WO2024067366A1 - 充电线圈模组及其相关产品、充电线圈模组的制备方法 - Google Patents
充电线圈模组及其相关产品、充电线圈模组的制备方法 Download PDFInfo
- Publication number
- WO2024067366A1 WO2024067366A1 PCT/CN2023/120512 CN2023120512W WO2024067366A1 WO 2024067366 A1 WO2024067366 A1 WO 2024067366A1 CN 2023120512 W CN2023120512 W CN 2023120512W WO 2024067366 A1 WO2024067366 A1 WO 2024067366A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- coil
- coil module
- charging coil
- charging
- module
- Prior art date
Links
- 238000002360 preparation method Methods 0.000 title abstract description 34
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 82
- 229910002804 graphite Inorganic materials 0.000 claims description 82
- 239000010439 graphite Substances 0.000 claims description 82
- 239000000758 substrate Substances 0.000 claims description 72
- 239000000463 material Substances 0.000 abstract description 17
- 239000010410 layer Substances 0.000 description 272
- 230000004308 accommodation Effects 0.000 description 66
- 238000009713 electroplating Methods 0.000 description 51
- 239000010408 film Substances 0.000 description 47
- 238000005530 etching Methods 0.000 description 36
- 239000002159 nanocrystal Substances 0.000 description 31
- 239000013039 cover film Substances 0.000 description 30
- 238000000034 method Methods 0.000 description 30
- 230000009286 beneficial effect Effects 0.000 description 17
- 238000010586 diagram Methods 0.000 description 17
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 13
- 229910052802 copper Inorganic materials 0.000 description 13
- 239000010949 copper Substances 0.000 description 13
- 239000002184 metal Substances 0.000 description 13
- 229910052751 metal Inorganic materials 0.000 description 13
- 101100012902 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) FIG2 gene Proteins 0.000 description 9
- 101000827703 Homo sapiens Polyphosphoinositide phosphatase Proteins 0.000 description 6
- 102100023591 Polyphosphoinositide phosphatase Human genes 0.000 description 6
- 230000017525 heat dissipation Effects 0.000 description 5
- 239000004642 Polyimide Substances 0.000 description 4
- 101100233916 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) KAR5 gene Proteins 0.000 description 4
- 208000027418 Wounds and injury Diseases 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 238000007747 plating Methods 0.000 description 4
- 229920001721 polyimide Polymers 0.000 description 4
- 238000003825 pressing Methods 0.000 description 4
- 238000005406 washing Methods 0.000 description 4
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 3
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 3
- 238000004026 adhesive bonding Methods 0.000 description 3
- 239000012790 adhesive layer Substances 0.000 description 3
- 238000007689 inspection Methods 0.000 description 3
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 239000003292 glue Substances 0.000 description 2
- 239000011810 insulating material Substances 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 238000000206 photolithography Methods 0.000 description 2
- 238000002203 pretreatment Methods 0.000 description 2
- 238000007650 screen-printing Methods 0.000 description 2
- 238000004088 simulation Methods 0.000 description 2
- 230000003746 surface roughness Effects 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 206010040954 Skin wrinkling Diseases 0.000 description 1
- 239000002390 adhesive tape Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 208000002352 blister Diseases 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000005672 electromagnetic field Effects 0.000 description 1
- 239000003344 environmental pollutant Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 231100000719 pollutant Toxicity 0.000 description 1
- 238000005488 sandblasting Methods 0.000 description 1
- 239000004984 smart glass Substances 0.000 description 1
- 238000005476 soldering Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 230000037303 wrinkles Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J50/00—Circuit arrangements or systems for wireless supply or distribution of electric power
- H02J50/90—Circuit arrangements or systems for wireless supply or distribution of electric power involving detection or optimisation of position, e.g. alignment
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J50/00—Circuit arrangements or systems for wireless supply or distribution of electric power
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J50/00—Circuit arrangements or systems for wireless supply or distribution of electric power
- H02J50/005—Mechanical details of housing or structure aiming to accommodate the power transfer means, e.g. mechanical integration of coils, antennas or transducers into emitting or receiving devices
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J50/00—Circuit arrangements or systems for wireless supply or distribution of electric power
- H02J50/40—Circuit arrangements or systems for wireless supply or distribution of electric power using two or more transmitting or receiving devices
Definitions
- the present application relates to the field of wireless charging, and in particular to a charging coil module and related products thereof, and a method for preparing the charging coil module.
- the embodiments of the present application provide a charging coil module, related products including the charging coil module, and a preparation method including the charging coil module, aiming to obtain a charging coil module with a smaller size, and related products including the charging coil module.
- a charging coil module in a first aspect, includes a substrate and a first coil.
- the substrate includes a first surface.
- the first coil is disposed on the first surface.
- the number of turns of the first coil is greater than or equal to 2.
- the distance between two adjacent turns in the first coil is in the range of 40 micrometers to 100 micrometers.
- the distance between two adjacent turns in the first coil of the charging coil module of the present application is between 40 microns and 100 microns, and the first coil can be set at a narrow pitch, that is, the charging coil module can be set at a narrow pitch.
- the metal content per unit area of the charging coil module of the present application is higher, thereby effectively reducing the charging loss, which is conducive to extending the time for the charging coil module to maintain a 50W peak during the charging process and improving the charging efficiency.
- the charging coil module of the present application can reduce the distance between two adjacent turns without reducing the volume of the wiring in the first coil, thereby thinning the thickness of the first coil and thinning the thickness of the entire charging coil module.
- the charging coil module of the present application can realize the miniaturization setting of the charging coil module by reducing the distance between two adjacent turns in the first coil.
- each turn in the first coil includes a first conductive portion and a second conductive portion.
- the first conductive portion is disposed on the first surface.
- the second conductive portion covers the first conductive portion. In this way, the second conductive portion covers the first conductive portion, which can reduce the distance between two adjacent turns in the first coil, and is conducive to realizing a narrow spacing setting of the charging coil module.
- the second conductive part is formed on the first conductive part by an electroplating process, wherein the electroplating process is lead electroplating.
- the thickness of the first conductive portion is in the range of 10 microns to 60 microns. In this way, the thickness of the first conductive portion is relatively thin. The distance between two adjacent turns in the first coil can be made narrower, which is conducive to realizing the narrow spacing setting of the charging coil module.
- the thickness of the first coil is greater than 50 microns. It is understandable that when the thickness of the first coil is greater than 50 microns, the thickness of the first coil is relatively thick. At this time, compared with the conventional charging coil module directly forming a thicker first conductive portion to form the first coil, the present application covers the second conductive portion on the first conductive portion, so that the distance between two adjacent turns in the first coil can be made smaller, which is conducive to realizing the narrow spacing setting of the charging coil module.
- the substrate includes a second surface.
- the second surface is disposed opposite to the first surface.
- the charging coil module also includes a second coil.
- the second coil is disposed on the second surface.
- the number of turns of the second coil is greater than or equal to 2.
- the distance between two adjacent turns in the second coil is in the range of 40 micrometers to 100 micrometers.
- the metal volume in the charging coil module can be increased, thereby improving the charging efficiency of the charging coil module.
- the second coil is also set with a narrow pitch.
- the first coil and the second coil are both set with a narrow pitch, that is, the charging coil module is set with a narrow pitch.
- the metal content per unit area of the charging coil module of the present application is higher, thereby effectively reducing the charging loss, which is beneficial to prolong the time that the charging coil module maintains a 50W peak during the charging process and improves the charging efficiency.
- the charging coil module of the present application can reduce the distance between two adjacent first sub-coils and the distance between two adjacent second sub-coils without reducing the volume of the wiring in the first coil and the second coil, thereby thinning the thickness of the first coil and the second coil.
- the charging coil module of the present application can realize the miniaturization setting of the charging coil module by reducing the distance between two adjacent turns in the first coil and the second coil.
- the charging coil module further includes a first covering film, a first nanocrystalline layer, and a first graphite layer.
- the film is arranged on a side of the first coil away from the substrate.
- the first nanocrystalline layer and the first graphite layer are stacked on the first covering film in sequence.
- the first coil has a first accommodation space.
- the first accommodation space is a groove or a through hole.
- a portion of the first covering film is arranged in the first accommodation space.
- a portion of the first nanocrystalline layer is arranged in the first accommodation space.
- the charging coil module in the present application can fill a portion of the first nanocrystalline layer through the first accommodating space, thereby thinning the thickness of the first nanocrystalline layer, thereby achieving overall thinning of the charging coil module, and facilitating the miniaturization of the charging coil module.
- the charging coil module of the present application can use the space of the first accommodation space to fill more nanocrystals, increase the volume of the first nanocrystal layer, thereby reducing the magnetic loss of the charging coil module, which is beneficial to improving the fast charging performance of the charging coil module.
- the charging coil module can fill more graphite sheets through the first accommodation space to increase the volume of the first graphite layer, which is beneficial to improving the heat dissipation efficiency of the charging coil module.
- the first nanocrystalline layer is provided with a first recessed area.
- a portion of the first graphite layer is provided in the first recessed area.
- the charging coil module of the present application can use the space of the first accommodating space to fill a part of the first nanocrystalline layer, and at the same time use the first recessed area to fill more graphite sheets to increase the volume of the first graphite layer, thereby improving the heat dissipation capacity of the charging coil module, which is beneficial to improving the charging power of the charging coil module.
- the first graphite layer is provided with a second recessed area. A portion of the first nanocrystal layer is provided in the second recessed area. In this way, more nanocrystals can be filled in the charging coil module, and the charging coil module is more efficient in reducing magnetic loss.
- the first coil surrounds the first hollow area.
- the first accommodating space is spaced from the first hollow area. Or the first accommodating space is connected to the first hollow area. In this way, when the first accommodating space is connected to the first hollow area, the first accommodating space can also use the space of the first hollow area to fill more nanocrystals or further reduce the thickness of the first nanocrystal layer or the first graphite layer.
- the first coil includes a first part and a second part that are separately arranged.
- the first accommodation space is located between the first part and the second part.
- the first coil includes the first part.
- the first accommodation space is located on one side of the first part.
- the first coil has a first accommodation space.
- the first accommodation space is a groove or a through hole.
- the charging coil module includes a magnetic member.
- the magnetic member is arranged in the first accommodation space. In this way, by arranging the magnetic member in the first accommodation space, when the charging coil module is used in an electronic device, it can be accurately positioned with the charger, thereby improving the charging efficiency.
- the charging coil module also includes a second covering film, a second nanocrystalline layer and a second graphite layer.
- the second covering film is arranged on the side of the second coil away from the substrate.
- the second nanocrystalline layer and the second graphite layer are stacked on the second covering film in sequence.
- the second coil has a second accommodating space.
- the second accommodating space is a groove or a through hole.
- a portion of the second covering film is arranged in the second accommodating space.
- a portion of the second nanocrystalline layer is arranged in the second accommodating space. It can be understood that by providing the second covering film, short circuits in the wiring of the second coil can be avoided.
- providing the second nanocrystalline layer can reduce the magnetic loss of the charging coil module and improve the fast charging capability of the charging coil module.
- providing the second graphite layer can improve the heat dissipation capacity of the charging coil module.
- an electronic device in the second aspect, includes a battery and the above-mentioned charging coil module.
- the charging coil module is used to charge the battery. It can be understood that the charging coil module in the electronic device of the present application is arranged with a narrow pitch. Under the condition that the size of the charging coil module is the same, the metal content per unit area of the charging coil module of the present application is higher, thereby effectively reducing the charging loss, which is conducive to prolonging the time that the charging coil module maintains a peak of 50W during the charging process and improving the charging efficiency. In other words, the electronic device of the present application has a higher charging efficiency. In addition, under the condition that the outer diameter of the charging coil module is the same, the thickness of the charging coil module of the present application can be thinner, so as to better meet the thinning requirements of electronic devices.
- a charger in the third aspect, includes the charging coil module mentioned above in the outer shell.
- the charging coil module is arranged in the outer shell. It can be understood that the charging coil module in the charger of the present application is arranged with a narrow pitch. Under the condition that the size of the charging coil module is the same, the metal content per unit area of the charging coil module of the present application is higher, thereby effectively reducing the charging loss, which is beneficial to prolong the time that the charging coil module maintains a peak of 50W during the charging process and improves the charging efficiency. In other words, the charger of the present application has a higher charging efficiency. In addition, under the condition that the outer diameter of the charging coil module is the same, the thickness of the charging coil module of the present application can be thinner, so as to better meet the thinning requirements of the charger.
- a charging system in a fourth aspect, includes an electronic device and a charger. At least one of the electronic device and the charger The charger includes the above-mentioned charging coil module. The charger is used to charge the electronic device. In this way, when at least one of the electronic device and the charger in the charging system has a charging coil module arranged at a narrow distance, the working efficiency of the charging system is higher.
- a method for preparing a charging coil module comprises: etching a conductive layer of a substrate to form a first initial coil; electroplating a second conductive portion on each turn of the first initial coil to form a first coil.
- the distance between two adjacent turns in the first coil is in the range of 40 microns to 100 microns.
- the charging coil module prepared by the preparation method of the present application can achieve a narrow spacing setting, which is beneficial to improving the charging efficiency of the charging coil module, or realizing the miniaturization setting of the entire charging coil module.
- the method before the step of etching the conductive layer of the substrate, the method further includes: electroplating the second sub-conductive layer on the first sub-conductive layer of the substrate to form a conductive layer.
- electroplating the second sub-conductive layer on the first sub-conductive layer of the substrate to form a conductive layer.
- the method further includes: etching the conductive layer of the substrate to form a first initial coil and an etching space;
- the method further includes: electroplating the second conductive part for each turn on the first initial coil to form a first coil.
- the second conductive part located in the etching space encloses a first accommodation space; after the step of electroplating the second conductive part for each turn on the first initial coil, the method further includes: forming a first covering film on the surface of the first coil, a portion of the first covering film is disposed in the first accommodation space; forming a first nanocrystalline layer on the surface of the first covering film, a portion of the first nanocrystalline layer is disposed in the first accommodation space; forming a first graphite layer on the surface of the first nanocrystalline layer.
- the charging coil module can have more available space (i.e., the space of the first accommodation space).
- FIG1 is a schematic diagram of the structure of a wireless charging system provided in an embodiment of the present application.
- FIG2 is a schematic structural diagram of a charging coil module provided in an embodiment of the present application in one implementation manner
- FIG3 is an exploded view of the charging coil module shown in FIG2 ;
- FIG4 is a schematic diagram of a portion of the structure of the charging coil module shown in FIG2 ;
- Fig. 5 is a partial cross-sectional view of the structure shown in Fig. 4 on line B-B;
- FIG6 is a schematic structural diagram of the second coil shown in FIG3 ;
- FIG7 is a schematic structural diagram of the first coil shown in FIG3 ;
- FIG8 is a partial cross-sectional view of the charging coil module shown in FIG2 taken along line A-A;
- FIG9 is a flow chart of the preparation process of the charging coil module shown in FIG2 ;
- 10 to 16 are schematic diagrams of the preparation process of the charging coil module shown in FIG. 2 ;
- FIG17 is a partial cross-sectional view of the charging coil module shown in FIG8 in another embodiment
- FIG18 is a partial cross-sectional view of the charging coil module shown in FIG8 in another embodiment
- FIG19 is a partial cross-sectional view of the charging coil module shown in FIG8 in another embodiment
- FIG20 is a schematic structural diagram of the first coil of the charging coil module shown in FIG19;
- FIG21 is a partial cross-sectional view of the charging coil module shown in FIG8 in another embodiment
- FIG22 is a partial cross-sectional view of the charging coil module shown in FIG8 in another embodiment
- FIG23 is a schematic diagram of the preparation process of the charging coil module shown in FIG22;
- FIG24 is a partial cross-sectional view of the charging coil module shown in FIG22 in another embodiment
- FIG25 is a partial cross-sectional view of the charging coil module shown in FIG22 in another embodiment
- FIG26 is a partial cross-sectional view of the charging coil module shown in FIG22 in another embodiment
- FIG27 is a partial cross-sectional view of the charging coil module shown in FIG22 in another embodiment
- FIG28 is a partial cross-sectional view of the charging coil module shown in FIG8 in yet another embodiment
- FIG29 is a top view of a portion of the structure of the charging coil module shown in FIG28;
- FIG30 is a partial cross-sectional view of the charging coil module shown in FIG28 in another embodiment
- FIG31 is a partial cross-sectional view of the charging coil module shown in FIG28 in another embodiment
- FIG32 is a partial cross-sectional view of the charging coil module shown in FIG28 in another embodiment.
- connection should be understood in a broad sense.
- connection can be a detachable connection or a non-detachable connection; it can be a direct connection or an indirect connection through an intermediate medium.
- connection can be a detachable connection or a non-detachable connection; it can be a direct connection or an indirect connection through an intermediate medium.
- first”, “second”, “third” and “fourth” are used for descriptive purposes only and should not be understood as indicating or implying relative importance or implicitly indicating the number of the indicated technical features. Therefore, the features defined as “first”, “second”, “third” and “fourth” may explicitly or implicitly include one or more of the features.
- references to "one embodiment” or “some embodiments” etc. described in this specification mean that a particular feature, structure or characteristic described in conjunction with the embodiment is included in one or more embodiments of the present application.
- the phrases “in some embodiments”, “in other embodiments”, etc. that appear in different places in this specification do not necessarily refer to the same embodiment, but mean “one or more but not all embodiments”, unless otherwise specifically emphasized in other ways.
- the terms “including”, “having” and their variations all mean “including but not limited to”, unless otherwise specifically emphasized in other ways.
- Fig. 1 is a schematic diagram of the structure of a wireless charging system 1000 provided in an embodiment of the present application.
- Fig. 2 is a schematic diagram of the structure of a charging coil module 1 provided in the present application in an implementation manner.
- the wireless charging system 1000 may include an electronic device 100 and a wireless charger 200.
- the wireless charger 200 When the wireless charger 200 is plugged into a power source, the wireless charger 200 may be used to wirelessly charge the electronic device 100.
- At least one of the electronic device 100 and the wireless charger 200 may be provided with a charging coil module 1 provided in the present application.
- the electronic device 100 may be a mobile phone, a tablet computer, a folding terminal device or a wearable device and other devices with a wireless charging function.
- the wearable device may be a smart bracelet, a smart watch, smart glasses, etc.
- the electronic device 100 of the embodiment shown in FIG1 is described by taking a mobile phone as an example.
- the electronic device 100 may include a charging coil module 1, a device housing 2, a display screen 3, and a battery 4.
- the display screen 3 may be fixed to the device housing 2.
- the display screen 3 and the device housing 2 may enclose an internal space of the electronic device 100.
- the charging coil module 1 and the battery 4 may both be located in the internal space of the electronic device 100. In this case, the charging coil module 1 may serve as a receiving end coil.
- FIG. 1 only schematically shows some components of the electronic device 100, and the actual shapes and sizes of these components are not limited by FIG. 1 and the following drawings.
- FIG. 1 schematically shows the charging coil module 1 and the battery 4 through dotted lines. It should be understood that when the electronic device 100 is in other forms, the electronic device 100 may not include the display screen 3, or the electronic device 100 may include multiple display screens 3.
- the shape of the charging coil module 1 may be substantially disc-shaped.
- the charging coil module 1 is electrically connected to the battery 4. When the electronic device 100 is in a charging state, the charging coil module 1 may charge the battery 4.
- the wireless charger 200 may also include a charging coil module 1.
