WO2024001711A1 - 锂电池封装用铝塑膜内层胶黏剂及其制备方法 - Google Patents

锂电池封装用铝塑膜内层胶黏剂及其制备方法 Download PDF

Info

Publication number
WO2024001711A1
WO2024001711A1 PCT/CN2023/099085 CN2023099085W WO2024001711A1 WO 2024001711 A1 WO2024001711 A1 WO 2024001711A1 CN 2023099085 W CN2023099085 W CN 2023099085W WO 2024001711 A1 WO2024001711 A1 WO 2024001711A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
aluminum
plastic film
inner layer
lithium battery
Prior art date
Application number
PCT/CN2023/099085
Other languages
English (en)
French (fr)
Inventor
吴博文
刘德福
Original Assignee
广东广麟材耀新能源材料有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东广麟材耀新能源材料有限公司 filed Critical 广东广麟材耀新能源材料有限公司
Publication of WO2024001711A1 publication Critical patent/WO2024001711A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J123/00Adhesives based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Adhesives based on derivatives of such polymers
    • C09J123/26Adhesives based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Adhesives based on derivatives of such polymers modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/06Non-macromolecular additives organic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J123/00Adhesives based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Adhesives based on derivatives of such polymers
    • C09J123/02Adhesives based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Adhesives based on derivatives of such polymers not modified by chemical after-treatment
    • C09J123/04Homopolymers or copolymers of ethene
    • C09J123/08Copolymers of ethene
    • C09J123/0846Copolymers of ethene with unsaturated hydrocarbons containing other atoms than carbon or hydrogen atoms
    • C09J123/0853Vinylacetate
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J123/00Adhesives based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Adhesives based on derivatives of such polymers
    • C09J123/02Adhesives based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Adhesives based on derivatives of such polymers not modified by chemical after-treatment
    • C09J123/04Homopolymers or copolymers of ethene
    • C09J123/08Copolymers of ethene
    • C09J123/0846Copolymers of ethene with unsaturated hydrocarbons containing other atoms than carbon or hydrogen atoms
    • C09J123/0869Acids or derivatives thereof
    • C09J123/0876Neutralised polymers, i.e. ionomers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/20Applications use in electrical or conductive gadgets
    • C08L2203/206Applications use in electrical or conductive gadgets use in coating or encapsulating of electronic parts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to the technical field of lithium battery soft packages, and in particular to an aluminum-plastic film inner layer adhesive for lithium battery packaging and a preparation method thereof.
  • lithium-ion batteries have gradually developed rapidly in the fields of digital electronics, new energy vehicles, and energy storage due to their advantages such as large capacity, long cycle life, no memory effect, and environmental friendliness.
  • traditional lithium batteries are packaged in rigid materials such as steel cases and cannot be relieved in time when the battery pressure is too high, which is prone to safety accidents. Therefore, in order to solve the problem of lithium-ion battery packaging, an aluminum-plastic composite film packaging material was developed.
  • Aluminum-plastic composite film is mainly composed of nylon, aluminum foil and polypropylene film. Adhesives are used between each layer to increase the interlayer adhesion. Among them, the polypropylene film is in direct contact with the battery electrolyte. The heat and gas generated during use will cause chemical corrosion or thermal aging of the composite film. Therefore, the adhesive is required to have good electrolyte resistance and durability. Hot sex.
  • ordinary adhesives cannot have good long-term electrolyte resistance and good heat sealing strength at high temperatures. Therefore, it is difficult to meet the current requirements of aluminum-plastic film packaging.
  • the inner layer adhesive currently on the market generally uses polyolefin as the main resin, and introduces polar groups on it to increase the adhesion to the aluminum foil, while ensuring the adhesion between the adhesive and the polypropylene film.
  • this method has fewer active sites on the polyolefin, so the number of polar groups introduced is limited, making it difficult for the adhesive to have good bonding strength, high temperature resistance and electrolyte resistance.
  • Patent CN202010268184.5 discloses an adhesive for the inner layer of lithium battery aluminum-plastic film and its preparation Method, the method consists of modified polyolefin component A containing carboxyl or acid anhydride groups, modified polyolefin component B-1 containing glycidyl ether group, and modified polyolefin component containing glycidylamine group B-2; composed of modified polyolefin component C containing isocyanate groups; organic solvent D.
  • the adhesive can achieve the ideal curing effect by curing it at 70-90°C for three days after application, and has excellent bonding strength and electrolyte resistance.
  • the components of this method are complex, resulting in a complicated curing reaction, so the controllability is low, and the electrolyte resistance still needs to be improved.
  • the purpose of the present invention is to provide an aluminum-plastic film inner layer adhesive for lithium battery packaging and a preparation method thereof.
  • the adhesive uses low melting point polyolefin as the main resin, and a small amount of double Phenolic A-based epoxy resin, while adding a small amount of multi-functional organic small molecules containing triazine rings, thereby significantly improving the bonding strength and electrolyte resistance.
  • the components are relatively simple, so the cost and performance are highly controllable, and the economic value is high. Significantly.
  • the present invention provides an aluminum-plastic film inner layer adhesive for lithium battery packaging, including component A and component B;
  • the component A includes: low melting point polyolefin, acid anhydride monomer, Initiator, auxiliary agent and organic solvent one;
  • the component B includes: bisphenol A epoxy resin, modified bisphenol A epoxy resin and organic solvent two; wherein the auxiliary agent contains triazine Ringed polyfunctional organic small molecules.
  • the component A includes in parts by mass: 20-30 parts of low melting point modified polyolefin, 5-20 parts of acid anhydride monomer, 0.2-1 part of initiator, 0.1-0.5 part of auxiliary agent, Organic solvent one 80-120 parts;
  • the component B includes by mass parts: 13-20 parts bisphenol A epoxy resin, 1-3 parts modified bisphenol A epoxy resin, organic solvent two 75-100 parts parts; the mass ratio of component A and component B is 100: (0.5-1).
  • the functionality of the auxiliary agent is 2-4, and the active functional group is an alkene group, a hydroxyl group or a carboxyl group.
  • the auxiliary agent is 1,3,5-triacryloylhexahydro-1,3,5-triazine or 1,3,5-Triglycidyl-S-triazintrione.
  • the low melting point polyolefin is maleic anhydride modified polyolefin, ethylene-vinyl acetate copolymer or ethylene acrylic acid copolymer;
  • the modified bisphenol A epoxy resin is tetrafunctional Epoxy resin.
  • the low melting point polyolefin has a melt index of 5-200g/10min at 190°C and a load of 2.16kg, a melting point of 70-130°C, and an acid value of 1-20 mg KOH/g.
  • the anhydride monomer is one or more of maleic anhydride, 1,2,3,6 tetrahydrophthalic anhydride and norbornene dianhydride; preferably maleic anhydride;
