WO2024066112A1 - 风机基础、风力发电机组以及控制方法 - Google Patents

风机基础、风力发电机组以及控制方法 Download PDF

Info

Publication number
WO2024066112A1
WO2024066112A1 PCT/CN2022/143773 CN2022143773W WO2024066112A1 WO 2024066112 A1 WO2024066112 A1 WO 2024066112A1 CN 2022143773 W CN2022143773 W CN 2022143773W WO 2024066112 A1 WO2024066112 A1 WO 2024066112A1
Authority
WO
WIPO (PCT)
Prior art keywords
vibration suppression
suppression device
vibration
rotating disk
controlled
Prior art date
Application number
PCT/CN2022/143773
Other languages
English (en)
French (fr)
Inventor
翟恩地
高杨
杜新
徐志良
Original Assignee
金风科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 金风科技股份有限公司 filed Critical 金风科技股份有限公司
Publication of WO2024066112A1 publication Critical patent/WO2024066112A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B35/00Vessels or similar floating structures specially adapted for specific purposes and not otherwise provided for
    • B63B35/44Floating buildings, stores, drilling platforms, or workshops, e.g. carrying water-oil separating devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B39/00Equipment to decrease pitch, roll, or like unwanted vessel movements; Apparatus for indicating vessel attitude
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B39/00Equipment to decrease pitch, roll, or like unwanted vessel movements; Apparatus for indicating vessel attitude
    • B63B39/04Equipment to decrease pitch, roll, or like unwanted vessel movements; Apparatus for indicating vessel attitude to decrease vessel movements by using gyroscopes directly
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D13/00Assembly, mounting or commissioning of wind motors; Arrangements specially adapted for transporting wind motor components
    • F03D13/20Arrangements for mounting or supporting wind motors; Masts or towers for wind motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D13/00Assembly, mounting or commissioning of wind motors; Arrangements specially adapted for transporting wind motor components
    • F03D13/20Arrangements for mounting or supporting wind motors; Masts or towers for wind motors
    • F03D13/25Arrangements for mounting or supporting wind motors; Masts or towers for wind motors specially adapted for offshore installation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D80/00Details, components or accessories not provided for in groups F03D1/00 - F03D17/00
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/727Offshore wind turbines

