WO2024060831A1 - 一种太阳电池 - Google Patents

一种太阳电池 Download PDF

Info

Publication number
WO2024060831A1
WO2024060831A1 PCT/CN2023/109784 CN2023109784W WO2024060831A1 WO 2024060831 A1 WO2024060831 A1 WO 2024060831A1 CN 2023109784 W CN2023109784 W CN 2023109784W WO 2024060831 A1 WO2024060831 A1 WO 2024060831A1
Authority
WO
WIPO (PCT)
Prior art keywords
main grid
solar cell
laser
passivation layer
cell according
Prior art date
Application number
PCT/CN2023/109784
Other languages
English (en)
French (fr)
Inventor
张书界
黄智�
陈帅
石鑫鑫
马海云
Original Assignee
通威太阳能(眉山)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 通威太阳能(眉山)有限公司 filed Critical 通威太阳能(眉山)有限公司
Publication of WO2024060831A1 publication Critical patent/WO2024060831A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/022433Particular geometry of the grid contacts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/022441Electrode arrangements specially adapted for back-contact solar cells

Definitions

  • the present application relates to the field of photovoltaic cells, specifically, to a solar cell.
  • PERC solar cells Passivated Emitterand Rear Cell
  • Al-BSF aluminum back-side field solar cells
  • PERC solar cells replace the aluminum back-side field with local point contacts on the back, which reduces the recombination rate on the back surface and increases the back reflection performance, thereby improving the open circuit voltage and short circuit current of the cell.
  • the passivation layer can reduce the surface recombination rate of the battery and increase the open circuit voltage.
  • the passivation layer is not conductive and cannot accelerate the photogenerated carriers. Therefore, in order to conduct electricity, it is necessary to use a laser to groove part of the passivation layer, and then set the grid lines at the grooved positions so that the grid lines form ohmic contact with the battery sheet to export the electrons generated inside the battery, and finally transfer the electrons collected to the back electrode, thereby delivering current outward.
  • a solar cell is provided.
  • the solar cell provided by the embodiment of the present application includes a cell sheet with a passivation layer on the back and several main grid lines located on the surface of the passivation layer.
  • Each main grid line is divided into alternately arranged linear main grids and annular main grids;
  • An annular main grid is provided with two first laser grooves in the surface projection of the passivation layer.
  • the two first laser grooves are divided into They are respectively arranged on opposite sides of the annular main grid, and each main grid line forms ohmic contact with the battery sheet through the corresponding first laser groove.
  • FIG1 is a schematic diagram of the structure of a solar cell provided in Example 1 of the present application.
  • Figure 2 is an enlarged view of point A in Figure 1.
  • FIG. 3 is a schematic structural diagram of the solar cell provided in Comparative Example 1 of the present application.
  • FIG. 4 is an enlarged view of point B in FIG. 3 .
  • FIG. 5 is a schematic structural diagram of the solar cell provided in Comparative Example 3 of the present application.
  • Figure 6 is an enlarged view of point C in Figure 5.
  • Icon 001-battery chip; 100-passivation layer; 110-first laser groove; 120-second laser groove; 130-third laser groove; 200-main grid line; 210-linear main grid; 220-ring main grid Gate; 300-electrode; 400-auxiliary gate line.
  • orientation or positional relationship indicated by the terms “upper”, “lower”, “inner”, “outer”, etc. is based on the orientation or positional relationship shown in the drawings, or the The orientation or positional relationship in which the applied product is customarily placed during use is only for the convenience of describing the present application and simplifying the description, and does not indicate or imply that the device or component referred to must have a specific orientation, be constructed and operated in a specific orientation, therefore It cannot be construed as a limitation on this application.
  • the terms “first”, “second”, etc. are only used to differentiate descriptions and are not to be understood as indicating or implying relative importance.
  • the terms "setting”, “installation”, “connecting” and “connecting” should be understood in a broad sense.
  • it can be a fixed connection, It can also be a detachable connection or an integral connection; it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium; it can be an internal connection between two components.
  • the specific meanings of the above terms in this application can be understood on a case-by-case basis.
  • the present application provides a solar cell.
  • the solar cell includes a cell sheet with a passivation layer on the back and several main grid lines located on the surface of the passivation layer. Each of the main grid lines is divided into alternate linear main grids. and ring main grid;
  • Each of the annular main grids is provided with two first laser grooves in the surface projection of the passivation layer.
  • the two first laser grooves are respectively provided on opposite sides of the annular main grid.
  • Each The main grid lines form ohmic contact with the battery sheets through the corresponding first laser grooves.
  • the distance between the pairs of first laser grooves is 2.3 mm to 2.5 mm, and the length of each first laser groove is 4.5 mm to 7.5 mm.
  • each first laser groove is composed of several circular laser spots, and the diameter of each laser spot is 28 ⁇ m to 30 ⁇ m.
  • the inner ring width of the annular main grid is 1.5mm ⁇ 2mm
  • the outer ring width of the annular main grid is 2.3mm ⁇ 3mm
  • the length of the annular main grid is 9.9mm ⁇ 10.5mm. .
  • the length of the linear main grid is 7.0 mm to 16.0 mm, and the width of the linear main grid is 1.0 mm to 2.1 mm.
