CN108598188B - N型背接触太阳能电池的制备方法及太阳能电池 - Google Patents

N型背接触太阳能电池的制备方法及太阳能电池 Download PDF

Info

Publication number
CN108598188B
CN108598188B CN201810435859.3A CN201810435859A CN108598188B CN 108598188 B CN108598188 B CN 108598188B CN 201810435859 A CN201810435859 A CN 201810435859A CN 108598188 B CN108598188 B CN 108598188B
Authority
CN
China
Prior art keywords
silicon wafer
receiving surface
solar cell
light receiving
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810435859.3A
Other languages
English (en)
Other versions
CN108598188A (zh
Inventor
王子谦
翟金叶
张伟
沈艳娇
孟庆超
张文辉
李锋
史金超
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yingli Energy China Co Ltd
Original Assignee
Yingli Energy China Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yingli Energy China Co Ltd filed Critical Yingli Energy China Co Ltd
Priority to CN201810435859.3A priority Critical patent/CN108598188B/zh
Publication of CN108598188A publication Critical patent/CN108598188A/zh
Application granted granted Critical
Publication of CN108598188B publication Critical patent/CN108598188B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1876Particular processes or apparatus for batch treatment of the devices
    • H01L31/188Apparatus specially adapted for automatic interconnection of solar cells in a module
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/022441Electrode arrangements specially adapted for back-contact solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • H01L31/0682Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells back-junction, i.e. rearside emitter, solar cells, e.g. interdigitated base-emitter regions back-junction cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic System
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • H01L31/1864Annealing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • H01L31/1868Passivation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

本发明适用于太阳能电池技术领域,提供了一种N型背接触太阳能电池的制备方法及太阳能电池,该方法包括:在对N型硅片制绒后,在所述硅片的受光面制备发射结,在所述硅片的非受光面制备背场;在制备发射结和背场后的硅片预设位置处制备通孔;去除制备通孔后的硅片的第一区域的发射结和背场;在去除第一区域的发射结和背场后的硅片的受光面和非受光面制备钝化膜;在制备钝化膜后的硅片上的通孔内印刷浆料;在印刷浆料后的硅片的受光面和非受光面分别印刷栅线,其中,所述非受光面的栅线将相临两个电池片串联;烧结形成太阳能电池。本发明能够降低焊带电阻造成的功率损耗,提升太阳能电池的性能。

Description

N型背接触太阳能电池的制备方法及太阳能电池
技术领域
本发明属于太阳能电池技术领域,尤其涉及一种N型背接触太阳能电池的制备方法及太阳能电池。
背景技术
背接触太阳能电池是指电池的发射区电极和基区电极均位于电池背面的一种太阳能电池,背接触太阳能电池由于降低了正面栅线电极的遮光损失,从而提高了电池的效率。金属发射极穿孔卷绕(Metal Wrap ThroughMWT)太阳能电池是一种常见的背接触太阳能电池,通过在硅片上制备通孔,通过通孔将正面电极引到电池的背面。
目前,WMT太阳能电池通常使用焊带将多个电池片串联成组件,形成一块完整的太阳能电池面板,但是,焊带本身的电阻会带来一部分电性能的损耗,从而降低太阳能电池的电性能。
发明内容
有鉴于此,本发明实施例提供了一种N型背接触太阳能电池的制备方法及太阳能电池,以解决现有技术中使用焊带串联太阳能电池片导致太阳能电池性能降低的问题。
本发明实施例第一方面提供了一种N型背接触太阳能电池的制备方法,包括:
在对N型硅片制绒后,在所述硅片的受光面制备发射结,在所述硅片的非受光面制备背场;
在制备发射结和背场后的硅片预设位置处制备通孔;
去除制备通孔后的硅片的第一区域的发射结和背场;
在去除第一区域的发射结和背场后的硅片的受光面和非受光面制备钝化膜;
在制备钝化膜后的硅片上的通孔内印刷浆料;
在印刷浆料后的硅片的受光面和非受光面分别印刷栅线,其中,所述非受光面的栅线将相临两个电池片串联;所述电池片为去除硅片的第一区域的发射结和背场后获得的,所述电池片为多个,且每个电池片上均制备有通孔;
对印刷栅线后的硅片进行烧结形成太阳能电池。
可选的,所述第一区域包括一个以上的贯穿硅片的条形区域,所述条形区域的宽度为0.05毫米至2毫米。
可选的,所述去除制备通孔后的硅片的第一区域的发射结和背场,包括:
通过激光消融工艺去除制备通孔后的硅片的第一区域的发射结和背场。
进一步的,所述激光消融的深度为1微米至5微米。
可选的,所述硅片的非受光面的栅线包括主栅和细栅,所述主栅覆盖所述硅片上的通孔,且所述主栅将相邻两个电池片串联。
进一步的,所述主栅的浆料和所述通孔内印刷的浆料均为非烧穿浆料,所述细栅的浆料为烧穿浆料;所述硅片的受光面的栅线的浆料为烧穿浆料。
可选的,所述在所述硅片的受光面制备发射结,在所述硅片的非受光面制备背场,包括:
在所述硅片的受光面进行硼掺杂,形成发射结;
在所述硅片的非受光面进行磷掺杂,形成背场。
可选的,所述钝化膜为氮化硅膜。
本发明实施例第二方面提供了一种N型背接触太阳能电池,所述N型背接触太阳能电池通过如本发明实施例第一方面所述的方法制备得到。
本发明实施例第三方面提供了一种N型背接触太阳能电池面板,包括多个如本发明实施例第二方面所述的N型背接触太阳能电池,所述N型背接触太阳能电池通过焊带串联。
本发明实施例与现有技术相比存在的有益效果是:本发明实施例通过去除硅片的第一区域的发射结和背场,获得多个相互绝缘的电池片,并通过非受光面的栅线将相临两个电池片串联,从而使电池的开压增大、电流减小,由于在相同焊接条件下,电压越大、电流越小,焊带电阻造成的损耗越小,从而在使用焊带将太阳能电池片串联时,能够降低焊带电阻造成的功率损耗,提升太阳能电池的性能。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例提供的N型背接触太阳能电池的制备方法的实现流程示意图;
图2是本发明实施例提供的形成的两个相互绝缘的电池片的结构示意图;
图3是本发明实施例提供的通孔内印刷浆料和非受光面印刷细栅的结构示意图;
图4是本发明实施例提供的非受光面印刷主栅的结构示意图;
图5是本发明实施例提供的受光面印刷栅线的结构示意图。
具体实施方式
以下描述中,为了说明而不是为了限定,提出了诸如特定系统结构、技术之类的具体细节,以便透彻理解本发明实施例。然而,本领域的技术人员应当清楚,在没有这些具体细节的其它实施例中也可以实现本发明。在其它情况中,省略对众所周知的系统、装置、电路以及方法的详细说明,以免不必要的细节妨碍本发明的描述。
为了说明本发明所述的技术方案,下面通过具体实施例来进行说明。
实施例一
请参考图1,N型背接触太阳能电池的制备方法,其特征在于,包括:
步骤S101,在对N型硅片制绒后,在所述硅片的受光面制备发射结,在所述硅片的非受光面制备背场。
在本发明实施例中,首先对用于制备太阳电池的N型硅片进行清洗,然后对清洗后的硅片制绒,再在制绒后的硅片的受光面制备发射结,非受光面制备背场。
可选的,步骤S101的具体实现方式为:在所述硅片的受光面进行硼掺杂,形成发射结;在所述硅片的非受光面进行磷掺杂,形成背场。
在本发明实施例中,在硅片的受光面掺杂硼,经高温扩散后形成发射结,在硅片的非受光面掺杂磷,经高温扩散后形成背场。硅片受光面硼掺杂方块电阻为50Ω/□至150Ω/□,硅片非受光面磷掺杂方块电阻为20Ω/□至80Ω/□。
步骤S102,在制备发射结和背场后的硅片预设位置处制备通孔。
在本发明实施例中,通过激光穿孔工艺在制备发射结和背场后的硅片上制备多个通孔。如图2所示,在硅片预设位置处进行激光穿孔,形成多个通孔201。通孔201的直径为100微米至500微米。
步骤S103,去除制备通孔后的硅片的第一区域的发射结和背场。
在本发明实施例中,通过去除硅片第一区域的发射结和背场,形成两个以上的相互绝缘的电池片,相邻两个电池片之间由于去除了发射结和背场,实现了绝缘。并且,每个电池片上均制备有通孔。例如,如图2所示,去除第一区域的发射结和背场,形成上下两个相互绝缘的电池片。
可选的,所述第一区域包括一个以上的贯穿硅片的条形区域,所述条形区域的宽度为0.05毫米至2毫米。
在本发明实施例中,第一区域可以为一个贯穿硅片的条形区域,如图2所示,从而形成两个相互绝缘的电池片。第一区域也可以为多个贯穿硅片的条形区域,从而形成2个以上的相互绝缘的太阳能电池片。在条形区域的数量为多个时,多个条形区域平行分布。条形区域的宽度为0.05毫米至2毫米,条形区域的宽度小于0.05毫米时,难以使相邻两个电池片实现绝缘,条形区域的宽度大于2毫米时,造成硅片的浪费。
可选的,步骤S103的具体实现方式为:通过激光消融工艺去除制备通孔后的硅片的第一区域的发射结和背场。
进一步的,所述激光消融的深度为1微米至5微米。
在本发明实施例中,通过激光消融工艺去除硅片的第一区域的发射结和背场,激光消融的深度根据发射结和背场的深度确定,通常为1微米至5微米,保证既能使相邻硅片实现绝缘,又不会损伤硅片。
步骤S104,在去除第一区域的发射结和背场后的硅片的受光面和非受光面制备钝化膜。
在本发明实施例中,将硅片进行湿化学表面清洁后,通过等离子体化学气相沉积工艺在硅片的受光面和非受光面分别生长钝化膜,钝化膜的材质为氮化硅,厚度为30纳米至300纳米。
步骤S105,在制备钝化膜后的硅片上的通孔内印刷浆料。
在本发明实施例中,如图3所示,在通孔内印刷浆料,浆料为导电浆料。通孔内印刷浆料的工艺为常规的工艺,不作为本发明实施例的改进,在此不再赘述。
步骤S106,在印刷浆料后的硅片的受光面和非受光面分别印刷栅线,其中,所述非受光面的栅线将相临两个电池片串联;所述电池片为去除硅片的第一区域的发射结和背场后获得的,所述电池片为多个,且每个电池片上均制备有通孔。
在本发明实施例中,通过丝网印刷工艺,在硅片的受光面和非受光面分别印刷栅线,其中,非受光面的栅线将相邻两个电池片串联,形成电池片串联的结构。
可选的,所述硅片的非受光面的栅线包括主栅和细栅,所述主栅覆盖所述硅片上的通孔,且所述主栅将相邻两条电池片串联。
进一步的,所述主栅的浆料和所述通孔内印刷的浆料均为非烧穿浆料,所述细栅的浆料为烧穿浆料;所述硅片的受光面的栅线的浆料为烧穿浆料。
在本发明实施例中,如图3所示,通过丝网印刷工艺在硅片的非受光面印刷细栅301。如图4所示,通过丝网印刷工艺在硅片的非受光面印刷主栅302,主栅302覆盖硅片上的通孔,从而将正面电极引到背面,并且,硅片的第一区域印刷有主栅302,通过主栅302将相邻两个电池片正负极相互连通,实现电池片之间的串联。如图5所示,通过丝网印刷工艺在硅片的受光面除第一区域以外的区域印刷栅线,硅片的受光面的栅线分布与常规的硅片受光面的栅线分布的不同之处在于硅片的受光面的第一区域没有印刷栅线,其余均相同。
在本发明实施例中,非受光面主栅的浆料和通孔内印刷的浆料均为非烧穿浆料,不会烧穿钝化膜,从而实现正负极之间的相互绝缘,非受光面细栅的浆料和受光面的栅线的浆料均为烧穿浆料,能够烧穿钝化膜,从而实现细栅与硅片的良好欧姆接触收集电荷。
步骤S107,对印刷栅线后的硅片进行烧结形成太阳能电池。
本发明实施例通过去除硅片的第一区域的发射结和背场,获得多个相互绝缘的电池片,并通过非受光面的栅线将相临两个电池片串联,从而使电池的开压增大、电流减小,由于在相同焊接条件下,电压越大、电流越小,焊带电阻造成的损耗越小,从而在使用焊带将太阳能电池片串联时,能够降低焊带电阻造成的功率损耗,提升太阳能电池的性能。
应理解,上述实施例中各步骤的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本发明实施例的实施过程构成任何限定。
实施例二
一种N型背接触太阳能电池,所述N型背接触太阳能电池通过如本发明实施例一所述的方法制备得到,并具有如本发明实施例一所具有的有益效果。
实施例三
一种N型背接触太阳能电池面板,包括多个如本发明实施例二所述的N型背接触太阳能电池,所述N型背接触太阳能电池通过焊带串联。
在本发明实施例中,通过本发明实施例一所述的方法制备的太阳能电池,使用焊带将多个太阳能电池封装形成太阳能电池面板,由于制备的太阳能电池通过去除硅片的第一区域的发射结和背场,将一片太阳能电池片分割成两个以上的相互绝缘的电池片,从而提升太阳能电池的开压,降低太阳能电池的电流,在通过焊带将分割后的多个太阳能电池片封装成太阳能电池面板时,能够实现高电压低电流的输出,从而减小封装中由于焊带电阻造成的功率损耗。
以上所述实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围,均应包含在本发明的保护范围之内。

Claims (9)

1.一种N型背接触太阳能电池的制备方法,其特征在于,包括:
在对N型硅片制绒后,在所述硅片的受光面制备发射结,在所述硅片的非受光面制备背场;
在制备发射结和背场后的硅片预设位置处制备通孔;
去除制备通孔后的硅片的第一区域的发射结和背场;
在去除第一区域的发射结和背场后的硅片的受光面和非受光面制备钝化膜;
在制备钝化膜后的硅片上的通孔内印刷浆料;
在印刷浆料后的硅片的受光面和非受光面分别印刷栅线,其中,所述非受光面的栅线将相临两个电池片串联;所述电池片为去除硅片的第一区域的发射结和背场后获得的,所述电池片为多个,且每个电池片上均制备有通孔;
对印刷栅线后的硅片进行烧结形成太阳能电池;
所述在所述硅片的受光面制备发射结,在所述硅片的非受光面制备背场,包括,在所述硅片的受光面进行硼掺杂,经高温扩散后形成发射结,在所述硅片的非受光面进行磷掺杂,经高温扩散后形成背场。
2.如权利要求1所述的N型背接触太阳能电池的制备方法,其特征在于,所述第一区域包括一个以上的贯穿硅片的条形区域,所述条形区域的宽度为0.05毫米至2毫米。
3.如权利要求1所述的N型背接触太阳能电池的制备方法,其特征在于,所述去除制备通孔后的硅片的第一区域的发射结和背场,包括:
通过激光消融工艺去除制备通孔后的硅片的第一区域的发射结和背场。
4.如权利要求3所述的N型背接触太阳能电池的制备方法,其特征在于,所述激光消融的深度为1微米至5微米。
5.如权利要求1所述的N型背接触太阳能电池的制备方法,其特征在于,所述硅片的非受光面的栅线包括主栅和细栅,所述主栅覆盖所述硅片上的通孔,且所述主栅将相邻两个电池片串联。
6.如权利要求5所述的N型背接触太阳能电池的制备方法,其特征在于,所述主栅的浆料和所述通孔内印刷的浆料均为非烧穿浆料,所述细栅的浆料为烧穿浆料;所述硅片的受光面的栅线的浆料为烧穿浆料。
7.如权利要求1至6任一项所述的N型背接触太阳能电池的制备方法,其特征在于,所述钝化膜为氮化硅膜。
8.一种N型背接触太阳能电池,其特征在于,所述N型背接触太阳能电池通过如权利要求1至7任一项所述的方法制备得到。
9.一种N型背接触太阳能电池面板,其特征在于,包括多个如权利要求8所述的N型背接触太阳能电池,所述N型背接触太阳能电池通过焊带形成串联。
CN201810435859.3A 2018-05-08 2018-05-08 N型背接触太阳能电池的制备方法及太阳能电池 Active CN108598188B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810435859.3A CN108598188B (zh) 2018-05-08 2018-05-08 N型背接触太阳能电池的制备方法及太阳能电池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810435859.3A CN108598188B (zh) 2018-05-08 2018-05-08 N型背接触太阳能电池的制备方法及太阳能电池

Publications (2)

Publication Number Publication Date
CN108598188A CN108598188A (zh) 2018-09-28
CN108598188B true CN108598188B (zh) 2020-02-07

Family

ID=63636027

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810435859.3A Active CN108598188B (zh) 2018-05-08 2018-05-08 N型背接触太阳能电池的制备方法及太阳能电池

Country Status (1)

Country Link
CN (1) CN108598188B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115064608B (zh) * 2022-07-05 2024-04-09 中国建材国际工程集团有限公司 一种CdTe太阳电池组件及其制造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN205645827U (zh) * 2015-12-31 2016-10-12 钧石(中国)能源有限公司 一种异质结太阳能电池及模组
CN106158990A (zh) * 2016-07-21 2016-11-23 英利能源(中国)有限公司 Ibc电池、电池组及制备方法
EP3297032A1 (en) * 2016-09-14 2018-03-21 The Boeing Company Prefabricated conductors on a substrate to facilitate corner connections for a solar cell array

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8409911B2 (en) * 2009-02-24 2013-04-02 Sunpower Corporation Methods for metallization of solar cells
CN106876486B (zh) * 2017-03-24 2018-11-09 浙江隆基乐叶光伏科技有限公司 P型晶体硅背接触双面电池的组串连接结构、组件及方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN205645827U (zh) * 2015-12-31 2016-10-12 钧石(中国)能源有限公司 一种异质结太阳能电池及模组
CN106158990A (zh) * 2016-07-21 2016-11-23 英利能源(中国)有限公司 Ibc电池、电池组及制备方法
EP3297032A1 (en) * 2016-09-14 2018-03-21 The Boeing Company Prefabricated conductors on a substrate to facilitate corner connections for a solar cell array

Also Published As

Publication number Publication date
CN108598188A (zh) 2018-09-28

Similar Documents

Publication Publication Date Title
JP6111290B2 (ja) 太陽電池
US7179987B2 (en) Solar cell and method for making
KR20100107258A (ko) 태양전지 및 그 제조방법
US20160197207A1 (en) Solar cell, solar cell module, and manufacturing method of solar cell
KR20140126872A (ko) 태양 전지 및 이의 제조 방법
KR100953618B1 (ko) 태양 전지
EP2472593A1 (en) Solar battery cell and method for manufacturing the solar battery cell
KR20170029652A (ko) 후면 콘택 헤테로 접합 광전지
KR20130124783A (ko) 태양 전지 및 이의 제조 방법
NL2034302B1 (en) Solar cell and photovoltaic module
CN108598188B (zh) N型背接触太阳能电池的制备方法及太阳能电池
CN105826409A (zh) 一种局部背场n型太阳能电池及其制备方法和组件、系统
CN104465811A (zh) 一种局部背表面场n型太阳能电池
CN108269873B (zh) Ibc太阳能电池及其制备方法
JP2003224289A (ja) 太陽電池、太陽電池の接続方法、及び太陽電池モジュール
KR20180000498A (ko) Perl 태양전지 및 그 제조방법
KR20120129013A (ko) 후면전극형 태양전지 및 그 제조방법
KR20120004174A (ko) 후면전극형 태양전지 및 그 제조방법
KR101198430B1 (ko) 양면 수광형 국부화 에미터 태양전지 및 그 제조 방법
CN113871499A (zh) 一种n基硅背接触太阳能电池及其制备方法
KR101034318B1 (ko) 태양전지 및 태양전지 제조방법
KR100416739B1 (ko) 실리콘 태양전지의 제조방법
US20120291864A1 (en) Solar cell and solar cell fabrication method
CN211062729U (zh) 一种激光掺杂perc电池
CN213304150U (zh) 太阳能电池电极

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant