WO2018186538A1 - 소성온도에 따른 개선된 비표면적 특성 및 전기화학적 특성을 갖는 양극 활물질 제조 방법 - Google Patents

소성온도에 따른 개선된 비표면적 특성 및 전기화학적 특성을 갖는 양극 활물질 제조 방법 Download PDF

Info

Publication number
WO2018186538A1
WO2018186538A1 PCT/KR2017/009004 KR2017009004W WO2018186538A1 WO 2018186538 A1 WO2018186538 A1 WO 2018186538A1 KR 2017009004 W KR2017009004 W KR 2017009004W WO 2018186538 A1 WO2018186538 A1 WO 2018186538A1
Authority
WO
WIPO (PCT)
Prior art keywords
active material
salt
positive electrode
electrode active
metal powder
Prior art date
Application number
PCT/KR2017/009004
Other languages
English (en)
French (fr)
Inventor
노영배
이동석
서현승
최현
Original Assignee
주식회사 디알비동일
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 디알비동일 filed Critical 주식회사 디알비동일
Publication of WO2018186538A1 publication Critical patent/WO2018186538A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • C01G53/50Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [MnO2]n-, e.g. Li(NixMn1-x)O2, Li(MyNixMn1-x-y)O2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a method for producing a positive electrode active material having improved specific surface area and electrochemical properties according to firing temperature, and more particularly, by firing at a temperature of 760 ° C to 950 ° C to reduce voids formed in the metal powder.
  • the present invention relates to a method for producing a positive electrode active material in which the specific surface area of the positive electrode active material is reduced and the electrochemical properties are improved.
  • Supercapacitors have the advantage of being able to store and take out large amounts of electricity quickly, resulting in instantaneous high output. In addition, it is more than 100 times higher output than secondary batteries and can be used semi-permanently, and thus there are various applications such as mobile phones, digital camera flash, hybrid cars, and the like.
  • supercapacitors have important importance as renewable energy storage devices such as solar, wind, and hydrogen fuel cells, which are environmentally friendly and clean alternative energy sources that do not emit carbon dioxide by replacing oil.
  • the type of supercapacitor includes an electric double layer capacitor (EDLS), a pseudo capacitor, and a hybrid capacitor.
  • EDLS electric double layer capacitor
  • the type of supercapacitor includes an electric double layer capacitor (EDLS), a pseudo capacitor, and a hybrid capacitor.
  • EDLS electric double layer capacitor
  • the type of supercapacitor includes an electric double layer capacitor (EDLS), a pseudo capacitor, and a hybrid capacitor.
  • EDLS electric double layer capacitor
  • pseudo capacitor a pseudo capacitor
  • a hybrid capacitor In terms of charge and discharge time, energy density, power density, and cycle recovery, it has intermediate characteristics between electrolytic capacitor and lithium secondary battery. Therefore, it can be applied as a pulse load absorbing power source, power power source, power auxiliary power source by mixing with lithium secondary battery, etc. by highlighting high output and long life characteristics.
  • That of the pseudo capacitor is a proton capacitor using a redox reaction at the metal oxide and a polymer electrode active material according to the in-aqueous liquid electrolyte, LiNiO 2, LiCo x Ni 1 as a positive electrode active material of the pseudo capacitor is being actively studied currently - x O 2 And LiMn 2 O 4 .
  • LiCo x Ni 1 - x O 2 has a rare cobalt source, is expensive and has problems such as actual mass production, and is very unstable under the state of charge, which is a great problem for safety.
  • LiNiO 2 is unstable in thermal stability
  • LiMn 2 O 4 has a problem of low operating voltage and reversible capacity.
  • the present inventors have come to devise the present invention that can be manufactured by improving the electrochemical properties of LiNiMnO 2 by further improving the existing solid phase synthesis method.
  • an object of the present invention is to reduce the metal powder internal pores formed by drying by firing the metal powder at a temperature of 760 °C to 950 °C It is an object of the present invention to provide a method for producing a cathode active material having a reduced specific surface area of powder.
  • LiNi 0 which is a lithium-nickel-manganese oxide having a spinel phase structure . 5 Mn 1 . 5 O 4 to provide a cathode active material.
  • Method for producing a positive electrode active material after mixing the lithium salt and manganese salt, the step of doping the nickel salt to the mixed lithium salt and manganese salt; Preparing a mixed salt by wet grinding and mixing the mixed lithium salt and manganese salt doped with the nickel salt; Drying the mixed salt to produce a metal powder; Firing the metal powder; And classifying and drying particles of the calcined metal powder to generate a cathode active material.
  • the calcining of the metal powder may include calcining at a temperature of 760 ° C to 950 ° C for 3 to 5 hours. do.
  • Li (OH), Li 2 O, LiCO 3, LiNO 3, Li 2 SO 4, LiNO 3, and CH 3 COOLi It is characterized by consisting of any one of.
  • the manganese salt in the step of mixing the lithium salt and manganese salt, the manganese salt, Mn (OH) 2 , Mn 3 O 4 , Mn 2 O 3 , MnO 2 , Mn00H, MnCo 3 , Mn (NO 3 ) 2 , MnSO 4 , Mn (NO 3 ) 2 and Mn (CO 2 CH 3 ) 2 .
  • the nickel salt in the step of doping the nickel salt, the nickel salt, Ni (OH) 2 , NiO, NiOOH, NiCO 3 , Ni (NO 3 ) 2 , NiSO 4 , NiC 2 O 4 , Ni ( NO 3 ) 2 , Ni (CO 2 CH 3 ) 2 , NiO-W, NiO-B, and NiO-G.
  • the step of preparing the mixed salt characterized in that wet milling and mixing using any one of a ball mill, rod mill, vibrating mill, centrifugal impact mill, bead mill and attrition (attrition). .
  • the bead mill characterized in that using any one of the vertical, horizontal and basket sand.
  • the step of producing the metal powder characterized in that the drying by any one of hot air drying light, spray drying method, freeze drying method and heat drying method.
  • the spray drying method the size of the sprayed droplets is 0.1 ⁇ m to 40 ⁇ m, the flow rate of the sprayed droplets is 10 to 120cc / min, characterized in that it is dried at a temperature of 100 °C to 200 °C do.
  • the step of preparing the mixed salt characterized in that the wet grinding and mixing for 1 to 10 hours at a speed of 2000rpm to 3000rpm.
  • the step of generating the positive electrode active material characterized in that the particle average particle diameter of the positive electrode active material is characterized in that the classification and collecting.
  • the specific surface area is reduced by firing the metal powder at a temperature of 760 ° C. to 950 ° C., which is a temperature of about 50 to 80% of the melting point of the metal powder, thereby reducing the voids between the surfaces inside the metal powder. Effect occurs.
  • the specific surface area of the metal powder is reduced, the electrical resistance of the positive electrode active material is reduced, resulting in an effect of improving the electrochemical properties of the positive electrode active material.
  • LiNi 0 a lithium-nickel-manganese oxide with improved electrochemical properties . 5 Mn 1 .
  • 5 O 4 By being made of 5 O 4 , it is possible to operate at a high operating voltage of 4.8 V and to have a large capacity of 120 mAh / g.
  • FIG. 1 is a flowchart illustrating a method of manufacturing a positive electrode active material according to an embodiment of the present invention.
  • FIG. 4 is a scanning electron microscope (SEM) photograph of the cathode active material prepared in Example 1.
  • SEM scanning electron microscope
  • FIG. 5 is a scanning electron microscope (SEM) photograph of the positive electrode active material prepared in Example 4.
  • SEM scanning electron microscope
  • FIG. 6 is a graph showing the X-ray diffraction pattern (XRD) of the positive electrode active material prepared by Examples 1 to 4.
  • 1 is a flowchart of a method of manufacturing a positive electrode active material, after mixing lithium salt and manganese salt, doping the nickel salt to the mixed lithium salt and manganese salt (S100), nickel salt doped lithium salt and manganese salt Wet grinding and mixing to produce a mixed salt (S200), spray drying the mixed salt to produce a metal powder (S300), heat treating the metal powder (S400) and classify the particles of the calcined metal powder And drying to generate a cathode active material (S500).
  • Doping the nickel salt in the mixed lithium salt and manganese salt (S100) is a step of preparing a lithium dye and a manganese dye as the basis of the positive electrode active material and to change the physical properties of the crystal produced by mixing the lithium salt and manganese salt To add a nickel salt.
  • the lithium salt may be formed of any one of Li (OH), Li 2 O, LiCO 3 , LiNO 3 , Li 2 SO 4 , LiNO 3 , and CH 3 COOLi, and Mn (OH) 2 , Mn 3 O 4 , Mn 2 O 3 , MnO 2 , Mn00H, MnCo 3 , Mn (NO 3 ) 2 , MnSO 4 , Mn (NO 3 ) 2 and Mn (CO 2 CH 3 ) 2 It may be made of any one, preferably lithium salt May consist of Li 2 CO 3 . Further, manganese is preferably made of one of Mn 3 O 4, and MnO 2.
  • Nickel salts include Ni (OH) 2 , NiO, NiOOH, NiCO 3 , Ni (NO 3 ) 2 , NiSO 4 , NiC 2 O 4 , Ni (NO 3 ) 2 , Ni (CO 2 CH 3 ) 2 , NiO-W It may be made of any one of, NiO-B and NiO-G, but preferably made of any one of NiO-W, NiO-B and NiO-G.
  • the lithium salt and manganese salt by mixing the lithium salt and manganese salt and then doping the nickel salt, complementary structural instability of the lithium salt and manganese salt mixture and at the same time synergistic effect by the interaction between lithium salt, manganese salt and nickel salt can be exerted.
  • the synergistic effect may have an excellent discharge capacity, and can sufficiently exhibit high capacity characteristics, which may be more effective.
  • the nickel salt-doped lithium salt and manganese salt may be wet milled and wet mixed using any one of a ball mill, a rod mill, a vibrating mill, a centrifugal impact mill, a bead mill, and an attrition mill.
  • the lithium salt and the manganese salt doped with nickel salt is preferably wet milled and mixed with a bead mill, the bead mill may be any one of the vertical, horizontal and basket sand.
  • the rotating speed of the bead mill is set to 2000 rpm to 3000 rpm to grind and mix the nickel salt-doped lithium salt and manganese salt.