- the charging coil module 1 may be disposed in the housing 201 of the wireless charger 200. In this case, the charging coil module 1 may serve as a transmitting end coil.
- FIG. 3 is an exploded view of the charging coil module 1 shown in FIG. 2 .
- the charging coil module 1 may include a substrate 11, a first coil 12, a second coil 13, a first nanocrystalline layer 20, a first graphite layer 30, a first cover film 40, and a second cover film 50.
- the material of the first nanocrystalline layer 20 may be nanocrystalline.
- the material of the first graphite layer 30 may be a graphite sheet.
- the material of the substrate 11 may be an insulating material.
- the material of the substrate 11 may be polyimide (PI).
- the materials of the first coil 12 and the second coil 13 may both be metals.
- the materials of the first coil 12 and the second coil 13 may both be copper.
- FIG4 is a schematic diagram of a portion of the structure of the charging coil module 1 shown in FIG2.
- FIG5 is a partial cross-sectional view of the structure shown in FIG4 on the B-B line.
- FIG4 schematically illustrates the structure of the substrate 11, the first coil 12, and the second coil 13 of the charging coil module 1.
- the cross-sectional line B-B in FIG4 may pass through the center of the charging coil module 1.
- the substrate 11 may include a first surface 111 and a second surface 112 disposed opposite to each other.
- the first coil 12 may be disposed on the first surface 111 of the substrate 11.
- the second coil 13 may be disposed on the second surface 112 of the substrate 11.
- the charging coil module 1 may have a coil through hole 14. When the charging coil module 1 is in operation, the charging The magnetic field lines of the coil module 1 can pass through the coil through hole 14 .
- the first coil 12 may enclose a first hollow region 126.
- the second coil 13 may enclose a second hollow region 133.
- the substrate 11 may enclose a third hollow region 114.
- the first hollow region 126, the second hollow region 133 and the third hollow region 114 are interconnected and together constitute a coil through hole 14.
- FIG. 6 is a schematic structural diagram of the second coil 13 shown in FIG. 3 .
- the second coil 13 can be formed by routing multiple times.
- the number of turns of the second coil 13 is greater than or equal to 2.
- the second coil 13 includes a plurality of second sub-coils 13a arranged at intervals.
- One second sub-coil 13a can constitute one turn of the second coil 13.
- the spacing D2 between two adjacent second sub-coils 13a that is, the distance between two adjacent turns in the second coil 13 can be in the range of 40 microns to 100 microns.
- the spacing between two adjacent second sub-coils 13a can be 40 microns, 50 microns, 60 microns, 80 microns or 100 microns.
- the line spacing of the second coil 13 is narrow.
- the second coil 13 can be set at a narrow spacing.
- a second gap 131 can be formed between two adjacent second sub-coils 13a.
- the spacing between two adjacent second sub-coils 13a can be the minimum width of the second gap 131.
- the second coil 13 can be roughly annular.
- the shape of the second hollow area 133 of the second coil 13 can be circular.
- the second sub-coil 13a can be formed by one wire or multiple wires surrounding each other.
- the second sub-coil 13a when the second sub-coil 13a is formed by one wire surrounding each other, two adjacent second sub-coils can be connected end to end. At this time, each second sub-coil 13a in the second coil 13 can be electrically connected in series.
- the multiple wires are arranged at intervals. One of the wires of the second sub-coil 13a can be connected end to end with the wire of another second sub-coil adjacent to the second sub-coil 13a. At this time, the multiple second sub-coils 13a can be electrically connected through the first coil 12. It should be noted that the electrical connection relationship between the multiple second sub-coils 13a and the first coil 12 will be specifically introduced in conjunction with the accompanying drawings below, and will not be repeated here.
- the second sub-coil 13a may include the first conductive portion 1021b of the second coil 13, and the second conductive portion 1051b.
- the first conductive portion 1021b of the second coil 13 is arranged on the second surface 112.
- the second conductive portion 1051b of the second coil 13 may cover the first conductive portion 1021b.
- the cross-sectional shape of the second conductive portion 1051b of the second coil 13 is roughly "concave" shaped. It should be noted that, for ease of understanding, some of the subsequent drawings only illustrate the second sub-coil 13a as a whole, and do not show the internal structure of the second sub-coil 13a.
- the second coil 13 may further include a second lead 132.
- the second lead 132 may be electrically connected to the second sub-coil of the outermost circle.
- FIG. 7 is a schematic structural diagram of the first coil 12 shown in FIG. 3 .
- the first coil 12 has a first accommodating space 123.
- the first accommodating space 123 can divide the first coil 12 into a first part 121 and a second part 122.
- the first accommodating space 123 can be located between the first part 121 and the second part 122. That is, the first part 121 and the second part 122 can be located on both sides of the first accommodating space 123.
- the first coil 12 may not include the second part 122. In this case, the first part 121 and the first accommodating space 123 may be arranged side by side. In other embodiments, the first coil 12 may not be provided with the first accommodating space 123.
- the accommodation space 123 of the first coil 12 may be connected to the first hollow area 126. That is, the first accommodation space 123 may be connected to the coil through hole 14. In other embodiments, the first accommodation space 123 may not be connected to the first hollow area 126. In this case, the first accommodation space 123 and the first hollow area 126 are spaced apart.
- FIG7 schematically shows the first part 121, the second part 122, the first accommodation space 123 and the hollow area 126 of the first coil 12 by dashed lines.
- FIG8 schematically shows the partial structure of the first part 121 and the partial structure of the second part 122 by shorter dashed lines.
- the area surrounded by each dashed line is slightly larger than the first part 121, the second part 122 and the first accommodation space 123.
- the first part 121, the second part 122 and the first accommodation space 123 schematically shown by dashed lines in the subsequent figures are also slightly larger than the actual first part 121, the second part 122 and the accommodation space 123.
- the first coil 12 may include a plurality of first sub-coils 12a arranged at intervals. One first sub-coil 12a may constitute one turn of the first coil 12.
- the spacing D1 between two adjacent first sub-coils 12a that is, the distance between two adjacent turns in the first coil 12 may be in the range of 40 microns to 100 microns.
- the spacing between two adjacent first sub-coils 12a may be 40 microns, 50 microns, 60 microns, 80 microns or 100 microns.
- the line spacing of the first coil 12 is narrower.
- the first coil 12 may be arranged at a narrow spacing. It is understandable that a first gap 124 may be formed between two adjacent first sub-coils 12a.
- the spacing between two adjacent first sub-coils 12a may be the minimum width of the first gap 124.
- the plurality of first gaps 124 of the first coil 12 and the plurality of second gaps 131 of the second coil 13 may be arranged in a one-to-one correspondence.
- the line spacing of the first coil 12 may be equal to the line spacing of the second coil 13 .
- the first portion 121 of the first coil 12 may include a plurality of first line segments 1212 disposed at intervals.
- the second portion 122 may include a plurality of second line segments 1222 disposed at intervals.
- the plurality of first line segments 1212 and the plurality of second line segments 1222 are disposed in one-to-one correspondence and constitute the first Multiple first sub-coils 12a of the coil 12.
- the outermost first line segment 1212 in the first part 121 and the outermost second line segment 1222 in the second part 122 can together constitute the first sub-coil 12a of the outermost circle of the first coil 12.
- the first line segment 1212 can be formed by one or more lines being wound together.
- the second line segment 1222 can be formed by one or more lines being wound together.
- the first sub-coil 12a may include a first conductive portion 1021a and a second conductive portion 1051a of the first coil 12.
- the first conductive portion 1021a of the first coil 12 is arranged on the first surface 111.
- the second conductive portion 1051a of the first coil 12 may cover the first conductive portion 1021a.
- the cross-sectional shape of the second conductive portion 1051a of the first coil 12 is also roughly "concave" shaped. It should be noted that, for ease of understanding, some of the subsequent drawings only illustrate the entirety of the first sub-coil 12a, and do not show the internal structure of the first sub-coil 12a.
- the second conductive portion 1051 a is formed on the first conductive portion 1021 a of the first coil 12 by an electroplating process.
- the plating process may be lead plating.
- FIG8 is a partial cross-sectional view of the charging coil module 1 shown in FIG2 taken along line A-A.
- the first accommodating space 123 can expose a portion of the first surface 111 of the substrate 11, that is, the first accommodating space 123 is completely hollowed out. At this time, the first accommodating space 123 is a through hole.
- the portion of the first surface 111 exposed inside the first accommodating space 123 constitutes the bottom wall 1231 of the first accommodating space 123.
- the inner side surface of the portion of the first coil 12 exposed inside the first accommodating space 123 constitutes the side wall 1232 of the first accommodating space 123.
- the first sub-coil 12a and the second sub-coil 13a can be formed by a plurality of wirings surrounding each other, and the plurality of wirings are arranged at intervals.
- the wiring of the second sub-coil 13a is connected end to end with the wiring of another second sub-coil 13a adjacent to the second sub-coil 13a.
- the charging coil module 1 may also include a plurality of vias 14.
- the plurality of vias 14 may all penetrate the first coil 12 and the substrate 11.
- the plurality of wirings in the first coil 12 may be electrically connected to the plurality of wirings of the second coil 13 through the plurality of vias 14 one by one. At this time, the plurality of wirings in the first line segment 1212 may be in a parallel relationship.
- the plurality of wirings in the second line segment 1222 may be in a parallel relationship.
- Each first line segment 1212 may be electrically connected to each second line segment 1222 through the second coil 13 one by one.
- the plurality of first sub-coils 12a may be electrically connected to the plurality of second sub-coils 13a through the vias 14, thereby realizing electrical connection between the wirings inside the entire charging coil module 1.
- the first coil 12 may not include the first accommodating space 123.
- the plurality of first sub-coils 12a in the first coil 12 may be formed by one or more wires being wound around each other.
- the first sub-coils 12a in the first coil 12 may be electrically connected in series.
- the first coil 12 may further include a first lead 125.
- One end of the first lead 125 may be electrically connected to the outermost first sub-coil 12a of the first coil 12.
- the other end of the first lead 125 may be electrically connected to the second lead 132.
- the charging coil module 1 may be electrically connected to other electrical structures (such as springs and other structures) in the electronic device 100 through the first lead 125 and the second lead 132.
- the first coil 12 and the second coil 13 in the charging coil module 1 can both be set at a narrow pitch, that is, the entire charging coil module 1 can be set at a narrow pitch.
- the metal (such as copper) content per unit area of the charging coil module 1 in this embodiment is higher, thereby effectively reducing the charging loss, which is conducive to extending the time that the charging coil module 1 maintains a 50W peak during the charging process and improving the charging efficiency.
- the charging coil module 1 in this embodiment can reduce the width of the first gap 124 of the first coil 12 and the second gap 131 of the second coil 13 without reducing the volume of the wiring in the first coil 12 and the second coil 13, thereby thinning the thickness of the first coil 12 and/or the second coil 13 to reduce the overall thickness of the charging coil module 1.
- the charging coil module 1 in this embodiment can realize the miniaturization setting of the charging coil module 1 by reducing the distance between two adjacent turns in the first coil 12.
- the first covering film 40 may be provided on the side of the first coil 12 away from the substrate 11.
- the surface of the first coil 12 away from the substrate 11 may include the surface of the first portion 121 away from the substrate 11, the surface of the second portion 122 away from the substrate 11, and the bottom wall 1231 and the side wall 1232 of the first accommodation space 123.
- the second covering film 50 may be provided on the side of the second coil 13 away from the substrate 11.
- a portion of the first nanocrystalline layer 20 may be provided on the side of the first covering film 40 away from the first coil 12.
- Another portion of the first nanocrystalline layer 20 may be provided in the first accommodation space 123 and connect the bottom wall 1231 and the side wall 1232 of the first accommodation space 123.
- the first graphite layer 30 may be provided on the side of the first nanocrystalline layer 20 away from the first coil 12. At this time, the first nanocrystalline layer 20 and the first graphite layer 30 are stacked on the first covering film 40 in sequence.
- a portion of the first nanocrystalline layer 20 may be recessed in a direction toward the first accommodation space 123 of the first coil 12, and form a first recessed area 21. That is, the first recessed area 21 forms an opening on the surface of the first nanocrystalline layer 20 away from the first cover film 40.
- a portion of the first graphite layer 30 may be connected to the surface of the first nanocrystalline layer 20 away from the first coil 12.
- Another portion of the first graphite layer 30 may be arranged in the first recessed area 21 of the first nanocrystalline layer 20.
- the cross-sectional shape of the first graphite layer 30 is roughly "convex".
- the first nanocrystalline layer 20 may not form the first recessed area 21.
- the first graphite layer 30 is only connected to the surface of the first nanocrystalline layer 20 away from the first covering film 40. It should be noted that there are many implementation methods for the arrangement of the first nanocrystalline layer 20 and the first graphite layer 30 in the charging coil module 1, which will be specifically described below in conjunction with the accompanying drawings and will not be repeated here.
- the charging coil module 1 in this embodiment can fill a portion of the first nanocrystalline layer 20 through the first accommodating space 123, and fill a portion of the first graphite layer 30 in the first recessed area 21 of the first nanocrystalline layer 20, thereby thinning the thickness of the first nanocrystalline layer 20 and/or the first graphite layer 30, achieving thinning of the overall thickness of the charging coil module 1, which is conducive to the miniaturization of the charging coil module 1.
- the charging coil module 1 in this embodiment can use the space of the first accommodating space 123 to fill more nanocrystals, increase the volume of the first nanocrystalline layer 20, thereby reducing the magnetic loss of the charging coil module 1, which is beneficial to improving the fast charging performance of the charging coil module 1.
- the charging coil module 1 in this embodiment can also fill a portion of the first nanocrystalline layer 20 in the first accommodating space 123, and then fill more graphite sheets in the first recessed area 21 to increase the volume of the first graphite layer 30, thereby improving the heat dissipation efficiency of the charging coil module 1.
- the charging coil module 1 in this embodiment is provided with the first accommodating space 123 in the first coil 12, so that the charging coil module 1 can have more available space (i.e., the space of the first accommodating space 123).
- FIG9 is a flow chart of the preparation of the charging coil module 1 shown in FIG2.
- FIG10 to FIG16 are schematic diagrams of the preparation process of the charging coil module 1 shown in FIG2.
- FIG11 schematically shows a cross-sectional view of the structure shown in FIG10 on the D-D line. Subsequent steps can be prepared based on the structure shown in FIG11.
- the preparation process of the charging coil module 1 may include steps S110-S170 as shown in FIG9 :
- the circuit board 300 is cut according to the design requirements to form a substrate 101 (as shown by the dotted line in FIG10 ), that is, the circuit board of the charging coil module 1.
- the insulating layer of the circuit board 300 can be used to form the base material 11 of the substrate 101.
- the bottom copper of the circuit board 300 can be used to form the first sub-conductive layer 102a of the substrate 101.
- the circuit board 300 can be a hard circuit board, a soft circuit board, or a combination of hard and soft circuit boards. It should be noted that the dotted line in FIG10 illustrates the cutting path of the circuit board 300.
- the substrate 101 includes a base material 11 and a first sub-conductive layer 102a disposed on the base material 11.
- the material of the first sub-conductive layer 102a can be copper.
- the base material 11 includes a first surface 111 and a second surface 112 disposed in opposite directions.
- the first surface 111 is provided with a first first sub-conductive layer 102a.
- the second surface 112 is provided with a second first sub-conductive layer 102a.
- the thickness of the first sub-conductive layer 102a on both sides of the substrate 11 can be relatively thin.
- the thickness of the first sub-conductive layer 102a is less than 30 micrometers, the thickness of the first sub-conductive layer 102a can be considered to be relatively thin.
- the thickness of the first sub-conductive layer 102a can be 18 micrometers.
- the substrate 101 may be subjected to pre-treatment, micro-etching and other operations to facilitate subsequent preparation.
- the pre-treatment may be to use a brush wheel to remove pollutants on the surface of the first sub-conductive layer 102a to increase the surface roughness of the first sub-conductive layer 102a.
- the micro-etching may be to use chemical corrosion to increase the surface roughness of the first sub-conductive layer 102a.
- S120 electroplating a second sub-conductive layer on the first sub-conductive layer of the substrate to form a conductive layer.
- the first second sub-conductive layer 102b is electroplated on the first first sub-conductive layer 102a
- the second second sub-conductive layer 102b is electroplated on the second first sub-conductive layer 102a.
- the first first sub-conductive layer 102a and the first second sub-conductive layer 102b together constitute the first conductive layer 102.
- the second first sub-conductive layer 102a and the second second sub-conductive layer 102b together constitute the second conductive layer 102.
- the thickness of the conductive layer 102 of the substrate 101 can be significantly increased. It can be understood that by increasing the thickness of the conductive layer 102 of the substrate 101, the operation of the subsequent process is facilitated.
- the thickness of the first conductive layer 102 is in the range of 10 micrometers to 60 micrometers. In this case, the thickness of the conductive layer 102 is relatively thin.
- the thickness of the first conductive layer 102 can be 10 micrometers, 20 micrometers, 25 micrometers, 30 micrometers or 35 micrometers.
- the first conductive layer 102 of the substrate 101 is etched to form the first initial coil 103 and the etched space 1033
- the second conductive layer 102 of the substrate 101 is etched to form the second initial coil 104 .
- FIG. 12 is a schematic diagram of the preparation process of the partial structure at C shown in FIG. 8.
- the first conductive layer 102 is etched by a photolithography process to form a plurality of first conductive portions 1021a disposed at intervals on the first surface 111.
- the plurality of first conductive portions 1021a disposed on the first surface 111 together constitute the first initial coil 103.
- One first conductive portion 1021a constitutes one turn of the first initial coil 103.
- a third gap 1034 of the first initial coil 103 is formed between two adjacent first conductive portions 1021a disposed on the first surface 111.
- the spacing between two adjacent first conductive portions 1021a disposed on the first surface 111 may be the minimum width of the third gap 1034.
- the etching space 1033 of the first initial coil 103 can divide the first initial coil 103 into a first portion 1031 and a second portion 1032.
- the etching space 1033 can be located between the first portion 1031 and the second portion 1032 of the first initial coil 103. That is, the first portion 1031 of the first initial coil 103 and the second portion 1032 of the first initial coil 103 can be located on both sides of the etching space 1033.
- the first initial coil 103 may not include the second portion 1032.
- the first portion 1031 of the first initial coil 103 and the etching space 1033 may be arranged side by side. In other embodiments, the etching space 1033 may not be formed when the first initial coil 103 is formed.
- the etching space 1033 of the first initial coil 103 may expose a portion of the first surface 111 of the substrate 11 .
- the portion of the first surface 111 exposed inside the etching space 1033 constitutes a bottom wall 1033 a of the etching space 1033 .
- the second conductive layer 102 is etched by a photolithography process to form a plurality of first conductive portions 1021b disposed at intervals on the second surface 112.
- the plurality of first conductive portions 1021b disposed on the second surface 112 together constitute the second initial coil 104.
- One first conductive portion 1021b constitutes one turn of the second initial coil 104.
- a fourth gap 1041 is formed between two adjacent first conductive portions 1021b disposed on the second surface 112.
- the spacing between two adjacent first conductive portions 1021b disposed on the second surface 112 may be the minimum width of the fourth gap 1041.
- the first conductive portion 1021b disposed on the second surface 112 may be formed by one or more routings surrounding each other.