  • the initiator is one or more of dibenzoyl peroxide, methyl ethyl ketone peroxide, and azobisisobutyronitrile;
  • the organic solvent is toluene, xylene, cyclohexane, and n-butyl ester. one or several kinds;
  • the organic solvent 2 is one or more of toluene, xylene, ethyl ester, n-butyl ester, acetone, and butanone.
  • the preparation method of component A includes the following steps:
  • the preparation method of component B includes the following steps: using organic Solvent 2 dilutes bisphenol A epoxy resin and modified bisphenol A epoxy resin.
  • the inner layer adhesive of aluminum-plastic film for lithium battery packaging provided by the present invention is mainly composed of modified polyolefin containing carboxyl or acid anhydride groups and epoxy resin. By adding a small amount of multifunctional triazine ring-containing degree of organic small molecules to improve their performance. After the adhesive is applied, it can be cured at 60-100°C for 2-5 days to achieve a good curing effect. It has good bonding strength, electrolyte resistance, high temperature resistance and water resistance.
  • the present invention uses low-melting point polyolefin as the main resin component, and adds an appropriate amount of bisphenol A epoxy resin and modified multifunctional bisphenol A epoxy resin.
  • the body and multifunctional organic small molecule additives containing triazine rings can play a good role in regulating the cured cross-linked structure, so that the adhesive cured network can play a good bonding role between aluminum foil and polypropylene film.
  • the solidified structure is not easily dissociated and destroyed after being soaked in electrolyte, so it has excellent electrolyte resistance.
  • the invention provides an aluminum-plastic film inner layer adhesive for lithium battery packaging, including component A and component B; the component A includes: low melting point polyolefin, acid anhydride monomer, initiator, auxiliary agent and Organic solvent one; the component B includes: bisphenol A epoxy resin, modified bisphenol A epoxy resin and organic solvent two; wherein the auxiliary agent is a multifunctional organic solvent containing a triazine ring Small molecule.
  • the experimental results of the present invention show that the By adding a small amount of these small molecule additives, significant enhancement can be achieved.
  • the functionality of the auxiliary agent is 2-4, and the active functional group is an alkene group, a hydroxyl group or a carboxyl group, preferably an alkene group.
  • the auxiliary agent is preferably 1,3,5-triacryloylhexahydro-1,3,5-triazine or 1,3,5-triglycidyl-S-triazinetrione.
  • the component A includes, in parts by mass: 20-30 parts of low melting point modified polyolefin, 5-20 parts of acid anhydride monomer, 0.2-1 part of initiator, 0.1-0.5 part of auxiliary agent, and 80 parts of organic solvent. -120 parts; the component B includes by mass parts: 13-20 parts of bisphenol A epoxy resin, 1-3 parts of modified bisphenol A epoxy resin, and 75-100 parts of organic solvent; The mass ratio of component A and component B is 100: (0.5-1).
  • the low melting point polyolefin is maleic anhydride modified polyolefin, ethylene-vinyl acetate copolymer or ethylene acrylic acid copolymer; the modified bisphenol A epoxy resin is a tetrafunctional epoxy resin.
  • An aluminum-plastic film inner layer adhesive for lithium battery packaging prepared through the following steps:
  • An aluminum-plastic film inner layer adhesive for lithium battery packaging Compared with Example 1, the difference is that:
  • the auxiliary agent is 1,3,5-triglycidyl-S-triazintrione. Others are substantially the same as those in Embodiment 1 and will not be described again.
  • An aluminum-plastic film inner layer adhesive for lithium battery packaging Compared with Example 1, the difference is that the acid anhydride monomers are 1, 2, 3, 6 tetrahydrophthalic anhydride and norbornene dianhydride respectively. Others are substantially the same as those in Embodiment 1 and will not be described again.
  • An aluminum-plastic film inner layer adhesive for lithium battery packaging Compared with Example 1, the difference is that the additive is 1,3-butadiene. Others are substantially the same as those in Embodiment 1 and will not be described again.
  • An aluminum-plastic film inner layer adhesive for lithium battery packaging Compared with Example 1, the difference is that the additive is 1,3,5-tris(2,3-dibromopropyl)-1, 3,5-Triazine-2,4,6-trione. Others are substantially the same as those in Embodiment 1 and will not be described again.
  • An aluminum-plastic film inner layer adhesive for lithium battery packaging Compared with Example 1, the difference lies in the preparation method of component B: weigh 20 parts by mass of bisphenol A-type epoxy resin, and use 20 parts by mass of the bisphenol A-type epoxy resin. dilute with 60 parts by mass of ethyl ester and 60 parts by mass of butanone. Others are substantially the same as those in Embodiment 1 and will not be described again.
  • the matured aluminum plastic film is packaged into a 60mm ⁇ 80mm sample bag, and 3mL of electrolyte is injected into it, and then heat-sealed. Keep the sample bag in an environment with a temperature of (85 ⁇ 2)°C and a relative humidity of 85% for 24 hours, then take it out and cool it naturally to normal temperature. First cut off one heat-sealed edge, pour out the electrolyte, then cut off the rest of the heat-sealed edges, then wipe clean the remaining electrolyte on the membrane surface, and heat-seal again within 5 minutes. It was then cut into 15mm wide specimens to test the change in T-shaped peel force to characterize its heat sealing strength after being immersed in electrolyte.
  • Table 1 shows the performance test results of Examples 1-4 and Comparative Examples 1-4 and market competing products.
  • Example 1 in Table 1 It can be seen from Example 1 in Table 1 that adding a small amount of 1,3,5-triacryloylhexahydro-1,3,5-triazine to the formula of the present invention can improve the initial bonding strength of the matured adhesive.
  • the bonding strength after soaking in electrolyte is significantly improved, and the bonding strength and electrolyte resistance after heat sealing are also excellent.
  • Example 2 also has better performance when 1,3,5-triglycidyl-S-triazintrione is added.
  • the acid anhydride changes, the bonding force decreases to varying degrees. It can be seen that the combination of the triazine organic additives of the present invention and maleic anhydride can produce better effects.
  • Comparative Example 3 shows that under the system of the present invention, when the content of the four-functional epoxy resin is too high, it is not conducive to the improvement of the adhesion force and electrolyte resistance.
  • Comparative Example 4 shows that under the system of the present invention and without tetrafunctional epoxy resin, the adhesive force and electrolyte resistance are significantly reduced.
  • the aluminum-plastic film inner layer adhesive for lithium battery packaging uses low melting point polyolefin as the main resin component, and is supplemented with an appropriate amount of bisphenol A epoxy resin and modified polyfunctionality.
  • bisphenol A epoxy resin by combining an appropriate amount of anhydride monomer and a multifunctional organic small molecule additive containing a triazine ring, the cured cross-linked structure can be well regulated, making the adhesive solid.
  • the chemical network can play a good bonding role between aluminum foil and polypropylene film, and the solidified structure is not easily dissociated and destroyed after being soaked in electrolyte, so it has excellent electrolyte resistance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Abstract

