改善层由单一组分的粘性乳液涂覆形成。
优选的,外层的性能改善层及内层的性能改善层是分别由玻璃化温度不同的单一组分粘性乳液涂覆形成,且外层的性能改善层的玻璃化温度大于或等于内层的性能改善层的玻璃化温度,更优选的,外层的性能改善层的玻璃化温度≤30℃,内层的性能改善层的玻璃化温度≤20℃,更优选的,外层的性能改善层的玻璃化温度是0~20℃,内层的性能改善层的玻璃化温度≤0℃。由于粘性乳液本身与沥青胶料就具有良好的粘结力,选择玻璃化温度≤30℃的粘性乳液与沥青胶料直接接触,不降低产品的低温粘结性能,而玻璃化温度0~20℃的粘性乳液涂覆形成最外层性能改善层,钝化作用更好而脆性相对较低,解决了本发明复合增强层表面过黏导致无法收卷运输的问题。
优选的,外层的性能改善层由两种或两种以上不同玻璃化温度乳液混合的粘性乳液涂覆形成,所述粘性乳液由玻璃化温度≤10℃的乳液和玻璃化温度≥10℃的乳液按1:(0.5~1.5)混合而成。
优选的,所述粘性乳液包括丙烯酸乳液、丁苯乳液和VAE乳液的一种或几种,更优选的,所述粘性乳液是苯乙烯-丙烯酸共聚物乳液、丁二烯-苯乙烯-丙烯酸共聚物乳液的复配乳液,更优选的,所述粘性乳液是丙烯酸乳液。其中,丙烯酸乳液由丙烯酸酯单体共聚物、功能助剂和水混合而成,功能助剂包括乳化剂、引发剂、保护胶、润湿剂、防腐剂、增稠剂和消泡剂中的一种或多种。需要说明的是,对于包括多种乳液成分的粘性乳液,可以由不同玻璃化温度的丙烯酸乳液混合制得,也可以由不同玻璃化温度且不同种类的乳液混合制得。
在本发明的第二方面,本发明提供了一种与沥青胶料粘结强度高的复合增强层的制备方法,步骤如下:
将高分子胎基展开,在高分子胎基上涂覆粘性乳液作为性能改善层,待涂覆的粘性乳液全部干燥后收卷待用;
其中,每次涂覆粘性乳液时,每平方米高分子胎基涂刮量不低于20g/m2,更优选的,不低于30g/m2。
优选的,所述粘性乳液的固含量是40%~60%。
在本发明的第三方面,本发明提供了与沥青胶料粘结强度高的复合增强层的应用,将流动态的沥青胶料附着在上述的复合增强层上。
在本发明的第四方面,本发明还提供了一种防水系统,包括上述的复合增强层。
优选的,所述防水系统以建筑物表面作为基面从下到上依次包括第一沥青胶料层、第一复合增强层、第二沥青胶料层,……,第N复合增强层、第N+1沥青胶料层,N为大于或等于1的正整数。
在本发明的第五方面,本发明还提供了一种防水卷材,包括上述的复合增强层。
本发明提出了一种新型的复合增强层,是由高分子胎基和性能改善层有机结合形成的整体,以这种复合增强层为载体的卷材,其低温的粘结性能得到提升,本发明选用合适玻璃化温度的粘性乳液,解决了本发明复合增强层表面粘性过大或脆性过大导致无法收卷运输的问题,具体地,复合增强层替代现有常规的增强层与沥青胶料粘结,复合增强层中的性能改善层是非致密性的,在复合增强层上涂刮流动态的沥青胶料,在受热情况下,提升粘性乳液成膜形成的性能改善层与高分子胎基、沥青胶料的交联密度,沥青胶料会渗透到性能改善层内,增加与高分子胎基以及沥青胶料中极性基团的接触点,形成更多的化学键或氢键,提升沥青胶料与性能改善层的的界面相容性,提高附着力;由于性能改善层选用合适玻璃化温度的乳液涂覆形成,使复合增强层在低温下保持柔韧的性能,有效地解决了现有的增强层与沥青胶料在低温条件下粘结性能下降导致使用寿命缩短的问题。
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将说明本发明的具体实施方式。显而易见地,下面描述仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些实施例获得其他的实施方式。
现有的增强层的表面极性与粘接材料的表面极性差异较大,常规的增强层与粘接材料在高温环境中实现粘接,但是在低温环境中使用时,增强层与粘接材料的粘结性能明显下降。
