WO2023155395A1 - 一种高分子预铺防水卷材及其制备方法 - Google Patents

一种高分子预铺防水卷材及其制备方法 Download PDF

Info

Publication number
WO2023155395A1
WO2023155395A1 PCT/CN2022/112052 CN2022112052W WO2023155395A1 WO 2023155395 A1 WO2023155395 A1 WO 2023155395A1 CN 2022112052 W CN2022112052 W CN 2022112052W WO 2023155395 A1 WO2023155395 A1 WO 2023155395A1
Authority
WO
WIPO (PCT)
Prior art keywords
monomer
emulsion
acrylic resin
polymer
shell
Prior art date
Application number
PCT/CN2022/112052
Other languages
English (en)
French (fr)
Inventor
王枫
沈恒
Original Assignee
江苏凯伦建材股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏凯伦建材股份有限公司 filed Critical 江苏凯伦建材股份有限公司
Publication of WO2023155395A1 publication Critical patent/WO2023155395A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/30Adhesives in the form of films or foils characterised by the adhesive composition
    • C09J7/35Heat-activated
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J153/00Adhesives based on block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Adhesives based on derivatives of such polymers
    • C09J153/02Vinyl aromatic monomers and conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/20Adhesives in the form of films or foils characterised by their carriers
    • C09J7/201Adhesives in the form of films or foils characterised by their carriers characterised by the release coating composition on the carrier layer
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/30Adhesives in the form of films or foils characterised by the adhesive composition
    • C09J7/38Pressure-sensitive adhesives [PSA]
    • C09J7/381Pressure-sensitive adhesives [PSA] based on macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • C09J7/387Block-copolymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/10Additional features of adhesives in the form of films or foils characterized by the structural features of the adhesive tape or sheet
    • C09J2301/12Additional features of adhesives in the form of films or foils characterized by the structural features of the adhesive tape or sheet by the arrangement of layers
    • C09J2301/122Additional features of adhesives in the form of films or foils characterized by the structural features of the adhesive tape or sheet by the arrangement of layers the adhesive layer being present only on one side of the carrier, e.g. single-sided adhesive tape
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/30Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier
    • C09J2301/302Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier the adhesive being pressure-sensitive, i.e. tacky at temperatures inferior to 30°C
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/30Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier
    • C09J2301/304Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier the adhesive being heat-activatable, i.e. not tacky at temperatures inferior to 30°C
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2451/00Presence of graft polymer
    • C09J2451/001Presence of graft polymer in the barrier layer

