WO2024058215A1 - 金属イオンの分離回収方法及び酸性金属抽出剤 - Google Patents

金属イオンの分離回収方法及び酸性金属抽出剤 Download PDF

Info

Publication number
WO2024058215A1
WO2024058215A1 PCT/JP2023/033378 JP2023033378W WO2024058215A1 WO 2024058215 A1 WO2024058215 A1 WO 2024058215A1 JP 2023033378 W JP2023033378 W JP 2023033378W WO 2024058215 A1 WO2024058215 A1 WO 2024058215A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
metal
groups
metal ions
extractant
Prior art date
Application number
PCT/JP2023/033378
Other languages
English (en)
French (fr)
Inventor
陽 串田
宏顕 望月
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2024058215A1 publication Critical patent/WO2024058215A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D11/00Solvent extraction
    • B01D11/04Solvent extraction of solutions which are liquid
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/28Phosphorus compounds with one or more P—C bonds
    • C07F9/38Phosphonic acids [RP(=O)(OH)2]; Thiophosphonic acids ; [RP(=X1)(X2H)2(X1, X2 are each independently O, S or Se)]
    • C07F9/40Esters thereof
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B11/00Obtaining noble metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B23/00Obtaining nickel or cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/26Treatment or purification of solutions, e.g. obtained by leaching by liquid-liquid extraction using organic compounds
    • C22B3/32Carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/26Treatment or purification of solutions, e.g. obtained by leaching by liquid-liquid extraction using organic compounds
    • C22B3/34Treatment or purification of solutions, e.g. obtained by leaching by liquid-liquid extraction using organic compounds containing sulfur, e.g. sulfonium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/26Treatment or purification of solutions, e.g. obtained by leaching by liquid-liquid extraction using organic compounds
    • C22B3/38Treatment or purification of solutions, e.g. obtained by leaching by liquid-liquid extraction using organic compounds containing phosphorus

Definitions

  • the present invention relates to a metal ion separation and recovery method for extracting metal ions present in an aqueous phase into an oil phase, and an acidic metal extractant used in this separation and recovery method.
  • LiB lithium ion batteries
  • wet extraction method is used as a method for recycling metals from waste.
  • an organic phase containing a metal extractant is brought into contact with an aqueous solution (aqueous phase) containing ions of metal elements (simply referred to as metal ions), mixed and allowed to stand to separate both phases.
  • the metal ions coordinated by the extractant can be transferred (extracted) to the organic phase.
  • back-extracting the metal ions, and purifying it if necessary, it can be recycled as a (highly pure) metal.
  • Patent Document 1 describes a method using a phosphonic acid ester represented by a specific general formula (I) containing Fe ions, Ca ions, Al ions, and U ions. A method for extracting U ions from an aqueous phosphoric acid solution is described. Further, Patent Document 2 describes a method for extracting cobalt ions from an aqueous layer containing cobalt cycloalkanoate using a diphosphonic acid ester compound represented by a specific formula (I).
  • Non-Patent Document 1 a compound represented by the formula: ROPS 2 -CH 2 -PS 2 -OR (where R represents methyl, butyl, benzyl, etc.) It is described that it is useful as a metal extractant by coordinating with metal ions such as (II), Zn(II), and Ca(II). Furthermore, Non-Patent Document 2 states that P,P'-dialkylmethylenebisphosphonic acid is an effective metal extractant for lanthanide and actinide elements, and Non-Patent Document 3 states that P,P'-dialkylmethylenebisphosphonic acid is an effective metal extractant for lanthanide and actinide elements. It has been described that acids are effective metal extractants for lanthanoids and trivalent actinide elements (Am(III), Cm(III), Cf(III), etc.).
  • Patent Documents 1 and 2 describe that specific metal ions present in the aqueous phase can be extracted and recovered into the oil phase.
  • Patent Document 1 merely describes a method for extracting and recovering U ions, which are heavy metals, in the coexistence of Fe ions, Ca ions, and Al ions.
  • Patent Document 2 merely describes a method for extracting and recovering cobalt ions, which are one type of metal ion present in an aqueous phase.
  • Non-Patent Documents 1 to 3 only describe that it can be used as an extractant for specific metal ions such as Hg(II) and actinide.
  • Patent Documents 1 and 2 and Non-Patent Documents 1 to 3 describe metal ions belonging to different groups of metal ions belonging to Groups 9 and 10 of the 4th period to the 6th period of the periodic table as ions of valuable metal elements. Although two or more types of metal ions belonging to the same group are extracted, recovery of one type of metal ion with high selectivity and high recovery rate has not been considered. The need for separation and recovery of metal ions belonging to Groups 9 and 10, such as cobalt ions and nickel ions, has rapidly increased due to the rapid spread of lithium-ion batteries in recent years. This is because it was not easy to separate and recover metal ions with similar behavior and chemical behavior.
  • the present invention extracts two or more metal ions belonging to different groups from the aqueous phase to the oil phase among the metal ions belonging to Groups 9 and 10 in the fourth to sixth periods, and extracts one of them from the water phase to the oil phase. It is an object of the present invention to provide a method for separating and recovering different metal ions with high selectivity and high recovery rate, and an acidic metal extractant for use in this method.
  • the present inventor has discovered that water containing two or more metal ions belonging to different groups among metal ions belonging to Groups 9 and 10 of the 4th to 6th period of the periodic table as ions of valuable metal elements.
  • a wet extraction method for separating and recovering metal ions from a phase an oil phase containing an acidic metal extractant having two or more coordination functional groups selected from the coordination functional group group G1 described below is added to the aqueous phase.
  • two or more metal ions belonging to different groups preferably cobalt ions and nickel ions
  • ⁇ Coordination functional group group G1> Carboxy group, phosphoric acid group, phosphonic acid group, sulfonic acid group, sulfinic acid group ⁇ 2> The separation and recovery method according to ⁇ 1>, wherein the acidic metal extractant is a phosphoric acid ester compound.
  • R 1 represents a substituted or unsubstituted alkylene group, alkenylene group, or alkynylene group.
  • R 2 and R 3 each independently represent a substituted or unsubstituted alkyl group, alkenyl group, or alkynyl group.
  • X 1 to X 6 each independently represent a single bond, -O-, -NH-, or -S-.
  • Y 1 and Y 2 each independently represent an oxygen atom or a sulfur atom.
  • Z 1 and Z 2 each independently represent a hydrogen atom or a hydrocarbon group. However, at least one of Z 1 and Z 2 is a hydrogen atom.
  • ⁇ 4> The separation and recovery method according to ⁇ 3>, wherein R 1 is an unsubstituted alkylene group.
  • ⁇ 5> The separation and recovery method according to any one of ⁇ 1> to ⁇ 4>, wherein the two or more metal ions belonging to different groups are cobalt ions and nickel ions.
  • ⁇ 6> The separation and recovery method according to ⁇ 5>, wherein the two or more types of metal ions belonging to different groups are recovered metals from waste batteries.
  • ⁇ 7> In the wet extraction method, an acidic metal extractant that extracts and separates two or more metal ions belonging to different groups among metal ions belonging to Groups 9 and 10 of the 4th to 6th periods of the periodic table.
  • An acidic metal extractant having two or more coordination functional groups selected from a carboxy group, a phosphoric acid group, a phosphonic acid group, a sulfonic acid group, and a sulfinic acid group.
  • R 1 represents a substituted or unsubstituted alkylene group, alkenylene group, or alkynylene group.
  • R 2 and R 3 each independently represent a substituted or unsubstituted alkyl group, alkenyl group, or alkynyl group.
  • X 1 to X 6 each independently represent a single bond, -O-, -NH-, or -S-.
  • Y 1 and Y 2 each independently represent an oxygen atom or a sulfur atom.
  • Z 1 and Z 2 each independently represent a hydrogen atom or a hydrocarbon group. However, at least one of Z 1 and Z 2 is a hydrogen atom.
  • the present invention extracts two or more metal ions belonging to different groups from the aqueous phase to the oil phase among the metal ions belonging to Groups 9 and 10 in the fourth to sixth periods, and extracts one of them from the water phase to the oil phase. It is possible to provide a method for separating and recovering different metal ions with high selectivity and high recovery rate, and an acidic metal extractant for use in this method.
  • FIG. 1 is a 1 H-NMR chart of metal extractant E-2 synthesized in Examples.
  • FIG. 2 is a 1 H-NMR chart of metal extractant E-3 synthesized in Examples.
  • the expression of a compound is used to include the compound itself, its salt, and its ion.
  • the term also includes derivatives that have been partially changed, such as by introducing a substituent, within a range that does not impair the effects of the present invention.
  • substituents, linking groups, etc. hereinafter referred to as substituents, etc.
  • substituents, etc. that do not specify whether they are substituted or unsubstituted mean that they may have an appropriate substituent. Therefore, in the present invention, even if it is simply described as a YYY group, this YYY group includes not only an embodiment having no substituent but also an embodiment having a substituent.
  • substituents include, for example, groups selected from substituents Z described below.
  • each substituent, etc. may be the same or different from each other. It means that. Further, even if not specified otherwise, when a plurality of substituents are adjacent to each other, it is meant that they may be connected to each other or condensed to form a ring.