  • each of the main gate lines is also provided with several auxiliary gate lines, and each of the main gate lines is The auxiliary grid lines are provided with second laser grooves in the surface projection of the passivation layer, and each of the auxiliary grid lines forms ohmic contact with the battery sheet through the second laser grooves.
  • the laser film opening rate of each auxiliary gate line within the surface projection of the passivation layer is 0.8% to 1.8%.
  • each auxiliary gate line is 60 ⁇ m to 200 ⁇ m, and the distance between adjacent auxiliary gate lines is 0.8 mm to 1.5 mm.
  • an electrode is provided in each annular main grid, and the main grid line is connected to the electrode through the annular main grid.
  • the electrode is in a rectangular shape, and the width of the rectangular electrode is greater than the distance between the inner rings of the annular main grid, and the width of the electrode is 1.8 mm ⁇ 2.2 mm, and the length is 4.0 mm ⁇ 5.5mm.
  • the number of linear busbars on each busbar line is 7.
  • the solar cell includes a cell chip 001 with a passivation layer 100 on the back and a plurality of main grid lines 200 located on the surface of the cell chip.
  • “several main grid lines 200” means that the number of main grid lines 200 on the surface of a cell is no less than two. As an example, in this embodiment, the number of back main grid lines 200 of each cell piece is 12.
  • the solar cell in this embodiment is formed by abutting the edges of two cell pieces 001 .
  • the remainder of this embodiment will take a cell piece 001 as an example to illustrate the structure of the grid lines and laser grooves.
  • Each main grid line 200 is divided into alternately arranged linear main grids 210 and annular main grids 220.
  • the shape of the "annular main grid 220" is similar to a ring track, with a rectangle in the middle and arcs at both ends;
  • the length of the grid 210 is usually 7.0mm ⁇ 16mm, and the width is 1.0mm ⁇ 2.1mm.
  • the inner ring width r1 of the annular main grid 220 is usually 1.5mm ⁇ 2mm, and the outer ring width r3 is usually 2.3mm ⁇ 3mm.
  • the length of the grid 220 is usually 9.9mm ⁇ 10.5mm; for example, the inner ring width r 1 can be 1.6mm, 1.7mm, 1.8mm, 1.9mm, and the outer ring width r 3 can be 2.35mm, 2.4mm, 2.5mm, 2.6 mm, 2.7mm, 2.8mm, 2.9mm, the length of the annular main grid 220 can be 10mm, 10.1mm, 10.2mm, 10.3mm, 10.4mm.
  • the number of linear busbars 210 on each busbar line 200 is 5.
  • the number of ring-shaped main grids 220 is 4 (in the two battery slices 001, the number of ring-shaped main grids 220 on each main grid line 200 is 8.
  • each linear main grid 210 is 15.92mm and the width is 1.5mm.
  • the inner ring width of the annular main grid 220 is 1.5mm and the outer ring width is 2.5mm.
  • the distance r 2 between the inner ring and the outer ring is 0.5mm, and the length of the annular main grid 220 is 10.42mm.
  • the annular main grid 220 is also provided with rectangular electrodes 300.
  • the electrodes 300 overlap with the opposite sides of the annular main grid 220 and are thus connected to the main grid line 200 for collecting carriers in the main grid line 200. Then it is output to the outside to form a current. Since the electrode 300 is to overlap with the opposite sides of the annular main grid 220 , the width of the rectangular electrode 300 needs to be larger than the width of the inner ring of the annular main grid 220 .
  • the width of the electrode 300 in this embodiment is generally 1.8 mm to 2.2 mm, and the length is generally 4.0 mm to 5.5 mm.
  • the material is generally silver. As an example, the width of the electrode 300 is 1.8 mm, and the length is 10.5 mm.
  • the electrode 300 can also have other shapes, as long as the electrode 300 is connected to the main grid line 200 .
  • the annular main grid 220 will form a projection on the surface of the passivation layer 100 .
  • the passivation layer 100 is provided with two pairs of first laser grooves 110 in the area projected by the annular main grid 220 .
  • a laser slot 110 is arranged on opposite sides of the projection area of the annular main grid 220, corresponding to the linear position of the annular main grid 220.
  • Each main grid line 200 passes through the first laser slot 110 corresponding to the annular main grid 220 and the battery piece. Form ohmic contact.
  • the distance between each pair of first laser grooves 110 is 2.3 mm to 2.5 mm, and the length of each first laser groove 110 is between 4.5 mm and 7.5 mm.
  • the distance between the paired first laser grooves 110 should be smaller than the outer ring width r 3 of the annular main grid 220, and at the same time greater than the inner ring width r 1 , and The length of the first laser grooves 110 is also smaller than the length of the annular main grid 220. Therefore, as an example, the distance between the first laser grooves 110 in this embodiment is 2.3mm, and the length of each first laser groove 110 is 5mm.
  • each main grid line 200 is also provided with a plurality of secondary grid lines 400, and the secondary grid lines 400 also form a projection on the surface of the passivation layer 100, and a second laser groove 120 is provided in the projection area, and each secondary grid line 400 forms an ohmic contact with the battery cell 001 through the corresponding second laser groove 120, so that each Each of the secondary grid lines 400 can collect the carriers generated in the cell 001, and then transfer the carriers to the main grid line 200, and then transfer them to the electrode 300.
  • the width of each secondary grid line 400 is generally 60 ⁇ m to 200 ⁇ m, and the distance between adjacent secondary grid lines 400 is 0.8mm to 1.5mm.
  • each secondary grid line 400 is 60 ⁇ m, and the distance between adjacent secondary grid lines 400 is 0.8mm (the laser grooves in FIG. 2 are all represented by dotted lines, which means that the grid lines are actually covered by the projection of the grid lines).
  • the above-mentioned “several secondary grid lines 400 ” means that the number of secondary grid lines 400 connected to each main grid line 200 is not less than 10. As an example, in this embodiment, the number of secondary grid lines 400 connected to each main grid line 200 is not less than 50.
  • the existing second laser grooves 120 are generally arranged at intervals. In the area where each auxiliary gate line 400 is projected on the surface of the passivation layer 100, the laser is opened.
  • the film rate is generally between 0.8% and 1.8%. As an example, in this embodiment, the laser film opening rate is 0.8%.
  • each first laser groove 110 and each second laser groove 120 are composed of multiple circular laser spots.
  • Each laser spot can be arranged at intervals or continuously.
  • the diameter of each laser spot is 28 ⁇ m ⁇ 30 ⁇ m, and should not be too large or too small. Too large will easily cause the width of the laser groove to be too large, which will cause additional damage to the cell. Too small is not good for the connection between the grid line and the cell. ohmic contact is formed between them.
  • the diameter of each laser spot in this embodiment is 28 ⁇ m.
  • This embodiment also provides a method for preparing a solar cell. Taking P-type cells as an example, the preparation method in this embodiment is as follows:
  • Texturing Use monocrystalline P-type silicon wafers, and use alkali to texturize the front and back sides to form a textured structure.
  • Diffusion Put the texturized silicon wafer into a tube furnace and pass in phosphorus oxychloride to react at high temperature to form a PN emitter junction through front-side diffusion.
  • the sheet resistance of the thin layer on the front surface of the silicon wafer after diffusion is between 120 ⁇ /cm 2 and 200 ⁇ /cm 2 .
  • Front-side laser doping Using the diffused phosphorus-silicate glass as the phosphorus source, laser doping is performed on the front side of the diffused silicon wafer and the metallized area corresponding to the positive electrode gate line to form a heavily doped area, thereby forming a heavily doped area on the silicon wafer.
  • the front side implements a selective emitter structure, and the sheet resistance of the heavily doped region is between 60 ⁇ /cm 2 and 90 ⁇ /cm 2 .
  • Hot oxygen The front-side laser-doped silicon wafer is oxidized by passing oxygen through it.
  • Remove PSG Phospho Silicate Glass: thermally oxidize the silicon wafer, use HF (Hydrofluoric acid) to remove the back and surrounding PSG.
  • HF Hydrofluoric acid
  • Alkali polishing Polish the back and edge of the silicon wafer after PSG removal, and remove PSG from the front.
  • Oxidation annealing oxidize and anneal the silicon wafer after alkali polishing.
  • Front-side deposition of anti-reflection film Prepare passivation and anti-reflection layers on the front side of the silicon wafer.
  • Forming laser grooves on the back surface using laser to open the first laser groove 110 and the second laser groove 120 in this embodiment on the surface of the passivation layer 100 .
  • Form the back electrode use back aluminum paste and use printing to form the main grid lines 200 and auxiliary grid lines 400 in this embodiment; use back silver paste and use printing to form the electrode 300 in this embodiment .
  • the stencil specifications adopt low sand thickness and low film thickness stencils.
  • the preferred screen mesh is 360 mesh, wire diameter 16 ⁇ m, sand thickness 22 ⁇ m or 26 ⁇ m, and film thickness 20 ⁇ m; the second choice is 325 mesh mesh, wire diameter 16 ⁇ m, sand thickness. Thickness 26 ⁇ m, film thickness 20 ⁇ m.
  • Printing of the positive electrode main grid area Use positive silver paste to screen-print the silicon wafer with the back electrode printed on it to prepare the front electrode.
  • Finished product The product cells are tested, sorted, packaged and stored in the warehouse to make solar cells.
  • This embodiment provides a solar cell. Compared with the first embodiment, its main differences are:
  • the number of linear busbars 210 on each busbar line 200 is 7, and the number of ring busbars 220 is 6 at this time (in the two cells 001, the number of the ring busbars 220 on each busbar line 200 is The number is 12, usually the PECR battery with this structure is called a 12-segment battery).
  • this comparative example provides a solar cell, and compared with the first embodiment, its main differences are:
  • a third laser groove 130 is opened on the passivation layer 100 in an area corresponding to the linear main grid 210.
  • the third laser The laser film opening rate of the groove 130 at the corresponding position is 0.8%; and there is no first laser groove 110 in the area corresponding to the annular main grid 220 .
  • This comparative example provides a solar cell. Compared with the first embodiment, its main difference is that it does not include the first laser groove 110 .
  • This comparative example provides a solar cell. Compared with the first embodiment, its main differences are:
  • a third laser groove 130 is provided on the passivation layer 100 in a region corresponding to the linear main grid 210 .
  • the laser opening rate of the third laser groove 130 at the corresponding position is 0.8%.
  • the Halm testing machine was used to test the electrical properties of the solar cells in Examples 1 to 2 and Comparative Examples 1 to 3 respectively.
  • the test results are as shown in the following table:
  • the arrangement of the laser grooves of the solar cell in this embodiment can effectively increase the passivation back field area and reduce the back contact resistance, thereby improving the conversion efficiency of the solar cell, and the efficiency improvement can be higher than 0.02%.
  • the arrangement of the laser grooves in this embodiment can also reduce the back groove time and improve production efficiency.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本申请涉及一种太阳电池,太阳电池包括背面设置有钝化层(100)的电池片(001)以及若干根位于钝化层(100)表面的主栅线(200),每根主栅线(200)分为交替设置的线性主栅(210)和环形主栅(220);每个环形主栅(220)在钝化层(100)的表面投影内设置有两条第一激光槽(110),两条第一激光槽(110)分别对应设置在环形主栅(220)的相对两侧,每根主栅线(200)通过对应的第一激光槽(110)与电池片(001)形成欧姆接触。