  • the rotation speed of the bead mill is 2000rpm to 3000rpm, the average particle diameter of lithium salt and manganese salt is reduced and the surface area is increased to improve the battery performance, i.e. electrochemical properties such as the amount of power, capacity, discharge voltage at low temperature and high rate. Can be.
  • electrochemical properties such as the amount of power, capacity, discharge voltage at low temperature and high rate.
  • the surface area it is possible to control the calorific value and the exothermic temperature, the reactivity with the electrolyte may be reduced to reduce the generation of gas.
  • the rotational speed of the bead mill is less than 2000rpm
  • the particle size of the mixed lithium salt and manganese salt is less than a certain size may take a lot of time may cause a problem of low productivity.
  • the rotational speed of the bead mill is more than 3000rpm, it is impossible to set the bead mill, there may be a problem that the overload is determined in the power of the bead mill.
  • wet grinding may be nano-sized grinding and the fine grinding efficiency is higher than dry grinding.
  • Drying the mixed salt to produce a metal powder (S300) is a step of powdering the liquid pulverized powder prepared by wet grinding, the mixing by any one of hot air drying method, spray drying method, freeze drying method and heat drying method Salts can be powdered. Preferably spray drying can be used.
  • spray drying is a method of manufacturing nanocapsules as one of techniques for preparing powder.
  • the mixed salt may be sprayed at a constant flow rate droplets of constant and fine size.
  • the sprayed temperature is a high temperature in the range of 100 to 200
  • the size of the sprayed droplets is preferably in the range of 0.1 to 40.0 ⁇ m
  • the flow rate of the sprayed droplets is preferably in the range of 10 to 120cc / min.
  • the output characteristics and the discharge capacity may decrease due to the decrease in reactivity with lithium in the firing process or the increase of primary particles of the lithium-manganese-nickel composite oxide.
  • the firing of the metal powder (S400) is a step of heat-treating the metal powder, and inserting and fixing the metal powder in a box furnace and heat-treating the metal powder using hot air and nitrogen (N 2 ) gas.
  • the heat treatment may be carried out at a temperature of about 50 to 80% at the melting point of the metal powder, it is preferably carried out for 3 to 5 hours at a temperature of 760 to 950.
  • step S400 pores present in the metal powder generated by the spray drying process of step S300 may be reduced to form a cathode active material having a reduced specific surface area.
  • pores may be formed while carbon or decomposition gas present in the metal powder is removed.
  • the cathode active material according to the present invention is characterized in that as the temperature is lowered, carbon or decomposition gas is not removed, thereby reducing the pore inside the metal powder.
  • contact resistance of the cathode active material is decreased, and when included in the secondary battery, resistance and electrical resistance of the electrolyte solution and the cathode active material may be decreased, thereby having high output characteristics.
  • the method may further include annealing at a temperature of 400 to 600 after the heat treatment.
  • the annealing is performed for 5 to 20 hours in an oxidizing atmosphere such as air or oxygen.
  • an oxidizing atmosphere such as air or oxygen.
  • the step of classifying and drying the particles of the calcined metal powder to generate a positive electrode active material is a step of drying the metal powder to remove the solvent and recovering the powder through the filter using a filter, the size of the filter is 0.1 To 20.0 ⁇ m. Therefore, the average particle diameter of the positive electrode active material may be 0.1 to 20.0 ⁇ m.
  • the positive electrode active material may be LiNi 0.5 Mn 1.5 O 4 , LiNi 0 . 5 Mn 1 . 5 O 4 is a spinel It can consist of a structure.
  • the particle average particle diameter of the positive electrode active material is 0.1 to 20.0 ⁇ m
  • the output characteristics of the positive electrode active material are improved, the stability of the coating process to the electrode is increased during manufacturing of the pseudo capacitor, and the generation of fine particles is suppressed to the maximum. There may be an effect of increasing the safety of.
  • the cathode active material produced by the cathode active material manufacturing method according to the present invention described above has a spinel structure and is lithium-nickel-manganese oxide LiNi 0 . 5 Mn 1 . It can be 5 O 4 .
  • a pseudo capacitor including LiNi 0.5 Mn 1.5 O 4 manufactured by the cathode active material manufacturing method according to the present invention described above may be manufactured.
  • the pseudo capacitor may include a first current collector, a first electrode, an electrolyte, a separator, a second electrode, a second current collector, and a case, and the first current collector, the electrolyte, the separator, the second current collector, and the case. Since the conventional known techniques use a detailed description thereof will be omitted.
  • any one of the first electrode and the second electrode corresponds to the anode, it may be composed of LiNi 0.5 Mn 1.5 O 4 .
  • the positive electrode active material is LiNi 0 . 5 Mn 1 .
  • the pseudo capacitor composed of 5 O 4 operates at a voltage of 4.5 V to 5.0 V and may have a capacity of 100 mAh / g to 150 mAh / g.
  • the amount of power / use time can be increased and the number of unit cells can be reduced when manufacturing the assembled battery, thereby reducing the cost.
  • lithium salt Li 2 CO 3 and manganese salt Mn 3 O 4 After mixing lithium salt Li 2 CO 3 and manganese salt Mn 3 O 4 it was doped with nickel salt NiO.
  • the nickel salt doped lithium salt and manganese salt mixture is wet milled and mixed using a bead mill.
  • the pulverized and mixed lithium salt and manganese salt mixture was fired at 760 temperature for 5 hours after spray drying to prepare a cathode active material.
  • lithium salt Li 2 CO 3 and manganese salt Mn 3 O 4 After mixing lithium salt Li 2 CO 3 and manganese salt Mn 3 O 4 it was doped with nickel salt NiO.
  • the nickel salt doped lithium salt and manganese salt mixture is wet milled and mixed using a bead mill.
  • the pulverized and mixed lithium salt and manganese salt mixture was fired at 850 temperature for 5 hours after spray drying to prepare a cathode active material.
  • lithium salt Li 2 CO 3 and manganese salt Mn 3 O 4 After mixing lithium salt Li 2 CO 3 and manganese salt Mn 3 O 4 it was doped with nickel salt NiO.
  • the nickel salt doped lithium salt and manganese salt mixture is wet milled and mixed using a bead mill.
  • the pulverized and mixed lithium salt and manganese salt mixture was fired at 900 temperature for 5 hours after spray drying to prepare a cathode active material.
  • lithium salt Li 2 CO 3 and manganese salt Mn 3 O 4 After mixing lithium salt Li 2 CO 3 and manganese salt Mn 3 O 4 it was doped with nickel salt NiO.
  • the nickel salt doped lithium salt and manganese salt mixture is wet milled and mixed using a bead mill.
  • the pulverized and mixed lithium salt and manganese salt mixture was fired at 950 temperature for 5 hours after spray drying to prepare a cathode active material.
  • the cathode active materials prepared in Examples 1 to 4 After cooling the cathode active materials prepared in Examples 1 to 4, carbon dioxide (CO 2 ) or nitrogen (N 2 ) gas is provided and adsorbed on the surface of the cathode active material.
  • the specific surface area (BET) of the cathode active material is measured by measuring the amount of nitrogen gas adsorbed on the surface of the cathode active material. That is, the specific surface area is calculated using the number of molecules (Nm) necessary to cover the surface of the positive electrode active material. Table 1 shows the results of calculating the specific surface area.
  • Examples 1 to 4 it can be seen that the specific surface area of the positive electrode active material decreases with increasing temperature. That is, it was confirmed that by decreasing the internal voids of the positive electrode active material, the specific surface area of the positive electrode active material that can be in contact with the electrolyte is reduced to reduce the resistance and the electrical resistance with the electrolyte.
  • the specific surface area of the positive electrode active material decreased by 1.15 m 2 / g when the firing temperature increased from 100 ° C. to 850 ° C. at 760 ° C., but when the firing temperature increased by 100 ° C. from 850 ° C. to 950 ° C., the positive electrode active material It can be seen that the specific surface area of is reduced by 0.6 m 2 / g. Therefore, it can be seen that as the temperature increases, the amount of reduction in the voids and specific surface area of the positive electrode active material is insufficient.
  • a slurry was prepared by mixing the positive electrode active material prepared in Examples 1 to 4, acetylene black as a conductive material, and polyvinylidene fluoride (PVdF) as a binder in a weight ratio of 80:10:10.
  • the slurry was uniformly applied to an aluminum foil having a thickness of 25 ⁇ m, and vacuum dried at 110 ° C. to prepare a positive electrode.
  • LiPF 6 is dissolved in a solvent containing a prepared positive electrode and a lithium foil as a counter electrode, a porous polyethylene membrane having a thickness of 25 ⁇ m as a separator, and ethylene carbonate and ethyl methyl carbonate are mixed at a volume ratio of 3: 7.
  • Liquid electrolyte was used.
  • C means C-rate which is a current flowing when all the cell capacity is charged and discharged for 1 hour.
  • Firing time is the same as 5 hours, it can be seen that as the firing temperature increases the filling rate, that is, the efficiency compared to the discharge also increases. In addition, when the current flowing when charging is smaller than the current flowing when all the cell capacity is discharged for 1 hour, it can be seen that the electrochemical efficiency of the secondary battery increases.
  • the cathode active materials prepared by Examples 1 to 4 have the same crystal phase regardless of the pulverization and mixing speed and time.
  • the positive electrode active material crystal phase is LiNi 0 . 5 Mn 1 . 5 O 4 Note that it is a single phase.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