Definitions

  • the present application relates to the field of wind power technology, and in particular to a wind turbine foundation, a wind turbine generator set and a control method.
  • floating wind turbines There are huge differences between floating wind turbines and onshore units and offshore monopile fixed foundations. In terms of external loads, they will face wind loads, wave loads, ocean current loads, ice loads, etc. In terms of overall machine dynamics, due to the "floating" characteristics of floating wind turbines, floating wind turbines have all-round six degrees of freedom, including longitudinal swing, lateral swing, vertical swing, and rotational roll, pitch and yaw swing.
  • the embodiments of the present application provide a wind turbine foundation, a wind turbine generator set and a control method.
  • the wind turbine foundation itself has a vibration suppression function, a fast response speed and a good vibration suppression effect.
  • a wind turbine foundation for supporting a tower
  • the wind turbine foundation includes: a support assembly, including a main floating body, a plurality of sub-floating bodies, and a connecting body arranged corresponding to each sub-floating body, the plurality of sub-floating bodies are spaced around the main floating body, each sub-floating body is connected to the main floating body through a corresponding connecting body, and the main floating body is used to be connected to the tower; a vibration suppression system, including a vibration suppression device, a first collector, and a controller, at least two of the plurality of sub-floating bodies are connected to the vibration suppression device;
  • the vibration suppression device includes a base, a mounting frame, a rotating disk, and a driving component, the driving component is connected to the mounting frame and can drive the rotating disk to rotate relative to the mounting frame with a first axis as a rotation center, the mounting frame is rotationally connected to the base and can rotate relative to the base with a second axis
  • a wind turbine generator set comprising:
  • the wind turbine body comprises a tower and a cabin arranged on the tower, and the tower is connected to the main floating body of the wind turbine foundation.
  • a vibration suppression device is provided on at least one of the tower and the nacelle, and the vibration suppression system also includes a second collector, which is configured to obtain the cabin vibration acceleration of the nacelle, and the controller is also configured to control the driving components of each vibration suppression device on the wind turbine body to drive the rotating disk to a predetermined speed according to the cabin vibration acceleration.
  • more than two vibration suppression devices are arranged on the wind turbine body, and the more than two vibration suppression devices are all arranged in the nacelle; or, at least one of the more than two vibration suppression devices is located in the nacelle and at least one vibration suppression device is located at the top of the tower near the nacelle; or, the more than two vibration suppression devices are both located at the top of the tower near the nacelle, and the more than two vibration suppression devices are distributed at intervals along the circumference of the tower and the vibration suppression devices are at the same height.
  • a control method for a wind turbine generator set is provided.
  • the rotation speed of each vibration suppression device is configured according to the vibration acceleration of the floating body and the vibration acceleration of the cabin.
  • control method before the step of configuring the rotation speed of each vibration suppression device according to the vibration acceleration of the floating body and the vibration acceleration of the cabin, the control method further includes:
  • the first-order spectrum data of the cabin in the first direction and the first-order spectrum data of the cabin in the second direction and the first-order spectrum data of the supporting assembly in the first direction and the first-order spectrum data in the second direction are determined respectively.
  • the wind turbine foundation includes a supporting assembly and a vibration suppression system.
  • the supporting assembly includes a main floating body and multiple sub-floating bodies.
  • the main floating body can be used to connect with the tower. Since the multiple sub-floating bodies are distributed around the main floating body at intervals and each sub-floating body is connected to the main floating body through a corresponding connecting body, the multiple sub-floating bodies can assist the main floating body in supporting components such as the tower, thereby improving the supporting capacity and stability performance of the wind turbine foundation.
  • the vibration suppression system includes a vibration suppression device, a first collector and a controller.
  • the first collector can obtain the floating body vibration acceleration of the supporting assembly.
  • the vibration suppression device includes a base, a mounting frame, a rotating disk and a driving component.
  • the rotating disk can rotate at a high speed relative to the mounting frame with the first axis as the rotation center under the drive of the driving component.
  • the mounting frame is rotatably connected to the base and can rotate relative to the base with the second axis intersecting the first axis as the rotation center.
  • the controller can control the driving component to drive the rotating disk to rotate to a predetermined speed according to the floating body vibration acceleration obtained by the first collector.
  • the rotating disk Since the rotating disk has a certain mass, when the driven component drives the rotating shaft extending along the extension direction of the first axis, it has a large moment of inertia, and remains stable in the inertial space, pointing to a fixed direction. When there is external disturbance, due to its precession, it will generate a torque perpendicular to the external torque, thereby maintaining the stability of the rotating shaft extending along the first axis in the inertial space, while suppressing the vibration of the structure, and ensuring the safety performance of the wind turbine foundation and the wind turbine generator set used therein. Furthermore, the configuration of the first collector and the controller can realize automatic control of the fan foundation and improve the response speed of the fan foundation during vibration suppression work.
  • FIG1 is a schematic structural diagram of a wind turbine generator set according to an embodiment of the present application.
  • FIG2 is a schematic structural diagram of a wind turbine foundation according to an embodiment of the present application.
  • FIG3 is a schematic structural diagram of a vibration suppression device according to an embodiment of the present application.
  • FIG4 is a side view of a vibration suppression device according to an embodiment of the present application.
  • FIG5 is a control logic diagram of a wind turbine generator set according to an embodiment of the present application.
  • FIG6 is a schematic structural diagram of a wind turbine foundation according to another embodiment of the present application.
  • FIG7 is a control logic diagram of a wind turbine generator set according to another embodiment of the present application.
  • FIG8 is a schematic structural diagram of a fan body according to another embodiment of the present application.
  • FIG9 is a schematic structural diagram of a fan body according to another embodiment of the present application.
  • FIG. 10 is a flow chart of a control method according to an embodiment of the present application.
  • 210-vibration suppression device 210a-first vibration suppression device; 210b-second vibration suppression device; 210c-third vibration suppression device; 211-base; 211a-bottom wall; 211b-side wall; 211c-recess; 212-mounting frame; 212a-hollow cavity; 213-rotating disk; 214-driving component; 215-output shaft; 216-connecting shaft; 220-controller;
  • 300-support assembly 310-main floating body; 320-sub-floating body; 330-connecting body; 340-reinforcement body;
  • an embodiment of the present application provides a wind turbine generator set, including a wind turbine foundation and a wind turbine body, wherein the wind turbine body 100 includes a tower 10, a nacelle 20, a generator 30 and an impeller 40.
  • the tower 10 is connected to the wind turbine foundation, the nacelle 20 is arranged at the top of the tower 10, and the generator 30 is arranged in the nacelle 20.
  • the generator 30 can be located outside the nacelle 20.
  • the generator 30 can also be located inside the nacelle 20.
  • the impeller 40 includes a hub 41 and a plurality of blades 42 connected to the hub 41.
  • the impeller 40 is connected to the rotor of the generator through the hub 41, thereby driving the rotor to rotate relative to the stator to achieve the power generation demand of the wind turbine generator set.
  • the wind turbine foundation floats in the seawater. In order to limit its range of motion, it is fixed to the seabed 60 through a mooring system 50 to achieve a certain range of motion.
  • the existing wind turbine foundation mainly uses a power water pump to control the water level in different floating compartments, and then adjusts the center position of the whole machine to achieve stability regulation.
  • This technical method has some disadvantages. For example, the system response speed is slow due to the huge demand for regulating water volume, and the cost of large-flow ballast water regulation system is high.
  • the embodiment of the present application also provides a new fan foundation, which has a vibration suppression function, a fast response speed and a good vibration suppression effect.
  • the wind turbine foundation provided in the embodiment of the present application is used to support the tower 10.
  • the wind turbine foundation includes a support assembly 300 and a suppression system.
  • the support assembly 300 includes a main floating body 310, a plurality of sub-floating bodies 320, and a connecting body 330 corresponding to each sub-floating body 320.
  • the plurality of sub-floating bodies 320 are spaced around the main floating body 310.
  • Each sub-floating body 320 is connected to the main floating body 310 through a corresponding connecting body 330.
  • the main floating body 310 is used to be connected to the tower 10.
  • the vibration suppression system 200 includes a vibration suppression device 210, a first collector, and a controller 220. At least two of the plurality of sub-floating bodies 320 are connected to the vibration suppression device 210.
  • the vibration suppression device 210 includes a base 211, a mounting frame 212, a rotating disk 213, and a driving component 214.
  • the driving component 214 is connected to the mounting frame 212 and can drive the rotating disk 213 to rotate relative to the mounting frame 212 with the first axis aa as the rotation center.
  • the mounting frame 212 is rotatably connected to the base 211 and can rotate relative to the base 211 with the second axis bb as the rotation center.
  • the first axis aa and the second axis bb are arranged to intersect.
  • the first collector is configured to obtain the floating body vibration acceleration of the support assembly 300
  • the controller 220 is configured to control the driving components 214 of each vibration suppression device on the support assembly 300 to drive the rotating disk 213 to rotate to a predetermined speed according to the floating body vibration acceleration.
  • the number of the main floating body 310 included in the supporting assembly 300 may be one, and one main floating body 310 may be a solid or hollow columnar structure.
  • the main floating body 310 may be cylindrical or prism-shaped.
  • the number of the sub-floating bodies 320 included in the supporting assembly 300 may be three, four or even more.
  • the plurality of sub-floating bodies 320 are distributed at intervals in the circumferential direction of the main floating body 310, and may be distributed at intervals and evenly.
  • the number of the sub-floating bodies 320 may be three, and the three sub-floating bodies 320 are spaced and evenly arranged in the circumferential direction of the main floating body 310 .
  • the sub-floating body 320 may be a solid or hollow columnar structure.
  • the sub-floating body 320 may be cylindrical or prism-shaped.
  • the shape of the sub-floating body 320 may be the same as the shape and size of the main floating body 310.
  • the size of the sub-floating body 320 may also be smaller than the size of the main floating body 310, and may be the same.
  • the number of the vibration suppression devices 210 included in the vibration suppression system 200 may be more than two. When there are more than two, the two or more vibration suppression devices 210 may be arranged at intervals from each other, and one vibration suppression device 210 may be arranged on each sub-floating body 320 .
  • the number of connectors 330 can be multiple, and the multiple connectors 330 can be distributed at intervals in the circumferential direction of the main floating body 310.
  • One end of each connector 330 is connected to the main floating body 310, and the other end radiates in the radial direction of the main floating body 310 in the direction away from the main floating body 310.
  • the end of each connector 330 facing away from the main floating body 310 is connected to a sub-floating body 320.
  • the included angle between the first axis aa and the second axis bb can be selected to be 90°.
  • the first collector and the controller 220 can be integrated on the wind turbine body 100 of the wind turbine generator set. For example, they can be set on the nacelle 20, or the first collector can be set on the impeller 40 and the controller 220 can be set on the nacelle 20. Of course, the controller 220 and the wind turbine body 100 can also be set separately and remotely controlled.
  • the wind turbine foundation provided in the embodiment of the present application includes a support assembly 300 and a vibration suppression system.
  • the support assembly 300 includes a main floating body 310 and a plurality of sub-floating bodies 320.
  • the main floating body 310 can be used to connect with the tower 10. Since the plurality of sub-floating bodies 320 are distributed around the main floating body 310 at intervals, and each sub-floating body 320 is connected to the main floating body 310 through a corresponding connecting body 330, the plurality of sub-floating bodies 320 can assist the main floating body 310 in supporting components such as the tower 10, thereby improving the supporting capacity and stability performance of the wind turbine foundation.
  • the vibration suppression system 200 includes a vibration suppression device 210, a first collector and a controller 220.
  • the first collector can obtain the floating body vibration acceleration of the support assembly 300.
  • the vibration suppression device 210 includes a base 211, a mounting frame 212, a rotating disk 213 and a driving component 214, the rotating disk 213 can rotate at a high speed relative to the mounting frame 212 with the first axis aa as the rotation center under the drive of the driving component 214.
  • the mounting frame 212 is rotatably connected to the base 211 and can rotate relative to the base 211 with the second axis bb intersecting the first axis aa as the rotation center.
  • the controller 220 can control the driving component 214 to drive the rotating disk 213 to rotate to a predetermined speed according to the floating body vibration acceleration obtained by the first collector. Since the rotating disk 213 has a certain mass, when driven by the driven component 214 to rotate at a high speed, it has a large moment of inertia for the rotating axis extending along the extension direction of the first axis aa, and remains stable in the inertial space and points to a fixed direction.
  • the setting of the first collector and the controller 220 can realize the automatic control of the wind turbine foundation and improve the response speed of the wind turbine foundation in the vibration suppression work.
  • the support assembly 300 also includes a reinforcement body 340, and a reinforcement body 340 is connected between each two adjacent sub-floating bodies 320, and the connecting body 330 and the reinforcement body 340 are rod-shaped structures.
  • the reinforcement body 340 can be used to connect two adjacent floating bodies, thereby improving the overall bearing capacity of the support assembly 300.
  • each sub-floating body 320 is provided with a vibration suppression device 210.
  • the controller 220 is configured to control the driving component 214 of at least one vibration suppression device on the support assembly 300 to drive the rotating disk 213 to rotate to a predetermined speed according to the vibration acceleration of the floating body.
  • the wind turbine foundation provided in the embodiment of the present application, through the above arrangement, enables the main floating body 310 to have the same bearing capacity at all locations, thereby improving the stability performance.
  • the wind turbine foundation provided in the embodiments of the present application, the base 211 of the vibration suppression device 210 includes a bottom wall 211a and a side wall 211b connected to the bottom wall 211a, the bottom wall 211a and the side wall 211b together enclose a cavity 211c, and the mounting frame 212 at least partially extends into the cavity 211c and is rotatably connected to the side wall 211b through a rotating shaft.
  • the concave cavity 211c of the base 211 can be in a U-shape with one side open.
  • the bottom wall 211a and the side wall 211b of the base 211 can both be in a regular plate-like structure.
  • the bottom wall 211a and the side wall 211b of the base 211 can both be in a plate-like structure, and the bottom wall 211a is vertically connected to the side wall 211b on both sides of the extension direction of the second axis bb.
  • the two side walls 211b are symmetrically distributed relative to the first axis aa.
  • the fan foundation provided in the embodiment of the present application has a base 211 of a vibration suppression device 210 that is formed by a bottom wall 211a and a side wall 211b enclosing a concave cavity 211c, which has a simple structure, and the bottom wall 211a facilitates contact with the fan body 100, thereby ensuring stability on the fan body 100.
  • the setting of the concave cavity 211c facilitates the insertion of the mounting frame 212 and the rotational connection with the base 211, and makes the vibration suppression device 210 compact, reduces the overall occupied volume, and thus reduces or avoids the limitation of the vibration suppression device 210 on the installation space of the fan body 100.
  • the mounting frame 212 can be a disk or a hollow disk-shaped structure in the shape of a polygon. When a polygon is used, a polygon can be selected.
  • the mounting frame 212 can be provided with a connecting shaft 216 extending along the second axis bb.
  • the mounting frame 212 is rotatably connected to the base 211 through the connecting shaft 216 and rotates relative to the base 211 with the second axis bb as the rotation center.
  • the optional mounting frame 212 is rotatably connected to the two side walls 211b through the connecting shaft 216.
  • a gap is formed between the mounting frame 212 itself and the base 211 to prevent the mounting frame 212 from having friction interference with the base 211 bracket during the rotation relative to the base 211.
  • the mounting frame 212 has a hollow cavity 212a
  • the rotating disk 213 is located in the hollow cavity 212a and connected to the driving component 214
  • the hollow cavity 212a is in a vacuum state.
  • the rotating disk 213 is in the shape of a disk
  • the output end of the driving component 214 is connected to the output shaft 215
  • the driving component 214 is located outside the mounting frame 212 and is connected to the center of the rotating disk 213 through the output shaft 215 to drive the rotating disk 213 to rotate.
  • the rotating disk 213 adopts the above-mentioned structural form, so that the shape is regular and the vibration suppression effect is good, and the output shaft 215 can be understood as the aforementioned rotating shaft.
  • the mounting frame 212 may be a hollow disc structure.
  • the rotating disc 213 and the mounting frame 212 may be coaxially arranged, the output shaft 215 extends from the center of the mounting frame 212 and is connected to the rotating disc 213, and the driving component 214 may be located at the center of the mounting frame 212 and drive the rotating disc 213 to rotate.
  • the rotating disk 213 may be an axisymmetric rigid structure with uniform mass distribution, and may be made of metal material to achieve good vibration suppression effect.
  • both ends of the output shaft 215 in its extension direction can be inserted into the rotating disk 213 and rotatably cooperate with the rotating disk 213 , and the output shaft 215 is supported by the rotating disk 213 .
  • the vibration suppression device 210 is an axisymmetric structure relative to the first axis aa.
  • the driving component 214 may be a motor or other structure, which can drive the rotating disk 213 to rotate at a high speed to optimize the vibration suppression effect.
  • an electric control cabinet may be provided in the nacelle 20 or the tower 10, and at least one of the vibration suppression device 210, the collector and the controller 220 is electrically connected to the electric control cabinet.
  • the controller 220 can be integrated into the electric control cabinet, which can be protected by the cabinet body and improve the compactness, which is conducive to the control of the vibration suppression device 210.
  • the wind turbine foundation provided by the embodiment of the present application has three sub-floating bodies 320, and the second axes bb of the vibration suppression devices 210 provided on each sub-floating body 320 are intersected.
  • the vibration suppression devices 210 on each sub-floating body 320 can work together to ensure the vibration suppression effect.
  • the floating body vibration acceleration includes a first direction rotation acceleration ⁇ around a first direction X and a second direction rotation acceleration ⁇ around a second direction Y, the first direction X and the second direction Y are perpendicular to each other
  • the three vibration suppression devices 210 respectively include a first vibration suppression device 210a, a second vibration suppression device 210b and a third vibration suppression device 210c
  • the second axis bb of the first vibration suppression device 210a extends along the center line direction of the sub-floating body 320 where the first vibration suppression device 210a is located and the sub-floating body 320 where the third vibration suppression device 210c is located
  • the second axis bb of the second vibration suppression device 210b extends along the center line direction of the sub-floating body 320 where the second vibration suppression device 210b is located and the sub-floating body 320 where the third vibration suppression device 210 210
  • the rotating disk 213 of the first vibration suppression device 210a and the second vibration suppression device 210b is controlled to rotate within the first speed range, that is, 0 ⁇ n ⁇ A
  • the rotating disk 213 of the third vibration suppression device 210c is controlled to rotate within the second speed range, that is, A ⁇ n ⁇ B
  • the minimum value of the second speed range is greater than the maximum value of the first speed range.
  • the rotating disks 213 of the first vibration suppression device 210a, the second vibration suppression device 210b and the third vibration suppression device 210c are controlled to rotate within the second speed range, that is, A ⁇ n ⁇ B.
  • the m value, k value and L value can be set according to the wind turbine foundation, the wind farm environment where the wind turbine generator set is located, and the vibration limit that the corresponding model of the unit can withstand.
  • the m value can be 0.04g
  • the k value can be 0.06g
  • the L value can be 0.08g.
  • the m value can also be greater than or less than 0.04
  • the k value can be greater than or less than 0.06g
  • similarly, the L value can also be greater than or less than 0.08g.
  • the value of A may be 20000 rpm, and the value of B may be 35000 rpm.