Definitions

  • the invention belongs to the technical field of waterproof coiled material, and in particular relates to a polymer pre-paved waterproof coiled material and a preparation method thereof.
  • Existing polymer pre-laid waterproof rolls usually include a polymer sheet layer, a hot-melt adhesive layer and a protective layer arranged on the hot-melt adhesive layer.
  • the traditional protective layer usually uses a particle protective layer or a polymer material protective layer.
  • the polymer material protective layer is obtained by using a slurry compounded with polymer emulsion, fillers and other additives, which is coated on the hot melt adhesive layer and cured to form a film.
  • acrylic resin emulsion has good weather resistance and water resistance, it is widely used.
  • the purpose of the present invention is to provide a polymer pre-laid waterproof roll material and its preparation in order to overcome the deficiencies of the prior art method.
  • a polymer pre-laid waterproof membrane comprising a substrate layer, an adhesive layer and a protective coating layered in sequence, the raw material of the protective coating includes an acrylic resin emulsion with a core-shell structure, wherein the acrylic resin
  • the glass transition temperature of the shell layer polymer is greater than the glass transition temperature of the core layer polymer, and the theoretical glass transition temperature of the resin in which all the monomers used in the acrylic resin are polymerized into an irregular copolymer is 0-20 °C.
  • the calculation of the glass transition temperature of resin or polymer refers to the following formula:
  • tg is the glass transition temperature of all monomers forming irregular copolymers, which is an absolute temperature
  • W n is the ratio of a monomer constituting the resin to all monomers
  • tg n is a monomer that constitutes the resin, and the glass transition temperature of the homopolymer formed is an absolute temperature.
  • the inventors have found in practice that if the protective coating uses an acrylic resin emulsion with a fixed glass transition temperature as the film-forming substance, it is difficult to meet the requirements of the protective coating of the pre-paved waterproof membrane. Winding, the protective coating must withstand bending deformation and interlayer pressure. Using acrylic resin emulsion with a low glass transition temperature to prepare the protective coating can prevent the protective coating from cracking when it is bent, but the coil will be damaged during transportation and use. , the temperature in the transportation vehicle, the surface of the construction site and other places is high or the coil is rolled up immediately after production.
  • the continuous pressure between the layers makes the protective coating and the substrate layer prone to adhesion, which makes the coil difficult to open; use Acrylic resin with a high glass transition temperature can avoid the adhesion between the protective coating and the substrate layer when used at a certain high temperature, but when the protective coating is bent after winding and the underlying adhesive layer continues to creep, The protective coating is prone to cracking. Acrylic resins with a single glass transition temperature cannot take into account the crack resistance and anti-blocking properties of the protective coating, which limits the use of coated pre-paved waterproofing membranes. By designing the glass transition temperature of the shell polymer, the inventors can well solve the above problems of crack resistance and high temperature adhesion.
  • the theoretical glass transition temperature of the resin in which all monomers are polymerized into irregular copolymers is designed to be 0-20°C.
  • the design value of the glass transition temperature of the shell polymer is 50-70°C. If the glass transition temperature of the shell polymer is too high, the protective coating cannot effectively form a film; if it is too low, when the protective coating is used at high temperature, the protective coating and the substrate layer will easily stick together, resulting in Coil sticks and cannot be opened.
  • the ratio of the total mass of core monomers used in the core polymer to the total mass of shell monomers used in the shell polymer is 1 ⁇ 2:1.
  • the ratio of the total mass of the core monomers to the total mass of the shell monomers is 1 ⁇ 1.5:1.
  • the glass transition temperature of the core layer polymer is -20°C to 0°C.
  • the shell polymer contains carboxyl functional groups that can rapidly form a bond with wet concrete in contact.
  • the core layer monomer refers to all monomers used to prepare the core layer polymer during the emulsion polymerization of acrylic resin with a core-shell structure
  • the shell monomer refers to the acrylic resin with a core-shell structure During emulsion polymerization, all monomers used to prepare the shell polymer.
  • the core layer monomer includes a first acidic functional monomer, a first soft monomer, a first hard monomer and a crosslinking monomer
  • the shell layer monomer includes a second acidic functional monomer monomer, the second soft monomer and the second hard monomer, wherein the first acidic functional monomer and the second acidic functional monomer are independently selected from one of methacrylic acid, acrylic acid, itaconic acid or A variety of combinations
  • the first soft monomer and the second soft monomer are independently selected from one or more combinations of butyl acrylate, isooctyl acrylate, and ethyl acrylate
  • the first hard monomer body and the second hard monomer are independently selected from one or more combinations of styrene, methyl methacrylate, isobornyl methacrylate, and cyclohexyl methacrylate
  • the crosslinking monomer is selected from A combination of one or more of acrylamide, acrylonitrile
  • the cross-linking monomer can increase the cross-linking degree of the core layer polymer, reduce the swelling of the core layer polymer by the shell layer monomer during the polymerization process, and ensure the formation of a stable core-shell structure.
  • the use of a certain amount of acidic functional monomer in the preparation of the shell polymer can increase the crosslinking degree of the resin and increase the water resistance, and at the same time, it can react quickly to form a binding force when it contacts with the alkaline substances in the concrete.
  • methyl methacrylate as a part of the hard monomer in the shell monomer not only has high hydrophilicity, but also forms a hydrophobic core layer and a hydrophilic shell layer, and the polymer particles formed in this way have a more stable core Shell structure; on the other hand, methyl methacrylate can also increase the hydrophilicity of the shell layer, making wet concrete easier to wet on the coating surface, and at the same time, the methyl group of methyl methacrylate can Hydrolysis occurs to form carboxyl groups, which increases the bonding force with concrete.
  • the mass of the second acidic functional monomer accounts for 1-3% of the total mass of the shell monomers.
  • the core monomer includes 0.2-0.8% of the first acidic functional monomer, 25-50% of the second A soft monomer, 20-30% of the first hard monomer, 0.1-0.5% of the cross-linking monomer;
  • the shell layer monomer includes 0.5-1.5% of the second acidic monomer, 3-12% of the first Two soft monomers, 25-40% of the second hard monomer, the first hard monomer is styrene, and the second hard monomer is styrene and methyl methacrylate in a mass ratio of 1-2.5 :1 mixture.
  • the raw materials of the protective coating include the acrylic resin emulsion, fillers and additives.
  • the auxiliary agent includes one or a combination of dispersants, thickeners, ultraviolet absorbers, and antioxidants.
  • the filler is selected from one or more combinations of titanium dioxide and calcium carbonate powder.
  • the raw materials of the protective coating include 30-35% of water, 0.1-0.5% of dispersant, 0.05-0.15% of thickener, 5- 15% of filler, 50-60% of said acrylic resin emulsion, 1-2% of ultraviolet absorber and 0.1-1% of antioxidant.
  • the substrate layer is a polymer substrate layer.
  • the material of the polymer substrate layer is one or more selected from high-density polyethylene, low-density polyethylene, linear low-density polyethylene, and polyvinyl chloride.
  • the adhesive layer is a hot melt adhesive layer. Further, the adhesive layer is a hot-melt pressure-sensitive adhesive layer. Furthermore, the hot-melt pressure-sensitive adhesive is an SIS hot-melt pressure-sensitive adhesive.
  • the preparation method of the acrylic resin emulsion includes making the core layer monomer used by the core layer polymer, the shell layer monomer used by the shell layer polymer, an emulsifier, a buffer, an initiator ,
  • the reducing agent is prepared by core-shell emulsion polymerization.
  • the emulsifier is selected from one or more combinations of anionic emulsifiers and nonionic emulsifiers,
  • the preparation method of described acrylic resin emulsion comprises the following steps:
  • the core layer monomer, the anionic emulsifier accounting for 1-1.5% of the total mass of the acrylic resin emulsion, and the water accounting for 5-10% of the total mass of the acrylic resin emulsion are stirred and mixed to obtain the core layer monomer Pre-emulsion, and it is divided into the first core layer pre-emulsion and the second core layer pre-emulsion, the first core layer pre-emulsion accounts for 5-6% of the total mass of the core layer monomer pre-emulsion;
  • step (4) is: adding dropwise the second core layer pre-emulsion and adding 0.1% of the total mass of the acrylic resin emulsion to the seed emulsion in step (3). ⁇ 0.2% initiator, control the dropping time of the second core layer pre-emulsion to be 60 ⁇ 150min, the dropping temperature is 80 ⁇ 90°C, after the dropping is completed, keep the temperature at 80 ⁇ 90°C for 5 ⁇ 20min; Add the shell monomer pre-emulsion dropwise, control the dropping time to 60-150min, and the dropping temperature to 80-90°C.
  • the dropping time is controlled to be 20-40 minutes, the temperature is lowered to below 60°C, the neutralizing agent is added, the temperature is lowered to below 50°C, the bactericide is added, and the acrylic resin emulsion is obtained by stirring.
  • the initiator includes but not limited to one or more combinations of t-butanol hydroperoxide (t-BHP) and ammonium persulfate.
  • t-BHP t-butanol hydroperoxide
  • ammonium persulfate ammonium persulfate
  • the reducing agent includes but not limited to Bruggolite FF6.
  • the anionic emulsifier includes fatty alcohol ether sulfate, specifically BASF DISPONIL FES 32; the nonionic emulsifier includes polyarylphenyl ether derivatives, specifically Solvay RHODAPEX ES 2816.
  • the preparation method also includes the step of adding a catalyst composition in step (4), the catalyst composition is added dropwise to the shell monomer pre-emulsion, after the reaction at 80-90°C , added to the system before performing the post-elimination reaction.
  • the catalyst composition comprises a mixture of catalyst and chelating agent.
  • the second technical solution adopted by the present invention a method for preparing the above-mentioned polymer pre-laid waterproof coiled material, comprising the following steps:
  • the present invention has the following advantages compared with the prior art:
  • the inventors of the present application have found that by using acrylic resin emulsions with core-shell structures with different glass transition temperatures as the film-forming substances of the protective coating of the polymer pre-laid waterproofing membrane, the polymer pre-laid waterproofing membrane can be collected. After rolling, the protective coating is not easy to crack, and it is used at high temperature or rolled up immediately after the coil is produced, which can avoid the adhesion between the protective coating of the polymer pre-coated waterproof membrane and the substrate layer on the back, which will cause the coil to be difficult. open issue.
  • acrylic resin is a thermoplastic resin, which has the characteristics of hot stickiness and cold brittleness.
  • the viscoelasticity of acrylic resin is determined by the monomers that make up the resin.
  • the existing acrylic resin emulsion is difficult to meet the needs of pre-laid waterproof membranes as protective coatings, because the sheet-like coils are rolled up immediately after production, and the protective coating needs to withstand bending deformation and interlayer pressure.
  • a protective coating of a resin with a low glass transition temperature can prevent the protective coating from cracking when it is bent, but the continuous pressure between the layers under high temperature conditions will form a bond between the protective coating and the back substrate layer; and if Adhesion between the protective coating and the backing substrate layer can be avoided by using a resin protective coating with a high glass transition temperature, but the protective coating will suffer when the protective coating is bent and the underlying adhesive layer continues to creep. Cracking occurs.
  • the inventors of the present invention propose to use acrylic resin emulsions with core-shell structures with different glass transition temperatures as film-forming substances for protective coatings on pre-paved waterproof rolls to solve the above problems.
  • the glass transition temperature of the shell layer polymer is higher, and the glass transition temperature of the core layer polymer is lower, to achieve: first, in the production process of the pre-paved waterproof membrane, it can be effectively film-formed after being baked in an oven, And when the coil is at high temperature (such as during transportation, use, inside the vehicle, on the surface of the construction site, etc., the temperature can be as high as about 50°C), the protective coating will not stick back, avoiding the problem that the coil is sticky and difficult to open; the second 1. After the pre-paved waterproof membrane is produced, it will not cause the cracking of the protective coating, and it will not cause the adhesion between the protective coating and the substrate layer.
  • the shell polymer contains carboxyl functional groups to achieve rapid bonding with post-cast concrete.
  • the polymer pre-laid waterproof membrane provided in this embodiment comprises a substrate layer, an adhesive layer and a protective coating layered in sequence, wherein the substrate layer is a high-density polyethylene sheet with a thickness of 1mm; the adhesive layer It is SIS hot melt pressure sensitive adhesive.
  • the raw material formula of the slurry for protective coating is: 160 parts of water, 1.8 parts of dispersant, 0.5 part of thickener (NATROSOL 250 MBR), 26 parts of titanium dioxide (DuPont R902+), 25 parts of calcium carbonate powder ( 5 ⁇ m), 260 parts of acrylic resin emulsion, 3 parts of UV absorber 329, 3 parts of UV absorber 292, 1 part of antioxidant 1010 and 1 part of antioxidant 168.
  • the acrylic resin emulsion used is an acrylic resin emulsion with a core-shell structure, wherein the design value of the glass transition temperature of the shell polymer is 56°C, and the design value of the glass transition temperature of the acrylic resin is 16.4°C.
  • the ratio of the total mass of the core monomer to the total mass of the shell monomer is 1.18:1, and the glass transition temperature of the core polymer is -10°C.
  • This acrylic resin emulsion is prepared by the following method:
  • Add the second core layer pre-emulsion to the seed emulsion control the dropping time to be about 100min, and the dropping temperature to be about 85°C. After the dropping is completed, keep the temperature at 85°C for 10min;
  • the aqueous solution of the second initiator and the second core layer pre-emulsion are added dropwise at the same time, and the continuous dropping time is about 200min;
  • the polymer pre-laid waterproof membrane provided in this example differs from Example 1 in that the acrylic resin emulsion used is different.
  • the design value of the glass transition temperature of the shell layer polymer is 50°C
  • the design value of the glass transition temperature of the acrylic resin is 17.8°C
  • the total mass of the core layer monomer is equal to that of the shell layer monomer
  • the total mass ratio of the core layer polymer is 1.5:1
  • the glass transition temperature of the core layer polymer is 0°C.
  • the formula of the acrylic resin emulsion of this example is as shown in table 1.
  • the polymer pre-laid waterproof membrane provided in this example differs from Example 1 in that the acrylic resin emulsion used is different.
  • the design value of the glass transition temperature of the shell layer polymer is 69 ° C
  • the design value of the glass transition temperature of the acrylic resin is 1 ° C
  • the total mass of the core layer monomer and the shell layer monomer The total mass ratio is 2:1:
  • the glass transition temperature of the core layer polymer is -20°C.
  • the formula of the acrylic resin emulsion of this example is as shown in table 1.
  • the polymer pre-laid waterproof membrane provided in this comparative example differs from that of Example 1 in that the acrylic resin emulsion used is different.
  • the acrylic resin emulsion in this example adopts the same raw material formula as in Example 1, except that all the monomers in Example 1 are mixed with water and an emulsifier to form a monomer pre-emulsion, and then divided into 5.4%
  • the first pre-emulsion and 94.6% of the second pre-emulsion then with reference to the method of embodiment 1, water is heated earlier, then the first pre-emulsion and pad and catalyst composition are added, in the first initiator Initiate the polymerization under the action to obtain the seed emulsion, then add the second pre-emulsion and the second initiator dropwise to the seed emulsion, and control the dropping time to 100min, carry out the polymerization reaction, and then carry out steps (5) to (6), Finally, an acrylic resin emulsion is obtained.
  • the polymer pre-laid waterproof membrane provided in this comparative example differs from that of Example 1 in that the acrylic resin emulsion used is different.
  • the design value of the glass transition temperature of the shell layer polymer is 56 ° C
  • the difference from Example 1 is that the design value of the glass transition temperature of the acrylic resin is 30 ° C
  • the core layer is single
  • the ratio of the total mass of the body to the total mass of the shell monomer is 1:2
  • the glass transition temperature of the core polymer is -10°C.
  • the formula of the acrylic resin emulsion of this example is as shown in table 1.
  • the polymer pre-laid waterproof membrane provided in this comparative example differs from that of Example 1 in that the acrylic resin emulsion used is different.
  • Table 1 is the formula (by mass percentage) of the acrylic resin emulsion of embodiment 1 ⁇ 3 and comparative example 2
  • test method of anti-blocking property is:
  • the test method for low temperature flexibility of protective coatings is:
  • Table 2 is the performance test result of the polymer pre-laid waterproof membrane of Examples 1-3 and Comparative Examples 1-3
  • Comparative Example 1 compared with Example 1, the peel strength between the coating and the sheet was obviously greater than 0.1 N/mm, and adhesion occurred.
  • comparative example 2 the shell layer of the acrylic resin is thicker, the film-forming property becomes worse, and cracking occurs when bent at low temperature, resulting in a large number of cracks.
  • Comparative Example 3 using a commercially available acrylic resin emulsion has a higher glass transition temperature. Under the same preparation conditions, a large amount of powder is produced after the coating is dried, which cannot effectively form a film.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Graft Or Block Polymers (AREA)
  • Paints Or Removers (AREA)