본 발명은 소성온도에 따라 비표면적 및 전기화학적 특성이 개선된 양극 활물질 제조 방법에 관한 것으로서, 좀 더 상세하게는, 760℃ 내지 950℃온도에서 소성함으로써, 금속 분말의 내부에 형성된 공극을 감소시켜 양극 활물질의 비표면적이 감소시키고 전기화학적 특성을 개선한 양극 활물질 제조 방법에 관한 것이다.

Description

소성온도에 따른 개선된 비표면적 특성 및 전기화학적 특성을 갖는 양극 활물질 제조 방법
본 명세서는 2017년 04월 07일 한국 특허청에 제출된 한국 특허 출원 제10-2017-0045455호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
본 발명은 소성온도에 따라 비표면적 및 전기화학적 특성이 개선된 양극 활물질 제조 방법에 관한 것으로서, 좀 더 상세하게는, 760℃ 내지 950℃온도에서 소성함으로써, 금속 분말의 내부에 형성된 공극을 감소시켜 양극 활물질의 비표면적이 감소시키고 전기화학적 특성을 개선한 양극 활물질 제조 방법에 관한 것이다.
에너지밀도 및 작동전압이 낮고, 용량이 적은 리튬이온전지를 대체하기 위해 출력이 높으면서도 에너지 밀도가 높은 슈퍼 커패시터 개발 요구가 커지고 있다.
슈퍼 커패시터는 대용량의 전기를 빠르게 저장하고 꺼내어 사용할 수 있어 순간적으로 고출력을 낼 수 있다는 장점이 있다. 아울러, 이차전지보다 100배 이상의 고출력이며 반영구적으로 사용이 가능해 휴대전화, 디지털카메라의 플래시, 하이브리드 자동차 등 응용분야가 다양하다.
또한, 슈퍼 커패시터는 석유를 대체해 이산화탄소 배출이 없는 친환경 청정 대체에너지인 태양광, 풍력, 수소연료전지 등의 신재생에너지 저장장치로 중요도를 갖는다.
나아가, 슈퍼 커패시터의 종류에는 전기이중층 커패시터(EDLS), 의사 커패시터(Pseudo capacitor) 및 하이브리드 커패시터(Hybrid capacitor)가 있다. 충방전시간, 에너지밀도, 출력밀도 및 사이클 회수면에서 전해콘덴서와 리튬이차전지의 중간적 특성을 가진다. 따라서 고출력, 장수명 특성을 부각시켜 펄스부하 흡수전원, 파워전원, 리튬이차전지와의 혼용에 의한 파워보조전원 등으로 응용될 수 있다.
그 중 의사 커패시터는 수계전해액에서의 프로톤에 의한 금속산화물 또는 폴리머 활물질에서의 레독스 반응을 이용하는 커패시터로, 현재 활발하게 연구되고 있는 의사 캐패시터의 양극 활물질로서 LiNiO2, LiCoxNi1 - xO2, LiMn2O4 등을 들 수 있다.
그러나, LiCoxNi1 - xO2는 코발트원이 희소하며, 또 고가여서 실제 대량 생산 등의 문제가 있고, 충전 상태에서는 매우 불안정해져 발화할 우려가 있기 때문에 안전성이 큰 문제가 되고 있다. 또한, LiNiO2는 열적 안정성이 불안정하며, LiMn2O4는 작동 전압 및 가역용량이 낮은 문제점이 있다.
이러한 문제점을 해결하기 위해, LiNiMnO2를 효과적으로 제조 및 합성하기 위한 다양한 방법 및 연구들이 진행되고 있으나, 이러한 기존의 방법 및 연구만으로는 LiNiMnO2의 전기화학적 특성을 개선하기 어렵다는 단점이 있다.
따라서 본 발명자들은 기존의 고상합성법을 보다 개량하여 LiNiMnO2의 전기화학적 특성을 개선하여 제조할 수 있는 본 발명을 고안하기에 이르렀다.
본 발명은 상술된 문제점을 해결하기 위해 안출된 것으로써, 일 실시 예에 따른 본 발명의 목적은, 760℃ 내지 950℃온도에서 금속 분말을 소성하여 건조에 의해 형성된 금속 분말 내부 기공을 감소시켜 금속 분말의 비표면적을 감소시킨 양극 활물질 제조 방법을 제공하고자 하는 것이다.
또한, 스피넬상 구조를 가지는 리튬-니켈-망간 산화물인 LiNi0 . 5Mn1 . 5O4을 양극 활물질을 제공하고자 하는 것이다.
본 발명에 따른 양극 활물질 제조 방법은 리튬염 및 망간염을 혼합한 후, 상기 혼합된 리튬염 및 망간염에 니켈염을 도핑하는 단계; 상기 니켈염이 도핑된 상기 혼합된 리튬염 및 망간염을 습식 분쇄 및 혼합하여 혼합염을 제조하는 단계; 상기 혼합염을 건조하여 금속 분말을 생성하는 단계; 상기 금속 분말을 소성 하는 단계; 및 상기 소성된 금속 분말의 입자를 분류 및 건조하여 양극 활물질을 생성하는 단계;를 포함하고, 상기 금속 분말을 소성 하는 단계는, 760℃ 내지 950℃ 온도에서 3시간 내지 5시간 소성 되는 것을 특징으로 한다.
일 실시 예에 따르면, 상기 리튬염 및 망간염을 혼합하는 단계에서, 상기 리튬염은, Li(OH), Li2O, LiCO3, LiNO3, Li2SO4, LiNO3, 및 CH3COOLi 중 어느 하나로 이루어지는 것을 특징으로 한다.
일 실시 예에 따르면, 상기 리튬염 및 망간염을 혼합하는 단계에서, 상기 망간염은, Mn(OH)2, Mn3O4, Mn2O3, MnO2, Mn00H, MnCo3, Mn(NO3)2, MnSO4, Mn(NO3)2 및 Mn(CO2CH3)2 중 어느 하나로 이루어지는 것을 특징으로 한다.
일 실시 예에 따르면, 상기 니켈염을 도핑하는 단계에서, 상기 니켈염은, Ni(OH)2, NiO, NiOOH, NiCO3, Ni(NO3)2, NiSO4, NiC2O4, Ni(NO3)2, Ni(CO2CH3)2, NiO-W, NiO-B 및 NiO-G 중 어느 하나로 이루어지는 것을 특징으로 한다.
일 실시 예에 따르면, 상기 혼합염을 제조하는 단계는, 볼 밀, 로드 밀, 진동식밀, 원심 충격 밀, 비드 밀 및 마멸(attrition) 중 어느 하나를 이용하여 습식 분쇄 및 혼합되는 것을 특징으로 한다.
일 실시 예에 따르면, 상기 비드 밀은, 수직형, 수평형 및 바스켓 샌드 중 어느 하나를 이용하는 것을 특징으로 한다.
일 실시 예에 따르면, 상기 금속 분말을 생성하는 단계는, 열풍건조볍, 분무 건조법, 동결 건조법 및 가열건조법 중 어느 하나에 의해 건조되는 것을 특징으로 한다.