Description

一种太阳电池
本申请要求于2022年09月21日申请的,申请号为2022111527291、名称为“一种太阳电池”的中国专利申请的优先权,在此将其全文引入作为参考。
技术领域
本申请涉及光伏电池领域,具体而言,涉及一种太阳电池。
背景技术
PERC太阳电池(Passivated Emitterand Rear Cell,发射极和背面钝化电池)因转换效率高、成本低已逐渐成为替代全铝背场太阳电池(Al-BSF)的最佳选择。PERC太阳电池以背面局域点接触的形式替代了全铝背场,减少了背表面复合速率,增加了背反射性能,从而提升了电池的开路电压和短路电流。
双面PERC电池的背面设置有钝化层,钝化层可以降低电池的表面复合速率,提升开路电压,但是钝化层不导电,不能产生光生载流子的加速作用。因此为了导电,需要使用激光对钝化层的部分区域进行开槽,然后在开槽的位置设置栅线,使得栅线与电池片形成欧姆接触,以将电池内部产生的电子导出,最终将电子汇集到背面电极,从而向外输送电流。
目前的PERC电池会在主栅和副栅对应的区域都开设槽线,这样虽然能提升栅线的载流子收集能力,加速载流子的运动。但是在主栅和副栅对应的区域都开设槽线会增大背接触电阻和背电极电阻,导致太阳电池的光电转化效率降低。
发明内容
根据本申请的各种实施例,提供一种太阳电池。
本申请实施例提供的太阳电池包括背面设置有钝化层的电池片以及若干根位于钝化层表面的主栅线,每根主栅线分为交替设置的线性主栅和环形主栅;每个环形主栅在钝化层的表面投影内设置有两条第一激光槽,两条第一激光槽分 别对应设置在环形主栅的相对两侧,每根主栅线通过对应的第一激光槽与电池片形成欧姆接触。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他实施例的附图。
图1为本申请实施例1提供的太阳电池的结构示意图。
图2为图1中A处的放大图。
图3为本申请对比例1提供的太阳电池的结构示意图。
图4为图3中B处的放大图。
图5为本申请对比例3提供的太阳电池的结构示意图。
图6为图5中C处的放大图。
图标:001-电池片;100-钝化层;110-第一激光槽;120-第二激光槽;130-第三激光槽;200-主栅线;210-线性主栅;220-环形主栅;300-电极;400-副栅线。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。通常在此处附图中描述和示出的本申请实施例的组件可以以各种不同的配置来布置和设计。
因此,以下对在附图中提供的本申请实施例的详细描述并非旨在限制要求保护的本申请的范围,而是仅仅表示本申请的选定实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步定义和解释。
在本申请的描述中,需要说明的是,术语“上”、“下”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,或者是该申请产品使用时惯常摆放的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”等仅用于区分描述,而不能理解为指示或暗示相对重要性。
在本申请的描述中,还需要说明的是,除非另有明确的规定和限定,术语“设置”、“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本申请中的具体含义。
本申请提供一种太阳电池,太阳电池包括背面设置有钝化层的电池片以及若干根位于所述钝化层表面的主栅线,每根所述主栅线分为交替设置的线性主栅和环形主栅;
每个所述环形主栅在所述钝化层的表面投影内设置有两条第一激光槽,两条所述第一激光槽分别对应设置在所述环形主栅的相对两侧,每根所述主栅线通过对应的所述第一激光槽与所述电池片形成欧姆接触。
在其中一个实施例中,成对的所述第一激光槽之间的距离为2.3mm~2.5mm,每个所述第一激光槽的长度为4.5mm~7.5mm。
在其中一个实施例中,每个所述第一激光槽是由若干个圆形的激光光斑组成的,每个所述激光光斑的直径为28μm~30μm。
在其中一个实施例中,所述环形主栅的内环宽度为1.5mm~2mm,所述环形主栅的外环宽度为2.3mm~3mm,所述环形主栅的长度为9.9mm~10.5mm。
在其中一个实施例中,所述线性主栅的长度为7.0mm~16.0mm,所述线性主栅的宽度为1.0mm~2.1mm。
在其中一个实施例中,每根所述主栅线上还设置有若干根副栅线,每根所述 副栅线在所述钝化层的表面投影内开设有第二激光槽,每条所述副栅线通过所述第二激光槽与所述电池片形成欧姆接触。
在其中一个实施例中,每条所述副栅线在所述钝化层的表面投影内的激光开膜率为0.8%~1.8%。
