WO2024063483A1 - 양극 활물질 제조용 전구체 - Google Patents

양극 활물질 제조용 전구체 Download PDF

Info

Publication number
WO2024063483A1
WO2024063483A1 PCT/KR2023/014079 KR2023014079W WO2024063483A1 WO 2024063483 A1 WO2024063483 A1 WO 2024063483A1 KR 2023014079 W KR2023014079 W KR 2023014079W WO 2024063483 A1 WO2024063483 A1 WO 2024063483A1
Authority
WO
WIPO (PCT)
Prior art keywords
precursor
active material
positive electrode
electrode active
center
Prior art date
Application number
PCT/KR2023/014079
Other languages
English (en)
French (fr)
Inventor
윤수열
표재중
정현도
박선홍
장성균
정재학
Original Assignee
주식회사 엘 앤 에프
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘 앤 에프 filed Critical 주식회사 엘 앤 에프
Publication of WO2024063483A1 publication Critical patent/WO2024063483A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy

Definitions

  • the present invention relates to a precursor for the production of a positive electrode active material.
  • the surface portion has a relatively lower density than the center, and is a precursor that can provide not only excellent cycle life and thermal stability but also high charge and discharge efficiency when manufacturing a positive electrode active material. It's about.
  • LIB lithium-ion batteries
  • Korean Patent Publication No. 2018-0063857 a porous structure is used to easily relieve stress due to volume changes that occur during insertion and detachment of lithium and to shorten the diffusion distance of lithium ions.
  • a precursor particle in which a dense middle layer with low porosity is placed between the core and the porous shell has been proposed.
  • the secondary particle precursor for a positive electrode active material has a D50 of 6 ⁇ 2 ⁇ m, a D50 of the core portion of 1 to 5 ⁇ m, and a precursor particle in which the core portion is more porous than the shell portion. there is.
  • a positive active material for secondary batteries comprising a core-shell structure to improve the capacity and output characteristics of secondary battery positive electrodes by increasing diffusion distance or speed, wherein the core is a porous nanostructure with a particle size of 100 nm or less, The shell is a bulk structure with a particle size of 1 ⁇ m or more, and precursors with different contents of nickel, cobalt, and manganese in the core and shell have been proposed.
  • Korean Patent Publication No. 2016-0052428 a transition metal oxide precursor containing a core portion with a high nickel content and a shell portion with a high cobalt content is used to provide excellent capacity and improved output. It has been presented.
  • Korean Patent Publication No. 2021-0097057 it has a composition containing Co, Mn, and Al in addition to Ni to significantly improve life characteristics and resistance increase, and is a secondary particle in which a plurality of primary particles are aggregated, and the above A precursor for a positive electrode active material containing crystal grains in which the long axes of the primary particles are arranged in the direction from the center of the secondary particle toward the surface and the (001) plane of the primary particles is arranged parallel to the long axis of the primary particle is presented. there is.
  • the surface portion is made of manganese oxide, manganese hydroxide, or these.
  • a precursor for a positive electrode active material has been proposed that includes primary particles coated with a mixture, and preferably has a concentration gradient in which the concentration of manganese in the surface portion gradually decreases from the outermost surface to the center.
  • cathode active materials manufactured using the above technologies can only improve some of the characteristics of secondary batteries, and in particular, they cannot provide the high charge/discharge efficiency that has recently become increasingly necessary, and various characteristics such as cycle life and structural stability are improved. It was confirmed that it did not reach the desired level.
  • the purpose of the present invention is to solve the above problems of the prior art and technical problems that have been requested in the past.
  • the inventors of the present application have reviewed various problems in the prior art, and in particular, have considered the causes of low charging and discharging efficiency from various aspects. As a result, when charging and discharging a secondary battery, lithium does not effectively diffuse to the center of the positive electrode active material, resulting in low battery life. It was predicted that charging and discharging efficiency would be improved, and through in-depth research and various experiments, it was confirmed that the problem could be solved through structural changes in the precursor rather than the positive electrode active material, and the present invention was completed.
  • the precursor for producing the positive electrode active material according to the present invention is,
  • the center and surface parts are formed sequentially from the center of the particle to the outer surface
  • the surface portion is characterized by a relatively low density compared to the central portion.
  • the center has a relatively high density, so it has excellent structural stability despite repeated charging and discharging and suppresses the occurrence of cracks, resulting in excellent cycle life and thermal stability, especially the surface Since the material has a relatively low density, when mixed with a lithium-containing precursor and fired to produce a positive electrode active material, lithium can easily diffuse to the center, and it was confirmed that the charge and discharge efficiency of the secondary battery is excellent.
  • the difference in density of the surface portion with respect to the center may appear as a difference in porosity, and due to the large difference in porosity, the surface portion may be formed into a porous structure with a high porosity.
  • the density ratio of the surface portion to the center portion may range from 0.1 to 0.95.
  • the minimum and maximum values of the density ratio may be sizes that set the upper and lower ranges of the density difference to effectively demonstrate the characteristics described above.
  • the center and surface portions having such density differences may have different material compositions.
  • the central portion may include an elemental composition of Formula 1 below, and the surface portion may include an elemental composition of Formula 2 below.
  • M is one or more transition metal elements stable in the 4-coordinate or 6-coordinate;
  • X is one or more elements selected from the group consisting of Al, Zr, Mg, B, Ti, Zn, Sn, Ca, Ge, Ga, Nb, Mo, and W.
  • the surface portion has a relatively low density compared to the central portion.
  • the material composition of the center contains Ni in an amount of 50% or more, preferably 70% or more, on a molar basis with respect to the total content of elements excluding oxygen and hydrogen, and optionally, Mn and/or Co. It may be a composition that is being done.
  • the material composition of the surface portion contains more than 50%, preferably more than 70%, of Ni on a molar basis with respect to the total content of elements excluding oxygen and hydrogen, and less than 20% of element % or less, and may optionally contain Mn and/or Co.
  • This element X is as defined in the above chemical formulas and may be Al in one preferred example.
  • the surface portion contains element
  • the content of element X in the surface portion may range from 1,000 to 10,000 ppm. If the content of element not.
  • the element By forming a layer to suppress side reactions with the electrolyte solution, it can help improve surface stability.
  • the core may not basically contain element In the latter case, it was confirmed that when element
  • the concentration of element X at their interface generally has discontinuous differences. In other words, the concentration of element
  • element The difference in value of each part may be in the range of 5% or less, more preferably 1% or less. That is, when looking at the entire surface area, if there is a uniform density difference of less than 5%, more effective Li diffusion is possible, so it is more preferable that the concentration gradient of element
  • the ratio of the center portion to the surface portion (center portion: surface portion) based on the diameter of the precursor particle may range from 3:7 to 9:1. If the ratio is too small, that is, if the size of the center is too small, cracks may occur during charging and discharging of the positive electrode active material, and the cycle life may be significantly reduced. On the other hand, if the ratio is too large, that is, the surface portion may decrease. If the size is too small, the ease of lithium diffusion may decrease and charge/discharge efficiency may be lowered, which is not desirable.
  • the ratio may range from 5:5 to 6:4.
  • the size of the precursor particles may be, for example, 3 to 20 ⁇ m.
  • a precursor with such a dual structure can be produced by using different types of metal salt aqueous solutions in the coprecipitation reaction, as can be seen in the experimental details described later. For example, assuming that a precursor with a diameter of 10 ⁇ m is manufactured, a core corresponding to the core is formed by performing a coprecipitation reaction using an aqueous metal salt solution (A) having a composition constituting the core, until the diameter is 6 ⁇ m, for example.
  • a coprecipitation reaction is performed using a metal salt aqueous solution (B) having a composition constituting the surface portion instead of the metal salt aqueous solution (A) until the particle has a diameter of 10 ⁇ m, so that the center has a diameter of 6 ⁇ m and a diameter of 4 ⁇ m.
  • Precursor particles with a combination of surface parts can be manufactured.
  • the present invention also provides a positive electrode active material prepared by mixing the above precursor and a lithium precursor and then firing it, and a secondary battery including this positive electrode active material.
  • the precursor for producing a positive electrode active material according to the present invention is formed so that the center and the surface have different densities, so that it has excellent structural stability despite repeated charging and discharging and suppresses the occurrence of cracks, thereby increasing the cycle life and It has excellent thermal stability, and when mixed with a lithium-containing precursor and fired to produce a positive electrode active material, lithium can easily diffuse to the center, resulting in excellent charge and discharge efficiency.
  • 1A and 1B are cross-sectional SEM images of the precursor prepared in Example 1;
  • 2A-2C are cross-sectional SEM images of the precursor prepared in Example 2;
  • 3A and 3B are cross-sectional SEM images of the precursor prepared in Example 3;
  • Figures 4a and 4b are cross-sectional SEM images of the precursor prepared in Comparative Example 1;
  • Figures 5a and 5b are cross-sectional SEM images of the precursor prepared in Comparative Example 2;
  • Figures 6a and 6b are cross-sectional SEM images of the precursor prepared in Comparative Example 3.
  • An aqueous metal salt solution of Ni:Co:Mn 75:10:15 composition was continuously supplied along with ammonia water and caustic soda solution to a 30L cylindrical reactor, and the ammonia concentration in the reactor was adjusted to 3,000 ⁇ 5000 ppm and the pH was adjusted to 11.6 ⁇ 11.7.
  • Core particles corresponding to the center of the precursor were prepared by co-precipitation reaction at 60°C at a stirring speed of 500 rpm until the average particle diameter (D50) reached 6 ⁇ m.
  • the aqueous metal salt solution was changed to an aqueous metal salt solution with a composition of Ni:Co:Mn 75:10:15 + Al 3000 ppm and continuously supplied along with ammonia water and caustic soda aqueous solution to the reactor containing the core particles, so that D50 was 10.
  • a precursor with a surface portion added to the central core particle was prepared by synthesizing it until it reached a size of ⁇ m.
  • the ammonia concentration, pH, rpm, and temperature in the reactor were set to the same conditions as above.
  • the synthesized precursor was dried at 120°C for 20 hours through washing and filtrate separation, and as a result, a composite transition metal hydroxide powder with a D50 of 10 ⁇ m was prepared.