- the third gaps 1034 of the plurality of first initial coils 103 and the fourth gaps 1041 of the plurality of second initial coils 104 may be arranged in one-to-one correspondence, wherein the widths of the third gaps 1034 and the fourth gaps 1041 may be equal.
- the width of the third gap 1034 of the first initial coil 103 formed can be between 60 micrometers and 100 micrometers. At this time, the width of the third gap 1034 of the first initial coil 103 obtained by etching is relatively narrow. By way of example, the width of the third gap 1034 can be 80 micrometers.
- the width of the fourth gap 1041 of the formed second initial coil 104 may be in the range of 60 micrometers to 100 micrometers. At this time, the width of the fourth gap 1041 of the etched second initial coil 104 is relatively narrow. By way of example, the width of the fourth gap 1041 may be 80 micrometers.
- the thicker the metal thickness to be etched the greater the side etching generated during the etching process, and the greater the width of the gap finally formed (i.e., the third gap 1034 of the first initial coil 103 and the fourth gap 1041 of the second initial coil 104).
- the thinner conductive layer 102 the side etching is effectively reduced, the width of the formed gap is reduced, and it is beneficial to control the etching quality of the first initial coil 103, the second initial coil 104 and the etching space 1033.
- the thinner the etched metal thickness the shorter the time required for etching, which is beneficial to improve production efficiency.
- the first conductive layer 102 with a relatively thick thickness may be etched.
- the width of the third gap 1034 formed after etching may be in the range of 100 micrometers to 130 micrometers.
- the width of the third gap 1034 may be 120 micrometers.
- S140 Electroplating a second conductive portion on each turn of the initial coil to form a coil.
- the second conductive portion located in the etching space encloses a first accommodating space. The distance between two adjacent turns in the coil is the line spacing of the coil.
- the second conductive portion 1051a is electroplated on each turn of the first initial coil 103 (i.e., the first conductive portion 1021a) to form the first coil 12.
- the second conductive portion 1051b is electroplated on each turn of the second initial coil 104 (i.e., the first conductive portion 1021b) to form the second coil 13.
- the electroplating on the first initial coil 103 and the electroplating on the second initial coil 104 can both be lead plating.
- the first coil 12 includes a plurality of first sub-coils 12a that are surrounded and spaced apart.
- a first gap 124 is formed between two adjacent first sub-coils 12a. The width of the first gap 124 is less than the width of the third gap 1034.
- the first initial coil 103 is electroplated to form a plurality of second conductive portions 1051a disposed at intervals on the first surface 111.
- the first conductive portion 1021a and the second conductive portion 1051a of the first initial coil 103 constitute a first sub-coil 12a.
- the plurality of first sub-coils 12a together constitute the first coil 12.
- the space enclosed by the inner side surface of the first coil 12 and the bottom wall 1033a of the etching space 1033 constitutes the first accommodating space 123 of the first coil 12, that is, the second conductive portion 1051a located in the etching space 1033 encloses the first accommodating space 123.
- part of the bottom wall 1033a of the etching space 1033 constitutes the bottom wall 1231 of the first accommodating space 123.
- the inner side surface of the first coil 12 constitutes the side wall 1232 of the first accommodating space 123.
- Part of the space of the third gap 1034 of the first initial coil 103 is filled by the second conductive layer 105a of the first coil 12
- the remaining space after the third gap 1034 of the first initial coil 103 is filled forms the first gap 124 of the first coil 12 .
- the second conductive portion 1051 a of the first sub-coil 12 a may cover the first conductive portion 1021 a and be connected to the first surface 111 .
- the second coil 13 includes a plurality of second sub-coils 13a which are arranged around and spaced apart.
- a second gap 131 is formed between two adjacent second sub-coils 13a.
- the width of the second gap 131 is smaller than the width of the fourth gap 1041.
- the second initial coil 104 is electroplated to form a plurality of second conductive portions 1051b disposed at intervals on the second surface 112.
- the first conductive portion 1021b and the second conductive portion 1051b of the second initial coil 104 together constitute a second sub-coil 13a.
- the plurality of second sub-coils 13a together constitute a second coil 13.
- Part of the space of the fourth gap 1041 of the second initial coil 104 is filled by the second conductive layer 105b of the second coil 13.
- the remaining space after the fourth gap 1041 of the second initial coil 104 is filled forms the second gap 131 of the second coil 13.
- the second conductive portion 1051 b of the second sub-coil 13 a may cover the first conductive portion 1021 b and be connected to the second surface 112 .
- the thickness of the first coil 12 and the thickness of the second coil 13 may both be greater than 50 microns.
- the thickness of the first coil 12 and the thickness of the second coil 13 may be equal.
- the thickness of the first coil 12 and the thickness of the second coil 13 may both be 55 microns.
- the depth of the first accommodating space 123 may be 55 microns.
- the electroplating of the first initial coil 103 and the second initial coil 104 may be performed simultaneously or separately.
- S150 forming a covering film on the coil, wherein a portion of the covering film is disposed in the first accommodating space.
- a first covering film 40 is formed on the surface of the first coil 12
- a second covering film 50 is formed on the surface of the second coil 13 .
- Part of the first covering film 40 is disposed in the first accommodating space 123 .
- a first covering film 40 is formed on the surface of the first coil 12.
- the first covering film 40 can connect the surface of the first portion 121 of the first coil 12 away from the substrate 11, the surface of the second portion 122 of the first coil 12 away from the substrate 11, the bottom wall 1231 and the side wall 1232 of the first accommodating space 123.
- a second covering film 50 is formed on the surface of the second coil 13. The second covering film 50 can connect the surface of the second coil 13 away from the substrate 11.
- the materials of the first covering film 40 and the second covering film 50 can both be insulating materials.
- the first covering film 40 can include a two-layer structure, namely a first layer and a second layer (not shown).
- the first layer can connect the surface of the first coil 12 away from the substrate 11.
- the second layer can connect the surface of the first layer away from the first coil 12.
- the material of the first layer can be adhesive (AD).
- the material of the second layer can be polyimide (PI). It can be understood that the specific structure of the second covering film 50 is roughly the same as the structure of the first covering film 40, which will not be repeated here.
- the color of the first covering film 40 and/or the second covering film 50 can be black.
- S160 forming a nanocrystalline layer on the cover film, wherein a portion of the nanocrystalline layer is disposed in the first accommodation space, and the nanocrystalline layer is connected to a surface of the cover film away from the coil.
- the first nanocrystalline layer 20 is formed on the surface of the first cover film 40. A portion of the first nanocrystalline layer 20 fills the first accommodation space 123.
- the first nanocrystalline layer 20 has a first recessed area 21, and the first recessed area 21 forms an opening on the surface of the first nanocrystalline layer 20 away from the first cover film 40.
- the first nanocrystalline layer 20 may be bonded to the surface of the first cover film 40 away from the substrate 11 by means of an adhesive layer. Part of the first nanocrystalline layer 20 may fill the first accommodation space 123 of the first coil 12 .
- the first nanocrystalline layer 20 may also be recessed in a direction toward the first accommodation space 123 of the first coil 12, and form a first recessed area 21.
- the first recessed area 21 forms an opening on the surface of the first nanocrystalline layer 20 away from the first cover film 40.
- the depth of the first recessed area 21 of the first nanocrystalline layer 20 may be substantially the same as the depth of the first accommodation space 123 of the first coil 12.
- the adhesive layer may be a double-sided adhesive tape.
- S170 forming a graphite layer on the nanocrystalline layer.
- the graphite layer is connected to the surface of the nanocrystalline layer away from the cover film.
- a first graphite layer 30 is formed on the surface of the first nanocrystalline layer 20 , wherein the first graphite layer 30 fills the first recessed area 21 .
- the first graphite layer 30 may be connected to the surface of the first nanocrystalline layer 20 away from the first covering film 40 by adhesive bonding and pressing. Part of the first graphite layer 30 may fill the first recessed area 21 of the first nanocrystalline layer 20 .
- the arrangement direction of the first part 121, the first accommodating space 123 and the second part 122 of the first coil 12 in the charging coil module 1 is defined as the X-axis direction
- the thickness direction of the charging coil module 1 is the Y-direction
- a coordinate axis is established.
- the area where the first part 121 of the first coil 12 is located is the X1 area.
- the area where the first accommodating space 123 of the first coil 12 is located is the X2 area.
- the area where the second part 122 of the first coil 12 is located is the X3 area.
- Table 1 The thickness of each part of the charging coil module 1 prepared by the above preparation method in different areas can be shown in Table 1 below:
- the first coil 12 of the charging coil module 1 prepared by the preparation method of this embodiment is provided with a first accommodating space 123 , and the entire charging coil module 1 can be arranged with a narrow pitch.
- the target parameters such as the structure and material of the charging coil module 1 can be input into the electrical simulation software, and the electromagnetic field can be added for monomer simulation to obtain the simulated DC impedance of the charging coil module 1. Then, according to the obtained simulation values, the line spacing of the first coil 12, the line spacing of the second coil 13, the thickness of the first nanocrystalline layer 20, the thickness of the first graphite layer 30, and the size of the first accommodating space 123 in the charging coil module 1 are adjusted so that the charging coil module 1 obtained after the adjustment can meet the design requirements.
- the simulated DC impedance of the charging coil module 1 in this embodiment can be 98.7m ⁇ .
- the DC impedance of the charging coil module 1 that meets the design requirements of 3.49uH inductance and 50W power is less than or equal to 100m ⁇ . In other words, the charging coil module 1 prepared by the preparation method of this application can meet general design requirements.
- the preparation method of the charging coil module 1 of the present embodiment etches out the third gap 1034 of the first initial coil 103 and the fourth gap 1041 of the second initial coil 104 on the basis of the conductive layer 102 obtained after the first electroplating. Then, by the second electroplating, the second conductive portion 1051a is formed on the first conductive portion 1021a of the first coil 12, and the second conductive portion 1051b is formed on the first conductive portion 1021b of the second coil 13, thereby reducing the width of the third gap 1034 and the width of the fourth gap 1041. In this way, the first gap 124 of the first coil 12 and the second gap 131 of the second coil 13 with a narrower width can be obtained.
- the charging coil module 1 of the present embodiment etches out the circuit with a wider line spacing after the first electroplating, and then performs the second electroplating, thereby significantly reducing the line spacing to obtain a charging coil module 1 with a narrow spacing.
- the preparation method of the charging coil module 1 of this embodiment obtains a narrower line spacing of the charging coil module 1 through two electroplatings, and the charging coil module 1 is set with a narrow spacing.
- the charging coil module 1 of this embodiment can reduce the width of the first gap 124 of the first coil 12 and the second gap 131 of the second coil 13 without reducing the volume of the circuit in the first coil 12 and the second coil 13, thereby thinning the thickness of the first coil 12 and/or the second coil 13, so as to thin the overall thickness of the charging coil module 1, which is conducive to realizing the miniaturization setting of the charging coil module 1.
- the metal (such as copper) content per unit area of the charging coil module 1 in this embodiment is higher, and the volume of the wiring in the charging coil module 1 can be larger, thereby reducing the charging loss, which is beneficial to prolonging the time that the charging coil module 1 maintains a 50W peak during the charging process and improving the charging efficiency.
- the first coil 12 of the charging coil module 1 of the present application is provided with a first accommodation space 123, and the entire charging coil module 1 is set with a narrow pitch.
- the DC resistance (Remote Differential Compression, RDC) of the charging coil module 1 of the present application can be the same as the DC resistance of the traditional charging coil module, the power size can be the same, but the overall thickness can be thinner.
- the charging coil module 1 of the present application can reduce the overall thickness of the charging coil module 1 while meeting the power requirements of the traditional charging coil module, thereby realizing the miniaturization of the charging coil module 1.
- the thickness of the charging coil module 1 can be reduced by about 20 to 70 microns. In this way, when the charging coil module 1 of the present application is applied to an electronic device 100 with a relatively tight internal space such as a mobile phone, the overall thickness of the charging coil module 1 can be thinned to better meet the thinning requirements of the electronic device 100.
- the impedance of the charging coil module 1 of this embodiment can be reduced by about 17%.
- the power of the charging coil module 1 e.g., 50W
- the charging loss of the charging coil module 1 of this embodiment is smaller, and the time of maintaining the 50W peak value during charging is increased.
- automated optical inspection can be performed between step S120 and step S130, and between step S130 and step S140 to reduce product defects and thus improve product yield.
- the charging coil module 1 provided with the first covering film 40 and the second covering film 50 may be processed.
- the charging coil module 1 covered with the first covering film 40 and the second covering film 50 may be subjected to operations such as pressing, removing glue residue, sandblasting, gold plating, hot water washing, screen printing, baking screen printing, electrical testing, cutting, and warehousing inspection.
- a copper sheet 15 may be further provided around the first sub-conductive layer 102a (as shown in FIG. 16).
- the copper sheet 15 is spaced apart from the first sub-conductive layer. In this way, the current can be uniformly distributed through the copper sheet 15 in subsequent electroplating.
- the charging coil module 1 in this embodiment can increase the electroplated area by providing the copper sheet 15, thereby uniformizing the current and reducing the current density at the positions where the first coil 12, the second coil 13 and the first accommodating space 123 are formed, so that the electroplating is more uniform, which is beneficial to improving the product yield.
- the copper sheet 15 is only used in the preparation process of the charging coil module 1.
- the prepared charging coil module 1 does not include the copper sheet 15.
- the electroplating parameters in step S140 can also be adjusted to change the electroplating speed and optimize the electroplating lead.
- the electroplating parameters can be current density or electroplating time.
- the current density of the first initial coil 103 and the current density of the second initial coil 104 can be set differently.
- the electroplating density of the first initial coil 103 can be 2.3ADS
- the electroplating density of the second initial coil 104 can be 2.5ADS.
- ADS is the unit of current density, that is, ampere per square decimeter.
- the current density of the second initial coil 104 is lower than the current density of the first initial coil 103. In this way, by reducing the current density of the first initial coil 103, the thickness of the first coil 12 obtained after electroplating is more uniform, which is conducive to improving the product yield.
- the charging coil module 1 in this embodiment adjusts the electroplating parameters of the second electroplating of the first initial coil 103 and the second initial coil 104, thereby reducing the electroplating rate of the first initial coil 103 and the second initial coil 104 during the second electroplating process, making the electroplating more uniform, and making the thickness of the formed first coil 12 and the second coil 13 more uniform, which is beneficial to improving product yield.
- the substrate 101 having a thicker first sub-conductive layer 102a may be electroplated.
- the thickness of the first sub-conductive layer 102a is greater than 30 microns, the thickness of the first sub-conductive layer 102a is thicker.
- the thickness of the first sub-conductive layer 102a may be 50 microns.
- the thickness of the formed conductive layer 102 may be in the range of 50 microns to 60 microns. At this time, the thickness of the conductive layer 102 is thicker.
- the thickness of the conductive layer 102 may be 55 microns.
- the thickness of the second sub-conductive layer 102b formed by electroplating may be thinner. It should be noted that when the thickness of the first sub-conductive layer 102a is thicker, its thickness cannot exceed the thickness of the first coil 12 finally formed.
- the thickness tolerance generated during the preparation process is about ⁇ 5 microns for each 20 microns of the second sub-conductive layer 102b.
- the thickness of the second sub-conductive layer 102b formed during the electroplating process can be reduced, thereby controlling the thickness tolerance of the second sub-conductive layer 102b within a smaller range (e.g., ⁇ 5 microns), so that the thickness of the conductive layer 102 of the first coil 12 formed is more uniform.
- the thickness of the second sub-conductive layer 102b that needs to be formed by electroplating is reduced, which is conducive to reducing the electroplating cost.
- the thickness of the second sub-conductive layer 102b formed can be appropriately increased. At this time, the thickness of the conductive layer 102 also increases accordingly. Exemplarily, after electroplating the substrate 101 with a thinner thickness of the first sub-conductive layer 102a, the thickness of the conductive layer 102 formed can be between 35 microns and 45 microns. At this time, the thickness of the second sub-conductive layer 102b is thicker.
- the thickness of the second sub-conductive layer 102b by increasing the thickness of the second sub-conductive layer 102b, the thickness of the second conductive portion 1051a of the first coil 12 and the thickness of the second conductive portion 1051b of the second coil 13 required to be formed after the second electroplating can be reduced.
- the thickness tolerance generated during the preparation process is about ⁇ 8 microns for each 20 microns of metal.
- the thickness error generated during the second electroplating process can be effectively reduced by directly electroplating the thicker conductive layer 102 for the second time, so that the thickness of the second conductive portion 1051a of the first coil 12 formed is more uniform.
- step S150 other electrical components may be arranged in the charging coil module 1 by using surface mount technology (SMT).
- SMT surface mount technology
- the substrate 101 when mounting the substrate 101 of the charging coil module 1, the substrate 101 may be clamped by a magnetic clamp to distribute the heat. This can reduce the risk of blistering when forming the first cover film 40 and the second cover film 50, and improve the product yield.
- any end of the substrate 101 can be placed on the guide plate to pass the washing section.
- the risk of wrinkles or creases during the washing process can be effectively reduced, which is conducive to improving the product yield.
- first accommodation space 123 of the first coil 12 in the charging coil module 1 is completely hollowed out.
- the position of the first accommodation space 123 and the arrangement of the first nanocrystalline layer 20 and the first graphite layer 30 are not limited to the above structure.
- the structure of the first accommodation space 123 in other embodiments will be specifically introduced below in conjunction with the accompanying drawings.
- Fig. 17 is a partial cross-sectional view of another embodiment of the charging coil module 1 shown in Fig. 8.
- Fig. 18 is a partial cross-sectional view of another embodiment of the charging coil module 1 shown in Fig. 8.
- the structure of the charging coil module 1 in this embodiment is substantially the same as that of the charging coil module 1 shown in FIG4 , and the similarities are not repeated here.
- the difference is that the first nanocrystalline layer 20 may not be recessed into the first accommodation space 123 of the first coil 12, that is, the first nanocrystalline layer 20 may not include the first recessed area 21.
- the cross-sectional shape of the first nanocrystalline layer 20 is substantially a "convex" shape.
- the charging coil module 1 in this embodiment can fill a portion of the first nanocrystalline layer 20 in the first accommodating space 123, thereby thinning the thickness of the first nanocrystalline layer 20, thereby achieving thinning of the overall thickness of the charging coil module 1, which is beneficial to the miniaturization of the charging coil module 1.
- the charging coil module 1 in this embodiment can use the space of the first accommodating space 123 to fill more nanocrystals.
- the volume of the first nanocrystal layer 20 in this embodiment is larger, which is beneficial to reduce magnetic loss and improve the charging power of the charging coil module 1.
- the first graphite layer 30 may have a second recessed area 31 (as shown in FIG. 18). The second recessed area 31 forms an opening on the surface of the first graphite layer 30 facing the first nanocrystal layer 20. A portion of the first nanocrystal layer 20 may be provided in the second recessed area 31. In this way, the volume of the first nanocrystal can be larger, and the efficiency of reducing magnetic loss can be higher.
- Fig. 19 is a partial cross-sectional view of another embodiment of the charging coil module 1 shown in Fig. 8.
- Fig. 20 is a schematic structural diagram of the first coil 12 of the charging coil module 1 shown in Fig. 19.
- the structure of the charging coil module 1 in this embodiment is roughly the same as that of the charging coil module 1 shown in Figure 8, and the similarities are not repeated.
- the difference is that the first coil 12 may not include the second part 122, but only include the first part 121 and the first accommodating space 123. At this time, the first part 121 and the first accommodating space 123 can be arranged side by side.