本发明提供了一种锂电池封装用铝塑膜内层胶黏剂及其制备方法,该胶黏剂包括组分A和组分B;所述组分A包括:低熔点聚烯烃、酸酐单体、引发剂、助剂和有机溶剂一;所述组分B包括:双酚A类环氧类树脂、改性双酚A类环氧树脂和有机溶剂二;其中,所述助剂为包含三嗪环的多官能度有机小分子。本发明该以低熔点聚烯烃为主体树脂,配合少量双酚A类环氧类树脂,同时外加少量含三嗪环的多官能度有机小分子从而显著提高粘结强度和耐电解液性能,组分相对简单,因此成本和性能可控性高,经济价值显著。

Description

锂电池封装用铝塑膜内层胶黏剂及其制备方法 技术领域
本发明涉及锂电池软包技术领域,尤其涉及一种锂电池封装用铝塑膜内层胶黏剂及其制备方法。
背景技术
近年来随着技术的发展,锂离子电池因其容量大、循环寿命长、无记忆效应以及对环境友好等优势而逐渐在数码电子、新能源汽车以及储能等领域迅速发展。而传统锂电池由于使用钢壳等刚性材料包装,无法在电池压力过大是及时卸压,容易出现安全事故。因此,针对锂离子电池包装的问题,开发出了一种铝塑复合膜包装材料。
铝塑复合膜主要是由尼龙、铝箔以及聚丙烯薄膜组成,各层之间通过胶黏剂来增加层间粘接力。其中,聚丙烯薄膜与电池电解液直接接触,在使用过程中产生的热量以及气体等因素会对复合膜产生化学腐蚀或热老化作用,因此要求胶黏剂具有较好的耐电解液性能和耐热性。然而普通的胶黏剂由于其制备方法的缺陷,使得其难以具有较好的长期耐电解液性能以及高温下较好的热封强度,因此难以满足目前铝塑膜包装的要求。
目前市场上的内层胶黏剂一般通过用聚烯烃作为主体树脂,在上面引入极性基团来增加与铝箔的附着力,同时确保胶黏剂与聚丙烯薄膜的粘接力。但是这种方法由于聚烯烃上的活性位点较少,使得引入的极性基团的数量有限,难以使胶黏剂具有较好的粘接强度、耐高温性能以及耐电解液性能。
因此,目前有研究使用改性树脂或不饱和度较高的树脂来作为主体树脂进行进一步的改性,但是成本随之升高,且反应过程中容易使得不饱和树脂裂解,难以控制每次实验的一致性,给实际应用带来了较大的干扰。
专利CN202010268184.5公开了一种锂电池铝塑膜内层胶粘剂及其制备 方法,该方法由含有羧基或酸酐基团的改性聚烯烃组分A、含有缩水甘油醚基团的改性聚烯烃组分B-1、含有缩水甘油胺基团的改性聚烯烃组分B-2;含有异氰酸酯基团的改性聚烯烃组分C;有机溶剂D组成。该胶黏剂涂覆后在70-90℃熟化三天即可达到理想的固化效果,具有优异的粘接强度和耐电解液性能。但是该方法组分繁杂,导致固化反应复杂,因此可控性低,且耐电解液性能仍有待提高。
有鉴于此,有必要设计一种改进的锂电池封装用铝塑膜内层胶黏剂及其制备方法,以解决上述问题。
发明内容
为了克服上述现有技术的不足,本发明的目的在于提供一种锂电池封装用铝塑膜内层胶黏剂及其制备方法,该胶黏剂以低熔点聚烯烃为主体树脂,配合少量双酚A类环氧类树脂,同时外加少量含三嗪环的多官能度有机小分子从而显著提高粘结强度和耐电解液性能,组分相对简单,因此成本和性能可控性高,经济价值显著。
为实现上述发明目的,本发明提供了一种锂电池封装用铝塑膜内层胶黏剂,包括组分A和组分B;所述组分A包括:低熔点聚烯烃、酸酐单体、引发剂、助剂和有机溶剂一;所述组分B包括:双酚A类环氧类树脂、改性双酚A类环氧树脂和有机溶剂二;其中,所述助剂为包含三嗪环的多官能度有机小分子。
作为本发明的进一步改进,所述组分A按质量份包括:低熔点改性聚烯烃20-30份、酸酐单体5-20份、引发剂0.2-1份、助剂0.1-0.5份、有机溶剂一80-120份;所述组分B按质量份包括:双酚A类环氧树脂13-20份、改性双酚A类环氧树脂1-3份、有机溶剂二75-100份;所述组分A和组分B的质量比为100:(0.5-1)。
作为本发明的进一步改进,所述助剂的官能度为2-4个,且活性官能团为烯烃基、羟基或羧基。