为解决现有增强层的缺陷,本发明提供了一种与沥青胶料粘结强度高的复合增强层,包括高分子胎基和性能改善层,性能改善层由粘性乳液均匀覆盖在高分子胎基的至少一面上形成,性能改善层在高分子胎基至少一面的覆盖面积≥50%。其中,高分子胎基包括膜基材料和片材材料,比如PVC片材、MAC片材、交叉层压膜(CLF膜)、耐高温聚酯薄膜(PET膜)、PE膜和PP膜;粘性乳液是指现有常规的具有粘性性能的有机乳液,比如,粘性乳液可以是现有常规的丙烯酸乳液、丁苯乳液和VAE乳液的一种或几种,优选的,所
述粘性乳液是苯乙烯-丙烯酸共聚物乳液、丁二烯-苯乙烯-丙烯酸共聚物乳液的复配乳液,更优选的,在本发明中,粘性乳液采用丙烯酸乳液。丙烯酸乳液由丙烯酸酯单体共聚物、功能助剂和水混合而成,功能助剂包括乳化剂、引发剂、保护胶、润湿剂、防腐剂、增稠剂和消泡剂的一种或多种。需要说明的是,对于包括多种乳液成分的粘性乳液,可以由不同玻璃化温度的丙烯酸乳液混合制得,也可以由不同玻璃化温度且不同种类的乳液混合制得。
比如,包括多种乳液成分的粘性乳液由两种或两种以上不同玻璃化温度的丙烯酸乳液混合制得;或,包括多种乳液成分的粘性乳液由不同玻璃化温度的丙烯酸乳液和丁苯乳液混合制得。
本发明选择在高分子胎基上增加性能改善层,在应用本发明时,再在性能改善层上涂覆沥青胶料,其中,性能改善层与高分子胎基的交联密度及性能改善层与沥青胶料层的交联密度均大于常规的高分子胎基与沥青胶料层的交联密度,这是因为高分子胎基(比如CLF膜、PET膜)及沥青胶料中的极性基团与性能改善层的接触点增加,形成了更多的化学键或氢键,使复合增强层与粘接材料层的低温粘结性能得到提升。
本发明所制备的是一种新型的复合增强层,需要解决的问题主要是以下两点:一性能改善层需要与高分子胎基具有良好的粘结性能,同时与沥青胶料也需要有良好的粘结性能;二、性能改善层不能影响复合增强层的正常收卷及展开,复合增强层必须具有实用性和可加工性。该复合增强层需要具备便于收卷运输或收卷储存的性能,但是高分子胎基上涂覆粘性乳液可能会对收卷产生负面影响,比如复合增强层表面过粘,收卷后无法再次完整地展开使用,但是如果采用粘性较小的粘性乳液,则粘性乳液不能起到提高高分子胎基与沥青胶料低温粘结性能的作用。
基于此,本发明平衡了粘性乳液与高分子胎基的粘接强度及收卷运输的便利性,采用玻璃化温度≤30℃的粘性乳液涂覆在高分子胎基上形成性能改善层,更优选的,性能改善层由玻璃化温度≤20℃的粘性乳液均匀覆盖在高分子胎基上形成,更优选的,性能改善层由玻璃化温度≤10℃的粘性乳液均匀覆盖在高分子胎基上形成。容易理解的是,对于本发明的粘性乳液来说,玻璃化温度越低,其粘性越好,本发明选择玻璃化温度较高的粘性乳液,在不影响产品的低温粘结性能的前提下,以降低粘性乳液自身粘性来解决高分子胎基表面过黏的问题。基于卷材的使用场合的温度一般是室温至零下温度,考虑到收卷便利性的要求,选择玻璃化温度0~10℃的粘性乳液比较合适。
需要说明的是,上述的粘性乳液是具有单一玻璃化温度的乳液,也即,该粘性乳液是
单一组分的有机乳液。
本发明还提供了一种与沥青胶料粘结强度高的复合增强层的应用,将上述复合增强层与流动态沥青胶料粘接,优选的,将上述复合增强层与145~170℃的流动态沥青胶料粘接。在性能改善层上涂覆流动态的沥青胶料时,高温(145~170℃)的沥青胶料提供了足够的热量来加热性能改善层,使性能改善层与高分子胎基的交联密度进一步提升,而且被加热的性能改善层与沥青胶料的交联密度也得到提升。
本发明增强高分子胎基与沥青胶料低温粘接强度的原理如下:
本发明一方面利用粘性乳液本身与沥青胶料的粘结力,另一方面通过粘性乳液与高分子胎基之间良好的相容性来提升粘性乳液与高分子胎基粘结力,其粘结原理不是两者的简单叠加作用,而是一个相互影响的复合作用,即:性能改善层在145℃~170℃(即沥青胶料的温度)高温下,与高分子胎基相互交联密度增加,性能改善层和高分子胎基粘接强度提升,而沥青胶料本身与粘性乳液拥有良好的粘结力,因此,高分子胎基与沥青胶料的粘结力得到提升的原理总结为:沥青涂层粘接性能改善层,性能改善层粘接高分子胎基,从而提升沥青涂层与高分子胎基剥离强度。