Abstract

本发明涉及一种高分子预铺防水卷材及其制备方法,高分子预铺防水卷材包括依次层叠设置的基材层、胶粘层和保护涂层,保护涂层的原料包括具有核壳结构的丙烯酸树脂乳液,其中,丙烯酸树脂的壳层聚合物的玻璃化转变温度大于核层聚合物的玻璃化转变温度,且设计丙烯酸树脂采用的所有单体聚合成不规则共聚物的树脂的理论玻璃化转变温度为0~20℃。研究发现通过采用不同的玻璃化转变温度的核壳结构的丙烯酸树脂作为高分子预铺防水卷材的保护涂层的成膜物质,能够使得高分子预铺防水卷材收卷后,保护涂层不易开裂,并且高温下使用或卷材生产出来后立马收卷,能够避免保护涂层与背面的基材层之间的粘连造成卷材难以打开的问题。

Description

一种高分子预铺防水卷材及其制备方法 技术领域
本发明属于防水卷材技术领域,具体涉及一种高分子预铺防水卷材及其制备方法。
背景技术
现有的高分子预铺防水卷材通常包括高分子片材层、热熔胶层和设置在热熔胶层上的保护层,传统的保护层通常是采用颗粒保护层或高分子材料保护层,以实现与后浇混凝土的满粘,其中,高分子材料保护层是采用高分子乳液、填料和其他助剂等复配而成的浆料经涂覆在热熔胶层固化成膜得到。而由于丙烯酸树脂乳液具有良好的耐候和耐水性而被广泛采用。
发明人在实践中偶然发现,现有的采用丙烯酸树脂乳液的预铺防水卷材,在一定高温下涂层发生粘连造成卷材难以打开,收卷后低温下涂层会发生开裂的问题,很难满足预铺防水卷材保护涂层的要求。
发明内容
本发明的目的是为了克服现有技术的不足而提供一种收卷后保护涂层低温不易开裂并且避免高温下保护涂层与基材层之间粘连的高分子预铺防水卷材及其制备方法。
为达到上述目的,采取的技术方案为:
一种高分子预铺防水卷材,包括依次层叠设置的基材层、胶粘层和保护涂层,所述保护涂层的原料包括具有核壳结构的丙烯酸树脂乳液,其中,所述丙烯酸树脂的壳层聚合物的玻璃化转变温度大于核层聚合物的玻璃化转变温度,且设计所述丙烯酸树脂采用的所有单体聚合成不规则共聚物的树脂的理论玻璃化转变温度为0~20℃。
本发明中,树脂或聚合物的玻璃化转变温度的计算参照如下公式:
Figure PCTCN2022112052-appb-000001
式中:tg为所有单体形成不规则共聚物的玻璃化转变温度,为绝对温度;
W n是构成树脂的一种单体占所有单体的比例;
tg n是构成树脂的一种单体,形成的均聚物的玻璃化转变温度,采用绝对温度。
发明人在实践中发现,保护涂层若使用一固定玻璃化转变温度的丙烯酸树脂乳液作为成膜物质,难以满足预铺防水卷材保护涂层的需求,预铺防水卷材生产出以后要进行收卷,保护涂层要承受弯曲形变和层间的压力,使用低玻璃化转变温度的丙烯酸树脂乳液制备保护涂层,可以避免保护涂层弯曲时发生开裂,但卷材在运输、使用过程中,运输工具内、工地地表等场所的温度较高或卷材生产出来后立马收卷,层间的持续压力使保护涂层与基材层之间易发生粘连,造成卷材粘连难以打开;使用高玻璃化转变温度的丙烯酸树脂 时,可以避免一定高温下使用时保护涂层与基材层之间的粘连,但收卷后的保护涂层弯曲和下方的胶粘层持续发生蠕变时,保护涂层易发生开裂。单一玻璃化转变温度的丙烯酸树脂无法兼顾保护涂层的抗开裂性和抗粘连性,使涂层型预铺防水卷材的使用受到限制。发明人通过对壳层聚合物的玻璃化转变温度进行设计,能够很好的解决上述抗开裂性及高温粘连问题。
进一步地,发明人通过调整核层聚合物的玻璃化转变温度以及所述核层聚合物采用的核层单体总质量与所述壳层聚合物采用的壳层单体的总质量之比,综合考虑涂层的柔韧、抗开裂、抗粘连性等因素,设计所有单体聚合成不规则共聚物的树脂的理论玻璃化转变温度为0~20℃。
在一些优选且具体实施方式中,所述壳层聚合物的玻璃化转变温度的设计值为50~70℃。所述壳层聚合物的玻璃化转变温度若过高,则保护涂层无法有效成膜;过低,则保护涂层在高温下使用时,保护涂层与基材层之间易粘连,造成卷材粘连无法打开。
在一些优选且具体实施方式中,所述核层聚合物采用的核层单体的总质量与壳层聚合物采用的壳层单体的总质量之比为1~2:1。优选地,所述核层单体的总质量与壳层单体的总质量之比为1~1.5:1。
优选地,所述核层聚合物的玻璃化转变温度为-20℃~0℃。
在一些优选且具体实施方式中,所述壳层聚合物含有羧基官能团,可以与接触的湿混凝土迅速形成粘接。
本发明中,所述核层单体是指具有核壳结构的丙烯酸树脂乳液聚合过程中,制备核层聚合物采用的所有单体;所述壳层单体是指具有核壳结构的丙烯酸树脂乳液聚合过程中,制备壳层聚合物采用的所有单体。
根据本发明的一些实施方面,所述核层单体包括第一酸性功能单体、第一软单体、第一硬单体和交联单体,所述壳层单体包括第二酸性功能单体、第二软单体和第二硬单体,其中,所述第一酸性功能单体、第二酸性功能单体分别独立选自甲基丙烯酸、丙烯酸、衣康酸中的一种或多种的组合,所述第一软单体、第二软单体分别独立选自丙烯酸丁酯、丙烯酸异辛酯、丙烯酸乙酯中的一种或多种的组合,所述第一硬单体、第二硬单体分别独立选自苯乙烯、甲基丙烯酸甲酯、甲基丙烯酸异冰片酯、甲基丙烯酸环己酯中的一种或多种的组合,所述交联单体选自丙烯酰胺、丙烯腈、N-羟甲基丙烯酰胺中的一种或多种的组合。
所述交联单体能够增加核层聚合物的交联度,降低聚合过程中壳层单体对核层聚合物的溶胀,保证形成稳定的核壳结构。
在制备壳层聚合物中采用一定量的酸性功能单体,可以增加树脂的交联度,增加耐水性,同时在与混凝土中的碱性物质接触时可迅速发生反应形成结合力。此外,壳层单体中的采用甲基丙烯酸甲酯作为一部分硬单体,不仅具有较高的亲水性,形成疏水核层和亲水壳层,如此形成的聚合物颗粒具有更稳定的核壳结构;另一方面,甲基丙烯酸甲酯还能增加壳层的亲水性,使湿混凝土在涂层表面更易润湿,同时,甲基丙烯酸甲酯的甲酯基团在碱性条件下发生水解,形成羧基,增加了与混凝土之间的结合力。
在一些优选且具体实施方式,所述第二酸性功能单体的质量占所述壳层单体总质量的1~3%。
在一些优选且具体实施方式,基于所述核层单体和壳层单体的总质量计,所述核 层单体包括0.2~0.8%的第一酸性功能单体、25~50%的第一软单体、20~30%的第一硬单体、0.1~0.5%的交联单体;所述壳层单体包括0.5~1.5%的第二酸性单体、3~12%的第二软单体、25~40%的第二硬单体,所述第一硬单体为苯乙烯,所述第二硬单体为苯乙烯和甲基丙烯酸甲酯按质量比为1~2.5:1的混合物。
在一些具体实施方面,所述保护涂层的原料包括所述丙烯酸树脂乳液、填料和助剂。
进一步地,所述助剂包括分散剂、增稠剂、紫外线吸收剂、抗氧剂中的一种或几种的组合。
进一步地,所述填料选自钛白粉、碳酸钙粉中的一种或多种的组合。
在一些优选且具体实施方式中,以质量百分含量计,所述保护涂层的原料包括30~35%的水、0.1~0.5%的分散剂、0.05~0.15%的增稠剂、5~15%的填料、50~60%的所述丙烯酸树脂乳液、1~2%的紫外线吸收剂和0.1~1%的抗氧剂。