作为本发明的进一步改进,所述助剂为1,3,5-三丙烯酰基六氢-1,3,5-三嗪或 1,3,5-三缩水甘油-S-三嗪三酮。
作为本发明的进一步改进,所述低熔点聚烯烃为马来酸酐改性的聚烯烃、乙烯-醋酸乙烯共聚物或乙烯丙烯酸共聚物;所述改性双酚A类环氧树脂为四官能化环氧树脂。
作为本发明的进一步改进,所述低熔点聚烯烃在190℃,荷重2.16kg下的熔融指数为5-200g/10min,熔点为70-130℃,酸值为1-20mg KOH/g。
作为本发明的进一步改进,所述酸酐单体为马来酸酐、1,2,3,6四氢苯酐、降冰片烯二酸酐中的一种或几种;优选为马来酸酐;
所述引发剂为过氧化二苯甲酰、过氧化甲乙酮、偶氮二异丁腈中的一种或几种;所述有机溶剂一为甲苯、二甲苯、环己烷、正丁酯中的一种或几种;
所述有机溶剂二为甲苯、二甲苯、乙酯、正丁酯、丙酮、丁酮中的一种或几种。
一种以上任一项所述的锂电池封装用铝塑膜内层胶黏剂的制备方法,包括以下步骤:
(1)制备组分A;
(2)制备组分B;
(3)将固含量为5%-15%的组分A与组分B混合均匀,得到锂电池封装用铝塑膜内层胶黏剂。
作为本发明的进一步改进,所述组分A的制备方法包括如下步骤:
S1、将低熔点聚烯烃加入大反应釜中,并加入有机溶剂一升温至100-130℃溶解完全;
S2、将部分溶解的引发剂滴加至上述混合液,滴完后将酸酐单体和助剂加入至上述混合液中;待溶解完全后,再将剩余的引发剂溶解滴加至上述混合液,滴完后保温1-5h进行反应;
S3、反应结束后趁热加入丁酮过滤,得到白色粉末,将所得白色粉末用丁酮洗涤数次,得到组分A。
作为本发明的进一步改进,所述组分B的制备方法包括如下步骤:用有机 溶剂二稀释双酚A类环氧树脂和改性双酚A类环氧树脂。
本发明的有益效果是:
1.本发明提供的锂电池封装用铝塑膜内层胶黏剂,其主要成分为含有羧基或酸酐基团的改性聚烯烃以及环氧树脂组成,通过添加少量含三嗪环的多官能度有机小分子提高其性能。该胶黏剂涂覆后,在60-100℃熟化2-5天即可达到良好的固化效果,具有良好的粘接强度、耐电解液性能、耐高温性能以及耐水性能。
2.本发明在以低熔点聚烯烃为主要树脂成分,配加适量双酚A类环氧类树脂和改性多官能度双酚A类环氧树脂的体系下,通过搭配合适量的酸酐单体和含三嗪环的多官能度有机小分子助剂,能够对固化交联结构起到良好的调控作用,使得胶粘剂固化网络在铝箔与聚丙烯薄膜之间能够起到良好的粘结作用,而且该固化结构在电解液中浸泡后不易被解离破坏,因此耐电解液性能优异。
具体实施方式
为了使本发明的目的、技术方案和优点更加清楚,下面结合具体实施例对本发明进行详细描述。
在此,还需要说明的是,为了避免因不必要的细节而模糊了本发明,在具体实施例中仅仅示出了与本发明的方案密切相关的结构和/或处理步骤,而省略了与本发明关系不大的其他细节。
另外,还需要说明的是,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。
本发明提供的一种锂电池封装用铝塑膜内层胶黏剂,包括组分A和组分B;所述组分A包括:低熔点聚烯烃、酸酐单体、引发剂、助剂和有机溶剂一;所述组分B包括:双酚A类环氧类树脂、改性双酚A类环氧树脂和有机溶剂二;其中,所述助剂为包含三嗪环的多官能度有机小分子。本发明实验结果表明通 过添加少量此类小分子助剂,能够起到显著的增强作用。
所述助剂的官能度为2-4个,且活性官能团为烯烃基、羟基或羧基,优选为烯烃基。所述助剂优选为1,3,5-三丙烯酰基六氢-1,3,5-三嗪或1,3,5-三缩水甘油-S-三嗪三酮。
具体地,所述组分A按质量份包括:低熔点改性聚烯烃20-30份、酸酐单体5-20份、引发剂0.2-1份、助剂0.1-0.5份、有机溶剂一80-120份;所述组分B按质量份包括:双酚A类环氧树脂13-20份、改性双酚A类环氧树脂1-3份、有机溶剂二75-100份;所述组分A和组分B的质量比为100:(0.5-1)。