일 실시 예에 따르면, 상기 분무 건조법은, 분무되는 액적의 크기가 0.1㎛ 내지 40㎛ 이고, 상기 분무되는 액적의 유속은 10 내지 120cc/min이고, 100℃ 내지 200℃온도에서 건조되는 것을 특징으로 한다.
일 실시 예에 따르면, 상기 혼합염을 제조하는 단계는, 2000rpm 내지 3000rpm의 속도로 1시간 내지 10시간 동안 상기 습식 분쇄 및 혼합하는 것을 특징으로 한다.
일 실시 예에 따르면, 상기 양극 활물질을 생성하는 단계는, 상기 양극 활물질의 입자 평균 입경이 0.1 내지 20.0㎛인 것을 분류하여 포집하는 것을 특징으로 한다.
본 발명에 따르면, 금속 분말의 녹는점의 약 50 내지 80%의 온도인 760℃ 내지 950℃의 온도에서 금속 분말을 소성하여 금속 분말 내부의 면과 면 사이 공극을 감소시킴으로써, 비표면적이 감소되는 효과가 발생하게 된다.
또한, 금속 분말의 비표면적이 감소함에 따라, 양극 활물질의 전기적 저항이 감소됨으로 양극 활물질의 전기화학적 특성이 향상되는 효과가 발생하게 된다.
또한, 전기화학적 특성이 개선된 리튬-니켈-망간 산화물인 LiNi0 . 5Mn1 . 5O4로 이루어짐으로써, 4.8V의 높은 작동전압에서 동작가능하고, 120mAh/g의 대용량을 가지는 효과가 있다.
도 1은 본 발명의 일 실시 예에 따른 양극 활물질 제조 방법 순서도이다.
도 2는 실시예 1 내지 실시예 4에 의해 제조된 양극 활물질의 비표면적을 측정한 그래프이다.
도 3은 실시예 1 내지 실시예 4에 의해 제조된 양극 활물질을 포함하는 이차전지의 전기화학특성을 측정한 그래프이다.
도 4는 실시예 1에 의해 제조된 양극 활물질의 주사전자현미경(SEM) 사진이다.
도 5는 실시예 4에 의해 제조된 양극 활물질의 주사전자현미경(SEM) 사진이다.
도 6은 실시예 1 내지 실시예 4에 의해 제조된 양극 활물질의 X-선 회절 패턴(XRD)을 보여주는 그래프이다.
본 발명을 첨부된 도면을 참조하여 상세히 설명하면 다음과 같다. 여기서, 반복되는 설명, 본 발명의 요지를 불필요하게 흐릴 수 있는 공지 기능 및 구성에 대한 상세한 설명은 생략한다. 본 발명의 실시형태는 당 업계에서 평균적인 지식을 가진 자에게 본 발명을 완전하게 설명하기 위해서 제공되는 것이다. 따라서, 도면에서의 요소들의 형상 및 크기 등은 보다 명확한 설명을 위하여 과장될 수 있다.
명세서 전체에서, 어떤 부분이 어떤 구성 요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성 요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것을 의미한다.
이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시한다. 그러나 하기의 실시예는 본 발명을 보다 용이하게 이해하기 위하여 제공되는 것일 뿐, 실시예에 의해 본 발명의 내용이 한정되는 것은 아니다.
<양극 활물질 제조 방법>
도 1은 양극 활물질 제조 방법의 순서도로, 리튬염 및 망간염을 혼합한 후, 상기 혼합된 리튬염 및 망간염에 니켈염을 도핑하는 단계(S100), 니켈염이 도핑된 리튬염 및 망간염을 습식 분쇄 및 혼합하여 혼합염을 생성하는 단계(S200), 혼합염을 분무 건조하여 금속 분말을 생성하는 단계(S300), 금속 분말을 열처리하는 단계(S400) 및 소성된 금속 분말의 입자를 분류 및 건조하여 양극 활물질을 생성하는 단계(S500)를 포함할 수 있다.
혼합된 리튬염 및 망간염에 니켈염을 도핑하는 단계(S100)는 양극 활물질의 기초가 되는 리튬염료와 망간염료를 준비하는 단계 및 리튬염과 망간염이 혼합됨으로써 생성된 결정의 물성을 변화시키기 위해 니켈염을 첨가하는 단계이다. 여기서, 리튬염은 Li(OH), Li2O, LiCO3, LiNO3, Li2SO4, LiNO3, 및 CH3COOLi 중 어느 하나로 이루어질 수 있고, Mn(OH)2, Mn3O4, Mn2O3, MnO2, Mn00H, MnCo3, Mn(NO3)2, MnSO4, Mn(NO3)2 및 Mn(CO2CH3)2 중 어느 하나로 이루어질 수 있는데, 바람직하게는 리튬염은 Li2CO3로 이루어질 수 있다. 나아가, 망간염은 Mn3O4 및 MnO2 중 어느 하나로 이루어지는 것이 바람직하다.
니켈염은 Ni(OH)2, NiO, NiOOH, NiCO3, Ni(NO3)2, NiSO4, NiC2O4, Ni(NO3)2, Ni(CO2CH3)2, NiO-W, NiO-B 및 NiO-G 중 어느 하나로 이루어질 수 있으나, 바람직하게는 NiO-W, NiO-B 및 NiO-G 중 어느 하나로 이루어질 수 있다.
아울러, 리튬염과 망간염을 혼합한 후 니켈염을 도핑함으로써, 리튬염과 망간염 혼합물의 구조적 불안정성을 보완함과 동시에 리튬염, 망간염 및 니켈염 서로간의 상호 작용에 의해 상승효과가 발휘될 수 있다. 또한, 상승효과에 의해 우수한 방전 용량을 가질 수 있으며, 고용량 특성을 충분히 발휘할 수 있어서 더욱 효과적일 수 있다.
니켈염이 도핑된 리튬염 및 망간염을 습식 분쇄 및 혼합하여 혼합염을 생성하는 단계(S200)는 고체상은 반응력이 낮기 때문에 습식 분쇄를 통해 니켈염이 도핑된 리튬염 및 망간염의 표면적을 증가시키는 단계로, 볼 밀, 로드 밀, 진동식 밀, 원심 충격 밀, 비드 밀 및 마멸(attrition) 밀 중 어느 하나를 이용하여 니켈염이 도핑된 리튬염 및 망간염이 습식 분쇄 및 습식 혼합될 수 있다. 이 때, 니켈염이 도핑된 리튬염 및 망간염은 비드 밀(Bead mill)으로 습식 분쇄 및 혼합하는 것이 바람직하며, 비드 밀은 수직형, 수평형 및 바스켓 샌드 중 어느 하나를 이용할 수 있다.