- the volume of the first accommodating space 123 in this embodiment is larger, that is, the available space of the charging coil module 1 is larger, so that the charging coil module 1 can use the first accommodating space 123 to fill more nanocrystals and/or graphite sheets, thereby increasing the volume of the first nanocrystal layer 20 and/or increasing the volume of the first graphite layer 30, which is beneficial to improve the charging power of the charging coil module 1.
- FIG. 21 is a partial cross-sectional view of the charging coil module 1 shown in FIG. 8 in another embodiment.
- the structure of the charging coil module 1 in this embodiment is substantially the same as that of the charging coil module 1 shown in FIG. 8 , and the similarities are not repeated here.
- the charging coil module 1 may also include a second nanocrystalline layer 60 and a second graphite layer 70.
- the second nanocrystalline layer 60 may be bonded to the surface of the second cover film 50 away from the second coil 13 by a glue layer.
- the second graphite layer 70 may be connected to the surface of the second nanocrystalline layer 60 away from the second cover film 50 by adhesive bonding and pressing.
- the second nanocrystalline layer 60 and the second graphite layer 70 are stacked on the second cover film 50 in sequence. In this way, by providing the second nanocrystalline layer 60 and the second graphite layer 70, the volume of nanocrystals and graphite in the charging coil module 1 is increased, and the charging power of the charging coil module 1 is effectively improved.
- FIG. 22 is a partial cross-sectional view of the charging coil module 1 shown in FIG. 8 in another embodiment.
- the structure of the charging coil module 1 in this embodiment is roughly the same as that of the charging coil module 1 shown in Figure 8, and the similarities are not repeated here.
- the difference is that the first accommodating space 123 of the first coil 12 in this embodiment can also retain a partial coil structure.
- the thickness of the partial coil structure in the first accommodating space 123 can be less than the thickness of the first part 121 of the first coil 12.
- the first accommodating space 123 of the first coil 12 is not completely hollow.
- the first accommodating space 123 is a groove.
- the surface of the partial coil structure exposed inside the first accommodating space 123 constitutes the bottom wall 1231 of the first accommodating space 123.
- the first accommodating space 123 of the charging coil module 1 in this embodiment also includes a partial coil structure, that is, the first accommodating space 123 is not completely hollowed out, thereby increasing the volume of the wiring in the first coil 12, the metal content (such as copper) per unit area in the first coil 12 is higher, and the charging efficiency of the charging coil module 1 is higher.
- the wiring of the first coil 12 in this embodiment can be designed as a series wiring, which has lower wiring loss and is conducive to improving the service life of the product.
- FIG. 23 is a schematic diagram of the preparation process of the charging coil module 1 shown in FIG. 22 .
- the preparation process of the charging coil module 1 in this embodiment may include the following steps 1 to 9:
- Step 1 Prepare the substrate.
- Step 2 electroplating a second sub-conductive layer on the first sub-conductive layer of the substrate to form a conductive layer.
- step 1 to step 2 in this embodiment are substantially the same as step S110 to step S120 , and details can be found in FIGS. 10 to 11 , and similarities will not be repeated here.
- Step 3 Etching the conductive layer to form an initial coil.
- Step 4 Cover a portion of the surface of the initial coil with a mask.
- Step 5 Electroplating the second conductive portion on each turn exposed on the initial coil to form a coil, wherein the distance between two adjacent turns in the coil is the line spacing of the coil.
- Step six remove the mask to form a first accommodating space for the coil.
- FIG. 23 schematically illustrates the preparation process of the partial structure at E shown in FIG. 22 .
- the preparation processes of steps 4 to 5 in this embodiment are substantially the same as those of steps S130 to S140, and the same parts are not repeated here.
- the difference is that the first accommodating space 123 of the first coil 12 in this embodiment is not completely hollowed out, and its formation method is different.
- the etching space 1033 may not be formed.
- the surface of a portion of the wiring of the first initial coil 103 may be covered with a mask (i.e., step four).
- the mask may cover a portion of the wiring located in the middle of the first initial coil 103.
- the second conductive portion 1051a is electroplated for each exposed turn of the first initial coil 103 (i.e., the first conductive portion 1021a) to form the first coil 12.
- the second conductive portion 1051b is electroplated for each turn of the second initial coil 104 (i.e., the first conductive portion 1021b) to form the second coil 13 (i.e., step five).
- the mask covering the surface of the first initial coil 103 is removed (i.e., step six).
- the space enclosed by the surface of the portion of the first initial coil 103 exposed after removing the mask and the inner side surface of the first coil 12 is the first accommodation space 123 of the first coil 12.
- the surface of the portion of the first initial coil 103 exposed inside the first accommodation space 123 constitutes the bottom wall 1231 of the first accommodation space 123.
- the depth of the first accommodating space 123 may be 45 microns.
- Step 7 forming a covering film on the coil.
- a portion of the covering film is connected to the surface of the coil away from the substrate, and another portion of the covering film is disposed in the first accommodation space.
- the surface of the first coil 12 is covered with a first covering film 40
- the surface of the second coil 13 is covered with a second covering film 50.
- Part of the first covering film 40 is disposed in the first accommodation space 123.
- Step 8 forming a nanocrystalline layer on the cover film.
- the nanocrystalline layer connects the surface of the cover film away from the coil.
- the first nanocrystalline layer 20 is formed on the surface of the first cover film 40. A portion of the first nanocrystalline layer 20 fills the first accommodation space 123.
- the first nanocrystalline layer 20 has a first recessed area 21, and the first recessed area 21 forms an opening on the surface of the first nanocrystalline layer 20 away from the first cover film 40.
- Step nine forming a graphite layer on the nanocrystalline layer.
- a first graphite layer 30 is formed on the surface of the first nanocrystalline layer 20 , wherein the first graphite layer 30 fills the first recessed area 21 .
- steps 7 to 9 in this embodiment are substantially the same as steps S150 to S170, and the same parts are not repeated.
- the specific configuration of the first nanocrystalline layer 20 and the first graphite layer 30 can also refer to the configuration shown in FIG17 , FIG18 and FIG19 .
- automatic optical inspection may be performed between step three and step four, and between step six and step seven, to reduce product defects and thus improve product yield.
- the charging coil module 1 covered with the first cover film 40 and the second cover film 50 may be processed.
- the charging coil module 1 covered with the first cover film 40 and the second cover film 50 may be pressed, desmeared, sandblasted, electroplated, washed with hot water, screen printed, baked, tested, cut, inspected, etc.
- FIG. 24 is a partial cross-sectional view of the charging coil module 1 shown in FIG. 22 in another embodiment.
- the structure of the charging coil module 1 in this embodiment is substantially the same as that of the charging coil module 1 shown in FIG. 22 , and the similarities are not repeated here.
- the charging coil module 1 may also include a second nanocrystalline layer 60 and a second graphite layer 70.
- the second nanocrystalline layer 60 may be bonded to the surface of the second covering film 50 away from the charging coil module 1 through an adhesive layer.
- the second graphite layer 70 may be connected to the surface of the second nanocrystalline layer 60 away from the second covering film 50 by adhesive bonding and pressing. In this way, by providing the second nanocrystalline layer 60 and the second graphite layer 70, the volume of nanocrystals and graphite in the charging coil module 1 is increased, and the charging power of the charging coil module 1 is effectively improved.
- FIG. 25 is a partial cross-sectional view of the charging coil module 1 shown in FIG. 22 in another embodiment.
- the structure of the charging coil module 1 in this embodiment is roughly the same as that of the charging coil module 1 shown in Figure 24, and the similarities are not repeated here.
- the difference is that the second coil 13 can have a second accommodating space 134.
- the second accommodating space 134 of the second coil 13 can be incompletely hollowed out.
- the second accommodating space 134 is a groove.
- the second sub-coils 13a in the second coil 13 can be electrically connected in series.
- the second accommodating space 134 of the second coil 13 can be connected to the coil through hole 14 (please refer to Figure 4).
- the second accommodating space 134 of the second coil 13 may not be connected to the coil through hole 14.
- a portion of the second nanocrystalline layer 60 may be disposed in the second accommodation space 134 of the second coil 13.
- the second nanocrystalline layer 60 may be recessed in the direction of the second accommodation space 134 of the second coil 13 to form a third recessed area 61 of the second nanocrystalline layer 60. That is, the third recessed area 61 forms an opening on the surface of the second nanocrystalline layer 60 away from the second covering film 50.
- a portion of the second graphite layer 70 may be connected to the surface of the second nanocrystalline layer 60 away from the second coil 13.
- Another portion of the second graphite layer 70 may be disposed in the third recessed area 61 of the second nanocrystalline layer 60.
- the cross-sectional shape of the second graphite layer 70 is roughly "convex".
- the specific arrangement of the second nanocrystalline layer 60 and the second graphite layer 70 may also refer to the arrangement of the first nanocrystalline layer 20 and the first graphite layer 30 shown in Figures 8, 17, 18 and 19.
- the charging coil module 1 in this embodiment simultaneously sets a first accommodating space 123 for the first coil 12 in the first coil 12 and a second accommodating space 134 for the second coil 13 in the second coil 13, so that the charging coil module 1 can have more usable space, so that more nanocrystals and/or graphite sheets can be set, which is beneficial to improving the charging efficiency of the charging coil module 1.
- first accommodating space 123 of the first coil 12 and the second accommodating space 134 of the second coil 13 may be symmetrically arranged relative to the substrate 11. In other embodiments, the first accommodating space 123 of the first coil 12 and the second accommodating space 134 of the second coil 13 may also be staggered relative to the substrate 11.
- FIG. 26 is a partial cross-sectional view of the charging coil module 1 shown in FIG. 22 in another embodiment.
- the structure of the charging coil module 1 in this embodiment is substantially the same as that of the charging coil module 1 shown in FIG. 25 , and the similarities are not repeated here.
- the difference is that the second accommodation space 134 of the second coil 13 in this embodiment can be completely hollowed out.
- the second accommodation space 134 is a through hole.
- the charging coil module 1 can be filled with more nanocrystals and/or graphite sheets through the second accommodation space 134 of the second coil 13, thereby improving the charging efficiency of the charging coil module 10.
- FIG. 27 is a partial cross-sectional view of the charging coil module 1 shown in FIG. 22 in another embodiment.
- the structure of the charging coil module 1 in this embodiment is substantially the same as that of the charging coil module 1 in FIG26 , and the similarities are not repeated here.
- the difference is that the first accommodation space 123 of the first coil 12 and the second accommodation space 134 of the second coil 13 in this embodiment are completely hollow.
- first accommodating space 123 of the first coil 12 and the second accommodating space 134 of the second coil 13 may be staggered relative to the substrate 11.
- first accommodating space 123 of the first coil 12 and the second accommodating space 134 of the second coil 13 may be symmetrically arranged relative to the substrate 11.
- Fig. 28 is a partial cross-sectional view of another embodiment of the charging coil module 1 shown in Fig. 8.
- Fig. 29 is a top view of a partial structure of the charging coil module 1 shown in Fig. 28.
- the structure of the charging coil module 1 in this embodiment is substantially the same as that of the charging coil module 1 in FIG. 8 , and the similarities are not repeated here.
- the difference is that the substrate 11 in this embodiment is provided with a substrate through hole 113.
- the second coil 13 includes a second accommodation space 134.
- the first accommodation space 123 of the first coil 12 and the second accommodation space 134 of the second coil 13 are both completely hollowed out.
- the hole 113 can connect the first accommodation space 123 of the first coil 12 and the second accommodation space 134 of the second coil 13.
- the first accommodation space 123 of the first coil 12, the substrate through hole 113 and the second accommodation space 134 of the second coil 13 together constitute the first through hole 80 of the charging coil module 1.
- the first through hole 80 may not be connected to the coil through hole 14, that is, the first through hole 80 is spaced apart from the coil through hole 14. In other embodiments, the first through hole 80 may also be connected to the coil through hole 14.
- the charging coil module 1 may further include a magnetic member 90.
- the magnetic member 90 may be a magnet.
- the magnetic member 90 may be located in the first through hole 80 and connected to the first nanocrystalline layer 20.
- the first nanocrystalline layer 20 may be connected to the surface of the first cover film 40 away from the first coil 12, and the surface of the magnetic member 90 exposed from the first cover film 40.
- the first graphite layer 30 may be connected to the surface of the first nanocrystalline layer 20 away from the first cover film 40.
- the number of the first through holes 80 may be two. At this time, the number of the first accommodating space 123 of the first coil 12, the second accommodating space 134 of the second coil 13, and the substrate through hole 113 is also two.
- the charging coil module 1 in this embodiment can be prepared by the preparation method in the above embodiment. The thickness of each part of the prepared charging coil module 1 in different areas can be as shown in Table 3 below:
- the charging coil module 1 in this embodiment is provided with a substrate through hole 113 to connect the first accommodating space 123 of the first coil 12 and the second accommodating space 134 of the second coil 13, thereby forming a first through hole 80.
- a magnetic member 90 is provided inside the first through hole 80. In this way, when the charging coil module 1 in this embodiment is applied to the electronic device 100, the magnetic member 90 provided inside the charging coil module 1 can be used to achieve accurate positioning with the wireless charger, so as to improve the charging efficiency.
- the charging coil module 1 may not include the substrate through hole 113 .
- the magnetic member 90 may be disposed in the first accommodation space 123 and/or the second accommodation space 134 .
- FIG30 is a partial cross-sectional view of the charging coil module 1 shown in FIG28 in another embodiment.
- the structure of the charging coil module 1 in this embodiment is substantially the same as that of the charging coil module 1 shown in FIG28 , and the same parts are not repeated here.
- the difference is that the magnetic member 90 in this embodiment only fills part of the space of the first through hole 80 .
- the magnetic member 90 can fill part of the space of the first through hole 80 away from the first nanocrystal layer 20. At this time, a part of the first nanocrystal layer 20 can fill the remaining space of the first through hole 80.
- this embodiment simultaneously arranges the magnetic member 90 and the nanocrystals inside the first through hole 80, so that when the charging coil module 1 is applied to the electronic device 100, it can not only achieve accurate positioning with the wireless charger, but also reduce magnetic loss, which is conducive to improving the charging power.
- FIG31 is a partial cross-sectional view of the charging coil module 1 shown in FIG28 in another embodiment.
- the structure of the charging coil module 1 in this embodiment is substantially the same as the structure of the charging coil module 1 shown in FIG28 , and the same parts are not repeated. The difference is that the charging coil module 1 in this embodiment does not include the magnetic member 90. A portion of the first nanocrystalline layer 20 may completely fill the first through hole 80.
- the charging coil module 1 of this embodiment can provide the first through hole 80, so that the charging coil module 1 has more available space to fill more nanocrystals to reduce magnetic loss.
- the thickness of the first nanocrystal layer 20 of the charging coil module 1 in this embodiment is thinner, and the overall thickness of the charging coil module 1 is thinner, which is more conducive to realizing the miniaturization of the charging coil module 1.
- FIG32 is a partial cross-sectional view of the charging coil module 1 shown in FIG28 in another embodiment.
- the structure of the charging coil module 1 in this embodiment is substantially the same as that of the charging coil module 1 shown in FIG28 , and the same parts are not repeated.
- the charging coil module 1 in this embodiment may further include a second nanocrystalline layer 60 and a second graphite layer 70 .
- the second nanocrystal layer 60 may connect the surface of the second cover film 50 away from the second coil 13, and the surface of the magnetic member 90 exposed from the second cover film 50.
- the second graphite layer 70 connects the surface of the second nanocrystal layer 60 away from the second coil 13. In this way, by providing the second nanocrystal layer 60 and the second graphite layer 70, the volume of nanocrystals and graphite in the charging coil module 1 is increased, and the charging efficiency of the charging coil module 1 is effectively improved.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Power Engineering (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
Abstract
本申请提供一种充电线圈模组及其相关产品、充电线圈模组的制备方法。充电线圈模组包括基材以及第一线圈。基材包括第一面。第一线圈设置于第一面上。第一线圈的匝数大于或者等于2。第一线圈中的相邻两匝之间的距离在40微米至100微米的范围内。本申请的充电线圈模组可以实现窄间距设置,通过缩小第一线圈中的相邻两匝之间的距离,实现充电线圈模组的小型化设置。
Description
本申请要求于2022年09月29日提交中国专利局、申请号为202211202964.5、申请名称为“充电线圈模组及其相关产品、充电线圈模组的制备方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本申请涉及无线充电领域,特别涉及一种充电线圈模组及其相关产品、充电线圈模组的制备方法。
目前,随着智能机功能的增多,智能机内部的功能器件也随之增多,从而导致整机中的可利用空间也逐步减少。如何通过缩小充电线圈模组的尺寸,从而释放智能机内部更多的可利用空间成为研究方向。
发明内容
本申请实施例提供一种充电线圈模组、包括所述充电线圈模组的相关产品以及包括所述充电线圈模组的制备方法,旨在获得一种尺寸较小的充电线圈模组,以及包括该充电线圈模组的相关产品。
第一方面,提供了一种充电线圈模组。充电线圈模组包括基材以及第一线圈。基材包括第一面。第一线圈设置于第一面上。第一线圈的匝数大于或者等于2。第一线圈中的相邻两匝之间的距离在40微米至100微米的范围内。
可以理解的是,本申请的充电线圈模组的第一线圈中的相邻两匝之间的距离在40微米至100微米范围之间,第一线圈可以实现窄间距设置,也即充电线圈模组可以实现窄间距设置。在尺寸相同的条件下,相较于没有实现窄间距设置的充电线圈模组,本申请的充电线圈模组的单位面积内的金属含量更高,从而有效减小充电损耗,有利于延长充电线圈模组在充电过程中维持50W峰值的时间,提高充电效率。
此外,在充电线圈模组的外径相同的条件下,相较于没有实现窄间距设置的充电线圈模组,本申请的充电线圈模组可以在不减小第一线圈中走线的体积的情况下,减小相邻两匝之间的距离,从而减薄第一线圈的厚度,以减薄整个充电线圈模组的厚度。换言之,本申请的充电线圈模组可以通过缩小第一线圈中的相邻两匝之间的距离,实现充电线圈模组的小型化设置。
一种可能的实现方式中,第一线圈中的每一匝包括第一导电部以及第二导电部。第一导电部设置于第一面上。第二导电部覆盖在第一导电部上。这样,第二导电部覆盖在第一导电部上,可以缩小第一线圈中相邻的两匝之间的距离,有利于实现充电线圈模组的窄间距设置。
一种可能的实现方式中,通过电镀工艺在第一导电部上形成第二导电部。其中,电镀工艺为引线电镀。
一种可能的实现方式中,第一导电部的厚度在10微米至60微米的范围内。这样,第一导电部的厚度较薄。第一线圈中的相邻两匝之间的距离容易做得更窄,有利于实现充电线圈模组的窄间距设置。
一种可能的实现方式中,第一线圈的厚度大于50微米。可以理解的是,当第一线圈的厚度大于50微米时,第一线圈的厚度较厚。此时,相较于传统的充电线圈模组直接形成厚度较厚的第一导电部,以形成第一线圈,本申请通过在第一导电部上覆盖第二导电部,使得第一线圈中的相邻两匝之间的距离可以做得更小,有利于实现充电线圈模组的窄间距设置。
一种可能的实现方式中,基材包括第二面。第二面与第一面相背设置。充电线圈模组还包括第二线圈。第二线圈设于第二面。第二线圈的匝数大于或者等于2。第二线圈中的相邻两匝之间的距离在40微米至100微米的范围内。
可以理解的是,通过设置第二线圈可以增大充电线圈模组中的金属体积,从而提高充电线圈模组的充电效率。同时,第二线圈也为窄间距设置。这样,第一线圈与第二线圈均为窄间距设置,也即充电线圈模组为窄间距设置。在尺寸相同的条件下,相较于没有实现窄间距设置的充电线圈模组,本申请的充电线圈模组的单位面积内的金属含量更高,从而有效减小充电损耗,有利于延长充电线圈模组在充电过程中维持50W峰值的时间,提高充电效率。
此外,在充电线圈模组的外径相同的条件下,相较于没有实现窄间距设置的充电线圈模组,本申请的充电线圈模组可以在不减小第一线圈以及第二线圈中走线的体积的情况下,减小相邻两个第一子线圈之间的距离以及相邻两个第二子线圈之间的距离,从而减薄第一线圈以及第二线圈的厚度。换言之,本申请的充电线圈模组可以通过缩小第一线圈以及第二线圈中的相邻两匝之间的距离,实现充电线圈模组的小型化设置。
一种可能的实现方式中,充电线圈模组还包括第一覆盖膜、第一纳米晶层以及第一石墨层。第一覆盖
膜设于第一线圈远离基材的一侧。第一纳米晶层与第一石墨层依次堆叠于第一覆盖膜。第一线圈具有第一容置空间。第一容置空间为凹槽或者通孔。第一覆盖膜的一部分设于第一容置空间。第一纳米晶层的一部分设于第一容置空间内。
可以理解的是,当充电线圈模组中的第一纳米晶层与第一石墨层的体积保持不变时,相较于第一线圈没有设置第一容置空间的充电线圈模组,本申请中的充电线圈模组可以通过第一容置空间填充一部分第一纳米晶层,从而减薄第一纳米晶层的厚度,实现充电线圈模组的整体厚度减薄,有利于充电线圈模组的实现小型化设置。
当充电线圈模组的体积保持不变时,相较于第一线圈没有设置第一容置空间的充电线圈模组,本申请的充电线圈模组可以利用第一容置空间的空间填充更多的纳米晶,增大第一纳米晶层的体积,从而减小充电线圈模组的磁损,有利于提升充电线圈模组的快充性能。或者,充电线圈模组可以通过第一容置空间填充更多的石墨片,增大第一石墨层的体积,有利于提升充电线圈模组的散热效率。
一种可能的实现方式中,第一纳米晶层设有第一凹陷区。第一石墨层的一部分设于第一凹陷区。这样,当充电线圈模组中的第一纳米晶层与第一石墨层的体积保持不变时,相较于第一线圈没有设置第一容置空间,第一纳米晶层没有设置第一凹陷区的充电线圈模组,本申请中的充电线圈模组可以通过第一容置空间填充一部分第一纳米晶层,同时在第一凹陷区填充一部分第一石墨层,从而减薄第一石墨层的厚度,实现充电线圈模组的整体厚度减薄,有利于充电线圈模组的实现小型化设置。
当充电线圈模组中的第一纳米晶层与第一石墨层的厚度不变时,相较于第一线圈没有设置第一容置空间,第一纳米晶层没有设置第一凹陷区的充电线圈模组,本申请的充电线圈模组可以利用第一容置空间的空间填充第一纳米晶层的一部分,同时利用第一凹陷区填充更多的石墨片,增大第一石墨层的体积,从而提高充电线圈模组的散热能力,有利于提升充电线圈模组的充电功率。
一种可能的实现方式中,第一石墨层设有第二凹陷区。第一纳米晶层的一部分设于第二凹陷区。这样,充电线圈模组内可以填充更多的纳米晶,充电线圈模组减小磁损的效率更高。
一种可能的实现方式中,第一线圈围出第一空心区域。第一容置空间与第一空心区域间隔设置。或者第一容置空间与第一空心区域连通。这样,当第一容置空间与第一空心区域连通时,第一容置空间还可以利用第一空心区域的空间以填充更多的纳米晶或者进一步减薄第一纳米晶层或者第一石墨层的厚度。
一种可能的实现方式中,第一线圈包括分开设置的第一部分和第二部分。第一容置空间位于第一部分与第二部分之间。或者,第一线圈包括第一部分。第一容置空间位于第一部分的一侧。
一种可能的实现方式中,第一线圈具有第一容置空间。第一容置空间为凹槽或者通孔。充电线圈模组包括磁性件。磁性件设置于第一容置空间内。这样,通过在第一容置空间内设置磁性件,使得充电线圈模组应用于电子设备中时,可以实现与充电器的准确定位,从而提高充电效率。
一种可能的实现方式中,充电线圈模组还包括第二覆盖膜、第二纳米晶层以及第二石墨层。第二覆盖膜设于第二线圈远离基材的一侧。第二纳米晶层与第二石墨层依次堆叠于第二覆盖膜。第二线圈具有第二容置空间。第二容置空间为凹槽或者通孔。第二覆盖膜的一部分设于第二容置空间。第二纳米晶层的一部分设于第二容置空间内。可以理解的是,通过设置第二覆盖膜可以避免第二线圈内的走线出现短路现象。同时,设置第二纳米晶层可以减小充电线圈模组的磁损,提高充电线圈模组的快充能力。另外,设置第二石墨层可以提高充电线圈模组的散热能力。
第二方面,提供了一种电子设备。电子设备包括电池以及上述的充电线圈模组。充电线圈模组用于对电池充电。可以理解的是,本申请的电子设备中的充电线圈模组为窄间距设置,在充电线圈模组的尺寸相同的条件下,本申请的充电线圈模组的单位面积内的金属含量更高,从而有效减小充电损耗,有利于延长充电线圈模组在充电过程中维持50W峰值的时间,提高充电效率。换言之,本申请的电子设备充电效率更高。此外,在充电线圈模组的外径相同的条件下,本申请的充电线圈模组的厚度可以更薄,从而更好地满足电子设备的薄型化需求。
第三方面,提供了一种充电器。充电器包括外壳上述的充电线圈模组。充电线圈模组设于外壳。可以理解的是,本申请的充电器中的充电线圈模组为窄间距设置,在充电线圈模组的尺寸相同的条件下,本申请的充电线圈模组的单位面积内的金属含量更高,从而有效减小充电损耗,有利于延长充电线圈模组在充电过程中维持50W峰值的时间,提高充电效率。换言之,本申请的充电器充电效率更高。此外,在充电线圈模组的外径相同的条件下,本申请的充电线圈模组的厚度可以更薄,从而更好地满足充电器的薄型化需求。
第四方面,提供了一种充电系统。充电系统包括电子设备以及充电器。电子设备与充电器中的至少一
者包括上述的充电线圈模组。充电器用于对电子设备充电。这样,当充电系统中的电子设备与充电器中的至少一者具备窄间距设置的充电线圈模组时,充电系统的工作效率更高。
第五方面,提供了一种充电线圈模组的制备方法。充电线圈模组的制备方法包括:蚀刻基板的导电层,以形成第一初始线圈;对第一初始线圈上的每一匝电镀第二导电部,以形成第一线圈。其中,第一线圈中的相邻两匝之间的距离在40微米至100微米的范围内。
可以理解的是,通过本申请的制备方法制备的充电线圈模组能够实现窄间距设置,有利于提高充电线圈模组的充电效率,或者实现整个充电线圈模组的小型化设置。
一种可能的实现方式中,蚀刻基板的导电层的步骤之前,方法还包括:在基板的第一子导电层电镀第二子导电层,以形成导电层。这样,即可通过电镀形成具有一定厚度的导电层,以便于后续步骤的制备。
一种可能的实现方式中,蚀刻基板的导电层的步骤中,方法还包括:蚀刻基板的导电层,以形成第一初始线圈与蚀刻空间;
对第一初始线圈上的每一匝电镀第二导电部的步骤中,方法还包括:对第一初始线圈上的每一匝电镀第二导电部,以形成第一线圈。其中,位于蚀刻空间内的第二导电部围成第一容置空间;对第一初始线圈上的每一匝电镀第二导电部的步骤之后,方法还包括:在第一线圈的表面形成第一覆盖膜,第一覆盖膜的一部分设于第一容置空间;在第一覆盖膜的表面形成第一纳米晶层,第一纳米晶层的一部分设于第一容置空间内;在第一纳米晶层的表面形成第一石墨层。这样,通过在第一线圈中设置第一容置空间,使得充电线圈模组可以具有更多的可利用空间(即第一容置空间的空间)。
为了更清楚地说明本申请实施例或背景技术中的技术方案,下面将对本申请实施例或背景技术中所需要使用的附图进行说明。
图1是本申请实施例提供的一种无线充电系统的结构示意图;
图2是本申请实施例提供的一种充电线圈模组在一种实施方式中的结构示意图;
图3是图2所示的充电线圈模组的分解图;
图4是图2所示的充电线圈模组的部分结构示意图;
图5是图4所示的结构在B-B线上的部分剖面图;
图6是图3所示的第二线圈的结构示意图;
图7是图3所示的第一线圈的结构示意图;
图8是图2所示的充电线圈模组在A-A线上的部分剖面图;
图9是图2所示的充电线圈模组的制备过程流程图;
图10至图16是图2所示的充电线圈模组的制备过程示意图;
图17是图8所示的充电线圈模组在其他实施方式中的部分剖面图;
图18是图8所示的充电线圈模组在其他实施方式中的部分剖面图;
图19是图8所示的充电线圈模组在其他实施方式中的部分剖面图;
图20是图19所示的充电线圈模组的第一线圈的结构示意图;
图21是图8所示的充电线圈模组在其他实施方式中的部分剖面图;
图22是图8所示的充电线圈模组在另一种实施方式中的部分剖面图;
图23是图22所示的充电线圈模组的制备过程示意图;
图24是图22所示的充电线圈模组在其他实施方式中的部分剖面图;
图25是图22所示的充电线圈模组在其他实施方式中的部分剖面图;
图26是图22所示的充电线圈模组在其他实施方式中的部分剖面图;
图27是图22所示的充电线圈模组在其他实施方式中的部分剖面图;
图28是图8所示的充电线圈模组在又一种实施方式中的部分剖面图;
图29是图28所示的充电线圈模组的部分结构的俯视图;
图30是图28所示的充电线圈模组在其他实施方式中的部分剖面图;
图31是图28所示的充电线圈模组在其他实施方式中的部分剖面图;
图32是图28所示的充电线圈模组在其他实施方式中的部分剖面图。
下面结合本申请实施例中的附图对本申请实施例进行描述。
在本申请实施例的描述中,需要说明的是,除非另有明确的规定和限定,术语“连接”应做广义理解,例如,“连接”可以是可拆卸地连接,也可以是不可拆卸地连接;可以是直接连接,也可以通过中间媒介间接连接。本申请实施例中所提到的方位用语,例如,“左”、“右”等,仅是参考附图的方向,因此,使用的方位用语是为了更好、更清楚地说明及理解本申请实施例,而不是指示或暗指所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请实施例的限制。“多个”是指至少两个。
在本申请实施例中,术语“第一”、“第二”、“第三”以及“第四”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”、“第三”以及“第四”的特征可以明示或者隐含地包括一个或者更多个该特征。
在本申请实施例中,“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
在本说明书中描述的参考“一种实施方式”或“一些实施方式”等意味着在本申请的一个或多个实施例中包括结合该实施例描述的特定特征、结构或特点。由此,在本说明书中的不同之处出现的语句“在一些实施方式中”、“在其他实施方式中”等不是必然都参考相同的实施例,而是意味着“一个或多个但不是所有的实施例”,除非是以其他方式另外特别强调。术语“包括”、“具有”及它们的变形都意味着“包括但不限于”,除非是以其他方式另外特别强调。
可以理解的是,此处所描述的具体实施例仅仅用于解释相关发明,而非对该发明的限定。另外还需要说明的是,为了便于描述,附图中仅示出了与发明相关的部分。
图1是本申请实施例提供的一种无线充电系统1000的结构示意图。图2是本申请提供的一种充电线圈模组1在一种实施方式中的结构示意图。
如图1所示,无线充电系统1000可以包括电子设备100及无线充电器200。当无线充电器200插入电源时,无线充电器200可以用于向电子设备100进行无线充电。电子设备100与无线充电器200中的至少一者可以设有本申请提供的充电线圈模组1。其中,电子设备100可以为手机、平板电脑、折叠终端设备或可穿戴设备等具备无线充电功能的其他形态的设备。可穿戴设备可以是智能手环、智能手表、智能眼镜等。图1所示实施例的电子设备100以手机为例进行阐述。
如图1和图2所示,电子设备100可以包括充电线圈模组1、设备壳体2、显示屏3以及电池4。显示屏3可以固定于设备壳体2。显示屏3可以与设备壳体2围出电子设备100的内部空间。充电线圈模组1与电池4可以均位于电子设备100的内部空间。此时,充电线圈模组1可以作为接收端线圈。
需要说明的是,图1仅示意性的给出电子设备100的一些部件,这些部件的实际形状和实际大小不受图1以及下文的各附图所限定。此外,由于充电线圈模组1与电池4均为电子设备100的内部器件,图1通过虚线示意性给出充电线圈模组1与电池4。应理解,当电子设备100为其他形态时,电子设备100也可以不包括显示屏3,或者,电子设备100可以包括多个显示屏3。
如图1和图2所示,充电线圈模组1的形状可以大致呈圆盘形。充电线圈模组1电连接电池4。当电子设备100在充电状态中,充电线圈模组1可以对电池4进行充电。
在一些实施方式中,无线充电器200也可以包括充电线圈模组1。充电线圈模组1可以设于无线充电器200的外壳201。此时,充电线圈模组1可以作为发射端线圈。
图3是图2所示的充电线圈模组1的分解图。
如图3所示,充电线圈模组1可以包括基材11、第一线圈12、第二线圈13、第一纳米晶层20、第一石墨层30、第一覆盖膜40以及第二覆盖膜50。示例性地,第一纳米晶层20的材料可以为纳米晶。第一石墨层30的材料可以为石墨片。基材11的材料可以为绝缘材料。例如,基材11的材料可以为聚酰亚胺(Polyimide,PI)。第一线圈12以及第二线圈13的材料均可以为金属。例如,第一线圈12以及第二线圈13的材料均可以为铜。
图4是图2所示的充电线圈模组1的部分结构示意图。图5是图4所示的结构在B-B线上的部分剖面图。其中,图4示意出了充电线圈模组1的基材11、第一线圈12以及第二线圈13的结构。图4中的剖面线B-B可以经过充电线圈模组1的中心。
如图3至图5所示,基材11可以包括背向设置的第一面111与第二面112。第一线圈12可以设置于基材11的第一面111。第二线圈13可以设置于基材11的第二面112。
如图3和图4所示,充电线圈模组1可以具有线圈通孔14。当充电线圈模组1处于工作状态时,充电
线圈模组1的磁场线可以穿过线圈通孔14。
示例性地,第一线圈12可以围出第一空心区域126。第二线圈13可以围出第二空心区域133。基材11可以围出一个第三空心区域114。第一空心区域126、第二空心区域133以及第三空心区域114之间相互连通,并共同构成线圈通孔14。
图6是图3所示的第二线圈13的结构示意图。
如图6所示,第二线圈13可以通过走线多次环绕形成。第二线圈13的匝数大于或者等于2。第二线圈13包括多个间隔设置的第二子线圈13a。一个第二子线圈13a可以构成第二线圈13的一匝。相邻两个第二子线圈13a之间的间距D2,也即第二线圈13中相邻的两匝之间的距离可以在40微米至100微米范围内。例如,相邻两个第二子线圈13a之间的间距可以为40微米、50微米、60微米、80微米或者100微米。此时,第二线圈13的线间距较窄。第二线圈13可以实现窄间距设置。可以理解的是,相邻两个第二子线圈13a之间可以形成第二间隙131。相邻两个第二子线圈13a之间的间距可以是第二间隙131的最小宽度。示例性地,第二线圈13可以大致呈圆环状。第二线圈13的第二空心区域133的形状可以为圆形。
在一些实施方式中,第二子线圈13a可以由一根走线或者多根走线共同环绕形成。示例性地,当第二子线圈13a由一根走线环绕形成时,相邻两个第二子线圈之间可以首尾相连。此时,第二线圈13中的各第二子线圈13a可以通过串联的方式实现电连接。示例性地,当第二子线圈13a由多根走线共同环绕形成时,多根走线间隔设置。第二子线圈13a的其中一根走线可以与该第二子线圈13a相邻的另一个第二子线圈的走线首尾相连。此时,多个第二子线圈13a之间可以通过第一线圈12实现电连接。需要说明的是,关于多个第二子线圈13a与第一线圈12之间的电连接关系,下文将结合附图进行具体介绍,此处不再赘述。
如图5所示,第二子线圈13a可以包括第二线圈13的第一导电部1021b,以及第二导电部1051b。第二线圈13的第一导电部1021b设于第二面112。第二线圈13的第二导电部1051b可以覆盖第一导电部1021b。此时,第二线圈13的第二导电部1051b的截面形状大致呈“凹”字型。需要说明的是,为了便于理解,后续附图中的部分附图仅示意出了第二子线圈13a的整体,而未示出第二子线圈13a的内部结构。
在一些实施方式中,如图4所示,第二线圈13还可以包括第二引线132。示例性地,第二引线132可以电连接最外圈的第二子线圈。
图7是图3所示的第一线圈12的结构示意图。
如图7所示,第一线圈12具有第一容置空间123。第一容置空间123可以将第一线圈12分成第一部分121和第二部分122。示例性地,第一容置空间123可以位于第一部分121与第二部分122之间。也即第一部分121与第二部分122可以位于第一容置空间123的两侧。在其他实施方式中,第一线圈12还可以不包括第二部分122。此时,第一部分121与第一容置空间123可以并排设置。在其他实施方式中,第一线圈12也可以不设置第一容置空间123。
示例性地,第一线圈12的容置空间123可以连通第一空心区域126。也即,第一容置空间123可以连通线圈通孔14。在其他实施方式中,第一容置空间123也可以不连通第一空心区域126。此时,第一容置空间123与第一空心区域126间隔设置。
需要说明的是,图7通过虚线示意性给出了第一线圈12的第一部分121、第二部分122、第一容置空间123以及空心区域126。图8通过较短虚线示意性给出第一部分121的部分结构以及第二部分122的部分结构。其中,为了便于示出,各虚线所围成的区域稍大于第一部分121、第二部分122以及第一容置空间123。后续附图中通过虚线示意性给出的第一部分121、第二部分122以及第一容置空间123也均稍大于实际的第一部分121、第二部分122以及容置空间123。
如图5和图7所示,第一线圈12的匝数大于或等于2。第一线圈12可以包括多个间隔设置的第一子线圈12a。一个第一子线圈12a可以构成第一线圈12的一匝。相邻两个第一子线圈12a之间的间距D1,也即第一线圈12中的相邻两匝之间的距离可以在40微米至100微米范围内。例如,相邻两个第一子线圈12a之间的间距可以为40微米、50微米、60微米、80微米或者100微米。此时,第一线圈12的线间距较窄。第一线圈12可以实现窄间距设置。可以理解的是,相邻两个第一子线圈12a之间可以形成第一间隙124。相邻两个第一子线圈12a之间的间距可以是第一间隙124的最小宽度。
示例性地,第一线圈12的多个第一间隙124与第二线圈13的多个第二间隙131可以一一对应设置。
示例性地,第一线圈12的线间距与第二线圈13的线间距可以相等。
示例性地,第一线圈12的第一部分121可以包括多个间隔设置的第一线段1212。第二部分122可以包括多个间隔设置的第二线段1222。多个第一线段1212与多个第二线段1222一一对应设置,并构成第一
线圈12的多个第一子线圈12a。例如,第一部分121中最外侧的第一线段1212与第二部分122中最外侧的第二线段1222可以共同构成第一线圈12最外圈的第一子线圈12a。其中,第一线段1212可以由一根走线或者多根走线共同环绕形成。第二线段1222可以由一根走线或者多根走线共同环绕构成。
如图5所示,第一子线圈12a可以包括第一线圈12的第一导电部1021a以及第二导电部1051a。第一线圈12的第一导电部1021a设于第一面111。第一线圈12的第二导电部1051a可以覆盖第一导电部1021a。此时,第一线圈12的第二导电部1051a的截面形状也大致呈“凹”字型。需要说明的是,为了便于理解,后续附图中的部分附图仅示意出了第一子线圈12a的整体,而未示出第一子线圈12a的内部结构。
在一些实施方式中,通过电镀工艺在第一线圈12的第一导电部1021a上形成第二导电部1051a。
示例性地,电镀工艺可以是引线电镀。
图8是图2所示的充电线圈模组1在A-A线上的部分剖面图。
如图8所示,第一容置空间123可以露出部分基材11的第一面111,也即第一容置空间123为完全镂空状态。此时,第一容置空间123为通孔。第一容置空间123内部所露出的部分第一面111构成第一容置空间123的底壁1231。第一容置空间123内部所露出的部分第一线圈12的内侧面构成第一容置空间123的侧壁1232。
示例性地,第一子线圈12a以及第二子线圈13a均可以由多根走线共同环绕形成,且多根走线间隔设置。第二子线圈13a的走线与该第二子线圈13a相邻的另一个第二子线圈13a的走线首尾相连。充电线圈模组1还可以包括多个过孔14。多个过孔14均可以贯穿第一线圈12以及基材11。第一线圈12中的多根走线可以一一对应地通过多个过孔14电连接至第二线圈13的多根走线。此时,第一线段1212内的多根走线之间可以为并联关系。第二线段1222内的多根走线之间可以为并联关系。各第一线段1212可以一一对应地经第二线圈13电连接至各第二线段1222。换言之,多个第一子线圈12a可以通过过孔14电连接至多个第二子线圈13a,从而实现整个充电线圈模组1内部走线之间的电连接。
需要说明的是,关于充电线圈模组1中的第一容置空间123的设置具有多种实施方式,下文将结合附图进行具体说明,此处不再赘述。
在其他实施方式中,第一线圈12也可以不包括第一容置空间123。此时,第一线圈12中的多个第一子线圈12a可以由一根或者多根走线共同环绕形成。示例性地,当第一子线圈12a由一根走线环绕形成时,相邻两个第一子线圈12a之间可以首尾相连。此时,第一线圈12中的各第一子线圈12a可以通过串联实现电连接。
在一些实施方式中,请参阅图6和图7,并结合图4所示,第一线圈12还可以包括第一引线125。第一引线125的一端可以电连接第一线圈12中最外侧的第一子线圈12a。第一引线125的另一端可以电连接第二引线132。这样,充电线圈模组1可以通过第一引线125与第二引线132电连接电子设备100中的其他电气结构(如弹片等结构)。
可以理解的是,充电线圈模组1中的第一线圈12与第二线圈13均可以实现窄间距设置,也即整个充电线圈模组1可以实现窄间距设置。在尺寸相同的条件下,相较于没有实现窄间距设置的充电线圈模组1,本实施方式中的充电线圈模组1单位面积内的金属(例如铜)含量更高,从而有效减小充电损耗,有利于延长充电线圈模组1在充电过程中维持50W峰值的时间,提高充电效率。
此外,在充电线圈模组1的外径相同的条件下,相较于没有实现窄间距设置的充电线圈模组1,本实施方式中的充电线圈模组1可以在不减小第一线圈12与第二线圈13中的走线的体积的情况下,减小第一线圈12的第一间隙124以及第二线圈13的第二间隙131的宽度,从而减薄第一线圈12和/或第二线圈13的厚度,以减薄充电线圈模组1的整体厚度。换言之,本实施方式的充电线圈模组1可以通过缩小第一线圈12中的相邻两匝之间的距离,实现充电线圈模组1的小型化设置。
如图8所示,第一覆盖膜40可以设于第一线圈12远离基材11的一侧。其中,第一线圈12远离基材11一侧的表面可以包括第一部分121远离基材11的表面、第二部分122远离基材11的表面,以及第一容置空间123的底壁1231与侧壁1232。第二覆盖膜50可以设于第二线圈13远离基材11的一侧。第一纳米晶层20中的一部分可以设于第一覆盖膜40远离第一线圈12的一侧。第一纳米晶层20中的另一部分可以设于第一容置空间123内,且连接第一容置空间123的底壁1231与侧壁1232。第一石墨层30可以设于第一纳米晶层20远离第一线圈12的一侧。此时,第一纳米晶层20与第一石墨层30依次堆叠于第一覆盖膜40。
示例性地,第一纳米晶层20中的部分可以沿朝向第一线圈12的第一容置空间123的方向凹陷,并形成第一凹陷区21。也即,第一凹陷区21在第一纳米晶层20远离第一覆盖膜40的表面形成开口。此时,
第一石墨层30中的一部分可以连接第一纳米晶层20远离第一线圈12的表面。第一石墨层30中的另一部分可以设于第一纳米晶层20的第一凹陷区21。此时,第一石墨层30的截面形状大致呈“凸”字型。在其他实施方式中,第一纳米晶层20也可以不形成第一凹陷区21。此时,第一石墨层30仅连接第一纳米晶层20远离第一覆盖膜40的表面。需要说明的是,关于充电线圈模组1中的第一纳米晶层20与第一石墨层30的设置具有多种实施方式,下文将结合附图进行具体说明,此处不再赘述。
当充电线圈模组1中的第一纳米晶层20与第一石墨层30的体积保持不变时,相较于第一线圈12没有设置第一容置空间123的充电线圈模组1,本实施方式中的充电线圈模组1可以通过第一容置空间123填充一部分第一纳米晶层20,且在第一纳米晶层20的第一凹陷区21填充一部分第一石墨层30,从而减薄第一纳米晶层20和/或第一石墨层30的厚度,实现充电线圈模组1的整体厚度减薄,有利于充电线圈模组1的实现小型化设置。
当充电线圈模组1中的第一纳米晶层20与第一石墨层30的厚度不变时,相较于第一线圈12没有设置第一容置空间123的充电线圈模组1,本实施方式中的充电线圈模组1可以利用第一容置空间123的空间填充更多的纳米晶,增大第一纳米晶层20的体积,从而减小充电线圈模组1的磁损,有利于提升充电线圈模组1的快充性能。或者,本实施方式中的充电线圈模组1还可以通过在第一容置空间123填充一部分第一纳米晶层20,然后在第一凹陷区21内填充更多的石墨片,增大第一石墨层30的体积,从而提高充电线圈模组1的散热效率。换言之,本实施方式中的充电线圈模组1通过在第一线圈12中设置第一容置空间123,使得充电线圈模组1可以具有更多的可利用空间(即第一容置空间123的空间)。这样,无论是通过设置第一容置空间123间接增大石墨片(也即第一石墨层30)的体积以提高散热效率,还是通过设置第一容置空间123直接增大纳米晶(也即第一纳米晶层20)的体积以减小磁损,均有利于提高本实施方式中的充电线圈模组1的充电功率。
上文具体介绍了本申请的充电线圈模组1的具体结构,下文将结合附图具体介绍充电线圈模组1的制备过程。
图9是图2所示的充电线圈模组1的制备流程图。图10至图16是图2所示的充电线圈模组1的制备过程示意图。其中,图11示意出了图10所示的结构在D-D线上的剖面图。后续步骤均可以在图11所示结构的基础上进行制备。
充电线圈模组1的制备过程可以包括如图9所示的步骤S110-S170:
S110:制备基板。
示例性地,如图10所示,将电路板300根据设计需求进行切割,以形成基板101(如图10虚线所示),也即充电线圈模组1的电路板。其中,电路板300的绝缘层可以用于形成基板101的基材11。电路板300的底铜可以用于形成基板101的第一子导电层102a。其中,电路板300可以是硬质电路板,也可以为软质电路板,也可以为软硬结合的电路板。需要说明的是,图10虚线示意出了电路板300的切割路径。
示例性地,基板101包括基材11以及设置于基材11的第一子导电层102a。第一子导电层102a的材质可以为铜。示例性地,基材11包括背向设置的第一面111和第二面112。第一面111设置有第一个第一子导电层102a。第二面112设置有第二个第一子导电层102a。
示例性地,基材11两侧表面的第一子导电层102a的厚度可以较薄。其中,当第一子导电层102a的厚度小于30微米时,第一子导电层102a的厚度可以视为较薄。示例性地,第一子导电层102a的厚度可以为18微米。
在其他实施方式中,切割形成基板101之后,还可以对基板101进行前处理、微蚀等操作,以便于后续制备。例如,前处理可以为利用刷轮去除第一子导电层102a表面的污染物,增加第一子导电层102a的表面粗糙度。微蚀可以为利用化学腐蚀,增加第一子导电层102a的表面粗糙度。
S120:在基板的第一子导电层电镀第二子导电层,以形成导电层。
示例性地,如图11所示,通过电镀工艺,在第一个第一子导电层102a上电镀第一个第二子导电层102b,以及在第二个第一子导电层102a上电镀第二个第二子导电层102b。其中,第一个第一子导电层102a与第一个第二子导电层102b共同构成第一个导电层102。第二个第一子导电层102a与第二个第二子导电层102b共同构成第二个导电层102。这样,基板101的导电层102的厚度可以显著增加。可以理解的是,通过增加基板101的导电层102的厚度,有利于后续工艺的操作。
示例性地,第一个导电层102的厚度在10微米至60微米的范围内。此时,导电层102的厚度较薄。例如,第一个导电层102的厚度可以为10微米、20微米、25微米、30微米或者35微米。
S130:蚀刻导电层,以形成初始线圈与蚀刻空间。
示例性地,蚀刻基板101的第一个导电层102形成第一初始线圈103与蚀刻空间1033,蚀刻基板101的第二个导电层102形成第二初始线圈104。
示例性地,如图11和图12所示,图12为图8所示C处的部分结构的制备过程示意图。通过光刻工艺对第一个导电层102进行蚀刻,形成位于第一面111的多个间隔设置的第一导电部1021a。多个位于第一面111的第一导电部1021a共同构成第一初始线圈103。一个第一导电部1021a构成第一初始线圈103的一匝。相邻两个位于第一面111的第一导电部1021a之间形成第一初始线圈103的第三间隙1034。相邻两个位于第一面111的第一导电部1021a之间的间距可以是第三间隙1034的最小宽度。
示例性地,第一初始线圈103的蚀刻空间1033可以将第一初始线圈103分成第一部分1031与第二部分1032。示例性地,蚀刻空间1033可以位于第一初始线圈103的第一部分1031与第二部分1032之间。也即,第一初始线圈103的第一部分1031与第一初始线圈103的第二部分1032可以位于蚀刻空间1033的两侧。在其他实施方式中,第一初始线圈103也可以不包括第二部分1032。此时,第一初始线圈103的第一部分1031与蚀刻空间1033可以并排设置。在其他实施方式中,形成第一初始线圈103时也可以不形成蚀刻空间1033。
示例性地,第一初始线圈103的蚀刻空间1033可以露出部分基材11的第一面111。蚀刻空间1033内部所露出的部分第一面111构成蚀刻空间1033的底壁1033a。
如图11和图12所示,通过光刻工艺对第二个导电层102进行蚀刻,形成位于第二面112的多个间隔设置的第一导电部1021b。多个位于第二面112的第一导电部1021b共同构成第二初始线圈104。一个第一导电部1021b构成第二初始线圈104的一匝。相邻两个位于第二面112的第一导电部1021b之间形成第四间隙1041。相邻两个位于第二面112的第一导电部1021b之间的间距可以为第四间隙1041的最小宽度。示例性地,位于第二面112的第一导电部1021b可以由一根或者多根走线共同环绕构成。
示例性地,多个第一初始线圈103的第三间隙1034与多个第二初始线圈104的第四间隙1041可以一一对应设置。其中,第三间隙1034与第四间隙1041的宽度可以相等。
示例性地,对厚度较薄的第一个导电层102进行蚀刻之后,形成的第一初始线圈103的第三间隙1034的宽度可以在60微米至100微米范围之间。此时,蚀刻得到的第一初始线圈103的第三间隙1034的宽度较窄。示例性地,第三间隙1034的宽度可以为80微米。
示例性地,对厚度较薄的第二个导电层102进行蚀刻之后,形成的第二初始线圈104的第四间隙1041的宽度可以在60微米至100微米范围之间。此时,蚀刻得到的第二初始线圈104的第四间隙1041的宽度较窄。示例性地,第四间隙1041的宽度可以为80微米。
可以理解的是,通过蚀刻第一个导电层102与第二个导电层102,以形成第一初始线圈103的第三间隙1034与第二初始线圈104的第四间隙1041时,所需蚀刻的金属厚度越厚,蚀刻过程中所产生的侧蚀越大,最终形成的间隙(即第一初始线圈103的第三间隙1034与第二初始线圈104的第四间隙1041)的宽度越大。本实施方式中通过蚀刻厚度较薄的导电层102,从而有效减小侧蚀的产生,缩小形成的间隙的宽度,且有利于管控第一初始线圈103、第二初始线圈104以及蚀刻空间1033的蚀刻品质。同时,蚀刻的金属厚度更薄,蚀刻所需要的时间可以更短,有利于提高生产效率。
在其他实施方式中,还可以对厚度较厚的第一个导电层102进行蚀刻。蚀刻之后形成的第三间隙1034的宽度可以在100微米至130微米范围之间。示例性地,第三间隙1034的宽度可以为120微米。
S140:对初始线圈上的每一匝电镀第二导电部,以形成线圈。其中,位于蚀刻空间内的第二导电部围成第一容置空间。线圈中的相邻两匝之间的距离为线圈的线间距。
示例性地,在第一初始线圈103的每一匝(也即第一导电部1021a)上电镀第二导电部1051a,以形成第一线圈12。在第二初始线圈104的每一匝(也即第一导电部1021b)上电镀第二导电部1051b,以形成第二线圈13。示例性地,在第一初始线圈103上的电镀以及在第二初始线圈104上的电镀均可以为引线电镀。示例性地,如图12和图13所示,第一线圈12包括多个环绕且间隔设置的第一子线圈12a。相邻两个第一子线圈12a之间形成第一间隙124。第一间隙124的宽度小于第三间隙1034的宽度。
示例性地,对第一初始线圈103电镀,形成位于第一面111的多个间隔设置的第二导电部1051a。此时,第一初始线圈103的第一导电部1021a与第二导电部1051a构成第一子线圈12a。多个第一子线圈12a共同构成第一线圈12。第一线圈12的内侧面与蚀刻空间1033的底壁1033a所围出的空间构成第一线圈12的第一容置空间123,也即位于蚀刻空间1033内的第二导电部1051a围成第一容置空间123。此时,蚀刻空间1033的部分底壁1033a构成第一容置空间123的底壁1231。第一线圈12的内侧面构成第一容置空间123的侧壁1232。第一初始线圈103的第三间隙1034的部分空间被第一线圈12的第二导电层105a填
充。第一初始线圈103的第三间隙1034被填充之后所剩余的空间形成第一线圈12的第一间隙124。
示例性地,第一子线圈12a的第二导电部1051a可以覆盖第一导电部1021a,并连接第一面111。
示例性地,如图12和图13所示,第二线圈13包括多个环绕且间隔设置的第二子线圈13a。相邻两个第二子线圈13a之间形成第二间隙131。第二间隙131的宽度小于第四间隙1041的宽度。
示例性地,对第二初始线圈104电镀,形成位于第二面112的多个间隔设置的第二导电部1051b。此时,第二初始线圈104的第一导电部1021b与第二导电部1051b共同构成第二子线圈13a。多个第二子线圈13a共同构成第二线圈13。第二初始线圈104的第四间隙1041的部分空间被第二线圈13的第二导电层105b填充。第二初始线圈104的第四间隙1041被填充之后所剩余的空间形成第二线圈13的第二间隙131。
示例性地,第二子线圈13a的第二导电部1051b可以覆盖第一导电部1021b,并连接第二面112。
在一些实施方式中,第一线圈12的厚度与第二线圈13的厚度均可以大于50微米。示例性地,第一线圈12的厚度与第二线圈13的厚度可以相等。第一线圈12的厚度与第二线圈13的厚度可以均为55微米。此时,第一容置空间123的深度可以为55微米。
需要说明的是,对第一初始线圈103以及第二初始线圈104的电镀可以同时进行,也可以分别进行。
S150:在线圈上形成覆盖膜。其中,覆盖膜的一部分设于第一容置空间内。
示例性地,在第一线圈12的表面形成第一覆盖膜40,以及在第二线圈13的表面形成第二覆盖膜50。其中,第一覆盖膜40的一部分设置在第一容置空间123内。
如图14所示,在第一线圈12的表面形成第一覆盖膜40。其中,第一覆盖膜40可以连接第一线圈12的第一部分121远离基材11的表面、第一线圈12的第二部分122远离基材11的表面、第一容置空间123的底壁1231以及侧壁1232。在第二线圈13的表面形成第二覆盖膜50。其中,第二覆盖膜50可以连接第二线圈13远离基材11的表面。
示例性地,第一覆盖膜40与第二覆盖膜50的材质均可以为绝缘材料。第一覆盖膜40可以包括两层结构,分别为第一层与第二层(图未示)。其中,第一层可以连接第一线圈12远离基材11的表面。第二层可以连接第一层远离第一线圈12的表面。示例性地,第一层的材料可以为胶(adhesive,AD)。第二层的材料可以为聚酰亚胺(Polyimide,PI)。可以理解的是,第二覆盖膜50的具体结构与第一覆盖膜40的结构大致相同,此处不再赘述。示例性地,第一覆盖膜40和/或第二覆盖膜50的颜色可以为黑色。
S160:在覆盖膜上形成纳米晶层。其中,纳米晶层的一部分设于第一容置空间内。纳米晶层连接覆盖膜远离线圈的表面。