所述低熔点聚烯烃为马来酸酐改性的聚烯烃、乙烯-醋酸乙烯共聚物或乙烯丙烯酸共聚物;所述改性双酚A类环氧树脂为四官能化环氧树脂。
实施例1
一种锂电池封装用铝塑膜内层胶黏剂,通过以下步骤制备:
组分A的制备方法:
(1)称取50质量份的低熔点聚烯烃弹性体至反应釜中,加入200质量份二甲苯加热至130℃溶解30min;
(2)称取0.5份质量份过氧化二苯甲酰溶于10质量份二甲苯中,搅拌均匀后在130℃下恒速滴加入上述溶液中,滴加时间30min;
(3)称取10质量份马来酸酐以及0.5份1,3,5-三丙烯酰基六氢-1,3,5-三嗪,加入至上述溶液中,溶解10min;
(4)称取0.5质量份过氧化二苯甲酰溶于10质量份二甲苯中,搅拌均匀后在130℃下恒速滴入上述溶液中滴加时间30min,滴完后保温2h进行反应。
组分B的制备方法:
称取18质量份双酚A型环氧树脂和2质量份四官能化环氧树脂,用20质量份乙酯和60质量份丁酮稀释。
实施例2
一种锂电池封装用铝塑膜内层胶黏剂,与实施例1相比,不同之处在于, 助剂为1,3,5-三缩水甘油-S-三嗪三酮。其他与实施例1大致相同,在此不再赘述。
实施例3-4
一种锂电池封装用铝塑膜内层胶黏剂,与实施例1相比,不同之处在于,酸酐单体分别为1,2,3,6四氢苯酐和降冰片烯二酸酐。其他与实施例1大致相同,在此不再赘述。
对比例1
一种锂电池封装用铝塑膜内层胶黏剂,与实施例1相比,不同之处在于,助剂为1,3-丁二烯。其他与实施例1大致相同,在此不再赘述。
对比例2
一种锂电池封装用铝塑膜内层胶黏剂,与实施例1相比,不同之处在于,助剂为1,3,5-三(2,3-二溴丙基)-1,3,5-三嗪烷-2,4,6-三酮。其他与实施例1大致相同,在此不再赘述。
对比例3
一种锂电池封装用铝塑膜内层胶黏剂,与实施例1相比,不同之处在于,组分B的制备方法:
称取16质量份双酚A型环氧树脂和4质量份四官能化环氧树脂,用20质量份乙酯和60质量份丁酮稀释。其他与实施例1大致相同,在此不再赘述。
对比例4
一种锂电池封装用铝塑膜内层胶黏剂,与实施例1相比,不同之处在于,组分B的制备方法:称取20质量份双酚A型环氧树脂,用20质量份乙酯和60质量份丁酮稀释。其他与实施例1大致相同,在此不再赘述。
胶黏剂的配制与评测:
(1)称取100质量份的9%(w/w)含量的组分A溶液与上述0.8质量份配置好的组分B溶液混合均匀得到最终的9%(w/w)含量的胶黏剂溶液;
(2)将本胶黏剂涂覆在经三价铬剂处理的铝箔光面,烘干后在100℃下与CPP膜贴合,控制本胶黏剂的上胶量在20-30g/m2(湿胶量)。将贴合好 的铝塑膜放入85℃烘箱进行4天熟化;
(3)将熟化后的铝塑膜裁剪成100mm×15mm的样品条,测试其T型剥离力的变化来表征内层胶黏剂的剥离强度,之后另外制备100mm×15mm样条浸泡在含1mol/L六氟磷酸锂的碳酸乙烯酯/碳酸二甲酯/碳酸二乙酯=1∶1∶1的混合溶液中,烘箱温度设置在85℃,浸泡7天后测试T型剥离力的变化以表征其耐电解液性能。
(4)将熟化后的铝塑膜裁剪成150mm×100mm的样品条,将CPP面对面对折,在封装条件为热封温度175±5℃、时间3.5±5s、压力0.3-0.4MPa的条件下进行热封,之后在垂直方向上再次热封,得到横向热封条和纵向热封条。之后各裁剪成15mm宽的样条,对热封面测试T型剥离力的变化以表征其热封强度。
(5)将熟化后的铝塑膜封装制成60mm×80mm的样袋,并注入3mL电解液,经热封闭合。将样袋在温度为(85±2)℃以及相对湿度为85%的环境中保持24小时后取出,自然冷却至常温。先裁去一个热封边后倒出电解液,再裁去其余热封边,然后将膜面残留的电解液擦拭干净,在5分钟内重新热封。之后裁剪成15mm宽的样条测试T型剥离力的变化以表征其浸泡电解液后的热封强度。
表1为实施例1-4及对比例1-4与市场竞品的性能测试结果