본 발명에 따른 습식 분쇄 및 혼합은 비드 밀의 회전속도를 2000rpm 내지 3000rpm으로 설정하여 니켈염이 도핑된 리튬염 및 망간염을 분쇄 및 혼합할 수 있다. 비드 밀의 회전속도가 2000rpm 내지 3000rpm임으로써, 리튬염 및 망간염의 평균 입경이 감소되고 표면적이 증가하여 전지 성능, 즉, 저온 및 고율에서의 전력량, 용량, 방전 전압 등의 전기화학적 특성이 향상될 수 있다. 또한, 표면적이 증가함으로써, 발열량과 발열온도 조절이 가능하고, 전해액과의 반응성이 감소되어 가스발생이 감소되는 효과가 발생할 수 있다.
여기서, 비드 밀의 회전속도가 2000rpm 미만일 경우, 혼합된 리튬염 및 망간염의 입경이 일정크기 이하가 되는데 많은 시간이 걸려 생산성이 떨어지는 문제가 발생할 수 있다. 그리고, 비드 밀의 회전속도가 3000rpm 초과일 경우, 비드 밀에 설정이 불가하고, 비드 밀의 파워에 과부하가 결리는 문제가 발생할 수 있다.
아울러, 습식 분쇄는 나노사이즈 분쇄가 가능하며, 미세분쇄 효율이 건식 분쇄보다 높은 것에 유의한다.
혼합염을 건조하여 금속 분말을 생성하는 단계(S300)는 습식 분쇄를 통하여 제조된 액상의 분쇄물을 분말화하는 단계로, 열풍건조법, 분무건조법, 동결건조법 및 가열건조법 중 어느 하나에 의해 상기 혼합염을 분말화할 수 있다. 바람직하게는 분무건조법을 이용할 수 있다.
나아가, 분무건조법은 분말을 제조할 수 있는 기술 중 하나로 나노캡슐(nanocapsule)을 제조하는 방법이다. 이에 따라 혼합염은 일정하고 미세한 크기의 액적이 일정한 유속으로 분무될 수 있다. 이 때 분무되는 온도는 100 내지 200 범위의 고온이고, 분무되는 액적의 크기는 0.1 내지 40.0㎛의 범위의 크기가 바람직하며, 분무되는 액적의 유속은 10 내지 120cc/min의 범위가 바람직하다.
이 때, 액적의 크기가 40.0㎛이상일 경우, 소성 공정에서의 리튬과의 반응성 저하나 리튬-망간-니켈계 복합 산화물의 1차 입자의 증대에 의한 출력 특성 및 방전 용량의 저하가 일어날 수 있다.
금속 분말을 소성하는 단계(S400)는 금속 분말을 열처리하는 단계로, 열처리퍼니스(Box furnace)에 금속 분말을 삽입 및 고정하고 고온의 에어 및 질소(N2) 가스를 이용하여 금속 분말을 열처리할 수 있다. 이 때, 열처리는 금속 분말의 녹는점에서 약 50 내지 80% 정도의 온도에서 실시할 수 있는데, 760 내지 950의 온도에서 3 내지 5시간 동안 실시하는 것이 바람직하다.
S400단계는 S300단계의 분무 건조 공정에 의해 생성된 금속 분말 내부에 존재하는 기공이 감소되어 비표면적이 감소된 양극 활물질이 형성될 수 있다.
좀 더 상세하게는, 금속 분말에 존재하는 탄소 또는 분해 가스가 제거되면서 기공이 형성될 수 있는데, 소성 온도에 따라 탄소 또는 분해 가스의 기화를 조절함으로써, 금속 분말 내부의 공극율을 조절할 수 있다. 본 발명에 따른 양극 활물질은 온도가 낮아짐에 따라 탄소 혹은 분해 가스가 제거되지 않아 금속 분말 내부 공극이 감소하는 것을 특징으로 한다. 금속 분말 내부 공극이 감소됨으로써 양극 활물질의 접촉 저항이 감소하고, 이차전지에 포함될 경우 전해액과 양극 활물질의 저항 및 전기적 저항이 감소하여 높은 출력 특성을 가질 수 있다.
*여기서, 760 미만의 온도로 3시간 미만 소성할 경우, 탄소 또는 분해 가스가 제거되지 않아 금속 분말 내부 공극이 형성되지 않음으로써, 전기화학적 특성이 감소하는 문제점이 발생할 수 있다. 그리고, 950 초과의 온도로 5시간 초과 소성할 경우, 금속 분말 내부에 존재하는 다량의 탄소 또는 분해 가스가 제거되어 공극율이 증가함으로써, 비표면적이 증가하고 전기적 저항이 증가하여 출력 특성이 감소하는 문제점이 발생할 수 있다.
아울러, 열처리 후에 400 내지 600의 온도에서 어닐링하는 단계를 더 포함할 수 있다. 어닐링은 공기, 산소와 같은 산화 분위기에서 5시간 내지 20시간 동안 수행되는 것을 유의한다. 어닐링을 실시하는 경우 결정이 안정화되고, 이에 따라 이활물질을 이용하여 제조되는 전지의 전기 화학적 특성이 향상될 수 있고, 제조되는 활물질 입자의 크기가 작아질 수 있다.
*
소성된 금속 분말의 입자를 분류 및 건조하여 양극 활물질을 생성하는 단계(S500)는 금속 분말을 건조하여 용매를 제거하고 필터를 이용하여 필터를 통화하는 분말을 회수하는 단계로, 필터의 크기는 0.1 내지 20.0㎛일 수 있다. 따라서, 양극 활물질의 입자 평균 입경이 0.1 내지 20.0㎛일 수 있다. 또한, 양극 활물질은 LiNi0.5Mn1.5O4일 수 있고, LiNi0 . 5Mn1 . 5O4는 스피넬 구조로 이루어져 있을 수 있다.
이 때, 양극 활물질의 입자 평균 입경이 0.1 내지 20.0㎛일 경우, 양극 활물질의 출력 특성이 향상되고, 의사 커패시터 제조 시, 전극으로의 도포 공정의 안정성이 증가하며, 미립의 발생이 최대한 억제되어 전지의 안전성이 증가하는 효과가 있을 수 있다.
상술한 본 발명에 따른 양극 활물질 제조 방법에 의해 제조된 양극 활물질은 스피넬상 구조를 가지며 리튬-니켈-망간 산화물인 LiNi0 . 5Mn1 . 5O4일 수 있다.
또한, 상술한 본 발명에 따른 양극 활물질 제조 방법에 의해 제조된 LiNi0.5Mn1.5O4를 양극 활물질로 포함하는 의사 커패시터를 제조할 수 있다.
이 때, 의사 커패시터는 제1 집전체, 제1 전극, 전해액, 분리막, 제2 전극, 제2 집전체 및 케이스로 구성될 수 있고, 제1 집전체, 전해액, 분리막, 제2 집전체 및 케이스는 기존의 공지된 기술을 사용하기 때문에 그에 대한 상세한 설명은 생략하기로 한다.