  • metal ions belonging to Groups 9 and 10 of the 4th period to the 6th period in the periodic table of elements, namely Co, Rh, Ir (group 9 elements), Ni, Pd , Pt (group 10 elements) may be referred to as a "specific metal ion group.”
  • specific metal ion groups metal ions belonging to different groups in the periodic table of elements
  • heterogeneous metal ions are referred to as “heterogeneous metal ions”
  • heterogeneous metal ions with the same period in the periodic table” are referred to as “heterogeneous metal ions with the same period”.
  • ppm indicating content etc. is based on mass and represents “mass ppm” unless otherwise specified.
  • the acidic metal extractant (sometimes referred to as the acidic metal extractant of the present invention) suitably used in the metal ion separation and recovery method of the present invention will be explained.
  • the acidic metal extractant of the present invention is a compound that exhibits a function of extracting two or more types of heterogeneous metal ions from a specific group of metal ions present in an aqueous phase into an oil phase, and is particularly suitable for wet extraction methods. It can be suitably used.
  • the acidic metal extractant of the present invention When the acidic metal extractant of the present invention is used in a wet extraction method, two or more kinds of different metal ions, particularly desirably with the same periodicity, can be extracted as valuable metal element ions from a specific metal ion group present in the aqueous phase. While cobalt ions and nickel ions, which are heterogeneous metal ions, are extracted, one of the metal ions can be extracted into the oil phase with high selectivity and high recovery rate.
  • being able to extract metal ions with high selectivity means that the extraction amount of a specific metal ion (usually one type) out of two or more types of extracted heterogeneous metal ions is greater than the total extraction amount of other metal ions.
  • the ratio of specific metal ions to other metal ions is 1.1 or more (resolution, selection ratio) as a ratio to the amount [(extracted amount of specific metal ions)/(total extracted amount of other metal ions)]. This means that it can be extracted and separated from The above ratio is preferably 3.0 or more, more preferably 5.0 or more.
  • the upper limit is not particularly limited, it can be set to 100, for example, when two types of metal ions are extracted.
  • being able to extract metal ions with a high recovery rate refers to the metal ions (specific metal ions targeted for extraction) extracted in the maximum extraction amount among two or more types of extracted heterogeneous metal ions.
  • the ratio of the amount of the metal ion extracted into the oil phase to the content of the metal ion in the aqueous phase (before extraction) [(amount of metal ion extracted into the oil phase)/(amount of the metal ion extracted into the aqueous phase) It means that it can be extracted at a ratio of 0.5 or more.
  • the above ratio is preferably 0.8 or more, more preferably 0.9 or more.
  • the upper limit is not particularly limited and is ideally the total amount of the metal ions present in the aqueous phase, for example, preferably 0.99 or less, 0.95 or less or 0.90 or less. You can also do that.
  • the acidic metal extractant of the present invention is a compound (also referred to as acidic extractant) having two or more coordination functional groups selected from the coordination functional group group G1. That is, the acidic metal extractant of the present invention has at least one active hydrogen atom or a salt thereof in the coordination functional group selected from the coordination functional group group G1.
  • This acidic metal extractant preferably has at least two hydrophobic groups from the viewpoint of solubility in the oil phase described below, and the hydrophobic groups are linking groups that connect coordination functional groups, e.g. Although the linking group described below or R 1 of formula (I) may have it, it is preferable that the following coordination functional group (excluding linking groups that connect with other coordination functional groups) has it. .
  • hydrophobic group examples include, but are not particularly limited to, hydrocarbon groups, such as an alkyl group, an alkenyl group, or an alkynyl group that can be used as R 2 in the formula (I) described below, and further an aryl group. Preferably, it is a long-chain alkyl group.
  • the number of hydrophobic groups that the acidic metal extractant has can be, for example, 2 to 6, preferably 2 to 4.
  • the acidic metal extractant of the present invention may be an aliphatic compound or an aromatic compound, with aliphatic compounds being preferred. Further, the acidic metal extractant of the present invention may be a high molecular compound such as a polymer, but it is preferably a non-polymerizable low molecular compound.
  • the linking group that connects the coordination functional groups is not particularly limited, and any suitable linking group can be selected.
  • linking group examples include a group derived from an alkane, a group derived from an alkene, a group derived from an alkyne, a group derived from an aromatic compound (the number of carbon atoms is preferably 6 to 24, more preferably 6 to 10), an oxygen atom, a sulfur atom, an imino group (-NR N -: R N represents a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, or an aryl group having 6 to 10 carbon atoms), a carbonyl group, or a combination thereof. Examples include such groups.
  • the linking group is preferably a group derived from an alkane, a group derived from an alkene, a group derived from an alkyne, a group derived from an aromatic compound, or a group derived from a combination thereof.
  • a group derived from an alkane, a group derived from an alkyne, or a combination thereof is more preferable, and a group derived from an alkane is even more preferable.
  • the linking group is particularly preferably a group corresponding to R 1 in formula (I) described below.
  • Each group derived from an alkane, a group derived from an alkene, and a group derived from an alkyne may be a straight chain, a branched chain, or a cyclic chain, respectively, but a straight chain or a branched chain is preferable, and a straight chain is more preferable, Among straight chains, straight chains in which coordination functional groups are bonded to both ends of the longest carbon chain are more preferred.
  • the number of carbon atoms constituting each group derived from an alkane, an alkene, and an alkyne is not particularly limited, but alkylene and alkenylene can be used as R 1 in formula (I) described below. The number of carbon atoms constituting each group or alkynylene group is the same.
  • the number of carbon atoms constituting each group does not include the number of carbon atoms constituting substituents that each group has.
  • the number of groups, linking groups, or atoms to be combined is not particularly limited, but may be, for example, 2 to 20, and preferably 2 to 10.
  • the number of types of groups, connecting groups, or atoms to be combined is not particularly limited, but may be, for example, two or more types, and preferably two or three types.
  • the above-mentioned connecting group may have a substituent, but preferably does not have a substituent.
  • the substituent that the linking group may have is not particularly limited, and includes, for example, a group selected from substituents Z described below, and even if R 1 of formula (I) described below has Same as a good substituent.
  • the number of linking atoms constituting the linking group is preferably 1 to 10, more preferably 1 to 7, even more preferably 1 to 4 or less, and particularly preferably 1 or 3. .
  • the above-mentioned number of connected atoms refers to the minimum number of atoms that connect two coordinating functional groups.
  • the number of atoms constituting the above-mentioned linking group is not uniquely determined and can be set as appropriate. To give an example, it can be, for example, 3 to 30, preferably 3 to 20, and more preferably 3 to 10.
  • the linking group is -CH 2 -CH 2 -
  • the number of atoms constituting the molecular structure is six, but the number of linked atoms is two.
  • at least one linking group may be the above-mentioned linking group, and it is preferable that all the linking groups are the above-mentioned linking groups.
  • the acidic metal extractant of the present invention has, in its molecular structure, any functional group included in the following coordination functional group group G1 as a coordination functional group that coordinates to a heterogeneous metal ion to be extracted. (also simply referred to as coordination functional group).
  • the number of types of coordinating functional groups that the acidic metal extractant has is not particularly limited, and may be one type or two or more types, but it is preferably 1 to 6 types, and more preferably 1 type or 2 types. preferable.
  • the types of two or more coordinating functional groups possessed by the acidic metal extractant may be the same or different, and are preferably the same. In particular, it is preferable that two or more coordinating functional groups of the acidic metal extractant have the same chemical structure.
  • the total number of coordinating functional groups that the acidic metal extractant has is not particularly limited as long as it is 2 or more, and is appropriately set. For example, the number is preferably 2 to 6, more preferably 2 to 4, and still more preferably 2.
  • X A represents an oxygen atom, a nitrogen atom, or a sulfur atom, preferably an oxygen atom
  • X B represents a single bond, an oxygen atom, a nitrogen atom, or a sulfur atom, and preferably an oxygen atom
  • Z represents an oxygen atom or a sulfur atom, preferably an oxygen atom.
  • the combination of X A , X B and Z in each group is not particularly limited and can be combined as appropriate.
  • R C in the coordination functional group represents a hydrogen atom or a substituent.
  • the substituent that can be used as R C is not particularly limited, and includes, for example, a group selected from substituents Z described below.
  • the substituent that can be used as R C is preferably a hydrocarbon group such as an alkyl group, an alkenyl group, an alkynyl group, or an aryl group from the viewpoint of solubility in the oil phase. More preferred is an alkyl group.
  • the alkyl group, alkenyl group, and alkynyl group that can be used as R C are preferably synonymous with each group that can be used as R 2 in formula (I) described below, regardless of the explanation of the substituent Z (especially the number of carbon atoms). .
  • the two R C 's each of the phosphoric acid group and the phosphonic acid group may be the same or different, but are preferably different.
  • it is preferable that at least one of the plurality of R C 's in the acidic metal extractant is different from the remaining R C's , and more preferably that at least one is a hydrogen atom.
  • one R c in one coordinating functional group is a hydrogen atom
  • the remaining R c is a substituent (acidic coordinating functional group). group) is more preferable.
  • the carboxy group may form a salt
  • the phosphoric acid group, phosphonic acid group, sulfonic acid group, and sulfinic acid group may form a salt when Rc takes a hydrogen atom.