  • the value of the first speed range may be: 0 ⁇ n ⁇ 20000 rpm.
  • the value of the second speed range may be: 20000 rpm ⁇ n ⁇ 35000 rpm.
  • the fan foundation provided in the embodiment of the present application, through the above-mentioned setting, enables the fan foundation to automatically suppress vibration according to the value of the rotational acceleration in the first direction X, and can provide corresponding methods according to different rotational accelerations in the first direction, so that the vibration suppression capability is matched with the vibration amplitude, avoiding the occurrence of under-suppression or over-suppression, and ensuring the vibration suppression effect.
  • the wind turbine foundation provided in the above embodiments, the controller 220 is further configured as follows:
  • the m value, L value, first speed range and second speed range are the same as above and will not be elaborated here.
  • the fan foundation provided in the embodiment of the present application adopts the above-mentioned setting, so that the fan foundation can automatically suppress vibration according to the value of the second direction rotational acceleration, and can provide corresponding methods according to different second direction rotational accelerations, so that the vibration suppression capability is matched with the vibration amplitude, avoiding the occurrence of under-suppression or over-suppression, and ensuring the vibration suppression effect.
  • the controller 220 may include a signal processing module and a real-time response module.
  • the signal processing module is configured to perform Fourier transform on the time domain data of the floating body vibration acceleration to obtain the spectrum data of the floating body acceleration, and the spectrum data may include the first-order spectrum data corresponding to the first direction rotation acceleration and the first-order spectrum data corresponding to the second direction rotation acceleration;
  • the real-time response module is configured to control the driving component 214 to drive the rotating disk 213 to rotate to a predetermined speed according to the spectrum data of the floating body vibration acceleration.
  • the above arrangement is helpful to match the rotation speed of the rotating disk 213 according to the vibration information of the supporting assembly 300 acquired by the first collector, thereby optimizing the vibration suppression effect.
  • the second axis bb of the first vibration suppression device 210a extends along the center line direction of the sub-floating body 320 where the first vibration suppression device 210a is located and the sub-floating body 320 where the third vibration suppression device 210c is located
  • the second axis bb of the second vibration suppression device 210b extends along the center line direction of the sub-floating body 320 where the second vibration suppression device 210b is located and the sub-floating body 320 where the third vibration suppression device 210c is located
  • the second axis bb of the third vibration suppression device 210c extends along the second direction Y.
  • the vibration acceleration of the floating body can also include a first direction rotation acceleration around a first direction X and a second direction rotation acceleration around a second direction Y, the first direction X and the second direction Y are perpendicular to each other, and the three vibration suppression devices 210 respectively include a first vibration suppression device 210a, a second vibration suppression device 210b and a third vibration suppression device 210c, the second axis bb of the first vibration suppression device 210a extends along the first direction X, the second vibration suppression device 210b extends along the second direction Y, and the second axis bb of the third vibration suppression device 210c extends along the center line direction of the sub-floating body 320 where the second vibration suppression device 210b is located and the sub-floating body 320 where the third vibration suppression device 210c is located; the controller 220 is configured as follows:
  • the rotating disk 213 of the third vibration suppression device 210c is controlled to rotate within the first speed range
  • the rotating disk 213 of the second vibration suppression device 210b is controlled to rotate within the second speed range, that is, 0 ⁇ n ⁇ A, and the minimum value of the second speed range is greater than the maximum value of the first speed range;
  • the m value, k value, L value, first speed range and second speed range are the same as above and will not be elaborated here.
  • the fan foundation provided in the embodiment of the present application, through the above-mentioned setting, enables the fan foundation to also realize automatic vibration suppression according to the value of the first-direction rotational acceleration, and can provide corresponding control methods according to different first-direction rotational accelerations, so that the vibration suppression capability is matched with the vibration amplitude, avoiding the occurrence of under-vibration suppression or over-vibration suppression, and ensuring the vibration suppression effect.
  • the controller 220 is further configured as follows:
  • the rotating disk 213 of the third vibration suppression device 210c is controlled to rotate within the first speed range, that is, 0 ⁇ n ⁇ A
  • the rotating disk 213 of the first vibration suppression device 210a is controlled to rotate within the second speed range, that is, A ⁇ n ⁇ B;
  • the m value, k value, L value, first speed range and second speed range are the same as above and will not be elaborated here.
  • the fan foundation provided in the embodiment of the present application adopts the above-mentioned setting, so that the fan foundation can also automatically suppress vibration according to the value of the second direction Y rotation acceleration, and can provide corresponding methods according to different second direction Y rotation accelerations, so that the vibration suppression capability is matched with the vibration amplitude, avoiding the occurrence of under-suppression or over-suppression, and ensuring the vibration suppression effect.
  • the wind turbine generator set provided in the embodiments of the present application includes the wind turbine foundation provided in the above embodiments, and the tower 10 of the wind turbine body 100 is connected to the main floating body 310 .
  • the wind turbine generator set provided in the embodiment of the present application because it includes the wind turbine foundation provided in the above embodiments, has an automatic vibration suppression function, a fast vibration suppression response speed, and high safety.
  • the wind turbine generator set provided in the embodiments of the present application, a vibration suppression device is provided on at least one of the tower 10 and the nacelle 20, and the vibration suppression system 200 also includes a second collector, which is configured to obtain the vibration acceleration of the nacelle 20 of the nacelle 20, and the controller 220 is also configured to control the driving component 214 of each vibration suppression device on the wind turbine body 100 to drive the rotating disk 213 to rotate to a predetermined speed according to the vibration acceleration of the nacelle 20.
  • the wind turbine generator set provided in the embodiment of the present application is provided with a vibration suppression device 210 on at least one of the tower 10 and the nacelle 20 of the wind turbine generator set, and the vibration suppression system 200 also includes a second collector, so that the controller 220 can also control the driving components 214 of each vibration suppression device 210 of the wind turbine body 100 according to the vibration acceleration information of the nacelle 20 obtained by the second collector, and drive the rotating disk 213 to rotate to a predetermined speed, so that the wind turbine foundation and the wind turbine body 100 can synchronously suppress vibration, thereby improving the overall stability of the wind turbine generator set and ensuring its power generation efficiency.
  • the wind turbine body 100 may be provided with more than two vibration suppression devices 210, and the more than two vibration suppression devices 210 are all provided in the nacelle 20.
  • at least one vibration suppression device 210 of the more than two vibration suppression devices 210 is located in the nacelle 20 and at least one vibration suppression device 210 is located at the top of the tower 10 near the nacelle 20.
  • more than two vibration suppression devices 210 may be located at the top of the tower 10 near the nacelle 20 , and the more than two vibration suppression devices 210 may be spaced apart along the circumference of the tower 10 and at the same height.
  • the signal processing module of the controller 220 may be further configured to perform Fourier transform on the time domain data of the vibration acceleration of the cabin 20 to obtain spectrum data of the vibration acceleration of the cabin 20, and the spectrum data may include first-order spectrum data of the vibration acceleration in the first direction and first-order spectrum data of the vibration acceleration in the second direction.
  • the real-time response module is further configured to control the driving component 214 of the corresponding vibration suppression device 210 on the fan body 100 to drive the rotating disk 213 to rotate to a predetermined speed according to the spectrum data of the cabin vibration acceleration.
  • the spectrum data of the vibration acceleration includes the first-order spectrum data of the nacelle 20 in the first direction X and the first-order spectrum data in the second direction Y; the controller 220 is configured as follows:
  • the driving components 214 of each vibration suppression device 210 on the fan body 100 are controlled to stop, so that the rotation speed of each rotating disk 213 relative to the mounting frame 212 is 0.
  • the w value and the p value can be set according to the wind farm environment where the wind turbine generator set is located and the vibration limit that the corresponding model of the wind turbine generator set can withstand.
  • the w value can be 0.06g and the p value can be 0.08g.
  • the w value can also be greater than or less than 0.06g, and similarly, the p value can also be greater than or less than 0.08g.
  • the value of the third speed can be 000rpm, and exemplary, the value of the fourth speed can be 35000rpm. It can be understood that the above is only an optional embodiment and is not limited to the above values. It can be set according to the wind farm environment in which the wind turbine is located and the vibration limit that the corresponding model of the unit can withstand.
  • the controller 220 is configured as the above-mentioned control method, and can control the driving component 214 of the vibration suppression device 210 at the corresponding position to drive the rotating disk 213 to rotate at a corresponding speed according to the first-order frequency domain values in the first direction X and the second direction Y, so as to realize the automatic vibration suppression of the wind turbine generator set, and can give the corresponding method according to different spectrum data, so that the vibration suppression ability is matched with the vibration amplitude, avoid the phenomenon of under-suppression or over-suppression, and ensure the vibration suppression effect.
  • each vibration suppression device 210 when the value of the first-order spectrum data in the first direction X is less than or equal to the value w, the driving component 214 of each vibration suppression device 210 can be controlled to stop, so that the rotation speed of each rotating disk 213 relative to the mounting frame 212 is 0.
  • the driving component 214 controls at least one vibration suppression device 210 to drive the rotating disk 213 to rotate at a third speed.
  • the at least one vibration suppression device 210 can be selected as a vibration suppression device 210 whose second axis bb extends along the second direction Y.
  • the driving component 214 controls at least one vibration suppression device 210 to drive the rotating disk 213 to rotate at a fourth speed, and the fourth speed is greater than the third speed.
  • the at least one vibration suppression device 210 can be selected as a vibration suppression device 210 whose second axis bb extends along the second direction Y.
  • each vibration suppression device 210 when the value of the first-order spectrum data in the second direction Y is less than or equal to the value w, the driving component 214 of each vibration suppression device 210 can be controlled to stop, so that the rotation speed of each rotating disk 213 relative to the mounting frame 212 is 0.
  • the driving component 214 controls at least one vibration suppression device 210 to drive the rotating disk 213 to rotate at a third speed.
  • the at least one vibration suppression device 210 can be selected as a vibration suppression device 210 whose second axis bb extends along the first direction X.
  • the driving component 214 controls at least one vibration suppression device 210 to drive the rotating disk 213 to rotate at a fourth speed, and the fourth speed is greater than the third speed.
  • the at least one vibration suppression device 210 can be selected as a vibration suppression device 210 whose second axis bb extends along the first direction X.
  • the embodiment of the present application further provides a control method for a wind turbine generator set, including:
  • the control method provided in the embodiment of the present application is used to control the wind turbine generator set provided in the above-mentioned embodiments.
  • automatic control of the vibration suppression function of the wind turbine generator set can be achieved, and the rotation speed of each vibration suppression device 210 is configured by the vibration acceleration of the floating body and the vibration acceleration of the nacelle 20, which can avoid the occurrence of under-suppression or over-suppression.
  • the method provided by the embodiment of the present application further includes:
  • the first-order spectrum data of the cabin 20 in the first direction X and the first-order spectrum data of the cabin 20 in the second direction Y and the first-order spectrum data of the support assembly 300 in the first direction X and the first-order spectrum data in the second direction Y are determined respectively according to the vibration acceleration of the floating body and the vibration acceleration of the cabin 20.
  • the control method provided by the embodiments of the present application when the first direction X and the second direction Y are perpendicular to each other, the three vibration suppression devices 210 respectively include a first vibration suppression device 210a, a second vibration suppression device 210b and a third vibration suppression device 210c, the second axis bb of the first vibration suppression device 210a extends along the center line direction of the sub-floating body 320 where the first vibration suppression device 210a is located and the sub-floating body 320 where the third vibration suppression device 210c is located, the second axis bb of the second vibration suppression device 210b extends along the center line direction of the sub-floating body 320 where the second vibration suppression device 210b is located and the sub-floating body 320 where the third vibration suppression device 210c is located, and the second axis bb of the third vibration suppression device 210c extends along the second direction Y, step S300 includes:
  • the rotating disk 213 of the first vibration suppression device 210a and the second vibration suppression device 210b is controlled to rotate within the first speed range, that is, 0 ⁇ n ⁇ A
  • the rotating disk 213 of the third vibration suppression device 210c is controlled to rotate within the second speed range, that is, A ⁇ n ⁇ B
  • the minimum value of the second speed range is greater than the maximum value of the first speed range.
  • the rotating disks 213 of the first vibration suppression device 210a, the second vibration suppression device 210b and the third vibration suppression device 210c are controlled to rotate within the second speed range, that is, A ⁇ n ⁇ B.
  • the m value, k value and L value can be set according to the wind turbine foundation, the wind farm environment where the wind turbine generator set is located, and the vibration limit that the corresponding model of the unit can withstand.
  • the m value can be 0.04g
  • the k value can be 0.06g
  • the L value can be 0.08g.
  • the m value can also be greater than or less than 0.04
  • the k value can be greater than or less than 0.06g
  • similarly, the L value can also be greater than or less than 0.08g.
  • the value of A may be 20000 rpm, and the value of B may be 35000 rpm.
  • the value of the first speed range may be: 0 ⁇ n ⁇ 20000 rpm.
  • the value of the second speed range may be: 20000 rpm ⁇ n ⁇ 35000 rpm.
  • the control method provided in the embodiment of the present application through the above-mentioned settings, enables the wind turbine generator set to realize automatic vibration suppression according to the value of the rotational acceleration of the wind turbine foundation in the first direction X, and can provide corresponding methods according to different rotational accelerations in the first direction X, so that the vibration suppression capability is matched with the vibration amplitude, avoiding the occurrence of under-suppression or over-suppression, and ensuring the vibration suppression effect.
  • step S300 further includes:
  • the m value, L value, first speed range and second speed range are the same as above and will not be elaborated here.
  • the three vibration suppression devices 210 respectively include a first vibration suppression device 210a, a second vibration suppression device 210b and a third vibration suppression device 210c
  • the second axis bb of the first vibration suppression device 210a extends along the first direction X
  • the second vibration suppression device 210b extends along the second direction Y
  • the second axis bb of the third vibration suppression device 210c extends along the center line direction of the sub-floating body 320 where the second vibration suppression device 210b is located and the sub-floating body 320 where the third vibration suppression device 210c is located
  • step S300 includes:
  • the rotating disk 213 of the third vibration suppression device 210c is controlled to rotate within the first speed range
  • the rotating disk 213 of the second vibration suppression device 210b is controlled to rotate within the second speed range, that is, 0 ⁇ n ⁇ A, and the minimum value of the second speed range is greater than the maximum value of the first speed range;
  • the m value, k value, L value, first speed range and second speed range are the same as above and will not be repeated here.
  • the control method provided in the embodiment of the present application through the above settings, enables the control method to also realize automatic vibration suppression according to the value of the rotational acceleration in the first direction X, and can provide corresponding control modes according to different rotational accelerations in the first direction X, so that the vibration suppression capability is matched with the vibration amplitude, avoiding the occurrence of under-suppression or over-suppression, and ensuring the vibration suppression effect.
  • step S300 further includes:
  • the rotating disk 213 of the third vibration suppression device 210c is controlled to rotate within the first speed range, that is, 0 ⁇ n ⁇ A
  • the rotating disk 213 of the first vibration suppression device 210a is controlled to rotate within the second speed range, that is, A ⁇ n ⁇ B;
  • the m value, k value, L value, first speed range and second speed range are the same as above and will not be elaborated here.
  • the control method provided in the embodiment of the present application adopts the above-mentioned setting, so that the control method can also automatically suppress vibration according to the value of the second direction Y rotation acceleration, and can provide corresponding methods according to different second direction Y rotation accelerations, so that the vibration suppression capability is matched with the vibration amplitude, avoiding the occurrence of under-suppression or over-suppression, and ensuring the vibration suppression effect.
  • step S300 further includes:
  • the driving components 214 of each vibration suppression device 210 on the fan body 100 are controlled to stop, so that the rotation speed of each rotating disk 213 relative to the mounting frame 212 is 0.
  • the w value and the p value can be set according to the wind farm environment where the wind turbine generator set is located and the vibration limit that the corresponding model of the wind turbine generator set can withstand.
  • the w value can be 0.06g and the p value can be 0.08g.
  • the w value can also be greater than or less than 0.06g, and similarly, the p value can also be greater than or less than 0.08g.
  • the value of the third speed can be 20000 rpm, and exemplary, the value of the fourth speed can be 35000 rpm. It can be understood that the above is only an optional embodiment and is not limited to the above values. It can be set according to the wind farm environment in which the wind turbine is located and the vibration limit that the corresponding model of the unit can withstand.
  • the control method provided in the embodiment of the present application and the above control mode can control the driving component 214 of the vibration suppression device 2102 at the corresponding position to drive the rotating disk 213 to rotate at a corresponding speed according to the first-order frequency domain values of the first direction X and the second direction Y, so as to realize the automatic vibration suppression of the wind turbine generator set, and can give a corresponding mode according to different frequency spectrum data, so that the vibration suppression ability is matched with the vibration amplitude, avoid the occurrence of under-suppression or over-suppression, and ensure the vibration suppression effect.
  • each vibration suppression device 210 when the value of the first-order spectrum data in the first direction X is less than or equal to the value w, the driving component 214 of each vibration suppression device 210 can be controlled to stop, so that the rotation speed of each rotating disk 213 relative to the mounting frame 212 is 0.
  • the driving component 214 controls at least one vibration suppression device 2102 to drive the rotating disk 213 to rotate at a third speed.
  • the at least one vibration suppression device 210 can be selected as a vibration suppression device 210 whose second axis bb extends along the second direction Y.
  • the driving component 214 controls at least one vibration suppression device 210 to drive the rotating disk 213 to rotate at a fourth speed, and the fourth speed is greater than the third speed.
  • the at least one vibration suppression device 210 can be selected as a vibration suppression device 210 whose second axis bb extends along the second direction Y.
  • each vibration suppression device 210 when the value of the first-order spectrum data in the second direction Y is less than or equal to the value w, the driving component 214 of each vibration suppression device 210 can be controlled to stop, so that the rotation speed of each rotating disk 213 relative to the mounting frame 212 is 0.
  • the driving component 214 that controls at least one vibration suppression device 210 drives the rotating disk 213 to rotate at a third speed.
  • the at least one vibration suppression device 210 can be selected as a vibration suppression device 210 whose second axis bb extends along the first direction X.
  • the driving component 214 controls at least one vibration suppression device 210 to drive the rotating disk 213 to rotate at a fourth speed, and the fourth speed is greater than the third speed.
  • the at least one vibration suppression device 210 is selected as a vibration suppression device 210 whose second axis bb extends along the first direction X.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Sustainable Development (AREA)
  • Ocean & Marine Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Civil Engineering (AREA)
  • Architecture (AREA)
  • Wind Motors (AREA)

Abstract

一种风机基础、风力发电机组以及控制方法,风机基础包括支撑组件(300)和抑振系统,支撑组件(300)包括主漂浮体(310)、间隔分布的多个子漂浮体(320)以及连接体(330),每个子漂浮体(320)通过对应的连接体(330)与主漂浮体(310)连接,主漂浮体(310)与塔架(10)连接;抑振系统包括抑振装置(210)、第一采集器以及控制器(220),多个子漂浮体(320)中至少两个子漂浮体(320)连接有抑振装置(210);抑振装置(210)包括基座(211)、安装架(212)、转动盘(213)以及驱动部件(214),控制器(220)根据浮体振动加速度控制各抑振装置(210)的驱动部件(214)驱动转动盘(213)转动至预定转速。风机基础自身具有抑振功能,响应速度快,抑振效果好。

Description

风机基础、风力发电机组以及控制方法
相关申请的交叉引用
本申请要求享有于2022年09月30日提交的中国专利申请第202211215335.6号的优先权,该申请的全部内容通过引用并入本文中。
技术领域
本申请涉及风电技术领域,特别是涉及一种风机基础、风力发电机组以及控制方法。
背景技术
漂浮式风力发电机组与陆上机组、海上单桩固定式基础存在巨大的差异,从外部荷载方面,将面临风载、浪载、洋流荷载、冰载等,从整机动力学方面,由于漂浮式风力发电机组“漂浮”特性,漂浮式风力发电机组具有全方位六自由度,平动的纵荡、橫荡、垂荡以及转动横摇、纵遥、首摇。
在外部荷载随机性及机组自身运动复杂性等交织耦合作用下,使得漂浮式风力发电机组的分线性特征更趋复杂。用于承载风机本体的风机基础的稳定性直接影响风机本体叶片的气动入流角,直接与机组发电量相关,因此,如何保证漂浮式风力发电机组的稳定性是风电领域亟待解决的问题之一。
发明内容
本申请实施例提供本申请实施例提供一种风机基础、风力发电机组以及控制方法,风机基础自身具有抑振功能,响应速度快,抑振效果好。
一方面,根据本申请实施例提出了一种风机基础,用于支撑塔架,风机基础包括:支撑组件,包括主漂浮体、多个子漂浮体以及对应每一个子漂浮体设置的连接体,多个子漂浮体围绕主漂浮体间隔分布,每个子漂浮体通过对应的连接体与主漂浮体连接,主漂浮体用于与塔架连接;抑振系 统,包括抑振装置、第一采集器以及控制器,多个子漂浮体中至少两个子漂浮体连接有抑振装置;抑振装置包括基座、安装架、转动盘以及驱动部件,驱动部件连接于安装架并能够驱动转动盘以第一轴线为转动中心相对安装架转动,安装架与基座转动连接并能够以第二轴线为转动中心相对基座转动,第一轴线以及第二轴线相交设置;第一采集器被配置为获取支撑组件的浮体振动加速度;控制器被配置为根据浮体振动加速度控制支撑组件上各抑振装置的驱动部件驱动转动盘转动至预定转速。
另一个方面,根据本申请实施例提供一种风力发电机组,包括:
上述的风机基础;
风机本体,包括塔架以及设置于塔架上的机舱,塔架连接于风机基础的主漂浮体上。
根据本申请实施例的另一个方面,塔架以及机舱的至少一者上设置有抑振装置,抑振系统还包括第二采集器,第二采集器被配置获取机舱的机舱振动加速度,控制器还被配置根据机舱振动加速度控制风机本体上各抑振装置的驱动部件驱动转动盘转动至预定速度。
根据本申请实施例的另一个方面,风机本体上设置又两个以上抑振装置,两个以上抑振装置均设置于机舱;或者,两个以上抑振装置中至少一个抑振装置位于机舱且至少一个抑振装置位于塔架靠近机舱的顶部;或者,两个以上抑振装置均位于塔架靠近机舱的顶部,两个以上抑振装置沿塔架的周向间隔分布且各抑振装置所在高度相同。
又一方面,根据本申请实施例提供一种风力发电机组的控制方法,
配置上述的风力发电机组;
分别获取支撑组件的浮体振动加速度以及机舱的机舱振动加速度;
根据浮体振动加速度以及机舱振动加速度配置各抑振装置的转速。
根据本申请实施例的又一个方面,在根据浮体振动加速度以及机舱振动加速度配置各抑振装置的转速的步骤之前,控制方法还包括:
根据浮体振动加速度以及机舱振动加速度,分别确定机舱在第一方向的一阶频谱数据、在第二方向上的一阶频谱数据以及支撑组件在第一方向的一阶频谱数据、在第二方向的一阶频谱数据。
根据本申请实施例提供的风机基础、风力发电机组以及控制方法,风机基础包括支撑组件以及抑振系统,支撑组件包括主漂浮体以及多个子漂浮体,通过主漂浮体能够用于与塔架连接,由于多个子漂浮体围绕主漂浮体间隔分布,且每个子漂浮体通过对应的连接体与主漂浮体连接,能够通过多个子漂浮体辅助主漂浮体支撑塔架等部件,提高风机基础的支撑能力 以及稳定性能。
同时,抑振系统包括抑振装置、第一采集器以及控制器。当风机基础及其所支撑的结构发生振动时,通过第一采集器能够获取支撑组件的浮体振动加速度,抑振装置包括基座、安装架、转动盘以及驱动部件,转动盘在驱动部件的驱动下可以以第一轴线为转动中心相对安装架高速旋转,同时,安装架与基座转动连接并能够以与第一轴线相交的第二轴线为转动中心相对于基座转动,控制器可以根据第一采集器获取的浮体振动加速度控制驱动部件驱动转动盘转动至预定转速,由于转动盘具有一定的质量,在被驱动部件驱动高速旋转运动时对沿第一轴线延伸方向延伸的旋转轴有较大的转动惯量,在惯性空间内中保持稳定不变,指向固定一个方向。当外部存在扰动时,由于其存在进动性,会产生与外力矩相垂直的作用矩,进而保持惯性空间沿第一轴线延伸的旋转轴的稳定,同时抑制结构的振动,保证风机基础及其所应用的风力发电机组的安全性能。并且第一采集器以及控制器的设置,能够实现风机基础的自动控制,提高风机基础在抑振工作中的响应速度。
附图说明
下面将参考附图来描述本申请示例性实施例的特征、优点和技术效果。
图1是本申请一个实施例的风力发电机组的结构示意图;
图2是本申请一个实施例的风机基础的结构示意图;
图3是本申请一个实施例的抑振装置的结构示意图;
图4是本申请一个实施例的抑振装置的侧视图;
图5是本申请一个实施例风力发电机组的控制逻辑图;
图6是本申请另一个实施例的风机基础的结构示意图;
图7是本申请另一个实施例风力发电机组的控制逻辑图;
图8是本申请另一个实施例的风机本体的结构示意图;
图9是本申请又一个实施例的风机本体的结构示意图;
图10是本申请一个实施例的控制方法的流程图。
100-风机本体;10-塔架;20-机舱;30-发电机;40-叶轮;41-轮毂;42-叶片;50-系泊系统;60-海床;
210-抑振装置;210a-第一抑振装置;210b-第二抑振装置;210c-第三抑振装置;211-基座;211a-底壁;211b-侧壁;211c-凹腔;212-安装架;212a-中空腔;213-转动盘;214-驱动部件;215-输出轴;216-连接轴;220-控制器;
300-支撑组件;310-主漂浮体;320-子漂浮体;330-连接体;340-加强体;
X-第一方向;Y-第二方向;aa-第一轴线;bb-第二轴线。
在附图中,相同的部件使用相同的附图标记。附图并未按照实际的比例绘制。
具体实施方式
下面将详细描述本申请的各个方面的特征和示例性实施例。在下面的详细描述中,提出了许多具体细节,以便提供对本申请的全面理解。但是,对于本领域技术人员来说很明显的是,本申请可以在不需要这些具体细节中的一些细节的情况下实施。下面对实施例的描述仅仅是为了通过示出本申请的示例来提供对本申请的更好的理解。在附图和下面的描述中,至少部分的公知结构和技术没有被示出,以便避免对本申请造成不必要的模糊;并且,为了清晰,可能夸大了部分结构的尺寸。此外,下文中所描述的特征、结构或特性可以以任何合适的方式结合在一个或更多实施例中。
如图1所示,本申请实施例提供一种风力发电机组,包括风机基础以及风机本体,风机本体100包括塔架10、机舱20、发电机30以及叶轮40。塔架10连接于风机基础,机舱20设置于塔架10的顶端,发电机30设置于机舱20。一些示例中,发电机30可以位于机舱20的外部,当然,在有些示例中,发电机30也可以位于机舱20的内部。叶轮40包括轮毂41以及连接于轮毂41上的多个叶片42。叶轮40通过轮毂41与发电机的转子连接,进而带动转子相对定子转动,实现风力发电机组的发电需求。风机基础漂浮于海水中,为了限制其运动范围,通过系泊系统50固接于海床60,实现一定运动范围的约束。
由于风机基础的稳定性直接影响风机本体叶片的气动入流角,直接与机组发电量相关,因此,如何保证漂浮式风力发电机组的稳定性是风电领域亟待解决的问题之一。
已有的风机基础,主要通过动力水泵调控不同浮体舱内的水位,进而调整整机的中心位置,实现稳定性的调节。这种技术手段存在一些缺点,例如,由于巨大调节水量的需求导致系统响应速度慢,且大流量压载水调节系统成本较高。
基于此,本申请实施例还提供一种新的风机基础,风机基础自身具有抑振功能,响应速度快,抑振效果好。
如图1至图4所示,本申请实施例提供的风机基础,用于支撑塔架10,风机基础包括支撑组件300以及抑制系统,支撑组件300包括主漂浮体310、多个子漂浮体320以及对应每一个子漂浮体320设置的连接体330,多个子漂浮体320围绕主漂浮体310间隔分布,每个子漂浮体320通过对应的连接体330与主漂浮体310连接,主漂浮体310用于与塔架10连接。抑振系统200包括抑振装置210、第一采集器以及控制器220,多个子漂浮体320中至少两个子漂浮体320连接有抑振装置210。
抑振装置210包括基座211、安装架212、转动盘213以及驱动部件214,驱动部件214连接于安装架212并能够驱动转动盘213以第一轴线aa为转动中心相对安装架212转动,安装架212与基座211转动连接并能够以第二轴线bb为转动中心相对基座211转动,第一轴线aa以及第二轴线bb相交设置。第一采集器被配置为获取支撑组件300的浮体振动加速度,控制器220被配置为根据浮体振动加速度控制支撑组件300上各抑振装置的驱动部件214驱动转动盘213转动至预定转速。
支撑组件300所包括的主漂浮体310的数量可以为一个,一个主漂浮体310可以为实心或者空心的柱状结构。可选地,主漂浮体310可以为圆柱状或者棱柱状。
支撑组件300所包括的子漂浮体320的数量可以为三个、四个甚至更多个。可选地,多个子漂浮体320在主漂浮体310的周向上间隔分布,可选为间隔且均匀分布。
示例性地,子漂浮体320的数量可以为三个,三个子漂浮体320在主漂浮体310的周向上间隔且均匀设置。
子漂浮体320可以为实心或者空心的柱状结构。可选地,子漂浮体320可以为圆柱状或者棱柱状。子漂浮体320的形状可以与主漂浮体310的形状以及尺寸相同,当然,子漂浮体320的尺寸也可以小于主漂浮体 310的尺寸,可选为相同。
抑振系统200所包括的抑振装置210的数量可以为两个以上,当为两个以上时,两个以上抑振装置210彼此可以间隔设置,可以在每个子漂浮体320上设置有一个抑振装置210。
连接体330的数量可以为多个,多个连接体330可以在主漂浮体310的周向间隔分布,各连接体330的一端均连接在主漂浮体310上,另一端沿主漂浮体310的径向上向远离主漂浮体310的方向辐射,每个连接体330背离主漂浮体310的一端均连接有子漂浮体320。
第一轴线aa与第二轴线bb之间相交的夹角可选为90°。
第一采集器以及控制器220可以集成在风力发电机组的风机本体100上,例如,可以将其设置于机舱20上,也可以将第一采集器设置于叶轮40,将控制器220设置于机舱20,当然,控制器220与风机本体100也可以采用分离设置远程控制方式均可。
本申请实施例提供的风机基础,风机基础包括支撑组件300以及抑振系统,支撑组件300包括主漂浮体310以及多个子漂浮体320,通过主漂浮体310能够用于与塔架10连接,由于多个子漂浮体320围绕主漂浮体310间隔分布,且每个子漂浮体320通过对应的连接体330与主漂浮体310连接,能够通过多个子漂浮体320辅助主漂浮体310支撑塔架10等部件,提高风机基础的支撑能力以及稳定性能。
同时,抑振系统200包括抑振装置210、第一采集器以及控制器220。当风机基础及其所支撑的结构发生振动时,通过第一采集器能够获取支撑组件300的浮体振动加速度,由于抑振装置210包括基座211、安装架212、转动盘213以及驱动部件214,转动盘213在驱动部件214的驱动下可以以第一轴线aa为转动中心相对安装架212高速旋转,同时,安装架212与基座211转动连接并能够以与第一轴线aa相交的第二轴线bb为转动中心相对于基座211转动,控制器220可以根据第一采集器获取的浮体振动加速度控制驱动部件214驱动转动盘213转动至预定转速,由于转动盘213具有一定的质量,在被驱动部件214驱动高速旋转运动时对沿第一轴线aa延伸方向延伸的旋转轴有较大的转动惯量,在惯性空间内中保持稳定不变,指向固定一个方向。当外部存在扰动时,由于其存在进动性,会产生与外力矩相垂直的作用矩,进而保持惯性空间沿第一轴线aa延伸的旋转轴的稳定,同时抑制结构的振动,保证风机基础及其所应用的风力发电机组的安全性能。并且第一采集器以及控制器220的设置,能够实现风机基础的自动控制,提高风机基础在抑振工作中的响应速度。
作为一些可选地实施例中,本申请实施例提供的风机基础,支撑组件300还包括加强体340,每相邻两个子漂浮体320之间连接有加强体340,连接体330以及加强体340分别为杆状结构体。通过设置加强体340,能够利用加强体340实现相邻两个漂浮体连接,提高支撑组件300整体的承载能力。
在一些可选地实施例中,子漂浮体320的数量为多个且彼此中心连线呈多边形,主漂浮体310的中心至各子漂浮体320的中心的距离相等,各子漂浮体320上均设置有抑振装置210,控制器220被配置为根据浮体振动加速度控制支撑组件300上至少一个抑振装置的驱动部件214驱动转动盘213转动至预定转速。
本申请实施例提供的风机基础,通过上述设置,使得主漂浮体310在各处的承载能力相同,提高稳定性能。
在一些可选地实施例中,本申请实施例提供的风机基础,其抑振装置210的基座211包括底壁211a以及连接于底壁211a的侧壁211b,底壁211a以及侧壁211b共同围合形成有凹腔211c,安装架212至少部分伸入凹腔211c并通过转轴与侧壁211b转动连接。
基座211的凹腔211c可以采用一侧开口的U形。基座211的底壁211a以及侧壁211b均可以采用规则的板状结构体。示例性地,可以使得基座211的底壁211a与侧壁211b均采用板状结构,底壁211a在第二轴线bb的延伸方向上的两侧均垂直连接有侧壁211b。两个侧壁211b相对于第一轴线aa对称分布。
本申请实施例提供的风机基础,其抑振装置210的基座211采用底壁211a以及侧壁211b围合形成凹腔211c的形式,结构简单,且底壁211a利于与风机本体100接触,保证在风机本体100上的平稳性。同时,凹腔211c的设置,利于安装架212的伸入以及与基座211之间的转动连接,且使得抑振装置210结构紧凑,减小整体的占用体积,进而降低或者避免抑振装置210受风机本体100安装空间的限制。
作为一些可选地实施例中,安装架212可以采用圆盘或者多边形状的空心盘状结构体,当采用多边形时,可选为多边形。安装架212上可以设置有沿第二轴线bb延伸的连接轴216,安装架212通过连接轴216与基座211转动连接并以第二轴线bb为转动中心相对于基座211转动。可选安装架212通过连接轴216与两个侧壁211b转动连接。安装架212自身与基座211的之间形成有间隙,避免安装架212在相对基座211转动过程中与基座211支架发生摩擦干涉现象。
在一些可选地实施例中,安装架212具有中空腔212a,转动盘213位于中空腔212a内并与驱动部件214连接,中空腔212a呈真空状态。通过上述设置,既能够通过安装架212对转动盘213进行防护。并且,使得转动盘213在安装架212内部转动时,能够减小转动盘213在安装架212内部的中间腔内高速旋转时的摩擦耗能。
在一些可选地实施例中,转动盘213呈圆盘状,驱动部件214的输出端连接有输出轴215,驱动部件214位于安装架212外并通过输出轴215于转动盘213的中心连接,以驱动转动盘213转动。转动盘213采用上述结构形式,使得形状规则,抑振动效果好,输出轴215可以理解为前述提及的旋转轴。
作为一些可选地实施例,安装架212可以采用空心的圆盘结构体。可选地,转动盘213与安装架212可以同轴设置,输出轴215由安装架212的中心伸入并与转动盘213连接,驱动部件214可以位于安装架212的中心位置并驱动转动盘213转动。通过上述设置,使得抑振装置210在风力发电机组非振动状态下的平衡设置,当发生振动时,能够快速响应,保证抑振要求。
在一些可选地实施例中,转动盘213可以采用质量分布均匀的、轴对称的刚性体结构,可选为金属材料制成,抑振效果好。
可选地,输出轴215在自身延伸方向上的两端可以插接在转动盘213并与转动盘213转动配合,通过转动盘213支撑输出轴215设置。
在一些可选地实施例中,抑振装置210相对于第一轴线aa为轴对称结构。通过上述设置,当外部存在扰动时,由于其存在进动性,更好的产生与外力矩相垂直的作用矩,有效的抑制结构的振动。
在一些可选地实施例中,驱动部件214可以采用电机等结构,能够驱动转动盘213高速运转,优化抑振效果。
在一些可选的实施例中,机舱20或者塔架10内可以设置有电控柜,抑振装置210、采集器以及控制器220中的至少一者与电控柜电连接。
通过在机舱20内设置电控柜,能够保证抑振装置210以及采集器等部件对电能的需求。一些可选地实施例中,可以将控制器220集成于电控柜,既能够通过柜体进行防护,同时能够提高紧凑性能,利于对抑振装置210的控制。
在一些可选地实施例中,本申请实施例提供的风机基础,子漂浮体320的数量为三个,各子漂浮体320上设置的抑振装置210的第二轴线bb 相交设置。通过上述设置,能够利用各子漂浮体320上的抑振装置210协同工作,保证抑振效果。
如图2至图5所示,作为一些可选地实施例,本申请实施例提供的风机基础,浮体振动加速度包括环绕第一方向X的第一方向转动加速度α以及环绕第二方向Y的第二方向转动加速度β,第一方向X以及第二方向Y彼此相垂直,三个抑振装置210分别包括第一抑振装置210a、第二抑振装置210b以及第三抑振装置210c,第一抑振装置210a的第二轴线bb沿第一抑振装置210a所在的子漂浮体320以及第三抑振装置210c所在的子漂浮体320的中心连线方向延伸,第二抑振装置210b的第二轴线bb沿第二抑振装置210b所在的子漂浮体320以及第三抑振装置210c所在的子漂浮的中心连线方向延伸,第三抑振装置210c的第二轴线bb沿第二方向Y延伸,控制器220被配置为:
当第一方向转动加速度对应的一阶频谱数据小于等于m时,控制第一抑振装置210a以及第二抑振装置210b的转动盘213静止,即n=0,n表示转速,并控制第三抑振装置210c的转动盘213在第一转速范围内转动即,0<n≤A。
当第一方向转动加速度对应的一阶频谱数据大于m且小于等于k时,控制第一抑振装置210a以及第二抑振装置210b的转动盘213在第一转速范围内转动,即0<n≤A,并控制第三抑振装置210c的转动盘213在第二转速范围内转动,即A<n≤B,第二转速范围的最小值大于第一转速范围的最大值。
当第一方向转动加速度对应的一阶频谱数据大于k且小于等于L时,控制第一抑振装置210a、第二抑振装置210b以及第三抑振装置210c的转动盘213均在第二转速范围内转动,即A<n≤B。
m值、k值以及L值具体可以根据风机基础以及风力发电机组所处的风场环境以及机组对应型号所能够承受的振动极限设置。示例性地,m值可以采用0.04g,k值可以采用0.06g,L值可以采用0.08g,当然,此为一种举例示意,在有些实施例中,其m值也可以大于或者小于0.04,k值可以大于或者小于0.06g,同样的,L值也可以大于或者小于0.08g。
A的取值可以为20000rpm,B的取值可以为35000rpm。示例性地,第一转速范围的取值可以为:0<n≤20000rpm。示例性地,第二转速范围的取值可以为:20000rpm<n≤35000rpm。
本申请实施例提供的风机基础,通过上述设置,使得风机基础能够根据第一方向X转动加速度的数值的自动化抑振,并且可以根据不同的第一 方向转动加速度给出相应方式,使得抑振能力与振动幅值相匹配,避免欠抑振或者过抑振的现象发生,保证抑振效果。
如图5所示,在一些可选地实施例中,上述实施例提供的风机基础,控制器220还被配置为:
当第二方向转动加速度对应的一阶频谱数据小于等于m时,控制第三抑振装置210c的转动盘213静止,即n=0,并控制第一抑振装置210a以及第二抑振装置210b的转动盘213在第一转速范围内转动,即0<n≤A;
当第二方向转动加速度对应的一阶频谱数据大于m且小于等于L时,控制第三抑振装置210c的转动盘213静止,即n=0,控制第一抑振装置210a、第二抑振装置210b的转动盘213均在第二转速范围内转动,即A<n≤B。
m值、L值、第一转速范围以及第二转速范围同上,在此不在赘述。
本申请实施例提供的风机基础,采用上述设置,使得风机基础能够根据第二方向转动加速度的数值的自动化抑振,并且可以根据不同的第二方向转动加速度给出相应方式,使得抑振能力与振动幅值相匹配,避免欠抑振或者过抑振的现象发生,保证抑振效果。
如图5所示,在一些可选地实施例中,控制器220可以包括信号处理模块以及实时响应模块。信号处理模块被配置为对浮体振动加速度的时域数据傅里叶变换获得浮体加速度的频谱数据,该频谱数据可以包括第一方向转动加速度对应的一阶频谱数据以及第二方向转动加速度对应的一阶频谱数据;实时响应模块被配置为根据浮体振动加速度的频谱数据控制驱动部件214驱动转动盘213转动至预定转速。
通过上述设置,利于根据第一采集器获取的支撑组件300的振动信息匹配转动盘213的转动速度,优化抑振效果。
可以理解的是,第一抑振装置210a的第二轴线bb沿第一抑振装置210a所在的子漂浮体320以及第三抑振装置210c所在的子漂浮体320的中心连线方向延伸,第二抑振装置210b的第二轴线bb沿第二抑振装置210b所在的子漂浮体320以及第三抑振装置210c所在的子漂浮的中心连线方向延伸,第三抑振装置210c的第二轴线bb沿第二方向Y延伸知识一种可选地实施方式,但不限于上述实施例。
如图6以及图7所示,在有些实施例中,同样可以使得浮体振动加速度包括环绕第一方向X的第一方向转动加速度以及环绕第二方向Y的第二方向转动加速度,第一方向X以及第二方向Y彼此相垂直,三个抑振装置210分别包括第一抑振装置210a、第二抑振装置210b以及第三抑振装置 210c,第一抑振装置210a的第二轴线bb沿第一方向X延伸,第二抑振装置210b沿第二方向Y延伸,第三抑振装置210c的第二轴线bb沿第二抑振装置210b所在的子漂浮体320以及第三抑振装置210c所在的子漂浮体320的中心连线方向延伸;控制器220被配置为:
当第一方向转动加速度对应的一阶频谱数据小于等于m时,控制第一抑振装置210a以及第三抑振装置210c的转动盘213静止,即n=0,控制第二抑振装置210b的转动盘213在第一转速范围内转动,即0<n≤A;
当第一方向转动加速度对应的一阶频谱数据大于m且小于等于k时,控制第一抑振装置210a的转动盘213静止,即n=0,控制第三抑振装置210c的转动盘213在第一转速范围内转动,并控制第二抑振装置210b的转动盘213在第二转速范围内转动,即0<n≤A,第二转速范围的最小值大于第一转速范围的最大值;
当第一方向转动加速度对应的一阶频谱数据大于k且小于等于L时,控制第一抑振装置210a的转动盘213静止即n=0,控制第三抑振装置210c的转动盘213以及第二抑振装置210b的转动盘213在第二转速范围内转动,即A<n≤B。
m值、k值、L值、第一转速范围以及第二转速范围同上,在此不在赘述。
本申请实施例提供的风机基础,通过上述设置,使得风机基础同样能够根据第一方向转动加速度的数值实现自动化抑振,并且可以根据不同的第一方向转动加速度给出相应控制方式,使得抑振能力与振动幅值相匹配,避免欠抑振或者过抑振的现象发生,保证抑振效果。
在一些可选地实施例中,当第一抑振装置210a的第二轴线bb沿第一方向X延伸,第二抑振装置210b的第二轴线bb沿第二方向Y延伸,第三抑振装置210c的第二轴线bb沿第二抑振装置210b所在的子漂浮体320以及第三抑振装置210c所在的子漂浮体320的中心连线方向延伸时,控制器220还被配置为:
当第二方向转动加速度对应的一阶频谱数据小于等于m时,控制第二抑振装置210b以及第三抑振装置210c的转动盘213静止,即n=0,并控制第一抑振装置210a的转动盘213在第一转速范围内转动,即0<n≤A;
当第二方向转动加速度对应的一阶频谱数据大于m且小于等于k时,控制第二抑振装置210b的转动盘213静止,即n=0,控制第三抑振装置210c的转动盘213在第一转速范围内转动,即0<n≤A,并控制第一抑振装置210a的转动盘213在第二转速范围内转动,即A<n≤B;
当第二方向转动加速度对应的一阶频谱数据大于k且小于等于L时,控制第二抑振装置210b的转动盘213静止,即n=0,控制第三抑振装置210c的转动盘213以及第一抑振装置210a的转动盘213在第二转速范围内转动,即A<n≤B。
m值、k值、L值、第一转速范围以及第二转速范围同上,在此不在赘述。
本申请实施例提供的风机基础,采用上述设置,使得风机基础同样能够根据第二方向Y转动加速度的数值的自动化抑振,并且可以根据不同的第二方向Y转动加速度给出相应方式,使得抑振能力与振动幅值相匹配,避免欠抑振或者过抑振的现象发生,保证抑振效果。
在一些可选地实施例中,本申请实施例提供的风力发电机组,包括上述各实施例提供的风机基础,风机本体100的塔架10连接于主漂浮体310上。
本申请实施例提供的风力发电机组,因包括上述各实施例提供的风机基础,具有自动抑振功能,抑振响应速度快,安全性高。
如图8以及图9所示,在一些可选地实施例中,本申请实施例提供的风力发电机组,塔架10以及机舱20的至少一者上设置有抑振装置,抑振系统200还包括第二采集器,第二采集器被配置获取机舱20的机舱20振动加速度,控制器220还被配置根据机舱20振动加速度控制风机本体100上各抑振装置的驱动部件214驱动转动盘213转动至预定速度。
本申请实施例提供的风力发电机组,通过使得风力发电机组的塔架10以及机舱20的至少一者上还设置有抑振装置210,并使得抑振系统200还包括第二采集器,使得控制器220还能够根据第二采集器获取的机舱20振动加速度信息控制风机本体100的各抑振装置210的驱动部件214,驱动转动盘213转动至预定速度,使得风机基础以及风机本体100能够同步抑振,提高风力发电机组整体的稳定性,保证其发电效益。
本申请实施例提供的风力发电机组,其风机本体100可以设置有两个以上抑振装置210,两个以上抑振装置210均设置于机舱20。当然,此为一种可选地实施方式,在有些实施例中,两个以上抑振装置210中至少一个抑振装置210位于机舱20且至少一个抑振装置210位于塔架10靠近机舱20的顶部。
在一些其他的示例中,还可以使得两个以上抑振装置210均位于塔架10靠近机舱20的顶部,两个以上抑振装置210沿塔架10的周向间隔分布且各抑振装置210所在高度相同。
在一些可选地实施例中,控制器220可以的信号处理模块还被配置为对机舱20振动加速度的时域数据傅里叶变换获得机舱20振动加速度的频谱数据,该频谱数据可以包括第一方向振动加速度的一阶频谱数据以及第二方向振动加速度的一阶频谱数据,实时响应模块还被配置为根据机舱振动加速度的频谱数据控制风机本体100上对应抑振装置210的驱动部件214驱动转动盘213转动至预定转速。
在一些可选地实施例中,本申请实施例提供的风力发电机组,其振动加速度的频谱数据包括机舱20在第一方向X的一阶频谱数据以及在第二方向Y上的一阶频谱数据;控制器220被配置为:
当机舱20在第一方向X的一阶频谱数据a以及第二方向Y上的一阶频谱数据a数值均小于等于w值时,控制风机本体100上各抑振装置210的驱动部件214停机,使得各转动盘213相对安装架212的转速为0。
当机舱20在第一方向X的一阶频谱数据以及第二方向Y上的一阶频谱数据数值中至少一者大于w且小于等于p时,控制风机本体100上至少一个抑振装置210的驱动部件214驱动转动盘213以第三转速转动,即n=C。
当机舱20在第一方向X的一阶频谱数据以及第二方向Y上的一阶频谱数据数值至少一者大于p时,控制风机本体100上至少一个抑振装置210的驱动部件214驱动转动盘213以第四转速转动,即n=D,第四转速大于第三转速。
w值以及p值具体可根据风力发电机组所处的风场环境以及机组对应型号所能够承受的振动极限设置。示例性地,w值可以采用0.06g,p值可以采用0.08g,当然,此为一种举例示意,在有些实施例中,其w值也可以大于或者小于0.06g,同样的,p值也可以大于或者小于0.08g。
示例性地,第三转速的取值可以为000rpm,示例性地,第四转速的取值可以为35000rpm,可以理解的是,上述仅是一种可选的实施例,不限于上述数值,可根据风力发电机组所处的风场环境以及机组对应型号所能够承受的振动极限设置。
如5以及图7所示,本申请实施例提供的风力发电机组,通过振动加速度的频谱数据包括风机本体100在第一方向X的一阶频谱数据ax以及在第二方向Y上的一阶频谱数据ay,控制器220被配置为上述控制方式,能够根据第一方向X以及第二方向Y的一阶频域数值来控制相应位置的抑振装置210的驱动部件214驱动转动盘213以对应的速度转动,实现风力发电机组的自动化抑振,并且可以根据不同的频谱数据给出相应方式,使 得抑振能力与振动幅值相匹配,避免欠抑振或者过抑振的现象发生,保证抑振效果。
一些可选地实施中,当第一方向X的一阶频谱数据数值小于等于w值时,可以控制各抑振装置210的驱动部件214停机,使得各转动盘213相对安装架212的转速为0。
当第一方向X的一阶频谱数据大于w且小于等于p时,控制至少一个抑振装置210的驱动部件214驱动转动盘213以第三转速转动,该至少一个抑振装置210可选为第二轴线bb沿第二方向Y延伸的抑振装置210。
当第一方向X的一阶频谱数据大于p时,控制至少一个抑振装置210的驱动部件214驱动转动盘213以第四转速转动,第四转速大于第三转速,该至少一个抑振装置210可选为第二轴线bb沿第二方向Y延伸的抑振装置210。
另一些可选地实施例中,当第二方向Y的一阶频谱数据数值小于等于w值时,可以控制各抑振装置210的驱动部件214停机,使得各转动盘213相对安装架212的转速为0。
当第二方向Y的一阶频谱数据大于w且小于等于p时,控制至少一个抑振装置210的驱动部件214驱动转动盘213以第三转速转动,该至少一个抑振装置210可选为第二轴线bb沿第一方向X延伸的抑振装置210。
当第二方向Y的一阶频谱数据大于p时,控制至少一个抑振装置210的驱动部件214驱动转动盘213以第四转速转动,第四转速大于第三转速,该至少一个抑振装置210可选为第二轴线bb沿第一方向X延伸的抑振装置210。
如图1至图10所示,又一方面,本申请实施例还提供风力发电机组的控制方法,包括:
S100、配置上述各实施例提供的风力发电机组;
S200、分别获取支撑组件300的浮体振动加速度以及机舱20的机舱振动加速度;
S300、根据浮体振动加速度以及机舱20振动加速度配置各抑振装置210的转速。
本申请实施例提供的控制方法,用于控制上述各实施例提供的风力发电机组,通过获取支撑组件300的浮体振动加速度以及风机本体100的机舱20振动加速度,能够实现风力发电机组抑振功能的自动控制,并且浮体振动加速度以及机舱20振动加速度配置各抑振装置210的转速,能够避免欠抑振或者过抑振现象的发生。
在一些可选地实施例中,在一些可选地实施例中,在步骤S300之前,本申请实施例提供的方法还包括:
根据所述浮体振动加速度以及所述机舱20振动加速度分别确定机舱20在第一方向X上的一阶频谱数据、在第二方向Y上的一阶频谱数据以及支撑组件300在第一方向X的一阶频谱数据、在第二方向Y的一阶频谱数据。
在一些可选地实施例中,本申请实施例提供的控制方法,当第一方向X以及第二方向Y彼此相垂直,三个抑振装置210分别包括第一抑振装置210a、第二抑振装置210b以及第三抑振装置210c,第一抑振装置210a的第二轴线bb沿第一抑振装置210a所在的子漂浮体320以及第三抑振装置210c所在的子漂浮体320的中心连线方向延伸,第二抑振装置210b的第二轴线bb沿第二抑振装置210b所在的子漂浮体320以及第三抑振装置210c所在的子漂浮的中心连线方向延伸,第三抑振装置210c的第二轴线bb沿第二方向Y延伸时,步骤S300,包括:
当支撑组件300在第一方向X的一阶频谱数据小于等于m时,控制第一抑振装置210a以及第二抑振装置210b的转动盘213静止,即n=0,n表示转速,并控制第三抑振装置210c的转动盘213在第一转速范围内转动即,0<n≤A;
当支撑组件300在第一方向X的一阶频谱数据大于m且小于等于k时,控制第一抑振装置210a以及第二抑振装置210b的转动盘213在第一转速范围内转动,即0<n≤A,并控制第三抑振装置210c的转动盘213在第二转速范围内转动,即A<n≤B,第二转速范围的最小值大于第一转速范围的最大值。
当支撑组件300在第一方向X的一阶频谱数据大于k且小于等于L时,控制第一抑振装置210a、第二抑振装置210b以及第三抑振装置210c的转动盘213均在第二转速范围内转动,即A<n≤B。
m值、k值以及L值具体可以根据风机基础以及风力发电机组所处的风场环境以及机组对应型号所能够承受的振动极限设置。示例性地,m值可以采用0.04g,k值可以采用0.06g,L值可以采用0.08g,当然,此为一种举例示意,在有些实施例中,其m值也可以大于或者小于0.04,k值可以大于或者小于0.06g,同样的,L值也可以大于或者小于0.08g。
A的取值可以为20000rpm,B的取值可以为35000rpm。示例性地,第一转速范围的取值可以为:0<n≤20000rpm。示例性地,第二转速范围的取值可以为:20000rpm<n≤35000rpm。
本申请实施例提供的控制方法,通过上述设置,使得风力发电机组能够根据风机基础在第一方向X转动加速度的数值实现自动化抑振,并且可以根据不同的第一方向X转动加速度给出相应方式,使得抑振能力与振动幅值相匹配,避免欠抑振或者过抑振的现象发生,保证抑振效果。
在一些可选地实施例中,基于上述实施例提供的控制方法,步骤S300还包括:
当支撑组件300在第二方向Y的一阶频谱数据小于等于m时,控制第三抑振装置210c的转动盘213静止,即n=0,并控制第一抑振装置210a以及第二抑振装置210b的转动盘213在第一转速范围内转动,即0<n≤A;
当支撑组件300在第二方向Y的一阶频谱数据大于m且小于等于L时,控制第三抑振装置210c的转动盘213静止,即n=0,控制第一抑振装置210a、第二抑振装置210b的转动盘213均在第二转速范围内转动,即A<n≤B。
m值、L值、第一转速范围以及第二转速范围同上,在此不在赘述。
在一些可选地实施例中,当第一方向X以及第二方向Y彼此相垂直,三个抑振装置210分别包括第一抑振装置210a、第二抑振装置210b以及第三抑振装置210c,第一抑振装置210a的第二轴线bb沿第一方向X延伸,第二抑振装置210b沿第二方向Y延伸,第三抑振装置210c的第二轴线bb沿第二抑振装置210b所在的子漂浮体320以及第三抑振装置210c所在的子漂浮体320的中心连线方向延伸时,步骤S300,包括:
当支撑组件300在第一方向X的一阶频谱数据小于等于m时,控制第一抑振装置210a以及第三抑振装置210c的转动盘213静止,即n=0,控制第二抑振装置210b的转动盘213在第一转速范围内转动,即0<n≤A。
当支撑组件300在第一方向X的一阶频谱数据大于m且小于等于k时,控制第一抑振装置210a的转动盘213静止,即n=0,控制第三抑振装置210c的转动盘213在第一转速范围内转动,并控制第二抑振装置210b的转动盘213在第二转速范围内转动,即0<n≤A,第二转速范围的最小值大于第一转速范围的最大值;
当支撑组件300在第一方向X的一阶频谱数据大于k且小于等于L时,控制第一抑振装置210a的转动盘213静止即n=0,控制第三抑振装置210c的转动盘213以及第二抑振装置210b的转动盘213在第二转速范围内转动,即A<n≤B。
m值、k值、L值、第一转速范围以及第二转速范围同上,在此不在 赘述。
本申请实施例提供的控制方法,通过上述设置,使得控制方法同样能够根据第一方向X转动加速度的数值实现自动化抑振,并且可以根据不同的第一方向X转动加速度给出相应控制方式,使得抑振能力与振动幅值相匹配,避免欠抑振或者过抑振的现象发生,保证抑振效果。
在一些可选地实施例中,当第一抑振装置210a的第二轴线bb沿第一方向X延伸,第二抑振装置210b沿第二方向Y延伸,第三抑振装置210c的第二轴线bb沿第二抑振装置210b所在的子漂浮体320以及第三抑振装置210c所在的子漂浮体320的中心连线方向延伸时,步骤S300还包括:
当支撑组件300在第二方向Y的一阶频谱数据小于等于m时,控制第二抑振装置210b以及第三抑振装置210c的转动盘213静止,即n=0,并控制第一抑振装置210a的转动盘213在第一转速范围内转动,即0<n≤A;
当支撑组件300在第二方向Y的一阶频谱数据大于m且小于等于k时,控制第二抑振装置210b的转动盘213静止,即n=0,控制第三抑振装置210c的转动盘213在第一转速范围内转动,即0<n≤A,并控制第一抑振装置210a的转动盘213在第二转速范围内转动,即A<n≤B;
当支撑组件300在第二方向Y的一阶频谱数据大于k且小于等于L时,控制第二抑振装置210b的转动盘213静止,即n=0,控制第三抑振装置210c的转动盘213以及第一抑振装置210a的转动盘213在第二转速范围内转动,即A<n≤B。
m值、k值、L值、第一转速范围以及第二转速范围同上,在此不在赘述。
本申请实施例提供的控制方法,采用上述设置,使得控制方法同样能够根据第二方向Y转动加速度的数值的自动化抑振,并且可以根据不同的第二方向Y转动加速度给出相应方式,使得抑振能力与振动幅值相匹配,避免欠抑振或者过抑振的现象发生,保证抑振效果。
在一些可选地实施例中,本申请上述各实施例提供的控制方法,步骤S300还包括:
当机舱20在第一方向X的一阶频谱数据ax以及第二方向Y上的一阶频谱数据ay数值均小于等于w值时,控制风机本体100上各抑振装置210的驱动部件214停机,使得各转动盘213相对安装架212的转速为0。
当机舱20在第一方向X的一阶频谱数据以及第二方向Y上的一阶频谱数据数值中至少一者大于w且小于等于p时,控制风机本体100上至少 一个抑振装置2102的驱动部件214驱动转动盘213以第三转速转动,即n=C。
当机舱20在第一方向X的一阶频谱数据以及第二方向Y上的一阶频谱数据数值至少一者大于p时,控制风机本体100上至少一个抑振装置210的驱动部件214驱动转动盘213以第四转速转动,即n=D,第四转速大于第三转速。
w值以及p值具体可根据风力发电机组所处的风场环境以及机组对应型号所能够承受的振动极限设置。示例性地,w值可以采用0.06g,p值可以采用0.08g,当然,此为一种举例示意,在有些实施例中,其w值也可以大于或者小于0.06g,同样的,p值也可以大于或者小于0.08g。
示例性地,第三转速的取值可以为20000rpm,示例性地,第四转速的取值可以为35000rpm,可以理解的是,上述仅是一种可选的实施例,不限于上述数值,可根据风力发电机组所处的风场环境以及机组对应型号所能够承受的振动极限设置。
本申请实施例提供的控制方法,上述控制方式,能够根据第一方向X以及第二方向Y的一阶频域数值来控制相应位置的抑振装置2102的驱动部件214驱动转动盘213以对应的速度转动,实现风力发电机组的自动化抑振,并且可以根据不同的频谱数据给出相应方式,使得抑振能力与振动幅值相匹配,避免欠抑振或者过抑振的现象发生,保证抑振效果。
一些可选地实施中,当第一方向X的一阶频谱数据数值小于等于w值时,可以控制各抑振装置210的驱动部件214停机,使得各转动盘213相对安装架212的转速为0。
当第一方向X的一阶频谱数据大于w且小于等于p时,控制至少一个抑振装置2102的驱动部件214驱动转动盘213以第三转速转动,该至少一个抑振装置210可选为第二轴线bb沿第二方向Y延伸的抑振装置210。
当第一方向X的一阶频谱数据大于p时,控制至少一个抑振装置210的驱动部件214驱动转动盘213以第四转速转动,第四转速大于第三转速,该至少一个抑振装置210可选为第二轴线bb沿第二方向Y延伸的抑振装置210。
另一些可选地实施例中,当第二方向Y的一阶频谱数据数值小于等于w值时,可以控制各抑振装置210的驱动部件214停机,使得各转动盘213相对安装架212的转速为0。
当第二方向Y的一阶频谱数据大于w且小于等于p时,控制至少一个抑振装置210的驱动部件214驱动转动盘213以第三转速转动,该至少一 个抑振装置210可选为第二轴线bb沿第一方向X延伸的抑振装置210。
当第二方向Y的一阶频谱数据大于p时,控制至少一个抑振装置210的驱动部件214驱动转动盘213以第四转速转动,第四转速大于第三转速,该至少一个抑振装置210选为第二轴线bb沿第一方向X延伸的抑振装置210。
虽然已经参考优选实施例对本申请进行了描述,但在不脱离本申请的范围的情况下,可以对其进行各种改进并且可以用等效物替换其中的部件。尤其是,只要不存在结构冲突,各个实施例中所提到的各项技术特征均可以任意方式组合起来。本申请并不局限于文中公开的特定实施例,而是包括落入权利要求的范围内的所有技术方案。

Claims (18)

  1. 一种风机基础,用于支撑塔架,所述风机基础包括:
    支撑组件,包括主漂浮体、多个子漂浮体以及对应每一个所述子漂浮体设置的连接体,多个所述子漂浮体围绕所述主漂浮体间隔分布,每个所述子漂浮体通过对应的所述连接体与所述主漂浮体连接,所述主漂浮体用于与所述塔架连接;
    抑振系统,包括抑振装置、第一采集器以及控制器,多个所述子漂浮体中至少两个所述子漂浮体连接有所述抑振装置;
    所述抑振装置包括基座、安装架、转动盘以及驱动部件,所述驱动部件连接于所述安装架并能够驱动所述转动盘以第一轴线为转动中心相对所述安装架转动,所述安装架与所述基座转动连接并能够以第二轴线为转动中心相对所述基座转动,所述第一轴线以及所述第二轴线相交设置;
    所述第一采集器被配置为获取所述支撑组件的浮体振动加速度;
    所述控制器被配置为根据所述浮体振动加速度控制所述支撑组件上各所述抑振装置的所述驱动部件驱动所述转动盘转动至预定转速。
  2. 根据权利要求1所述的风机基础,其中,所述支撑组件还包括加强体,每相邻两个所述子漂浮体之间连接有所述加强体,所述连接体以及所述加强体分别为杆状结构体。
  3. 根据权利要求1所述的风机基础,其中,所述子漂浮体的数量为多个且彼此中心连线呈多边形,所述主漂浮体的中心至各所述子漂浮体的中心的距离相等,各所述子漂浮体上均设置有所述抑振装置,所述控制器被配置为根据所述浮体振动加速度控制所述支撑组件上至少一个所述抑振装置的所述驱动部件驱动所述转动盘转动至预定转速。
  4. 根据权利要求3所述的风机基础,其中,所述子漂浮体的数量为三个,各所述子漂浮体上设置的所述抑振装置的第二轴线相交设置。
  5. 根据权利要求4所述的风机基础,其中,所述浮体振动加速度包括环绕第一方向的第一方向转动加速度以及环绕第二方向的第二方向转动 加速度,所述第一方向以及所述第二方向彼此相垂直,三个所述抑振装置分别包括第一抑振装置、第二抑振装置以及第三抑振装置,所述第一抑振装置的第二轴线沿所述第一抑振装置所在的子漂浮体以及所述第三抑振装置所在的子漂浮体的中心连线方向延伸,所述第二抑振装置的第二轴线沿所述第二抑振装置所在的子漂浮体以及所述第三抑振装置所在的子漂浮的中心连线方向延伸,所述第三抑振装置的第二轴线沿所述第二方向延伸,所述控制器被配置为:
    当所述第一方向转动加速度对应的一阶频谱数据小于等于m时,控制所述第一抑振装置以及所述第二抑振装置的所述转动盘静止并控制所述第三抑振装置的所述转动盘在第一转速范围内转动;
    当所述第一方向转动加速度对应的一阶频谱数据大于m且小于等于k时,控制所述第一抑振装置以及所述第二抑振装置的所述转动盘在所述第一转速范围内转动,并控制所述第三抑振装置的所述转动盘在第二转速范围内转动,所述第二转速范围的最小值大于所述第一转速范围的最大值;
    当所述第一方向转动加速度对应的一阶频谱数据大于k且小于等于L时,控制所述第一抑振装置、所述第二抑振装置以及所述第三抑振装置的所述转动盘均在所述第二转速范围内转动。
  6. 根据权利要求5所述的风机基础,其中,所述控制器还被配置为:
    当所述第二方向转动加速度对应的一阶频谱数据小于等于m时,控制所述第三抑振装置的所述转动盘静止,并控制所述第一抑振装置以及所述第二抑振装置的所述转动盘在所述第一转速范围内转动;
    当所述第二方向转动加速度对应的一阶频谱数据大于m且小于等于L时,控制所述第三抑振装置的所述转动盘静止,控制所述第一抑振装置、所述第二抑振装置的所述转动盘均在所述第二转速范围内转动。
  7. 根据权利要求4所述的风机基础,其中,所述浮体振动加速度包括环绕第一方向的第一方向转动加速度以及环绕第二方向的第二方向转动加速度,所述第一方向以及所述第二方向彼此相垂直,三个所述抑振装置分别包括第一抑振装置、第二抑振装置以及第三抑振装置,所述第一抑振装置的第二轴线沿所述第一方向延伸,所述第二抑振装置沿所述第二方向 延伸,所述第三抑振装置的第二轴线沿所述第二抑振装置所在的子漂浮体以及所述第三抑振装置所在的子漂浮体的中心连线方向延伸;所述控制器被配置为:
    当所述第一方向转动加速度对应的一阶频谱数据小于等于m时,控制所述第一抑振装置以及所述第三抑振装置的所述转动盘静止,控制所述第二抑振装置的所述转动盘在第一转速范围内转动;
    当所述第一方向转动加速度对应的一阶频谱数据大于m且小于等于k时,控制所述第一抑振装置的所述转动盘静止,控制所述第三抑振装置的所述转动盘在所述第一转速范围内转动,并控制所述第二抑振装置的所述转动盘在第二转速范围内转动,所述第二转速范围的最小值大于所述第一转速范围的最大值;
    当所述第一方向转动加速度对应的一阶频谱数据大于k且小于等于L时,控制所述第一抑振装置的所述转动盘静止,控制所述第三抑振装置的所述转动盘以及所述第二抑振装置的所述转动盘在所述第二转速范围内转动。
  8. 根据权利要求7所述的风机基础,其中,所述控制器还被配置为:
    当所述第二方向转动加速度对应的一阶频谱数据小于等于m时,控制所述第二抑振装置以及第三抑振装置的所述转动盘静止,并控制所述第一抑振装置的所述转动盘在所述第一转速范围内转动;
    当所述第二方向转动加速度对应的一阶频谱数据大于m且小于等于k时,控制所述第二抑振装置的所述转动盘静止,控制所述第三抑振装置的所述转动盘在所述第一转速范围内转动,并控制所述第一抑振装置的所述转动盘在第二转速范围内转动;
    当所述第二方向转动加速度对应的一阶频谱数据大于k且小于等于L时,控制所述第二抑振装置的所述转动盘静止,控制所述第三抑振装置的所述转动盘以及所述第一抑振装置的所述转动盘在所述第二转速范围内转动。
  9. 根据权利要求1至8任意一项所述的风机基础,其中,所述转动盘呈圆盘状且由金属材料制成,所述驱动部件的输出端连接有输出轴,所 述驱动部件位于所述安装架外并通过所述输出轴于所述转动盘的中心连接,以驱动所述转动盘转动;
    和/或,所述安装架具有中空腔,所述转动盘位于所述中空腔内并与所述驱动部件连接,所述中空腔呈真空状态。
  10. 一种风力发电机组,包括:
    如权利要求1至9任意一项所述的风机基础;
    风机本体,包括塔架以及设置于所述塔架上的机舱,所述塔架连接于所述风机基础的所述主漂浮体上。
  11. 根据权利要求10所述的风力发电机组,其中,所述塔架以及所述机舱的至少一者上设置有所述抑振装置,所述抑振系统还包括第二采集器,所述第二采集器被配置获取所述机舱的机舱振动加速度,所述控制器还被配置根据所述机舱振动加速度控制所述风机本体上各所述抑振装置的所述驱动部件驱动所述转动盘转动至预定速度。
  12. 一种风力发电机组的控制方法,包括:
    配置如权利要求10或11所述的风力发电机组;
    分别获取所述支撑组件的浮体振动加速度以及所述机舱的机舱振动加速度;
    根据所述浮体振动加速度以及所述机舱振动加速度配置各抑振装置的转速。
  13. 根据权利要求12所述的控制方法,其中:在根据所述浮体振动加速度以及所述机舱振动加速度配置各抑振装置的转速的步骤之前,所述控制方法还包括:
    根据所述浮体振动加速度以及所述机舱振动加速度,分别确定所述机舱在第一方向的一阶频谱数据、在第二方向上的一阶频谱数据以及所述支撑组件在第一方向的一阶频谱数据、在第二方向的一阶频谱数据。
  14. 根据权利要求13所述的控制方法,其中:当所述第一方向以及所述第二方向彼此相垂直,三个所述抑振装置分别包括第一抑振装置、第二抑振装置以及第三抑振装置,所述第一抑振装置的第二轴线沿所述第一抑振装置所在的子漂浮体以及所述第三抑振装置所在的子漂浮体的中心连线 方向延伸,所述第二抑振装置的第二轴线沿所述第二抑振装置所在的子漂浮体以及所述第三抑振装置所在的子漂浮的中心连线方向延伸,所述第三抑振装置的第二轴线沿所述第二方向延伸时,所述根据所述浮体振动加速度以及所述机舱振动加速度配置各抑振装置的转速的步骤,包括:
    当所述支撑组件在第一方向的一阶频谱数据小于等于m时,控制所述第一抑振装置以及所述第二抑振装置的所述转动盘静止并控制所述第三抑振装置的所述转动盘在第一转速范围内转动;
    当所述支撑组件在第一方向的一阶频谱数据大于m且小于等于k时,控制所述第一抑振装置以及所述第二抑振装置的所述转动盘在所述第一转速范围内转动,并控制所述第三抑振装置的所述转动盘在第二转速范围内转动,所述第二转速范围的最小值大于所述第一转速范围的最大值;
    当所述支撑组件在第一方向的一阶频谱数据大于k且小于等于L时,控制所述第一抑振装置、所述第二抑振装置以及所述第三抑振装置的所述转动盘均在所述第二转速范围内转动。
  15. 根据权利要求14所述的控制方法,其中:所述根据所述浮体振动加速度以及所述机舱振动加速度配置各抑振装置的转速的步骤,还包括:
    当所述支撑组件在第二方向的一阶频谱数据小于等于m时,控制所述第三抑振装置的所述转动盘静止,并控制所述第一抑振装置以及所述第二抑振装置的所述转动盘在所述第一转速范围内转动;
    当所述支撑组件在第二方向的一阶频谱数据大于m且小于等于L时,控制所述第三抑振装置的所述转动盘静止,控制所述第一抑振装置、所述第二抑振装置的所述转动盘均在所述第二转速范围内转动。
  16. 根据权利要求13所述的控制方法,其中:当所述第一方向以及所述第二方向彼此相垂直,三个所述抑振装置分别包括第一抑振装置、第二抑振装置以及第三抑振装置,所述第一抑振装置的第二轴线沿所述第一方向延伸,所述第二抑振装置沿所述第二方向延伸,所述第三抑振装置的第二轴线沿所述第二抑振装置所在的子漂浮体以及所述第三抑振装置所在的子漂浮体的中心连线方向延伸时,所述根据所述浮体振动加速度以及所述机舱振动加速度配置各抑振装置的转速的步骤,包括:
    当所述支撑组件在第一方向的一阶频谱数据小于等于m时,控制所述第一抑振装置以及所述第三抑振装置的所述转动盘静止,控制所述第二抑 振装置的所述转动盘在第一转速范围内转动;
    当所述支撑组件在第一方向的一阶频谱数据大于m且小于等于k时,控制所述第一抑振装置的所述转动盘静止,控制所述第三抑振装置的所述转动盘在所述第一转速范围内转动,并控制所述第二抑振装置的所述转动盘在第二转速范围内转动,所述第二转速范围的最小值大于所述第一转速范围的最大值;
    当所述支撑组件在第一方向的一阶频谱数据大于k且小于等于L时,控制所述第一抑振装置的所述转动盘静止,控制所述第三抑振装置的所述转动盘以及所述第二抑振装置的所述转动盘在所述第二转速范围内转动。
  17. 根据权利要求16所述的控制方法,其中:所述根据所述浮体振动加速度以及所述机舱振动加速度配置各抑振装置的转速的步骤,还包括:
    当所述支撑组件在第二方向的一阶频谱数据小于等于m时,控制所述第二抑振装置以及第三抑振装置的所述转动盘静止,并控制所述第一抑振装置的所述转动盘在所述第一转速范围内转动;
    当所述支撑组件在第二方向的一阶频谱数据大于m且小于等于k时,控制所述第二抑振装置的所述转动盘静止,控制所述第三抑振装置的所述转动盘在所述第一转速范围内转动,并控制所述第一抑振装置的所述转动盘在第二转速范围内转动;
    当所述支撑组件在第二方向的一阶频谱数据大于k且小于等于L时,控制所述第二抑振装置的所述转动盘静止,控制所述第三抑振装置的所述转动盘以及所述第一抑振装置的所述转动盘在所述第二转速范围内转动。
  18. 根据权利要求13所述的控制方法,其中:所述根据所述浮体振动加速度以及所述机舱振动加速度配置各抑振装置的转速的步骤还包括:
    当所述机舱在第一方向的一阶频谱数据以及在第二方向上的一阶频谱数据数值均小于等于w值时,控制所述风机本体上各所述抑振装置的所述驱动部件停机,使得各所述转动盘相对所述安装架的转速为0;
    当所述机舱在第一方向的一阶频谱数据以及在第二方向上的一阶频谱数据数值中至少一者大于w且小于等于p时,控制所述风机本体上至少一个所述抑振装置的所述驱动部件驱动所述转动盘以第三转速转动;
    当所述机舱在第一方向的一阶频谱数据以及在第二方向上的一阶频谱数据数值至少一者大于p时,控制所述风机本体上至少一个所述抑振装置 的驱动部件驱动所述转动盘以第四转速转动,所述第四转速大于所述第三转速。
PCT/CN2022/143773 2022-09-30 2022-12-30 风机基础、风力发电机组以及控制方法 WO2024066112A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211215335.6 2022-09-30
CN202211215335.6A CN115949554B (zh) 2022-09-30 2022-09-30 风机基础、风力发电机组以及控制方法