  • LiOH, a lithium raw material, and ZrO2, a raw material for the doping material Zr, were added to the precursor prepared above at a specific content and mixed in a dry manner. Then, 4.0 kg of the mixture was filled into a sagger made of mullite, and a jig was placed on the mixture to the bottom so that the atmospheric conditions could well penetrate to the bottom of the filling container.
  • specific exhaust conditions and oxygen (O2) flow rate were set and fired for 24.0 to 36.0 hours including temperature increase, maintenance, and cooling.
  • the active material in the cake state is pulverized to a size suitable for fine pulverization through a coarse grinding process, and is subjected to grinding/classification conditions of 1300rpm/2000rpm in an ACM grinder consisting of a rotor blade and separation blade to obtain a constant particle size distribution. Crush it to pieces. Then, the large particles were filtered out with a sieve so that the particle size was about 10 ⁇ m, and a positive electrode active material with excellent durability was manufactured using the precursor having a specific grain size in Example 1.
  • the positive electrode active material prepared above was stirred in distilled water at about 15 to 45°C with a solid content of 50 to 80% in a 20 L constant temperature water tank for about 30 seconds, and the stirred slurry was filtered through a filtration device. The obtained filtered product was dried in a dryer at 100°C for more than 12 hours.
  • the dried washed product was mixed and fired with H3BO3 to apply Boron coating.
  • the cleaned dried product was placed in a 10L cylindrical mixer with H3BO3 and mixed for 20 minutes, and 0.5 ⁇ Approximately 1 kg was filled and fired in a furnace in an oxygen (O2) atmosphere at 300 to 400°C for 12.0 to 20.0 hours, including temperature rise, maintenance, and cooling sections.
  • O2 oxygen
  • the precursor was synthesized in the same manner as in Example 1, except that the Al content was changed to 6000 ppm when manufacturing the surface portion, and the complex cross-sectional structure of the precursor was confirmed by acquiring an SEM image. Afterwards, a positive electrode active material was prepared in the same manner as in Example 1.
  • a metal salt aqueous solution of Ni:Mn 75:25 composition was continuously supplied along with ammonia water and caustic soda aqueous solution to a 30L cylindrical reactor, and the ammonia concentration in the reactor was adjusted to 3,000 ⁇ 5000 ppm and the pH was adjusted to 11.6 ⁇ 11.7, respectively, at 500 rpm.
  • Core particles corresponding to the center of the precursor were prepared by co-precipitation at a stirring speed of 60°C until D50 was 6 ⁇ m.
  • the aqueous metal salt solution is changed to an aqueous metal salt solution with a composition of Ni:Mn 75:25 + Al 3000 ppm and continuously supplied along with ammonia water and caustic soda aqueous solution, when D50 becomes 10 ⁇ m.
  • a precursor with a surface portion added to the core particle in the center was manufactured.
  • the ammonia concentration, pH, rpm, and temperature in the reactor were set to the same conditions as above.
  • the synthesized precursor was dried at 120°C for 20 hours through washing and filtrate separation, and as a result, a composite transition metal hydroxide powder with a D50 of 10 ⁇ m was prepared. Afterwards, a positive electrode active material was prepared in the same manner as in Example 1.
  • the precursor was synthesized in the same manner as in Example 3, except that the Al content was changed to 6000 ppm when manufacturing the surface portion, and the complex cross-sectional structure of the precursor was confirmed by acquiring an SEM image. Afterwards, a positive electrode active material was prepared in the same manner as in Example 1.
  • aqueous metal salt solution with a composition of Ni:Co:Mn 75:10:15 was continuously supplied to a 30L cylindrical reactor along with ammonia water and caustic soda aqueous solution, and the ammonia concentration in the reactor was adjusted to 3,000 ⁇ 5000 ppm and the pH was adjusted to 11.6 ⁇ 11.7. was synthesized by coprecipitation reaction at 60°C at a stirring speed of 500 rpm until D50 was 10 ⁇ m, and then washed and separated into filtrates and dried at 120°C for 20 hours to prepare composite transition metal hydroxide powder. . Afterwards, a positive electrode active material was prepared in the same manner as in Example 1.
  • a metal salt aqueous solution of Ni:Mn 75:25 composition was continuously supplied along with ammonia water and caustic soda aqueous solution to a 30L cylindrical reactor, and the ammonia concentration in the reactor was adjusted to 3,000 ⁇ 5000 ppm and the pH was adjusted to 11.6 ⁇ 11.7, respectively, at 500 rpm. It was synthesized by coprecipitation reaction at 60°C at a stirring speed until D50 was 10 ⁇ m, and then washed, separated from the filtrate, and dried at 120°C for 20 hours to prepare a composite transition metal hydroxide powder. Afterwards, a positive electrode active material was prepared in the same manner as in Example 1.
  • the precursor was synthesized in the same manner as in Example 1, except that an aqueous metal salt solution with a composition of Ni:Co:Mn 75:10:15 + Al 3000 ppm was introduced into the reactor from the beginning, and the cross-sectional structure of the precursor was confirmed by obtaining an SEM image. did. Afterwards, a positive electrode active material was prepared in the same manner as in Example 1.
  • FIGS. 1A and 1B which are cross-sectional SEM images of the precursor prepared in Example 1, the high-density central portion and the relatively low-density surface portion can be clearly distinguished.
  • the precursor of the present invention has this structure, and when mixed with a lithium-containing precursor and fired when producing a positive electrode active material, lithium can easily diffuse to the center and react, thereby producing a positive electrode active material with excellent charge and discharge efficiency.
  • the precursor of the present invention may have a difference in the content of a specific transition metal between the center and the surface, and may have a discontinuous concentration that gradually increases from the center to the surface.
  • Figures 2a and 2b and Figures 3a and 3b are cross-sectional SEM images of the precursors prepared in Example 2 and Example 3, respectively.
  • Al was not detected in Spectrum 1, which corresponds to the relatively high-density center, while Al was not detected in the relatively low-density region.
  • Al is detected in Spectrum 2, which corresponds to the surface area.
  • the surface portion where Al is detected forms a low-density structure compared to the central portion.
  • Figures 4a to 6b are cross-sectional SEM images of precursors prepared in Comparative Examples 1 to 3.
  • Figures 6a and 6b are SEM cross-sections of the precursor of Comparative Example 3, which was manufactured by adding all raw materials together into the reactor during precursor production. As in Comparative Example 3, when Al is added from the beginning, a high-density central portion and a low-density surface portion are not formed separately. Looking at the Al content of Spectrum 1 and Spectrum 2 of Comparative Example 3, it can be seen that the Al content is distributed uniformly throughout the precursor, resulting in the formation of an overall porous structure.
  • the center contains no or a small amount of Al. If excessive Al is included in the center, too many pores are created and the density decreases. This causes a decrease in particle strength after manufacturing as a positive electrode active material, and cracks occur during charging and discharging, resulting in a problem in which cycle life can be significantly reduced. Therefore, assuming that the total content of transition metal and Al in the center is 100 wt%, for example, the Al content may preferably be less than 0.2 wt%, and more preferably less than 0.1 wt%.
  • Comparative Example 3 it was confirmed that a low-density structure was formed throughout the entire precursor, and the residual lithium was significantly reduced compared to Comparative Examples 1 to 2. However, compared to Examples 1 to 4, which only had a low-density structure on the surface, the effect was minimal. You can see that
  • the D50 of the positive electrode active material prepared from the precursors of Examples 1 to 4 and the positive electrode active material prepared from the precursors of Comparative Examples 1 to 3 was measured before and after pressing at an intensity of 2.5 tons, and the residual lithium amount was measured as shown in Table 2 above. shown in
  • ⁇ PSD [(D50 after press) - (D50 before press)] / (D50 before press) ⁇ 100
  • the D50 change in Examples 1 to 4 appears to be lower than that of Comparative Examples 1 to 3. That is, this means that little particle breakage occurred before and after pressing of the positive electrode active material prepared from the precursors of Examples 1 to 4, showing that the particle strength was relatively strong.
  • Al is included in the surface portion of the precursor, so the positive electrode active material manufactured from it also has a porous surface portion, and when an external force is applied, the porous surface portion acts as a kind of buffer to absorb the external force and is thought to reduce particle breakage.
  • a process of adding positive active material and additives such as binders and applying pressure to the electrode plate is essential. During this process, cracking of positive active material particles is suppressed, thereby improving lifespan characteristics. can contribute to
  • Comparative Examples 1 to 2 did not contain Al, so a low-density structure was not formed inside the precursor, and the positive electrode active material made from the precursor was also thought to be formed entirely with a dense structure, which led to particle breakage when external force was applied. It seems to occur relatively frequently.
  • Comparative Example 3 shows a low-density structure because Al is uniformly contained within the precursor, and the positive electrode active material manufactured from the precursor of Comparative Example 3 is also believed to have a porous overall structure.
  • particle breakage appears to have been suppressed due to some buffering action due to the porous structure, but the overall particle strength was weakened so much that the amount of change in D50 increased compared to the Example.
  • PVdF was used as a binder, and the positive electrode active materials prepared from the precursors of Examples 1 to 4 and Comparative Examples 1 to 3 and Super-C, a conductive material, were mixed at a weight ratio of 3:95:2 and evenly applied on the aluminum current collector.
  • a positive electrode was manufactured by drying and rolling at 120°C. The manufactured positive electrode was prepared according to the size of a CR2032 type coin cell, and a coin cell was manufactured using Li metal as a negative electrode, porous polyethylene as a separator, and a solution of lithium salt dissolved in a carbonate-based solvent as an electrolyte.
  • the manufactured coin cell was evaluated for charging and discharging at 25°C and a voltage range of 4.3 to 2.5V. After applying a current density of 0.1C, a 0.05C constant voltage section was performed. In addition, the voltage range for life evaluation is 4.3 ⁇ 3V, and after applying a charging/discharging current density of 0.5C/1C, a 0.05C constant voltage section was given, and lifespan evaluation was conducted after 50 cycles. The evaluation results are shown in Table 3 below.
  • Comparative Example 3 contains Al up to the center and appears to have higher efficiency characteristics than Comparative Examples 1 and 2 due to its overall porous structure, but particle cracks occur more easily during charging and discharging, resulting in significantly lower lifespan characteristics.
  • the present invention is not limited to the above-mentioned embodiments, but can be manufactured in various different forms, and those skilled in the art will be able to form other specific forms without changing the technical idea or essential features of the present invention. You will be able to understand that this can be implemented. Therefore, the embodiments described above should be understood in all respects as illustrative and not restrictive.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

본 발명은, 양극 활물질의 제조를 위한 전구체로서, 입자의 중앙으로부터 외면 방향으로 중심부와 표면부가 순차적으로 형성되어 있고, 상기 표면부는 중심부와 비교할 때 상대적으로 저밀도로 이루어진 것을 특징으로 하는 양극 활물질 제조용 전구체를 제공한다.

Description

양극 활물질 제조용 전구체
본 발명은 양극 활물질의 제조를 위한 전구체에 관한 것으로, 표면부가 중심부보다 상대적으로 저밀도로 이루어져 있어서, 양극 활물질을 제조하였을 때, 우수한 사이클 수명과 열 안정성 뿐만 아니라 높은 충방전 효율을 제공할 수 있는 전구체에 관한 것이다.
매장량이 제한적인 화석연료의 사용이 세계적으로 환경오염 이슈로 대두됨에 따라, 친환경적인 이차전지 시스템의 사용이 증가하고 있다. 대표적으로, 전자기기, 전기 자동차(EV), 에너지 저장장치(ESS) 등의 에너지 원에 대한 수요 증가가 나타나고 있고, 이차전지 시스템의 성능 요구 사항 또한 높아지고 있다.
이차전지의 대표적인 예인 리튬 이온 배터리(LIB)를 고성능-고효율로 제작하기 위해서는, 고용량의 에너지 밀도, 사이클 수명, 안전 특성 등의 개선이 필요하다.
이차전지의 수요가 증가하면서 배터리 원자재의 수요가 증가함에 따라, 니켈(Ni), 코발트(Co), 리튬(Li) 등 주요 소재들의 가격이 상승하고 있어서, 저비용 고성능의 양극 활물질의 개발이 활발히 진행되고 있다.
대표적인 예로서, Ni 함량이 낮은 Low Ni 기반의 양극 활물질에서는 용량 및 출력이 낮은 특징 이외에는 특별한 문제가 발생되지 않았지만 성능 개선이 필요하며, Ni 함량을 높일수록 고효율, 저비용의 양극 활물질의 개발이 가능하다.
그러나, Ni 함량이 70% 이상인 High Ni 기반의 양극 활물질에서는 반복적인 충방전에 따른 용량의 감소 현상이 발생하는데, 이는 충방전 중에 부피의 급격한 변화로 인한 결정구조의 수축, 산소 방출, 양이온 혼합, 겔화(gelation) 등의 문제로 인해 발생된다.
이를 해결하기 위한 개발의 일환으로, 일부 선행기술들에서는 활물질 입자를 내측 부위와 외측 부위의 이중 구조로 만들고 이들의 성상 또는 조성을 달리하는 기술들을 제시한 바 있다.
우선, 성상을 달리하는 기술들의 예로서, 한국 특허공개 제2018-0063857호에서는, 리튬의 삽입 및 탈리시 발생하는 부피 변화로 인한 응력의 해소가 용이하고 리튬 이온의 확산거리가 짧을 수 있도록, 다공성 코어와 다공성 쉘 사이에 다공도가 작은 조밀 중간층이 배치된 전구체 입자를 제시한 바 있다.
또한, 한국 특허공개 제2022-0081312호에서는, 1차 거대 입자의 평균 입경(D50)의 성장과 동시에 결정 크기도 함께 성장시켜 저항 특성이 향상된 2차 입자의 제조를 위해, 코어 부분과 쉘 부분을 포함하는 양극 활물질용 2차 입자 전구체로서, 2차 입자 전구체는 D50이 6±2 ㎛이고, 코어 부분의 D50이 1 ~ 5 ㎛이며, 코어 부분이 쉘 부분에 비해 다공성인 전구체 입자를 제시한 바 있다.
유사하게, 한국 특허공개 제2019-0070458호에서는, 전극 제조 시 양극 및 음극 재료와 혼합할 도전재 및 결합재의 양을 감소시킴으로써 이차전지의 비체적당 용량을 증가시키고 충방전 시 발생하는 리튬 이온의 상대적인 확산거리 또는 속도를 증가시켜 이차전지 양극의 용량 및 출력 특성을 향상시킬 수 있도록, 코어-쉘 구조를 포함하는 이차전지용 양극 활물질로서, 상기 코어는 100 nm 이하의 입자 크기를 가지는 다공성 나노 구조이고, 상기 쉘은 1 ㎛ 이상의 입자 크기를 가지는 벌크 구조이며, 코어와 쉘에서의 니켈, 코발트, 망간의 함량이 각각 다른 전구체를 제시한 바 있다.
조성을 달리하는 기술들의 예로서, 한국 특허공개 제2016-0052428호에서는, 우수한 용량과 향상된 출력을 제공할 수 있도록, 니켈 함량이 높은 코어부와 코발트 함량이 높은 쉘부를 포함하는 전이금속 산화물의 전구체를 제시한 바 있다.
또한, 한국 특허공개 제2021-0097057호에서는 수명 특성과 저항 증가를 현저히 개선할 수 있도록, Ni 이외에 Co와 Mn 및 Al을 함유한 조성을 가지며, 복수 개의 1차 입자들이 응집된 2차 입자이고, 상기 1차 입자들의 장축이 2차 입자 중심에서 표면을 향하는 방향으로 배열되며, 1차 입자의 (001)면이 1차 입자의 장축에 평행하게 배치된 결정립을 포함하는 양극 활물질용 전구체를 제시한 바 있다.
또한, 한국 특허공개 제2022-0098994호에서는, 우수한 구조 안정성과 개선된 사이클 수명을 제공할 수 있도록, 중심부와 표면부를 포함하는 2차 입자의 형태로서, 상기 표면부는 망간 산화물, 망간 수산화물 또는 이들의 혼합물로 코팅된 1차 입자를 포함하고 있고, 바람직하게는 표면부에서 망간이 최표면부터 중심 방향으로 농도가 점차적으로 감소하는 농도 구배를 가진 양극 활물질용 전구체를 제시한 바 있다.
그러나, 상기 기술들로 제조된 양극 활물질은 이차전지의 일부 특성들 만을 개선할 수 있을 뿐이며, 특히 최근에 필요성이 커지고 있는 높은 충방전 효율을 제공하지는 못하며, 사이클 수명이나 구조적 안정성 등의 제반 특성들도 소망하는 수준에 도달하지 못하는 것으로 확인되었다.
따라서, 이러한 문제점을 일거에 해결할 수 있는 새로운 기술에 대한 필요성이 높은 실정이다.
본 발명은 상기와 같은 종래기술의 문제점들과 과거로부터 요청되어온 기술적 과제를 해결하는 것을 목적으로 한다.
본 출원의 발명자들은 종래기술의 문제점들에 대해 다양하게 검토해 보았고, 특히 충방전 효율이 낮은 원인을 다양한 측면에서 숙고한 결과, 이차전지의 충방전시 리튬이 양극 활물질의 중심부까지 효과적으로 확산되지 못하여 낮은 충방전 효율이 초래되는 것으로 예측하였고, 심도 있는 연구와 다양한 실험을 통해 양극 활물질이 아닌 전구체의 구조적 변화를 통해 문제점을 해결할 수 있음을 확인하고, 본 발명을 완성하기에 이르렀다.
따라서, 본 발명에 따른 양극 활물질의 제조를 위한 전구체는,
입자의 중앙으로부터 외면 방향으로 중심부와 표면부가 순차적으로 형성되어 있고,
상기 표면부는 중심부와 비교할 때 상대적으로 저밀도로 이루어진 것을 특징으로 한다.
본 출원의 발명자들이 확인한 바로는, 중심부가 상대적으로 고밀도로 이루어져 있어서, 반복적인 충방전에도 불구하고 구조적 안정성이 우수하고 크랙(crack)의 발생을 억제하여 사이클 수명 및 열 안정성이 우수하며, 특히 표면부가 상대적으로 저밀도로 이루어져 있어서, 양극 활물질의 제조를 위해 리튬 함유 전구체와 혼합하여 소성할 경우, 리튬이 중심부까지 용이하게 확산될 수 있어서 이차전지의 충방전 효율이 우수한 것으로 확인되었다.
하나의 구체적인 예에서, 상기 중심부에 대한 표면부의 밀도 차이는 기공률 차이로 나타날 수 있으며, 큰 기공률 차이로 인해 표면부는 높은 기공률의 다공성 구조로 이루어질 수 있다.
상기 밀도 차이에 있어서, 중심부에 대한 표면부의 밀도 비율(표면부 밀도/중심부 밀도)은 0.1 ~ 0.95의 범위일 수 있다. 상기 밀도 비율의 최저치와 최고치는 앞서 설명한 특성들을 효과적으로 발휘하기 위한 밀도 차이의 상하 범위를 설정하는 크기일 수 있다.
이러한 밀도 차이를 갖는 중심부와 표면부는 서로 다른 물질 조성을 가질 수 있다.
하나의 구체적인 예에서, 상기 중심부는 하기 화학식 1의 원소 조성을 포함하고 있고, 상기 표면부는 하기 화학식 2의 원소 조성을 포함할 수 있다.
[Ni1-a-bMaXb](OH)c (1)
[Ni1-d-eMdXe](OH)f (2)
상기 식들에서,
0≤a≤1, 0≤b<0.5, 1≤c≤3;
0≤d≤1, 0<e≤0.5, 1≤f≤3;
b<e;
M은 4배위 또는 6배위에서 안정한 1종 이상의 전이금속 원소이고;
X는 Al, Zr, Mg, B, Ti, Zn, Sn, Ca, Ge, Ga, Nb, Mo, W로 이루어진 군으로부터 선택되는 1종 이상의 원소이다.
본 발명자들의 심도 있는 연구 및 검토에 따르면, 전구체 입자의 중심부와 표면부를 상기와 같이 특정한 원소 조성들로 각각 구성할 경우, 표면부가 중심부와 비교할 때 상대적으로 저밀도로 이루어지는 것을 확인할 수 있었다.
예를 들어, 상기 중심부의 물질 조성은 산소와 수소를 제외한 원소 전체 함량에 대해 몰 기준으로 Ni을 50% 이상, 바람직하게는 70% 이상으로 함유하고 있고, 선택적으로, Mn 및/또는 Co를 함유하고 있는 조성일 수 있다.
반면에, 상기 표면부의 물질 조성은 산소와 수소를 제외한 원소 전체 함량에 대해 몰 기준으로 Ni을 50% 이상, 바람직하게는 70% 이상으로 함유하고 있고, 원소 X를 20% 이하, 바람직하게는 10% 이하로 함유하고 있으며, 선택적으로, Mn 및/또는 Co를 함유하고 있는 조성일 수 있다. 이러한 원소 X는 상기 화학식들에 정의되어 있는 바와 같으며, 하나의 바람직한 예에서 Al일 수 있다.
상기 조성 차이에서도 확인할 수 있는 바와 같이, 표면부에는 원소 X가 함유되어 있고, 이로 인해 표면부의 밀도는 중심부보다 낮게 설정될 수 있다.
하나의 구체적인 예에서, 표면부의 원소 X의 함량은 1,000 내지 10,000 ppm의 범위일 수 있다. 원소 X의 함량이 지나치게 낮으면, 중심부에 비해 낮은 밀도를 가진 표면부가 형성되기 어려울 수 있고, 반대로 지나치게 높으면, 전구체 제조 과정에서 입자가 성장하지 못하여 소망하는 전구체 입자가 형성되지 못할 수 있으므로, 바람직하지 않다.
표면부에 함유된 원소 X는, 상기에 나열된 원소들의 종류에 따라서는, 전구체로부터 제조된 양극 활물질의 충방전 시에 전기화학적으로 비활성의 원소로 작용하여 구조의 붕괴를 방지하고, 입자 표면에 보호층을 형성하여 전해액과의 부반응을 억제함으로써 표면 안정성의 향상에 도움을 줄 수도 있다.
앞서 정의한 바와 같이, 중심부에는 기본적으로 원소 X가 함유되어 있지 않을 수 있지만, 표면부보다 적은 함량 범위에서 미량 함유되어 있을 수도 있다. 후자의 경우, 원소 X가 1000 ppm 이하로 함유될 때, 중심부의 밀도가 표면부보다 큰 성상이 형성될 수 있는 것으로 확인된다.
상기 중심부와 표면부 간의 밀도 차이로 인해, 이들의 계면에서 원소 X의 농도는 일반적으로 비연속적인 차이를 갖는다. 즉, 원소 X의 농도가 계면에서 연속적인 농도 구배를 갖는 것이 아니라, 계단 형상과 같이 급격한 농도 변화를 나타낸다.
반면에, 표면부에서 원소 X는 표면부 전반에 걸쳐 농도 변화가 없이 분포할 수도 있고, 하기와 같이 다양한 농도 구배를 가지면서 분포할 수도 있다:
(i) 전구체 입자의 중심 쪽으로 농도가 증가하는 농도 구배,
(ii) 전구체 입자의 중심 쪽으로 농도가 감소하는 농도 구배,
(iii) 전구체 입자의 중심 쪽으로 농도가 증가한 후 감소하는 농도 구배,
(iv) 전구체 입자의 중심 쪽으로 농도가 감소한 후 증가하는 농도 구배.
다만, 상기 표면부에서 부위별로 높은 농도차는 본 발명에서 소망하는 특성을 가진 전구체의 형성을 어렵게 할 수 있으므로, 하나의 바람직한 예에서, 원소 X는 평균 농도를 기준으로 최대 농도 부위의 값과 최소 농도 부위의 값의 차이가 5% 이하, 더욱 바람직하게는 1% 이하의 범위일 수 있다. 즉, 표면부 전체를 보았을 때, 5% 이내의 균일한 밀도 차이를 가질 경우, 보다 효과적인 Li 확산이 가능하므로, 원소 X의 농도구배 역시 5% 이내인 것이 더 바람직하다.
하나의 구체적인 예에서, 전구체 입자의 직경을 기준으로 상기 중심부와 표면부의 비율(중심부:표면부)은 3:7 내지 9:1의 범위일 수 있다. 상기 비율이 지나치게 작으면, 즉, 중심부의 크기가 지나치게 작으면, 양극 활물질의 충방전 시에 크랙이 발생하여 사이클 수명이 현저히 저하될 수 있고, 반면에, 상기 비율이 지나치게 크면, 즉, 표면부의 크기가 지나치게 작으면, 리튬 확산의 용이성이 떨어져 충방전 효율이 낮아질 수 있으므로, 바람직하지 않다. 바람직하게는, 상기 비율이 5:5 내지 6:4의 범위일 수 있다.
전구체 입자의 크기는 예를 들어 3 내지 20 ㎛일 수 있다.
이러한 이중 구조를 가진 전구체는, 이후 설명하는 실험 내용에서도 확인할 수 있는 바와 같이, 공침 반응에서 금속염 수용액의 종류를 달리하여 제조할 수 있다. 예를 들어, 직경 10 ㎛인 전구체를 제조한다고 가정할 때, 중심부를 구성하는 조성을 가진 금속염 수용액(A)를 사용하여 예를 들어 직경 6 ㎛가 될 때까지 공침 반응을 수행함으로써 중심부에 대응하는 코어 입자를 제조한 후, 상기 금속염 수용액(A) 대신에 표면부를 구성하는 조성을 가진 금속염 수용액(B)를 사용하여 직경 10 ㎛가 될 때까지 공침 반응을 수행함으로써, 직경 6 ㎛의 중심부와 직경 4 ㎛의 표면부가 조합된 전구체 입자를 제조할 수 있다.
본 발명은 또한, 상기 전구체와 리튬 전구체를 혼합한 후 소성하여 제조된 양극 활물질 및 이러한 양극 활물질을 포함하는 이차전지를 제공한다.
양극 활물질의 제조 방법은 공지되어 있고, 이차전지의 구성 및 제조 방법 역시 공지되어 있으므로, 이들에 대한 자세한 설명은 본 명세서에서 생략한다.
이상 설명한 바와 같이, 본 발명에 따른 양극 활물질 제조용 전구체는, 중심부와 표면부가 서로 다른 밀도를 가지도록 형성되어 있어서, 반복적인 충방전에도 불구하고 구조적 안정성이 우수하고 크랙의 발생을 억제하여 사이클 수명 및 열 안정성이 우수하며, 양극 활물질의 제조를 위해 리튬 함유 전구체와 혼합하여 소성할 경우에 리튬이 중심부까지 용이하게 확산될 수 있어서 충방전 효율이 우수한 효과를 발휘한다.
도 1a 및 1b는 실시예 1에서 제조한 전구체의 단면 SEM 이미지들이다;
도 2a 내지 2c는 실시예 2에서 제조한 전구체의 단면 SEM 이미지들이다;
도 3a 및 3b는 실시예 3에서 제조한 전구체의 단면 SEM 이미지들이다;
도 4a 및 4b는 비교예 1에서 제조한 전구체의 단면 SEM 이미지들이다;
도 5a 및 5b는 비교예 2에서 제조한 전구체의 단면 SEM 이미지들이다;
도 6a 및 6b는 비교예 3에서 제조한 전구체의 단면 SEM 이미지들이다.
이하, 본 발명의 실시예들을 참조하여 본 발명을 더욱 상술하지만, 본 발명의 범주가 그것에 의해 한정되는 것은 아니다.
[실시예 1]
30L 원통형 반응기에 Ni:Co:Mn 75:10:15 조성의 금속염 수용액을 암모니아수 및 가성소다 수용액과 함께 연속적으로 공급하여 반응기 내의 암모니아 농도를 3,000 ~ 5000 ppm, pH를 11.6 ~ 11.7로 각각 조절한 상태에서, 500 rpm의 교반 속도로 60℃의 공침 반응에 의해, 평균 입경(D50)이 6 ㎛가 될 때까지 합성하여 전구체 중심부에 대응하는 코어 입자를 제조하였다.
그런 다음, 코어 입자가 포함된 반응기에, 금속염 수용액을 Ni:Co:Mn 75:10:15 + Al 3000 ppm 조성의 금속염 수용액으로 변경하여 암모니아수 및 가성소다 수용액과 함께 연속적으로 공급함으로써, D50이 10 ㎛가 될 때까지 합성하여 중심부의 코어 입자에 표면부가 부가된 전구체를 제조하였다. 반응기 내의 암모니아 농도, pH, rpm, 온도는 상기와 동일한 조건으로 설정하였다.
합성된 전구체를 세척과 여액 분리를 통해 120℃에서 20시간 동안 건조하였고, 그 결과, D50이 10 ㎛인 복합 전이금속 수산화물 분말을 제조하였다.
제조된 전구체 분말의 단면을 주사전자현미경(SEM)으로 촬영하여 확인해 본 결과, 중심부와 표면부의 비율이 직경을 기준으로 6:4인 구조를 갖는 것으로 확인되었고, 중심부가 표면부보다 상대적으로 밀도가 높은 것으로 확인되었다.
(양극 활물질 제조)
상기에서 제조된 전구체에 리튬 원료인 LiOH, 도핑 물질 Zr의 원료 물질인 ZrO2을 특정 함량으로 계산해 10L 원통형 반응기에 넣고 건식으로 혼합하였다. 그런 다음, 혼합물을 몰라이트(mullite) 재질의 내화갑(Sagger)에 4.0 kg 충진시키고, 대기 조건이 충진 용기 하단부까지 잘 스며들 수 있도록 혼합물 위에서 지그를 하단부까지 찍어주었다. 또한, 소성로 내부 분위기를 활물질 소성에 적합한 대기 조건을 만들기 위해, 특정 배기 조건 및 산소(O2) 유량을 설정해 승온, 유지, 냉각 모두 합해 24.0 ~ 36.0 시간 동안 소성하였다.
소성 후 케이크(cake) 상태의 활물질은 조분쇄 과정을 통해 미분쇄 진행에 적합한 크기로 분쇄시키고, Rotor Blade와 Separation Blade로 구성된 ACM 분쇄기에서 1300rpm/2000rpm의 분쇄/분급 조건을 거처 일정한 입도 분포를 가지도록 분쇄해 준다. 그런 다음, Sieve로 대입자를 걸러내어 입경이 약 10 ㎛가 되도록 하여, 실시예 1의 특정 결정입도(grain size)를 가지는 전구체를 활용해 우수한 내구성을 가지는 양극 활물질을 제조하였다.
제조된 활물질의 표면에는 2 wt% 이내의 리튬이 LiOH 및 Li2CO3의 부산물 형태로 존재하게 되는데, 이렇게 잔류하는 리튬은 전극 제조 및 전기화학적 특성에 악영향을 주므로 활물질의 세정을 통해 잔류 리튬을 씻어 주었다. 이를 위해, 상기에 제조된 양극 활물질을 20L의 항온 수조에서 고형분 50 ~ 80%의 범위로 약 15 ~ 45℃의 증류수에 30초 정도 교반하고, 교반이 끝난 슬러리를 여과 장치를 통해 여과했으며, 이렇게 얻어진 여과품을 100℃의 건조기에서 12시간 이상 건조시켰다.
건조된 세정 건조품은 H3BO3와 혼합 및 소성을 시켜 Boron 코팅을 하기 위해, 상기 세정 건조품을 H3BO3와 10L 원통형 혼합기에 넣고 20분간 혼합을 진행했으며, 상기 주소성에 사용했던 것과 동일한 내화갑 충진 용기에 0.5 ~ 1kg 정도 충진하고, 산소(O2) 분위기의 소성로에서 300 ~ 400℃ 조건으로, 승온, 유지, 냉각 구간을 모두 포함해 12.0 ~ 20.0 시간 동안 소성하였다.
[실시예 2]
표면부의 제조시 Al 함량을 6000 ppm으로 변경한 것을 제외하고는 실시예 1과 동일한 방법으로 전구체를 합성하였고, SEM 이미지를 획득하여 전구체의 복합 단면 구조를 확인하였다. 그 후 실시예 1과 동일하게 양극 활물질을 제조하였다.
[실시예 3]
30L 원통형 반응기에 Ni:Mn 75:25 조성의 금속염 수용액을 암모니아수 및 가성소다 수용액과 함께 연속적으로 공급하여 반응기 내의 암모니아 농도를 3,000 ~ 5000 ppm, pH를 11.6 ~ 11.7로 각각 조절한 상태에서, 500 rpm의 교반 속도로 60℃의 공침 반응에 의해, D50이 6 ㎛가 될 때까지 합성하여 전구체 중심부에 대응하는 코어 입자를 제조하였다.
그런 다음, 코어 입자가 포함된 반응기에, 금속염 수용액을 Ni:Mn 75:25 + Al 3000 ppm 조성의 금속염 수용액으로 변경하여 암모니아수 및 가성소다 수용액과 함께 연속적으로 공급함으로써, D50이 10 ㎛가 될 때까지 합성하여 중심부의 코어 입자에 표면부가 부가된 전구체를 제조하였다. 반응기 내의 암모니아 농도, pH, rpm, 온도는 상기와 동일한 조건으로 설정하였다.
합성된 전구체를 세척과 여액 분리를 통해 120℃에서 20시간 동안 건조하였고, 그 결과, D50이 10 ㎛인 복합 전이금속 수산화물 분말을 제조하였다. 그 후, 실시예 1과 동일하게 양극 활물질을 제조하였다.
제조된 전구체 분말의 단면을 주사전자현미경(SEM)으로 촬영하여 확인해 본 결과, 중심부와 표면부의 비율이 직경을 기준으로 6:4인 구조를 갖는 것으로 확인되었고, 중심부가 표면부보다 상대적으로 밀도가 높은 것으로 확인되었다.
[실시예 4]
표면부의 제조시 Al 함량을 6000 ppm으로 변경한 것을 제외하고는 실시예 3과 동일한 방법으로 전구체를 합성하였고, SEM 이미지를 획득하여 전구체의 복합 단면 구조를 확인하였다. 그 후, 실시예 1과 동일하게 양극 활물질을 제조하였다.
[비교예 1]
30L 원통형 반응기에 Ni:Co:Mn 75:10:15 조성의 금속염 수용액을 암모니아수 및 가성소다 수용액과 함께 연속적으로 공급하여 반응기 내의 암모니아 농도를 3,000 ~ 5000 ppm, pH를 11.6 ~ 11.7로 각각 조절한 상태에서, 500 rpm의 교반 속도로 60℃의 공침 반응에 의해, D50이 10 ㎛가 될 때까지 합성한 다음, 세척과 여액 분리를 통해 120℃에서 20시간 동안 건조하여 복합 전이금속 수산화물 분말을 제조하였다. 그 후, 실시예 1과 동일하게 양극 활물질을 제조하였다.
제조된 전구체 분말의 단면을 주사전자현미경(SEM)으로 촬영하여 확인해 본 결과, 중심부와 표면부의 구별이 없는 단일한 구조를 가져서, 중심부와 표면부의 밀도차가 실질적으로 없는 것으로 확인되었다.
[비교예 2]
30L 원통형 반응기에 Ni:Mn 75:25 조성의 금속염 수용액을 암모니아수 및 가성소다 수용액과 함께 연속적으로 공급하여 반응기 내의 암모니아 농도를 3,000 ~ 5000 ppm, pH를 11.6 ~ 11.7로 각각 조절한 상태에서, 500 rpm의 교반 속도로 60℃의 공침 반응에 의해, D50이 10 ㎛가 될 때까지 합성한 다음, 세척과 여액 분리를 통해 120℃에서 20시간 동안 건조하여 복합 전이금속 수산화물 분말을 제조하였다. 그 후, 실시예 1과 동일하게 양극 활물질을 제조하였다.
제조된 전구체 분말의 단면을 주사전자현미경(SEM)으로 촬영하여 확인해 본 결과, 중심부와 표면부의 구별이 없는 단일한 구조를 가져서, 중심부와 표면부의 밀도차가 실질적으로 없는 것으로 확인되었다.
[비교예 3]
반응기에 처음부터 Ni:Co:Mn 75:10:15 + Al 3000 ppm 조성의 금속염 수용액을 투입한 것 외에 실시예 1과 동일한 방법으로 전구체를 합성하였고, SEM 이미지를 획득하여 전구체의 단면 구조를 확인하였다. 그 후, 실시예 1과 동일하게 양극 활물질을 제조하였다.
[실험예 1] 전구체 단면 SEM-EDX 분석
상기 실시예 1 내지 3 및 비교예 1 내지 3에서 각각 제조한 전구체의 단면을 다음과 같은 조건으로 주사전자현미경(SEM) 이미지와 에너지분산형 엑스선분광기(EDX)의 이미지를 촬영하였고, 그 결과를 도 1 내지 6 및 하기 표 1에 나타내었다.
[SEM 측정 조건]
- Model: HITACHI (S-4800)
- Resolution: 1.0㎚ 15㎸, 1.5㎚ 1㎸
- Magnification: x10,000
- Electron gun: Cold-cathode field emission type electron gun
- Accelerating voltage: 15㎸
- Detector: SE (BSE)
Figure PCTKR2023014079-appb-img-000001
실시예 1에서 제조한 전구체의 단면 SEM 이미지인 도 1a 및 1b에서 보는 바와 같이, 고밀도의 중심부와 비교적 저밀도의 표면부를 뚜렷하게 구별하여 확인할 수 있다. 본 발명의 전구체는 이러한 구조를 통해, 양극 활물질 제조 시 리튬 함유 전구체와 혼합하여 소성할 경우 리튬이 중심부까지 용이하게 확산되어 반응할 수 있어서 충방전 효율이 우수한 양극 활물질을 제조할 수 있다.
상기 표 1에 기재된 바와 같이, 실시예 1의 고밀도 중심부에 해당하는 Spectrum 1과 저밀도 표면부에 해당하는 Spectrum 2의 Al 함량 차이가 있다는 것을 알 수 있다. 이와 같이, 본 발명의 전구체는 중심부와 표면부의 특정 전이금속 함량 차이가 존재할 수 있으며, 중심부에서 표면부 방향으로 점차 상승하는 비연속적인 농도를 가질 수 있다.
도 2a 및 2b와 도 3a 및 3b는 실시예 2 및 실시예 3에서 각각 제조한 전구체의 단면 SEM 이미지들이며, 상대적으로 고밀도인 중심부에 해당하는 Spectrum 1에서 Al이 검출되지 않은 반면, 상대적으로 저밀도인 표면부에 해당하는 Spectrum 2에서 Al이 검출되고 있다. 실시예 1과 마찬가지로, 실시예 2 및 실시예 3에서도 Al이 검출되는 표면부가 중심부 대비 저밀도 구조를 형성하는 것을 확인할 수 있다.
도 4a 내지 6b은 비교예 1 내지 3에서 제조한 전구체 단면 SEM 이미지이다.
도 4a 및 4b와 도 5a 및 5b에서 도시한 바와 같이, 전구체 제조 과정에서 Al을 투입하지 않으면 중심부와 표면부를 구별할 수 있는 뚜렷한 구조가 보이지 않고 전체적으로 치밀한 구조로 형성되는 것을 확인할 수 있다. 이와 같은 구조는, 양극 활물질의 제조를 위해 리튬 함유 전구체와 혼합하여 소성할 경우, 리튬이 중심부까지 확산이 용이하지 않아서 본 발명 실시예 대비 충방전 효율이 낮을 수 있다.
도 6a 및 6b은 전구체 제조시 반응기에 모든 원료를 함께 투입하여 제조한 비교예 3의 전구체 단면 SEM이다. 비교예 3과 같이, 처음부터 Al을 투입하게 되면, 고밀도의 중심부와 저밀도의 표면부가 구분되어 형성되지 않는다. 비교예 3의 Spectrum 1과 Spectrum 2의 Al 함량을 살펴보면, 전구체 내에서 전체적으로 균일하게 Al 함량이 분포하고 있으며, 이로 인해 전체적으로 다공성 구조가 형성된 것을 볼 수 있다.
따라서, 중심부의 치밀한 구조 형성을 위해 중심부에는 Al이 포함되지 않거나 소량 포함되는 것이 바람직하다. 중심부에 Al이 과다하게 포함될 경우 지나치게 많은 기공이 생성되고 이로 인해 밀도가 저하된다. 이는 양극 활물질로 제조 후 입자강도의 저하를 야기하며, 충방전 시에 크랙이 발생하여 사이클 수명이 현저히 저하될 수 있는 문제를 가져온다. 따라서, 중심부는, 전이금속과 Al 전체 함량을 100 wt%라고 할 때, 예를 들어, Al 함량이 바람직하게는 0.2 wt% 미만일 수 있고, 더욱 바람직하게는 0.1 wt% 미만일 수 있다.
[실험예 2] 잔류 리튬 측정
실시예 1 내지 4 및 비교예 1 내지 3의 전구체로 제조한 양극 활물질의 잔류 리튬을 측정한 값을 하기 표 2에 나타내었다.
잔류 리튬의 양은 다음의 조건으로 측정하였다. 시료 5 g ± 0.02 g에 증류수 100 g을 마그네틱 바와 함께 비이커에 넣고 10분간 교반하였다. 그 후, 여과지에 교반시킨 샘플을 여과하고, 여과된 여과액을 비이커에 담아 적정을 진행하였다. 적정액 0.1N HCl을 채운 후, 실린더에서 기포를 제거하였고, 적정액 분주 방식은 DET(Dynamic equivalence point titrations)를 사용하였다. 적정 자동 완료 조건은 pH 2.5, Calculation은 FP(1) = 4.5, EP(1), 적정 속도는 최대치로 각각 설정하여 잔류 리튬 측정을 진행하였다.
Figure PCTKR2023014079-appb-img-000002
상기 표 2에서 보는 바와 같이, 실시예 1 내지 4의 전구체로 제조한 양극 활물질의 잔류 리튬과 비교예 1 내지 3의 전구체로 제조한 양극 활물질의 잔류 리튬을 비교하면, 실시예 1 내지 4의 전구체로 제조한 양극 활물질의 잔류 리튬이 더 적은 것을 확인할 수 있다. 이는, 양극 활물질 제조 시, 실시예 1 내지 4의 전구체의 다공성 표면 구조에 의해 리튬이 전구체 내부로 용이하게 확산되어 반응함으로써, 소성 후 반응하지 못하고 양극 활물질 표면에 잔류하는 리튬량이 줄어들기 때문인 것으로 추측된다.
반면에, 비교예 1 내지 2의 경우, 전구체 표면에 다공성 구조가 존재하지 않아 양극 활물질 제조 시 리튬이 전구체 내부로 확산되지 못하고 표면에 잔류하는 양이 상대적으로 많아진 것으로 보인다. 이로부터, 해당 전구체로 양극 활물질을 제조하게 되면, 충방전 시 리튬이 양극 활물질 내부로 원활히 이동하지 못하여 충방전 효율이 저하되는 문제를 발생시킬 수 있다. 또한, 양극 활물질 표면에 잔류하는 리튬이 많은 경우, 겔화 등과 같은 부가적인 문제도 초래할 수 있으므로, 적정 수준의 잔류 리튬량을 가지는 것이 바람직하다.
비교예 3의 경우, 전구체 전체에 저밀도 구조가 형성되어 비교예 1 내지 2 대비하여 잔류 리튬이 크게 줄어든 것을 확인할 수 있었으나, 표면부만 저밀도 구조를 가지는 실시예 1 내지 4와 대비하여 그 효과가 미비한 것을 알 수 있다.
[실험예 3] ΔPSD 측정
실시예 1 내지 4의 전구체로 제조한 양극 활물질과 비교예 1 내지 3의 전구체로 제조한 양극 활물질의 D50을 2.5 ton의 강도로 press 전/후의 입도 변화를 측정하여 잔류 리튬량과 함께 상기 표 2에 나타내었다.
ΔPSD = [(press 후 D50) - (press 전 D50)] / (press 전 D50) Х 100
상기 표 2을 참고하면, 실시예 1 내지 4의 D50 변화량이 비교예 1 내지 3 대비 낮은 수치를 가지는 것으로 보인다. 즉, 실시예 1 내지 4의 전구체로 제조한 양극 활물질의 press 전/후 입자 깨짐이 적게 발생하였다는 것을 의미하며, 입자 강도가 상대적으로 강하다는 것을 보여준다. 이는, Al이 전구체 표면부에 포함되어 이로부터 제조된 양극 활물질 또한 다공성 표면부를 가지게 되고, 외력 인가 시 다공성 표면부가 외력을 흡수하는 일종의 완충작용을 하며 입자 깨짐이 적어지는 것으로 생각된다. 일반적으로 양극 활물질 제조 후 이차전지 전극을 제조하기 위해, 양극 활물질과 바인더 등의 첨가제를 투입하고 극판에 압력을 가하는 공정을 필수로 수행하게 되는데, 이 과정에서 양극 활물질 입자 깨짐을 억제함으로써 수명 특성 향상에 기여할 수 있다.
반면에, 비교예 1 내지 2는 Al이 포함되지 않아 전구체 내부에 저밀도 구조가 형성되지 않았고, 상기 전구체로 제조한 양극 활물질 또한 전체가 치밀한 구조로 형성된 것으로 생각되고, 이로 인해 외력 인가 시 입자 깨짐이 상대적으로 많이 발생하는 것으로 보인다. 비교예 3은 Al이 전구체 내부에 균일하게 포함되어 전체 구조가 저밀도 구조를 보이며, 비교예 3의 전구체로 제조한 양극 활물질 또한 전체 구조가 다공성인 것으로 생각된다. 비교예 3은 비교예 1 및 2 대비 다공성 구조로 인해 일부 완충 작용으로 입자 깨짐이 억제된 것으로 보이지만, 오히려 전체 입자 강도가 너무 약해져서 실시예 대비 D50 변화량은 늘어난 것으로 나타났다.
따라서, 전구체 제조 시 Al 함량을 전체적으로 균일하게 포함하여 저밀도 구조를 형성하는 것보다, 중심부 및 표면부로 구분하여 중심부가 고밀도를 가지며 표면부가 저밀도를 가지도록 제어하는 것이, 양극 활물질 제조 시 리튬의 내부 확산 효과와 외력에 의한 양극 활물질 입자 깨짐 억제 효과를 동시에 달성할 수 있는 것이다.
[실험예 4] 전지특성 평가
바인더로 PVdF를 사용하고, 실시예 1 내지 4 및 비교예 1 내지 3의 전구체로 제조한 양극 활물질들과 도전재인 Super-C를 3:95:2의 중량비로 혼합한 후 알루미늄 집전체 위에 고르게 도포하여 120℃로 건조 및 압연하여 양극을 제조하였다. 상기 제조된 양극을 CR2032 type 코인셀 사이즈에 맞게 준비하여, 음극으로 Li metal, 분리막으로 다공성 폴리에틸렌, 전해액으로 리튬염을 카보네이트계열 용매에 용해시킨 용액을 사용하여 코인셀을 제조하였다.
제조한 코인셀을 25℃에서 4.3~2.5V 전압 범위로 충방전 평가를 진행하였으며, 0.1C의 전류 밀도를 인가한 후, 0.05C Constant voltage 구간을 주어 진행하였다. 또한, 수명 평가의 전압 범위는 4.3~3V이며, 충방전 0.5C/1C의 전류밀도를 인가한 후, 0.05C Constant voltage 구간을 주었고 50 Cycle 후 수명 평가를 진행하였다. 상기 평가 결과는 하기 표 3에 나타내었다.
Figure PCTKR2023014079-appb-img-000003
상기 표 3에서 보는 바와 같이, 실시예 1 내지 4와 같이 표층부에 Al을 포함한 전구체로 제조한 양극 활물질을 사용할 경우, 비교예 대비 효율 특성이 향상되는 것을 볼 수 있다. 이는, 실시예에서 제조한 전구체의 Al 조성이 서로 다른 특이한 구조에 의해 리튬이 중심부까지 용이하게 확산될 수 있어서, 충방전 효율이 우수한 효과를 발휘하는 것으로 추측된다. 또한, 이러한 구조에 의해 충방전 시 크랙 발생이 억제되어, 50 cycle 특성이 향상되는 것을 보여주고 있다.
반면에, 비교예 1 및 2와 같이 다공성 구조가 없는 전구체로 제조한 양극 활물질은 리튬이 입자 내부로 원활하게 확산되지 못하여 효율 특성이 떨어지는 것으로 보이며, 충방전 시 입자 크랙 발생으로 인해 수명 특성 또한 현저하게 떨어지는 모습을 보인다. 비교예 3은 중심부까지 Al을 함유하여 전체적인 다공성 구조로 인해 효율 특성이 비교예 1 및 2 대비 높은 것으로 보이나, 충방전 시 입자 크랙이 더 쉽게 발생하여 수명 특성이 현저하게 떨어진다.
이로부터, 효율 및 수명 특성이 향상된 양극 활물질을 제조할 수 있는 전구체는 본 발명과 같이 중심부 및 표면부의 조성이 제어되어야 제조할 수 있음을 알 수 있다.
본 발명은 상기 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 제조될 수 있으며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로, 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다.

Claims (18)

  1. 양극 활물질의 제조를 위한 전구체로서,
    입자의 중앙으로부터 외면 방향으로 중심부와 표면부가 순차적으로 형성되어 있고,
    상기 표면부는 중심부와 비교할 때 상대적으로 저밀도로 이루어진 것을 특징으로 하는 양극 활물질 제조용 전구체.
  2. 제 1 항에 있어서, 상기 중심부에 대한 표면부의 밀도 차이는 기공률 차이로 나타나는 것을 특징으로 하는 양극 활물질 제조용 전구체.
  3. 제 1 항에 있어서, 상기 표면부는 다공성 구조로 이루어진 것을 특징으로 하는 양극 활물질 제조용 전구체.
  4. 제 1 항에 있어서, 상기 중심부에 대한 표면부의 밀도 비율(표면부 밀도/중심부 밀도)은 0.1 ~ 0.95의 범위인 것을 특징으로 하는 양극 활물질 제조용 전구체.
  5. 제 1 항에 있어서, 상기 중심부는 하기 화학식 1의 원소 조성을 포함하고 있고 상기 표면부는 하기 화학식 2의 원소 조성을 포함하고 있는 것을 특징으로 하는 양극 활물질 제조용 전구체:
    [Ni1-a-bMaXb](OH)c (1)
    [Ni1-d-eMdXe](OH)f (2)
    상기 식들에서,
    0≤a≤1, 0≤b<0.5, 1≤c≤3;
    0≤d≤1, 0<e≤0.5, 1≤f≤3;
    b<e;
    M은 4배위 또는 6배위에서 안정한 1종 이상의 전이금속 원소이고;
    X는 Al, Zr, Mg, B, Ti, Zn, Sn, Ca, Ge, Ga, Nb, Mo, W로 이루어진 군으로부터 선택되는 1종 이상의 원소이다.
  6. 제 1 항에 있어서, 상기 중심부의 물질 조성은 산소와 수소를 제외한 원소 전체 함량에 대해 몰 기준으로 Ni을 50% 이상으로 함유하고 있고, 선택적으로, Mn 및/또는 Co를 함유하고 있는 것을 특징으로 하는 양극 활물질 제조용 전구체.
  7. 제 1 항에 있어서, 상기 표면부의 물질 조성은 산소와 수소를 제외한 원소 전체 함량에 대해 몰 기준으로 Ni을 50% 이상으로 함유하고 있고, 원소 X를 20% 이하로 함유하고 있으며, 선택적으로, Mn 및/또는 Co를 함유하고 있는 것을 특징으로 하는 양극 활물질 제조용 전구체.
  8. 제 5 항에 있어서, 상기 원소 X는 Al인 것을 특징으로 하는 양극 활물질 제조용 전구체.
  9. 제 5 항에 있어서, 상기 표면부에서 원소 X의 함량은 1,000 내지 10,000 ppm의 범위인 것을 특징으로 하는 양극 활물질 제조용 전구체.
  10. 제 5 항에 있어서, 상기 중심부에는 원소 X가 함유되어 있지 않은 것을 특징으로 하는 양극 활물질 제조용 전구체.
  11. 제 5 항에 있어서, 상기 중심부에는 원소 X가 1000 ppm 이하로 함유되어 있는 것을 특징으로 하는 양극 활물질 제조용 전구체.
  12. 제 5 항에 있어서, 상기 중심부와 표면부의 계면에서 원소 X의 농도는 비연속적인 차이를 갖는 것을 특징으로 하는 양극 활물질 제조용 전구체.
  13. 제 5 항에 있어서, 상기 표면부에서 원소 X는,
    (i) 전구체 입자의 중심 쪽으로 농도가 증가하는 농도 구배,
    (ii) 전구체 입자의 중심 쪽으로 농도가 감소하는 농도 구배,
    (iii) 전구체 입자의 중심 쪽으로 농도가 증가한 후 감소하는 농도 구배, 또는
    (iv) 전구체 입자의 중심 쪽으로 농도가 감소한 후 증가하는 농도 구배를 나타내는 것을 특징으로 하는 양극 활물질 제조용 전구체.
  14. 제 13 항에 있어서, 상기 표면부에서 원소 X는 평균 농도를 기준으로 최대 농도 부위의 값과 최소 농도 부위의 값의 차이가 5% 이하인 것을 특징으로 하는 양극 활물질 제조용 전구체.
  15. 제 1 항에 있어서, 전구체 입자의 직경을 기준으로 상기 중심부와 표면부의 비율(중심부:표면부)은 3:7 내지 9:1의 범위인 것을 특징으로 하는 양극 활물질 제조용 전구체.
  16. 제 15 항에 있어서, 상기 비율은 5:5 내지 6:4의 범위인 것을 특징으로 하는 양극 활물질 제조용 전구체.
  17. 제 1 항에 따른 전구체와 리튬 전구체를 혼합한 후 소성하여 제조된 것을 특징으로 하는 양극 활물질.
  18. 제 17 항에 따른 양극 활물질을 포함하는 것을 특징으로 하는 이차전지.
PCT/KR2023/014079 2022-09-19 2023-09-18 양극 활물질 제조용 전구체 WO2024063483A1 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20220117606 2022-09-19
KR10-2022-0117609 2022-09-19
KR10-2022-0117606 2022-09-19
KR20220117609 2022-09-19

Publications (1)

Publication Number Publication Date
WO2024063483A1 true WO2024063483A1 (ko) 2024-03-28

Family

ID=90454973

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/014079 WO2024063483A1 (ko) 2022-09-19 2023-09-18 양극 활물질 제조용 전구체

Country Status (1)

Country Link
WO (1) WO2024063483A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018097136A1 (ja) * 2016-11-22 2018-05-31 住友金属鉱山株式会社 遷移金属含有複合水酸化物とその製造方法、および、非水電解質二次電池用正極活物質の製造方法
KR20180063860A (ko) * 2016-12-02 2018-06-12 삼성에스디아이 주식회사 리튬이차전지용 니켈계 활물질 전구체, 그 제조방법, 이로부터 형성된 리튬이차전지용 니켈계 활물질 및 이를 포함하는 양극을 함유한 리튬이차전지
EP2975680B1 (en) * 2013-03-15 2018-10-10 Nissan Motor Co., Ltd Positive electrode and nonaqueous electrolyte secondary battery
KR101941638B1 (ko) * 2015-12-21 2019-04-11 한국과학기술연구원 리튬 이차전지용 양극 활물질의 제조방법 및 이를 통해 제조된 리튬 이차전지용 양극 활물질
JP2021012807A (ja) * 2019-07-05 2021-02-04 住友金属鉱山株式会社 ニッケルマンガンコバルト含有複合水酸化物およびその製造方法、リチウムイオン二次電池用正極活物質およびその製造方法、並びに、リチウムイオン二次電池

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2975680B1 (en) * 2013-03-15 2018-10-10 Nissan Motor Co., Ltd Positive electrode and nonaqueous electrolyte secondary battery
KR101941638B1 (ko) * 2015-12-21 2019-04-11 한국과학기술연구원 리튬 이차전지용 양극 활물질의 제조방법 및 이를 통해 제조된 리튬 이차전지용 양극 활물질
WO2018097136A1 (ja) * 2016-11-22 2018-05-31 住友金属鉱山株式会社 遷移金属含有複合水酸化物とその製造方法、および、非水電解質二次電池用正極活物質の製造方法
KR20180063860A (ko) * 2016-12-02 2018-06-12 삼성에스디아이 주식회사 리튬이차전지용 니켈계 활물질 전구체, 그 제조방법, 이로부터 형성된 리튬이차전지용 니켈계 활물질 및 이를 포함하는 양극을 함유한 리튬이차전지
JP2021012807A (ja) * 2019-07-05 2021-02-04 住友金属鉱山株式会社 ニッケルマンガンコバルト含有複合水酸化物およびその製造方法、リチウムイオン二次電池用正極活物質およびその製造方法、並びに、リチウムイオン二次電池

Similar Documents

Publication Publication Date Title
CN111599999B (zh) 无钴正极材料、其制备方法及锂离子电池
WO2020111580A1 (ko) 리튬 이차 전지용 양극 첨가제, 이의 제조방법, 이를 포함하는 리튬 이차 전지용 양극 및 이를 포함하는 리튬 이차 전지
WO2017204466A1 (ko) 음극활물질 및 이를 포함하는 리튬 이차전지
CN109873129B (zh) 复合正极活性材料及其制备方法和正极及电池
WO2013002457A1 (ko) 양극활물질, 상기 양극활물질을 포함하는 전극, 및 리튬 전기 화학 전지
WO2015080450A1 (ko) 고체 전해질층을 포함하는 이차전지
WO2021075940A1 (ko) 리튬 이차전지 양극활물질, 이의 제조방법, 및 이를 포함하는 리튬 이차전지
WO2015093725A1 (ko) 비수계 리튬이차전지용 고용량 양극재료 및 그의 제조 방법
WO2015105225A1 (ko) 니켈-코발트-망간 복합 전구체 제조 방법
KR20220155344A (ko) 산화 규소 복합 음극재 및 이의 제조 방법, 리튬 이온 전지
CN111162271A (zh) 多元正极材料及其制备方法和锂离子电池
WO2020096212A1 (ko) 리튬 화합물, 니켈계 양극 활물질, 산화 리튬의 제조 방법, 니켈계 양극 활물질의 제조 방법, 및 이를 이용한 이차 전지
WO2024063483A1 (ko) 양극 활물질 제조용 전구체
CN113764638A (zh) 正极材料、其制备方法、包括其的正极和锂离子电池
US20220293935A1 (en) Method of Manufacturing Cathode Active Material for Lithium Secondary Battery
WO2013157734A1 (ko) 구형의 수산화코발트를 이용한 비수계 리튬이차전지용 양극재료
WO2022065935A1 (ko) 고함량의 니켈 함유 리튬 복합전이금속 산화물 양극 활물질 단입자의 고상합성방법, 이로부터 형성된 고함량의 니켈 함유 리튬 복합전이금속 산화물 양극 활물질 단입자 및 이를 포함하는 양극 및 리튬 이차전지
CN113603156A (zh) 一种用于正极材料的水洗砂磨包覆方法、制备方法、正极材料及电池
WO2020055210A1 (ko) 양극 활물질, 이의 제조 방법, 및 이를 포함하는 리튬 이차 전지
CN112599736A (zh) 一种掺硼磷酸锂包覆锂离子电池正极材料及其制备方法
KR20240039598A (ko) 양극 활물질 제조용 전구체
KR20240039597A (ko) 양극 활물질 제조용 전구체
WO2014116075A1 (ko) 나노크기의 이산화티탄이 포함된 구형의 전이금속복합탄산물을 이용한 고전압용 비수계 리튬이차전지용 고용량 양극재료 및 그의 제조 방법
WO2023008796A1 (ko) 양극 활물질 제조용 전이금속 전구체
WO2018186538A1 (ko) 소성온도에 따른 개선된 비표면적 특성 및 전기화학적 특성을 갖는 양극 활물질 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23868535

Country of ref document: EP

Kind code of ref document: A1