从表1实施例1可以看出,在本发明的配方下添加少量1,3,5-三丙烯酰基六氢-1,3,5-三嗪,能够使得熟化后的胶粘剂的初始粘结力和浸泡电解液后的粘结力均显著提高,热封后的粘结强度和耐电解液性能也较优异。实施例2添加1,3,5-三缩水甘油-S-三嗪三酮时也具有较优的性能。当酸酐改变时,粘结力有不同程度的降低,可见本发明三嗪类有机助剂与马来酸酐结合能够产生更优异的效果。当将三嗪类有机助剂替换为不含三嗪环的助剂时,粘结力有不同程度的降低,例如对比例1虽然熟化后的初始粘结力相比实施例1降低不明显,但浸泡电解液后明显降低,可见该助剂的耐电解液性能不佳。对比例2添加1,3,5-三(2,3-二溴丙基)-1,3,5-三嗪烷-2,4,6-三酮,由于活性官能度的改变,使得粘结力也不如实施例1。对比例3表明,在本发明体系下,四官能化环氧树脂含量过高时,不利于粘结力和耐电解液性能的提高。对比例4表明,在本发明体系下,不含四官能化环氧树脂时,粘结力和耐电解液性能显著降低。
综上所述,本发明提供的锂电池封装用铝塑膜内层胶黏剂,在以低熔点聚烯烃为主要树脂成分,配加适量双酚A类环氧类树脂和改性多官能度双酚A类环氧树脂的体系下,通过搭配合适量的酸酐单体和含三嗪环的多官能度有机小分子助剂,能够对固化交联结构起到良好的调控作用,使得胶粘剂固 化网络在铝箔与聚丙烯薄膜之间能够起到良好的粘结作用,而且该固化结构在电解液中浸泡后不易被解离破坏,因此耐电解液性能优异。
以上实施例仅用以说明本发明的技术方案而非限制,尽管参照较佳实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的精神和范围。

Claims (8)

  1. 一种锂电池封装用铝塑膜内层胶黏剂,其特征在于,包括组分A和组分B;所述组分A按质量份包括:低熔点改性聚烯烃20-30份、酸酐单体5-20份、引发剂0.2-1份、助剂0.1-0.5份、有机溶剂一80-120份;所述组分B按质量份包括:双酚A类环氧树脂13-20份、改性双酚A类环氧树脂1-3份、有机溶剂二75-100份;所述组分A和组分B的质量比为100:(0.5-1);所述助剂为1,3,5-三丙烯酰基六氢-1,3,5-三嗪或1,3,5-三缩水甘油-S-三嗪三酮;所述改性双酚A类环氧树脂为四官能化环氧树脂。
  2. 根据权利要求1所述的锂电池封装用铝塑膜内层胶黏剂,其特征在于,所述低熔点改性聚烯烃为马来酸酐改性的聚烯烃、乙烯-醋酸乙烯共聚物或乙烯丙烯酸共聚物。
  3. 根据权利要求1所述的锂电池封装用铝塑膜内层胶黏剂,其特征在于,所述低熔点改性聚烯烃在190℃,荷重2.16kg下的熔融指数为5-200g/10min,熔点为70-130℃,酸值为1-20mg KOH/g。
  4. 根据权利要求1所述的锂电池封装用铝塑膜内层胶黏剂,其特征在于,所述酸酐单体为马来酸酐、1,2,3,6四氢苯酐、降冰片烯二酸酐中的一种或几种;
    所述引发剂为过氧化二苯甲酰、过氧化甲乙酮、偶氮二异丁腈中的一种或几种;所述有机溶剂一为甲苯、二甲苯、环己烷、正丁酯中的一种或几种;
    所述有机溶剂二为甲苯、二甲苯、乙酯、正丁酯、丙酮、丁酮中的一种或几种。
  5. 根据权利要求4所述的锂电池封装用铝塑膜内层胶黏剂,其特征在于,所述酸酐单体为马来酸酐。
  6. 一种权利要求1至5中任一项所述的锂电池封装用铝塑膜内层胶黏剂的制备方法,其特征在于,包括以下步骤:
    (1)制备组分A;
    (2)制备组分B;
    (3)将固含量为5%-15%的组分A与组分B混合均匀,得到锂电池封装用 铝塑膜内层胶黏剂。
  7. 根据权利要求6所述的锂电池封装用铝塑膜内层胶黏剂的制备方法,其特征在于,所述组分A的制备方法包括如下步骤:
    S1、将低熔点改性聚烯烃加入大反应釜中,并加入有机溶剂一升温至100-130℃溶解完全;
    S2、将部分溶解的引发剂滴加至上述混合液,滴完后将酸酐单体和助剂加入至上述混合液中;待溶解完全后,再将剩余的引发剂溶解滴加至上述混合液,滴完后保温1-5h进行反应;
    S3、反应结束后趁热加入丁酮过滤,得到白色粉末,将所得白色粉末用丁酮洗涤数次,得到组分A。
  8. 根据权利要求6所述的锂电池封装用铝塑膜内层胶黏剂的制备方法,其特征在于,所述组分B的制备方法包括如下步骤:用有机溶剂二稀释双酚A类环氧树脂和改性双酚A类环氧树脂。
PCT/CN2023/099085 2022-06-29 2023-06-08 锂电池封装用铝塑膜内层胶黏剂及其制备方法 WO2024001711A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210752686.4 2022-06-29
CN202210752686.4A CN115074056B (zh) 2022-06-29 2022-06-29 锂电池封装用铝塑膜内层胶黏剂及其制备方法

Publications (1)

Publication Number Publication Date
WO2024001711A1 true WO2024001711A1 (zh) 2024-01-04

Family

ID=83255766

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/099085 WO2024001711A1 (zh) 2022-06-29 2023-06-08 锂电池封装用铝塑膜内层胶黏剂及其制备方法

Country Status (2)