另外,由于本发明在应用时,在性能改善层上还需要涂覆流动态的沥青胶料,高温的沥青胶料向性能改善层提供足够的热量,进一步提升性能改善层与高分子胎基的粘结力(即提高交联密度),使采用玻璃化温度较高的粘性乳液变为可行;另外,沥青胶料与粘性乳液的粘结力本来就很好,在受热条件下,沥青胶料层与性能改善层的粘结力进一步得到提升。但不能采用玻璃化温度过高的粘性乳液,因为玻璃化温度过高的粘性乳液的脆性明显增加,对复合增强层的收卷也有负面影响,在收卷时会出现裂痕甚至破碎的情况。
进一步地,在本发明中,为了平衡性能改善层的粘性和脆性,粘性乳液是两种或两种以上的玻璃化温度不同的乳液混合制得,比如,粘性乳液由玻璃化温度≤20℃的乳液和玻璃化温度≥20℃的乳液混合而成;更进一步地,粘性乳液由玻璃化温度≤10℃的乳液和玻璃化温度≥10℃的乳液混合而成,其中,玻璃化温度≤10℃的乳液和玻璃化温度≥10℃的乳液的比例是1:(0.5~1.5)。
采用高玻璃化温度的乳液与低玻璃化温度的乳液混合,高玻璃化温度的乳液起到降低低玻璃化温度乳液的粘性的作用,同时,低玻璃化温度的乳液也能降低高玻璃化温度乳液的脆性,从而使得粘性乳液的粘性和脆性得到平衡。其中,当两种乳液的玻璃化温度相差较大时,玻璃化温度≤10℃的乳液和玻璃化温度≥10℃的乳液的比例是1:(0.5~1),当两种乳液的玻璃化温度相差较小时,玻璃化温度≤10℃的乳液和玻璃化温度≥10℃的乳液
的比例是1:(1~1.5)。需要说明的是,玻璃化温度≤10℃的乳液起到主要作用,玻璃化温度≥10℃的乳液起到辅助作用,两者的比例与其具体的玻璃化温度有关,比如,玻璃化温度更低的乳液需要与更高玻璃化温度的乳液混合,或与更多但玻璃化温度不那么高的乳液混合。
需要说明的是,粘性乳液可以由多种不同类型且不同玻璃化温度的乳液混合而成,也可以由多种相同类型但不同玻璃化温度的乳液混合而成,在本发明中,优选将多种相同类型但不同玻璃化温度的乳液混合制得粘性乳液使用。
需要说明的是,在本发明中,粘性乳液既可以是单一组分的乳液,也可以包括多组分的乳液,在以下描述中,若不特别说明,则对粘性乳液的组分不作要求。
本发明提供了一种与沥青胶料低温粘结强度高的复合增强层的制备方法,步骤如下:
将高分子胎基展开,在高分子胎基上涂覆固含量为40%~60%的粘性乳液作为性能改善层,待性能改善层干燥后收卷待用;
其中,每次涂覆粘性乳液时,每平方米高分子胎基涂刮量不低于20g/m2,更优选的,不低于30g/m2。完成最后一层粘性乳液的涂刮后,在100~140℃的温度内烘干,更优选的,在120℃的温度条件下烘干粘性乳液,烘干速度为15~30m/min,更优选的,烘干速度为20m/min。
进一步地,高分子胎基的同一面上可以涂覆两层或两层以上的粘性乳液,为便于描述,下述的两层或多层的粘性乳液或性能改善层均是指在高分子胎基的同一面上涂覆形成。具体地,以涂覆两层粘性乳液为例,先在高分子胎基表面涂覆一层粘性乳液,无需等待第一层完全干燥即可涂覆第二层,比如,待常温固化5秒后继续涂覆第二层粘性乳液,最后高温快速烘干。
对于涂覆多层粘性乳液的情况,本发明也提供了两种方案,如下所示:
方案一:外层的性能改善层及内层的性能改善层是分别由玻璃化温度不同的单一组分粘性乳液涂覆形成。此时,外层的性能改善层的玻璃化温度大于内层的性能改善层的玻璃化温度,比如,外层的性能改善层的玻璃化温度为0~20℃,内层的性能改善层的玻璃化温度≤0℃,由于粘性乳液与沥青胶料之间的粘结力较高,因此外层选择玻璃化温度较高的粘性乳液涂覆,相当于起到钝化作用,复合增强层与沥青胶料的粘结强度仍有能保持,而且外层粘性相对内层来说更低,便于收卷。
在方案一中,处于内层的性能改善层可以采用玻璃化温度更低的粘性乳液涂覆形成,比如,内层的粘性乳液的玻璃化温度低于0℃。
相比于只涂覆一层单一组分的粘性乳液,方案一中的外层性能改善层的玻璃化温度为10~20℃,高于只涂覆一层单一组分的粘性乳液的0~10℃,这是因为,对于多层改善性能层的结构,最外层可以倾向于关注收卷便利性,维持与高分子胎基的粘性由内层实现。
方案二:外层的性能改善层由两种或两种以上不同玻璃化温度乳液混合的粘性乳液涂覆形成,内层的性能改善层由单一组分的粘性乳液涂覆形成。
在方案二中,外层的性能改善层的粘性和脆性得到平衡,具有便于收卷的性能,此时,外层的性能改善层相当于起到钝化功能,外层的粘性乳液组成与只涂覆一层混合组分的粘性乳液的成分相同,处于内层的性能改善层可以采用玻璃化温度更低的单一组分的粘性乳液涂覆形成,比如,内层的粘性乳液的玻璃化温度低于10℃,甚至低于0℃。
使用本发明的复合增强层而制得卷材的低温粘结性能得到提升的关键在于,性能改善层与高分子胎基及性能改善层与改性沥青胶料的粘接力,涂覆玻璃化温度较低的粘性乳液作为内层的性能改善层直接与高分子胎基接触,而外层性能改善层作为钝化层使用,在复合增强层与沥青胶料粘接时,由于性能改善层与沥青胶料的粘结性能良好,即使外层与沥青胶料接触,仍能保持较大的粘接力。
更进一步地,针对三层或以上性能改善层的情况,每层性能改善层涂覆的粘性乳液的种类也可以不同,第一层性能改善层起到提升与高分子胎基结合强度的作用,最后一层性能改善层作为钝化层使用,而位于中间层的性能改善层起到将相邻两层性能改善层紧密结合的作用,比如,以涂覆三层粘性乳液为例,涂覆第一层粘性乳液时,采用与高分子胎基结合最好且玻璃化温度较低的第一种乳液,涂覆第二层粘性乳液时,采用与第一种粘性乳液结合最好的第二种乳液,涂覆第三层粘性乳液时,采用与第二种粘性乳液结合较好且玻璃化温度较高的第三种乳液。
下面以具体实施例详细介绍本发明的技术方案,实施例及对比例均将复合增强层与改性沥青胶料粘接,测试剥离强度,其中,以质量份数计算,改性沥青胶料由55份沥青、13份软化油(即油品)、7份SBS3411、3份SBR、5份废胶粉、0.75份稳定剂(即改性助剂)、2份炭黑(即填料)和20份石粉(即填料)制得,制备方法如下:将沥青和油品混合后升温至150~180℃,投入SBS、SBR,搅拌1-2小时分散均匀后,投入废胶粉、改性助剂,改性1小时,研磨分散均匀后投入填料,物理混合1.5小时制备得到;温度维持在145~170℃使改性沥青胶料保持流动状态待用。
实施例
实施例1
以涂覆一层单一组分的丙烯酸乳液为例。
(1)将高分子胎基展开,涂刷一层丙烯酸乳液作为性能改善层,涂覆量为30g/m2,然后在烘干温度120℃及烘干车速20m/min进行烘干制得新型复合增强层,收卷待用;
(2)将复合增强层展开,使用辊压涂胶工艺在性能改善层上继续涂覆150℃的改性沥青胶料,覆膜、冷却、收卷制成;其中,丙烯酸乳液的玻璃化温度是20℃。
实施例2
以涂覆一层单一组分的丙烯酸乳液为例。
制备方法与实施例1相同,其中,丙烯酸乳液的玻璃化温度是9℃
实施例3
以涂覆一层混合乳液的丙烯酸乳液为例。
制备方法与实施例1相同,其中,丙烯酸乳液由玻璃化温度为-7℃的乳液与玻璃化温度为56℃的乳液按1:1的质量比例混合制得。
实施例4
以涂覆一层混合组分的丙烯酸乳液为例。
制备方法与实施例1相同,其中,丙烯酸乳液由玻璃化温度为-15℃的乳液与玻璃化温度为105℃的乳液按1:1.2的质量比例混合制得。
实施例5
以涂覆一层混合组分的丙烯酸乳液为例。
制备方法与实施例1相同,其中,丙烯酸乳液由玻璃化温度为9℃的乳液与玻璃化温度为20℃的乳液按1:0.8的质量比例混合制得。
实施例6
以涂覆两层单一组分的丙烯酸乳液为例。
(1)将高分子胎基展开,先涂刷第一层丙烯酸乳液,常温固化5秒后继续涂刷第二层丙烯酸乳液,涂覆量均为40g/m2,然后在烘干温度125℃及烘干车速18m/min进行烘干制得新型复合增强层,收卷待用;
(2)将复合增强层展开,使用辊压涂胶工艺在性能改善层上继续涂覆160℃的改性沥青胶料,覆膜、冷却、收卷制成;
其中,内层丙烯酸乳液的玻璃化温度是9℃,外层丙烯酸乳液的玻璃化温度是20℃。
实施例7
以涂覆两层单一组分的丙烯酸乳液为例。
制备方法与实施例6相同,其中,内层丙烯酸乳液的玻璃化温度是-15℃,外层丙烯酸乳液的玻璃化温度是9℃。
实施例8
以涂覆两层丙烯酸乳液为例,内层为单一组分的丙烯酸乳液,外层为混合组分的丙烯酸乳液。