示例性地,在第一覆盖膜40的表面形成第一纳米晶层20。其中,第一纳米晶层20的一部分填充第一容置空间123。另外,第一纳米晶层20具有第一凹陷区21,第一凹陷区21在第一纳米晶层20远离第一覆盖膜40的表面形成开口。
如图15所示,第一纳米晶层20可以通过胶层粘接于第一覆盖膜40远离基材11的表面。其中,第一纳米晶层20的一部分可以填充第一线圈12的第一容置空间123。
示例性地,第一纳米晶层20还可以沿朝向第一线圈12的第一容置空间123的方向凹陷,并形成第一凹陷区21。换言之,第一凹陷区21在第一纳米晶层20远离第一覆盖膜40的表面形成开口。其中,第一纳米晶层20的第一凹陷区21的深度与第一线圈12的第一容置空间123的深度可以大致相同。
示例性地,胶层可以为双面胶。
S170:在纳米晶层上形成石墨层。石墨层连接在纳米晶层远离覆盖膜的表面。
示例性地,在第一纳米晶层20的表面形成第一石墨层30。其中,第一石墨层30填充第一凹陷区21。
如图8所示,第一石墨层30可以通过胶接压合的方式连接第一纳米晶层20远离第一覆盖膜40的表面。其中,第一石墨层30的一部分可以填充第一纳米晶层20的第一凹陷区21。
为了便于描述,示例性地,定义充电线圈模组1中第一线圈12的第一部分121、第一容置空间123以及第二部分122的排列方向为X轴方向,充电线圈模组1的厚度方向为Y方向,并建立坐标轴。其中,在X轴方向上,第一线圈12的第一部分121所在的区域为X1区域。第一线圈12的第一容置空间123所在的区域为X2区域。第一线圈12的第二部分122所在的区域为X3区域。通过上述制备方法制备得到的充电线圈模组1的各部分结构在不同区域的厚度可以如下表1所示:
表1
通过本实施方式的制备方法制备得到的充电线圈模组1的第一线圈12中设有第一容置空间123,且整个充电线圈模组1可以实现窄间距设置。
需要说明的是,在通过本实施方式的制备方法制备充电线圈模组1之前,可以先将充电线圈模组1的结构、材料等目标参数输入电学仿真软件,同时添加电磁场进行单体仿真,以获得该充电线圈模组1的仿真直流阻抗。然后,根据得到的仿真数值对充电线圈模组1中第一线圈12的线间距、第二线圈13的线间距、第一纳米晶层20的厚度、第一石墨层30的厚度以及第一容置空间123的尺寸进行调整,以使调整之后得到的充电线圈模组1可以满足设计需求。其中,本实施方式中的充电线圈模组1的仿真直流阻抗可以为98.7mΩ。而满足3.49uH电感,50W功率设计需求的充电线圈模组1的直流阻抗小于或者等于100mΩ。换言之,通过本申请的制备方法制备得到的充电线圈模组1可以满足一般设计需求。
可以理解的是,本实施方式的充电线圈模组1的制备方法,通过在第一次电镀后得到的导电层102的基础上,蚀刻出较宽的第一初始线圈103的第三间隙1034与第二初始线圈104的第四间隙1041。然后通过第二次电镀,在第一线圈12的第一导电部1021a上形成第二导电部1051a,以及在第二线圈13的第一导电部1021b上形成第二导电部1051b,从而缩小第三间隙1034的宽度以及第四间隙1041的宽度。这样,即可得到宽度较窄的第一线圈12的第一间隙124以及第二线圈13的第二间隙131。相较于只通过一次电镀形成较厚的金属层,然后直接蚀刻出线路的充电线圈模组的方案,本实施方式的充电线圈模组1通过在第一次电镀之后,蚀刻出线间距较宽的线路,再进行第二次电镀,从而显著地缩小线间距,以得到窄间距设置的充电线圈模组1。
换言之,本实施方式的充电线圈模组1的制备方法通过两次电镀制备得到充电线圈模组1的线间距较窄,充电线圈模组1为窄间距设置。在充电线圈模组1的外径相同条件下,相较于没有实现窄间距设置的充电线圈模组1,本实施方式的充电线圈模组1可以在不减小第一线圈12与第二线圈13中的线路的体积的情况下,通过减小第一线圈12的第一间隙124以及第二线圈13的第二间隙131的宽度,从而减薄第一线圈12和/或第二线圈13的厚度,以减薄充电线圈模组1的整体厚度,有利于实现充电线圈模组1的小型化设置。
另外,在充电线圈模组1的尺寸相同的条件下,相较于没有实现窄间距设置的充电线圈模组1,本实施方式中的充电线圈模组1的单位面积内金属(例如铜)的含量更高,充电线圈模组1中的走线的体积可以更大,从而可以减小充电损耗,有利于延长充电线圈模组1在充电过程中维持50W峰值的时间,提高充电效率。
此外,本申请的充电线圈模组1的第一线圈12中设有第一容置空间123,且整个充电线圈模组1为窄间距设置。在充电线圈模组1的外径相同的条件下,相较于既没有设置第一容置空间123,也没有实现窄间距设置的传统充电线圈模组而言,本申请的充电线圈模组1的直流电阻(Remote Differential Compression,RDC)与传统的充电线圈模组的直流电阻可以相同,功率大小可以相同,但整体厚度可以更薄。换言之,本申请的充电线圈模组1能够在满足传统充电线圈模组的功率需求的同时,减小充电线圈模组1的整体厚度,实现充电线圈模组1的小型化设置。其中,充电线圈模组1的厚度可以减薄约20至70微米。这样,当本申请的充电线圈模组1应用于手机等内部空间较为紧张的电子设备100中时,可以通过减薄充电线圈模组1的整体厚度,从而更好地满足电子设备100的薄型化需求。
同时,相较于既没有设置第一容置空间123,也没有实现窄间距设置的传统充电线圈模组1而言,本实施方式的充电线圈模组1的阻抗可以减小约17%。在充电线圈模组1的功率(例如50W)与传统充电线圈模组的功率相同的条件下,本实施方式的充电线圈模组1的充电损耗更小,充电过程中维持50W峰值的时间增长。
在一些实施方式中,在步骤S120与步骤S130之间,以及步骤S130与步骤S140之间均还可以进行自动光学检测(Automated Optical Inspection,AOI),以减少产品缺陷,从而提高产品良率。
在一些实施方式中,在步骤S150与步骤S160之间,还可以对设有第一覆盖膜40及第二覆盖膜50的充电线圈模组1进行处理。例如,还可以对覆盖有第一覆盖膜40及第二覆盖膜50的充电线圈模组1依次进行压合、除胶渣、喷砂、化金、热水洗、喷印丝印、烘烤丝印、电测、切割、入库检测等操作。
在一些实施方式中,制备充电线圈模组1的过程中,还可以在第一子导电层102a的周边设置铜皮15(如图16所示)。其中,铜皮15与第一子导电层间隔设置。这样,在后续的电镀中可以通过铜皮15均匀电流。相较于没有在第一子导电层102a的周边设置铜皮15的充电线圈模组1,本实施方式中的充电线圈模组1能够通过设置铜皮15增加被电镀的面积,从而均匀电流,降低形成第一线圈12、第二线圈13以及第一容置空间123位置处的电流密度,使得电镀更加均匀,有利于提高产品良率。需要说明的是,铜皮15仅在充电线圈模组1的制备过程中使用。制备得到的充电线圈模组1内部不包括铜皮15。
在一些实施方式中,还可以对步骤S140中的电镀参数进行调整,以改变电镀速度,优化电镀引线。其中,电镀参数可以为电流密度或者电镀时间。示例性地,可以差异化设置第一初始线圈103的电流密度与第二初始线圈104的电流密度。例如,第一初始线圈103的电镀密度可以为2.3ADS,第二初始线圈104的电镀密度可以为2.5ADS。其中,ADS为电流密度的单位,即安培每平方分米。此时,第二初始线圈104的电流密度低于第一初始线圈103的电流密度。这样,通过降低第一初始线圈103的电流密度,使得电镀之后得到的第一线圈12的厚度更加均匀,有利于提高产品良率。
可以理解的是,本实施方式中的充电线圈模组1通过调整第一初始线圈103与第二初始线圈104的第二次电镀的电镀参数,从而降低第一初始线圈103与第二初始线圈104在第二次电镀过程中的电镀速率,使电镀更加均匀,使得形成的第一线圈12与第二线圈13的厚度更加均匀,有利于提高产品良率。
如图11所示,在一些实施方式中,步骤S120中可以对第一子导电层102a的厚度较厚的基板101进行电镀。其中,当第一子导电层102a的厚度大于30微米时,第一子导电层102a的厚度较厚。示例性地,第一子导电层102a的厚度可以为50微米。对第一子导电层102a进行电镀之后,形成的导电层102的厚度可以在50微米至60微米范围之间。此时,导电层102的厚度较厚。示例性地,导电层102的厚度可以为55微米。此时,通过电镀形成的第二子导电层102b的厚度可以较薄。需要说明的是,当第一子导电层102a的厚度较厚时,其厚度不能超过最终形成的第一线圈12的厚度。
可以理解的是,通过电镀形成第二子导电层102b时,每形成20微米厚度的第二子导电层102b,其制备过程中所产生的厚度公差约为±5微米。相较于采用第一子导电层102a的厚度较薄的基板101制备得到厚度较厚的导电层102,直接采用第一子导电层102a的厚度较厚的基板101进行制备时,可以减小电镀过程中形成的第二子导电层102b的厚度,从而将第二子导电层102b的厚度公差控制在较小的范围内(例如±5微米),使得形成的第一线圈12的导电层102的厚度更加均匀。同时,需要通过电镀形成的第二子导电层102b的厚度减小,有利于降低电镀成本。
如图11和图13所示,在一些实施方式中,步骤S120中在基板101的第一子导电层102a上进行电镀时,形成的第二子导电层102b的厚度可以适当增大。此时,导电层102的厚度也随之增大。示例性地,对第一子导电层102a的厚度较薄的基板101进行电镀之后,形成的导电层102的厚度可以在35微米至45微米范围之间。此时,第二子导电层102b的厚度较厚。这样,通过增大第二子导电层102b的厚度,以增大导电层102的厚度,从而可以减小第二次电镀之后所需要形成的第一线圈12的第二导电部1051a的厚度以及第二线圈13的第二导电部1051b的厚度。
可以理解的是,通过第二次电镀形成第一线圈12的第二导电部1051a时,每形成20微米厚度的金属,其制备过程中所产生的厚度公差约为±8微米。本实施方式通过直接对厚度较厚的导电层102进行第二次电镀,从而可以有效减小第二次电镀过程中产生的厚度误差,使得形成的第一线圈12的第二导电部1051a的厚度更加均匀。
在一些实施方式中,在步骤S150中,还可以通过表面贴装技术(Surface Mounted Technology,SMT)在充电线圈模组1中设置其他的电气元件。其中,在表面贴装技术的回流焊接步骤之前,对充电线圈模组1的基板101进行贴片时,可以通过采用磁性夹具夹持基板101,以分摊受热。这样可以降低形成第一覆盖膜40以及第二覆盖膜50时的起泡风险,提高产品良率。
在一些实施方式中,在步骤S150与步骤S160之间,对覆盖有第一覆盖膜40及第二覆盖膜50的充电线圈模组1进行水洗时,可以将基板101的任意一端置于导板上过清洗段。这样,通过设置导板支撑基板101,并引导基板101传送,可以有效降低水洗过程中产生褶皱或折痕的风险,有利于提高产品良率。
需要说明的是,上文仅介绍了充电线圈模组1中第一线圈12的第一容置空间123为完全镂空时的一些实施方式。关于第一容置空间123的位置以及第一纳米晶层20和第一石墨层30的设置并不局限于上述结构。下文将结合附图具体介绍第一容置空间123在其他实施方式中的结构。
图17是图8所示的充电线圈模组1在其他实施方式中的部分剖面图。图18是图8所示的充电线圈模组1在其他实施方式中的部分剖面图。
如图17所示,本实施方式中的充电线圈模组1与图4所示的充电线圈模组1的结构大致相同,相同之处不再赘述。不同之处在于,第一纳米晶层20可以不向第一线圈12的第一容置空间123凹陷,也即,第一纳米晶层20可以不包括第一凹陷区21。此时,第一纳米晶层20的截面形状大致呈“凸”字型。
当充电线圈模组1中的第一纳米晶层20与第一石墨层30的体积保持不变时,相较于第一线圈12没有设置第一容置空间123的充电线圈模组1,本实施方式中的充电线圈模组1可以通过在第一容置空间123的空间填充一部分第一纳米晶层20,从而减薄第一纳米晶层20的厚度,实现充电线圈模组1的整体厚度减薄,有利于充电线圈模组1的小型化设置。
当充电线圈模组1中的第一纳米晶层20与第一石墨层30的厚度不变时,相较于第一线圈12没有设置第一容置空间123的充电线圈模组1,本实施方式中的充电线圈模组1的可以利用第一容置空间123的空间填充更多的纳米晶。换言之,本实施方式中的第一纳米晶层20的体积更大,有利于减小磁损,提高充电线圈模组1的充电功率。在其他实施方式中第一石墨层30可以具有第二凹陷区31(如图18所示)。第二凹陷区31在第一石墨层30朝向第一纳米晶层20的表面形成开口。第一纳米晶层20的部分可以设于第二凹陷区31。这样,第一纳米晶的体积可以更大,减小磁损的效率可以更高。
图19是图8所示的充电线圈模组1在其他实施方式中的部分剖面图。图20是图19所示的充电线圈模组1的第一线圈12的结构示意图。
如图19和图20所示,本实施方式中的充电线圈模组1与图8所示的充电线圈模组1的结构大致相同,相同之处不再赘述。不同之处在于,第一线圈12还可以不包括第二部分122,仅包括第一部分121与第一容置空间123。此时,第一部分121与第一容置空间123可以并排设置。可以理解的是,本实施方式中的第一容置空间123的体积更大,也即充电线圈模组1的可利用空间更大,从而使得充电线圈模组1可以利用第一容置空间123填充更多的纳米晶和/或石墨片,从而增大第一纳米晶层20的体积和/或增加第一石墨层30的体积,有利于提高充电线圈模组1的充电功率。
图21是图8所示的充电线圈模组1在其他实施方式中的部分剖面图。
如图21所示,本实施方式中的充电线圈模组1与图8所示的充电线圈模组1的结构大致相同,相同之处不再赘述。不同之处在于,充电线圈模组1还可以包括第二纳米晶层60以及第二石墨层70。示例性地,第二纳米晶层60可以通过胶层粘接于第二覆盖膜50远离第二线圈13的表面。第二石墨层70可以通过胶接压合的方式连接第二纳米晶层60远离第二覆盖膜50的表面。此时,第二纳米晶层60与第二石墨层70依次堆叠于第二覆盖膜50。这样,通过设置第二纳米晶层60以及第二石墨层70,增大了充电线圈模组1中纳米晶与石墨的体积,有效提高了充电线圈模组1的充电功率。
上文仅介绍了充电线圈模组1在一些实施方式中的具体结构及制备过程,下文将结合附图再具体介绍充电线圈模组1的在其他实施方式中的结构及部分制备过程。
图22是图8所示的充电线圈模组1在另一种实施方式中的部分剖面图。
如图22所示,本实施方式中的充电线圈模组1与图8所示的充电线圈模组1的结构大致相同,相同之处不再赘述。不同之处在于,本实施方式中的第一线圈12的第一容置空间123还可以保留部分线圈结构。其中,第一容置空间123中的部分线圈结构的厚度可以小于第一线圈12的第一部分121的厚度。换言之,第一线圈12的第一容置空间123为不完全镂空。此时,第一容置空间123为凹槽。第一容置空间123内部所露出的部分线圈结构的表面构成第一容置空间123的底壁1231。
可以理解的是,相较于第一线圈12的第一容置空间123为完全镂空的充电线圈模组1,本实施方式中的充电线圈模组1的第一容置空间123还包括部分线圈结构,也即第一容置空间123为不完全镂空,从而增大第一线圈12中走线的体积,第一线圈12内单位面积的金属(例如铜)含量更高,充电线圈模组1的充电效率更高。同时,本实施方式中的第一线圈12的走线可以设计为串联走线,走线损耗更低,有利于提升产品的使用寿命。
图23是图22所示的充电线圈模组1的制备过程示意图。
本实施方式中的充电线圈模组1的制备过程可以包括如下步骤一至步骤九:
步骤一:制备基板。
步骤二:在基板的第一子导电层电镀第二子导电层,以形成导电层。
需要说明的是,本实施方式中的步骤一至步骤二与步骤S110至步骤S120大致相同,具体可以参阅图10至图11,相同之处不再赘述。
步骤三:蚀刻导电层形成初始线圈。
步骤四:在初始线圈的部分表面覆盖掩膜。
步骤五:对初始线圈上露出的每一匝电镀第二导电部,以形成线圈。其中,线圈中的相邻两匝之间的距离为线圈的线间距。
步骤六:去除掩膜,形成线圈的第一容置空间。
如图23所示,图23示意出图22所示E处的部分结构的制备过程。本实施方式中步骤四至步骤五与步骤S130至步骤S140的制备工艺大致相同,相同部分不再赘述。不同之处在于,本实施方式中的第一线圈12的第一容置空间123为不完全镂空,其形成方式不同。
示例性地,步骤三中通过蚀刻形成第一初始线圈103时,可以不形成蚀刻空间1033。第一初始线圈103的部分走线的表面可以覆盖掩膜(即步骤四)。其中,掩膜可以覆盖第一初始线圈103中位于中间位置处的部分走线。然后,对第一初始线圈103露出的每一匝(也即第一导电部1021a)电镀第二导电部1051a,形成第一线圈12。对第二初始线圈104的每一匝(也即第一导电部1021b)电镀第二导电部1051b,形成第二线圈13(即步骤五)。
最后,去除覆盖于第一初始线圈103表面的掩膜(即步骤六)。去除掩膜后露出的部分第一初始线圈103的表面与第一线圈12的内侧面所围出的空间即为第一线圈12的第一容置空间123。第一容置空间123内部所露出的部分第一初始线圈103的表面构成第一容置空间123的底壁1231。这样,通过上述步骤230至步骤260即可得到第一线圈12的第一容置空间123为不完全镂空的充电线圈模组1。
示例性地,第一容置空间123的深度可以为45微米。
步骤七:在线圈上形成覆盖膜。覆盖膜的一部分连接线圈远离基材的表面,覆盖膜的另一部分设于第一容置空间内。示例性地,在第一线圈12的表面覆盖第一覆盖膜40,以及在第二线圈13的表面覆盖第二覆盖膜50。其中,第一覆盖膜40的一部分设置在第一容置空间123内。
步骤八:在覆盖膜上形成纳米晶层。纳米晶层连接覆盖膜远离线圈的表面。
示例性地,在第一覆盖膜40的表面形成第一纳米晶层20。其中,第一纳米晶层20的一部分填充第一容置空间123。另外,第一纳米晶层20具有第一凹陷区21,第一凹陷区21在第一纳米晶层20远离第一覆盖膜40的表面形成开口。
步骤九:在纳米晶层上形成石墨层。
示例性地,在第一纳米晶层20的表面形成第一石墨层30。其中,第一石墨层30填充第一凹陷区21。
如图22所示,本实施方式中步骤七至步骤九与步骤S150至步骤S170大致相同,相同部分不再赘述。其中,第一纳米晶层20与第一石墨层30的具体设置还可以参考图17、图18与图19中所示的设置方式。
通过上述制备方法制备得到的充电线圈模组1的各部分结构在不同区域的厚度可以如下表2所示:
表2
在一些实施方式中,在步骤三与步骤四之间,以及步骤六与步骤七之间均还可以进行自动光学检测,以减少产品缺陷,从而提高产品良率。
在一些实施方式中,在步骤七与步骤八之间,还可以对覆盖有第一覆盖膜40及第二覆盖膜50的充电线圈模组1进行处理。例如,还可以对覆盖有第一覆盖膜40及第二覆盖膜50的充电线圈模组1依次进行压合、除胶渣、喷砂、电镀金、热水洗、喷印丝印、烘烤丝印、电测、切割、入库检测等操作。
需要说明的是,上文仅介绍了充电线圈模组1在第一线圈12设置不完全镂空的第一容置空间123时的一些实施方式。下文将结合附图具体介绍充电线圈模组1在其他实施方式中的具体结构。
图24是图22所示的充电线圈模组1在其他实施方式中的部分剖面图。
如图24所示,本实施方式中的充电线圈模组1与图22所示的充电线圈模组1的结构大致相同,相同之处不再赘述。不同之处在于,充电线圈模组1还可以包括第二纳米晶层60以及第二石墨层70。示例性地,第二纳米晶层60可以通过胶层粘接于第二覆盖膜50远离充电线圈模组1的表面。第二石墨层70可以通过胶接压合的方式连接第二纳米晶层60远离第二覆盖膜50的表面。这样,通过设置第二纳米晶层60以及第二石墨层70,增大了充电线圈模组1中纳米晶与石墨的体积,有效提高了充电线圈模组1的充电功率。
图25是图22所示的充电线圈模组1在其他实施方式中的部分剖面图。
如图25所示,本实施方式中的充电线圈模组1与图24所示的充电线圈模组1的结构大致相同,相同之处不再赘述。不同之处在于,第二线圈13可以具有第二容置空间134。其中,第二线圈13的第二容置空间134可以为不完全镂空。此时,第二容置空间134为凹槽。第二线圈13中各第二子线圈13a之间可以通过串联的方式实现电连接。其中,第二线圈13的第二容置空间134可以连通线圈通孔14(请参阅图4)。在其他实施方式中,第二线圈13的第二容置空间134也可以不连通线圈通孔14。