在一些具体实施方面,所述基材层为高分子基材层。
进一步地,所述高分子基材层的材料为选自高密度聚乙烯、低密度聚乙烯、线性低密度聚乙烯、聚氯乙烯中的一种或多种的组合。
在一些具体实施方面,所述胶粘层为热熔胶层。进一步地,所述胶粘层为热熔压敏胶层。更进一步地,所述热熔压敏胶为SIS热熔压敏胶。
在一些具有实施方面,所述丙烯酸树脂乳液的制备方法包括使所述核层聚合物采用的核层单体、所述壳层聚合物采用的壳层单体、乳化剂、缓冲剂、引发剂、还原剂经核壳乳液聚合制得。
在一些优选且具体实施方式中,所述乳化剂选自阴离子型乳化剂、非离子型乳化剂中的一种或多种的组合,
所述丙烯酸树脂乳液的制备方法包括以下步骤:
(1)制备核层单体预乳液
使所述核层单体、占所述丙烯酸树脂乳液总质量的1~1.5%的阴离子型乳化剂、占所述丙烯酸树脂乳液总质量的5~10%的水搅拌混合,得到核层单体预乳液,并将其分为第一核层预乳液和第二核层预乳液,所述第一核层预乳液占所述核层单体预乳液总质量的5~6%;
(2)制备壳层单体预乳液
使所述壳层单体、占所述丙烯酸树脂乳液总质量的0.5~1%的非离子型乳化剂、占所述丙烯酸树脂乳液总质量的4~8%的水混合,得到壳层单体预乳液;
(3)制备种子乳液
将占所述丙烯酸树脂乳液的总质量的25~35%的水升温至80~95℃,然后加入占所述丙烯酸树脂乳液的总质量的1~1.5%的阴离子型乳化剂、第一核层预乳液、阻聚剂、缓冲剂和占所述丙烯酸树脂乳液的总质量的0.05~0.1%的引发剂,进行种子引发反应,得到种子乳液;
(4)制备丙烯酸树脂乳液
向步骤(3)的所述种子乳液中滴加所述第二核层预乳液和滴加占所述丙烯酸树脂乳液的总质量的0.1~0.2%的引发剂,在80~90℃下反应,制得核层乳液,然后滴加所述壳层 单体预乳液,在80~90℃下反应,再加入占所述丙烯酸树脂乳液的总质量的0.05~0.15%的引发剂和占所述丙烯酸树脂乳液的总质量的0.04~0.15%的还原剂进行后消除反应,降温至60℃以下,加入中和剂搅拌,再加入杀菌剂搅拌得到所述丙烯酸树脂乳液,其中,所述占所述丙烯酸树脂乳液的总质量的0.1~0.2%的引发剂在所述第二核层预乳液和所述壳层单体预乳液滴加过程中持续滴加。
进一步地,步骤(4)的具体实施为:向步骤(3)中的所述种子乳液中滴加所述第二核层预乳液和滴加所述占所述丙烯酸树脂乳液的总质量的0.1~0.2%的引发剂,控制所述第二核层预乳液的滴加时间为60~150min,滴加温度为80~90℃,滴加完毕后,保持温度80~90℃保温5~20min;滴加所述壳层单体预乳液,控制滴加时间为60~150min,滴加温度为80~90℃,滴加完毕后,保持温度80~90℃保温5~20min;控制体系温度为75~80℃,然后滴加占所述丙烯酸树脂乳液的总质量的0.01~0.08%引发剂和占所述丙烯酸树脂乳液的总质量的0.01~0.05%的还原剂,控制滴加时间为10~20min,滴加完毕后,控制体系温度为65~75℃,然后滴加占所述丙烯酸树脂乳液的总质量的0.01~0.08%引发剂和占所述丙烯酸树脂乳液的总质量的0.01~0.05%的还原剂,控制滴加时间为20~40min,降温至60℃以下,加入中和剂,降温至50℃以下,加入杀菌剂,搅拌得到所述丙烯酸树脂乳液。
进一步地,所述引发剂包括但不限于叔丁醇过氧化氢(t-BHP)、过硫酸铵中的一种或多种的组合。
进一步地,所述还原剂包括但不限于Bruggolite FF6。
进一步地,所述阴离子型乳化剂包括脂肪醇醚硫酸盐,具体如巴斯夫DISPONIL FES 32;所述非离子型乳化剂包括聚芳基苯基醚衍生物,具体如索尔维RHODAPEX ES 2816。
进一步地,所述制备方法还包括在步骤(4)中加入催化剂组合物的步骤,所述催化剂组合物在所述滴加所述壳层单体预乳液,在80~90℃下反应结束后,进行所述后消除反应之前加入体系。
优选地,所述催化剂组合物包括催化剂和螯合剂的混合物。
本发明采取的第二技术方案:一种上述所述的高分子预铺防水卷材的制备方法,包括以下步骤:
S1、在基材层上制备胶粘层;
S2、在所述胶粘层上涂布所述保护涂层用浆料,在50~70℃温度下烘干,形成所述保护涂层。
由于上述技术方案运用,本发明与现有技术相比具有下列优点:
本申请的发明人研究发现通过采用不同的玻璃化转变温度的核壳结构的丙烯酸树脂乳液作为高分子预铺防水卷材的保护涂层的成膜物质,能够使得高分子预铺防水卷材收卷后,保护涂层不易开裂,并且高温下使用或卷材生产出来后立马收卷,能够避免高分子预铺防水卷材的保护涂层与背面的基材层之间的粘连造成卷材难以打开的问题。
具体实施方式
正如背景技术中所述,现有的丙烯酸树脂乳液应用于高分子预铺防水卷材时,存在收卷后保护涂层会发生开裂,一定高温下保护涂层与基材层之间发生粘连造成卷材难以打开的问题。这是由于丙烯酸树脂为热塑性树脂,具有热粘冷脆的特性。而丙烯酸树脂的粘 弹性由构成树脂的单体决定,当环境温度低于玻璃化转变温度时树脂呈现刚性,具有抗形变能力;当环境温度高于玻璃化转变温度时,树脂呈现塑形。而现有的丙烯酸树脂乳液,很难满足预铺防水卷材作为保护涂层的需求,因为片状的卷材生产出以后马上收卷,保护涂层需要承受弯曲形变和层间的压力,使用低玻璃化转变温度的树脂的保护涂层,可以避免保护涂层弯曲时发生开裂,但在高温条件下层间的持续压力使保护涂层与背面的基材层之间形成粘接;而若使用高玻璃化转变温度的树脂保护涂层,可以避免保护涂层与背面的基材层之间的粘接,但保护涂层弯曲和下方的胶粘层持续发生蠕变时,保护涂层会发生开裂。
本发明的发明人基于此提出采用具有不同玻璃化转变温度的核壳结构的丙烯酸树脂乳液作为保护涂层的成膜物质用于预铺防水卷材上来解决所述问题。其中,壳层聚合物的玻璃化转变温度较高,核层聚合物的玻璃化转变温度较低,实现:第一,预铺防水卷材生产过程中,经烘箱烘烤后能够有效成膜,并且卷材在高温下(如运输、使用过程中、运输工具内、工地地表等场所的温度可高达50℃左右),保护涂层不会回粘,避免卷材粘连难以打开的问题;第二、预铺防水卷材生产出来后,马上收卷也不会造成保护涂层的开裂问题,更加不会导致保护涂层与基材层之间的粘连问题。进一步地,壳层聚合物含有羧基官能团,实现与后浇混凝土的快速粘接。
下面结合具体实施例详细说明本发明的技术方案,以便本领域技术人员更好理解和实施本发明的技术方案,但并不因此将本发明限制在所述的实例范围之中。
实施例1
本实施例提供的高分子预铺防水卷材,包括依次层叠设置的基材层、胶粘层和保护涂层,其中,基材层为高密度聚乙烯片材,厚度为1mm;胶粘层为SIS热熔压敏胶。
具体通过以下方法制备:向1mm的高密度聚乙烯片材上涂布0.3mm的SIS热熔压敏胶,然后向热熔压敏胶表面喷涂保护涂层用浆料,放入70℃烘箱中干燥10min,即得预铺防水卷材。
本例中,保护涂层用浆料的原料配方为:160份水、1.8份分散剂、0.5份增稠剂(NATROSOL 250 MBR)、26份钛白粉(杜邦R902+)、25份碳酸钙粉(5μm)、260份丙烯酸树脂乳液、3份紫外线吸收剂329、3份紫外线吸收剂292、1份抗氧剂1010和1份抗氧剂168。通过如下方法制备:将分散剂加入水中,搅拌5min,搅拌速度600rpm,然后加入增稠剂,搅拌10min,加入钛白粉,转速提高至1500rpm,搅拌10min,然后加入碳酸钙粉,搅拌10min,加入丙烯酸树脂乳液,搅拌30min,降低转速至600rpm,然后加入紫外线吸收剂和抗氧剂,搅拌10min,即得保护涂层用浆料。
本例中,采用的丙烯酸树脂乳液为核壳结构的丙烯酸树脂乳液,其中,壳层聚合物的玻璃化转变温度的设计值为56℃,丙烯酸树脂的玻璃化转变温度的设计值为16.4℃,核层单体的总质量与壳层单体的总质量之比为1.18:1,核层聚合物的玻璃化转变温度为-10℃。
本例的丙烯酸树脂乳液的配方如表1所示。
该丙烯酸树脂乳液通过以下方法制备得到:
(1)制备核层单体预乳液
使核层单体、阴离子型乳化剂、水搅拌混合,得到核层单体预乳液,并将其分为第一核层预乳液和第二核层预乳液,第一核层预乳液占核层单体预乳液总质量的5.4%;
(2)制备壳层单体预乳液
使壳层单体、非离子型乳化剂、水混合,得到壳层单体预乳液;
(3)制备种子乳液
将作为垫底物的水升温至80~95℃,然后加入第一核层预乳液及作为垫底物的阴离子型乳化剂、阻聚剂、缓冲剂和催化剂组合物,再加入第一引发剂,进行种子引发反应,直至温度不再升高,得到种子乳液;
(4)聚合反应
向种子乳液中滴加第二核层预乳液,控制滴加时间为100min左右,滴加温度为85℃左右,滴加完毕后,保持温度85℃保温10min;
滴加壳层单体预乳液,控制滴加时间为100min左右,滴加温度为85℃,滴加完毕后,保持温度85℃保温10min;
第二引发剂的水溶液与第二核层预乳液同时滴加,且持续滴加时间为200min左右;
(5)后消除反应
向体系中加入催化剂组合物,搅拌,然后将体系温度降温至75~80℃,滴加第三引发剂的水溶液和第一还原剂的水溶液,控制滴加时间为15min,滴加完毕后,将体系温度降温至65~75℃,然后滴加第四引发剂的水溶液和第二还原剂的水溶液,控制滴加时间为30min;
(6)中和反应
将体系降温至60℃以下,滴加中和剂,滴加时间为10min,然后体系降温至50℃以下,滴加杀菌剂组合物,滴加时间为10min,然后降温至室温,出料,即得丙烯酸树脂乳液。
实施例2
本实施例提供的高分子预铺防水卷材,与实施例1的不同之处在于:采用的丙烯酸树脂乳液不同。
本例中的丙烯酸树脂乳液,壳层聚合物的玻璃化转变温度的设计值为50℃,丙烯酸树脂的玻璃化转变温度的设计值为17.8℃,核层单体的总质量与壳层单体的总质量之比为1.5:1,核层聚合物的玻璃化转变温度为0℃。本例的丙烯酸树脂乳液的配方如表1所示。
实施例3
本实施例提供的高分子预铺防水卷材,与实施例1的不同之处在于:采用的丙烯酸树脂乳液不同。
本例中的丙烯酸树脂乳液,壳层聚合物的玻璃化转变温度的设计值为69℃,丙烯酸树脂的玻璃化转变温度的设计值为1℃,核层单体的总质量与壳层单体的总质量之比为2:1:,核层聚合物的玻璃化转变温度为-20℃。本例的丙烯酸树脂乳液的配方如表1所示。
对比例1
本对比例提供的高分子预铺防水卷材,与实施例1的不同之处在于:采用的丙烯酸树脂乳液不同。
本例中的丙烯酸树脂乳液,采用的原料配方同实施例1,不同之处在于:将实施例1中的所有单体与水和乳化剂混合配制成单体预乳液,然后分成占5.4%的第一预乳化液和94.6%的第二预乳化液,然后参照实施例1的方法,先将水加热,然后将第一预乳化液与垫底 物和催化剂组合物加入,在第一引发剂的作用下引发聚合,得到种子乳液,再向种子乳液中滴加第二预乳化液和第二引发剂,并控制滴加时间为100min,进行聚合反应,再进行步骤(5)~(6),最终制得丙烯酸树脂乳液。
对比例2
本对比例提供的高分子预铺防水卷材,与实施例1的不同之处在于:采用的丙烯酸树脂乳液不同。
本例中的丙烯酸树脂乳液,壳层聚合物的玻璃化转变温度的设计值为56℃,与实施例1不同之处在于:丙烯酸树脂的玻璃化转变温度的设计值为30℃,核层单体的总质量与壳层单体的总质量之比为1:2,核层聚合物的玻璃化转变温度为-10℃。本例的丙烯酸树脂乳液的配方如表1所示。
对比例3
本对比例提供的高分子预铺防水卷材,与实施例1的不同之处在于:采用的丙烯酸树脂乳液不同。
本对比例采用市售的丙烯酸树脂乳液,玻璃化转变温度为60℃。
表1为实施例1~3和对比例2的丙烯酸树脂乳液的配方(以质量百分含量计)
Figure PCTCN2022112052-appb-000002
Figure PCTCN2022112052-appb-000003
性能测试
将实施例1~3和对比例1~3的高分子预铺防水卷材参照GB/T 23457-2017进行与后浇混凝土剥离强度的测试,结果如表2所示。
其中,抗粘连性的测试方法为:
从卷材中裁取50×150mm大小的样片,将卷材的载体片材面放置在样片的隔离层上,然后施加70g/cm 2的载荷于顶部,将该组合件放置在70℃的烘箱中14天。冷却至室温后,参照标准GB/T 23457-2017中6.23卷材防粘处理部位剥离强度的测试方法,检测样片与载体片材之间的剥离强度,小于0.1N/mm认为抗粘连性合格。
保护涂层低温柔性的测试方法为:
从防水卷材中裁取25×150mm大小的样片,置于0℃下处理1h后在0℃环境中,使防水卷材隔离层向外,绕直径为30mm的圆棒弯折,在10s内目测保护涂层弯曲面是否有裂纹出 现。
表2为实施例1~3和对比例1~3的高分子预铺防水卷材的性能测试结果
Figure PCTCN2022112052-appb-000004
实施例1~3制备的高分子预铺防水卷材,与后浇混凝土的剥离强度,以及经浸水、紫外、热处理后,均满足GB/T 23457-2017相关标准的要求,而且其抗粘连性和低温柔性均合格。对比例1相比实施例1,其涂层与片材之间的剥离强度明显大于0.1N/mm,发生了粘连。对比例2,丙烯酸树脂的壳层较厚,成膜性变差,在低温下弯折发生了开裂,产生大量裂纹。采用市售丙烯酸树脂乳液的对比例3,其玻璃态转化温度较高,在同样的制备条件下,涂层干燥后产生大量粉末,无法有效成膜。
上述实施例只为说明本发明的技术构思及特点,其目的在于让熟悉此项技术的人士能够了解本发明的内容并据以实施,并不能以此限制本发明的保护范围。凡根据本发明精神实质所作的等效变化或修饰,都应涵盖在本发明的保护范围之内。
在本文中所披露的范围的端点和任何值都不限于该精确的范围或值,这些范围或值应当理解为包含接近这些范围或值的值。对于数值范围来说,各个范围的端点值之间、各个范围的端点值和单独的点值之间,以及单独的点值之间可以彼此组合而得到一个或多个新的数值范围,这些数值范围应被视为在本文中具体公开。