制备方法与实施例6相同,其中,内层丙烯酸乳液的玻璃化温度是-15℃,外层丙烯酸乳液由玻璃化温度为-7℃的乳液与玻璃化温度为56℃的乳液按1:1的质量比例混合制得。
对比例
对比例1
与实施例1相比,不涂覆丙烯酸乳液,具体地,将高分子胎基展开,使用辊压涂胶工艺在高分子胎基表面涂覆150℃的改性沥青胶料,覆膜、冷却、收卷制成。
对比例2
涂覆一层单一组分的丙烯酸乳液,制备方法与实施例1相同,涂覆的丙烯酸乳液的玻璃化温度为-5℃。
对比例3
涂覆一层单一组分的丙烯酸乳液,制备方法与实施例1相同,涂覆的丙烯酸乳液的玻璃化温度为40℃。
对比例4
涂覆一层混合组分的丙烯酸乳液,制备方法与实施例1相同,涂覆的丙烯酸乳液是由玻璃化温度为-4℃的乳液与玻璃化温度为9℃的乳液按1:1.5的质量比例混合制得。
对比例5
涂覆一层混合组分的丙烯酸乳液,制备方法与实施例1相同,涂覆的丙烯酸乳液是由玻璃化温度为-15℃的乳液与玻璃化温度为65℃的乳液按1:2的质量比例混合制得。
对比例6
涂覆一层混合组分的丙烯酸乳液,制备方法与实施例1相同,涂覆的丙烯酸乳液是由玻璃化温度为-22℃的乳液与玻璃化温度为105℃的乳液按1:0.2的质量比例混合制得。
对比例7
涂覆两层单一组分的丙烯酸乳液。制备方法与实施例6相同,其中,内层丙烯酸乳液的玻璃化温度是-15℃,外层丙烯酸乳液的玻璃化温度是-4℃。
对比例8
涂覆两层丙烯酸乳液,内层为单一组分的丙烯酸乳液,外层为混合组分的丙烯酸乳液。制备方法与实施例6相同,其中,内层丙烯酸乳液的玻璃化温度是-15℃,外层丙烯酸乳液是由玻璃化温度为-15℃的乳液与玻璃化温度为65℃的乳液按1:2的质量比例混合制得。
以本发明的复合增强层制得的改性沥青防水卷材低温情况下(-5℃至5℃)改性沥青胶料与高分子胎基的粘结性能,按GB23441-2009《自粘聚合物改性沥青防水卷材》标准中的测试方法进行测试,测试结果如下表所示。
根据上表可知,实施例1-8所制得的防水卷材的低温粘结性能达标。
根据对比例2与实施例1-2比较可知,虽然对比例2的低温剥离强度高于实施例,但是高分子胎基表面粘性极大,无法收卷,也即,采用更低玻璃化温度的粘性乳液,制得的复合增强层无法收卷,不具有实用性。
对比例3采用的是更高玻璃化温度的粘性乳液,虽然解决了粘性的问题,但是脆性明显增加,也无法收卷,而且剥离强度有所下降,这是因为高玻璃化温度的丙烯酸乳液的粘性下降,与高分子胎基及改性沥青胶料的结合强度下降。
根据对比例4-6与实施例3-5比较可知,对比例4采用的是混合组分的粘性乳液,但是两种组分的玻璃温度均小于10℃,尤其是其中一种乳液的玻璃化温度低于0℃,其制得的复合增强层的表面粘性仍然过大,无法收卷,而对比例5和6中,低玻璃化温度与高玻璃化温度的比例在本发明的范围外,所制得的复合增强层也不具有实用性。
此外,本发明还提供了一种防水系统,包括上述的复合增强层,防水系统以建筑物表面作为基面从下到上依次包括第一沥青胶料层、第一复合增强层、第二沥青胶料层,……,第N复合增强层、第N+1沥青胶料层,N为大于或等于1的正整数。本发明也提供了一种防水卷材,包括上述的复合增强层。
以上对本发明所提供的实施例进行了详细阐述。本文中应用了具体个例对本发明的原
理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的核心思想。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明的原理的前提下,还可以本发明进行若干改进和修饰,这些改进和修饰也落入本发明权利要求的保护范围内。
Claims (11)
- 一种与沥青胶料粘结强度高的复合增强层,其特征在于,包括高分子胎基和性能改善层,所述性能改善层由粘性乳液均匀覆盖在高分子胎基的至少一面上形成,所述性能改善层在高分子胎基至少一面的覆盖面积≥50%。
- 根据权利要求1所述复合增强层,其特征在于,在所述高分子胎基的同一面上,所述性能改善层的层数为一层,所述性能改善层由玻璃化温度≤30℃的粘性乳液均匀覆盖在高分子胎基上形成,优选的,所述粘性乳液的玻璃化温度≤20℃,更优选的,所述粘性乳液的玻璃化温度≤10℃,更优选的,所述粘性乳液的玻璃化温度为0~10℃。
- 根据权利要求1所述复合增强层,其特征在于,在所述高分子胎基的同一面上,所述性能改善层的层数为一层,所述粘性乳液是两种或两种以上的玻璃化温度不同的乳液混合制得,优选的,所述粘性乳液由玻璃化温度≤20℃的乳液和玻璃化温度≥20℃的乳液混合而成;更优选的,所述粘性乳液由玻璃化温度≤10℃的乳液和玻璃化温度≥10℃的乳液混合而成。
- 根据权利要求3所述复合增强层,其特征在于,玻璃化温度≤10℃的乳液和玻璃化温度≥10℃的乳液的比例是1:(0.5~1.5)。
- 根据权利要求1所述复合增强层,其特征在于,在所述高分子胎基的同一面上,所述性能改善层的层数至少是两层;外层的性能改善层及内层的性能改善层是分别由玻璃化温度不同的单一组分粘性乳液涂覆形成,或,外层的性能改善层由两种或两种以上不同玻璃化温度乳液混合的粘性乳液涂覆形成,内层的性能改善层由单一组分的粘性乳液涂覆形成。
- 根据权利要求5所述复合增强层,其特征在于,外层的性能改善层及内层的性能改善层是分别由玻璃化温度不同的单一组分粘性乳液涂覆形成,且外层的性能改善层的玻璃化温度大于内层的性能改善层的玻璃化温度,优选的,外层的性能改善层的玻璃化温度≤30℃,内层的性能改善层的玻璃化温度≤20℃,更优选的,外层的性能改善层的玻璃化温度是0~20℃,内层的性能改善层的玻璃化温度≤0℃。
- 根据权利要求1所述复合增强层,其特征在于,所述粘性乳液包括丙烯酸乳液、丁苯乳液和VAE乳液的一种或几种,或,所述粘性乳液是苯乙烯-丙烯酸共聚物乳液、丁二烯-苯乙烯-丙烯酸共聚物乳液的复配乳液,优选的,所述粘性乳液是丙烯酸乳液。
- 一种如权利要求1-7任一项所述与沥青胶料低温粘接强度高的复合增强层的制备方法,其特征在于,步骤如下:将高分子胎基展开,在高分子胎基上涂覆粘性乳液作为性能改善层,待涂覆的粘性乳 液全部干燥后收卷待用;其中,每次涂覆粘性乳液时,每平方米高分子胎基涂刮量不低于20g/m2,优选的,不低于30g/m2。
- 一种如权利要求1-7任一项所述与沥青胶料粘接强度高的复合增强层的应用,其特征在于,将流动态沥青胶料附着在权利要求1-8任一项所述的复合增强层上。
- 一种防水系统,其特征在于,包含权利要求1-7任一项所述的复合增强层,优选的,所述防水系统以建筑物表面作为基面从下到上依次包括第一沥青胶料层、第一复合增强层、第二沥青胶料层,……,第N复合增强层、第N+1沥青胶料层,N为大于或等于1的正整数。
- 一种防水卷材,其特征在于,包含权利要求1-7任一项所述的复合增强层。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211200983.4 | 2022-09-29 | ||
CN202211200983.4A CN115637120A (zh) | 2022-09-29 | 2022-09-29 | 一种与沥青胶料粘结强度高的复合增强层及其制备方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024067580A1 true WO2024067580A1 (zh) | 2024-04-04 |
Family
ID=84942166
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2023/121514 WO2024067580A1 (zh) | 2022-09-29 | 2023-09-26 | 一种与沥青胶料粘结强度高的复合增强层及其制备方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN115637120A (zh) |
WO (1) | WO2024067580A1 (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115637120A (zh) * | 2022-09-29 | 2023-01-24 | 深圳市卓宝科技股份有限公司 | 一种与沥青胶料粘结强度高的复合增强层及其制备方法 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130037989A1 (en) * | 2010-04-28 | 2013-02-14 | Robert A. Wiercinski | Waterproofing Membrane |
CN111546717A (zh) * | 2020-04-30 | 2020-08-18 | 深圳市卓宝科技股份有限公司 | 一种沥青基预涂防水系统 |
CN111748295A (zh) * | 2020-07-07 | 2020-10-09 | 江苏凯伦建材股份有限公司 | 一种沥青基防水卷材及其制备方法 |
CN112831191A (zh) * | 2021-01-29 | 2021-05-25 | 远大洪雨(唐山)防水材料有限公司 | 一种改性沥青基高强度预铺防水卷材及其制备方法 |
CN113817331A (zh) * | 2021-09-24 | 2021-12-21 | 深圳市卓宝科技股份有限公司 | 一种高耐久性sbs卷材的生产工艺 |
CN113914379A (zh) * | 2021-11-23 | 2022-01-11 | 雨中情防水技术集团股份有限公司 | 一种适用于地下侧墙的涂-卷复合防水系统构造 |
CN114149766A (zh) * | 2021-11-05 | 2022-03-08 | 江苏凯伦建材股份有限公司 | 一种底涂剂及其高分子预铺防水卷材和制备方法 |
CN115637120A (zh) * | 2022-09-29 | 2023-01-24 | 深圳市卓宝科技股份有限公司 | 一种与沥青胶料粘结强度高的复合增强层及其制备方法 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN204139019U (zh) * | 2014-02-24 | 2015-02-04 | 淮安益全科技有限公司 | 道路路面结构层高强抗裂卷材 |
CN111394024A (zh) * | 2020-04-18 | 2020-07-10 | 宏源防水科技集团有限公司 | 一种新型高强度渗透修复型混凝土基层处理剂及其生产工艺 |
-
2022
- 2022-09-29 CN CN202211200983.4A patent/CN115637120A/zh active Pending
-
2023
- 2023-09-26 WO PCT/CN2023/121514 patent/WO2024067580A1/zh unknown
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130037989A1 (en) * | 2010-04-28 | 2013-02-14 | Robert A. Wiercinski | Waterproofing Membrane |
CN111546717A (zh) * | 2020-04-30 | 2020-08-18 | 深圳市卓宝科技股份有限公司 | 一种沥青基预涂防水系统 |
CN111748295A (zh) * | 2020-07-07 | 2020-10-09 | 江苏凯伦建材股份有限公司 | 一种沥青基防水卷材及其制备方法 |
CN112831191A (zh) * | 2021-01-29 | 2021-05-25 | 远大洪雨(唐山)防水材料有限公司 | 一种改性沥青基高强度预铺防水卷材及其制备方法 |
CN113817331A (zh) * | 2021-09-24 | 2021-12-21 | 深圳市卓宝科技股份有限公司 | 一种高耐久性sbs卷材的生产工艺 |
CN114149766A (zh) * | 2021-11-05 | 2022-03-08 | 江苏凯伦建材股份有限公司 | 一种底涂剂及其高分子预铺防水卷材和制备方法 |
CN113914379A (zh) * | 2021-11-23 | 2022-01-11 | 雨中情防水技术集团股份有限公司 | 一种适用于地下侧墙的涂-卷复合防水系统构造 |
CN115637120A (zh) * | 2022-09-29 | 2023-01-24 | 深圳市卓宝科技股份有限公司 | 一种与沥青胶料粘结强度高的复合增强层及其制备方法 |
Also Published As
Publication number | Publication date |
---|---|
CN115637120A (zh) | 2023-01-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2024067580A1 (zh) | 一种与沥青胶料粘结强度高的复合增强层及其制备方法 | |
CN101638159B (zh) | 液体包装复合膜及其制作方法 | |
CN108003833B (zh) | 一种自粘胶及其制备方法和抗污染型自粘沥青防水卷材 | |
CN109881848A (zh) | 一种新型改性沥青防水卷材及其制备方法 | |
CN109705590B (zh) | 一种自愈型自粘橡胶沥青及其制备方法和自粘橡胶沥青防水卷材 | |
WO2023077901A1 (zh) | 一种底涂剂及其高分子预铺防水卷材和制备方法 | |
CN104520738A (zh) | 偏振片保护用聚酯薄膜、偏光板以及液晶显示装置 | |
CN108641628A (zh) | 一种防水卷材用非沥青自粘胶料及其制备方法 | |
WO2024067581A1 (zh) | 一种功能膜及制备方法和应用 | |
CN106499067A (zh) | 一种蠕变型非固化橡胶沥青防水卷材及其制备方法 | |
CN114539869B (zh) | 一种水性非沥青基防水涂料及其制备方法、防水层叠体 | |
WO2018108015A1 (zh) | 一种石墨烯改性无机涂料及其制备方法 | |
CN112940664B (zh) | 高分子防水卷材用自粘胶及其制备方法和高分子防水卷材 | |
CN101792641B (zh) | 铝合金与pvc薄膜快速粘接用环保粘合剂与制备及应用 | |
CN101589475B (zh) | 太阳能电池背面密封用片和太阳能电池组件 | |
CN113956811A (zh) | 非沥青基可外露自粘防水卷材及其应用 | |
WO2023155395A1 (zh) | 一种高分子预铺防水卷材及其制备方法 | |
CN111662677A (zh) | 一种非沥青基自粘防水胶料、其制备方法及应用 | |
CN111394058A (zh) | 一种高聚物弹性修补防水胶及其制备方法 | |
CN107936913A (zh) | 一种自粘橡胶沥青胶料及其制备方法和由其得到的古建筑专用防水卷材 | |
CN105505306B (zh) | 一种环保纯橡胶改性沥青组合物及其制备方法、环保纯橡胶改性沥青耐老化防水卷材 | |
JPH0370785A (ja) | 粘着性防水シートおよびそれを用いた防水構造 | |
WO2024001711A1 (zh) | 锂电池封装用铝塑膜内层胶黏剂及其制备方法 | |
CN102115607B (zh) | 反应型sbs改性沥青及利用其制备的自粘性防水卷材 | |
CN113736394B (zh) | 一种耐电解液树脂组合物及应用其的胶水和胶带 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23870808 Country of ref document: EP Kind code of ref document: A1 |