在其中一个实施例中,每根所述副栅线的宽度为60μm~200μm,相邻的所述副栅线之间的距离为0.8mm~1.5mm。
在其中一个实施例中,每个所述环形主栅中均设置有电极,所述主栅线通过所述环形主栅与所述电极相连。
在其中一个实施例中,所述电极呈矩形,矩形的所述电极的宽度大于所述环形主栅的内环的距离,且所述电极的宽度为1.8mm~2.2mm,长度为4.0mm~5.5mm。
在其中一个实施例中,每根所述主栅线上,所述线性主栅的数量为7个。
实施例1
请参看图1和图2,本实施例提供的一种太阳电池,太阳电池包括背面设置有钝化层100的电池片001以及若干根位于电池片表面的主栅线200。其中,“若干根主栅线200”是指:一个电池片表面的主栅线200的数量不少于两根。作为示例性地,本实施例中,每个电池片的背面主栅线200的数量为12根。
需要说明的是,太阳电池中往往不止一个电池片001,例如本实施例中的太阳电池就是两个电池片001的边缘抵接形成的。本实施例后续均是以一个电池片001为例,对栅线以及激光槽的结构进行说明。
每根主栅线200分为交替设置的线性主栅210和环形主栅220,其中“环形主栅220”的形状是类似于环形跑道的形状,中间为矩形,两端为弧形;线性主栅210的长度通常为7.0mm~16mm,宽度为1.0mm~2.1mm,环形主栅220的内环宽度r1通常为1.5mm~2mm,外环宽度r3通常为2.3mm~3mm,环形主栅220的长度通常为9.9mm~10.5mm;例如,内环宽度r1可以是1.6mm、1.7mm、1.8mm、1.9mm,外环宽度r3可以是2.35mm、2.4mm、2.5mm、2.6mm、2.7mm、2.8mm、2.9mm,环形主栅220的长度可以是10mm、10.1mm、10.2mm、10.3mm、10.4mm。作为示例性地,本实施例中,每根主栅线200上,线性主栅210的数量为5个, 环形主栅220的数量为4个(两个电池片001中,每根主栅线200上的环形主栅220的数量即为8个,通常这种结构的电池被称为8分段电池);而且每个线性主栅210的长度为15.92mm,宽度为1.5mm,环形主栅220的内环宽度为1.5mm,外环宽度为2.5mm,内环和外环之间的距离r2就是0.5mm,环形主栅220的长度为10.42mm。
另外,环形主栅220中还设置有矩形的电极300,电极300与环形主栅220的相对两侧搭接,从而与主栅线200相连,用于汇总主栅线200中的载流子,然后对外输出形成电流。由于电极300要与环形主栅220的相对两侧搭接,因此矩形的电极300的宽度需要大于环形主栅220的内环的宽度。本实施例电极300的宽度通常为1.8mm~2.2mm,长度一般为4.0mm~5.5mm,材料一般为银;作为示例性地,电极300的宽度为1.8mm,长度为10.5mm。当然,在其他一些实施例中,电极300还可以是其他形状,只需要保证电极300与主栅线200相连即可。
如图2所示,环形主栅220会在钝化层100的表面形成投影,钝化层100在环形主栅220投影的区域设置有两条成对的第一激光槽110,成对的第一激光槽110布置在环形主栅220的投影区域的相对两侧,与环形主栅220的直线位置相对应,每根主栅线200通过环形主栅220对应的第一激光槽110与电池片形成欧姆接触。本实施例中,每对第一激光槽110之间的距离为2.3mm~2.5mm,每条第一激光槽110的长度在4.5mm~7.5mm之间。为了保证第一激光槽110位于环形主栅220的投影区域,成对的第一激光槽110之间的距离要小于环形主栅220的外环宽度r3,同时大于内环宽度r1,而且第一激光槽110的长度也要小于环形主栅220的长度,因此作为示例性地,本实施例中第一激光槽110之间的距离为2.3mm,每条第一激光槽110的长度为5mm。发明人发现,在钝化层100对应环形主栅220的相对两侧的位置开设第一激光槽110,既能够减小电池的背接触电阻和背电极电阻,同时又不会对电池的开路电压造成明显的影响。
此外,本实施例中,每根主栅线200上还设置有若干条副栅线400,副栅线400也会在钝化层100的表面形成投影,投影的区域设置有第二激光槽120,每条副栅线400通过对应的第二激光槽120与电池片001形成欧姆接触,这样每 条副栅线400都能收集电池片001中产生的载流子,然后将载流子传输汇集到主栅线200上,之后传输至电极300。每根副栅线400的宽度一般为60μm~200μm,相邻的副栅线400之间的距离为0.8mm~1.5mm。作为示例性地,本实施例中,每根副栅线400的宽度为60μm,相邻的副栅线400之间的距离为0.8mm(图2中的激光槽均用虚线表示,代表栅线实际上是被栅线的投影覆盖的)。
上述的“若干条副栅线400”是指:每根主栅线200上连接的副栅线400的数量不少于10根。作为示例性地,本实施例中,每根主栅线200上连接的副栅线400的数量不少于50根。
为了减少副栅线400位置的背接触电阻和背电极电阻,现有的第二激光槽120一般都是间隔设置的,每条副栅线400在钝化层100的表面投影的区域,激光开膜率一般在0.8%~1.8%之间。作为示例性地,本实施例中,激光开膜率为0.8%。
本实施例中,每条第一激光槽110以及每条第二激光槽120都是由多个圆形的激光光斑组成的,每个激光光斑之间既可以间隔排布,也可以连续排布,每个激光光斑的直径为28μm~30μm,不宜过大或过小,过大容易导致激光槽的宽度过大,这样会对电池片造成额外的损伤,过小不利于栅线与电池片之间形成欧姆接触。作为示例性地,本实施例中每个激光光斑的直径为28μm。
本实施例还提供了一种太阳电池的制备方法,以P型电池片为例,本实施例中的制备方法具体如下:
1、制绒:采用单晶P型硅片,用碱进行正面和背面制绒形成绒面结构。
2、扩散:将制绒后硅片放入管式炉中通入三氯氧磷,在高温下进行反应,使正面扩散形成PN发射结。扩散后硅片的正表面薄层的方块电阻为120Ω/cm2~200Ω/cm2之间。
3、正面激光掺杂:利用扩散后的磷硅玻璃为磷源,在扩散后硅片的正面且对应正电极栅线的金属化区域进行激光掺杂,形成重掺杂区,从而在硅片正面实现选择发射极的结构,重掺杂区的方块电阻为60Ω/cm2~90Ω/cm2之间。
4、热氧:将正面激光掺杂后的硅片通氧进行氧化。
5、去PSG(Phospho Silicate Glass,磷硅玻璃):将热氧化后硅片,用HF (氢氟酸)去除背面及周边PSG。
6、碱抛:将去PSG后的硅片进行背面和边缘抛光,正面去PSG。
7、氧化退火:将碱抛后的硅片进行氧化及退火处理。
8、背面沉积钝化层100:在退火后的硅片背面制备钝化层100。
9、正面沉积减反膜:在硅片的正面制备钝化及减反射层。
10、背面形成激光槽:利用激光在钝化层100的表面开设本实施例中的第一激光槽110和第二激光槽120。
11、形成背面电极:采用背铝浆料,使用印刷的方式形成本实施例中的主栅线200和副栅线400;采用背银浆料,使用印刷的方式形成本实施例中的电极300。
在印刷栅线和电极时,采用高精度相机抓拍激光MARK点方式进行对位,确保精度。网板规格采用低沙厚、低膜厚网板,优选网版目数360目、线径16μm、沙厚22μm或26μm、膜厚20μm;次选网版目数325目、线径16μm、沙厚26μm、膜厚20μm。
12、正电极主栅区印刷:采用正银浆料,在印刷了背面电极的硅片上丝网印刷制备正面电极。
13、烧结:将印刷正面电极的硅片进行共烧结,烧结峰值温度72℃~-800℃。
14、电注入:将烧结后的电池片进行电注入处理。
15、成品:将产品电池片测试、分选、包装入库,制成太阳电池。
实施例2
本实施例提供了一种太阳电池,相比于第一实施例,其主要的区别为:
每根主栅线200上,线性主栅210的数量为7个,此时环形主栅220的数量为6个(两个电池片001中,每根主栅线200上的环形主栅220的数量即为12个,通常这种结构的PECR电池被称为12分段电池)。
对比例1
请参看图3和图4,本对比例提供了一种太阳电池,相比于第一实施例,其主要的区别为:
在钝化层100上对应线性主栅210的区域开设有第三激光槽130,第三激光 槽130在相应位置的激光开膜率为0.8%;而且在环形主栅220对应的区域没有开设第一激光槽110。
对比例2
本对比例提供了一种太阳电池,相比于第一实施例,其主要的区别为:不含有第一激光槽110。
对比例3
请参看图5和图6,本对比例提供了一种太阳电池,相比于第一实施例,其主要的区别在于:
在钝化层100上对应线性主栅210的区域开设有第三激光槽130,第三激光槽130在相应位置的激光开膜率为0.8%。
应用例
使用Halm测试机分别对实施例1~实施例2以及对比例1~对比例3中的太阳电池进行电学性能的测试,测试结果如下表所示:
表1实施例1~2和对比例1~3中的太阳电池电学性能
由表1可知,本实施例中的太阳电池的激光槽的布置,可以有效增加钝化背场面积,降低背接触电阻,从而提升太阳电池的转化效率,而且提升效率可高于0.02%。另外,本实施例中的激光槽的布置,还可以减少背面开槽时间,提高生产效率。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对申请专利范围的限制。应当指出的是,对于本领域的普 通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (11)

  1. 一种太阳电池,其特征在于,所述太阳电池包括背面设置有钝化层的电池片以及若干根位于所述钝化层表面的主栅线,每根所述主栅线分为交替设置的线性主栅和环形主栅;
    每个所述环形主栅在所述钝化层的表面投影内设置有两条第一激光槽,两条所述第一激光槽分别对应设置在所述环形主栅的相对两侧,每根所述主栅线通过对应的所述第一激光槽与所述电池片形成欧姆接触。
  2. 根据权利要求1所述的太阳电池,其特征在于,成对的所述第一激光槽之间的距离为2.3mm~2.5mm,每个所述第一激光槽的长度为4.5mm~7.5mm。
  3. 根据权利要求1所述的太阳电池,其特征在于,每个所述第一激光槽是由若干个圆形的激光光斑组成的,每个所述激光光斑的直径为28μm~30μm。
  4. 根据权利要求1所述的太阳电池,其特征在于,所述环形主栅的内环宽度为1.5mm~2mm,所述环形主栅的外环宽度为2.3mm~3mm,所述环形主栅的长度为9.9mm~10.5mm。
  5. 根据权利要求1所述的太阳电池,其特征在于,所述线性主栅的长度为7.0mm~16.0mm,所述线性主栅的宽度为1.0mm~2.1mm。
  6. 根据权利要求1所述的太阳电池,其特征在于,每根所述主栅线上还设置有若干根副栅线,每根所述副栅线在所述钝化层的表面投影内开设有第二激光槽,每条所述副栅线通过所述第二激光槽与所述电池片形成欧姆接触。
  7. 根据权利要求6所述的太阳电池,其特征在于,每条所述副栅线在所述钝化层的表面投影内的激光开膜率为0.8%~1.8%。
  8. 根据权利要求6所述的太阳电池,其特征在于,每根所述副栅线的宽度为60μm~200μm,相邻的所述副栅线之间的距离为0.8mm~1.5mm。
  9. 根据权利要求1所述的太阳电池,其特征在于,每个所述环形主栅中均设置有电极,所述主栅线通过所述环形主栅与所述电极相连。
  10. 根据权利要求9所述的太阳电池,其特征在于,所述电极呈矩形,矩形的所述电极的宽度大于所述环形主栅的内环的距离,且所述电极的宽度为1.8mm~2.2mm,长度为4.0mm~5.5mm。
  11. 根据权利要求1所述的太阳电池,其特征在于,每根所述主栅线上,所述线性主栅的数量为7个。
PCT/CN2023/109784 2022-09-21 2023-07-28 一种太阳电池 WO2024060831A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211152729.1A CN115425100A (zh) 2022-09-21 2022-09-21 一种太阳电池
CN202211152729.1 2022-09-21

Publications (1)

Publication Number Publication Date
WO2024060831A1 true WO2024060831A1 (zh) 2024-03-28

Family

ID=84203597

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/109784 WO2024060831A1 (zh) 2022-09-21 2023-07-28 一种太阳电池

Country Status (2)

Country Link
CN (1) CN115425100A (zh)
WO (1) WO2024060831A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115425100A (zh) * 2022-09-21 2022-12-02 通威太阳能(眉山)有限公司 一种太阳电池

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015220945A1 (de) * 2015-10-27 2017-04-27 Solarworld Innovations Gmbh Verfahren zur Herstellung einer Rückseitenkontaktierung einer Solarzelle und Solarzelle
US20190348551A1 (en) * 2016-06-23 2019-11-14 Hyundai Heavy Industries Green Energy Co., Ltd. Perl solar cell and method for preparing same
CN213782026U (zh) * 2020-10-21 2021-07-23 浙江爱旭太阳能科技有限公司 双面perc电池背面开槽结构及双面perc电池
CN216849951U (zh) * 2022-03-09 2022-06-28 天合光能科技(盐城)有限公司 一种双面太阳能电池背面激光开槽结构
CN217387172U (zh) * 2022-04-28 2022-09-06 通威太阳能(成都)有限公司 一种硅片及太阳能电池片
CN115425100A (zh) * 2022-09-21 2022-12-02 通威太阳能(眉山)有限公司 一种太阳电池

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015220945A1 (de) * 2015-10-27 2017-04-27 Solarworld Innovations Gmbh Verfahren zur Herstellung einer Rückseitenkontaktierung einer Solarzelle und Solarzelle
US20190348551A1 (en) * 2016-06-23 2019-11-14 Hyundai Heavy Industries Green Energy Co., Ltd. Perl solar cell and method for preparing same
CN213782026U (zh) * 2020-10-21 2021-07-23 浙江爱旭太阳能科技有限公司 双面perc电池背面开槽结构及双面perc电池
CN216849951U (zh) * 2022-03-09 2022-06-28 天合光能科技(盐城)有限公司 一种双面太阳能电池背面激光开槽结构
CN217387172U (zh) * 2022-04-28 2022-09-06 通威太阳能(成都)有限公司 一种硅片及太阳能电池片
CN115425100A (zh) * 2022-09-21 2022-12-02 通威太阳能(眉山)有限公司 一种太阳电池

Also Published As

Publication number Publication date
CN115425100A (zh) 2022-12-02

Similar Documents

Publication Publication Date Title
KR102570348B1 (ko) 후면 접촉 전지용 전극 구조, 전지, 모듈 및 전지 시스템
WO2016078365A1 (zh) 高效n型双面太阳电池
US20100037952A1 (en) Selective Emitter Solar Cell and Fabrication Method Thereof
CN108666376B (zh) 一种p型背接触太阳电池及其制备方法
WO2024060831A1 (zh) 一种太阳电池
CN107039544B (zh) P型perc双面太阳能电池及其制备方法、组件和系统
WO2018023940A1 (zh) 一种背接触太阳能电池串及其制备方法和组件、系统
CN108666386B (zh) 一种p型背接触太阳电池及其制备方法
JPWO2011024264A1 (ja) 太陽電池セルおよびその製造方法
CN105185849A (zh) 一种背接触太阳能电池及其制备方法
CN112420855A (zh) 一种基于p型硅片的太阳能电池片及其制备方法
JPWO2017026016A1 (ja) 太陽電池セルおよび太陽電池セルの製造方法
JP2015095644A (ja) 裏面接触式太陽電池
CN218414593U (zh) 一种太阳电池
CN111613686A (zh) 一种太阳电池
CN111613687A (zh) 一种太阳能电池
TWI407576B (zh) 具有差異性摻雜之太陽能電池的製造方法
CN108598188B (zh) N型背接触太阳能电池的制备方法及太阳能电池
CN210897295U (zh) 太阳能电池片及具有该电池片的光伏组件
JP2006120944A (ja) 太陽電池セル、太陽電池セルユニットの製造方法および太陽電池モジュール
JP5022743B2 (ja) 光電変換素子
US20230420593A1 (en) Solar cell and method for preparing the same
JP2012023136A (ja) 太陽電池モジュールおよびその製造方法
CN209675298U (zh) 一种太阳电池结构
CN108987515A (zh) 分片贯孔单面直连太阳能电池组件及制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23867126

Country of ref document: EP

Kind code of ref document: A1