Country Link
CN (1) CN115074056B (zh)
WO (1) WO2024001711A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115074056B (zh) * 2022-06-29 2023-03-21 惠州市广麟材耀科技有限公司 锂电池封装用铝塑膜内层胶黏剂及其制备方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4533602A (en) * 1983-03-29 1985-08-06 Ube Industries, Ltd. Modified polyolefin composition useful for bonding materials
JP2006037000A (ja) * 2004-07-29 2006-02-09 Mitsui Chemicals Inc コーティング剤
CN105658753A (zh) * 2014-09-17 2016-06-08 Dic株式会社 层压用胶粘剂、使用了该胶粘剂的层叠体、以及二次电池
CN108300387A (zh) * 2017-01-11 2018-07-20 东洋油墨Sc控股株式会社 接着剂组合物、层叠体、蓄电元件用包装材、容器及元件
CN109337620A (zh) * 2018-08-29 2019-02-15 上海恩捷新材料科技有限公司 一种锂电池封装铝塑膜用胶粘剂、铝塑膜及其制备方法
CN109353691A (zh) * 2018-09-08 2019-02-19 浙江华正能源材料有限公司 一种锂离子电池软包装材料及其内层胶黏剂
CN109476969A (zh) * 2016-08-10 2019-03-15 东洋纺株式会社 聚烯烃系粘合剂组合物
CN111479889A (zh) * 2017-12-26 2020-07-31 Dic株式会社 粘接剂、层叠体、电池用包装材料以及电池
CN112048262A (zh) * 2020-09-13 2020-12-08 成都科成精化科技有限公司 一种锂电池铝塑膜胶粘剂的固化体系设计方法
CN113372827A (zh) * 2021-05-07 2021-09-10 浙江祥邦科技股份有限公司 一种异质结电池专用封装胶膜及其制备方法
CN115074056A (zh) * 2022-06-29 2022-09-20 惠州市广麟材耀科技有限公司 锂电池封装用铝塑膜内层胶黏剂及其制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105086899B (zh) * 2015-08-13 2018-05-29 黑龙江省科学院石油化学研究院 一种高强度高韧性环氧胶粘剂及其制备方法
CN106893510A (zh) * 2017-03-01 2017-06-27 苏州赛伍应用技术有限公司 一种光伏组件背板用高性能修补胶带的制备方法
CN107987759A (zh) * 2017-12-08 2018-05-04 苏州爱康薄膜新材料有限公司 一种锂电池封装铝塑膜用耐腐蚀型胶黏剂
CN111440593B (zh) * 2020-04-07 2021-01-15 郑州卓而泰新材料科技有限公司 一种锂电池铝塑膜内层胶黏剂及其制备方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4533602A (en) * 1983-03-29 1985-08-06 Ube Industries, Ltd. Modified polyolefin composition useful for bonding materials
JP2006037000A (ja) * 2004-07-29 2006-02-09 Mitsui Chemicals Inc コーティング剤
CN105658753A (zh) * 2014-09-17 2016-06-08 Dic株式会社 层压用胶粘剂、使用了该胶粘剂的层叠体、以及二次电池
CN109476969A (zh) * 2016-08-10 2019-03-15 东洋纺株式会社 聚烯烃系粘合剂组合物
CN108300387A (zh) * 2017-01-11 2018-07-20 东洋油墨Sc控股株式会社 接着剂组合物、层叠体、蓄电元件用包装材、容器及元件
CN111479889A (zh) * 2017-12-26 2020-07-31 Dic株式会社 粘接剂、层叠体、电池用包装材料以及电池
CN109337620A (zh) * 2018-08-29 2019-02-15 上海恩捷新材料科技有限公司 一种锂电池封装铝塑膜用胶粘剂、铝塑膜及其制备方法
CN109353691A (zh) * 2018-09-08 2019-02-19 浙江华正能源材料有限公司 一种锂离子电池软包装材料及其内层胶黏剂
CN112048262A (zh) * 2020-09-13 2020-12-08 成都科成精化科技有限公司 一种锂电池铝塑膜胶粘剂的固化体系设计方法
CN113372827A (zh) * 2021-05-07 2021-09-10 浙江祥邦科技股份有限公司 一种异质结电池专用封装胶膜及其制备方法
CN115074056A (zh) * 2022-06-29 2022-09-20 惠州市广麟材耀科技有限公司 锂电池封装用铝塑膜内层胶黏剂及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JI-YAN YAO, LIN QIANG; YUAN AI-NING; HUANG YI-PING; XU GE-WEN: "Synthesis and Properties of Waterborne Polyurethane with Sulfur-containing Crosslinking Agent", FINE CHEMICALS, vol. 35, no. 1, 15 January 2018 (2018-01-15), pages 36 - 42, XP093121897 *

Also Published As

Publication number Publication date
CN115074056A (zh) 2022-09-20
CN115074056B (zh) 2023-03-21

Similar Documents

Publication Publication Date Title
WO2024001711A1 (zh) 锂电池封装用铝塑膜内层胶黏剂及其制备方法
CN107987759A (zh) 一种锂电池封装铝塑膜用耐腐蚀型胶黏剂
CN103897653B (zh) 一种无溶剂聚氨酯胶黏剂及其制备方法
CN109337620A (zh) 一种锂电池封装铝塑膜用胶粘剂、铝塑膜及其制备方法
CN105400460B (zh) 导电胶组合物和胶带及其在太阳能电池组件中的应用
CN106042566A (zh) 一种高强度可排气密封层及基于其的锂离子电池软包装材料
CN111440593B (zh) 一种锂电池铝塑膜内层胶黏剂及其制备方法
JP6733674B2 (ja) リチウムイオン電池用包装材料
CN109353691B (zh) 一种锂离子电池软包装材料及其内层胶黏剂
CN109494318A (zh) 铝塑膜
WO2024027099A1 (zh) 一种铝塑复合膜及其制备方法
CN109494317A (zh) 一种耐电解液的铝塑膜及其制备方法
CN108682896A (zh) 一种锂电池组装工艺
CN116373397B (zh) 一种动力型锂电池用耐腐蚀复合膜的制备方法
CN106189921A (zh) 一种具有高粘结强度的poe封装胶膜用复合增粘剂及其应用
CN109370481A (zh) 聚合物锂电池软包装膜用粘接树脂及制备方法
CN105419546A (zh) 一种抗紫外防辐射双面涂层聚酯镀铝薄膜及其生产方法
WO2024067580A1 (zh) 一种与沥青胶料粘结强度高的复合增强层及其制备方法
CN114058319B (zh) 一种锂电池铝塑膜用胶黏剂及其制备方法
CN113736394B (zh) 一种耐电解液树脂组合物及应用其的胶水和胶带
WO2023226291A1 (zh) 一种锂离子电池用铝塑复合膜及其制备方法
CN109679567A (zh) 锂电池铝塑膜用耐深冲双组分粘合剂组合物及其制备方法
CN109385235A (zh) 锂电池耐电解液胶黏剂及制备方法及锂电池用胶带
CN206059445U (zh) 一种锂离子电池外包装材料
CN113999576A (zh) 一种铝箔餐盒用热封涂料及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23829895

Country of ref document: EP

Kind code of ref document: A1