示例性地,第二纳米晶层60中的一部分可以设于第二线圈13的第二容置空间134。第二纳米晶层60可以沿朝向第二线圈13的第二容置空间134的方向凹陷,形成第二纳米晶层60的第三凹陷区61。也即,第三凹陷区61在第二纳米晶层60远离第二覆盖膜50的表面形成开口。此时,第二石墨层70中的一部分可以连接第二纳米晶层60远离第二线圈13的表面。第二石墨层70中的另一部分可以设于第二纳米晶层60的第三凹陷区61。第二石墨层70的截面形状大致呈“凸”字型。在其他实施方式中,第二纳米晶层60与第二石墨层70的具体设置也可以参考图8、图17、图18以及图19所示的第一纳米晶层20与第一石墨层30的设置方式。
可以理解的是,在充电线圈模组1的尺寸相同的条件下,本实施方式中的充电线圈模组1通过同时在第一线圈12中设置第一线圈12的第一容置空间123,以及在第二线圈13中设置第二线圈13的第二容置空间134,使得充电线圈模组1可以具有更多可以利用空间,从而可以设置更多的纳米晶和/或石墨片,有利于提升充电线圈模组1的充电效率。
在一些实施方式中,第一线圈12的第一容置空间123与第二线圈13的第二容置空间134可以相对基材11对称设置。在其他实施方式中,第一线圈12的第一容置空间123与第二线圈13的第二容置空间134也可以相对基材11错开设置。
图26是图22所示的充电线圈模组1在其他实施方式中的部分剖面图。
如图26所示,本实施方式中的充电线圈模组1与图25所示的充电线圈模组1的结构大致相同,相同之处不再赘述。不同之处在于,本实施方式中的第二线圈13的第二容置空间134可以为完全镂空。此时,第二容置空间134为通孔。充电线圈模组1可以通过第二线圈13的第二容置空间134可以填充更多的纳米晶和/或石墨片,从而提高充电线圈模组10的充电效率。
图27是图22所示的充电线圈模组1在其他实施方式中的部分剖面图。
如图27所示,本实施方式中的充电线圈模组1与图26所示的充电线圈模组1的结构大致相同,相同之处不再赘述。不同之处在于,本实施方式中的第一线圈12的第一容置空间123以及第二线圈13的第二容置空间134均为完全镂空。
示例性地,第一线圈12的第一容置空间123以及第二线圈13的第二容置空间134可以相对基材11错开设置。在其他实施方式中,第一线圈12的第一容置空间123以及第二线圈13的第二容置空间134可以相对基材11对称设置。
图28是图8所示的充电线圈模组1在又一种实施方式中的部分剖面图。图29是图28所示的充电线圈模组1的部分结构的俯视图。
如图28和图29所示,本实施方式中的充电线圈模组1与图8所示的充电线圈模组1的结构大致相同,相同之处不再赘述。不同之处在于,本实施方式中的基材11设有基材通孔113。第二线圈13包括第二容置空间134。第一线圈12的第一容置空间123与第二线圈13的第二容置空间134均为完全镂空。基材通
孔113可以连通第一线圈12的第一容置空间123与第二线圈13的第二容置空间134。此时,第一线圈12的第一容置空间123、基材通孔113以及第二线圈13的第二容置空间134共同构成充电线圈模组1的第一通孔80。
示例性地,第一通孔80可以不连通线圈通孔14,也即第一通孔80与线圈通孔14间隔设置。在其他实施方式中,第一通孔80也可以连通线圈通孔14。
示例性地,充电线圈模组1还可以包括磁性件90。磁性件90可以为磁铁。磁性件90可以位于第一通孔80,且连接第一纳米晶层20。此时,第一纳米晶层20可以连接第一覆盖膜40远离第一线圈12的表面,以及磁性件90露出第一覆盖膜40的表面。第一石墨层30可以连接第一纳米晶层20远离第一覆盖膜40的表面。
在本实施方式中,第一通孔80的数量可以为两个。此时,第一线圈12的第一容置空间123、第二线圈13的第二容置空间134以及基材通孔113的数量也相应的为两个。本实施方式中的充电线圈模组1可以通过上述实施方式中的制备方法进行制备。制备得到的充电线圈模组1个各部分结构在不同区域的厚度可以如下表3所示:
表3
可以理解的是,本实施方式中的充电线圈模组1中通过设置基材通孔113连通第一线圈12的第一容置空间123以及第二线圈13的第二容置空间134,形成第一通孔80。并在第一通孔80内部设置磁性件90。这样,当本实施方式中的充电线圈模组1应用于电子设备100中时,可以通过充电线圈模组1内部设置的磁性件90实现与无线充电器的准确定位,以提高充电效率。
在一些实施方式中,充电线圈模组1也可以不包括基材通孔113。此时,磁性件90可以设置于第一容置空间123和/或第二容置空间134中。
图30是图28所示的充电线圈模组1在其他实施方式中的部分剖面图。
如图30所示,本实施方式中的充电线圈模组1的结构与图28所示的充电线圈模组1的结构大致相同,相同部分不再赘述。不同之处在于,本实施方式中的磁性件90仅填充第一通孔80的部分空间。
示例性地,磁性件90可以填充第一通孔80远离第一纳米晶层20的部分空间。此时,第一纳米晶层20中的一部分可以填充第一通孔80的剩余空间。这样,相较于没有在第一通孔80内设置纳米晶的充电线圈模组1,本实施方式通过在第一通孔80的内部同时设置磁性件90与纳米晶,使得充电线圈模组1应用于电子设备100时,既能实现与无线充电器的准确定位,还能减小磁损,有利于提高充电功率。
图31是图28所示的充电线圈模组1在其他实施方式中的部分剖面图。
如图31所示,本实施方式中的充电线圈模组1的结构与图28所示的充电线圈模组1的结构大致相同,相同部分不再赘述。不同之处在于,本实施方式中的充电线圈模组1不包括磁性件90。第一纳米晶层20中的一部分可以完全填充第一通孔80。
可以理解的是,相较于没有设置第一通孔80的充电线圈模组1,本实施方式的充电线圈模组1可以通过设置第一通孔80,使得充电线圈模组1具有有更多可利用空间来填充更多的纳米晶,以减小磁损。另外,在充电线圈模组1的外径相同条件下,本实施方式中的充电线圈模组1的第一纳米晶层20的厚度更薄,充电线圈模组1的整体厚度更薄,更有利于实现充电线圈模组1的小型化设置。
图32是图28所示的充电线圈模组1在其他实施方式中的部分剖面图。
如图32所示,本实施方式中的充电线圈模组1的结构与图28所示的充电线圈模组1的结构大致相同,相同部分不再赘述。不同之处在于,本实施方式中的充电线圈模组1还可以包括第二纳米晶层60以及第二石墨层70。
示例性地,第二纳米晶层60可以连接第二覆盖膜50远离第二线圈13的表面,以及磁性件90露出第二覆盖膜50的表面。第二石墨层70连接第二纳米晶层60远离第二线圈13的表面。这样,通过设置第二纳米晶层60以及第二石墨层70,增大了充电线圈模组1中纳米晶与石墨的体积,有效提高了充电线圈模组1的充电效率。
需要说明的是,在不冲突的情况下,本申请中的实施例及实施方式中的特征可以相互组合,不同实施方式中的特征任意组合也在本申请的保护范围内,也就是说,上述描述的多个实施例还可根据实际需要任意组合。
需要说明的是,上述所有附图均为本申请示例性的图示,并不代表产品实际大小。且附图中部件之间的尺寸比例关系也不作为对本申请实际产品的限定。
以上,仅为本申请的部分实施例和实施方式,本申请的保护范围不局限于此,任何熟知本领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。
Claims (16)
- 一种充电线圈模组(1),其特征在于,包括基材(11)以及第一线圈(12),所述基材(11)包括第一面(111),所述第一线圈(12)设置于所述第一面(111)上,所述第一线圈(12)的匝数大于或者等于2,所述第一线圈(12)中的相邻两匝之间的距离在40微米至100微米的范围内。
- 根据权利要求1所述的充电线圈模组(1),其特征在于,所述第一线圈(12)中的每一匝包括第一导电部(1021a)以及第二导电部(1051a),所述第一导电部(1021a)设置于所述第一面(111)上,所述第二导电部(1051a)覆盖在所述第一导电部(1021a)上。
- 根据权利要求2所述的充电线圈模组(1),其特征在于,所述第一导电部(1021a)的厚度在10微米至60微米的范围内。
- 根据权利要求1至3中任一项所述的充电线圈模组(1),其特征在于,所述第一线圈(12)的厚度大于50微米。
- 根据权利要求1至4中任一项所述的充电线圈模组(1),其特征在于,所述基材(11)包括第二面(112),所述第二面(112)与所述第一面(111)背向设置;所述充电线圈模组(1)还包括第二线圈(13),所述第二线圈(13)设于所述第二面(112),所述第二线圈(13)的匝数大于或者等于2,所述第二线圈(13)中的相邻两匝之间的距离在40微米至100微米的范围内。
- 根据权利要求1至5中的任一项所述的充电线圈模组(1),其特征在于,所述充电线圈模组(1)还包括第一覆盖膜(40)、第一纳米晶层(20)以及第一石墨层(30);所述第一覆盖膜(40)设于所述第一线圈(12)远离所述基材(11)的一侧,所述第一纳米晶层(20)与所述第一石墨层(30)依次堆叠于所述第一覆盖膜(40);所述第一线圈(12)具有第一容置空间(123),所述第一容置空间(123)为凹槽或者通孔;所述第一覆盖膜(40)的一部分设于所述第一容置空间(123),所述第一纳米晶层(20)的一部分设于所述第一容置空间(123)内。
- 根据权利要求6所述的充电线圈模组(1),其特征在于,所述第一纳米晶层(20)设有第一凹陷区(21),所述第一石墨层(30)的一部分设于所述第一凹陷区(21)。
- 根据权利要求6所述的充电线圈模组(1),其特征在于,所述第一石墨层(30)设有第二凹陷区(31),所述第一纳米晶层(20)的一部分设于所述第二凹陷区(31)。
- 根据权利要求6至8中任一项所述的充电线圈模组(1),其特征在于,所述第一线圈(12)围出第一空心区域(126),所述第一容置空间(123)与所述第一空心区域(126)间隔设置,或者所述第一容置空间(123)与所述第一空心区域(126)连通。
- 根据权利要求6至9中任一项所述的充电线圈模组(1),其特征在于,所述第一线圈(12)包括分开设置的第一部分(121)和第二部分(122),所述第一容置空间(123)位于所述第一部分(121)与所述第二部分(122)之间;或者,所述第一线圈(12)包括第一部分(121),所述第一容置空间(123)位于所述第一部分(121)的一侧。
- 根据权利要求1至4中任一项所述的充电线圈模组(1),其特征在于,所述第一线圈(12)具有第一容置空间(123),所述第一容置空间(123)为凹槽或者通孔;所述充电线圈模组(1)包括磁性件(90),所述磁性件(90)设置于所述第一容置空间(123)内。
- 根据权利要求5至11中任一项所述的充电线圈模组(1),其特征在于,所述充电线圈模组(1)还包括第二覆盖膜(50)、第二纳米晶层(60)以及第二石墨层(70);所述第二覆盖膜(50)设于所述第二线圈(13)的远离所述基材(11)的一侧,所述第二纳米晶层(60)与所述第二石墨层(70)依次堆叠于所述第二覆盖膜(50);所述第二线圈(13)具有第二容置空间(134),所述第二容置空间(134)为凹槽或者通孔;所述第二覆盖膜(50)的一部分设于所述第二容置空间(134),所述第二纳米晶层(60)的一部分设于所述第二容置空间(134)内。
- 根据权利要求12所述的充电线圈模组(1),其特征在于,所述第二纳米晶层(60)设有第三凹陷区(61),所述第二石墨层(70)的一部分设于所述第三凹陷区(61)。
- 一种电子设备(100),其特征在于,包括电池(4)以及权利要求1至13中任一项所述的充电线圈模组(1),所述充电线圈模组(1)用于对所述电池(4)充电。
- 一种充电器(200),其特征在于,包括外壳(201)以及权利要求1至13中任一项所述的充电线圈模组(1),所述充电线圈模组(1)设于所述外壳(201)。
- 一种充电系统(1000),其特征在于,包括电子设备(100)以及充电器(200),所述电子设备(100)与所述充电器(200)中的至少一者包括权利要求1至13中任一项所述的充电线圈模组(1),所述充电器(200)用于对所述电子设备(100)充电。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211202964.5A CN117833497A (zh) | 2022-09-29 | 2022-09-29 | 充电线圈模组及其相关产品、充电线圈模组的制备方法 |
CN202211202964.5 | 2022-09-29 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024067366A1 true WO2024067366A1 (zh) | 2024-04-04 |
Family
ID=90476162
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2023/120512 WO2024067366A1 (zh) | 2022-09-29 | 2023-09-21 | 充电线圈模组及其相关产品、充电线圈模组的制备方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN117833497A (zh) |
WO (1) | WO2024067366A1 (zh) |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105448489A (zh) * | 2014-08-11 | 2016-03-30 | 介面光电股份有限公司 | 薄膜线圈、薄膜线圈组件以及充电装置 |
CN106208408A (zh) * | 2016-09-13 | 2016-12-07 | 苏州纳格光电科技有限公司 | 无线充电接收线圈及其制备方法 |
CN106304668A (zh) * | 2016-10-31 | 2017-01-04 | 安捷利电子科技(苏州)有限公司 | 一种采用增强型半加成法制作印制线路板的制作方法 |
CN109036796A (zh) * | 2018-08-30 | 2018-12-18 | 江苏金羿先磁新材料科技有限公司 | 一种双面无线充电发射端模组 |
CN110211779A (zh) * | 2019-04-01 | 2019-09-06 | 深圳市恒祥通天线技术有限公司 | 一种无线充电设备感应线圈 |
US20210057142A1 (en) * | 2019-08-20 | 2021-02-25 | Samsung Electro-Mechanics Co., Ltd. | Coil component and method of manufacturing the same |
CN113613399A (zh) * | 2021-07-21 | 2021-11-05 | 深圳市景旺电子股份有限公司 | 电路板制作方法及电路板 |
CN215578130U (zh) * | 2021-05-06 | 2022-01-18 | 上海飞科电器股份有限公司 | 无线充电线圈结构及无线充电器 |
-
2022
- 2022-09-29 CN CN202211202964.5A patent/CN117833497A/zh active Pending
-
2023
- 2023-09-21 WO PCT/CN2023/120512 patent/WO2024067366A1/zh unknown
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105448489A (zh) * | 2014-08-11 | 2016-03-30 | 介面光电股份有限公司 | 薄膜线圈、薄膜线圈组件以及充电装置 |
CN106208408A (zh) * | 2016-09-13 | 2016-12-07 | 苏州纳格光电科技有限公司 | 无线充电接收线圈及其制备方法 |
CN106304668A (zh) * | 2016-10-31 | 2017-01-04 | 安捷利电子科技(苏州)有限公司 | 一种采用增强型半加成法制作印制线路板的制作方法 |
CN109036796A (zh) * | 2018-08-30 | 2018-12-18 | 江苏金羿先磁新材料科技有限公司 | 一种双面无线充电发射端模组 |
CN110211779A (zh) * | 2019-04-01 | 2019-09-06 | 深圳市恒祥通天线技术有限公司 | 一种无线充电设备感应线圈 |
US20210057142A1 (en) * | 2019-08-20 | 2021-02-25 | Samsung Electro-Mechanics Co., Ltd. | Coil component and method of manufacturing the same |
CN215578130U (zh) * | 2021-05-06 | 2022-01-18 | 上海飞科电器股份有限公司 | 无线充电线圈结构及无线充电器 |
CN113613399A (zh) * | 2021-07-21 | 2021-11-05 | 深圳市景旺电子股份有限公司 | 电路板制作方法及电路板 |
Also Published As
Publication number | Publication date |
---|---|
CN117833497A (zh) | 2024-04-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11538622B2 (en) | High current, low equivalent series resistance printed circuit board coil for power transfer application | |
TW201911660A (zh) | 電連接器及其製造方法 | |
CN105826046B (zh) | 线圈组件 | |
WO2024067366A1 (zh) | 充电线圈模组及其相关产品、充电线圈模组的制备方法 | |
CN102065636A (zh) | 电路板及应用该电路板的电子装置及液晶显示器 | |
JPH10335823A (ja) | 積層セラミック回路基板及びその製造方法 | |
WO2022045686A1 (ko) | 전자 부품 및 이의 제조 방법 | |
CN221407011U (zh) | 电极结构、叠层共模滤波器及终端设备 | |
JP2002110901A (ja) | 積層型半導体装置及びその製造方法 | |
WO2024193384A1 (zh) | 电子装联方法及电路板组件 | |
JP2002313629A (ja) | チップ型インダクタ | |
JPH10189338A (ja) | Smd型コイル及びその製造方法 | |
JP2000049508A (ja) | 非可逆回路素子、非可逆回路装置及びその製造方法 | |
JPH08236353A (ja) | 小型インダクタ及びその製造方法 | |
TW595046B (en) | Elastically contacted electrical connection device and its manufacturing method | |
CN117524677A (zh) | 电极结构、叠层共模滤波器及终端设备 | |
JPH09129448A (ja) | インダクタおよびその製造方法 | |
WO2018139048A1 (ja) | インターポーザおよび電子機器 | |
JP2004235490A (ja) | 回路基板及びその製造法 | |
TWM442591U (en) | Chip type antenna | |
KR20170073136A (ko) | 코일 부품 및 그 제조 방법 | |
JP2001203017A (ja) | 電気的接続装置 | |
JP2004055572A (ja) | 平面磁気素子 | |
JPS6225443A (ja) | 混成集積回路装置 | |
JPH07326539A (ja) | 複合型貫通コンデンサの端子構造とその端子部製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23870598 Country of ref document: EP Kind code of ref document: A1 |