Publications (1)

Publication Number Publication Date
WO2024066112A1 true WO2024066112A1 (zh) 2024-04-04

Family

ID=87281228

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/143773 WO2024066112A1 (zh) 2022-09-30 2022-12-30 风机基础、风力发电机组以及控制方法

Country Status (2)

Country Link
CN (1) CN115949554B (zh)
WO (1) WO2024066112A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140017083A1 (en) * 2012-07-10 2014-01-16 Alstom Renovables Espana, S.L. Wind turbine stabilization
WO2020002160A1 (de) * 2018-06-26 2020-01-02 Universitaet Stuttgart Schwimmtragwerk für eine windkraftanlage
CN112727682A (zh) * 2019-10-28 2021-04-30 西门子歌美飒可再生能源公司 用于风力涡轮机的叶片振动抑制系统及相关联的方法
CN113719422A (zh) * 2021-09-06 2021-11-30 中国华能集团清洁能源技术研究院有限公司 单风轮飞轮储能发电系统及其偏航控制方法
CN114475942A (zh) * 2022-01-17 2022-05-13 哈尔滨工程大学 一种带减摇陀螺仪的水平轴多风机浮式平台
CN115514000A (zh) * 2022-09-30 2022-12-23 新疆金风科技股份有限公司 风力发电机组及其控制方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1059279A (ja) * 1996-08-26 1998-03-03 Penta Ocean Constr Co Ltd 浮体減揺装置
WO2017099264A1 (ko) * 2015-12-08 2017-06-15 파워테크주식회사 자동개폐기능을 갖는 파이프라인을 이용한 선박 풍력발전 시스템
CN111637021A (zh) * 2020-05-26 2020-09-08 南方科技大学 一种漂浮式海上发电系统
CN111637016A (zh) * 2020-05-27 2020-09-08 深圳市合众清洁能源研究院 一种漂浮式海上风力发电机系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140017083A1 (en) * 2012-07-10 2014-01-16 Alstom Renovables Espana, S.L. Wind turbine stabilization
WO2020002160A1 (de) * 2018-06-26 2020-01-02 Universitaet Stuttgart Schwimmtragwerk für eine windkraftanlage
CN112727682A (zh) * 2019-10-28 2021-04-30 西门子歌美飒可再生能源公司 用于风力涡轮机的叶片振动抑制系统及相关联的方法
CN113719422A (zh) * 2021-09-06 2021-11-30 中国华能集团清洁能源技术研究院有限公司 单风轮飞轮储能发电系统及其偏航控制方法
CN114475942A (zh) * 2022-01-17 2022-05-13 哈尔滨工程大学 一种带减摇陀螺仪的水平轴多风机浮式平台
CN115514000A (zh) * 2022-09-30 2022-12-23 新疆金风科技股份有限公司 风力发电机组及其控制方法

Also Published As

Publication number Publication date
CN115949554B (zh) 2023-09-22
CN115949554A (zh) 2023-04-11

Similar Documents

Publication Publication Date Title
EP2400153B1 (en) Methods and systems for operating a wind turbine
US9041239B2 (en) Vertical axis wind turbine with cambered airfoil blades
US20090246020A1 (en) Method For Damping Edgewise Oscillations In One Or More Blades Of A Wind Turbine, An Active Stall Controlled Wind Turbine And Use Hereof
JP2003148323A (ja) 流体発電装置
CA2707407C (en) Wind turbine with a flow control device and method for optimizing energy production therein
WO2010098813A1 (en) Wind energy device
WO2002077369A1 (fr) Generatrice electrique actionnee par effet d'onde gyroscopique, et absorbeur d'onde utilisant cette generatrice
US11149715B2 (en) Vertical axis wind turbine apparatus and system
WO2009010736A2 (en) Vertical axis turbine
US20120133134A1 (en) Method and apparatus for damping vibrations in a wind energy system
JP2011064097A (ja) 風車装置及びそれを用いた風力発電装置
JP5818025B2 (ja) 過速抑制フラップ付き垂直軸型風力発電装置
WO2016135800A1 (ja) 発電システム
WO2024066112A1 (zh) 风机基础、风力发电机组以及控制方法
JP5245017B1 (ja) 風力発電システム及びその制御方法
WO2017200504A1 (en) Shaftless multi blade wind turbine
JP2008240646A (ja) 風力発電装置
CN115614228A (zh) 漂浮式风机基础、风力发电机组及控制方法
JP2023501684A (ja) 強化された風力タービンの後流混合
CN113513452A (zh) 一种漂浮式风机及其阻尼池平台结构
JP5627301B2 (ja) 風力発電装置
JP2022502600A (ja) ギアボックスも多極発生機もない効率的な風力エネルギー変換器
KR102507781B1 (ko) 수직축 풍력 터빈 발전기
KR102208470B1 (ko) 기능성 풍력발전기
CN115434855A (zh) 风力发电机组及其振动控制方法