Claims (10)

  1. 一种高分子预铺防水卷材,包括依次层叠设置的基材层、胶粘层和保护涂层,其特征在于:所述保护涂层的原料包括具有核壳结构的丙烯酸树脂乳液,其中,所述丙烯酸树脂的壳层聚合物的玻璃化转变温度大于核层聚合物的玻璃化转变温度,且设计所述丙烯酸树脂采用的所有单体聚合成不规则共聚物的树脂的理论玻璃化转变温度为0~20℃。
  2. 根据权利要求1所述的高分子预铺防水卷材,其特征在于:所述壳层聚合物的玻璃化转变温度设计值为50~70℃;和/或,所述核层聚合物采用的核层单体的总质量与壳层聚合物采用的壳层单体的总质量之比为1~2:1。
  3. 根据权利要求1所述的高分子预铺防水卷材,其特征在于:所述壳层聚合物含有羧基官能团。
  4. 根据权利要求1~3中任一项所述的高分子预铺防水卷材,其特征在于:所述核层聚合物采用的核层单体包括第一酸性功能单体、第一软单体、第一硬单体和交联单体,所述壳层聚合物采用的壳层单体包括第二酸性功能单体、第二软单体和第二硬单体,其中,所述第一酸性功能单体、第二酸性功能单体分别独立选自甲基丙烯酸、丙烯酸、衣康酸中的一种或多种的组合,所述第一软单体、第二软单体分别独立选自丙烯酸丁酯、丙烯酸异辛酯、丙烯酸乙酯中的一种或多种的组合,所述第一硬单体、第二硬单体分别独立选自苯乙烯、甲基丙烯酸甲酯、甲基丙烯酸异冰片酯、甲基丙烯酸环己酯中的一种或多种的组合,所述交联单体选自丙烯酰胺、丙烯腈、N-羟甲基丙烯酰胺中的一种或多种的组合。
  5. 根据权利要求4所述的高分子预铺防水卷材,其特征在于:所述第二酸性功能单体的质量占所述壳层单体总质量的1~3%;和/或,
    基于所述核层单体和壳层单体的总质量计,所述核层单体包括0.2~0.8%的第一酸性功能单体、25~50%的第一软单体、20~30%的第一硬单体和0.1~0.5%的交联单体;所述壳层单体包括0.5~1.5%的第二酸性单体、3~12%的第二软单体和25~40%的第二硬单体,所述第一硬单体为苯乙烯,所述第二硬单体为苯乙烯和甲基丙烯酸甲酯按质量比为1~2.5:1的混合物。
  6. 根据权利要求4所述的高分子预铺防水卷材,其特征在于:所述丙烯酸树脂乳液的制备方法包括使所述核层聚合物采用的核层单体、所述壳层聚合物采用的壳层单体、乳化剂、缓冲剂、引发剂、还原剂经核壳乳液聚合制得。
  7. 根据权利要求6所述的高分子预铺防水卷材,其特征在于:所述乳化剂选自阴离子型乳化剂、非离子型乳化剂中的一种或多种的组合,
    所述丙烯酸树脂乳液的制备方法包括以下步骤:
    (1)制备核层单体预乳液
    使所述核层单体、占所述丙烯酸树脂乳液总质量的1~1.5%的阴离子型乳化剂、占所述丙烯酸树脂乳液总质量的5~10%的水搅拌混合,得到核层单体预乳液,并将其分为第一核层预乳液和第二核层预乳液,所述第一核层预乳液占所述核层单体预乳液总质量的5~6%;
    (2)制备壳层单体预乳液
    使所述壳层单体、占所述丙烯酸树脂乳液总质量的0.5~1%的非离子型乳化剂、占所述丙烯酸树脂乳液总质量的4~8%的水混合,得到壳层单体预乳液;
    (3)制备种子乳液
    将占所述丙烯酸树脂乳液的总质量的25~35%的水升温至80~95℃,然后加入占所述丙烯酸树脂乳液的总质量的1~1.5%的阴离子型乳化剂、第一核层预乳液、阻聚剂、缓冲剂和占 所述丙烯酸树脂乳液的总质量的0.05~0.1%的引发剂,进行种子引发反应,得到种子乳液;
    (4)制备丙烯酸树脂乳液
    向步骤(3)的所述种子乳液中滴加所述第二核层预乳液和占所述丙烯酸树脂乳液的总质量的0.1~0.2%的引发剂,在80~90℃下反应,制得壳层乳液,然后滴加所述壳层单体预乳液,在80~90℃下反应,再加入占所述丙烯酸树脂乳液的总质量的0.05~0.15%的引发剂和占所述丙烯酸树脂乳液的总质量的0.04~0.15%的还原剂进行后消除反应,降温至60℃以下,加入中和剂搅拌,再加入杀菌剂搅拌得到所述丙烯酸树脂乳液,其中,所述占所述丙烯酸树脂乳液的总质量的0.1~0.2%的引发剂在所述第二核层预乳液和所述壳层单体预乳液滴加过程中持续滴加。
  8. 根据权利要求1所述的高分子预铺防水卷材,其特征在于:所述保护涂层的原料包括所述丙烯酸树脂乳液、填料和助剂;和/或,所述基材层为高分子基材层;和/或,所述胶粘层为热熔胶层。
  9. 根据权利要求8所述的高分子预铺防水卷材,其特征在于:所述助剂包括分散剂、增稠剂、紫外线吸收剂、抗氧剂中的一种或几种的组合;和/或,所述填料选自钛白粉、碳酸钙粉中的一种或多种的组合;和/或,
    以质量百分含量计,所述保护涂层的原料包括30~35%的水、0.1~0.5%的分散剂、0.05~0.15%的增稠剂、5~15%的填料、50~60%的所述丙烯酸树脂乳液、1~2%的紫外线吸收剂和0.1~1%的抗氧剂;和/或,
    所述高分子基材层的材料为选自高密度聚乙烯、低密度聚乙烯、线性低密度聚乙烯、聚氯乙烯中的一种或多种的组合。
  10. 一种权利要求1~9中任一项所述的高分子预铺防水卷材的制备方法,其特征在于,包括以下步骤:
    S1、在基材层上制备胶粘层;
    S2、在所述胶粘层上涂布所述保护涂层用浆料,在50~70℃温度下烘干,形成所述保护涂层。
PCT/CN2022/112052 2022-02-18 2022-08-12 一种高分子预铺防水卷材及其制备方法 WO2023155395A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210148857.2A CN114196337B (zh) 2022-02-18 2022-02-18 一种高分子预铺防水卷材及其制备方法
CN202210148857.2 2022-02-18

Publications (1)

Publication Number Publication Date
WO2023155395A1 true WO2023155395A1 (zh) 2023-08-24

Family

ID=80645510

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/112052 WO2023155395A1 (zh) 2022-02-18 2022-08-12 一种高分子预铺防水卷材及其制备方法

Country Status (2)

Country Link
CN (1) CN114196337B (zh)
WO (1) WO2023155395A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114196337B (zh) * 2022-02-18 2022-06-14 江苏凯伦建材股份有限公司 一种高分子预铺防水卷材及其制备方法
CN117285879B (zh) * 2023-11-24 2024-02-27 江苏凯伦建材股份有限公司 一种预铺防水卷材及其制备方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005349684A (ja) * 2004-06-10 2005-12-22 Sumitomo Metal Ind Ltd 樹脂被覆表面処理鋼板
CN102382533A (zh) * 2010-09-01 2012-03-21 北京航材百慕新材料技术工程股份有限公司 一种环保型水性工业隔热涂料
CN102532403A (zh) * 2011-12-29 2012-07-04 上海三瑞高分子材料有限公司 一种可再分散胶粉用核壳结构丙烯酸乳液及其制备方法
US20130037989A1 (en) * 2010-04-28 2013-02-14 Robert A. Wiercinski Waterproofing Membrane
CN202755985U (zh) * 2012-07-02 2013-02-27 北京东方雨虹防水技术股份有限公司 一种用于预铺反粘施工的塑料防水卷材
CN103119113A (zh) * 2010-04-28 2013-05-22 格雷斯公司 防水膜
CN103358635A (zh) * 2013-07-19 2013-10-23 北京东方雨虹防水技术股份有限公司 一种具有预铺反粘功能的防水卷材及其制备方法
CN104387521A (zh) * 2014-11-27 2015-03-04 武汉工程大学 一种蒙脱土和甲基丙烯酸复合改性丙烯酸酯核壳乳液的制备方法
CN107936169A (zh) * 2017-11-02 2018-04-20 佛山市顺德区巴德富实业有限公司 一种抗开裂、易打磨的水性松木底漆乳液及其制备工艺
CN109321154A (zh) * 2018-09-29 2019-02-12 江苏凯伦建材股份有限公司 一种预铺式高分子自粘防水卷材及其制备方法
CN114196337A (zh) * 2022-02-18 2022-03-18 江苏凯伦建材股份有限公司 一种高分子预铺防水卷材及其制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109627400A (zh) * 2018-12-07 2019-04-16 东联北方科技(北京)有限公司 丙烯酸系多层核壳聚合物乳液及其制备方法和应用

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005349684A (ja) * 2004-06-10 2005-12-22 Sumitomo Metal Ind Ltd 樹脂被覆表面処理鋼板
US20130037989A1 (en) * 2010-04-28 2013-02-14 Robert A. Wiercinski Waterproofing Membrane
CN103119113A (zh) * 2010-04-28 2013-05-22 格雷斯公司 防水膜
CN102382533A (zh) * 2010-09-01 2012-03-21 北京航材百慕新材料技术工程股份有限公司 一种环保型水性工业隔热涂料
CN102532403A (zh) * 2011-12-29 2012-07-04 上海三瑞高分子材料有限公司 一种可再分散胶粉用核壳结构丙烯酸乳液及其制备方法
CN202755985U (zh) * 2012-07-02 2013-02-27 北京东方雨虹防水技术股份有限公司 一种用于预铺反粘施工的塑料防水卷材
CN103358635A (zh) * 2013-07-19 2013-10-23 北京东方雨虹防水技术股份有限公司 一种具有预铺反粘功能的防水卷材及其制备方法
CN104387521A (zh) * 2014-11-27 2015-03-04 武汉工程大学 一种蒙脱土和甲基丙烯酸复合改性丙烯酸酯核壳乳液的制备方法
CN107936169A (zh) * 2017-11-02 2018-04-20 佛山市顺德区巴德富实业有限公司 一种抗开裂、易打磨的水性松木底漆乳液及其制备工艺
CN109321154A (zh) * 2018-09-29 2019-02-12 江苏凯伦建材股份有限公司 一种预铺式高分子自粘防水卷材及其制备方法
CN114196337A (zh) * 2022-02-18 2022-03-18 江苏凯伦建材股份有限公司 一种高分子预铺防水卷材及其制备方法

Also Published As

Publication number Publication date
CN114196337B (zh) 2022-06-14
CN114196337A (zh) 2022-03-18

Similar Documents

Publication Publication Date Title
WO2023155395A1 (zh) 一种高分子预铺防水卷材及其制备方法
TWI639666B (zh) 壓敏性黏著劑
KR101602515B1 (ko) 저 표면 에너지 접착제
CN111058334B (zh) 一种改性聚丙烯酸酯防水防粘剂、制备方法和应用
CN104371609A (zh) 压敏粘合剂
EP2999758A1 (en) Preparation of pressure sensitive adhesive dispersions from multi-stage emulsion polymerization for applications of protective films
CN114539869B (zh) 一种水性非沥青基防水涂料及其制备方法、防水层叠体
CN111234726A (zh) 一种可反复粘贴的压敏胶带及其制备方法
JP3539765B2 (ja) 粘着付与樹脂組成物
TWI667325B (zh) 以微氣球發泡之帶狀壓敏黏著劑及其製造方法與用途
CN111748301B (zh) 一种耐低温丙烯酸涂层胶及其制备方法和应用
JP4351834B2 (ja) フィルム基材用水性粘着剤組成物
JP4763379B2 (ja) 感圧接着性樹脂組成物
JP2922283B2 (ja) 熱硬化性感圧接着剤組成物用アクリル系共重合体
JP2610616B2 (ja) 水分散型感圧性接着剤組成物
JPS6147187B2 (zh)
CN114214008A (zh) 一种应用于薄型胶带的胶黏剂
JP3944890B2 (ja) 剥離紙用アンダーコート剤
CN114853940B (zh) 一种水性树脂及其制备方法和应用
JP2002363521A (ja) 水分散型粘着剤組成物および粘着テープ
CN113773704B (zh) Pvc水性底涂剂及其制备方法
JPS6344793B2 (zh)
JPS6030354B2 (ja) 表面保護シ−トの製造法
JP3663802B2 (ja) 剥離紙用アンダーコート剤
JPH0339522B2 (zh)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22926701

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE