WO2024058216A1 - 金属抽出剤、及びこの金属抽出剤を用いた金属イオンの分離回収方法 - Google Patents

金属抽出剤、及びこの金属抽出剤を用いた金属イオンの分離回収方法 Download PDF

Info

Publication number
WO2024058216A1
WO2024058216A1 PCT/JP2023/033379 JP2023033379W WO2024058216A1 WO 2024058216 A1 WO2024058216 A1 WO 2024058216A1 JP 2023033379 W JP2023033379 W JP 2023033379W WO 2024058216 A1 WO2024058216 A1 WO 2024058216A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
metal
metal ions
groups
extractant
Prior art date
Application number
PCT/JP2023/033379
Other languages
English (en)
French (fr)
Inventor
陽 串田
宏顕 望月
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2024058216A1 publication Critical patent/WO2024058216A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D11/00Solvent extraction
    • B01D11/04Solvent extraction of solutions which are liquid
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C211/00Compounds containing amino groups bound to a carbon skeleton
    • C07C211/01Compounds containing amino groups bound to a carbon skeleton having amino groups bound to acyclic carbon atoms
    • C07C211/02Compounds containing amino groups bound to a carbon skeleton having amino groups bound to acyclic carbon atoms of an acyclic saturated carbon skeleton
    • C07C211/09Diamines
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C229/00Compounds containing amino and carboxyl groups bound to the same carbon skeleton
    • C07C229/02Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton
    • C07C229/04Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated
    • C07C229/26Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated having more than one amino group bound to the carbon skeleton, e.g. lysine
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C237/00Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by amino groups
    • C07C237/02Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by amino groups having the carbon atoms of the carboxamide groups bound to acyclic carbon atoms of the carbon skeleton
    • C07C237/04Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by amino groups having the carbon atoms of the carboxamide groups bound to acyclic carbon atoms of the carbon skeleton the carbon skeleton being acyclic and saturated
    • C07C237/06Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by amino groups having the carbon atoms of the carboxamide groups bound to acyclic carbon atoms of the carbon skeleton the carbon skeleton being acyclic and saturated having the nitrogen atoms of the carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C237/00Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by amino groups
    • C07C237/02Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by amino groups having the carbon atoms of the carboxamide groups bound to acyclic carbon atoms of the carbon skeleton
    • C07C237/04Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by amino groups having the carbon atoms of the carboxamide groups bound to acyclic carbon atoms of the carbon skeleton the carbon skeleton being acyclic and saturated
    • C07C237/12Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by amino groups having the carbon atoms of the carboxamide groups bound to acyclic carbon atoms of the carbon skeleton the carbon skeleton being acyclic and saturated having the nitrogen atom of at least one of the carboxamide groups bound to an acyclic carbon atom of a hydrocarbon radical substituted by carboxyl groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C43/00Ethers; Compounds having groups, groups or groups
    • C07C43/02Ethers
    • C07C43/03Ethers having all ether-oxygen atoms bound to acyclic carbon atoms
    • C07C43/04Saturated ethers
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C59/00Compounds having carboxyl groups bound to acyclic carbon atoms and containing any of the groups OH, O—metal, —CHO, keto, ether, groups, groups, or groups
    • C07C59/125Saturated compounds having only one carboxyl group and containing ether groups, groups, groups, or groups
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/26Treatment or purification of solutions, e.g. obtained by leaching by liquid-liquid extraction using organic compounds
    • C22B3/28Amines

Definitions

  • the present invention relates to a metal extractant for extracting metal ions present in an aqueous phase into an oil phase, and a method for separating and recovering metal ions using this metal extractant.
  • LiB lithium ion batteries
  • wet extraction method is used as a method for recycling metals from waste.
  • an organic phase containing a metal extractant is brought into contact with an aqueous solution (aqueous phase) containing ions of metal elements (simply referred to as metal ions), mixed and allowed to stand to separate both phases.
  • the metal ions coordinated by the extractant can be transferred (extracted) to the organic phase.
  • back-extracting the metal ions, and purifying it if necessary, it can be recycled as a (highly pure) metal.
  • Patent Document 1 describes a method for recovering metal ions using a "polyamine compound represented by formula (1)" as a chelating agent (metal extractant). Specifically, it describes that copper ions in an aqueous phase can be extracted into an oil phase using a polyamine compound in which the nitrogen atom at the end of a polyamine compound having an ethylenediamine skeleton is substituted with a carboxymethyl group and a substituted carbamoylmethyl group, as shown in the following formula (1).
  • Patent Document 2 also describes a "method for removing impurities from an acid leachate of nickel oxide ore containing valuable components such as nickel, cobalt, and scandium, and separating the valuable components from the impurities," and a specific "valuable metal extractant consisting of an amide derivative represented by formula (I)" used in this method.
  • this valuable metal extractant is an amide derivative in which an amide group has been introduced into an amino acid such as glycine, as shown in the following formula (I).
  • Patent Documents 1 and 2 it is described that when the metal extractants described in Patent Documents 1 and 2 are used, specific metal ions present in the aqueous phase can be extracted into the oil phase and recovered. However, none of the metal extractants has sufficient selectivity or recovery rate of extracted metal ions, and there is room for improvement. Moreover, in Patent Documents 1 and 2, ions of two or more metal elements belonging to different groups in the periodic table of elements are extracted as ions of valuable metal elements among multiple types of metal ions coexisting in the aqueous phase. However, recovery of one of these metal ions with high selectivity and high recovery rate (separation of ions of two or more metal elements belonging to different groups with high selectivity and high recovery rate) has not been considered. Not yet.
  • metal ions belonging to Groups 9 and 10 such as cobalt ions and nickel ions
  • metal ions belonging to Group 9 (especially cobalt ions) and metal ions belonging to Group 10 (especially nickel) which have similar physical and chemical behavior. If it is possible to recover one type of metal ion with high selectivity and high recovery rate while extracting ions), it will be possible to greatly contribute to the further spread of electric vehicles and, ultimately, to the creation of a sustainable society.
  • the present invention provides a metal extractant capable of extracting a specific metal ion from among multiple types of metal ions present in an aqueous phase into an oil phase with high selectivity and high recovery rate, and a metal ion extractant using this metal extractant.
  • the objective is to provide a separation and recovery method for Further, in a preferred embodiment of the present invention, while extracting ions of two or more metal elements belonging to different groups in the periodic table among the plurality of metal ions present in the aqueous phase, one of the metal ions is extracted. It is an object of the present invention to provide a metal extractant that can extract metal ions into an oil phase with high selectivity and high recovery rate, and a method for separating and recovering metal ions using this metal extractant.
  • a metal extractant used in a wet extraction method for separating and recovering metal ions from an aqueous phase containing multiple types of metal ions has a molecular chain having nitrogen atoms at both ends in its molecular structure, A group containing an unsubstituted hydrocarbon group and a specific coordination functional group for the metal ion to be extracted, or two unsubstituted hydrocarbon groups on the nitrogen atoms located at both ends of this molecular chain, without forming a carbamoyl bond.
  • a metal extractant that extracts metal ions present in the aqueous phase into the oil phase is a metal extractant in which the nitrogen atoms located at both ends of the molecular chain that constitute the metal extractant form a coordinating functional group ( ⁇ ) with an unsubstituted hydrocarbon group and the metal ion to be extracted, without forming a carbamoyl bond.
  • ⁇ 3> The metal extractant according to ⁇ 1> or ⁇ 2>, wherein at least one of the coordinating functional groups is selected from a carboxy group, a phosphoric acid group, a phosphonic acid group, a sulfonic acid group, and a sulfinic acid group.
  • ⁇ 4> The metal extractant according to any one of ⁇ 1> to ⁇ 3>, which is used for extraction and separation of metal ions of two or more elements belonging to different groups of the periodic table among metal ions.
  • R 1 represents an unsubstituted hydrocarbon group.
  • R 2 represents a substituent.
  • R 2 included in N bonded to L 3 represents an unsubstituted hydrocarbon group.
  • Each X represents a group independently selected from the following coordination functional group group G2.
  • L 1 , L 2 and L 3 each independently represent a linking group.
  • n is an integer from 1 to 5.
  • R 3 to R 5 each independently represent an unsubstituted hydrocarbon group.
  • R 6 represents a substituent. However, R 6 included in N bonded to R 5 represents an unsubstituted hydrocarbon group.
  • L 4 represents a linking group.
  • m is an integer from 1 to 5.
  • a method for separating and recovering metal ions comprising mixing an aqueous phase containing a plurality of types of metal ions and an oil phase containing the metal extractant according to any one of ⁇ 1> to ⁇ 7>.
  • the separation and recovery method according to ⁇ 8> wherein when the oil layer contains the metal extractant according to ⁇ 7>, the aqueous phase contains halide ions.
  • the separation and recovery method according to ⁇ 10>, wherein the metal ions of two or more elements are recovered metals from waste batteries.
  • the present invention provides a metal extractant capable of extracting a specific metal ion from among multiple types of metal ions present in an aqueous phase into an oil phase with high selectivity and high recovery rate, and a metal ion extractant using this metal extractant. can provide a separation and recovery method. Further, in a preferred embodiment of the present invention, while extracting ions of two or more metal elements belonging to different groups among the plurality of metal ions present in the aqueous phase, particularly preferably cobalt ions and nickel ions, It is possible to provide a metal extractant that can extract one type of metal ion into an oil phase with high selectivity and high recovery rate, and a method for separating and recovering metal ions using this metal extractant.
  • FIG. 1 is a 1 H-NMR chart of metal extractant E-1 synthesized in Examples.
  • FIG. 2 is an FT-IR chart of metal extractant E-1 synthesized in Examples.
  • FIG. 3 is a 1 H-NMR chart of metal extractant E-3 synthesized in Examples.
  • the expression of a compound is used to include the compound itself, its salt, and its ion.
  • the term also includes derivatives that have been partially changed, such as by introducing a substituent, within a range that does not impair the effects of the present invention.
  • substituents, linking groups, etc. hereinafter referred to as substituents, etc.
  • substituents, etc. that do not specify whether they are substituted or unsubstituted mean that they may have an appropriate substituent. Therefore, in the present invention, even if it is simply described as a YYY group, this YYY group includes not only an embodiment having no substituent but also an embodiment having a substituent.
  • substituents include, for example, groups selected from substituents Z described below.
  • each substituent, etc. may be the same or different from each other. It means that. Further, even if not specified otherwise, when a plurality of substituents are adjacent to each other, it is meant that they may be connected to each other or condensed to form a ring.
  • heterometty metal elements metal elements belonging to different groups in the periodic table of elements
  • heterogeneous metal elements metal elements belonging to different groups in the periodic table of elements
  • heterogeneous metal elements in the same period metal elements in the same period
  • ions of different group metal elements and “ions of same period different group metal elements” may be referred to as “different group metal ions” and “same period different group metal ions,” respectively.
  • ppm indicating content etc. is based on mass and represents “mass ppm” unless otherwise specified.
  • the metal extractant of the present invention is a compound that exhibits a function of extracting metal ions present in an aqueous phase into an oil phase, and can be particularly suitably used in a wet extraction method.
  • a specific metal ion can be extracted into the oil phase with high selectivity and high recovery rate from among multiple types of metal ions present in the aqueous phase.
  • two or more different metal ions such as Group 4, Group 7, and While extracting two or more metal ions belonging to Groups 9 and 10, preferably cobalt ions and nickel ions, which are metal ions of the same period and different groups, one of the metal ions is extracted with high selectivity and high It can be extracted into the oil phase with a high recovery rate.
  • being able to extract metal ions with high selectivity means that among two or more extracted metal ions, the amount of a specific metal ion (usually one type) to be extracted is greater than that of other metal ions. Extracted from other metal ions at a ratio of 3.0 or more (resolution, selectivity) as a ratio to the total extracted amount [(extracted amount of specific metal ion)/(total extracted amount of other metal ions)] It means that it can be separated.
  • the above ratio is preferably 3.5 or more, more preferably 5.0 or more, and still more preferably 9.0 or more.
  • the upper limit is not particularly limited, it can be set to 20, for example, when two types of metal ions are extracted.
  • being able to extract metal ions with a high recovery rate refers to metal ions (specific metal ions to be extracted) that are extracted in the maximum extraction amount among two or more types of extracted metal ions.
  • the ratio of the amount of the metal ion extracted into the oil phase to the content of the metal ion in the water phase (before extraction) [(amount of metal ion extracted into the oil phase)/(the amount of the metal ion in the water phase) content)] means that it can be extracted at a ratio of 0.6 or more.
  • the above ratio is preferably 0.8 or more, more preferably 0.9 or more.
  • the upper limit is not particularly limited and is ideally the total amount of the metal ions present in the aqueous phase, for example, preferably 0.99 or less, 0.95 or less or 0.90 or less. You can also do that.
  • the specific extraction amount can be 30,000 mass ppm or less, preferably 20,000 mass ppm or less.
  • the metal extractant of the present invention exhibits the above-mentioned effects.
  • the nitrogen atoms at both ends of the molecular chain do not constitute a carbamoyl bond
  • the metal extractant of the present invention can suppress structural isomerization of complex ions formed by coordinating with metal ions, resulting in high selectivity. It is thought that this makes it possible.
  • the nitrogen atom at the end has an unsubstituted hydrocarbon group, the dissolution stability of the metal extractant in the oil phase is increased, and the extraction behavior of metal ions into the oil phase is maintained constant. It is thought that this enables a high recovery rate.
  • the metal extractant of the present invention is a compound having a molecular structure shown in Structure A below.
  • Structure A The molecular structure constituting the metal extractant includes a molecular chain with nitrogen atoms at both ends, The nitrogen atoms located at both ends of this molecular chain (sometimes referred to as end nitrogen atoms) form an unsubstituted hydrocarbon group and a coordinating functional group ( ⁇ ) for the metal ion to be extracted, without forming a carbamoyl bond. It has a group containing any of the coordination functional groups of the following coordination functional group group G1, or an unsubstituted hydrocarbon group.
  • the metal extractant of the present invention is a compound having, in addition to structure A, a molecular structure shown in structure B below.
  • Structure B It has two or more functional groups from the above coordination functional group group G1 as coordination functional groups ( ⁇ ) for the metal ions to be extracted.
  • metal extractant I a metal extractant in which two end nitrogen atoms have one unsubstituted hydrocarbon group and one coordination functional group ( ⁇ )-containing group
  • metal extractant II A metal extractant in which the two end nitrogen atoms have two unsubstituted hydrocarbon groups.
  • metal extractant means a generic term including metal extractant I and metal extractant II, unless otherwise specified.
  • the molecular chain having nitrogen atoms at both ends in structure A may be a straight chain, a branched chain, or a cyclic chain, but a straight chain or a branched chain is preferable, and a part of the straight chain or branched chain contains a cycloalkylene group, an arylene group, etc. may contain a cyclic chain (cyclic structure).
  • This molecular chain is preferably a straight chain containing no cyclic chain.
  • the molecular chain is an atomic chain formed by bonding a plurality of atoms in a chain, and refers to the longest chain having nitrogen atoms at both ends.
  • the molecular chain refers to a chain obtained by removing the group bonded to the end nitrogen atom from the chemical structure of the metal extractant (excluding substituents bonded to the chain).
  • the molecular chain of metal extractant E-1 in Example is N-CH 2 -CH 2 -N (ethylenediamine molecular chain)
  • the molecular chain of metal extractant T-1 is N-CO-CH 2 -N-CH 2 -CH 2 -N-CH 2 -CO-N (triethylenetetramine molecular chain).
  • the molecular chain is not particularly limited, but includes a chain having a connecting chain LN that connects nitrogen atoms at each end.
  • This linking chain L N is not particularly limited, but includes, for example, an alkylene group (the number of carbon atoms is preferably 1 to 12, more preferably 1 to 6, and even more preferably 1 to 4), an alkenylene group (the number of carbon atoms is 2 to 4), 6 is preferable, 2 to 3 are more preferable), arylene group (carbon number is preferably 6 to 24, more preferably 6 to 10), oxygen atom, sulfur atom, imino group (-NR N -: R N is hydrogen atom, an alkyl group having 1 to 6 carbon atoms, or an aryl group having 6 to 10 carbon atoms), carbonyl group, phosphoric acid linking group (-O-P(OH)(O)-O-), phosphonic acid linking Examples include a group (-P(OH)(O)-O-), a group related to a combination thereof, and the like
  • the connecting chain L N is preferably an alkylene group, an arylene group, a carbonyl group, an oxygen atom, a sulfur atom, or an imino group, or a group based on a combination thereof; groups are more preferred.
  • the alkylene group and alkenylene group may be straight chain, branched chain, or cyclic chain, but straight chain or branched chain is preferable, and a part of the straight chain or branched chain contains a cyclic chain (cyclic structure). You can stay there.
  • the alkylene group and alkenylene group are preferably straight chains that do not contain a cyclic chain, and are preferably straight chains in which the terminal nitrogen atoms are bonded to both ends of the longest carbon chain.
  • the connecting chain L N preferably does not have a hetero atom such as an oxygen atom, a sulfur atom, or a nitrogen atom (imino group) at its terminal, and it is more preferable that the atoms at both terminals are carbon atoms.
  • the number of groups, linking groups, or atoms to be combined is not particularly limited, but may be, for example, 2 to 15, preferably 2 to 10, and 2 to 5. It is more preferable.
  • the number of types of groups, connecting groups, or atoms to be combined is not particularly limited, but may be, for example, two or more types, and preferably two or three types.
  • a linking group containing a hydrocarbon group, an imino group, etc. is preferable, a hydrocarbon group or a group combining a hydrocarbon group and an imino group is more preferable, and a hydrocarbon group is even more preferable.
  • the hydrocarbon group include the above-mentioned alkylene group, the above-mentioned alkenylene group, and the above-mentioned arylene group, with the alkylene group being preferred and the ethylene group being more preferred.
  • Groups that combine hydrocarbon groups and imino groups include groups in which hydrocarbon groups and imino groups are alternately bonded (polyamine skeleton), such as - [hydrocarbon group - (imino group - hydrocarbon group) NN ]- group.
  • NN is not particularly limited, and is an integer of 0 to 4, preferably an integer of 0 to 3, and more preferably 0 or 1.
  • the number of linked atoms in the linking chain L N is preferably 15 or less, more preferably 13 or less, even more preferably 10 or less, and particularly preferably 6 or less.
  • the lower limit is 1 or more.
  • the above-mentioned number of connected atoms refers to the minimum number of atoms connecting end nitrogen atoms.
  • the number of atoms constituting the linking chain LN is not uniquely determined by, for example, the RN of the imino group, and can be set as appropriate. For example, it can be 1 to 100, preferably 1 to 40, more preferably 1 to 24, and even more preferably 1 to 12.
  • the molecular chain is N-CH 2 -CH 2 -N
  • the number of atoms constituting the connected chain L N is 8, but the number of connected atoms is 4.
  • the two terminal nitrogen atoms are carbamoyl bonds (also called amide bonds, and are expressed as -CO-NR N -.
  • R N is the above-mentioned bond).
  • the end nitrogen atom does not form a carbamoyl bond with respect to the group containing the coordinating functional group ( ⁇ ) that is bonded to the end nitrogen atom.
  • other nitrogen atoms nitrogen atoms forming amino groups and imino groups present in the molecular structure in addition to the terminal nitrogen atoms form carbamoyl groups (-CO-N(R N ) 2 ) or carbamoyl bonds.
  • the unsubstituted hydrocarbon group that the terminal nitrogen atom has is not particularly limited as long as it is a hydrocarbon group that does not have a substituent, for example, an unsubstituted alkyl group, an unsubstituted alkenyl group, an unsubstituted aryl group, an unsubstituted Examples include aralkyl groups or combinations thereof, with unsubstituted alkyl groups and unsubstituted aryl groups being preferred, and unsubstituted alkyl groups being more preferred.
  • the group consisting of a combination is not particularly limited, but includes, for example, a group consisting of a combination of an unsubstituted alkyl group or an unsubstituted aralkyl group and an unsubstituted aryl group.
  • This unsubstituted hydrocarbon does not have a coordinating functional group included in the coordinating functional group group G1 described later.
  • the alkyl group constituting the unsubstituted alkyl group, unsubstituted alkenyl group, and unsubstituted aralkyl group may be linear, branched, or cyclic, preferably linear or branched, and branched. More preferred.
  • the number of carbon atoms in the unsubstituted alkyl group and the unsubstituted alkenyl group is not particularly limited, and can be, for example, 1 to 36. From the viewpoint of solubility in the oil phase, the number of carbon atoms is preferably 4 to 30, more preferably 4 to 24, and even more preferably 6 to 20.
  • the number of carbon atoms in the unsubstituted aryl group is not particularly limited, and can be, for example, 6 to 24, preferably 6 to 10.
  • the number of carbon atoms in the unsubstituted aralkyl group is not particularly limited and can be, for example, 7 to 25, preferably 7 to 11.
  • the group containing a coordination functional group may be any group having one or more coordination functional groups of coordination functional group group G1 described below, and includes a group consisting of a coordination functional group and a coordination functional group. and a bonding group that bonds this coordinating functional group to an end nitrogen atom.
  • the coordination functional group will be described later.
  • the bonding group is not particularly limited, and has the same meaning as L 2 in formula (I) described below, and includes a hydrocarbon group having a coordinating functional group (alkyl group, alkenyl group, or aryl group, or a combination thereof) as described below. Groups) are preferably mentioned.
  • the group containing a coordination functional group is preferably a group consisting of a coordination functional group and a bonding group that bonds the coordination functional group to an end nitrogen atom . '' group is more preferable.
  • the combinations of unsubstituted alkyl groups and the combinations of groups containing coordinating functional groups that the end nitrogen atoms have may be the same or different, and any combination It is preferable that they are the same.
  • the four unsubstituted alkyl groups possessed by the end nitrogen atoms may be the same or different, and the one unsubstituted alkyl group possessed by each end nitrogen atom is the same. is preferable, and it is preferable that the four unsubstituted alkyl groups are the same.
  • the metal extractant of the present invention has, in its molecular structure, one of the groups included in the following coordination functional group group G1 as a coordination functional group ( ⁇ ) that coordinates to the metal ion to be extracted.
  • a preferred embodiment is to have two or more functional groups (also simply referred to as functional groups) (Structure B).
  • the number of types of coordinating functional groups that the metal extractant has is not particularly limited, and may be one type or two or more types, but it is preferably 1 to 5 types, and more preferably 1 type or 2 types. .
  • the total number of coordination functional groups that the metal extractant has is at least two because the nitrogen atoms at the ends correspond to imino groups as coordination functional groups, as described later, but the number of coordination functional groups other than the nitrogen atoms at the ends is at least two.
  • the coordinating functional group is present, there is no particular restriction as long as the number is three or more, and the number is set appropriately.
  • the number is preferably 4 or more, more preferably 4 to 10, even more preferably 4 to 8, particularly preferably 4 to 6.
  • the number may be 2 or more, more preferably 2 to 8, even more preferably 2 to 6, particularly preferably 2 to 4.
  • the number of imino groups included in the molecular chain among the coordination functional groups is 2 or more, but it is determined appropriately taking into consideration the total number of coordination functional groups.
  • the number is preferably 6 to 6, and preferably 2 or 3.
  • R N is as described above. Note that each of the phosphoric acid group, phosphonic acid group, sulfonic acid group, and sulfinic
  • coordinating functional groups amino groups, amide groups, phosphoric acid groups, phosphonic acid groups, sulfonic acid groups, sulfinic acid groups, phosphino groups, nitrogen-containing heterocycles, oxygen-containing heterocycles, sulfur-containing heterocycles, etc.
  • Each of them may be present as a substituent at the end of the molecular structure, or may be present as a linking group (bond) in the molecular structure, for example, in the above-mentioned molecular chain or in the bonding group.
  • the hydrogen atom or substituent of each group or ring is removed and introduced into the molecular structure.
  • an amino group (-N(R N ) 2 ) is introduced into the molecular structure as an imino group (-NR N -).
  • the amino group introduced as an imino group into the molecular structure corresponds to a coordination functional group, and is included in the number of coordination functional groups possessed by the metal extractant.
  • the nitrogen atom at the end of the molecular chain corresponds to the amino group as a coordinating functional group introduced as an imino group, and the number of the two end nitrogen atoms that the molecular chain has is the same as the coordinating functional group that the metal extractant has. It is counted in the base number.
  • the ether group and thioether group have a substituent when present at the end of the molecular chain.
  • the substituents constituting the ether group or thioether group are not particularly limited, and include, for example, groups selected from substituents Z described below, and preferably include an alkyl group, an aryl group, a heterocyclic group, and the like.
  • the amino group When introduced as a substituent, the amino group may constitute a carbamoyl group (-CO-N(R N ) 2 ), but it must not constitute a carbamoyl group (the carbon atom directly bonded to the nitrogen atom is substituted). (does not have an oxo group as a group) is preferable.
  • the imino group corresponding to the terminal nitrogen atom does not constitute a carbamoyl bond (-CO-NR N -), but other imino groups (internal nitrogen ) may or may not form a carbamoyl bond (-CO-NR N -).
  • Internal nitrogen atoms preferably do not constitute a carbamoyl bond (-CO-NR N -).
  • a nitrogen-containing heterocycle, an oxygen-containing heterocycle, and a sulfur-containing heterocycle are heterocycles each having a carbon atom and at least one nitrogen atom, oxygen atom, or sulfur atom as ring constituent atoms.
  • the number of carbon atoms constituting each heterocycle is not particularly limited, and is preferably from 2 to 20, for example.
  • Each heterocycle includes an aromatic heterocycle and an aliphatic heterocycle, and is preferably a 5-membered ring or a 6-membered ring.
  • a heterocycle of the substituent Z described below may be mentioned.
  • Acidic groups such as carboxy groups, phosphoric acid groups, phosphonic acid groups, sulfonic acid groups, sulfinic acid groups, and phosphino groups, amino groups, amide groups, nitrogen-containing heterocycles, and the like may form salts.
  • the cation that forms the salt is not particularly limited and includes, for example, metal cations, particularly metal cations of Group 1 or Group 2, organic cations, and the like. Examples of organic cations include, but are not limited to, ammonium cations, alkylammonium cations, and the like.
  • examples of the coordination functional groups of the metal extractant include amino groups, carboxy groups, phosphoric acid groups, phosphonic acid groups, sulfonic acid groups, sulfinic acid groups, and phosphino groups. , hydroxyl group, and ether group are preferred.
  • Coordination functional groups other than amino groups introduced into the molecular chain as imino groups include carboxy groups, phosphoric acid groups, phosphonic acid groups, sulfonic acid groups, sulfinic acid groups, hydroxyl groups, and ether groups.
  • a carboxy group is more preferred, a carboxy group, a phosphoric acid group, a phosphonic acid group, a sulfonic acid group, and a sulfinic acid group are even more preferred, and a carboxy group is particularly preferred.
  • the combination of coordination functional groups is not particularly limited, and the coordination functional groups included in the coordination functional group group G1 can be appropriately combined.
  • metal extractants, especially metal extractant I have an amino group as an imino group (nitrogen atom at the end) as a coordinating functional group.
  • the metal extractant II may have a coordinating functional group other than the amino group serving as the end nitrogen atom, but it is preferable that it does not have a coordinating functional group.
  • the metal extractant is preferably a compound in which the above-mentioned unsubstituted hydrocarbon group or the like is introduced into the terminal nitrogen atom of mono- or poly(alkylene diamine) corresponding to the above-mentioned molecular chain; More preferred are compounds into which an unsubstituted hydrocarbon group or the like is introduced.
  • Preferred examples of the mono- or poly(alkylene diamine) include alkylene diamine, dialkylene triamine, trialkylene tetramine, tetraalkylene pentamine, and pentaalkylene hexamine.
  • the alkylene group constituting the mono- or poly(alkylene diamine) has the same meaning as the alkylene group constituting the connecting chain LN .
  • the metal extractant may have a substituent other than the coordinating functional group included in the coordinating functional group group G1, and the substituent that may have the substituent may be selected from substituents Z described below, for example.
  • the following groups are mentioned.
  • the metal extractant may have the structures A and B described above, but from the viewpoint of selectivity and recovery rate of metal ions, it is preferable that the metal extractant does not have a carbamoyl group or a carbamoyl bond.
  • the molecular weight of the metal extractant is not particularly limited, but can be, for example, 150 to 50,000, and from the viewpoint of solubility in the oil phase, it is preferably 200 to 10,000, and 250 to 1 ,000 is more preferable.
  • the molecular weight refers to the number average molecular weight measured by gel permeation chromatography (GPC) in terms of standard polystyrene.
  • GPC gel permeation chromatography
  • - Measuring molecular weight As a method for measuring the molecular weight of an oligomer, the value is basically determined by the method under Condition 1 or Condition 2 (priority) below.
  • an appropriate eluent may be selected and used.
  • (Condition 1) Column: Connect two TOSOH TSKgel Super AWM-H (product name, manufactured by Tosoh Corporation) Carrier: 10mMLiBr/N-methylpyrrolidone Measurement temperature: 40°C Carrier flow rate: 1.0ml/min Sample concentration: 0.1% by mass Detector: RI (refractive index) detector (condition 2)
  • the acid dissociation constant pKa of the metal extractant is not particularly limited, and can take an appropriate value depending on the type, number, etc. of coordinating functional groups.
  • pKa is a value measured by neutralization titration.
  • the metal extractant can be synthesized by referring to known methods, such as the methods described in Patent Documents 1 and 2.
  • examples of the method for synthesizing the metal extractant include the synthesis method described in Examples.
  • metal extractant I is preferably a compound represented by the following formula (I).
  • This metal extractant I is a metal extractant having 2 to 6 nitrogen atoms and 2 X as coordinating functional groups, and preferably has an acid dissociation constant pKa of, for example, 4 to 20. , more preferably from 5 to 15, and still more preferably from 5 to 10.
  • R 1 represents an unsubstituted hydrocarbon group.
  • the unsubstituted hydrocarbon group that can be used as R 1 is not particularly limited, and has the same meaning as the above-mentioned unsubstituted hydrocarbon group possessed by the terminal nitrogen atom.
  • unsubstituted branched alkyl groups having 4 to 20 carbon atoms are preferred.
  • R 2 represents a substituent.
  • the substituent that can be used as R 2 is not particularly limited, and includes, for example, a group selected from substituents Z described below, preferably including an alkyl group, an alkenyl group, an aralkyl group, an aryl group, a heterocyclic group, etc. It will be done. Among them, hydrocarbon groups such as an alkyl group, an alkenyl group, an aralkyl group, and an aryl group are preferable from the viewpoint of solubility in the oil phase.
  • the hydrocarbon group that can preferably be used as R 2 is not particularly limited, and has the same meaning as the hydrocarbon group in the unsubstituted hydrocarbon group possessed by the terminal nitrogen atom described above.
  • this hydrocarbon group may further have a group selected from the substituents Z as a substituent, but it is important that the carbon atom directly bonded to the nitrogen atom does not have an oxo group as a substituent. It is preferably an unsubstituted hydrocarbon group, and more preferably an unsubstituted hydrocarbon group.
  • R 2 included in N bonded to L 3 among R 2 is an unsubstituted hydrocarbon group. This unsubstituted hydrocarbon group has the same meaning as the above-mentioned unsubstituted hydrocarbon group possessed by the terminal nitrogen atom.
  • the unsubstituted hydrocarbon group that can be more preferably used as R 2 and the unsubstituted hydrocarbon group that can be used as R 2 possessed by N bonded to L 3 are the same or different from the unsubstituted hydrocarbon group that can be used as R 1 , respectively. However, it is preferable that they be the same.
  • the metal extractant I represented by formula (I) has a plurality of R 2 s , the plural R 2s may be the same or different, but are preferably the same.
  • each X represents a coordination functional group, and represents a group selected from the following coordination functional group group G2.
  • X is preferably a carboxy group, a phosphoric acid group, a phosphonic acid group, a sulfonic acid group, or a sulfinic acid group, and a carboxy group is particularly preferable.
  • the two Xs may be the same or different, but are preferably the same.
  • Each coordination functional group included in the coordination functional group group G2 below has the same meaning as the corresponding coordination functional group included in the coordination functional group group G1.
  • L 1 , L 2 and L 3 each represent a linking group.
  • the linking groups that can be used as L 1 , L 2 and L 3 are not particularly limited, and include, for example, alkylene groups, alkenylene groups (preferably 2 to 6 carbon atoms, more preferably 2 to 3 carbon atoms), arylene groups (carbon atoms The number is preferably 6 to 24, more preferably 6 to 10), oxygen atom, sulfur atom, imino group (-NR N -: R N has the same meaning as R 2 above), carbonyl group, phosphoric acid linking group (-OP(OH)(O)-O-), a phosphonic acid linking group (-P(OH)(O)-O-), or a combination thereof.
  • the alkylene group and alkenylene group may be straight chain, branched chain, or cyclic chain, but straight chain or branched chain is preferable, and a part of the straight chain or branched chain contains a cyclic chain (cyclic structure). You can stay there.
  • the alkylene group and alkenylene group are preferably straight chains that do not contain a cyclic chain, and are preferably straight chains in which the nitrogen atom in formula (I) is bonded to both ends of the longest carbon chain.
  • the number of groups, linking groups, or atoms to be combined is not particularly limited, but can be, for example, 2 to 15, preferably 2 to 10, and 2 to 5. It is more preferable. Further, the number of groups, linking groups, or atoms to be combined is not particularly limited, but can be, for example, two or more types, preferably 2 to 5 types, and more preferably 2 or 3 types. preferable.
  • the linking group that can be used as L 1 is preferably an alkylene group, preferably an alkylene group having 1 to 12 carbon atoms, more preferably an alkylene group having 1 to 6 carbon atoms, and an alkylene group having 1 to 4 carbon atoms. is even more preferable.
  • the alkylene group that can be used as L 1 is preferably a linear alkylene group, more preferably a linear alkylene group in which the nitrogen atom in formula (I) is bonded to both ends of the longest carbon chain, and 1, More preferably, it is a 2-ethanediyl group.
  • the alkylene group that can be used as L 1 may have a substituent, but it is more preferably an unsubstituted alkylene group.
  • the metal extractant I represented by formula (I) has a plurality of L 1s
  • the plurality of L 1s may be the same or different, but are preferably the same.
  • the linking group that can be taken as L 1 may have an oxo group as a substituent on the nitrogen atom in formula (I), especially the carbon atom directly bonded to the nitrogen atom containing R 1 . It is preferable not to do so.
  • alkylene groups are preferred.
  • the alkylene group that can be preferably used as L 2 and L 3 may be linear, branched, or cyclic, preferably linear or branched, more preferably branched, and the alkylene group at one end may be linear, branched, or cyclic.
  • the carbon atom is a branched chain (1,1-alkanediyl group) bonded to N and X in formula (I), or the carbon atom at one end and the carbon atom adjacent to this carbon atom are More preferably, it is a branched chain (1,2-alkanediyl group) bonded to N and X in formula (I).
  • the number of carbon atoms in the alkylene groups that can be used as L 2 and L 3 is not particularly limited, and can be, for example, 1 to 36.
  • the alkylene group preferably has 4 to 30 carbon atoms, more preferably 4 to 24 carbon atoms, and even more preferably 6 to 20 carbon atoms, from the viewpoint of solubility in the oil phase.
  • the alkylene groups that can be used as L 2 and L 3 are more preferably unsubstituted alkylene groups.
  • a preferred embodiment of the linking group that can be used as L 2 and L 3 is one in which a part of the carbon atoms constituting the above-mentioned alkylene group is replaced with an oxygen atom.
  • the carbon atom substituted with an oxygen atom is a carbon atom located inside the carbon chain constituting the alkylene group, and the number of carbon atoms substituted is not particularly limited, and is 1 to 3. can do.
  • Such groups include, for example, a group in which one carbon atom in the above-mentioned alkylene group is substituted with an oxygen atom (alkylene group-oxygen atom-alkyl group), a group in which two carbon atoms in the above-mentioned alkylene group are substituted with oxygen Examples include groups substituted with atoms (alkylene group-oxygen atom-alkylene group-oxygen atom-alkyl group, for example, metal extractant E-6 synthesized in Examples).
  • the linking groups that can be used as L 2 and L 3 may be the same or different, and are preferably the same.
  • the linking groups that can be used as L 2 and L 3 may be the same as or different from the residue obtained by removing one hydrogen atom from the unsubstituted hydrocarbon group that can be used as R 1 , but X in formula (I) It is preferable that the group excluding the portion bonding the and the nitrogen atom is the same as the unsubstituted hydrocarbon group that can be used as R 1 .
  • the connecting groups that can be used as L 2 and L 3 the carbon atom directly bonded to the nitrogen atom in formula (I) does not have an oxo group as a substituent.
  • the group represented by -L 2 -X and the group represented by -L 3 -X are groups having a coordinating functional group, and L 2 , L 3 and X are as described above.
  • a hydrocarbon group having a coordinating functional group is preferable.
  • the hydrocarbon group having a coordination functional group is not particularly limited, and includes, for example, a group in which a coordination functional group is introduced into an alkyl group, an alkenyl group, an aryl group, or a combination thereof.
  • the above alkyl group, alkenyl group, and aryl group correspond to the above alkylene group, alkenylene group, and arylene group, respectively, which can be taken as L 2 before introduction of the coordinating functional group.
  • the combined group is not particularly limited, but includes, for example, a group combining an alkyl group and an aryl group.
  • the group represented by -L 2 -X and the group represented by -L 3 -X may be the same or different, but are preferably the same.
  • R 1 , R 2 , X and L 1 to L 3 are not particularly limited, and include preferred combinations of each.
  • n is an integer of 1 to 5, preferably an integer of 1 to 4, and more preferably 1 or 2.
  • Metal extractant I may have a substituent other than the above-mentioned Examples include groups other than the coordination functional groups included in Group G1.
  • metal extractant I examples include those shown below in addition to those synthesized in the examples, but the present invention is not limited thereto.
  • metal extractant II is preferably a compound represented by the following formula (II).
  • This metal extractant II is a basic extractant having 2 to 6 nitrogen atoms (imino groups) as coordinating functional groups, and the acid dissociation constant pKa of its conjugate acid is, for example, 5.0 to 6. It is preferably 14.0, more preferably 7.0 to 13.0.
  • pKa is a value measured by neutralization titration method.
  • R 3 to R 5 each represent an unsubstituted hydrocarbon group.
  • the unsubstituted hydrocarbon group that can be used as R 3 to R 5 is not particularly limited, but has the same meaning as the above-mentioned unsubstituted hydrocarbon group possessed by the terminal nitrogen atom.
  • unsubstituted branched alkyl groups having 4 to 20 carbon atoms are preferred.
  • the unsubstituted hydrocarbon groups that can be used as R 3 to R 5 may be the same or different, but are preferably the same.
  • the carbon atom directly bonded to the nitrogen atom having R6 does not have an oxo group as a substituent.
  • R 6 represents a substituent.
  • the substituent that can be used as R 6 is not particularly limited, and includes, for example, a group selected from substituents Z described below, preferably including an alkyl group, an alkenyl group, an aralkyl group, an aryl group, a heterocyclic group, etc. It will be done. Among them, hydrocarbon groups such as an alkyl group, an alkenyl group, an aralkyl group, and an aryl group are preferred from the viewpoint of solubility in the oil phase.
  • the hydrocarbon group that can preferably be used as R 6 is not particularly limited, and has the same meaning as the hydrocarbon group in the unsubstituted hydrocarbon group possessed by the terminal nitrogen atom described above.
  • this hydrocarbon group may further have a group selected from the substituents Z as a substituent, but it is important that the carbon atom directly bonded to the nitrogen atom does not have an oxo group as a substituent. It is preferably an unsubstituted hydrocarbon group, and more preferably an unsubstituted hydrocarbon group.
  • R 6 included in N bonded to R 5 among R 6 is an unsubstituted hydrocarbon group. This unsubstituted hydrocarbon group has the same meaning as the above-mentioned unsubstituted hydrocarbon group possessed by the terminal nitrogen atom.
  • the unsubstituted hydrocarbon group that can be more preferably used as R 6 and the unsubstituted hydrocarbon group that can be used as R 6 possessed by N bonded to R 5 are each of the unsubstituted hydrocarbon groups that can be used as R 3 to R 5 , respectively. may be the same or different, but they are preferably all the same, and both are preferably unsubstituted alkyl groups.
  • the metal extractant II represented by formula (II) has a plurality of R 6 s , the plural R 6s may be the same or different, but are preferably the same.
  • L 4 represents a linking group.
  • the linking group that can be used as L 4 is not particularly limited, and includes, for example, an alkylene group (the number of carbon atoms is preferably 1 to 12, more preferably 1 to 6, and even more preferably 1 to 4), an alkenylene group (the number of carbon atoms is (preferably 2 to 6, more preferably 2 to 3), arylene group (preferably 6 to 24 carbon atoms, more preferably 6 to 10 carbon atoms), oxygen atom, sulfur atom, imino group (-NR N -: R N is the same as R2 above), carbonyl group, phosphoric acid linking group (-O-P(OH)(O)-O-), phosphonic acid linking group (-P(OH)(O)-O- ), or a combination thereof.
  • the alkylene group and alkenylene group may be straight chain, branched chain, or cyclic chain, but straight chain or branched chain is preferable, and a part of the straight chain or branched chain contains a cyclic chain (cyclic structure). You can stay there.
  • the alkylene group and alkenylene group are preferably straight chains that do not contain a cyclic chain, and are preferably straight chains in which the nitrogen atom in formula (I) is bonded to both ends of the longest carbon chain.
  • the number of groups, linking groups, or atoms to be combined is not particularly limited, but may be, for example, 2 to 15, preferably 2 to 10, and 2 to 5. It is more preferable.
  • the number of types of groups, connecting groups, or atoms to be combined is not particularly limited, but may be, for example, two or more types, and preferably two or three types.
  • the linking group that can be used as L 4 is preferably an alkylene group, preferably a straight chain alkylene group, and a straight chain alkylene group in which the nitrogen atom in formula (II) is bonded to both ends of the longest carbon chain. It is more preferably a group, and even more preferably a 1,2-ethanediyl group.
  • the alkylene group that can be used as L 4 may have a substituent, but it is more preferably an unsubstituted alkylene group.
  • metal extractant II represented by formula (II) has a plurality of L 4s
  • the plurality of L 4s may be the same or different, but are preferably the same.
  • the carbon atom directly bonded to the nitrogen atom having R3 and R4 does not have an oxo group as a substituent, but is directly bonded to the nitrogen atom having R6 .
  • the carbon atom may have an oxo group as a substituent, but preferably does not have an oxo group.
  • the amino group having R 3 and R 4 and the amino group having R 5 and R 6 may be the same or different, but are preferably the same.
  • the combinations of R 3 to R 6 and L 4 are not particularly limited, and include preferred combinations of each.
  • m is an integer of 1 to 5, preferably an integer of 1 to 4, and more preferably 1 or 2.
  • the metal extractant II may have a substituent, and examples of the substituent that may be included include a group selected from substituents Z described below.
  • metal extractant II examples include those shown below in addition to those synthesized in the examples, but the present invention is not limited thereto.
  • Substituent Z - Alkyl group preferably an alkyl group having 1 to 20 carbon atoms, such as methyl, ethyl, isopropyl, t-butyl, pentyl, heptyl, 1-ethylpentyl, benzyl, 2-ethoxyethyl, 1-carboxymethyl, etc.
  • alkenyl group preferably an alkenyl group having 2 to 20 carbon atoms, such as vinyl, allyl, oleyl, etc.
  • an alkynyl group preferably an alkynyl group having 2 to 20 carbon atoms, such as ethynyl, butadiynyl, phenylethynyl, etc.
  • cycloalkyl group Preferably a cycloalkyl group having 3 to 20 carbon atoms, such as cyclopropyl, cyclopentyl, cyclohexyl, 4-methylcyclohexyl
  • alkyl group usually includes a cycloalkyl group, but it is not specified separately here. ), aryl groups (preferably aryl groups having 6 to 26 carbon atoms, such as phenyl, 1-naphthyl, 4-methoxyphenyl, 2-chlorophenyl, 3-methylphenyl, etc.), aralkyl groups (preferably 7 to 26 carbon atoms), 23 aralkyl groups such as benzyl, phenethyl, etc.), heterocyclic groups (preferably heterocyclic groups having 2 to 20 carbon atoms, more preferably 5 or 6 carbon atoms having at least one oxygen atom, sulfur atom, or nitrogen atom) It is a membered heterocyclic group.
  • Heterocyclic groups include aromatic heterocyclic groups and aliphatic heterocyclic groups.For example, tetrahydropyran ring group, tetrahydrofuran ring group, 2-pyridyl, 4-pyridyl, 2-
  • alkoxy group preferably an alkoxy group having 1 to 20 carbon atoms, such as methoxy, ethoxy, isopropyloxy, benzyloxy, etc.
  • aryloxy group Preferably, an aryloxy group having 6 to 26 carbon atoms, such as phenoxy, 1-naphthyloxy, 3-methylphenoxy, 4-methoxyphenoxy, etc.
  • a heterocyclic oxy group an -O- group is bonded to the above heterocyclic group) group
  • an alkoxycarbonyl group preferably an alkoxycarbonyl group having 2 to 20 carbon atoms, such as ethoxycarbonyl, 2-ethylhexyloxycarbonyl, dodecyloxycarbonyl, etc.
  • an aryloxycarbonyl group preferably an aryl group having 7 to 26 carbon atoms
  • alkoxycarbonyl group preferably an alkoxycarbonyl group having 1 to 20 carbon atoms, such as methoxy
  • R P is a hydrogen atom or a substituent (preferably a group selected from substituents Z). Further, each of the groups listed as the substituent Z may be further substituted by the above substituent Z.
  • the above-mentioned alkyl group, alkylene group, alkenyl group, alkenylene group, alkynyl group and/or alkynylene group may be cyclic or chain-like, and may be linear or branched.
  • the metal ion separation and recovery method of the present invention (hereinafter sometimes referred to as the separation and recovery method of the present invention) comprises an aqueous phase containing multiple types of metal ions and an oil phase containing the metal extractant of the present invention.
  • specific metal ions coordinated with the metal extractant of the present invention are transferred (extracted) from the aqueous phase to the oil phase, and separated and recovered with high selectivity and high recovery rate.
  • the metal ions to be extracted into the oil phase may be some of the multiple types of metal ions contained in the water phase, but may be two or more types, and may be all types of heterogeneous metal ions contained in the water phase. Good too.
  • two or more different metal ions for example, two or more metal ions belonging to Group 4, Group 7, Group 9, and Group 10, are used as valuable metal element ions.
  • cobalt ions and nickel ions which are metal ions of the same periodic group, can be extracted into the oil phase with high selectivity and high recovery rate.
  • the metal extractant of the present invention extracts two or more types of metal ions together into an oil phase among a plurality of types of metal ions present in the aqueous phase
  • one of the metal ions is The characteristics and function of extracting ions with high selectivity and high recovery rate were discovered and applied to a new application of separating and recovering two or more types of heterogeneous metal ions.
  • the water forming the aqueous phase is not particularly limited, but (ultra)pure water, ion exchange water, etc. can be used.
  • the metal ions contained in the aqueous phase may include at least one metal ion belonging to Groups 3 to 16, and may also include metal ions belonging to groups other than Groups 3 to 16.
  • it contains two or more types of metal ions belonging to Groups 4 to 12 even more preferably that it contains two or more types of metal ions that belong to Groups 4 to 10. More preferably, it contains two or more metal ions belonging to Group 4, Group 7, Group 9 and Group 10, and it is particularly preferable that it contains two or more metal ions belonging to Groups 8 to 10.
  • the metal ions belonging to each group are not particularly limited, but metal ions belonging to the fourth to sixth periods in the periodic table are preferable, and metal ions belonging to the fourth period or the fifth period are more preferable.
  • the number of types of metal ions is not particularly limited as long as it is 2 or more types, for example, it can be 2 to 15 types, preferably 2 to 8 types, and preferably 2 to 5 types. More preferred.
  • Combinations of multiple metal ions are not particularly limited, but examples of combinations of metal ions include combinations containing Group 9 and Group 10 (excluding combinations containing Group 7), and combinations containing Group 4 and Group 9.
  • a combination including a group 7, a group 9, and a group 10 a combination including a group 7, a group 8, a group 9, and a group 10, and the like.
  • two or more types of metal ions belonging to each group may be used, but it is preferable to use only one type of metal ion because it exhibits high selectivity.
  • Specific combinations of metal ions include, for example, combinations containing Co and Ni (excluding combinations containing Mn), combinations containing Zr and Rh, combinations containing Mn, Co and Ni, Mn, Fe, Co and Ni.
  • the metal elements belonging to each group are not particularly limited, and appropriate atoms can be used.
  • Preferred examples of the metal elements belonging to Group 3 include Sc and Y.
  • Preferred examples of the metal elements belonging to Group 4 include Ti, Zr, and Hf.
  • Preferred examples of the metal elements belonging to Group 5 include V, Nb, and Ta.
  • Preferred examples of the metal elements belonging to Group 6 include Cr, Mo, and W.
  • Mn and Tc are preferably mentioned.
  • Preferred examples of the metal elements belonging to Group 8 include Fe, Ru, and Os.
  • Preferred examples of the metal elements belonging to Group 9 include Co, Rh, and Ir.
  • Preferred examples of the metal elements belonging to Group 10 include Ni, Pd, and Pt.
  • Preferred examples of the metal elements belonging to Group 11 include Cu, Ag, and Au.
  • Preferred examples of the metal elements belonging to Group 12 include Zn, Cd, and Hg.
  • Preferred examples of the metal elements belonging to Group 13 include Al, Ga, In, and Tl.
  • Preferred examples of the metal elements belonging to Group 14 include Ge, Sn, and Pb.
  • Sb and Bi are preferably mentioned.
  • Te is preferably mentioned.
  • metal ions can be prepared as appropriate, such as various metal salts (salts of typical elements such as inorganic acids such as nitric acid and sulfuric acid, or organic acids such as acetic acid), mined metals (ions) It is possible to use mixtures of , materials recovered from metal waste, materials recovered from other wastes such as waste batteries (LiB), and mixtures thereof. Examples of the metal recovered from waste LiB include those recovered by known methods such as wet processing and electrolysis.
  • the total content of multiple types of metal ions in the aqueous phase is not particularly limited and may be set appropriately, but may be, for example, 1,000 to 1,000,000 ppm by mass; ,000 mass ppm, more preferably 1,000 to 80,000 mass ppm.
  • the total content of metal ions belonging to Groups 8 to 12 among metal ions is not particularly limited and may be set appropriately, but may be, for example, 1,000 to 80,000 ppm by mass, and 1 ,000 to 60,000 ppm by mass.
  • the total content of metal ions belonging to Groups 3 to 7 and Groups 13 to 16 among metal ions is not particularly limited and may be set appropriately, but for example, 1,000 to 60,000 mass. ppm, preferably 1,000 to 30,000 ppm by mass.
  • the content of metal ions belonging to each group is not particularly limited and is set appropriately, but can be, for example, 1,000 to 60,000 mass ppm, and 1,000 to 50,000 mass ppm. It is preferable.
  • metal ions belonging to groups other than Groups 3 to 16 are included, the content thereof is not particularly limited, but may be, for example, 50,000 mass ppm or less, and 30,000 mass ppm or less. It is preferable.
  • the content of metal ions belonging to each group is the total content.
  • the content of metal ions belonging to a certain group may be greater or less than the content of metal ions belonging to other groups. Since the separation and recovery method of the present invention can separate and recover metal ions with high selectivity, it is not necessary to set the contents of metal ions belonging to different groups to a specific ratio. For example, the content of metal ions belonging to a particular group (e.g., the metal ions extracted at the maximum extraction amount) relative to the content of metal ions belonging to one other group (e.g., the metal ions extracted at the maximum extraction amount).
  • the mass ratio of the content of metal ions other than ions (including metal ions that are not extracted) [content of metal ions belonging to a specific group: content of metal ions belonging to one other group] is, for example, The ratio can be 100:1 to 10,000, preferably 100:10 to 5,000, more preferably 100:50 to 1,000, and even more preferably 100:70 to 130. preferable.
  • the pH of the aqueous phase is not particularly limited and is set appropriately, but in consideration of the solubility of metal ions, the formation of complex ions, etc., it is preferably set to, for example, 0.1 to 10.
  • the pH of the aqueous phase can be adjusted using, for example, acids or alkalis.
  • any known acid can be used without particular limitation, including inorganic acids such as sulfuric acid, hydrochloric acid, nitric acid, and phosphoric acid, and organic acids such as formic acid, acetic acid, oxalic acid, organic phosphoric acid, and organic sulfonic acid. can be mentioned.
  • any known alkali can be used without particular limitation, including inorganic alkalis and organic alkalis, with inorganic alkalis being preferred.
  • the inorganic alkali include metal alkalis such as hydroxides and carbonates of Group 1 or Group 2 metals, as well as ammonia water, ammonium chloride, and the like.
  • the organic alkali include organic ammonium salts and the like.
  • the temperature of the aqueous phase is not particularly limited, and can be, for example, 10 to 60°C.
  • the aqueous phase may contain a ligand (compound) that coordinates to a metal ion, a compound that generates a ligand, etc., as necessary.
  • the aqueous phase can be prepared by dissolving metal ions in water. Conditions for preparing the aqueous phase are not particularly limited. For example, the preparation temperature can be 10-60°C.
  • the aqueous phase may contain a masking agent in addition to the above metal ions. Any known masking agent can be used without particular limitation. Examples include monodentate ligands such as ammonia, chelating agents such as dithizone, and the like.
  • an oil phase (organic phase) containing one or more metal extractants of the present invention is used in contrast to the above-mentioned aqueous phase.
  • the metal extractant of the present invention exhibits solubility in organic solvents and coordinates with two or more metal ions present in the oil phase near the interface between the aqueous phase and the oil phase. shows the ability to transfer metal ions into the oil phase.
  • solubility in an organic solvent means a property in which the metal extractant can be dissolved in an organic solvent at the content described below.
  • the organic solvent that forms the oil phase is not particularly limited, and any appropriate organic solvent can be used. Examples include alcohol solvents, ether solvents, hydrocarbon solvents (aromatic solvents, aliphatic solvents), halogen solvents, and the like. Among these, hydrocarbon solvents are preferred, various solvents that are branch components of petroleum are more preferred, and hydrocarbon solvents such as aromatic, paraffinic, naphthenic, kerosene, gasoline, naphtha, kerosene, and light oil are even more preferred.
  • the content of the metal extractant in the oil phase is appropriately set in consideration of the content of metal ions, the amount of coordination to the metal ions, the number of coordination functional groups, etc.
  • the content in the oil phase can be 20 to 10,000 mmol/L (mM), preferably 50 to 1,000 mmol/L, and 100 to 500 mmol/L. is more preferable.
  • the temperature of the oil phase is not particularly limited, and can be, for example, 10 to 60°C.
  • the oil phase may contain appropriate components in addition to the metal extractant of the present invention.
  • the oil phase can be prepared by dissolving a metal extractant in an organic solvent. Conditions for preparing the oil phase are not particularly limited, and, for example, the preparation temperature can be 10 to 60°C.
  • the aqueous phase and oil phase are mixed and allowed to stand.
  • the mixing conditions and standing conditions at this time are not particularly limited and can be set as appropriate.
  • mixing can be performed using various mixing devices.
  • the mixing device include a method using a magnetic stirrer (stirrer chip), a method using a mechanical stirrer, and a method using a mixer.
  • Stirring conditions may be conditions that allow the aqueous phase and oil phase to be mixed (conditions where the metal extractant coordinates with the metal ion), and the combination with the metal ion and metal extractant is sufficient. , the mixing temperature, and further depending on the mixing device.
  • the stirring time is not uniquely determined depending on the stirring conditions, but can be, for example, 10 minutes to 24 hours.
  • the standing condition may be any condition as long as the aqueous phase and the oil phase are separated into two layers.
  • the standing time may be 10 minutes to 24 hours after the mixing is stopped.
  • the mixing temperature and the standing temperature are also not particularly limited, and can be, for example, 10 to 60°C.
  • the mixing ratio of the aqueous phase and the oil phase is appropriately set according to the content (concentration) of metal ions, the content (concentration) of the metal extractant, etc. Not determined.
  • the ratio of the oil phase to 100 mL of the aqueous phase can be 50 to 2,000 mL, and the ratio can be 80 to 1,000 mL.
  • the ratio is 80 to 200 mL.
  • the metal extractant in the oil phase when focusing on the metal ions present in the aqueous phase, it is preferable to mix the metal extractant in the oil phase at a ratio of 0.1 to 20 moles relative to the total content (mol) of metal ions.
  • the content of the metal extractant relative to the total content of metal ions that can be coordinated by the metal extractant (also referred to as the mixing amount; the ratio of the number of moles of the metal extractant to the total number of moles of metal ions: molar ratio) is , for example, from 0.1 to 20.0 equivalents.
  • the metal ion that can be coordinated with the metal extractant refers to a metal ion that is coordinated with the metal extractant and extracted into the oil phase.
  • the pH of the mixed system can also be adjusted.
  • the pH set for a specific metal ion to be extracted is not unique, but takes into consideration the pKa of the metal extractant, the complex formation constant between the metal extractant and metal ions, the coordination number of the metal ion, etc. It will be determined accordingly.
  • the pH of the mixed system is preferably 0.01 to 14, for example, it can be 2 to 14, and preferably 3 to 10.
  • the pH can be adjusted using the above-mentioned acid or alkali, or an aqueous solution thereof, but one preferred embodiment is not to use ammonium ions.
  • a two-phase separated fluid in which the aqueous phase and the oil phase are phase-separated, which is obtained by mixing the aqueous phase and the oil phase in this way and allowing them to stand, is a mixture of the aqueous phase and the oil phase. They exist in a state where the phases are in contact with each other and separated into layers.
  • two or more metal ions to which the metal extractant is coordinately bonded exist (move) in the oil phase.
  • two or more types of metal ions extracted into the oil phase are not particularly limited, but include, for example, two or more types of metal ions belonging to Group 4, Group 7, Group 9, and Group 10.
  • metal ions examples include combinations of groups 9 and 10 (excluding combinations containing group 7), combinations of groups 4 and 9, and groups 7 and 9. and Group 10, combinations including Group 7, Group 8, Group 9, and Group 10, and the like. More specific combinations of valuable metal elements include a combination of Co and Ni, a combination of Zr and Rh, a combination of Mn and Co, a combination with Mn, Co and Ni, a combination with Mn, Fe, Co and Ni, etc. can be mentioned.
  • the number of types of metal ions extracted into the oil phase is not particularly limited as long as it is two or more types, for example, it can be 2 to 10 types, preferably 2 to 6 types, and 2 or 3 types. More preferably, it is a seed.
  • two or more specific metal ions out of multiple metal ions can be removed with high selectivity and high recovery rate. It can be extracted, separated and recovered, and in particular, it is possible to extract ions of two or more metal elements and separate and recover one of them with high selectivity and high recovery rate. can.
  • the type of metal ion that can be separated and recovered with high selectivity and high recovery rate is not uniquely determined depending on the group or period of the metal ion, the content, the type of metal extractant, etc.
  • the metal ions belonging to Group 9 and metal ions belonging to Group 10 are extracted into an oil phase
  • the metal ions belonging to Group 9 can be separated and recovered with high selectivity and high recovery rate.
  • Co ions can be separated and recovered with high selectivity and high recovery rate.
  • metal ions belonging to Group 7 and metal ions belonging to Group 9 are extracted into the oil phase
  • the metal ions belonging to Group 7 can be separated and recovered with high selectivity and high recovery rate.
  • the metal ions belonging to Group 4 and metal ions belonging to Group 9 are extracted into the oil phase
  • the metal ions belonging to Group 4 can be separated and recovered with high selectivity and high recovery rate.
  • the separation and recovery method of the present invention can extract and recover two or more types of metal ions from a plurality of types of metal ions present in the aqueous phase with high selectivity and high recovery rate into the oil phase.
  • the separation and recovery method of the present invention can recover one metal ion with high selectivity and high recovery rate while extracting two or more metal ions.
  • the selectivity for one type of metal ion can be further increased without significantly impairing the recovery rate, and as a result, , high purity metal ions can be recovered with a high recovery rate.
  • Such a separation and recovery method of the present invention can also be called a method for extracting two or more types of metal ions.
  • the separation and recovery method of the present invention may include a step other than the step of mixing and standing the aqueous phase and oil phase described above.
  • a method of back-extracting (isolating) metal ions from the oil phase obtained by mixing and standing the aqueous phase and oil phase, a process of recovering the back-extracted metal ions as a compound (salt) examples include a step of refining the extracted metal ions or their compounds, and a step of previously removing ions of metal elements belonging to Group 1 or Group 2 of the periodic table of elements.
  • any known method can be applied without particular restriction.
  • an inorganic acid such as sulfuric acid, hydrochloric acid, nitric acid
  • This can be done by making it acidic, for example, at pH 2 to 4.
  • any known method can be applied without particular limitation.
  • Separation and recovery method I of the present invention is a method in which the above-mentioned metal extractant I of the present invention is used as a metal extractant in the separation and recovery method of the present invention.
  • the separation and recovery method I of the present invention can be carried out in the same manner as the separation and recovery method of the present invention, but in the separation and recovery method I of the present invention, the pH of the aqueous phase is set within the above range, and In terms of recovery rate, it is more preferable to set it to 0.5 to 8.0, and in particular, in terms of increasing the recovery rate, it is even more preferable to set it to 3.0 to 8.0, and 5.0 to 7. It is particularly preferable to set it to .0.
  • the pH of the mixed system of the aqueous phase and oil phase is preferably set within the above range, but from the viewpoint of selectivity and recovery rate, it is 0.5 to 9.0. It is more preferable to set it to 2.5 to 8.0, especially from the viewpoint of increasing the recovery rate, and particularly preferably to set it to 4.0 to 7.0.
  • the metal extractant I alone can coordinate to metal ions and extract these metal ions into the oil phase. It is not necessary to contain a compound that works in cooperation with metal extractant I to extract metal ions, such as a compound that extracts metal ions, such as a known metal extractant.
  • an aqueous phase containing a plurality of metal ions as an essential component and an oil phase containing a metal extractant I as an essential component are usually used.
  • separation and recovery method I of the present invention two or more types of metal ions are extracted into the oil phase with high selectivity and high recovery rate from multiple types of metal ions present in the aqueous phase, similar to the separation and recovery method of the present invention. It can be done and recovered.
  • Separation and recovery method II of the present invention is a method in which the above-mentioned metal extractant II of the present invention is used as a metal extractant in the separation and recovery method of the present invention.
  • Separation and recovery method II of the present invention can be performed in the same manner as the separation and recovery method of the present invention, and is capable of separating two or more types of metal ions from a plurality of metal ions present in the aqueous phase with high selectivity and high recovery rate. can be extracted into the oil phase and recovered.
  • the separation and recovery method II of the present invention differences from the separation and recovery method of the present invention will be explained.
  • the aqueous phase contains a compound that coordinates with metal ions to form a negatively charged coordination complex (complex ion), and the metal ions are negatively charged.
  • complex ions include those in which the compound itself coordinates with metal ions to form negatively charged complex ions, and those in which the anions generated from the compound coordinate with metal ions to form negatively charged complex ions. Examples include those that form.
  • Compounds that coordinate to metal ions are not particularly limited, but include, for example, chelating agents such as sodium nitrilotriacetate.
  • Examples of compounds that generate anions that coordinate with metal ions include metal salts of inorganic or organic acids such as nitrates, sulfates, and hydrochlorides, and halides.
  • Examples of the halide include inorganic halides and organic halides.
  • Examples of inorganic halides include halides of typical elements (elements belonging to Groups 1, 2, and 12 to 18 of the periodic table), and specifically, lithium chloride, sodium chloride, potassium chloride, etc. can be mentioned.
  • the compound that forms a complex ion is preferably a compound that generates an anion that coordinates to a metal ion, and more preferably an inorganic halide.
  • the aqueous phase containing a compound forming a negatively charged coordination complex (complex ion) preferably contains an anion generated (dissociated) from the compound and should contain a halide ion. is more preferable.
  • the aqueous phase containing anions and halide ions refers to anions and halide ions that are dissolved and present alone (free) in the aqueous phase, as well as those that are coordinated with metal ions. including those that are
  • concentration of the above compound in the aqueous phase is not particularly limited as long as complex ions can be formed, but it can be, for example, 1 to 1000 g/L, preferably 10 to 300 g/L.
  • the content of compounds that form negatively charged metal ions in the aqueous phase is the amount of compounds that form negatively charged metal ions. It is not particularly limited as long as a negatively charged complex ion can be formed, and it is appropriately set in consideration of the content of metal ions, the amount of coordination to metal ions, the number of coordination functional groups, etc.
  • the content of the above compound can be, for example, 10 to 10,000 parts by mass with respect to 100 parts by mass of the total content of metal ions (including non-coordinating metal ions) contained in the aqueous phase, and 100 to 1,000 parts by mass. Preferably, it is expressed in parts by mass.
  • the content of the above compound can be 0.1 to 100 mol based on the total content (mol) of metal ions (including non-coordinating metal ions) contained in the aqueous phase, and 1.
  • the amount is preferably 0 to 100 mol.
  • the content (mixing amount: molar ratio) of the above compound relative to the total content of metal ions can be, for example, 0.1 to 100 equivalents, and preferably 1.0 to 50 equivalents.
  • the aqueous phase can be prepared by dissolving metal ions and the above compounds in water, or can also be prepared by mixing an aqueous solution in which metal ions are dissolved and an aqueous solution in which the above compounds are dissolved.
  • Preparation of the aqueous phase is preferably carried out at a preparation temperature of 10 to 60°C and a pH of 0.1 to 10 for 10 minutes to 6 hours in order to coordinate the above compound to at least one metal ion.
  • the above acids or alkalis can be used to adjust the pH.
  • Separation and recovery method II of the present invention can be carried out in the same manner as the separation and recovery method of the present invention, except for forming complex ions of metal ions in the aqueous phase.
  • the pH of the aqueous phase is preferably set within the above range, but from the viewpoint of selectivity and recovery rate, it is 0.01 to 5.5. It is more preferable to set it to 0.1 to 4.5, and particularly preferably to set it to 0.1 to 3.5, especially since the recovery rate can be increased.
  • metal extractant II can coordinate with metal ions forming complex ions and extract these metal ions into the oil phase. Therefore, the aqueous phase and the oil phase contain, in addition to compounds that coordinate with metal ions to form complex ions and metal extractant II, compounds that participate in the extraction of metal ions, such as known metal extractants. It doesn't have to be.
  • the aqueous phase usually contains a plurality of metal ions as essential components and a compound that forms a complex ion thereof, and includes an aqueous phase containing a complex ion of metal ions, and a metal extractant as an essential component.
  • An oil phase containing II is used.
  • the separation and recovery method II of the present invention extracts two or more types of metal ions from multiple types of metal ions present in the aqueous phase into the oil phase with high selectivity and high recovery rate. It can be done and recovered.
  • PC-88A Mono-2-ethylhexyl (2-ethylhexyl)phosphonate shown below (manufactured by Tokyo Kasei Kogyo Co., Ltd.)
  • VA-10 Versatic acid 10 (manufactured by Hexion)
  • EDTA Ethylenediaminetetraacetic acid, manufactured by Dojindo Chemical Co., Ltd.
  • Tris-2-EHA Tris(2-ethylhexyl)amine shown below (manufactured by BASF)
  • Metal extractant E-1 was synthesized as follows. That is, 305 g of ethanol and 46.0 g of sodium ethoxide (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) were added to a 1 L three-necked eggplant flask and thoroughly stirred. 97.5 g of diethyl malonate, 112 g of 1-bromo-2-ethylhexane, and 126 g of ethanol were added and stirred at reflux for 6 hours. The resulting solution was passed through a Buchner funnel, and the filtrate was concentrated, after which 200 mL of 2 M hydrochloric acid was added.
  • the resulting solution was extracted with 500 mL of ethyl acetate and then dried over sodium sulfate. After removing the sodium sulfate, the solvent was concentrated.
  • the obtained compound was added to a 2 L three-necked flask, and 550 g of ethanol and 715 g of 4 M (mol/L) NaOH aqueous solution were added, followed by stirring under reflux for 7 hours. After cooling at room temperature, the solution was extracted with xylene to obtain a xylene solution.
  • the obtained xylene solution was added to a 1 L three-necked eggplant flask and stirred under reflux for 8 hours. After cooling at room temperature, 1 M NaOH aqueous solution and water were added, followed by extraction with toluene, and the solvent was distilled off under reduced pressure to obtain compound A.
  • the metal extractant E-1 thus synthesized was identified as follows. That is, E-1 was dissolved in deuterated chloroform, and 1 H-NMR was measured (apparatus: BLUKER 400). The obtained chart is shown in Figure 1. In addition, the metal extractant E-1 was mixed with KBr, and FT-IR measurement was carried out. The obtained chart is shown in Figure 2. In the 1 H-NMR chart shown in FIG. 1, peaks derived from diastereomers were confirmed at chemical shifts of ⁇ 3.5 to 4.0 ppm. Therefore, it is presumed that at least two asymmetric centers derived from 2-ethylhexyl have been introduced into the compound.
  • metal extractant E-2 was synthesized in the same manner as the metal extractant E-1 except that 1-bromo-2-ethylhexane was changed to 1-bromo-3-ethylheptane. E-2 was synthesized. The obtained metal extractant E-2 was identified in the same manner as metal extractant E-1.
  • Metal extractant E-3 was synthesized as follows. That is, 25.0 g of 1,2-dibromoethane and 129 g of di(2-ethylhexyl)amine were added to a 300 mL three-necked eggplant flask, and the mixture was stirred at an internal temperature of 100° C. for 10 hours. Excess di(2-ethylhexyl)amine was distilled off under reduced pressure from the resulting solution to obtain metal extractant E-3 with a yield of 85%. The metal extractant E-3 thus synthesized was identified as follows.
  • metal extractant E-3 was dissolved in deuterated chloroform and 1 H-NMR was measured (apparatus: BLUKER400), and the resulting chart is shown in FIG. Furthermore, fragment ions of the compound were detected using GC-MS (device: GCMS-QP2010).
  • the peak derived from the 2-ethylhexyl group ( ⁇ 2.11 , ⁇ 1.26, ⁇ 0.89) are equivalent to 8H, 36H, and 24H, respectively. Therefore, it can be seen that four 2-ethylhexyl groups were introduced.
  • the fragmentation of m/z 254 obtained by GC-MS is estimated to have the following structure. Based on the above, the obtained compound was identified as having the structure shown in E-3 above.
  • Metal extractant E-4 was synthesized in the same manner as the synthesis of metal extractant E-3, except that di(2-ethylhexyl)amine was changed to dinonylamine. The obtained metal extractant E-4 was identified in the same manner as metal extractant E-3.
  • Metal extractant E-3 was synthesized in the same manner as the synthesis of metal extractant E-3, except that 1,2-dibromoethane was changed to 1,4-bis(bromomethyl)cyclohexane. -5 was synthesized. The obtained metal extractant E-5 was identified in the same manner as metal extractant E-3.
  • metal extractant E-6 The synthesis of metal extractant E-1 was carried out in the same manner as the synthesis of metal extractant E-1, except that 1-bromo-2-ethylhexane was changed to 1-bromo-3-(2-methoxyethoxy)propane. Then, metal extractant E-6 was synthesized. The obtained metal extractant E-6 was identified in the same manner as metal extractant-1.
  • Metal extractant T-1 was synthesized and identified according to the method described in JP 2016-028021.
  • Metal extractant T-2 was synthesized according to the D2EHAG synthesis method described in JP-A-2014-205900.
  • Metal extractant T-3 was synthesized in the same manner as the synthesis of metal extractant E-1, except that intermediate I-1 was changed to ethylene glycol. The obtained metal extractant T-3 was identified in the same manner as metal extractant E-1.
  • each metal ion-containing aqueous solution (W1) containing two types of metal ions was prepared.
  • ⁇ Preparation of metal extractant solution (oil phase)> Add each synthesized or prepared metal extractant to a 100 mL volumetric flask, and make up the volume using kerosene (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) at room temperature to obtain a metal extractant solution containing each metal extractant. (Y1) to (Y6) and (Yc1) to (Yc9) (concentration 310 mM) were prepared, respectively. Note that the metal extractant EDTA was not dissolved in kerosene, and a metal extractant solution (Yc4) could not be prepared.
  • Example 1 the metal ion-containing aqueous solution and the extractant solution were changed to the combinations shown in Table 1-1 and Table 1-2 (hereinafter collectively referred to as Table 1), and when the aqueous phase and oil phase were mixed, of the metal extractant to the value shown in the "Mixing pH” column of Table 1-2, and the mixed amount (unit: equivalent) of the metal extractant to the total content of metal ions that can be coordinated.
  • Table 1 Table 1-1 and Table 1-2
  • the metal ions of Examples 2 to 4, 8 and Comparative Examples 1 to 6, 9 were separated and recovered in the same manner as in Example 1, except that the values shown in the "Quantity" column were set, mixed, and left to stand. went.
  • the extracted metal ions and the maximum extracted amount of metal ions are shown in the "type” column and "maximum extracted amount” column of the "extracted metal ion” column of Table 1-2, respectively. .
  • metal ions could not be extracted into the oil phase. Therefore, the "extracted metal ions" column, "selectivity” column, etc. in Table 1-2 are indicated with a "-".
  • Example 5 Separation and recovery method II using metal extractant II, and comparative examples 7 and 8
  • Y3 12 mL of the extractant solution (Y3) was added to 10 mL of the prepared metal ion-containing aqueous solution (W4) in a 30 mL vial, and the mixture was stirred at 25° C. for 30 minutes using a stirrer tip. At this time, the amount (unit: equivalent) of the metal extractant mixed with respect to the total content of metal ions was 0.5.
  • Example 5 the metal ion-containing aqueous solution and extractant solution were changed to the combinations shown in Table 1, and the pH at the time of mixing the aqueous phase and oil phase was changed to the value shown in the "pH at mixing" column of Table 1-2.
  • the metal ions of Examples 6 and 7 and Comparative Examples 7 and 8 were separated and recovered in the same manner as in Example 5, except that the mixture was mixed and left to stand.
  • the extracted metal ions and the maximum extracted amount of metal ions are shown in the "type" column and "maximum extracted amount” column of the "extracted metal ion” column of Table 1-2, respectively. .
  • the extraction amount (ppm) of the metal ion with the maximum extraction amount measured in this way is divided by the total extraction amount (ppm) of other metal ions to calculate the extraction amount ratio. ” column.
  • the pH at the time of mixing the aqueous phase and the oil phase was similarly measured, and the results are shown in the "pH at time of mixing” column.
  • the mixing amount of the metal extractant relative to the total content of coordinating metal ions is shown in each "mixing amount" column of Table 1-2. In Table 1-2, the unit of mixing amount is equivalent, but this is omitted. This experiment was conducted in the same manner as Examples 1 to 8 and Comparative Examples 1 to 9, except that the metal ion concentration in the water layer was reduced to 1/5, and similar results were obtained.
  • Examples 1 to 8 using metal extractant I or II of the present invention two types of metal ions among the metal ions present in the metal ion-containing aqueous solution could be extracted into the oil phase. ing. Moreover, the metal ions with the maximum extraction amount (Examples 1 and 4 to 8: Co ion, Example 2: Mn ion, and Example 3: Zr ion) are higher than the metal ions other than the metal ions with the maximum extraction amount. Due to selectivity, almost the entire amount can be extracted from the aqueous phase to the oil phase.
  • the acidic metal extractant of the present invention extracts a specific metal ion, preferably belonging to a different group, from among multiple types of metal ions present in the aqueous phase, particularly two or more metal ions belonging to different groups. It is thought that it exhibits a unique function of selectively coordinating with two or more types of metal ions.
  • the present invention almost the entire amount of one of the two types of heterogeneous metal ions can be extracted from the aqueous phase to the oil phase with high selectivity using a simple method. Therefore, it is possible to recover one type of metal ion from the obtained oil phase through a back extraction process or the like with a high recovery rate and further improve selectivity, while also being able to recover it simply and with a small number of steps. In view of the actual situation, the technical significance of the present invention is great.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Extraction Or Liquid Replacement (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

水相中に存在する金属イオンを油相中に抽出する金属抽出剤であって、金属抽出剤は、金属抽出剤を構成する分子鎖の両端に位置する窒素原子が、カルバモイル結合を構成せずに、無置換炭化水素基と、抽出する金属イオンに対する配位官能基(α)として下記配位官能基群G1のいずれかの配位官能基又は無置換炭化水素基とを有している金属抽出剤、及び、この金属抽出剤を含有する油相と複数種の金属イオンを含有する水相とを含有する油相とを混合する金属イオンの分離回収方法を提供する。

Description

金属抽出剤、及びこの金属抽出剤を用いた金属イオンの分離回収方法
 本発明は、水相中に存在する金属イオンを油相中に抽出する金属抽出剤、及びこの金属抽出剤を用いた金属イオンの分離回収方法に関する。
 鉱山から採掘できる金属には限りがあり、精密機器の必需品である貴金属の安定供給は大きな課題となっている。そこで、採掘に頼らずに産業廃棄物から有価金属を回収することが重要視されている。
 特に、近年の電気自動車の普及にともない、リチウムイオン電池(LiB)の廃棄量は年々増大している。LiBには、コバルト、ニッケル等の金属元素を含む正極活物質が使用されており、ニッケルの需要も大きく増加することが見込まれる。この潮流にともなう有価金属の需要増に対応するために、発掘量を増加させるのみならず、廃LiBからの金属リサイクル技術が望まれている。
 廃棄物からの金属リサイクル方法として、湿式抽出法(溶媒抽出法)が利用されている。湿式抽出法は、金属元素のイオン(単に金属イオンという。)を含む水溶液(水相)に金属抽出剤を含む有機相を接触させて混合、静置することで両相を分離させると、金属抽出剤が配位した金属イオンを有機相に移動(抽出)させることがきる。この有機相を取り出して、金属イオンを逆抽出し、必要により精製することで、(高純度の)金属としてリサイクルすることができる。
 例えば、特許文献1には、「式(1)で表されるポリアミン化合物」をキレート剤(金属抽出剤)として用いて金属イオンを回収する方法が記載されている。具体的には、下記式(1)で表されるように、エチレンジアミン骨格を有するポリアミン化合物の末端の窒素原子をカルボキシメチル基と置換カルバモイルメチル基で置換したポリアミン化合物を用いて、水相中の銅イオンを油相中に抽出できることが記載されている。また、特許文献2には、「ニッケルやコバルトやスカンジウム等の有価成分を含むニッケル酸化鉱の酸浸出液から不純物を除去し、有価成分と不純物とを分離する方法」、及びこの方法に用いる特定の「式(I)で表されるアミド誘導体からなる有価金属抽出剤」が記載されている。この有価金属抽出剤は、具体的には、下記式(I)で表されるように、グリシン等のアミノ酸にアミド基を1つ導入したアミド誘導体である。
Figure JPOXMLDOC01-appb-C000003
特開2016-028021号公報 特開2014-205900号公報
 特許文献1及び2に記載の金属抽出剤を用いると、水相中に存在する特定の金属イオンを油相に抽出して回収できることが記載されている。しかし、いずれの金属抽出剤においても、抽出する金属イオンの選択性又は回収率が十分ではなく、改善の余地がある。
 しかも、特許文献1及び2では、水相に共存する複数種の金属イオンのうち、有価金属元素のイオンとして、元素の周期表における異なる族に属する2種以上の金属元素のイオンを抽出しながらも、そのうちの1種の金属イオンを高選択性かつ高回収率で回収すること(異なる族に属する2種以上の金属元素のイオンを高選択性かつ高回収率で分離すること)は検討されていない。これは、コバルトイオン及びニッケルイオン等の第9族及び第10族に属する金属イオンの分離回収のニーズが、近年のリチウムイオン電池の急速な普及によって急増してきたものであって、従来、物理的挙動及び化学的挙動が類似する金属イオンを分離回収することは容易ではなかったこと等による。しかし、異なる族に属する2種以上の有価金属元素のイオンとして、物理的挙動及び化学的挙動が類似する第9族に属する金属イオン(特にコバルトイオン)及び第10族に属する金属イオン(特にニッケルイオン)を抽出しながらも、そのうちの1種の金属イオンを高選択性かつ高回収率で回収することができれば、電気自動車の更なる普及、ひいては持続可能な社会の構築に大きく貢献できる。
 本発明は、水相中に存在する複数種の金属イオンの中から特定の金属イオンを高選択性かつ高回収率で油相に抽出できる金属抽出剤、及びこの金属抽出剤を用いた金属イオンの分離回収方法を提供することを課題とする。
 また、本発明は、好ましい態様においては、水相中に存在する複数種の金属イオンのうち周期表における異なる族に属する2種以上の金属元素のイオンを抽出しつつも、そのうちの1種の金属イオンを高選択性かつ高回収率で油相に抽出できる金属抽出剤、及びこの金属抽出剤を用いた金属イオンの分離回収方法を提供することを課題とする。
 本発明者は、複数種の金属イオンを含有する水相から金属イオンを分離回収する湿式抽出法に用いる金属抽出剤について、その分子構造中に、両端に窒素原子を有する分子鎖を有し、この分子鎖の両端に位置する窒素原子に、カルバモイル結合を形成させることなく、無置換炭化水素基及び抽出する金属イオンに対する特定の配位官能基を含む基、又は2個の無置換炭化水素基を導入した化学構造を持つ化合物とすることにより、特定の金属イオンを、水相から油相に高選択性かつ高回収率で抽出でき、水相に存在する他の金属イオンから分離回収できることを見出した。また、上記化学構造を持つ化合物を、湿式抽出法に金属抽出剤として用いることにより、水相中に存在する複数種の金属イオンのうち異なる族に属する2種以上の金属元素のイオン、特に望ましくはコバルトイオン及びニッケルイオンを、抽出しつつも、そのうちの1種の金属イオンを高選択性かつ高回収率で油相に抽出できることも見出した。
 本発明はこれらの知見に基づき更に検討を重ね、完成されるに至ったものである。
 すなわち、上記の課題は以下の手段により解決された。
<1>水相中に存在する金属イオンを油相中に抽出する金属抽出剤であって、
 金属抽出剤は、金属抽出剤を構成する分子鎖の両端に位置する窒素原子が、カルバモイル結合を構成せずに、無置換炭化水素基と、抽出する金属イオンに対する配位官能基(α)として下記配位官能基群G1のいずれかの配位官能基を含む基、又は無置換炭化水素基とを有している、金属抽出剤。
<配位官能基群G1>
水酸基、エーテル基、チオール基、チオエーテル基、ニトリル基、イソニトリル基、カルボキシ基、アミノ基、アミド基、リン酸基、ホスホン酸基、スルホン酸基、スルフィン酸基、ホスフィノ基、含窒素複素環、含酸素複素環、含硫黄複素環
<2>配位官能基を含む基が配位官能基を有する炭化水素基である、<1>に記載の金属抽出剤。
<3>配位官能基の少なくとも1つが、カルボキシ基、リン酸基、ホスホン酸基、スルホン酸基及びスルフィン酸基から選ばれる、<1>又は<2>に記載の金属抽出剤。
<4>金属イオンのうち周期表の異なる族に属する2元素以上の金属イオンの抽出分離に用いる、<1>~<3>のいずれか1つに記載の金属抽出剤。
<5>金属抽出剤が下記式(I)で表される、<1>~<4>のいずれか1つに記載の金属抽出剤。
Figure JPOXMLDOC01-appb-C000004
 式(I)中、Rは無置換炭化水素基を示す。
は置換基を示す。ただし、Lに結合するNが有するRは無置換炭化水素基を示す。
Xは各々独立に下記配位官能基群G2から選ばれる基を示す。
、L及びLは各々独立に連結基を示す。
nは1~5の整数である。
<配位官能基群G2>
カルボキシ基、リン酸基、ホスホン酸基、スルホン酸基、スルフィン酸基、水酸基
<6>Xがカルボキシ基、リン酸基、ホスホン酸基、スルホン酸基又はスルフィン酸基である、<5>に記載の金属抽出剤。
<7>金属抽出剤が下記式(II)で表される、<1>に記載の金属抽出剤。
Figure JPOXMLDOC01-appb-C000005
 式(II)中、R~Rは各々独立に無置換炭化水素基を示す。
は置換基を示す。ただし、Rに結合するNが有するRは無置換炭化水素基を示す。
は連結基を示す。
mは1~5の整数である。
<8>複数種の金属イオンを含有する水相と、<1>~<7>のいずれか1つに記載の金属抽出剤を含有する油相とを混合する、金属イオンの分離回収方法。
<9>油層が<7>に記載の金属抽出剤を含有している場合、水相はハロゲン化物イオンを含んでいる、<8>に記載の分離回収方法。
<10>複数種の金属イオンのうち周期表の異なる族に属する2元素以上の金属イオンを水相から油相に抽出して回収する、<8>又は<9>に記載の分離回収方法。
<11>2元素以上の金属イオンが廃電池からの金属回収物である、<10>に記載の分離回収方法。
 本発明は、水相中に存在する複数種の金属イオンの中から特定の金属イオンを高選択性かつ高回収率で油相に抽出できる金属抽出剤、及びこの金属抽出剤を用いた金属イオンの分離回収方法を提供できる。
 また、本発明の好ましい態様においては、水相中に存在する複数種の金属イオンのうち異なる族に属する2種以上の金属元素のイオン、特に望ましくはコバルトイオン及びニッケルイオンを抽出しつつも、そのうちの1種の金属イオンを高選択性かつ高回収率で油相に抽出できる金属抽出剤、及びこの金属抽出剤を用いた金属イオンの分離回収方法を提供できる。
 本発明の上記及び他の特徴及び利点は、適宜添付の図面を参照して、下記の記載からより明らかになるであろう。
図1は実施例で合成した金属抽出剤E-1のH-NMRチャートである。 図2は実施例で合成した金属抽出剤E-1のFT-IRチャートである。 図3は実施例で合成した金属抽出剤E-3のH-NMRチャートである。
 本発明において、成分の含有量、物性等について、数値範囲を示して説明する場合、数値範囲の上限値及び下限値を別々に説明するときは、いずれかの上限値及び下限値を適宜に組み合わせて、特定の数値範囲とすることができる。一方、「~」を用いて表される数値範囲を複数設定して説明するときは、数値範囲を形成する上限値及び下限値は、特定の数値範囲として「~」の前後に記載された特定の組み合わせに限定されず、各数値範囲の上限値と下限値とを適宜に組み合わせた数値範囲とすることができる。なお、本発明において、「~」を用いて表される数値範囲は、「~」前後に記載される数値を下限値及び上限値として含む範囲を意味する。
 本発明において化合物の表示(例えば、化合物と末尾に付して呼ぶとき)については、この化合物そのもののほか、その塩、そのイオンを含む意味に用いる。また、本発明の効果を損なわない範囲で、置換基を導入するなど一部を変化させた誘導体を含む意味である。
 本発明において、置換又は無置換を明記していない置換基、連結基等(以下、置換基等という。)については、その基に適宜の置換基を有していてもよい意味である。よって、本発明において、単に、YYY基と記載されている場合であっても、このYYY基は、置換基を有しない態様に加えて、更に置換基を有する態様も包含する。これは置換又は無置換を明記していない化合物についても同義である。好ましい置換基としては、例えば後述する置換基Zから選択される基が挙げられる。
 本発明において、特定の符号で示された置換基等が複数あるとき、又は複数の置換基等を同時若しくは択一的に規定するときには、それぞれの置換基等は互いに同一でも異なっていてもよいことを意味する。また、特に断らない場合であっても、複数の置換基等が隣接するときにはそれらが互いに連結したり縮環したりして環を形成していてもよい意味である。
 なお、本明細書において、「元素の周期表における異なる族に属する金属元素」を「異族金属元素」と称し、特に「周期表における同周期の異族金属元素」を「同周期異族金属元素」と称することがある。また、「異族金属元素のイオン」及び「同周期異族金属元素のイオン」をそれぞれ「異族金属イオン」及び「同周期異族金属イオン」と称することがある。
 本発明において、含有量等を示す「ppm」は、特に断らない限り、質量基準であり、「質量ppm」を表す。
[金属抽出剤]
 本発明の金属抽出剤は、水相中に存在する金属イオンを油相中に抽出する機能を示す化合物であって、特に湿式抽出法に好適に用いることができる。本発明の金属抽出剤を湿式抽出法に用いると、水相中に存在する複数種の金属イオンの中から特定の金属イオンを高選択性かつ高回収率で油相に抽出することができる。また、本発明の好ましい態様においては、水相中に存在する複数種の金属イオンのうち、有価金属元素のイオンとして、2種以上の異族金属イオン、例えば、第4族、第7族、第9族及び第10族に属する2種以上の金属イオン、特に望ましくは同周期異族金属イオンであるコバルトイオン及びニッケルイオンを、抽出しつつも、そのうちの1種の金属イオンを高選択性かつ高回収率で油相に抽出することができる。
 本発明において、金属イオンを高選択性で抽出できるとは、抽出された2種以上の金属イオンにおいて、抽出目的とする特定の金属イオン(通常、1種)の抽出量が、他の金属イオンの合計抽出量に対する比率[(特定の金属イオンの抽出量)/(他の金属イオンの合計抽出量)]として、3.0以上の割合(分解能、選択比)で、他の金属イオンから抽出分離できることを意味する。上記比率は、好ましくは3.5以上であり、より好ましくは5.0以上であり、更に好ましくは9.0以上である。上限としては、特に限定されないが、2種の金属イオンを抽出する場合、例えば、20とすることができる。
 また、本発明において、金属イオンを高回収率で抽出できるとは、抽出された2種以上の金属イオンのうち最大抽出量で抽出された金属イオン(抽出目的とする特定の金属イオン)について、当該金属イオンの油相への抽出量が、当該金属イオンの(抽出前の)水相中の含有量に対する比率[(金属イオンの油相への抽出量)/(当該金属イオンの水相中の含有量)]として、0.6以上の割合で、抽出できることを意味する。上記比率は、好ましくは0.8以上であり、より好ましくは0.9以上である。上限としては、特に限定されず、理想的には水相中に存在する当該金属イオンの全量であり、例えば、0.99以下であることが好ましく、0.95以下又は0.90以下とすることもできる。具体的な抽出量としては、30,000質量ppm以下とすることができ、20,000質量ppm以下とすることが好ましい。
 本発明の金属抽出剤が上述の作用効果を示す詳細な理由は、まだ明らかではないが、次のように考えられる。すなわち、本発明の金属抽出剤は、分子鎖の両端窒素原子がカルバモイル結合を構成していないから、金属イオンに配位して形成する錯イオンの構造異性化を抑えることができ、高い選択性を可能にしていると考えられる。また、端部窒素原子が無置換炭化水素基を有していることにより、金属抽出剤の油相中での溶解安定性が高まって、金属イオンの油相への抽出挙動が一定に保たれ、高い回収率を可能にしていると考えられる。
 本発明の金属抽出剤は、下記構造Aに示す分子構造を有する化合物である。
 
構造A:金属抽出剤を構成する分子構造が両端に窒素原子を有する分子鎖を
    含んでおり、
    この分子鎖の両端に位置する窒素原子(端部窒素原子ということが
    ある。)が、カルバモイル結合を構成せずに、無置換炭化水素基と
    、抽出する金属イオンに対する配位官能基(α)として下記配位官
    能基群G1のいずれかの配位官能基を含む基、又は無置換炭化水素
    基とを有する。
 
<配位官能基群G1>
水酸基、エーテル基、チオール基、チオエーテル基、ニトリル基、イソニトリル基、カルボキシ基、アミノ基、アミド基、リン酸基、ホスホン酸基、スルホン酸基、スルフィン酸基、ホスフィノ基、含窒素複素環、含酸素複素環、含硫黄複素環
 
 本発明の金属抽出剤は、構造Aに加えて、下記構造Bに示す分子構造を有する化合物であることが好ましい態様の1つである。
 
構造B:抽出する金属イオンに対する配位官能基(α)として上記配位官能
    基群G1のいずれかの官能基を2個以上有する。
 
 本発明において、上記構造Aについて、2つの端部窒素原子が1つの無置換炭化水素基と1つの配位官能基(α)を含む基とを有する金属抽出剤を「金属抽出剤I」と称し、2つの端部窒素原子が2個の無置換炭化水素基を有する金属抽出剤を「金属抽出剤II」と称する。また、本発明において、金属抽出剤というときは、特に断らない限り、金属抽出剤I及び金属抽出剤IIを含む総称を意味する。
 構造Aにおける両端に窒素原子を有する分子鎖は、直鎖、分岐鎖、環状鎖でもよいが、直鎖又は分岐鎖が好ましく、直鎖又は分岐鎖の一部に、シクロアルキレン基、アリーレン基等の環状鎖(環状構造)を含んでいてもよい。この分子鎖は、環状鎖を含まない直鎖が好ましい。
 ここで、分子鎖は、複数の原子が鎖状に結合して形成される原子鎖であって、両端が窒素原子となる最長の鎖をいう。すなわち、分子鎖は、金属抽出剤の化学構造から端部窒素原子に結合する基を除去した鎖(当該鎖に結合する置換基を除く)をいう。例えば、実施例の金属抽出剤E-1の分子鎖はN-CH-CH-N(エチレンジアミン分子鎖)となり、金属抽出剤T-1は、N-CO-CH-N-CH-CH-N-CH-CO-N(トリエチレンテトラミン分子鎖)となる。
 分子鎖としては、特に限定されないが、端部窒素原子同士を結合する連結鎖Lを持つ鎖が挙げられる。この連結鎖Lとしては、特に限定されないが、例えば、アルキレン基(炭素数は1~12が好ましく、1~6がより好ましく、1~4が更に好ましい)、アルケニレン基(炭素数は2~6が好ましく、2~3がより好ましい)、アリーレン基(炭素数は6~24が好ましく、6~10がより好ましい)、酸素原子、硫黄原子、イミノ基(-NR-:Rは水素原子、炭素数1~6のアルキル基若しくは炭素数6~10のアリール基を示す。)、カルボニル基、リン酸連結基(-O-P(OH)(O)-O-)、ホスホン酸連結基(-P(OH)(O)-O-)、又はこれらの組み合わせに係る基等が挙げられる。連結鎖Lとしては、アルキレン基、アリーレン基、カルボニル基、酸素原子、硫黄原子若しくはイミノ基、又はこれらの組み合わせに係る基が好ましく、アルキレン基、アリーレン基若しくはイミノ基、又はこれらの組み合わせに係る基がより好ましい。ここで、アルキレン基及びアルケニレン基は、直鎖、分岐鎖、環状鎖のいずれでもよいが、直鎖又は分岐鎖が好ましく、直鎖又は分岐鎖の一部に環状鎖(環状構造)を含んでいてもよい。アルキレン基及びアルケニレン基は、環状鎖を含まない直鎖であることが好ましく、端部窒素原子が最長の炭素鎖の両端に結合する直鎖であることが好ましい。連結鎖Lとしては、その末端にヘテロ原子、例えば、酸素原子、硫黄原子、窒素原子(イミノ基)を有さないものが好ましく、両末端の原子が炭素原子であることがより好ましい。
 組み合わせに係る基において、組み合わせる基、連結基若しくは原子の数は、特に制限されないが、例えば、2~15個とすることができ、2~10個とすることが好ましく、2~5個とすることがより好ましい。また、組み合わせる基、連結基若しくは原子の種類数は、特に制限されないが、例えば、2種以上とすることができ、2種又は3種とすることが好ましい。
 中でも、炭化水素基、イミノ基等を含む連結基が好ましく、炭化水素基、又は炭化水素基とイミノ基とを組み合わせた基がより好ましく、炭化水素基が更に好ましい。ここで、炭化水素基としては、上記アルキレン基、上記アルケニレン基、上記アリーレン基等が挙げられ、アルキレン基が好ましく、エチレン基がより好ましい。炭化水素基とイミノ基とを組み合わせた基は、炭化水素基とイミノ基とが交互に結合した基(ポリアミン骨格)が挙げられ、例えば、-[炭化水素基-(イミノ基-炭化水素基)NN]-基が挙げられる。NNは、特に制限されず、0~4の整数であり、0~3の整数であることが好ましく、0又は1であることがより好ましい。
 上記連結鎖Lの連結原子数は15以下であることが好ましく、13以下であることがより好ましく、10以下であることが更に好ましく、6以下であることが特に好ましい。下限としては、1以上である。上記連結原子数とは端部窒素原子間を結ぶ最少の原子数をいう。上記連結鎖Lを構成する原子の数は、例えばイミノ基が有するR等によって一義的に決定されず、適宜に設定できる。一例を示すと、例えば、1~100とすることができ、1~40であることが好ましく、1~24であることがより好ましく、1~12であることが更に好ましい。
 例えば分子鎖がN-CH-CH-Nである場合、連結鎖Lを構成する原子の数は8となるが、連結原子数は4となる。
 分子鎖において、金属イオンの選択性及び回収率の点で、2つの端部窒素原子はカルバモイル結合(アミド結合ともいい、-CO-NR-で表される結合である。Rは上記の通りである。)を構成していない。本発明において、端部窒素原子がカルバモイル基を構成していないとは、端部窒素原子に炭素原子が直接結合している場合、この炭素原子が置換基としてオキソ基(=O)を有しないことを意味し、好ましくは、端部窒素原子に直接結合する炭素原子が水素原子のみを有していること、すなわちメチレン基であることを意味する。
 また、金属抽出剤において、端部窒素原子に結合する、配位官能基(α)を含む基についても、端部窒素原子がカルバモイル結合を構成しないことが好ましい。更に、端部窒素原子に加えて分子構造中に存在するその他の窒素原子(アミノ基、イミノ基を形成する窒素原子)は、カルバモイル基(-CO-N(R)又はカルバモイル結合を構成していてもよいが、金属イオンの選択性及び回収率の点で、いずれの窒素原子もカルバモイル基(-CO-N(R)及びカルバモイル結合を構成していないことが、特に好ましい。
 端部窒素原子が有する無置換炭化水素基としては、置換基を有さない炭化水素基であれば特に限定されず、例えば、無置換アルキル基、無置換アルケニル基、無置換アリール基、無置換アラルキル基又はこれらの組み合わせが挙げられ、無置換アルキル基、無置換アリール基が好ましく、無置換アルキル基がより好ましい。組み合わせからなる基としては、特に制限されないが、例えば、無置換アルキル基若しくは無置換アラルキル基と無置換アリール基とを組み合わせた基が挙げられる。この無置換炭化水素きは後述する配位官能基群G1に含まれる配位官能基を有していない。
 無置換アルキル基、無置換アルケニル基、及び無置換アラルキル基を構成するアルキル基は、直鎖状、分岐鎖状、環状のいずれでもよく、直鎖状又は分岐鎖状が好ましく、分岐鎖状がより好ましい。
 無置換アルキル基及び無置換アルケニル基の炭素数は、特に限定されず、例えば、1~36とすることができる。この炭素数は、油相への溶解性の点で、4~30であることが好ましく、4~24であることがより好ましく、6~20であることがより好ましい。無置換アリール基の炭素数は、特に限定されず、例えば、6~24とすることができ、6~10であることが好ましい。無置換アラルキル基の炭素数は、特に限定上記されず、例えば、7~25とすることができ、7~11であることが好ましい。
 配位官能基を含む基としては、後述する配位官能基群G1のいずれかの配位官能基を1つ以上有する基であればよく、配位官能基からなる基と、配位官能基及びこの配位官能基を端部窒素原子に結合させる結合基とからなる基とを包含する。
 配位官能基については後述する。結合基としては、特に制限されず、後述する式(I)のLと同義であり、後述する、配位官能基を有する炭化水素基(アルキル基、アルケニル基若しくはアリール基又はこれらを組み合わせた基)が好適に挙げられる。
 配位官能基を含む基としては、配位官能基及びこの配位官能基を端部窒素原子に結合させる結合基とからなる基が好ましく、後述する式(I)の「X-L-」基と同義であることがより好ましい。
 金属抽出剤Iにおいて、端部窒素原子が有する、無置換アルキル基同士の組み合わせ、及び配位官能基を含む基同士の組み合わせは、それぞれ、同じであっても異なっていてもよく、いずれの組み合わせも同じであることが好ましい。
 金属抽出剤IIにおいて、端部窒素原子が有する4つの無置換アルキル基は同じであっても異なっていてもよく、それぞれの端部窒素原子が有する1つの無置換アルキル基同士は同じであることが好ましく、4つの無置換アルキル基は同じであることが好ましい。
 本発明の金属抽出剤は、その分子構造中に、抽出対象とする金属イオンに対して配位結合する配位官能基(α)として、下記配位官能基群G1に含まれるいずれかの配位官能基(単に官能基ともいう。)を2個以上すること(構造B)が好ましい態様である。
 金属抽出剤が有する配位官能基の種類数は、特に制限されず、1種でも2種以上でもよいが、1~5種であることが好ましく、1種又は2種であることがより好ましい。また、金属抽出剤が有する配位官能基の合計数は、後述するように端部窒素原子が配位官能基としてのイミノ基に相当するため、少なくとも2個となるが、端部窒素原子以外に配位官能基を有する場合、3個以上であれば特に制限されず、適宜に設定される。例えば、金属抽出剤Iにおいては、4個以上であることが好ましく、4~10個であることがより好ましく、4~8個であることが更に好ましく、4~6個であることが特に好ましい。一方、金属抽出剤IIにおいては、2個以上であればよく、2~8個であることがより好ましく、2~6個であることが更に好ましく、2~4個であることが特に好ましい。金属抽出剤において、配位官能基のうち分子鎖中に含まれるイミノ基の数は、2個以上となるが、上記配位官能基の合計数を考慮して適宜に決定され、例えば、2~6個であることが好ましく、2個又は3個であることが好ましい。
<配位官能基群G1>
水酸基(-OH)、エーテル基(-O-)、チオール基(-SH:メルカプト基、スルファニル基ともいう。)、チオエーテル基(-S-)、ニトリル基(-CN)、イソニトリル基(-NC)、カルボキシ基(-COOH)、アミノ基(-N(R)、アミド基(-CO-N(R:カルバモイル基ともいう。)、リン酸基(-OPO)、ホスホン酸基(-PO)、スルホン酸基(-SOH)、スルフィン酸基(-SOH)、ホスフィノ基(-PH)、含窒素複素環、含酸素複素環、含硫黄複素環
 
 ここで、Rは上述の通りである。
 なお、リン酸基、ホスホン酸基、スルホン酸基及びスルフィン酸基は、いずれも、少なくとも1つの酸素原子を窒素原子又は硫黄原子に置換した基を含む。
 上記配位官能基のうち、アミノ基、アミド基、リン酸基、ホスホン酸基、スルホン酸基、スルフィン酸基、ホスフィノ基、含窒素複素環、含酸素複素環、含硫黄複素環等は、それぞれ、分子構造の端部に置換基として存在していてもよく、分子構造中、例えば上述の分子鎖中又は結合基中に連結基(結合)として存在していてもよい。この場合、各基又は環の水素原子又は置換基が除去されて、分子構造中に導入される。例えば、アミノ基(-N(R)であれば、イミノ基(-NR-)として、分子構造中に導入される。本発明において、分子構造中にイミノ基として導入されたアミノ基は配位官能基に相当し、金属抽出剤が有する配位官能基数に算入される。同様に、分子鎖の端部窒素原子はイミノ基として導入された配位官能基としてのアミノ基に相当し、分子鎖が有する2つの端部窒素原子の数は金属抽出剤が有する配位官能基数に算入される。
 エーテル基、チオエーテル基は、分子鎖の端部に存在する場合、置換基を有している。エーテル基又はチオエーテル基を構成する置換基としては、特に限定されず、例えば、後述する置換基Zから選択される基が挙げられ、アルキル基、アリール基、複素環基等が好ましく挙げられる。
 アミノ基は、置換基として導入される場合、カルバモイル基(-CO-N(R)を構成してもよいが、カルバモイル基を構成しないこと(窒素原子に直接結合する炭素原子が置換基としてオキソ基を有しないこと)が好ましい。一方、アミノ基が分子鎖中にイミノ基として導入される場合、端部窒素原子に相当するイミノ基はカルバモイル結合(-CO-NR-)を構成しないが、それ以外のイミノ基(内部窒素原子ということがある。)はカルバモイル結合(-CO-NR-)を構成してもしなくてもよい。内部窒素原子は、好ましくはカルバモイル結合(-CO-NR-)を構成しない。
 含窒素複素環、含酸素複素環、含硫黄複素環は、それぞれ、環構成原子として、炭素原子と、少なくとも1つの窒素原子、酸素原子若しくは硫黄原子とを有するヘテロ環である。各複素環を構成する炭素数は、特に制限されず、例えば、2~20が好ましい。各複素環は、芳香族複素環及び脂肪族複素環基を含み、5員環又は6員環が好ましい。例えば、後述する置換基Zのヘテロ環が挙げられる。
 カルボキシ基、リン酸基、ホスホン酸基、スルホン酸基、スルフィン酸基、ホスフィノ基等の酸性基、アミノ基、アミド基、含窒素複素環等は、塩を形成していてもよい。塩を形成するカチオンとしては、特に制限されず、例えば、金属カチオン、特に第1族又は第2族の金属カチオン、有機カチオン等が挙げられる。有機カチオンとしては、特に限定されないが、アンモニウムカチオン、アルキルアンモニウムカチオン等が挙げられる。
 金属抽出剤が有する配位官能基としては、上記配位官能基群G1に属する官能基の中でも、アミノ基、カルボキシ基、リン酸基、ホスホン酸基、スルホン酸基、スルフィン酸基、ホスフィノ基、水酸基、エーテル基が好ましい。配位官能基のうち分子鎖中にイミノ基として導入されるアミノ基以外の配位官能基としては、カルボキシ基、リン酸基、ホスホン酸基、スルホン酸基、スルフィン酸基、水酸基、エーテル基がより好ましく、カルボキシ基、リン酸基、ホスホン酸基、スルホン酸基、スルフィン酸基が更に好ましく、カルボキシ基が特に好ましい。
 金属抽出剤が複数種の配位官能基を有する場合、配位官能基の組み合わせは、特に限定されず、配位官能基群G1に含まれる配位官能基同士を適宜に組み合わせることができる。例えば、金属抽出剤、その中でも特に金属抽出剤Iは、配位官能基としてアミノ基をイミノ基(端部窒素原子)として有していることから、配位官能基としては、端部窒素原子となるアミノ基と、それ以外の少なくとも1つの配位官能基として、カルボキシ基、リン酸基、ホスホン酸基、スルホン酸基、スルフィン酸基及び水酸基から選ばれる官能基とを有していることが好ましく、アミノ基と、カルボキシ基、リン酸基、ホスホン酸基、スルホン酸基、スルフィン酸基及びエーテル基から選ばれる少なくとも1種の官能基とを有していることが好ましく、アミノ基とカルボキシ基とを有していることがより好ましい。一方、金属抽出剤IIは、上記端部窒素原子となるアミノ基以外の配位官能基を有していてもよいが、有していないことが好ましい。
 金属抽出剤は、上記分子鎖に相当するモノ若しくはポリ(アルキレンジアミン)の末端窒素原子に上述の無置換炭化水素基等を導入した化合物が好ましく、モノ若しくはポリ(エチレンジアミン)の末端窒素原子に上述の無置換炭化水素基等を導入した化合物がより好ましい。モノ若しくはポリ(アルキレンジアミン)としては、例えば、アルキレンジアミン、ジアルキレントリアミン、トリアルキレンテトラミン、テトラアルキレンペンタミン、ペンタアルキレンヘキサミン等が好適に挙げられる。ここで、モノ若しくはポリ(アルキレンジアミン)を構成するアルキレン基は、上記連結鎖Lを構成するアルキレン基と同義である。
 金属抽出剤は、配位官能基群G1に含まれる配位官能基以外の置換基を有していてもよく、有していてもよい置換基としては、例えば、後述する置換基Zから選択される基が挙げられる。
 金属抽出剤は、上記構造A及びBを有していればよいが、金属イオンの選択性及び回収率の点で、カルバモイル基及びカルバモイル結合を有さないことが好ましい。
 金属抽出剤の分子量は、特に制限されないが、例えば、150~50,000とすることができ、油相への溶解性等の点で、200~10,000であることが好ましく、250~1,000であることがより好ましい。本発明において、金属抽出剤がオリゴマーである場合、その分子量については、特に断らない限り、ゲルパーミエーションクロマトグラフィー(GPC)による標準ポリスチレン換算の数平均分子量をいう。
 
- 分子量の測定 -
 オリゴマーの分子量の測定法としては、基本として下記条件1又は条件2(優先)の方法により測定した値とする。ただし、オリゴマーの種類によっては適宜適切な溶離液を選定して用いればよい。
(条件1)
  カラム:TOSOH TSKgel Super AWM-H(商品名、東ソー社製)を2本つなげる
  キャリア:10mMLiBr/N-メチルピロリドン
  測定温度:40℃
  キャリア流量:1.0ml/min
  試料濃度:0.1質量%
  検出器:RI(屈折率)検出器
(条件2)
  カラム:TOSOH TSKgel Super HZM-H、TOSOH TSKgel Super HZ4000、TOSOH TSKgel Super HZ2000(いずれも商品名、東ソー社製)をつないだカラムを用いる。
  キャリア:テトラヒドロフラン
  測定温度:40℃
  キャリア流量:1.0ml/min
  試料濃度:0.1質量%
  検出器:RI(屈折率)検出器
 金属抽出剤の酸解離定数pKaは、特に限定されず、配位官能基の種類、数等に応じて適宜の値を採ることができる。本発明において、pKaは、中和滴定法によって測定した値とする。
 金属抽出剤は、公知の方法、例えば特許文献1及び2に記載の方法等を参照して、合成できる。例えば、金属抽出剤の合成方法として、実施例で説明する合成方法を挙げることができる。
<金属抽出剤I>
 金属抽出剤のうち金属抽出剤Iは、下記式(I)で表される化合物であることが好ましい。
 この金属抽出剤Iは、配位官能基として2~6個の窒素原子と2つのXとを有する金属抽出剤であって、その酸解離定数pKaは、例えば、4~20であることが好ましく、5~15であることがより好ましく、5~10であることが更に好ましい。
Figure JPOXMLDOC01-appb-C000006
 式(I)において、Rは無置換炭化水素基を示す。
 Rとしてとりうる無置換炭化水素基としては、特に制限されず、上述の、端部窒素原子が有する無置換炭化水素基と同義である。特に、炭素数4~20の無置換分岐鎖状アルキル基であることが好ましい。
 式(I)において、Rは置換基を示す。Rとしてとりうる置換基としては、特に制限されず、例えば、後述する置換基Zから選択される基が挙げられ、アルキル基、アルケニル基、アラルキル基、アリール基、複素環基等が好ましく挙げられる。中でも、アルキル基、アルケニル基、アラルキル基、アリール基等の炭化水素基が、油相への溶解性の点で、好ましい。Rとして好ましくとりうる炭化水素基としては、特に制限されず、上述の、端部窒素原子が有する無置換炭化水素基における炭化水素基と同義である。また、この炭化水素基は、置換基Zから選択される基を置換基として更に有していてもよいが、窒素原子に直接結合する炭素原子が置換基としてオキソ基を有していないことが好ましく、無置換炭化水素基であることがより好ましい。
 ただし、上記式(I)において、RのうちLに結合するNが有するRは、無置換炭化水素基である。この無置換炭化水素基は上述の、端部窒素原子が有する無置換炭化水素基と同義である。
 Rとしてより好ましくとりうる無置換炭化水素基、及びLに結合するNが有するRとしてとりうる無置換炭化水素基は、それぞれ、Rとしてとりうる無置換炭化水素基と同じでも異なっていてもよいが、同じであることが好ましい。
 式(I)で表される金属抽出剤Iが複数のRを有する場合、複数のRは同じでも異なっていてもよいが、同じであることが好ましい。
 式(I)において、Xは、それぞれ、配位官能基を示し、下記配位官能基群G2から選ばれる基を示す。Xは、それぞれ、配位官能基群G2に属する官能基の中でも、カルボキシ基、リン酸基、ホスホン酸基、スルホン酸基又はスルフィン酸基が好ましく、カルボキシ基が特に好ましい。2つのXは同じでも異なっていてもよいが、同じであることが好ましい。下記配位官能基群G2に含まれる各配位官能基は、上記配位官能基群G1に含まれる対応する各配位官能基と同義である。
 
 <配位官能基群G2>
カルボキシ基、リン酸基、ホスホン酸基、スルホン酸基、スルフィン酸基、水酸基
 
 式(I)において、L、L及びLは、それぞれ、連結基を示す。L、L及びLとしてとりうる連結基としては、特に制限されず、例えば、アルキレン基、アルケニレン基(炭素数は2~6が好ましく、2~3がより好ましい)、アリーレン基(炭素数は6~24が好ましく、6~10がより好ましい)、酸素原子、硫黄原子、イミノ基(-NR-:Rは上記Rと同義である。)、カルボニル基、リン酸連結基(-O-P(OH)(O)-O-)、ホスホン酸連結基(-P(OH)(O)-O-)、又はこれらの組み合わせに係る基等が挙げられる。ここで、アルキレン基及びアルケニレン基は、直鎖、分岐鎖、環状鎖のいずれでもよいが、直鎖又は分岐鎖が好ましく、直鎖又は分岐鎖の一部に環状鎖(環状構造)を含んでいてもよい。アルキレン基及びアルケニレン基は、環状鎖を含まない直鎖であることが好ましく、式(I)中の窒素原子が最長の炭素鎖の両端に結合する直鎖であることが好ましい。組み合わせに係る基において、組み合わせる基、連結基若しくは原子の数は、特に制限されないが、例えば、2~15個とすることができ、2~10個とすることが好ましく、2~5個とすることがより好ましい。また、組み合わせる基、連結基若しくは原子の種類数は、特に制限されないが、例えば、2種以上とすることができ、2~5個とすることが好ましく、2種又は3種とすることがより好ましい。
 Lとしてとりうる連結基としては、上記の中でも、アルキレン基が好ましく、炭素数1~12のアルキレン基が好ましく、炭素数1~6のアルキレン基がより好ましく、炭素数1~4のアルキレン基が更に好ましい。Lとしてとりうるアルキレン基は、直鎖アルキレン基であることが好ましく、式(I)中の窒素原子が最長の炭素鎖の両端に結合する直鎖アルキレン基であることがより好ましく、1,2-エタンジイル基であることが更に好ましい。Lしてとりうるアルキレン基は、置換基を有していてもよいが、無置換アルキレン基であることがより好ましい。
 式(I)で表される金属抽出剤Iが複数のLを有する場合、複数のLは同じでも異なっていてもよいが、同じであることが好ましい。
 なお、Lしてとりうる連結基は、式(I)中の窒素原子、特にRを有する窒素原子に直接結合する炭素原子が置換基としてオキソ基を有していてもよいが、有していないことが好ましい。
 L及びLしてとりうる連結基としては、上記の中でも、アルキレン基が好ましい。L及びLして好ましくとりうるアルキレン基は、直鎖状、分岐鎖状、環状のいずれでもよく、直鎖状又は分岐鎖状が好ましく、分岐鎖状がより好ましく、一方の端部の炭素原子が式(I)中のN及びXと結合する分岐鎖状(1,1-アルカンジイル基)であること、又は一方の端部の炭素原子とこの炭素原子に隣接する炭素原子とが式(I)中のN及びXと結合する分岐鎖状(1,2-アルカンジイル基)であることが更に好ましい。L及びLしてとりうるアルキレン基の炭素数は、特に限定されず、例えば、1~36とすることができる。アルキレン基の炭素数は、油相への溶解性の点で、4~30であることが好ましく、4~24であることがより好ましく、6~20であることがより好ましい。L及びLしてとりうるアルキレン基は無置換アルキレン基であることがより好ましい。
 また、L及びLしてとりうる連結基としては、L及びLして好ましくとりうる上述のアルキレン基を構成する炭素原子の一部を酸素原子で置換したものも好ましい態様の1つである。この態様において、酸素原子で置換される炭素原子は、アルキレン基を構成する炭素鎖の内部に位置する炭素原子であり、置換される炭素原子の数は、特に制限されず、1~3個とすることができる。このような基としては、例えば、上述のアルキレン基中の1つの炭素原子が酸素原子で置換された基(アルキレン基-酸素原子-アルキル基)、上述のアルキレン基中の2つの炭素原子が酸素原子で置換された基(アルキレン基-酸素原子-アルキレン基-酸素原子-アルキル基、例えば、実施例で合成した金属抽出剤E-6)が挙げられる。
 L及びLしてとりうる連結基は互いに同一でも異なっていてもよく、同一であることが好ましい。L及びLしてとりうる連結基は、Rとしてとりうる無置換炭化水素基から水素原子を1つ除去した残基と同じでも異なっていてもよいが、式(I)中のXと窒素原子とを結合する部分を除いた基がRとしてとりうる無置換炭化水素基と同じであることが好ましい。
 なお、L及びLしてとりうる連結基は、いずれも、式(I)中の窒素原子に直接結合する炭素原子が置換基としてオキソ基を有していない。
 式(I)において、-L-Xで示される基、及び-L-Xで示される基は、配位官能基を有する基であり、L、L及びXは上述の通りであるが、配位官能基を有する炭化水素基であることが好ましい。配位官能基を有する炭化水素基としては、特に制限されず、例えば、アルキル基、アルケニル基若しくはアリール基又はこれらを組み合わせた基に配位官能基を導入した基が挙げられる。上記アルキル基、アルケニル基及びアリール基は、それぞれ、配位官能基を導入する前の、Lしてとりうる上記アルキレン基、アルケニレン基及びアリーレン基に対応する。組み合わせた基としては、特に制限されないが、例えば、アルキル基とアリール基とを組み合わせた基が挙げられる。
 式(I)において、-L-Xで示される基と-L-Xで示される基とは、同じでも異なっていてもよいが、同じであることが好ましい。
 式(I)において、R、R、X及びL~Lの組み合わせは、特に制限されず、それぞれの好ましいもの同士の組み合わせが挙げられる。
 式(I)において、nは、1~5の整数であり、1~4の整数であることが好ましく、1又は2であることがより好ましい。
 金属抽出剤Iは、上記X以外の置換基を有していてもよく、有していてもよい置換基としては、例えば、後述する置換基Zから選択される基、ただし、配位官能基群G1に含まれる配位官能基以外の基が挙げられる。
 金属抽出剤Iの具体例としては、実施例で合成したもの以外にも下記に示すものを挙げることができるが、本発明はこれらに限定されない。
Figure JPOXMLDOC01-appb-C000007
<金属抽出剤II>
 金属抽出剤のうち金属抽出剤IIは、下記式(II)で表される化合物であることが好ましい。
 この金属抽出剤IIは、配位官能基として2~6個の窒素原子(イミノ基)を有する塩基性の抽出剤であって、その共役酸の酸解離定数pKaは、例えば、5.0~14.0であることが好ましく、7.0~13.0であることがより好ましい。本発明において、pKaは中和滴定法によって測定した値とする。
Figure JPOXMLDOC01-appb-C000008
 式(II)において、R~Rは、それぞれ、無置換炭化水素基を示す。R~Rとしてとりうる無置換炭化水素基としては、特に制限されないが、上述の、端部窒素原子が有する無置換炭化水素基と同義である。特に、炭素数4~20の無置換分岐鎖状アルキル基であることが好ましい。R~Rとしてとりうる無置換炭化水素基は同じであっても異なっていてもよいが、同じであることが好ましい。
 なお、Rは、Rを有する窒素原子に直接結合する炭素原子が置換基としてオキソ基を有していない。
 式(II)において、Rは置換基を示す。Rとしてとりうる置換基としては、特に制限されず、例えば、後述する置換基Zから選択される基が挙げられ、アルキル基、アルケニル基、アラルキル基、アリール基、複素環基等が好ましく挙げられる。中でも、アルキル基、アルケニル基、アラルキル基、アリール基等の炭化水素基が、油相への溶解性の点で、好ましい。Rとして好ましくとりうる炭化水素基としては、特に制限されず、上述の、端部窒素原子が有する無置換炭化水素基における炭化水素基と同義である。また、この炭化水素基は、置換基Zから選択される基を置換基として更に有していてもよいが、窒素原子に直接結合する炭素原子が置換基としてオキソ基を有していないことが好ましく、無置換炭化水素基であることがより好ましい。
 ただし、上記式(II)において、RのうちRに結合するNが有するRは、無置換炭化水素基である。この無置換炭化水素基は上述の、端部窒素原子が有する無置換炭化水素基と同義である。
 Rとしてより好ましくとりうる無置換炭化水素基、及びRに結合するNが有するRとしてとりうる無置換炭化水素基は、それぞれ、R~Rとしてとりうる各無置換炭化水素基と同じでも異なっていてもよいが、すべて同じであることが好ましく、いずれも無置換アルキル基であることが好ましい。
 式(II)で表される金属抽出剤IIが複数のRを有する場合、複数のRは同じでも異なっていてもよいが、同じであることが好ましい。
 式(II)において、Lは連結基を示す。Lとしてとりうる連結基としては、特に制限されず、例えば、アルキレン基(炭素数は1~12が好ましく、1~6がより好ましく、1~4が更に好ましい)、アルケニレン基(炭素数は2~6が好ましく、2~3がより好ましい)、アリーレン基(炭素数は6~24が好ましく、6~10がより好ましい)、酸素原子、硫黄原子、イミノ基(-NR-:Rは上記Rと同義である。)、カルボニル基、リン酸連結基(-O-P(OH)(O)-O-)、ホスホン酸連結基(-P(OH)(O)-O-)、又はこれらの組み合わせに係る基等が挙げられる。ここで、アルキレン基及びアルケニレン基は、直鎖、分岐鎖、環状鎖のいずれでもよいが、直鎖又は分岐鎖が好ましく、直鎖又は分岐鎖の一部に環状鎖(環状構造)を含んでいてもよい。アルキレン基及びアルケニレン基は、環状鎖を含まない直鎖であることが好ましく、式(I)中の窒素原子が最長の炭素鎖の両端に結合する直鎖であることが好ましい。組み合わせに係る基において、組み合わせる基、連結基若しくは原子の数は、特に制限されないが、例えば、2~15個とすることができ、2~10個とすることが好ましく、2~5個とすることがより好ましい。また、組み合わせる基、連結基若しくは原子の種類数は、特に制限されないが、例えば、2種以上とすることができ、2種又は3種とすることが好ましい。
 Lとしてとりうる連結基としては、上記の中でも、アルキレン基が好ましく、直鎖アルキレン基であることが好ましく、式(II)中の窒素原子が最長の炭素鎖の両端に結合する直鎖アルキレン基であることがより好ましく、1,2-エタンジイル基であることが更に好ましい。Lしてとりうるアルキレン基は、置換基を有していてもよいが、無置換アルキレン基であることがより好ましい。
 式(II)で表される金属抽出剤IIが複数のLを有する場合、複数のLは同じでも異なっていてもよいが、同じであることが好ましい。
 なお、Lしてとりうる連結基において、R及びRを有する窒素原子に直接結合する炭素原子は置換基としてオキソ基を有していないが、Rを有する窒素原子に直接結合する炭素原子は置換基としてオキソ基を有していてもよく、有していないことが好ましい。
 式(II)において、R及びRを有するアミノ基と、R及びRを有するアミノ基とは、同じでも異なっていてもよいが、同じであることが好ましい。
 式(II)において、R~R及びLの組み合わせは、特に制限されず、それぞれの好ましいもの同士の組み合わせが挙げられる。
 式(II)において、mは1~5の整数であり、1~4の整数であることが好ましく、1又は2であることがより好ましい。
 金属抽出剤IIは、置換基を有していてもよく、有していてもよい置換基としては、例えば、後述する置換基Zから選択される基が挙げられる。
 金属抽出剤IIの具体例としては、実施例で合成したもの以外にも下記に示すものを挙げることができるが、本発明はこれらに限定されない。
Figure JPOXMLDOC01-appb-C000009
 - 置換基Z -
 アルキル基(好ましくは炭素数1~20のアルキル基、例えばメチル、エチル、イソプロピル、t-ブチル、ペンチル、ヘプチル、1-エチルペンチル、ベンジル、2-エトキシエチル、1-カルボキシメチル等)、アルケニル基(好ましくは炭素数2~20のアルケニル基、例えば、ビニル、アリル、オレイル等)、アルキニル基(好ましくは炭素数2~20のアルキニル基、例えば、エチニル、ブタジイニル、フェニルエチニル等)、シクロアルキル基(好ましくは炭素数3~20のシクロアルキル基、例えば、シクロプロピル、シクロペンチル、シクロヘキシル、4-メチルシクロヘキシル等、本発明においてアルキル基というときには通常シクロアルキル基を含む意味であるが、ここでは別記する。)、アリール基(好ましくは炭素数6~26のアリール基、例えば、フェニル、1-ナフチル、4-メトキシフェニル、2-クロロフェニル、3-メチルフェニル等)、アラルキル基(好ましくは炭素数7~23のアラルキル基、例えば、ベンジル、フェネチル等)、ヘテロ環基(好ましくは炭素数2~20のヘテロ環基で、より好ましくは、少なくとも1つの酸素原子、硫黄原子、窒素原子を有する5又は6員環のヘテロ環基である。ヘテロ環基には芳香族ヘテロ環基及び脂肪族ヘテロ環基を含む。例えば、テトラヒドロピラン環基、テトラヒドロフラン環基、2-ピリジル、4-ピリジル、2-イミダゾリル、2-ベンゾイミダゾリル、2-チアゾリル、2-オキサゾリル、ピロリドン基等)、アルコキシ基(好ましくは炭素数1~20のアルコキシ基、例えば、メトキシ、エトキシ、イソプロピルオキシ、ベンジルオキシ等)、アリールオキシ基(好ましくは炭素数6~26のアリールオキシ基、例えば、フェノキシ、1-ナフチルオキシ、3-メチルフェノキシ、4-メトキシフェノキシ等)、ヘテロ環オキシ基(上記ヘテロ環基に-O-基が結合した基)、アルコキシカルボニル基(好ましくは炭素数2~20のアルコキシカルボニル基、例えば、エトキシカルボニル、2-エチルヘキシルオキシカルボニル、ドデシルオキシカルボニル等)、アリールオキシカルボニル基(好ましくは炭素数7~26のアリールオキシカルボニル基、例えば、フェノキシカルボニル、1-ナフチルオキシカルボニル、3-メチルフェノキシカルボニル、4-メトキシフェノキシカルボニル等)、ヘテロ環オキシカルボニル基(上記ヘテロ環基に-O-CO-基が結合した基)、アミノ基(好ましくは炭素数0~20のアミノ基、アルキルアミノ基、アリールアミノ基を含み、例えば、アミノ(-NH)、N,N-ジメチルアミノ、N,N-ジエチルアミノ、N-エチルアミノ、アニリノ等)、スルファモイル基(好ましくは炭素数0~20のスルファモイル基、例えば、N,N-ジメチルスルファモイル、N-フェニルスルファモイル等)、アシル基(アルキルカルボニル基、アルケニルカルボニル基、アルキニルカルボニル基、アリールカルボニル基、ヘテロ環カルボニル基を含み、好ましくは炭素数1~20のアシル基、例えば、アセチル、プロピオニル、ブチリル、オクタノイル、ヘキサデカノイル、アクリロイル、メタクリロイル、クロトノイル、ベンゾイル、ナフトイル、ニコチノイル等)、アシルオキシ基(アルキルカルボニルオキシ基、アルケニルカルボニルオキシ基、アルキニルカルボニルオキシ基、ヘテロ環カルボニルオキシ基を含み、好ましくは炭素数1~20のアシルオキシ基、例えば、アセチルオキシ、プロピオニルオキシ、ブチリルオキシ、オクタノイルオキシ、ヘキサデカノイルオキシ、アクリロイルオキシ、メタクリロイルオキシ、クロトノイルオキシ、ニコチノイルオキシ等)、アリーロイルオキシ基(好ましくは炭素数7~23のアリーロイルオキシ基、例えば、ベンゾイルオキシ、ナフトイルオキシ等)、カルバモイル基(好ましくは炭素数1~20のカルバモイル基、例えば、N,N-ジメチルカルバモイル、N-フェニルカルバモイル等)、アシルアミノ基(好ましくは炭素数1~20のアシルアミノ基、例えば、アセチルアミノ、ベンゾイルアミノ等)、アルキルチオ基(好ましくは炭素数1~20のアルキルチオ基、例えば、メチルチオ、エチルチオ、イソプロピルチオ、ベンジルチオ等)、アリールチオ基(好ましくは炭素数6~26のアリールチオ基、例えば、フェニルチオ、1-ナフチルチオ、3-メチルフェニルチオ、4-メトキシフェニルチオ等)、ヘテロ環チオ基(上記ヘテロ環基に-S-基が結合した基)、アルキルスルホニル基(好ましくは炭素数1~20のアルキルスルホニル基、例えば、メチルスルホニル、エチルスルホニル等)、アリールスルホニル基(好ましくは炭素数6~22のアリールスルホニル基、例えば、ベンゼンスルホニル等)、アルキルシリル基(好ましくは炭素数1~20のアルキルシリル基、例えば、モノメチルシリル、ジメチルシリル、トリメチルシリル、トリエチルシリル等)、アリールシリル基(好ましくは炭素数6~42のアリールシリル基、例えば、トリフェニルシリル等)、アルコキシシリル基(好ましくは炭素数1~20のアルコキシシリル基、例えば、モノメトキシシリル、ジメトキシシリル、トリメトキシシリル、トリエトキシシリル等)、アリールオキシシリル基(好ましくは炭素数6~42のアリールオキシシリル基、例えば、トリフェニルオキシシリル等)、ホスホリル基(好ましくは炭素数0~20のリン酸基、例えば、-OP(=O)(R)、ホスホニル基(好ましくは炭素数0~20のホスホニル基、例えば、-P(=O)(R)、ホスフィニル基(好ましくは炭素数0~20のホスフィニル基、例えば、-P(R)、ホスホン酸基(好ましくは炭素数0~20のホスホン酸基、例えば、-PO(OR)、スルホ基(スルホン酸基)、カルボキシ基、ヒドロキシ基、スルファニル基、シアノ基、ハロゲン原子(例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子等)が挙げられる。Rは、水素原子又は置換基(好ましくは置換基Zから選択される基)である。
 また、これらの置換基Zで挙げた各基は、上記置換基Zが更に置換していてもよい。
 上記アルキル基、アルキレン基、アルケニル基、アルケニレン基、アルキニル基及び/又はアルキニレン基等は、環状でも鎖状でもよく、また直鎖でも分岐していてもよい。
[金属イオンの分離回収方法]
 本発明の金属イオンの分離回収方法(以下、本発明の分離回収方法ということがある。)は、複数種の金属イオンを含有する水相と、本発明の金属抽出剤を含有する油相とを混合する方法であり、これにより、本発明の金属抽出剤が配位した特定の金属イオンを水相から油相に移動(抽出)させて、高選択性かつ高回収率で分離回収することができる。ここで、油相に抽出させる金属イオンは、水相に含有する複数種の金属イオンの一部、ただし2種以上であってもよく、水相に含有する異族金属イオンの全種類であってもよい。本発明の分離回収方法は、有価金属元素のイオンとして、2種以上の異族金属イオン、例えば、第4族、第7族、第9族及び第10族に属する2種以上の金属イオン、特に望ましくは同周期異族金属イオンであるコバルトイオン及びニッケルイオンであって、そのうちの1種の金属イオンを高選択性かつ高回収率で油相に抽出することができる。
 本発明の分離回収方法は、本発明の金属抽出剤が、水相に存在する複数種の金属イオンのうち2種以上の金属イオンを一緒に油相に抽出するものの、そのうちの1種の金属イオンを高選択性かつ高回収率で抽出できるという特性、機能を見出して、2種以上の異族金属イオンを分離回収するという新たな用途に適用したものである。
<水相>
 水相を形成する水は、特に限定されないが、(超)純水、イオン交換水等を用いることができる。
 水相に含まれる金属イオンは、第3族~第16族に属する金属イオンを少なくとも1種含んでいれよく、第3族~第16族以外の族に属する金属イオンを含んでいてもよい。本発明においては、第3族~第16族に属する金属イオンを2種以上含んでいることが好ましく、少なくとも1種の遷移金属元素(第3族~第12族に属する金属元素)のイオンを含んでいることがより好ましく、第4族~第12族に属する金属イオンを2種以上含んでいることがより一層好ましく、第4族~第10族に属する金属イオンを2種以上含んでいることが更に好ましく、第4族、第7族、第9族及び第10族に属する金属イオンを2種以上含んでいることが特に好ましく、第8族~第10族に属する金属イオンを2種以上含んでいることが最も好ましい。各族に属する金属イオンは、特に制限されないが、周期表における第4周期~第6周期に属する金属イオンが好ましく、第4周期又は第5周期に属する金属イオンがより好ましい。また、金属イオンの種類数は、2種以上であれば特に制限されず、例えば、2~15種とすることができ、2~8種であることが好ましく、2~5種であることがより好ましい。
 複数の金属イオンの組み合わせは、特に制限されないが、例えば、族同士の組み合わせとしては、第9族と第10族とを含む組み合わせ(第7族を含む組み合わせを除く)、第4族と第9族とを含む組み合わせ、第7族と第9族と第10族とを含む組み合わせ、第7族と第8族と第9族と第10族とを含む組み合わせ等が挙げられる。
 本発明においては、各族に属する金属イオンは2種以上でもよいが、1種であることが高い選択性を示す点で、好ましい。
 金属イオンの具体的な組み合わせとしては、例えば、Co及びNiを含む組み合わせ(Mnを含む組み合わせを除く)、Zr及びRhを含む組み合わせ、Mn、Co及びNiを含む組み合わせ、Mn、Fe、Co及びNiとの組み合わせ等が挙げられる。
 各族に属する金属元素は特に限定されず適宜の原子を用いることができる。例えば、
 第3族に属する金属元素としては、Sc、Yが好ましく挙げられる。
 第4族に属する金属元素としては、Ti、Zr、Hfが好ましく挙げられる。
 第5族に属する金属元素としては、V、Nb、Taが好ましく挙げられる。
 第6族に属する金属元素としては、Cr、Mo、Wが好ましく挙げられる。
 第7族に属する金属元素としては、Mn、Tcが好ましく挙げられる。
 第8族に属する金属元素としては、Fe、Ru、Osが好ましく挙げられる。
 第9族に属する金属元素としては、Co、Rh、Irが好ましく挙げられる。
 第10族に属する金属元素としては、Ni、Pd、Ptが好ましく挙げられる。
 第11族に属する金属元素としては、Cu、Ag、Auが好ましく挙げられる。
 第12族に属する金属元素としては、Zn、Cd、Hgが好ましく挙げられる。
 第13族に属する金属元素としては、Al、Ga、In、Tlが好ましく挙げられる。
 第14族に属する金属元素としては、Ge、Sn、Pbが好ましく挙げられる。
 第15族に属する金属元素としては、Sb、Biが好ましく挙げられる。
 第16族に属する金属元素としては、Teが好ましく挙げられる。
 複数種の金属イオンとしては、適宜に準備することができ、例えば、各種金属塩(典型元素の硝酸、硫酸等の無機酸若しくは酢酸等の有機酸等の塩)、採掘された金属(イオン)の混合物、金属廃棄物からの回収物、その他の廃棄物、例えば廃電池(LiB)からの金属回収物等、更にこれらの混合物等を用いることができる。廃LiBからの金属回収物としては、公知の方法、例えば湿式処理、電気分解等による回収物が挙げられる。
 水相中における複数種の金属イオンの総含有量は、特に限定されず適宜に設定されるが、例えば、1,000~1,000,000質量ppmとすることができ、1,000~100,000質量ppmであることが好ましく、1,000~80,000質量ppmであることがより好ましい。
 金属イオンのうち第8族~第12族に属する金属イオンの合計含有量は、特に限定されず適宜に設定されるが、例えば、1,000~80,000質量ppmとすることができ、1,000~60,000質量ppmであることが好ましい。
 金属イオンのうち第3族~第7族及び第13族~第16族に属する金属イオンの合計含有量は、特に限定されず適宜に設定されるが、例えば、1,000~60,000質量ppmとすることができ、1,000~30,000質量ppmであることが好ましい。
 各族に属する金属イオンの含有量は、特に限定されず適宜に設定されるが、例えば、1,000~60,000質量ppmとすることができ、1,000~50,000質量ppmであることが好ましい。
 第3族~第16族以外の族に属する金属イオンを含む場合、その含有量は、特に限定されないが、例えば、50,000質量ppm以下とすることができ、30,000質量ppm以下であることが好ましい。
 なお、各族に属する金属イオンを2種以上含む場合、各族に属する金属イオンの含有量は合計含有量とする。
 本発明において、ある族に属する金属イオンの含有量は、その他の族に属する金属イオンの含有量に対して多くても少なくてもよい。本発明の分離回収方法は、高選択性で金属イオンを分離回収できるため、互いに異なる族に属する金属イオンの含有量を特定の比率に設定する必要はない。その一例を挙げると、特定の族に属する金属イオン(例えば、最大抽出量で抽出される金属イオン)の含有量に対する他の1つの族に属する金属イオン(例えば、最大抽出量で抽出される金属イオン以外の金属イオン(抽出されない金属イオンを含む。))の含有量の質量比[特定の族に属する金属イオンの含有量:他の1つの族に属する金属イオンの含有量]は、例えば、100:1~10,000とすることができ、100:10~5,000とすることが好ましく、100:50~1,000とすることがより好ましく、100:70~130とすることが更に好ましい。
 水相のpHは、特に制限されず適宜に設定されるが、金属イオンの溶解性、錯イオンの形成等を考慮すると、例えば、0.1~10とすることが好ましい。水相のpHは、例えば、酸又はアルカリを用いて調整することができる。酸としては、公知のものを特に限定されることなく用いることができ、硫酸、塩酸、硝酸、リン酸等の無機酸、ギ酸、酢酸、シュウ酸、有機リン酸、有機スルホン酸等の有機酸が挙げられる。アルカリとしては、公知のものを特に限定されることなく用いることができ、無機アルカリ、有機アルカリを挙げることができ、無機アルカリが好ましい。無機アルカリとしては、例えば、第1族又は第2族の金属の水酸化物、炭酸塩等の金属アルカリ、更にはアンモニア水、塩化アンモニウム等が挙げられる。有機アルカリとしては、有機アンモニウム塩等が挙げられる。
 水相の温度は、特に制限されず、例えば、10~60℃とすることができる。
 水相は、必要に応じて、金属イオンに配位する配位子(化合物)又は配位子を発生させる化合物等を含有していてもよい。
 水相は、水中に、金属イオンを溶解して調製することができる。水相の調製条件は、特に限定されない。例えば、調製温度は10~60℃とすることができる。
 水相は、上記金属イオンに加え、マスキング剤を含んでいてもよい。マスキング剤は公知のものを特に限定なく使用することができる。例えば、アンモニア等の単座配位子、ジチゾン等のキレート剤等が挙げられる。
<油相>
 本発明の分離回収方法には、上述の水相に対して、本発明の金属抽出剤を1種又は2種以上含有する油相(有機相)を用いる。
 本発明の金属抽出剤は、有機溶媒に対する溶解性を示して油相中に存在して水相と油相との界面近傍に存在する2種以上の金属イオンに配位結合し、2種以上の金属イオンを油相に移動させる機能を示す。本発明において、有機溶媒に対する溶解性とは、後述する含有量で金属抽出剤が有機溶媒に溶解可能な性質を意味する。
 油相を形成する有機溶媒は、特に限定されず、適宜の有機溶媒を用いることができる。例えば、アルコール溶媒、エーテル溶媒、炭化水素系溶媒(芳香族溶媒、脂肪族溶媒)、ハロゲン溶媒等が挙げられる。中でも、炭化水素系溶媒が好ましく、石油の分流成分である各種溶媒がより好ましく、芳香族系、パラフィン系、ナフテン系、ケロシン、ガソリン、ナフサ、灯油、軽油の炭化水素系溶媒が更に好ましい。
 油相中における金属抽出剤の含有量は、金属イオンの含有量、金属イオンへの配位量、配位官能基数等を考慮して適宜に設定される。例えば、油相中の含有量は、20~10,000ミリモル/L(mM)とすることができ、50~1,000ミリモル/Lとすることが好ましく、100~500ミリモル/Lとすることがより好ましい。
 油相の温度は、特に制限されず、例えば、10~60℃とすることができる。
 油相は、本発明の金属抽出剤の他に適宜の成分を含有していてもよい。
 油相は、有機溶媒に、金属抽出剤を溶解して調製することができる。油相の調製条件は、特に限定されず、例えば、調製温度を10~60℃とすることができる。
(接触、混合)
 本発明の分離回収方法においては、上記水相と油相とを混合し、静置する。
 このときの混合条件及び静置条件は、特に制限されず、適宜に設定できる。例えば、混合は各種の混合装置を用いて行うことができる。混合装置としては、磁気攪拌子(スターラーチップ)を用いた方法、メカニカルスターラーを用いた方法、更に、ミキサー等を用いた方法が挙げられる。攪拌条件(攪拌速度、攪拌時間等)は、水相と油相とを混合できる条件(金属抽出剤が金属イオンに配位結合する条件)であればよく、金属イオン及び金属抽出剤との組み合わせ、混合温度、更には混合装置に応じて適宜に設定される。例えば、攪拌時間としては、攪拌条件等により一義的に決定されないが、例えば10分~24時間とすることができる。
 静置条件は、水相と油相とが二層に分離する条件であればよく、例えば、静置時間は、混合停止後、10分~24時間とすることができる。
 混合温度及び静置温度も特に制限されず、例えば、10~60℃とすることができる。
 水相と油相との混合において、水相と油相との混合割合は、金属イオンの含有量(濃度)、金属抽出剤の含有量(濃度)等に応じて適宜に設定され、一義的に決定されない。例えば、上記各濃度を満たす水相及び油相を混合する場合、水相100mLに対して油相を50~2,000mLの割合とすることができ、80~1,000mLの割合とすることが好ましく、80~200mLの割合とすることが好ましい。一方、水相に存在する金属イオンに着目すると、金属イオンの総含有量(モル)に対して、金属抽出剤が0.1~20モル倍となる割合で油相を混合することが好ましい。また、金属抽出剤が配位しうる金属イオンの総含有量に対する金属抽出剤の含有量(混合量ともいう。金属イオンの総モル数に対する金属抽出剤のモル数の割合:モル比)としては、例えば、0.1~20.0当量とすることができる。ここで、金属抽出剤が配位しうる金属イオンとは、金属抽出剤が配位して油相に抽出される金属イオンをいう。
 水相と油相との混合において、混合系のpHを調整することもできる。ここで、抽出する特定の金属イオンに対して設定されるpHは、一義的ではなく、金属抽出剤のpKa、金属抽出剤と金属イオンの錯体形成定数、金属イオンの配位数等を考慮して、適宜に決定される。混合系のpHとしては、0.01~14とすることが好ましく、例えば、2~14とすることもでき、3~10とすることが好ましい。pHの調製は、上述の酸若しくはアルカリ、又はその水溶液等を用いて行うことができるが、アンモニウムイオンを用いないことが好ましい態様の1つである。
 水相と油相との混合において、混合系のpHを調整する場合、上述の、水相と油相との混合、及び混合後の静置は、pHを調整した後に行う。
 このようにして水相と油相とを混合し、静置して得られる、水相と油相とが相分離した二相分離流体(溶媒抽出相、溶媒抽出系)は、水相と油相とが接触した状態で互いに層状に相分離して存在している。そして、上述の複数種の金属イオンのうち、金属抽出剤が配位結合した2種以上の金属イオンが油相に存在(移動)している。複数種の金属イオンのうち油相に抽出される2種以上の金属イオンとしては、特に制限されないが、例えば、第4族、第7族、第9族及び第10族に属する2種以上の金属イオンが挙げられ、具体的には、第9族と第10族との組み合わせ(第7族を含む組み合わせを除く)、第4族と第9族との組み合わせ、第7族と第9族と第10族との組み合わせ、第7族と第8族と第9族と第10族とを含む組み合わせ等が挙げられる。より具体的な有価金属元素の組み合わせとしては、Co及びNiの組み合わせ、Zr及びRhの組み合わせ、Mn及びCoの組み合わせ、Mn、Co及びNiとの組み合わせ、Mn、Fe、Co及びNiとの組み合わせ等が挙げられる。
 油相に抽出される金属イオンの種類数は、2種以上であれば特に制限されず、例えば、2~10種とすることができ、2~6種であることが好ましく、2種又は3種であることがより好ましい。
 本発明の分離回収方法における上記水相と油相とを混合、静置する簡便な方法により、複数種の金属イオンのうち特定の2種以上の金属イオンを、高選択性かつ高回収率で、抽出して分離回収、抽出することができ、特に、2種以上の金属元素のイオンを抽出しつつも、そのうちの1種の金属イオンを高選択性かつ高回収率で分離回収することができる。
 高選択性かつ高回収率で分離回収できる1種の金属イオンは、金属イオンの族若しくは周期、更には含有量、金属抽出剤の種類等により、一義的に決定されない。例えば、第9族に属する金属イオンと第10族に属する金属イオンとを油相に抽出する場合、第9族に属する金属イオンを高選択性かつ高回収率で分離回収でき、特に第9族に属する金属イオンとしてCoイオン及び第20族に属する金属イオンとしてNiイオンを抽出する場合、Coイオンを高選択性かつ高回収率で分離回収できる。また、第7族に属する金属イオンと第9族に属する金属イオンとを油相に抽出する場合、第7族に属する金属イオンを高選択性かつ高回収率で分離回収できる。更に、第4族に属する金属イオンと第9族に属する金属イオンとを油相に抽出する場合、第4族に属する金属イオンを高選択性かつ高回収率で分離回収できる。
 本発明の分離回収方法は、上述のようにして、水相中に存在する複数種の金属イオンから2種以上の金属イオンを高選択性かつ高回収率で油相に抽出でき、回収できる。特に、本発明の分離回収方法は、2種以上の金属イオンを抽出しながら、そのうちの1種の金属イオンを高選択性かつ高回収率で回収することができるから、油相から逆抽出した2種以上の金属イオンを含む水相を、更に本発明の分離回収方法に供することにより、回収率を大きく損なうことなく、1種の金属イオンの選択性を更に高めることができ、結果的に、高純度の金属イオンを高回収率で回収できる。
 このような本発明の分離回収方法は2種以上の金属イオンの抽出方法ということもできる。
 本発明の分離回収方法は、上述の水相と油相とを混合、静置する工程以外の工程を有していてもよい。例えば、水相と油相とを混合、静置する工程で得られた油相から金属イオンを逆抽出(単離)する方法、逆抽出した金属イオンを化合物(塩)として回収する工程、逆抽出した金属イオン又はその化合物を精製する工程、更には、元素の周期表における第1族又は第2族に属する金属元素のイオンを予め除去する工程等が挙げられる。油相から金属イオンを逆抽出(単離)する方法としては、公知の方法を特に制限されることなく適用することができ、例えば、硫酸、塩酸、硝酸等の無機酸を用いて、液相を酸性、例えば、pH2~4とすることにより、行うことができる。逆抽出した金属イオンを化合物として回収する方法としては、公知の方法を特に制限されることなく適用することができる。
<本発明の分離回収方法I>
 本発明の分離回収方法Iは、本発明の分離回収方法において、金属抽出剤として上述の本発明の金属抽出剤Iを用いる方法である。
 本発明の分離回収方法Iは、本発明の分離回収方法と同様にして行うことができるが、本発明の分離回収方法Iにおいては、水相のpHを、上述の範囲の中でも、選択性及び回収率の点で、0.5~8.0とすることがより好ましく、特に回収率を高めることができる点で、3.0~8.0とすることが更に好ましく、5.0~7.0とすることが特に好ましい。本発明の分離回収方法Iにおいて、水相と油相との混合系のpHとしては、上述の範囲に設定することが好ましいが、選択性及び回収率の点で、0.5~9.0とすることがより好ましく、特に回収率を高めることができる点で2.5~8.0とすることが更に好ましく、4.0~7.0とすることが特に好ましい。
 本発明の分離回収方法Iにおいて、金属抽出剤Iは単独で金属イオンに配位して、この金属イオンを油相に抽出することができるため、水相及び油相は、金属イオンに配位する化合物等の、金属抽出剤Iと協働して金属イオンの抽出に作用する化合物、例えば公知の金属抽出剤等を含有していなくてもよい。本発明の分離回収方法Iにおいては、通常、必須成分として複数の金属イオンを含有する水相と、必須成分として金属抽出剤Iを含有する油相とを用いる。
 本発明の分離回収方法Iにより、本発明の分離回収方法と同様に、水相中に存在する複数種の金属イオンから2種以上の金属イオンを高選択性かつ高回収率で油相に抽出でき、回収できる。
<本発明の分離回収方法II>
 本発明の分離回収方法IIは、本発明の分離回収方法において、金属抽出剤として上述の本発明の金属抽出剤IIを用いる方法である。
 本発明の分離回収方法IIは、本発明の分離回収方法と同様にして行うことができ、水相中に存在する複数種の金属イオンから2種以上の金属イオンを高選択性かつ高回収率で油相に抽出でき、回収できる。
 本発明の分離回収方法IIにおいて、本発明の分離回収方法と異なる点について、説明する。
 金属抽出剤IIは、アミン系(塩基性)抽出剤であるため、油相に抽出する金属イオンは負電荷を帯びている必要がある。そのため、本発明の分離回収方法IIにおいて、水相は、金属イオンに配位して負電荷を帯びた配位錯体(錯イオン)を形成する化合物を含有し、金属イオンは負電荷を帯びた錯イオンを形成している。
 このような化合物としては、化合物自体が金属イオンに配位して負電荷を帯びた錯イオンを形成するもの、化合物から発生したアニオンが金属イオンに配位して負電荷を帯びた錯イオンを形成するもの等が挙げられる。金属イオンに配位する化合物としては、特に限定されないが、例えば、ニトリロ三酢酸ナトリウム塩等のキレート剤等が挙げられる。また、金属イオンに配位するアニオンを発生させる化合物としては、硝酸塩、硫酸塩、塩酸塩等の無機酸若しくは有機酸の金属塩、また、ハロゲン化物等が挙げられる。ハロゲン化物としては、無機ハロゲン化物、有機ハロゲン化物等が挙げられる。無機ハロゲン化物としては、典型元素(周期表の第1族、第2族、12族~18族に属する元素)のハロゲン化物が挙げられ、具体的には、塩化リチウム、塩化ナトリウム、塩化カリウム等が挙げられる。
 錯イオンを形成する化合物は、金属イオンに配位するアニオンを発生させる化合物が好ましく、無機ハロゲン化物がより好ましい。
 負電荷を帯びた配位錯体(錯イオン)を形成する化合物を含有する水相は、当該化合物から発生(解離)したアニオンを含有していることが好ましく、ハロゲン化物イオンを含有していることがより好ましい。なお、本発明において、水相がアニオン、ハロゲン化物イオンを含有しているとは、水相中に溶解して単独で存在する(遊離している)ものに加えて、金属イオンに配位しているものを含む。
 上記化合物の水相中における濃度としては、錯イオンを形成できる限り特に制限されないが、例えば、1~1000g/Lとすることができ、10~300g/Lとすることが好ましい。
 負電荷を帯びた金属イオンを形成する化合物の、水相中における含有量(金属イオンに配位しているものを含み、水相への添加量と同義である。)は、金属イオンに配位して負電荷を帯びた錯イオンを形成できる限り特に限定されず、金属イオンの含有量、金属イオンへの配位量、配位官能基数等を考慮して適宜に設定される。上記化合物の含有量は、例えば、水相に含有する金属イオン(配位しない金属イオンを含む)の総含有量100質量部に対して、10~10000質量部とすることができ、100~1000質量部とすることが好ましい。また、上記化合物の含有量は、水相に含有する金属イオン(配位しない金属イオンを含む)の総含有量(モル)に対して、0.1~100モルとすることができ、1.0~100モルとすることが好ましい。一方、金属イオンの総含有量に対する上記化合物の含有量(混合量:モル比)としては、例えば、0.1~100当量とすることができ、1.0~50当量であることが好ましい。
 水相は、金属イオン、上記化合物を水に溶解して調製することができ、また、金属イオンを溶解した水溶液と上記化合物を溶解した水溶液とを混合して調製することもできる。水相の調製は、金属イオンの少なくとも1種に上記化合物を配位結合させるため、調製温度10~60℃、0.1~10のpHで、10分~6時間行うことが好ましい。pHの調整には、上記の酸又はアルカリを用いることができる。
 本発明の分離回収方法IIは、水相において金属イオンの錯イオンを形成させること以外は、本発明の分離回収方法と同様にして行うことができるが、本発明の分離回収方法IIにおいては、水相のpHを、上述の範囲の中でも、選択性及び回収率の点で、0.5~7とすることがより好ましく、特に回収率を高めることができる点で、3.0~7.0とすることが更に好ましい。本発明の分離回収方法IIにおいて、水相と油相との混合系のpHとしては、上述の範囲に設定することが好ましいが、選択性及び回収率の点で、0.01~5.5とすることがより好ましく、特に回収率を高めることができる点で、0.1~4.5とすることが更に好ましく、0.1~3.5とすることが特に好ましい。
 本発明の分離回収方法IIにおいては、金属抽出剤IIは錯イオンを形成している金属イオンに配位して、この金属イオンを油相に抽出することができる。そのため、水相及び油相は、金属イオンに配位して錯イオンを形成する化合物、及び金属抽出剤II以外に、金属イオンの抽出に関与する化合物、例えば公知の金属抽出剤等を含有していなくてもよい。
 本発明の分離回収方法IIにおいては、通常、必須成分として複数の金属イオンと、その錯イオンを形成する化合物とを含有し、金属イオンの錯イオンを含む水相と、必須成分として金属抽出剤IIを含有する油相とを用いる。
 本発明の分離回収方法IIにより、本発明の分離回収方法と同様に、水相中に存在する複数種の金属イオンから2種以上の金属イオンを高選択性かつ高回収率で油相に抽出でき、回収できる。
 以下に、実施例に基づき本発明について更に詳細に説明するが、本発明はこれにより限定して解釈されるものではない。以下の実施例において組成を表す「部」及び「%」は、特に断らない限り質量基準である。
[金属抽出剤の合成及び準備]
 下記に示す金属抽出剤を合成又は準備した。
 下記金属抽出剤E-6及びT-5において「Me」はメチル基を表す。
Figure JPOXMLDOC01-appb-C000010
PC-88A:下記に示す(2-エチルヘキシル)ホスホン酸モノ-2-エチルヘキシル(東京化成工業社製)
Figure JPOXMLDOC01-appb-C000011
VA-10:Versatic acid 10 (ヘキシオン社製)
EDTA:エチレンジアミン四酢酸、同仁化学社製
Tris-2-EHA:下記に示すトリス(2-エチルヘキシル)アミン(BASF社製)
Figure JPOXMLDOC01-appb-C000012
<金属抽出剤E-1の合成>
 以下のようにして、金属抽出剤E-1を合成した。
 すなわち、1L三口ナスフラスコにエタノール305g、ナトリウムエトキシド(富士フイルム和光純薬社製)46.0gを加え、よく撹拌した。マロン酸ジエチル97.5g、1-ブロモ-2-エチルヘキサン112g、エタノール126gを加え、リフラックス状態で6時間撹拌した。得られた溶液をブフナーロートに通し、ろ液を濃縮した後、2M塩酸を200mL加えた。得られた溶液を酢酸エチル500mLで抽出した後、硫酸ナトリウムで乾燥した。硫酸ナトリウムを除いた後、溶媒を濃縮した。
 得られた化合物を2L三口ナスフラスコに加え、エタノール550g、4M(モル/L)のNaOH水溶液を715g加えた後、リフラックス状態で7時間撹拌した。室温で放冷した後、溶液をキシレンで抽出することで、キシレン溶液を得た。
 1L三口ナスフラスコに得られたキシレン溶液を加え、リフラックス状態で8時間撹拌した。室温で放冷した後、1MのNaOH水溶液及び水を加え、トルエンで抽出した後、溶媒を減圧留去して、化合物Aを得た。
 得られた化合物Aを500mL三口フラスコに35.0g、塩化チオニル121gを加えた後、内温55℃で2時間撹拌した。臭素を97.4g加え、更に内温55℃で5時間撹拌した。塩化チオニル及び臭素を減圧留去した後、氷水を加え、トルエンで抽出し、溶媒を減圧留去して、化合物Bを得た。
 300mL三口ナスフラスコに、下記中間体I-1を5.0g、エタノールを33.3g、水を16.7g、NaOHを8.3g追加し、リフラックス状態で撹拌した。そこへ、13.3gの化合物Bをエタノール25.0gに溶解した溶液を、1時間かけて滴下した後、そのまま36時間撹拌した。溶液を室温で静置後、塩酸を加えてpH3~4に中和した。得られた溶液をトルエンで抽出し、溶媒を減圧留去し、黄色液体の金属抽出剤E-1を6.5g(収率59%)得た。
<中間体I-1の合成>
 1L三口ナスフラスコに、エチレンジアミン20.0g、エタノール350g、2-エチルヘキサナール87.5gを加え、室温で5時間撹拌した。反応液を氷浴で冷却しながら、水素化ホウ素ナトリウム37.8gを加えた後、氷浴を除いて室温で1時間撹拌した。反応液を氷浴で冷却しながら塩化アンモニウム溶液を発泡しなくなるまで加えた後、エタノールを減圧留去した。得られた溶液をトルエンで抽出し、溶媒を減圧留去することで、中間体I-1(N、N’-ビス(2-エチルヘキシル)エタン-1,2-ジアミン)を収率98%で得た。
 こうして合成した金属抽出剤E-1を以下のようにして同定した。
 すなわち、E-1を重クロロホルムに溶解し、H-NMRを測定(装置:BLUKER400)して、得られたチャートを図1に示す。また、金属抽出剤E-1とKBrを混合し、FT-IR測定を実施して、得られたチャートを図2に示す。
 図1に示すH-NMRチャートにおいて、化学シフトδ3.5~4.0ppmにジアステレオマー由来のピークが確認された。したがって、化合物内に2-エチルヘキシル由来の不斉中心が少なくとも2個導入されていることが推定される。また、エチレンジアミンの2つのN原子の間に位置するメチレンに由来するピーク(δ3.39)の積分値4Hに対し、2-エチルヘキシル基の末端メチル基由来のピーク(δ0.89)が、24H相当であることが分かる。したがって、2-エチルヘキシル基が4本導入されていることが分かる。
 また、図2に示すFT-IRチャートにおいて、3400cm-1近傍に見られるブロードなピークはカルボキシル基由来のOH伸縮と推定される。
 以上のことから、得られた化合物が上記E-1で示す構造であると同定した。
<金属抽出剤E-2の合成>
 金属抽出剤E-1の合成において、1-ブロモ-2-エチルヘキサンを1-ブロモ-3-エチルヘプタンに変更したこと以外は、金属抽出剤E-1の合成と同様にして、金属抽出剤E-2を合成した。得られた金属抽出剤E-2を、金属抽出剤E-1と同様にして同定した。
<金属抽出剤E-3の合成>
 以下のようにして、金属抽出剤E-3を合成した。
 すなわち、300mL三口ナスフラスコに、1,2-ジブロモエタン25.0g、ジ(2-エチルヘキシル)アミン129gを加え、内温100℃で10時間撹拌した。得られた溶液から、過剰のジ(2-エチルヘキシル)アミンを減圧留去し、金属抽出剤E-3を収率85%で得た。
 こうして合成した金属抽出剤E-3を以下のようにして同定した。
 すなわち、金属抽出剤E-3を重クロロホルムに溶解し、H-NMRを測定(装置:BLUKER400)して、得られたチャートを図3に示す。また、GC-MS(装置:GCMS-QP2010)にて化合物のフラグメントイオンを検出した。
 図1に示すH-NMRチャートにおいて、エチレンジアミンの2つのN原子の間に位置するメチレンに由来するピーク(δ2.46)の積分値4Hに対し、2-エチルヘキシル基由来のピーク(δ2.11、δ1.26、δ0.89)が、それぞれ8H、36H及び24H相当あることが分かる。したがって、2-エチルヘキシル基が4本導入されたことが分かる。また、GC-MSより得られたm/z254のフラグメンテーションは下記構造と推定される。
 以上のことから、得られた化合物が上記E-3で示す構造であると同定した。
Figure JPOXMLDOC01-appb-C000013
<金属抽出剤E-4の合成>
 金属抽出剤E-3の合成において、ジ(2-エチルヘキシル)アミンをジノニルアミンに変更したこと以外は、金属抽出剤E-3の合成と同様にして、金属抽出剤E-4を合成した。得られた金属抽出剤E-4を、金属抽出剤E-3と同様にして同定した。
<金属抽出剤E-5の合成>
 金属抽出剤E-3の合成において、1,2-ジブロモエタンを1,4-ビス(ブロモメチル)シクロヘキサンに変更したこと以外は、金属抽出剤E-3の合成と同様にして、金属抽出剤E-5を合成した。得られた金属抽出剤E-5を、金属抽出剤E-3と同様にして同定した。
<金属抽出剤E-6の合成>
 金属抽出剤E-1の合成において、1-ブロモ-2-エチルヘキサンを1-ブロモ-3-(2-メトキシエトキシ)プロパンに変更したこと以外は、金属抽出剤E-1の合成と同様にして、金属抽出剤E-6を合成した。得られた金属抽出剤E-6を、金属抽出剤-1と同様にして同定した。
<金属抽出剤T-1の合成>
 特開2016-028021に記載の方法に従い、金属抽出剤T-1を合成し、同定した。
<金属抽出剤T-2の合成>
 特開2014-205900に記載のD2EHAGの合成法に従い、金属抽出剤T-2を合成した。
<金属抽出剤T-3の合成>
 金属抽出剤E-1の合成において、中間体I-1をエチレングリコールに変更したこと以外は、金属抽出剤E-1の合成と同様にして、金属抽出剤T-3を合成した。得られた金属抽出剤T-3を、金属抽出剤E-1と同様にして同定した。
 <金属抽出剤T-4の合成>
 金属抽出剤E-3の合成において、ジ(2-エチルヘキシル)アミンを2-エチルヘキサノールに変更し、水酸化ナトリウムを60.0g加えたこと以外は、金属抽出剤E-3の合成と同様にして、金属抽出剤T-4を合成した。得られた金属抽出剤T-4を、金属抽出剤E-3と同様にして同定した。
<金属抽出剤T-5の合成>
 金属抽出剤E-1の合成における中間体I-1の合成において、2-エチルヘキサナールを3-(メチルチオ)ブタナ―ルに変更したこと以外は、金属抽出剤E-1の合成と同様にして、金属抽出剤T-5を合成した。得られた金属抽出剤T-5を、金属抽出剤-1と同様にして同定した。
 合成又は準備した金属抽出剤について、分子量、及び上記方法により算出したpKaを表1-2に示す。
[金属イオン含有水溶液の調製]
<金属抽出剤Iを用いた分離回収方法Iに用いる金属イオン含有水溶液(水相)の調製>
 1Lメスフラスコに、硫酸コバルト(II)七水和物(富士フイルム和光純薬社製)を95.4g、硫酸ニッケル(II)七水和物(富士フイルム和光純薬社製)を95.7g加え、超純水でメスアップした後に、30℃で、撹拌して溶解させ、2種の金属イオンを含有する金属イオン含有水溶液(W1)を調製した。
 また、表1-1に示す金属イオンの組み合わせで超純水に各硫酸塩を溶解して、2種又は3種の金属イオンを含有する各金属イオン含有水溶液(W2)及び(W3)をそれぞれ調製した。
<金属抽出剤IIを用いた分離回収方法IIに用いる金属イオン含有水溶液(水相)の調製>
 1Lメスフラスコに、塩化リチウム(富士フイルム和光純薬社製)を200g、硫酸コバルト(II)七水和物(富士フイルム和光純薬社製)を95.4g、硫酸ニッケル(II)七水和物(富士フイルム和光純薬社製)を95.7g加え、超純水でメスアップした後に、30℃で、撹拌して溶解させ、2種の金属イオンを含有する金属イオン含有水溶液(W4)を調製した。この水溶液において、2種の金属イオン(コバルト及びニッケル)はハロゲン化物イオンが配位した錯イオンを形成していた。
<金属抽出剤溶液(油相)の調製>
 100mLメスフラスコに、合成又は準備した各金属抽出剤を加え、ケロシン(富士フイルム和光純薬社製)を用いて、室温で、メスアップすることで、各金属抽出剤を含有する金属抽出剤溶液(Y1)~(Y6)及び(Yc1)~(Yc9)(濃度310mM)をそれぞれ調製した。
 なお、金属抽出剤EDTAはケロシンに溶解せず、金属抽出剤溶液(Yc4)を調製できなかった。
[実施例1~4、8:金属抽出剤Iを用いた分離回収方法I及び比較例1~6、9]
<実施例1>
 30mLバイアル管に、調製した金属イオン含有水溶液(W1)10mLに対して、抽出剤溶液(Y1)を12mL加えて、スターラーチップにより25℃で30分撹拌した。このときの、配位しうる金属イオン(抽出された金属イオンと同義であり、実施例1ではCo及びNi)の総含有量に対する金属抽出剤の混合量(単位:当量)は0.5であった。その後、10M水酸化ナトリウム水溶液又は10M塩酸を加えて、混合液のpHを表1-2の「混合時pH」欄に示す値に調整し、更に25℃で30分間撹拌した後、同温度で1時間静置した。有機相(油相)と水相との2層に分離したことを確認し、分液して水相を取り出して、金属イオンの分離回収を行った。実施例1で抽出された金属イオン、及び最大抽出量の金属イオンを、表1-2の「抽出された金属イオン」欄の「種類」欄及び「最大抽出量」欄に、それぞれ、示す。
<実施例2~4、8及び比較例1~6、9>
 実施例1において、金属イオン含有水溶液及び抽出剤溶液を表1-1及び表1-2(以下、併せて表1という。)に示す組み合わせに変更するとともに、水相と油相との混合時のpHを表1-2の「混合時pH」欄に示す値に、かつ配位しうる金属イオンの総含有量に対する金属抽出剤の混合量(単位:当量)を表1-2の「混合量」欄に示す値にそれぞれ設定して混合、静置したこと以外は、実施例1と同様にして、実施例2~4、8及び比較例1~6、9の金属イオンの分離回収を行った。各実施例において、抽出された金属イオン、及び最大抽出量の金属イオンを、表1-2の「抽出された金属イオン」欄の「種類」欄及び「最大抽出量」欄に、それぞれ、示す。
 なお、金属抽出剤溶液(Yc4)を用いた比較例4は、油相中に金属イオンを抽出できなかった。そのため、表1-2の「抽出された金属イオン」欄、「選択比」欄等を「-」で示す。
[実施例5~7:金属抽出剤IIを用いた分離回収方法II、及び比較例7、8]
<実施例5>
 30mLバイアル管に、調製した金属イオン含有水溶液(W4)10mLに対して、抽出剤溶液(Y3)を12mL加えて、スターラーチップにより25℃で30分撹拌した。このときの、金属イオンの総含有量に対する金属抽出剤の混合量(単位:当量)は0.5であった。その後、10M水酸化ナトリウム水溶液又は10M塩酸を加えて、混合液のpHを表1-2の「混合時pH」欄に示す値に調整し、更に25℃で30分間撹拌した後、同温度で1時間静置した。有機相(油相)と水相との2層に分離したことを確認し、分液して水相を取り出して、金属イオンの分離回収を行った。実施例5で抽出された金属イオン、及び最大抽出量の金属イオンを、表1-2の「抽出された金属イオン」欄の「種類」欄及び「最大抽出量」欄に、それぞれ、示す。
<実施例6、7及び比較例7、8>
 実施例5において、金属イオン含有水溶液及び抽出剤溶液を表1に示す組み合わせに変更するとともに、水相と油相との混合時のpHを表1-2の「混合時pH」欄に示す値に設定して混合、静置したこと以外は、実施例5と同様にして、実施例6、7及び比較例7、8の金属イオンの分離回収を行った。各実施例において、抽出された金属イオン、及び最大抽出量の金属イオンを、表1-2の「抽出された金属イオン」欄の「種類」欄及び「最大抽出量」欄に、それぞれ、示す。
 実施例及び比較例で用いた各水相、及び抽出後の各水相に対して、pHメーター(SK-620pHII、サトテック社製)を用いてpHを測定し、誘導結合プラズマ発光分光分析(ICP-OES)装置(Optima 7300D(商品名)、パーキンエルマー社製)を用いて、溶存金属イオンの含有量をそれぞれ定量した。実施例及び比較例で用いた各水相のpH、及び各水相の溶存金属イオンの含有量の測定値を、それぞれ、表1-2の「水相pH」欄及び表1-1の「金属イオン濃度(ppm)」欄にそれぞれ示す。こうして測定した最大抽出量の金属イオンの抽出量(ppm)を他の金属イオンの合計抽出量(ppm)で除して、抽出量の比率を算出した結果を、表1-2の「選択比」欄に示す。
 また、実施例及び比較例において、水相と油相との混合時のpHを同様にして測定した結果を「混合時pH」欄に示す。更に、金属抽出剤の、配位しうる金属イオンの総含有量に対する混合量を表1-2の各「混合量」欄に示す。なお、表1-2において、混合量の単位は当量であるが、省略する。
 なお、本実験を水層の金属イオン濃度を1/5に減らしたこと以外は実施例1~8及び比較例1~9と同様にして実験を行ったところ、同様の結果が得られた。
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
 表1に示す、「抽出前の水相における金属イオン濃度(ppm)」と「抽出後の水相における金属イオン濃度(ppm)」との対比の結果等から次のことが分かる。
 水相からの金属イオンの分離回収において、従来の金属抽出剤である、PC-88A、VA-10及びT-1を用いた比較例1~3は、いずれも、金属イオン含有水溶液(W2)中に存在する3種の金属イオンを油相に抽出できている。しかし、Mnイオンについては回収量が高いものの、Co及びNiも比較的多量に抽出されているため、最大抽出量のMnイオンの選択性が表1-2の「選択比」欄に示すように低いものであった。なお、金属抽出剤としてEDTAを用いた比較例4は、上述の通り、金属イオンを抽出することすらできなかった。また、同様に、金属抽出剤T-2~T-4、T-5及びTris-2-EHAを用いた比較例5~9は、いずれも、最大抽出量の金属イオンの選択性は低い結果であった。特に、比較例8は、最大抽出量の金属イオンの抽出量も十分ではない。
 これに対して、本発明の金属抽出剤I又はIIを用いた実施例1~8は、いずれも、金属イオン含有水溶液中に存在する金属イオンのうち2種の金属イオンを油相に抽出できている。そのうえ、最大抽出量の金属イオン(実施例1及び4~8:Coイオン、実施例2:Mnイオン、実施例3:Zrイオン)は、最大抽出量の金属イオン以外の金属イオンに対して高い選択性で、ほぼ全量を水相から油相に抽出できている。特に、実施例1及び4~8では、有価金属元素、例えばリチウムイオン電池の製造に重要なCoイオン及びNiイオンの両者を抽出しながらも、物理的挙動及び化学的挙動が類似しているこれら同周期異族金属イオンのうちの1種の金属イオン:Coイオンを高選択性かつ高回収率で回収できることが示されている。このように、本発明の酸性金属抽出剤は、水相中に存在する複数種の金属イオン、特に異なる族に属する2種以上の金属イオンのなかから特定の金属イオン、望ましくは異なる族に属する2種以上の金属イオンに選択的に配位する特有の機能を示すと考えられる。その結果、複数種の金属イオン、特に廃LiBから回収可能な第9族及び第10族に属する金属イオンのうち1種の金属イオンを高選択性かつ高回収率で分離回収できることが初めて見出された。
 以上の結果から、上記各実施例で得られた油相を通常の方法及び条件で逆抽出することにより、油相に高選択性かつ高回収率で抽出された金属イオンを、高選択性を損なうことなく高い回収量で、しかも簡便に、分離回収できることが分かる。
 ところで、複数の金属イオンを含有する水相から特定の金属イオンを回収する技術においては、一般的に、特定の金属イオンを高い選択性及び回収率で回収することは難しく、高い選択性を維持すると回収率が低下するため、所定の回収率を達成するためには複数回の分離回収操作を要するのが実情である。これに対して、本発明は、簡便な方法で、2種の異族金属イオンのうちの1種を高い選択性で、ほぼ全量を水相から油相に抽出できる。そのため、得られた油相から逆抽出工程等により、1種の金属イオンを高い回収率で、しかも選択性を更に向上させながら、簡便かつ少ない工程数で回収することができる点においても、上記実情を鑑みると、本発明の技術的意義は大きい。
 本発明をその実施態様とともに説明したが、我々は特に指定しない限り我々の発明を説明のどの細部においても限定しようとするものではなく、添付の請求の範囲に示した発明の精神と範囲に反することなく幅広く解釈されるべきであると考える。
 本願は、2022年9月15日に日本国で特許出願された特願2022-147027に基づく優先権を主張するものであり、これはここに参照してその内容を本明細書の記載の一部として取り込む。

Claims (11)

  1.  水相中に存在する金属イオンを油相中に抽出する金属抽出剤であって、
     前記金属抽出剤は、前記金属抽出剤を構成する分子鎖の両端に位置する窒素原子が、カルバモイル結合を構成せずに、無置換炭化水素基と、抽出する金属イオンに対する配位官能基(α)として下記配位官能基群G1のいずれかの配位官能基を含む基、又は無置換炭化水素基とを有している、金属抽出剤。
    <配位官能基群G1>
    水酸基、エーテル基、チオール基、チオエーテル基、ニトリル基、イソニトリル基、カルボキシ基、アミノ基、アミド基、リン酸基、ホスホン酸基、スルホン酸基、スルフィン酸基、ホスフィノ基、含窒素複素環、含酸素複素環、含硫黄複素環
  2.  前記配位官能基を含む基が配位官能基を有する炭化水素基である、請求項1に記載の金属抽出剤。
  3.  前記配位官能基の少なくとも1つが、カルボキシ基、リン酸基、ホスホン酸基、スルホン酸基及びスルフィン酸基から選ばれる、請求項1に記載の金属抽出剤。
  4.  前記金属イオンのうち周期表の異なる族に属する2元素以上の金属イオンの抽出分離に用いる、請求項1に記載の金属抽出剤。
  5.  前記金属抽出剤が下記式(I)で表される、請求項1に記載の金属抽出剤。
    Figure JPOXMLDOC01-appb-C000001
     式(I)中、Rは無置換炭化水素基を示す。
    は置換基を示す。ただし、Lに結合するNが有するRは無置換炭化水素基を示す。
    Xは各々独立に下記配位官能基群G2から選ばれる基を示す。
    、L及びLは各々独立に連結基を示す。
    nは1~5の整数である。
    <配位官能基群G2>
    カルボキシ基、リン酸基、ホスホン酸基、スルホン酸基、スルフィン酸基、水酸基
  6.  前記Xがカルボキシ基、リン酸基、ホスホン酸基、スルホン酸基又はスルフィン酸基である、請求項5に記載の金属抽出剤。
  7.  前記金属抽出剤が下記式(II)で表される、請求項1に記載の金属抽出剤。
    Figure JPOXMLDOC01-appb-C000002
     式(II)中、R~Rは各々独立に無置換炭化水素基を示す。
    は置換基を示す。ただし、Rに結合するNが有するRは無置換炭化水素基を示す。
    は連結基を示す。
    mは1~5の整数である。
  8.  複数種の金属イオンを含有する水相と、請求項1~7のいずれか1項に記載の金属抽出剤を含有する油相とを混合する、金属イオンの分離回収方法。
  9.  前記油層が請求項7に記載の金属抽出剤を含有している場合、前記水相はハロゲン化物イオンを含んでいる、請求項8に記載の分離回収方法。
  10.  複数種の金属イオンのうち周期表の異なる族に属する2元素以上の金属イオンを水相から油相に抽出して回収する、請求項8に記載の分離回収方法。
  11.  前記2元素以上の金属イオンが廃電池からの金属回収物である、請求項10に記載の分離回収方法。
PCT/JP2023/033379 2022-09-15 2023-09-13 金属抽出剤、及びこの金属抽出剤を用いた金属イオンの分離回収方法 WO2024058216A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022147027 2022-09-15
JP2022-147027 2022-09-15

Publications (1)

Publication Number Publication Date
WO2024058216A1 true WO2024058216A1 (ja) 2024-03-21

Family

ID=90275214

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/033379 WO2024058216A1 (ja) 2022-09-15 2023-09-13 金属抽出剤、及びこの金属抽出剤を用いた金属イオンの分離回収方法

Country Status (1)

Country Link
WO (1) WO2024058216A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002193902A (ja) * 2000-12-25 2002-07-10 Tosoh Corp ジアルキルエチレンジアミンジマロン酸類、その製造法及びその用途
JP2021041341A (ja) * 2019-09-11 2021-03-18 花王株式会社 金属捕集剤

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002193902A (ja) * 2000-12-25 2002-07-10 Tosoh Corp ジアルキルエチレンジアミンジマロン酸類、その製造法及びその用途
JP2021041341A (ja) * 2019-09-11 2021-03-18 花王株式会社 金属捕集剤

Similar Documents

Publication Publication Date Title
Stavila et al. Bismuth (III) complexes with aminopolycarboxylate and polyaminopolycarboxylate ligands: Chemistry and structure
KR20230015426A (ko) 카르복실산계 화합물, 그의 제조방법 및 응용
US8038969B2 (en) Rare metal/platinum-group metal extractant and method for extracting rare metals and platinum-group metals
CN112639141B (zh) 稀土金属氧化物的制备
WO2007147222A2 (en) Novel ionic liquids
JP5504575B2 (ja) ホスフィン酸を配位子とするキレート抽出剤
WO2024058216A1 (ja) 金属抽出剤、及びこの金属抽出剤を用いた金属イオンの分離回収方法
CN108914171B (zh) 一种加速铜沉积添加剂及其制备方法和应用
JP2017149609A (ja) ニッケル水溶液の製造方法
EP3156128B1 (en) Ion exchange resin and method for adsorbing and separating metal
JP2019147941A (ja) 蛍光材料及びその製造方法
EP0427595A1 (en) Process for the synthesis of cyclic polynitrogenated compounds
WO2024058215A1 (ja) 金属イオンの分離回収方法及び酸性金属抽出剤
JP5820242B2 (ja) パーフルオロアルキルスルホン酸の金属塩の製造方法
CN116356142A (zh) 一种双吡啶基萃取剂及其制备方法和作为镍钴萃取剂的应用
US9376734B2 (en) Indium extraction agent and indium extraction method
US20240186606A1 (en) Separation recovery method of metal ions, and two-phase separated fluid
KR20200137147A (ko) 리튬 이미다졸레이트염의 제조방법 및 그를 위한 중간체
WO2024203329A1 (ja) 金属抽出剤、及びこの金属抽出剤を用いた金属イオンの分離回収方法、並びに、化合物
WO2024203328A1 (ja) 金属抽出剤、及びこの金属抽出剤を用いた金属イオンの分離回収方法、並びに、化合物
JP5742500B2 (ja) ビアリール化合物の製造方法
Liu et al. Efficient and clean treatment of indium-bearing zinc ferrite: A new approach using a water-regulated deep eutectic solvent
KR20080027681A (ko) 환원제로 알킬아민을 사용한 금속 나노 입자의 제조방법
JP4158060B2 (ja) アミニウム化合物の塩の製造方法
EP1405839B1 (de) Verfahren zur Abtrennung von Zinksalzen aus Zink-Alkoholaten oder Zink-Amiden enthaltenden nicht-wässrigen Syntheselösungen

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23865565

Country of ref document: EP

Kind code of ref document: A1