이 때, 제1 전극 및 제2 전극 중 어느 한 전극은 양극에 해당되고, LiNi0.5Mn1.5O4로 구성될 수 있다. 또한, 양극 활물질이 LiNi0 . 5Mn1 . 5O4로 구성된 의사 커패시터는 4.5V 내지 5.0V의 전압에서 작동되고, 100mAh/g 내지 150mAh/g의 용량을 가질 수 있다.
즉, 전력량/사용 시간을 증가시킬 수 있고 조립전지 제조 시 단전지의 개수를 줄일 수 있으므로 비용을 줄일 수 있다.
<실시예 1>
리튬염 Li2CO3와 망간염 Mn3O4를 혼합 한 후, 니켈염 NiO을 도핑하였다. 니켈염이 도핑된 리튬염 및 망간염 혼합물을 비드 밀을 이용하여 습식 분쇄 및 혼합한다. 그리고, 분쇄 및 혼합된 리튬염 및 망간염 혼합물을 분무 건조 후 5시간 동안 760온도로 소성하여 양극 활물질을 제조하였다.
<실시예 2>
리튬염 Li2CO3와 망간염 Mn3O4를 혼합 한 후, 니켈염 NiO을 도핑하였다. 니켈염이 도핑된 리튬염 및 망간염 혼합물을 비드 밀을 이용하여 습식 분쇄 및 혼합한다. 그리고, 분쇄 및 혼합된 리튬염 및 망간염 혼합물을 분무 건조 후 5시간 동안 850온도로 소성하여 양극 활물질을 제조하였다.
<실시예 3>
리튬염 Li2CO3와 망간염 Mn3O4를 혼합 한 후, 니켈염 NiO을 도핑하였다. 니켈염이 도핑된 리튬염 및 망간염 혼합물을 비드 밀을 이용하여 습식 분쇄 및 혼합한다. 그리고, 분쇄 및 혼합된 리튬염 및 망간염 혼합물을 분무 건조 후 5시간 동안 900온도로 소성하여 양극 활물질을 제조하였다.
<실시예 4>
리튬염 Li2CO3와 망간염 Mn3O4를 혼합 한 후, 니켈염 NiO을 도핑하였다. 니켈염이 도핑된 리튬염 및 망간염 혼합물을 비드 밀을 이용하여 습식 분쇄 및 혼합한다. 그리고, 분쇄 및 혼합된 리튬염 및 망간염 혼합물을 분무 건조 후 5시간 동안 950온도로 소성하여 양극 활물질을 제조하였다.
<실험예 1>
소성 온도에 따른 비표면적 측정
실시예 1 내지 실시예 4에 의해 제조된 양극 활물질을 냉각시킨 후 양극 활물질 표면에 이산화탄소(CO2) 혹은 질소(N2) 가스를 제공하여 흡착시킨다. 양극 활물질 표면에 흡착된 질소 가스의 양을 측정하여 양극 활물질의 비표면적(BET)을 측정한다. 즉, 양극 활물질의 표면을 덮는데 필요한 분자수(Nm)를 이용하여 비표면적을 계산한다. 표 1은 비표면적을 계산한 결과를 도시하였다.
소성 온도 BET(m2/g)
실시예 1(760℃) 2.39
실시예 2(850℃) 1.24
실시예 3(900℃) 0.94
실시예 4(950℃) 0.64
실시예 1 내지 실시예 4는 온도가 증가함에 따라 양극 활물질의 비표면적이 감소하는 것을 알 수 있다. 즉, 양극 활물질의 내부 공극이 감소함으로써, 전해질과 접촉할 수 있는 양극 활물질의 비표면적이 감소하여 전해질과의 저항 및 전기적 저항이 감소되는 것이 확인되었다.
*그리고, 760℃ 온도에서 850℃로 소성 온도가 100℃ 증가 했을 경우, 양극 활물질의 비표면적이 1.15 m2/g 감소하였으나, 850℃ 에서 950℃로 소성 온도를 100℃ 증가 했을 경우, 양극 활물질의 비표면적이 0.6 m2/g 감소한 것을 알 수 있다. 따라서, 온도가 증가함에 따라 양극 활물질의 공극 및 비표면적 감소량은 미비해진 다는 것을 확인할 수 있다.
<실험예 2>
전기화학 평가
상기 실시예 1 내지 실시예 4에서 제조된 양극 활물질, 도전재로 아세틸렌블랙 및 결합제로 폴리비닐리덴 플루오라이드(PVdF)를 80:10:10의 중량비로 혼합하여 슬러리를 제조하였다. 상기 슬러리를 25㎛ 두께의 알루미늄박에 균일하게 도포하고, 110℃에서 진공 건조하여 양극을 제조하였다. 제조된 양극과 리튬 호일을 상대 전극으로 포함하고, 두께가 25㎛인 다공성 폴리에틸렌막을 세퍼레이터로 포함하며, 에틸렌 카보네이트와 에틸메틸 카보네이트가 3:7의 부피비로 혼합된 용매에 LiPF6가 1M 농도로 녹아있는 액체 전해액을 사용하였다.
이렇게 제조된 코인 전지에 3.0~4.9V 전위영역에서 0.1~10mA/㎝2의 전류밀도로 충/방전 실험을 실시하였고, 전기화학 분석장치(Toyosystem, Toscat 3100U)를 사용하여 양극 활물질의 전기화학 특성을 평가하였고, 실시예 1 중 비드 밀을 10시간과 24시간 동안 분쇄 및 혼합된 양극 활물질 및 실시예 2 중 비드 밀을 10시간 동안 분쇄 및 혼합된 양극 활물질을 포함하는 코인 전지의 전기화학 특성을 표 2에 도시하였다.
소성온도 전지평가(mAh/g)
0.1C/0.1C 효율(%) 1C/10C 효율(%)
실시예 1(760℃) 126.6 87.06 98.0 95.62
실시예 2(850℃) 124.1 87.15 98.0 95.61
실시예 3(900℃) 129.9 90.41 114.8 96.48
실시예 4(950℃) 129.9 90.40 119.6 96.47
소성 온도가 증가함에 따라 방전대비 충전율을 측정한 것이다. 여기서, C는 셀용량을 1시간 동안 모두 충전 및 방출할 때 흐르는 전류인 C-rate를 의미한다.
소성 시간은 5시간으로 동일하고, 소성 온도가 증가함에 따라 방전대비 충전율, 즉, 효율 또한 증가하는 것을 확인할 수 있다. 그리고, 셀용량을 1시간 동안 모두 방출할 때 흐르는 전류보다 충전할 때 흐르는 전류가 작을 경우, 이차 전지의 전기화학적 효율이 증가하는 것을 알 수 있다.
<실험예 3>
도 6을 참고하면, 분쇄 및 혼합 속도 및 시간에 상관없이 실시예 1 내지 실시예 4에 의해 제조된 양극 활물질이 동일한 결정상을 갖는 것을 확인할 수 있다. 여기서 양극 활물질 결정상은 LiNi0 . 5Mn1 . 5O4 단일상인 것을 유의한다.
상기 본 발명의 바람직한 실시예를 참조하여 설명하였지만, 당업계에서 통상의 지식을 가진 자라면 이하의 특허 청구범위에 기재된 본 발명의 사상 및 영역을 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.

Claims (10)

  1. 리튬염 및 망간염을 혼합한 후, 상기 혼합된 리튬염 및 망간염에 니켈염을 도핑하는 단계;
    상기 니켈염이 도핑된 상기 혼합된 리튬염 및 망간염을 습식 분쇄 및 혼합하여 혼합염을 제조하는 단계;
    상기 혼합염을 건조하여 금속 분말을 생성하는 단계;
    상기 금속 분말을 소성 하는 단계; 및
    상기 소성된 금속 분말의 입자를 분류 및 건조하여 양극 활물질을 생성하는 단계;를 포함하고,
    상기 금속 분말을 소성 하는 단계는,
    750℃ 내지 950℃ 온도에서 3시간 내지 5시간 소성 되는 것을 특징으로 하는,
    양극 활물질 제조 방법.
  2. 제1항에 있어서,
    상기 리튬염 및 망간염을 혼합하는 단계에서,
    상기 리튬염은,
    Li(OH), Li2O, LiCO3, LiNO3, Li2SO4, LiNO3, 및 CH3COOLi 중 어느 하나로 이루어지는 것을 특징으로 하는, 양극 활물질 제조 방법.
  3. 제1항에 있어서,
    상기 리튬염 및 망간염을 혼합하는 단계에서,
    상기 망간염은,
    Mn(OH)2, Mn3O4, Mn2O3, MnO2, Mn00H, MnCo3, Mn(NO3)2, MnSO4, Mn(NO3)2 및 Mn(CO2CH3)2 중 어느 하나로 이루어지는 것을 특징으로 하는, 양극 활물질 제조 방법.
  4. 제1항에 있어서,
    상기 니켈염을 도핑하는 단계에서,
    상기 니켈염은,
    Ni(OH)2, NiO, NiOOH, NiCO3, Ni(NO3)2, NiSO4, NiC2O4, Ni(NO3)2, Ni(CO2CH3)2, NiO-W, NiO-B 및 NiO-G 중 어느 하나로 이루어지는 것을 특징으로 하는, 양극 활물질 제조 방법.
  5. 제1항에 있어서,
    상기 혼합염을 제조하는 단계는,
    볼 밀, 로드 밀, 진동식밀, 원심 충격 밀, 비드 밀 및 마멸(attrition) 중 어느 하나를 이용하여 습식 분쇄 및 혼합되는 것을 특징으로 하는, 양극 활물질 제조 방법.
  6. 제5항에 있어서,
    상기 비드 밀은,
    수직형, 수평형 및 바스켓 샌드 중 어느 하나를 이용하는 것을 특징으로 하는, 양극 활물질 제조 방법.
  7. 제1항에 있어서,
    상기 금속 분말을 생성하는 단계는,
    열풍건조볍, 분무 건조법, 동결 건조법 및 가열건조법 중 어느 하나에 의해 건조되는 것을 특징으로 하는, 양극 활물질 제조 방법.
  8. 제7항에 있어서,
    상기 분무 건조법은,
    분무되는 액적의 크기가 0.1㎛ 내지 40㎛ 이고, 상기 분무되는 액적의 유속은 10 내지 120cc/min이고, 100℃ 내지 200℃온도에서 건조되는 것을 특징으로 하는, 양극 활물질 제조 방법.
  9. 제1항에 있어서,
    상기 혼합염을 제조하는 단계는,
    2000rpm 내지 3000rpm의 속도로 1시간 내지 10시간 동안 상기 습식 분쇄 및 혼합하는 것을 특징으로 하는, 양극 활물질 제조 방법.
  10. 제1항에 있어서,
    상기 양극 활물질을 생성하는 단계는,
    상기 양극 활물질의 입자 평균 입경이 0.1 내지 20.0㎛인 것을 분류하여 포집하는 것을 특징으로 하는, 양극 활물질 제조 방법.
PCT/KR2017/009004 2017-04-07 2017-08-18 소성온도에 따른 개선된 비표면적 특성 및 전기화학적 특성을 갖는 양극 활물질 제조 방법 WO2018186538A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2017-0045455 2017-04-07
KR1020170045455A KR20180113831A (ko) 2017-04-07 2017-04-07 소성온도에 따른 개선된 비표면적 특성 및 전기화학적 특성을 갖는 양극 활물질 제조 방법

Publications (1)

Publication Number Publication Date
WO2018186538A1 true WO2018186538A1 (ko) 2018-10-11

Family

ID=63712680

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/009004 WO2018186538A1 (ko) 2017-04-07 2017-08-18 소성온도에 따른 개선된 비표면적 특성 및 전기화학적 특성을 갖는 양극 활물질 제조 방법

Country Status (2)

Country Link
KR (1) KR20180113831A (ko)
WO (1) WO2018186538A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023132685A1 (ko) * 2022-01-07 2023-07-13 주식회사 엘지에너지솔루션 양극재 분말, 이를 포함하는 양극 및 리튬 이차 전지

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003034538A (ja) * 2001-05-17 2003-02-07 Mitsubishi Chemicals Corp リチウムニッケルマンガン複合酸化物の製造方法
JP2003051308A (ja) * 2001-08-03 2003-02-21 Yuasa Corp リチウム二次電池用正極活物質およびその製造方法、並びに、リチウム二次電池
US20080107968A1 (en) * 2005-08-25 2008-05-08 Commissariat A L'energie Atomique High-voltage positive electrode material having a spinel structure based on nickel and manganese for lithium cell batteries
KR20160063855A (ko) * 2014-11-27 2016-06-07 포항공과대학교 산학협력단 리튬 이차전지용 양극재, 리튬 이차전지용 양극재 제조방법, 리튬 이차전지용 양극 및 리튬 이차전지

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003034538A (ja) * 2001-05-17 2003-02-07 Mitsubishi Chemicals Corp リチウムニッケルマンガン複合酸化物の製造方法
JP2003051308A (ja) * 2001-08-03 2003-02-21 Yuasa Corp リチウム二次電池用正極活物質およびその製造方法、並びに、リチウム二次電池
US20080107968A1 (en) * 2005-08-25 2008-05-08 Commissariat A L'energie Atomique High-voltage positive electrode material having a spinel structure based on nickel and manganese for lithium cell batteries
KR20160063855A (ko) * 2014-11-27 2016-06-07 포항공과대학교 산학협력단 리튬 이차전지용 양극재, 리튬 이차전지용 양극재 제조방법, 리튬 이차전지용 양극 및 리튬 이차전지

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LIU, YEN-CHUN ET AL.: "Effect of the Doping Ni and Overdosing Lithium for Synthesis LiMn2O4 Cathode Material by the Solid Slate Reaction Method", APPLIED MECHANICS AND MATERIALS, vol. 457-458, no. 1, 2014, pages 93 - 97, XP055548273 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023132685A1 (ko) * 2022-01-07 2023-07-13 주식회사 엘지에너지솔루션 양극재 분말, 이를 포함하는 양극 및 리튬 이차 전지

Also Published As

Publication number Publication date
KR20180113831A (ko) 2018-10-17

Similar Documents

Publication Publication Date Title
CN107369825B (zh) 一种氮掺杂碳包覆氧化锰锂离子电池复合负极材料及其制备方法与应用
WO2019112279A2 (ko) 리튬이차전지용 양극활물질, 그 제조방법 및 이를 포함하는 양극을 포함한 리튬이차전지
WO2021088168A1 (zh) 补锂材料及包括其的正极
WO2013002457A1 (ko) 양극활물질, 상기 양극활물질을 포함하는 전극, 및 리튬 전기 화학 전지
KR102295296B1 (ko) 리튬 이차 전지용 양극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차 전지
CN113346059B (zh) 负极材料及包含其的电化学装置和电子装置
WO2011105832A2 (ko) 고용량의 양극활물질 및 이를 포함하는 리튬 이차전지
WO2014010970A1 (ko) 고밀도 음극 활물질 및 이의 제조방법
WO2013048112A2 (ko) 안전성 및 수명특성이 향상된 양극활물질 및 이를 포함하는 리튬 이차전지
WO2015080450A1 (ko) 고체 전해질층을 포함하는 이차전지
KR101122715B1 (ko) 리튬이온이차전지용 양극활물질의 제조방법
KR20160045029A (ko) 리튬 이차 전지용 양극 활물질, 및 이를 포함하는 리튬 이차 전지
WO2019240496A1 (ko) 리튬 이차전지용 음극활물질 및 이를 포함하는 리튬 이차전지
CN110911636A (zh) 负极材料及包含其的电化学装置和电子装置
CN110890531B (zh) 负极材料及包含其的电化学装置和电子装置
WO2014010973A1 (ko) 바이모달 타입의 음극 활물질 및 이를 포함하는 리튬 이차전지
WO2020108132A1 (zh) 一种氮化钛酸锂-氮化氧化铝复合材料及其制备方法与应用
CN111048775A (zh) 一种提升三元正极材料储锂性能的原位掺钠的改性方法
CN110911635B (zh) 负极材料及包含其的电化学装置和电子装置
US20220199988A1 (en) Anode material, electrochemical device and electronic device comprising the same
KR20170076348A (ko) 리튬 이차 전지용 양극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차 전지
CN114373900B (zh) 正极活性材料、电化学装置和电子装置
WO2015041415A1 (ko) 금속-공기 전지용 양극 촉매, 그의 제조방법 및 그를 포함하는 금속-공기 전지
WO2018186538A1 (ko) 소성온도에 따른 개선된 비표면적 특성 및 전기화학적 특성을 갖는 양극 활물질 제조 방법
CN114275828B (zh) 富镍材料及其制备方法、正极片、电池及用电设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17904834

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17904834

Country of ref document: EP

Kind code of ref document: A1