  • the cation that forms the salt is not particularly limited and includes, for example, metal cations, particularly metal cations of Group 1 or Group 2, organic cations, and the like. Examples of organic cations include, but are not limited to, ammonium cations, alkylammonium cations, and the like.
  • the coordination functional group possessed by the acidic metal extractant among the functional groups belonging to the coordination functional group group G1, a carboxy group, a phosphoric acid group, and a phosphonic acid group are preferable, and a phosphoric acid group and a phosphonic acid group are more preferable. , a phosphonic acid group is more preferred.
  • the combination of coordination functional groups is not particularly limited, and the coordination functional groups included in the coordination functional group group G1 can be combined as appropriate. .
  • a phosphoric acid ester compound into which a group or a phosphonic acid group is introduced is preferable.
  • a carboxylic acid compound, a phosphoric acid ester compound, and a sulfonic acid ester compound are compounds having the largest number of carboxy groups, phosphoric acid groups, or phosphonic acid groups, or sulfonic acid groups or sulfinic acid groups as coordinating functional groups, respectively. may have other coordinating functional groups.
  • the acidic metal extractant may have substituents other than the coordination functional groups included in the coordination functional group group G1, and examples of the substituents that it may have include substituents Z to Mention may be made of selected groups.
  • the molecular weight of the acidic metal extractant is not particularly limited, but can be, for example, 150 to 2,000, and from the viewpoint of solubility in the oil phase, it is preferably 180 to 1,400, and 200 to 2,000. More preferably, it is 800.
  • the acidic metal extractant has two or more coordinating functional groups, at least one of which is a carboxy group, or each acidic coordinating functional group in which one of R c is a hydrogen atom. .
  • the acidic metal extractant is an acidic metal extractant that dissociates hydrogen ions (H + ), and can be defined by an acid dissociation constant pKa.
  • a metal extractant is preferably a metal extractant, more preferably an acidic metal extractant with a pKa of 0.5 to 12, and even more preferably an acidic metal extractant with a pKa of 1 to 8.
  • pKa is a value measured by neutralization titration.
  • the acidic metal extractant of the present invention is preferably represented by the following formula (I).
  • the compound represented by the following formula (I) is a phosphoric ester compound having two phosphoric acid groups or phosphonic acid groups.
  • R 1 represents a substituted or unsubstituted alkylene group, a substituted or unsubstituted alkenylene group, or a substituted or unsubstituted alkynylene group.
  • the alkylene group, alkenylene group, and alkynylene group that can be used as R 1 may be linear, branched, or cyclic, and are preferably linear or branched, more preferably linear, and have a carbon number of is 2 or more, it is more preferable that the carbon atoms at both ends be a straight chain bonded to X 1 or X 2 in formula (I).
  • the total carbon number (total carbon number) of the alkylene group, alkenylene group, and alkynylene group is not particularly limited, and is set appropriately, for example, preferably from 1 to 20, more preferably from 1 to 15.
  • the number is preferably 1 to 12, more preferably 1 to 12, particularly preferably 1 or 3, and most preferably 1 in terms of ease of coordination to the metal ion and stability of the coordination ion. preferable.
  • the number of carbon atoms constituting the shortest carbon chain connecting X 1 and X 2 in formula (I) is determined by the ease of coordination to metal ions, coordination Considering the stability of the ion, the number can be 1 to 10, preferably 1 to 6, more preferably 1 to 4, even more preferably 1 or 3, and 1 to 10. It is particularly preferable that there be.
  • the total number of carbon atoms in each group is the same as the number of carbon atoms constituting the shortest carbon chain connecting X 1 and X 2 . Note that the total number of carbon atoms constituting each group and the number of carbon atoms constituting the shortest carbon chain do not include the number of carbon atoms constituting substituents of each group.
  • the alkylene group, alkenylene group, and alkynylene group may each have a substituent, but preferably do not have a substituent.
  • the alkylene group, the alkenylene group, and the substituent that the alkynylene group may have are not particularly limited, but for example, a group selected from the substituent Z described below (excluding the coordination functional group described above). Specific examples thereof include alkoxy groups, amino groups, alkyl groups (preferably methyl groups and ethyl groups), and the like.
  • R 1 is preferably a substituted or unsubstituted alkylene group, more preferably an unsubstituted alkylene group, even more preferably an unsubstituted alkylene group having a total of 1 or 3 carbon atoms, and particularly preferably an unsubstituted methylene group.
  • R 2 and R 3 each represent a substituted or unsubstituted alkyl group, a substituted or unsubstituted alkenyl group, or a substituted or unsubstituted alkynyl group.
  • the alkylene group, alkenylene group, and alkynylene group that can be used as R 2 and R 3 may each be linear, branched, or cyclic, preferably linear or branched, and more preferably branched. .
  • the number of branched carbon atoms present in each group is not particularly limited and can be, for example, 1 to 8, but 1 Or it is preferable that it is two pieces.
  • the number of carbon atoms in each group that can be used as R 2 and R 3 is not particularly limited, and is set appropriately, and from the viewpoint of solubility in the oil phase, for example, it is preferably from 1 to 30, and from 6 to 30. It is more preferably 20, and even more preferably 6-15. It is also a preferred embodiment to set the upper limit to 11 in each range for the number of carbon atoms in each group.
  • a group having 6 or more carbon atoms is sometimes referred to as a "long chain.”
  • the molecular weight of each group that can be used as R 2 and R 3 is not particularly limited and can be set appropriately, and one preferred embodiment is to set it within the above range of carbon numbers, and R It is also a preferred embodiment that both groups 2 and R3 have a molecular weight of less than 160.
  • R 2 and R 3 may be the same or different, and are preferably the same.
  • the combination of R 2 and R 3 is not particularly limited and any suitable combination can be employed, but a combination of alkyl groups is preferred, and a combination of unsubstituted alkyl groups is more preferred.
  • Each group that can be used as R 2 and R 3 may have a substituent, but preferably does not have a substituent.
  • the substituent that each group may have is not particularly limited, but includes, for example, a group selected from the substituent Z described below (excluding the coordination functional group described above).
  • the combination of R 1 and R 2 and R 3 is not particularly limited, and examples thereof include preferred combinations of each other. Specifically, R 1 is a substituted or unsubstituted alkylene group, and R 2 and R A combination in which all 3 are substituted or unsubstituted alkyl groups is preferred, a combination in which R 1 is an unsubstituted alkylene group, and R 2 and R 3 are both unsubstituted alkyl groups is more preferred.
  • X 1 to X 6 each represent a single bond, -O-, -NH- or -S-. However, at least one of X 5 and X 6 is preferably -O- or -S-, more preferably -O-. Both X 1 and X 2 are preferably a single bond or -O-, and more preferably a single bond. All of X 3 to X 6 are preferably -O-, -NH- or -S-, more preferably -O-. All of X 1 to X 6 may be the same, or at least one may be different. The combination of X 1 to X 6 is not particularly limited, and preferable combinations of each may be mentioned. Specifically, X 1 and A combination in which -O- is preferred, and a combination in which X 1 and X 2 are single bonds and X 3 to X 6 are -O- is more preferred.
  • Y 1 and Y 2 each represent an oxygen atom or a sulfur atom, preferably an oxygen atom.
  • Y 1 and Y 2 may be the same or different, and are preferably the same.
  • the combinations of Y 1 and Y 2 and X 1 to X 6 are not particularly limited, and include combinations of their respective preferred combinations . Combinations that are atoms are preferred.
  • Z 1 and Z 2 each represent a hydrogen atom or a hydrocarbon group.
  • the hydrocarbon group that can be used as Z 1 and Z 2 include an alkyl group, an alkenyl group, an aralkyl group, and an aryl group, with an alkyl group, an alkenyl group, and an aryl group being preferred, and an alkyl group being preferred.
  • the alkyl group, alkenyl group, aralkyl group, and aryl group are not particularly limited, but have the same meaning as the corresponding group of substituent Z described later. However, the number of carbon atoms in the alkyl group is more preferably 1 to 10, still more preferably 1 to 6, and particularly preferably 1 to 4.
  • the alkenyl group preferably has 2 to 10 carbon atoms, and even more preferably 2 to 6 carbon atoms.
  • the number of carbon atoms in the aralkyl group is more preferably 7 to 14, even more preferably 7 to 12.
  • the number of carbon atoms in the aryl group is more preferably 6 to 10, and even more preferably 6.
  • This hydrocarbon group may further have a group selected from the substituents Z as a substituent (excluding the above-mentioned coordinating functional group), but it may be an unsubstituted hydrocarbon group. More preferred.
  • the acidic metal extractant represented by formula (I) is an acidic metal extractant
  • at least one of Z 1 and Z 2 is preferably a hydrogen atom, and both are preferably hydrogen atoms.
  • the hydrocarbon group that can be used as Z 1 and Z 2 and the groups that can be used as R 2 and R 3 may be different types, but are preferably of the same type.
  • one of Z 1 and Z 2 , R Both of 2 and R 3 are more preferably an alkyl group, and even more preferably an unsubstituted alkyl group.
  • the hydrocarbon groups that can be used as Z 1 and Z 2 and the groups that can be used as R 2 and R 3 may be the same, but they are preferably different at least in terms of the number of carbon atoms.
  • the number of carbon atoms in the hydrocarbon group that can be used as Z 1 and Z 2 is smaller than the number of carbon atoms in the group that can be used as R 2 and R 3 ; ) is more preferably a short chain having 1 to 6 carbon atoms (preferably 1 to 4 carbon atoms), while the groups that can be used as R 2 and R 3 are preferably short chains having 6 to 30 carbon atoms (preferably 6 to 20 carbon atoms). ) is more preferable.
  • R 1 to R 3 and X 1 to X 6 and Y 1 and Y 2 and Z 1 and Z 2 are not particularly limited, and include preferred combinations of each.
  • the acidic metal extractant represented by formula (I) may have a substituent.
  • substituents that may be included include groups selected from the substituents Z described later, provided that groups other than the coordination functional groups included in the coordination functional group group G1 are mentioned.
  • the acidic metal extractant can be synthesized by referring to known methods, such as the methods described in Patent Documents 1 and 2.
  • a method for synthesizing an acidic metal extractant the synthesis method described in Examples can be mentioned.
  • Specific examples of acidic metal extractants include those shown below in addition to those synthesized or prepared in the Examples, but the present invention is not limited thereto.
  • Me represents a methyl group.
  • Substituent Z - Alkyl group preferably an alkyl group having 1 to 20 carbon atoms, such as methyl, ethyl, isopropyl, t-butyl, pentyl, heptyl, 1-ethylpentyl, benzyl, 2-ethoxyethyl, 1-carboxymethyl, etc.
  • alkenyl group preferably an alkenyl group having 2 to 20 carbon atoms, such as vinyl, allyl, oleyl, etc.
  • an alkynyl group preferably an alkynyl group having 2 to 20 carbon atoms, such as ethynyl, butadiynyl, phenylethynyl, etc.
  • cycloalkyl group Preferably a cycloalkyl group having 3 to 20 carbon atoms, such as cyclopropyl, cyclopentyl, cyclohexyl, 4-methylcyclohexyl
  • alkyl group usually includes a cycloalkyl group, but it is not specified separately here. ), aryl groups (preferably aryl groups having 6 to 26 carbon atoms, such as phenyl, 1-naphthyl, 4-methoxyphenyl, 2-chlorophenyl, 3-methylphenyl, etc.), aralkyl groups (preferably 7 to 26 carbon atoms), 23 aralkyl groups such as benzyl, phenethyl, etc.), heterocyclic groups (preferably heterocyclic groups having 2 to 20 carbon atoms, more preferably 5 or 6 carbon atoms having at least one oxygen atom, sulfur atom, or nitrogen atom) It is a membered heterocyclic group.
  • Heterocyclic groups include aromatic heterocyclic groups and aliphatic heterocyclic groups.For example, tetrahydropyran ring group, tetrahydrofuran ring group, 2-pyridyl, 4-pyridyl, 2-
  • alkoxy group preferably an alkoxy group having 1 to 20 carbon atoms, such as methoxy, ethoxy, isopropyloxy, benzyloxy, etc.
  • aryloxy group Preferably, an aryloxy group having 6 to 26 carbon atoms, such as phenoxy, 1-naphthyloxy, 3-methylphenoxy, 4-methoxyphenoxy, etc.
  • a heterocyclic oxy group an -O- group is bonded to the above heterocyclic group) group
  • an alkoxycarbonyl group preferably an alkoxycarbonyl group having 2 to 20 carbon atoms, such as ethoxycarbonyl, 2-ethylhexyloxycarbonyl, dodecyloxycarbonyl, etc.
  • an aryloxycarbonyl group preferably an aryl group having 7 to 26 carbon atoms
  • alkoxycarbonyl group preferably an alkoxycarbonyl group having 1 to 20 carbon atoms, such as methoxy
  • R P is a hydrogen atom or a substituent (preferably a group selected from substituents Z). Further, each of the groups listed as the substituent Z may be further substituted by the above substituent Z.
  • the above-mentioned alkyl group, alkylene group, alkenyl group, alkenylene group, alkynyl group and/or alkynylene group may be cyclic or chain-like, and may be linear or branched.
  • the metal ion separation and recovery method of the present invention uses metal ions (specific An aqueous phase containing two or more metal ions belonging to different groups among the metal ion groups) and an oil phase containing the above-mentioned acidic metal extractant of the present invention are mixed and present in the aqueous phase.
  • metal ions specifically An aqueous phase containing two or more metal ions belonging to different groups among the metal ion groups
  • an oil phase containing the above-mentioned acidic metal extractant of the present invention are mixed and present in the aqueous phase.
  • This is a method in which two or more metal ions belonging to different groups (different metal ions) are extracted and separated into an oil phase.
  • the heterogeneous metal ions coordinated with the acidic metal extractant of the present invention are transferred (extracted) from the aqueous phase to the oil phase, and separated with high selectivity and high recovery rate. It can be recovered.
  • the heterogeneous metal ions to be extracted into the oil phase may be all of the types of heterogeneous metal ions contained in the water phase, or some of them, but two or more types thereof. In the present invention, it is preferable that all types of two or more types of heterogeneous metal ions contained in the aqueous phase are extracted into the oil phase.
  • ions of a valuable metal element are heterogeneous metal ions of a specific metal ion group, particularly preferably cobalt ions and nickel ions, which are metal ions of the same period and different metal ions, and one of them.
  • Metal ions can be extracted into the oil phase with high selectivity and high recovery.
  • the acidic metal extractant of the present invention extracts two or more different metal ions included in a specific metal ion group present in an aqueous phase together into an oil phase in a wet extraction method.
  • the water forming the aqueous phase is not particularly limited, but (ultra)pure water, ion exchange water, etc. can be used.
  • the aqueous phase contains metal ions (specific metal ion group) belonging to Groups 9 and 10 of the 4th to 6th periods of the periodic table, and this specific metal ion group consists of two or more types belonging to different groups.
  • the metal ions included in the specific metal ion group are metal ions belonging to the 9th group and the 10th group of the 4th period to the 6th period, and specifically, Co, Rh, Ir, Ni, Pd, Each ion of Pt is mentioned.
  • the metal ions included in the specific metal ion group are preferably metal ions belonging to Groups 9 and 10 of the 4th or 5th period, and metal ions that belong to Groups 9 and 10 of the 4th period.
  • the metal ions belong to the same group.
  • the number of types of metal ions constituting a specific metal ion group is 2 to 6, preferably 2 to 5, and more preferably 2 to 4.
  • the aqueous phase contains two or more types of heterogeneous metal ions among the above-mentioned specific metal ion group.
  • an ion of a group 9 element and an ion of a group 10 element can be appropriately combined, for example, a combination of Co and Ni, Pd or Pt, a combination of Rh and Ni, Pd or Examples include a combination with Pt, a combination of Ir and Ni, Pd, or Pt, and a combination of Co and Ni, Pd, or Pt is preferred.
  • the combination of two or more different metal ions is preferably a combination of same-period metal ions, which is difficult to employ in wet extraction in terms of selectivity and recovery rate.
  • Examples include a combination of Rh and Pd, a combination of Ir and Pt, and a combination of Co and Ni is preferred.
  • the number of types of heterogeneous metal ions contained in the aqueous phase may be two or more types, for example, preferably 2 to 4 types, and more preferably 2 types.
  • the aqueous phase may contain one or more metal ions other than the specific metal ion group, for example, ions of metal elements belonging to groups other than Group 9 and Group 10.
  • metal ions of metal elements belonging to the seventh period are not included, and it is preferable that ions of metal elements belonging to the sixth and seventh periods are not included.
  • the metal ion does not contain metal ions other than those included in the specific metal ion group.
  • the aqueous phase "does not contain" metal ions means that the aqueous phase is not actively mixed with metal ions, and also does not contain metal ions that are inevitably mixed into the aqueous phase. For example, it does not mean that the metal ion content (concentration) of the aqueous phase is 100 mass ppm or less.
  • the metal ions can be prepared as appropriate, such as various metal salts (salts of metal elements with inorganic acids such as nitric acid and sulfuric acid, or organic acids such as acetic acid), mixtures of mined metals (ions), Materials recovered from metal waste, other wastes such as metals recovered from waste batteries (LiB), and mixtures thereof can be used.
  • metal recovered from waste LiB include those recovered by known methods such as wet processing and electrolysis.
  • the total content of specific metal ion groups in the aqueous phase is not particularly limited and may be set as appropriate, but may be, for example, 1,000 to 1,000,000 ppm by mass; ,000 mass ppm, and more preferably 1,000 to 50,000 mass ppm.
  • the total content of metal ions belonging to Group 9 of the specific metal ion group is not particularly limited and may be set as appropriate, but may be, for example, 1,000 to 60,000 mass ppm; The amount is preferably from 000 to 30,000 ppm by mass.
  • the content of each metal ion belonging to Group 9 is appropriately set in consideration of the above-mentioned total content, and can be, for example, 500 to 40,000 mass ppm, and 1,000 to 20,000 mass ppm.
  • the total content of metal ions belonging to Group 10 of a specific metal ion group is not particularly limited and may be set as appropriate, but may be, for example, 1,000 to 60,000 mass ppm, and 1,000 to 60,000 mass ppm.
  • the amount is preferably from 000 to 30,000 ppm by mass.
  • the content of each metal ion belonging to Group 10 is appropriately set in consideration of the above-mentioned total content, and can be, for example, 500 to 40,000 mass ppm, and 1,000 to 20,000 mass ppm. It is preferable that
  • the content of each metal ion in a heterogeneous metal ion relationship may be greater or less than the content of other metal ions. Since the separation and recovery method of the present invention can separate and recover heterogeneous metal ions with high selectivity, it is not necessary to set the content of heterogeneous metal ions to a specific ratio.
  • the total content of metal ions belonging to Group 9 may be greater or less than the total content of metal ions belonging to Group 10, or may be the same.
  • An example of the content ratio of metal ions of different groups is the mass ratio of the content of metal ions belonging to other groups (including metal ions that are not extracted) to the content of metal ions extracted at the maximum extraction amount.
  • [Maximum extraction amount of metal ion content: content of metal ions belonging to other groups] can be, for example, 100:1 to 10,000, and can be 100:10 to 5,000.
  • the ratio is preferably 100:50 to 1,000, and even more preferably 100:70 to 130.
  • the total content is not particularly limited, but is preferably 50,000 mass ppm or less, and 30,000 mass ppm or less. It is more preferable that
  • the pH of the aqueous phase is not particularly limited and may be set as appropriate, but in consideration of the solubility of metal ions, the formation of complex ions, etc., it is preferably set to, for example, 0.1 to 10, and is suitable for improving selectivity and recovery rate. In terms of this, it is more preferable to set it to 0.5 to 7.0, and in particular, in terms of increasing the recovery rate, it is even more preferable to set it to 1.0 to 6.5, and 5.0 to 6.5. It is particularly preferable that The pH of the aqueous phase can be adjusted using, for example, acids or alkalis.
  • any known acid can be used without particular limitation, including inorganic acids such as sulfuric acid, hydrochloric acid, nitric acid, and phosphoric acid, and organic acids such as formic acid, acetic acid, oxalic acid, organic phosphoric acid, and organic sulfonic acid.
  • alkali any known alkali can be used without particular limitation, including inorganic alkalis and organic alkalis, with inorganic alkalis being preferred.
  • the inorganic alkali include metal alkalis such as hydroxides and carbonates of Group 1 or Group 2 metals, as well as ammonia water, ammonium chloride, and the like.
  • the organic alkali include organic ammonium salts and the like.
  • the temperature of the aqueous phase is not particularly limited, and can be, for example, 10 to 60°C.
  • the aqueous phase may contain a ligand (compound) that coordinates to a metal ion or a compound that generates a ligand, as necessary.
  • the aqueous phase can be prepared by dissolving various metal ions in water. Conditions for preparing the aqueous phase are not particularly limited. For example, the preparation temperature can be 10-60°C.
  • an oil phase (organic phase) containing one or more acidic metal extractants of the present invention is used in contrast to the above-mentioned aqueous phase.
  • the acidic metal extractant of the present invention exhibits solubility in organic solvents and coordinates with heterogeneous metal ions present in the oil phase near the interface between the aqueous phase and the oil phase. Demonstrates the ability to transfer metal ions into the oil phase.
  • solubility in an organic solvent means a property in which the acidic metal extractant can be dissolved in an organic solvent at the content described below.
  • the organic solvent that forms the oil phase is not particularly limited, and any appropriate organic solvent can be used. Examples include alcohol solvents, ether solvents, hydrocarbon solvents (aromatic solvents, aliphatic solvents), halogen solvents, and the like. Among these, hydrocarbon solvents are preferred, various solvents that are branch components of petroleum are more preferred, and hydrocarbon solvents such as aromatic, paraffinic, naphthenic, kerosene, gasoline, naphtha, kerosene, and light oil are even more preferred.
  • the content of the acidic metal extractant in the oil phase is appropriately set in consideration of the content of each of the metal ions described above, the amount of coordination to the metal ions, the number of coordination functional groups, and the like.
  • the content in the oil phase can be 20 to 10,000 mmol/L (mM), preferably 50 to 1,000 mmol/L, and 100 to 500 mmol/L. is more preferable.
  • the temperature of the oil phase is not particularly limited, and can be, for example, 10 to 60°C.
  • the oil phase may contain appropriate components in addition to the acidic metal extractant of the present invention.
  • the oil phase can be prepared by dissolving an acidic metal extractant in an organic solvent.
  • the conditions for preparing the oil phase are not particularly limited, and for example, the preparation temperature can be 10 to 60°C.
  • the aqueous phase and oil phase are mixed and allowed to stand.
  • the mixing conditions and standing conditions at this time are not particularly limited and can be set as appropriate.
  • mixing can be performed using various mixing devices.
  • the mixing device include a method using a magnetic stirrer (stirrer chip), a method using a mechanical stirrer, and a method using a mixer.
  • Stirring conditions (stirring speed, stirring time, etc.) may be conditions that allow the aqueous phase and oil phase to be mixed (conditions that allow the acidic metal extractant to coordinate bond with the metal ion), and the conditions that allow the metal ion and the acidic metal extractant to coordinate.
  • the stirring time is not uniquely determined depending on the stirring conditions, but can be, for example, 10 minutes to 24 hours.
  • the standing condition may be any condition as long as the aqueous phase and the oil phase are separated into two layers.
  • the standing time may be 10 minutes to 24 hours after the mixing is stopped.
  • the mixing temperature and the standing temperature are also not particularly limited, and can be, for example, 10 to 60°C.
  • the mixing ratio of the aqueous phase and the oil phase is appropriately set according to the content (concentration) of metal ions, the content (concentration) of the acidic metal extractant, etc. Not determined.
  • the ratio of the oil phase to 100 mL of the aqueous phase can be 50 to 2,000 mL, and the ratio can be 80 to 1,000 mL.
  • the ratio is 80 to 200 mL.
  • the acidic metal extractant when focusing on the metal ions present in the aqueous phase, the acidic metal extractant is mixed in the oil phase at a ratio of 0.5 to 20 times the total content (mol) of specific metal ion groups. It is preferable.
  • the content of the acidic metal extractant relative to the total content of metal ions that can be coordinated by the acidic metal extractant also referred to as the mixing amount; the ratio of the number of moles of the metal extractant to the total number of moles of metal ions: molar ratio
  • the amount can be 0.5 to 20.0 equivalents.
  • the metal ion that can be coordinated with the acidic metal extractant refers to a heterogeneous metal ion that is coordinated with the acidic metal extractant and extracted into the oil phase.
  • the pH of the mixed system can also be adjusted.
  • the pH set for a specific metal ion to be extracted is not unique, but takes into consideration the pKa of the metal extractant, the complex formation constant between the metal extractant and the metal ion, the coordination number of the metal ion, etc. It will be decided accordingly.
  • the pH of the mixed system is, for example, preferably 2 to 14, more preferably 3.0 to 7.0, and even more preferably 3.0 to 5.0.
  • the pH can be adjusted using the above-mentioned acid or alkali, or an aqueous solution thereof, but one preferred embodiment is not to use ammonium ions.
  • a two-phase separated fluid in which the aqueous phase and the oil phase are phase-separated, which is obtained by mixing the aqueous phase and the oil phase in this way and allowing them to stand, is a mixture of the aqueous phase and the oil phase. They exist in a state where the phases are in contact with each other and separated into layers.
  • a specific metal ion group two or more types of heterogeneous metal ions to which the acidic metal extractant is coordinately bonded exist (move) in the oil phase.
  • two or more different metal ions extracted into the oil phase are not particularly limited, and for example, the same as the above-mentioned two or more different metal ions (combination) contained in the aqueous phase. It is preferable that The number of types of heterogeneous metal ions extracted into the oil phase may be two or more types, for example, preferably 2 to 4 types, and more preferably 2 types.
  • two or more heterogeneous metal ions of a specific metal ion group can be extracted into the oil phase.
  • One type of metal ion can be separated and recovered with high selectivity and high recovery rate.
  • the type of metal ion that can be separated and recovered with high selectivity and high recovery rate is not uniquely determined depending on the group or period of the metal ion, the content, the type of acidic metal extractant, etc.
  • metal ions belonging to group 9 can be separated and recovered with high selectivity and high recovery rate
  • metal ions belonging to group 9, Co ions or Rh ions can be separated and recovered with high selectivity and high recovery rate. Can be separated and recovered with high recovery rate.
  • the separation and recovery method of the present invention while extracting two or more different metal ions from a specific group of metal ions present in the aqueous phase into the oil phase, one of the metal ions, one of the metal ions,
  • the aqueous phase containing two or more different metal ions extracted from the oil phase can be further recovered by the separation and recovery method of the present invention.
  • the selectivity for one type of metal ion can be further increased without significantly impairing the recovery rate, and as a result, highly pure metal ions can be recovered at a high recovery rate.
  • Such a separation and recovery method of the present invention can also be called a method for extracting two or more types of metal ions.
  • the acidic metal extractant alone coordinates with metal ions and can extract these metal ions into the oil phase, so the aqueous phase and oil phase coordinate with the metal ions. It is not necessary to contain a compound or a compound that generates a ligand.
  • an aqueous phase containing a specific metal ion group as an essential component and an oil phase containing the acidic metal extractant of the present invention as an essential component are usually used.
  • the separation and recovery method of the present invention may include a step other than the step of mixing and standing the aqueous phase and oil phase described above.
  • a method of back-extracting (isolating) different-group metal ions from the oil phase obtained by mixing an aqueous phase and an oil phase and allowing them to stand ; a process of recovering back-extracted different-group metal ions as a compound (salt); , a step of purifying back-extracted heterogeneous metal ions or compounds thereof, and a step of previously removing ions of metal elements belonging to Group 1 or Group 2 of the periodic table of elements.
  • a method for back-extracting (isolating) heterogeneous metal ions from the oil phase any known method can be applied without particular limitation. This can be done by making the phase acidic, for example at pH 2-4.
  • a method for recovering the back-extracted heterogeneous metal ions as a compound any known method can be applied without particular limitation.
  • PC-88A Mono-2-ethylhexyl (2-ethylhexyl)phosphonate shown below (manufactured by Tokyo Kasei Kogyo Co., Ltd.)
  • VA-10 Versatic acid 10 (manufactured by Hexion)
  • Acidic metal extractant E-1 was synthesized as follows. Acidic metal extraction was carried out in the same manner as the synthesis of acidic metal extractant E-2, except that methylene diphosphonic acid was changed to 1,3-propylene diphosphonic acid in the synthesis of acidic metal extractant E-2, which will be described later. Agent E-1 was synthesized. The obtained acidic metal extractant E-1 was identified in the same manner as acidic metal extractant E-2.
  • Acidic metal extractant E-2 was synthesized as follows. That is, 15.4 g of methylene diphosphonic acid (manufactured by Tokyo Chemical Industry Co., Ltd.), 22.8 g of 2-ethylhexanol (manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.), and 150 g of tetrahydrofuran (manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.) were placed in a 500 mL three-neck eggplant flask. was added and stirred in a reflux state to dissolve.
  • methylene diphosphonic acid manufactured by Tokyo Chemical Industry Co., Ltd.
  • 2-ethylhexanol manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.
  • tetrahydrofuran manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.
  • the acidic metal extractant E-2 thus synthesized was identified as follows. That is, 1 H-NMR was measured in deuterated chloroform (device: BLUKER400). The results are shown in Figure 1.
  • the hydrogen atom located next to the O atom of the 2-ethylhexyloxy group ( ⁇ 3.98) and the hydrogen atom directly connected to the carbon atom sandwiched between the P atoms ( ⁇ 2.35) ) is approximately 4:2, which indicates that two 2-ethylhexyl groups were introduced into methylene diphosphonic acid. Therefore, the obtained compound was identified as having the structure shown in E-2 above.
  • Acidic metal extractant E-3 was synthesized as follows. That is, 35.0 g of acidic metal extractant E-2, 11.4 g of ethanol (manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.), and 100 g of tetrahydrofuran were added to a 500 mL three-necked eggplant flask, and the mixture was stirred in a reflux state. Separately, a solution of 21.6 g of N,N'-dicyclohexylcarbodiimide (manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.) and 100 g of tetrahydrofuran was prepared in a 500 mL graduated cylinder.
  • the acidic metal extractant E-3 thus synthesized was identified as follows. That is, 1 H-NMR in deuterated chloroform was measured (apparatus: BLUKER400), and the resulting chart is shown in FIG. Furthermore, fragment ions of the compound were accurately detected using LC-MS (device: LCMS-8050).
  • the hydrogen atom located next to the O atom of the 2-ethylhexyloxy group ( ⁇ 3.97) and the hydrogen atom directly connected to the carbon atom sandwiched between the P atoms ( ⁇ 2.42) ) is about 4:2, which indicates that two 2-ethylhexyl groups are introduced into methylene diphosphonic acid.
  • the integral ratio of the hydrogen atom located next to the O atom of the 2-ethylhexyloxy group ( ⁇ 3.97) and the hydrogen atom located next to the O atom of the ethoxy group ( ⁇ 4.19) is approximately 2:1. Therefore, it is estimated that 2-ethylhexyl and ethyl groups are introduced at a ratio of 2:1. Furthermore, fragment ion 429.4 was obtained by LC-MS. Since the Exact Mass (accurate mass) of acidic metal extractant E-3 is 428.3, it is estimated that it corresponds to [M+H] + ion. Based on the above, the obtained compound was identified as having the structure shown in E-3 above.
  • Acidic metal extractant E-4 was synthesized as follows. That is, in a 1 L three-neck eggplant flask, 300 g of ethanol, 43.8 g of sodium ethoxide (manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.), 112 g of 1-bromo-2-ethylhexane (manufactured by Tokyo Kasei Kogyo Co., Ltd.), and diethyl malonate (manufactured by Tokyo Kasei Kogyo Co., Ltd.) were added.
  • Acidic metal extractant E-5 was synthesized as follows. Acidic metal extraction was carried out in the same manner as the synthesis of acidic metal extractant E-2, except that methylene diphosphonic acid was changed to 1,2-ethylene diphosphonic acid in the synthesis of acidic metal extractant E-2. Agent E-5 was synthesized. The obtained acidic metal extractant E-5 was identified in the same manner as acidic metal extractant E-2.
  • Acidic metal extractant E-6 was synthesized as follows. Academic Literature J. Org. Chem. Metal extractant E-6 was synthesized and identified according to the method for synthesizing compound 1c described in 2013, 78, 270-277.
  • Metal extractant E-7 was synthesized as follows. Metal extractant E-7 was synthesized in the same manner as in the synthesis of acidic metal extractant E-3, except that 22.8 g of ethanol and 43.2 g of N,N'-dicyclohexylcarbodiimide were used. The obtained metal extractant E-7 was identified in the same manner as acidic metal extractant E-3.
  • Acidic metal extractant E-8 was synthesized as follows. Metal extractant E-8 was synthesized and identified according to the compound synthesis method described in Example 1 of Reference 2.
  • Table 1-2 shows the molecular weight and pKa calculated by the above method for the synthesized or prepared acidic metal extractants.
  • a metal ion-containing aqueous solution (W2) containing two types of different metal ions, and cobalt ions and manganese ions were prepared.
  • a metal ion-containing aqueous solution (W3) was prepared.
  • ⁇ Preparation of metal extractant solution (oil phase)> Add each synthesized or prepared metal extractant to a 100 mL volumetric flask, and make up the volume using kerosene (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) at room temperature to obtain an acidic metal extract containing each acidic metal extractant.
  • Agent solutions (Y1) to (Y6), (Y8), (Yc1) and (Yc2) (concentration 310 mM) were prepared, respectively.
  • acidic metal extractant solution (Y1) was A metal extractant solution (Y7) was prepared in the same manner as in the preparation.
  • Example 1 In a 30 mL vial, 12 mL of the acidic extractant solution (Y1) was added to 10 mL of the prepared metal ion-containing aqueous solution (W1), and the mixture was stirred at 25 ° C. for 30 minutes using a stirrer tip. At this time, the mixed amount (unit: equivalent) of the acidic metal extractant relative to the total content of the metal ions that can be coordinated (synonymous with the extracted heterogeneous metal ions, Co and Ni in Example 1) was 0.73.
  • Example 1 the metal ion-containing aqueous solution and the metal extractant solution were combined in the combinations shown in the "Aqueous phase" column of Table 1-1 and the "Oil phase” column of Table 1-2 (hereinafter collectively referred to as Table 1).
  • the pH at the time of mixing the aqueous phase and the oil phase is adjusted to the value shown in the "pH at mixing" column of Table 1-2, and the acidic metal extractant is mixed with respect to the total content of metal ions that can be coordinated.
  • Examples 2 to 9 and Comparative Example were prepared in the same manner as in Example 1, except that the amount (unit: equivalent) was set to the value shown in the "mixing amount” column of Table 1-2, mixed and left to stand. Separation and recovery of metal ions 1 to 4 was performed. In each example, the extracted metal ions and the maximum extracted amount of metal ions are shown in the "Type” column and "Maximum extracted amount” column of the "Extracted metal ion” column of Table 1-2, respectively. .
  • the extraction amount (ppm) of the metal ion with the maximum extraction amount measured in this way is divided by the total extraction amount (ppm) of other metal ions to calculate the extraction amount ratio. ” column.
  • the "selectivity ratio" was expressed as "100".
  • the pH at the time of mixing the aqueous phase and the oil phase was similarly measured, and the results are shown in the "pH at time of mixing" column.
  • Comparative Example 3 is an experimental example in which Mn ions belonging to Group 7 and Co ions belonging to Group 9 were used as metal ions to be extracted and separated from the aqueous phase. Even if 1 is used, Co ions cannot be separated and recovered with high selectivity. Furthermore, although Comparative Example 4 is an experimental example using metal extractant E-7 that does not have active hydrogen, it was possible to extract both Co ion and nickel ion, which are two metal ions belonging to different groups. I can't.
  • Examples 1 to 9 using the acidic metal extractant of the present invention two types of heterogeneous metal ions from the specific metal ion group present in the metal ion-containing aqueous solution were added to the oil phase. It has been extracted. Moreover, the metal ions with the maximum extraction amount (Examples 1 to 4, 7 to 9: Co ions, Examples 5 and 6: Rh ions) have a high selectivity with respect to metal ions other than the metal ions with the maximum extraction amount. , almost the entire amount could be extracted from the aqueous phase to the oil phase.
  • the acidic metal extractant of the present invention extracts two or more types of heterogeneous metal ions in a specific metal ion group from the aqueous phase to the oil phase, while recovering one of the metal ions with high selectivity and high recovery.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

周期表の第4周期から第6周期の第9族及び第10族に属する金属イオンのうち異なる族に属する2種以上の金属イオンを含有する水相と、カルボキシ基、リン酸基、ホスホン酸基、スルホン酸基及びスルフィン酸基から選択される配位官能基を2つ以上有する酸性金属抽出剤を含有する油相とを混合して、異なる族に属する2種以上の金属イオンを抽出分離する金属イオンの分離回収方法、及び上記酸性金属抽出剤を提供する。

Description

金属イオンの分離回収方法及び酸性金属抽出剤
 本発明は、水相中に存在する金属イオンを油相中に抽出する金属イオンの分離回収方法、及びこの分離回収方法に用いる酸性金属抽出剤に関する。
 鉱山から採掘できる金属には限りがあり、精密機器の必需品である貴金属の安定供給は大きな課題となっている。そこで、採掘に頼らずに産業廃棄物から有価金属を回収することが重要視されている。
 特に、近年の電気自動車の普及にともない、リチウムイオン電池(LiB)の廃棄量は年々増大している。LiBには、コバルト、ニッケル等の金属元素を含む正極活物質が使用されており、ニッケルの需要も大きく増加することが見込まれる。この潮流にともなう有価金属の需要増に対応するために、発掘量を増加させるのみならず、廃LiBからの金属リサイクル技術が望まれている。
 廃棄物からの金属リサイクル方法として、湿式抽出法(溶媒抽出法)が利用されている。湿式抽出法は、金属元素のイオン(単に金属イオンという。)を含む水溶液(水相)に金属抽出剤を含む有機相を接触させて混合、静置することで両相を分離させると、金属抽出剤が配位した金属イオンを有機相に移動(抽出)させることがきる。この有機相を取り出して、金属イオンを逆抽出し、必要により精製することで、(高純度の)金属としてリサイクルすることができる。
 金属抽出剤を用いた湿式抽出法としては、例えば、特許文献1には、特定の一般式(I)で示されるホスホン酸エステルを用いて、Feイオン、Caイオン、Alイオン及びUイオンを含むリン酸水溶液からUイオンを抽出する方法が記載されている。また、特許文献2には、特定の式(I)で表されるジホスホン酸エステル化合物を用いて、コバルト・シクロアルカノエートを含む水層からコバルトイオンを抽出する方法が記載されている。
 一方で、非特許文献1には、式:ROPS-CH-PS-OR(ここで、Rはメチル、ブチル、ベンジル等を示す)で表される化合物が、Hg(II)、Pb(II)、Zn(II)、Ca(II)等の金属イオンに配位して、金属抽出剤として有用であることが記載されている。また、非特許文献2には、P,P’-ジアルキルメチレンビスホスホン酸がランタニド、アクチノイド元素の効果的な金属抽出剤であること、更に非特許文献3には、P,P’-ジアルキルメチレンビスホスホン酸がランタノイド、3価のアクチノイド元素(Am(III)、Cm(III)、Cf(III)等)に対して有効な金属抽出剤となることが記載されている。
特開昭59-084894号公報 特開平03-169887号公報
Journal of Organic Chemistry (2013), 78(2), p.270-277 Solvent Extraction and Ion Exchange (2006), 24(3), p.331-346 Separation Science and Technology (2005), 40(1-3), p.69-90
 特許文献1及び2には、水相中に存在する特定の金属イオンを油相に抽出して回収できることが記載されている。しかし、特許文献1では、Feイオン、Caイオン及びAlイオンの共存下において重金属であるUイオンを抽出して回収する方法が記載されているに過ぎない。一方、特許文献2には、水相に存在する1種の金属イオンであるコバルトイオンを抽出して回収する方法が記載されているに過ぎない。更に、非特許文献1~3には、上述のように、Hg(II)、アクチニド等の特定の金属イオンの抽出剤となりうることが記載されているに過ぎない。
 特許文献1及び2、更に非特許文献1~3には、有価金属元素のイオンとして、周期表の第4周期から第6周期の第9族及び第10族に属する金属イオンのうち異なる族に属する2種以上の金属イオンを抽出しながらも、そのうちの1種の金属イオンを高選択性かつ高回収率で回収することは検討されていない。これは、コバルトイオン及びニッケルイオン等の第9族及び第10族に属する金属イオンの分離回収のニーズが、近年のリチウムイオン電池の急速な普及によって急増してきたものであって、従来、物理的挙動及び化学的挙動が類似する金属イオンを分離回収することは容易ではなかったこと等による。しかし、第4周期から第6周期の第9族及び第10族に属する金属イオンのうち異なる族に属する2種以上の有価金属元素のイオンとして、物理的挙動及び化学的挙動が類似する第9族に属する金属イオン(特にコバルトイオン)及び第10族に属する金属イオン(特にニッケルイオン)を抽出しながらも、そのうちの1種の金属イオンを高選択性かつ高回収率で回収することができれば、電気自動車の更なる普及、ひいては持続可能な社会の構築に大きく貢献できる。
 本発明は、第4周期から第6周期の第9族及び第10族に属する金属イオンのうち異なる族に属する2種以上の金属イオンを水相から油相に抽出しつつも、そのうちの1種の金属イオンを高選択性かつ高回収率で分離回収する方法、及びこの方法に用いる酸性金属抽出剤を提供することを課題とする。
 本発明者は、有価金属元素のイオンとして、周期表の第4周期から第6周期の第9族及び第10族に属する金属イオンのうち異なる族に属する2種以上の金属イオンを含有する水相から金属イオンを分離回収する湿式抽出法において、この水相に対して、後述する配位官能基群G1から選択される配位官能基を2つ以上有する酸性金属抽出剤を含有する油相を混合することにより、異なる族に属する金属イオンのうちの2種以上の金属イオン、特に望ましくはコバルトイオン及びニッケルイオンを、水相から油相に抽出しつつも、そのうちの1種の金属イオンを高選択性かつ高回収率で抽出できることを見出した。
 本発明はこれらの知見に基づき更に検討を重ね、完成されるに至ったものである。
 すなわち、上記の課題は以下の手段により解決された。
<1>周期表の第4周期から第6周期の第9族及び第10族に属する金属イオンのうち異なる族に属する2種以上の金属イオンを含有する水相と、下記配位官能基群G1から選択される配位官能基を2つ以上有する酸性金属抽出剤を含有する油相とを混合して、異なる族に属する2種以上の金属イオンを抽出分離する、金属イオンの分離回収方法。
 <配位官能基群G1>
カルボキシ基、リン酸基、ホスホン酸基、スルホン酸基、スルフィン酸基
<2>酸性金属抽出剤がリン酸エステル化合物である、<1>に記載の分離回収方法。
<3>酸性金属抽出剤が下記式(I)で表される、<1>又は<2>に記載の分離回収方法。
Figure JPOXMLDOC01-appb-C000003
 式(I)中、Rは、置換又は無置換の、アルキレン基、アルケニレン基又はアルキニレン基を示す。
及びRは、各々独立に、置換又は無置換の、アルキル基、アルケニル基又はアルキニル基を示す。
~Xは、各々独立に、単結合、-O-、-NH-又は-S-を示す。
及びYは、各々独立に、酸素原子又は硫黄原子を示す。
及びZは、各々独立に、水素原子又は炭化水素基を示す。ただし、Z及びZの少なくとも一方は水素原子である。
<4>Rが無置換のアルキレン基である、<3>に記載の分離回収方法。
<5>異なる族に属する2種以上の金属イオンがコバルトイオン及びニッケルイオンである、<1>~<4>のいずれか1つに記載の分離回収方法。
<6>異なる族に属する2種以上の金属イオンが廃電池からの金属回収物である、<5>に記載の分離回収方法。
<7>湿式抽出法において、周期表の第4周期から第6周期の第9族及び第10族に属する金属イオンのうち異なる族に属する2種以上の金属イオンを抽出分離する酸性金属抽出剤であって、
 カルボキシ基、リン酸基、ホスホン酸基、スルホン酸基及びスルフィン酸基から選択される配位官能基を2つ以上有する、酸性金属抽出剤。
<8>異なる族に属する2種以上の金属イオンがコバルトイオン及びニッケルイオンである、<7>に記載の酸性金属抽出剤。
<9>下記式(I)で表される、<7>又は<8>に記載の酸性金属抽出剤。
Figure JPOXMLDOC01-appb-C000004
 式(I)中、Rは、置換又は無置換の、アルキレン基、アルケニレン基又はアルキニレン基を示す。
及びRは、各々独立に、置換又は無置換の、アルキル基、アルケニル基又はアルキニル基を示す。
~Xは、各々独立に、単結合、-O-、-NH-又は-S-を示す。
及びYは、各々独立に、酸素原子又は硫黄原子を示す。
及びZは、各々独立に、水素原子又は炭化水素基を示す。ただし、Z及びZの少なくとも一方は水素原子である。
<10>Rが無置換のアルキレン基である、<9>に記載の酸性金属抽出剤。
 本発明は、第4周期から第6周期の第9族及び第10族に属する金属イオンのうち異なる族に属する2種以上の金属イオンを水相から油相に抽出しつつも、そのうちの1種の金属イオンを高選択性かつ高回収率で分離回収する方法、及びこの方法に用いる酸性金属抽出剤を提供できる。
 本発明の上記及び他の特徴及び利点は、適宜添付の図面を参照して、下記の記載からより明らかになるであろう。
図1は実施例で合成した金属抽出剤E-2のH-NMRチャートである。 図2は実施例で合成した金属抽出剤E-3のH-NMRチャートである。
 本発明において、成分の含有量、物性等について、数値範囲を示して説明する場合、数値範囲の上限値及び下限値を別々に説明するときは、いずれかの上限値及び下限値を適宜に組み合わせて、特定の数値範囲とすることができる。一方、「~」を用いて表される数値範囲を複数設定して説明するときは、数値範囲を形成する上限値及び下限値は、特定の数値範囲として「~」の前後に記載された特定の組み合わせに限定されず、各数値範囲の上限値と下限値とを適宜に組み合わせた数値範囲とすることができる。なお、本発明において、「~」を用いて表される数値範囲は、「~」前後に記載される数値を下限値及び上限値として含む範囲を意味する。
 本発明において化合物の表示(例えば、化合物と末尾に付して呼ぶとき)については、この化合物そのもののほか、その塩、そのイオンを含む意味に用いる。また、本発明の効果を損なわない範囲で、置換基を導入するなど一部を変化させた誘導体を含む意味である。
 本発明において、置換又は無置換を明記していない置換基、連結基等(以下、置換基等という。)については、その基に適宜の置換基を有していてもよい意味である。よって、本発明において、単に、YYY基と記載されている場合であっても、このYYY基は、置換基を有しない態様に加えて、更に置換基を有する態様も包含する。これは置換又は無置換を明記していない化合物についても同義である。好ましい置換基としては、例えば後述する置換基Zから選択される基が挙げられる。
 本発明において、特定の符号で示された置換基等が複数あるとき、又は複数の置換基等を同時若しくは択一的に規定するときには、それぞれの置換基等は互いに同一でも異なっていてもよいことを意味する。また、特に断らない場合であっても、複数の置換基等が隣接するときにはそれらが互いに連結したり縮環したりして環を形成していてもよい意味である。
 本発明において、元素の周期表における「第4周期から第6周期の第9族及び第10族に属する金属イオン」、すなわち、Co、Rh、Ir(以上、第9族元素)、Ni、Pd、Pt(以上、第10族元素)の各イオンを、「特定の金属イオン群」と称することがある。
 また、上記特定の金属イオン群のうち「元素の周期表における異なる族に属する金属イオン」を「異族金属イオン」と称し、特に「周期表における同周期の異族金属イオン」を「同周期異族金属イオン」と称することがある。
 本発明において、含有量等を示す「ppm」は、特に断らない限り、質量基準であり、「質量ppm」を表す。
[酸性金属抽出剤]
 まず、本発明の金属イオンの分離回収方法に好適に用いられる酸性金属抽出剤(本発明の酸性金属抽出剤ということがある。)について、説明する。
 本発明の酸性金属抽出剤は、水相中に存在する特定の金属イオン群のなかから2種以上の異族金属イオンを油相中に抽出する機能を示す化合物であって、特に湿式抽出法に好適に用いることができる。本発明の酸性金属抽出剤を湿式抽出法に用いると、水相中に存在する特定の金属イオン群のなかから、有価金属元素のイオンとして、2種以上の異族金属イオン、特に望ましくは同周期異族金属イオンであるコバルトイオン及びニッケルイオンを、抽出しつつも、そのうちの1種の金属イオンを高選択性かつ高回収率で油相に抽出することができる。
 本発明において、金属イオンを高選択性で抽出できるとは、抽出された2種以上の異族金属イオンのうち特定の金属イオン(通常、1種)の抽出量が、他の金属イオンの合計抽出量に対する比率[(特定の金属イオンの抽出量)/(他の金属イオンの合計抽出量)]として、1.1以上の割合(分解能、選択比)で、特定の金属イオンを他の金属イオンから抽出分離できることを意味する。上記比率は、好ましくは3.0以上であり、より好ましくは5.0以上である。上限としては、特に限定されないが、2種の金属イオンを抽出する場合、例えば、100とすることができる。
 また、本発明において、金属イオンを高回収率で抽出できるとは、抽出された2種以上の異族金属イオンのうち最大抽出量で抽出された金属イオン(抽出目的とする特定の金属イオン)について、当該金属イオンの油相への抽出量が、当該金属イオンの(抽出前の)水相中の含有量に対する比率[(金属イオンの油相への抽出量)/(当該金属イオンの水相中の含有量)]として、0.5以上の割合で、抽出できることを意味する。上記比率は、好ましくは0.8以上であり、より好ましくは0.9以上である。上限としては、特に限定されず、理想的には水相中に存在する当該金属イオンの全量であり、例えば、0.99以下であることが好ましく、0.95以下又は0.90以下とすることもできる。
 本発明の酸性金属抽出剤は、配位官能基群G1から選択される配位官能基を2個以上有する化合物(酸性抽出剤ともいう。)である。すなわち、本発明の酸性金属抽出剤は、配位官能基群G1から選択される配位官能基中に少なくとも1個の活性水素原子又はその塩を有している。
 この酸性金属抽出剤は、後述する油相への溶解性の点で、疎水性基を少なくとも2個有していることが好ましく、疎水性基は配位官能基同士を連結する連結基、例えば後述する連結基又は式(I)のRが有していてもよいが、下記配位官能基(他の配位官能基と連結する連結基を除く。)が有していることが好ましい。疎水性基としては、特に限定されないが、炭化水素基が挙げられ、例えば、後述する式(I)のRとしてとりうるアルキル基、アルケニル基若しくはアルキニル基、更にはアリール基等が挙げられ、長鎖のアルキル基であることが好ましい。酸性金属抽出剤が有する疎水性基の数は、例えば、2~6個とすることができ、2~4個であることが好ましい。
 
<配位官能基群G1>
カルボキシ基、リン酸基、ホスホン酸基、スルホン酸基、スルフィン酸基
 
 本発明の酸性金属抽出剤は、脂肪族化合物でも芳香族化合物でもよく、脂肪族化合物が好ましい。また、本発明の酸性金属抽出剤は重合体等の高分子化合物でもよいが、非重合性の低分子化合物であることが好ましい。
 本発明の酸性金属抽出剤において、配位官能基を連結する連結基(配位官能基を除去した分子構造)は、特に制限されず、適宜の連結基を選択できる。連結基としては、例えば、アルカンに由来する基、アルケンに由来する基、アルキンに由来する基、芳香族化合物に由来する基(炭素数は6~24が好ましく、6~10がより好ましい)、酸素原子、硫黄原子、イミノ基(-NR-:Rは水素原子、炭素数1~6のアルキル基若しくは炭素数6~10のアリール基を示す。)、カルボニル基、又はこれらの組み合わせに係る基等が挙げられる。連結基としては、アルカンに由来する基、アルケンに由来する基、アルキンに由来する基、芳香族化合物に由来する基、又はこれらの組み合わせに係る基が好ましく、アルカンに由来する基、アルケンに由来する基又はアルキンに由来する基、又はこれらの組み合わせに係る基がより好ましく、アルカンに由来する基が更に好ましい。連結基としては、後述する式(I)中のRに相当する基であることが特に好ましい。
 アルカンに由来する基、アルケンに由来する基及びアルキンに由来する基の各基は、それぞれ、直鎖、分岐鎖、環状鎖でもよいが、直鎖又は分岐鎖が好ましく、直鎖がより好ましく、直鎖の中でも、配位官能基が最長の炭素鎖の両端に結合する直鎖が更に好ましい。
 アルカンに由来する基、アルケンに由来する基及びアルキンに由来する基の各基を構成する炭素数は、それぞれ、特に限定されないが、後述する式(I)のRとしてとりうるアルキレン基、アルケニレン基又はアルキニレン基の各基を構成する炭素数と同じである。なお、各基を構成する炭素数には各基が有する置換基を構成する炭素数を算入しない。
 また、組み合わせに係る基において、組み合わせる基、連結基若しくは原子の数は、特に制限されないが、例えば、2~20個とすることができ、2~10個とすることが好ましい。また、組み合わせる基、連結基若しくは原子の種類数は、特に制限されないが、例えば、2種以上とすることができ、2種又は3種とすることが好ましい。
 上記連結基は、置換基を有していてもよいが、置換基を有していないことが好ましい。連結基が有していてもよい置換基としては、特に制限されず、例えば、後述する置換基Zから選択される基が挙げられ、後述する式(I)のRが有していてもよい置換基と同じである。
 上記連結基を構成する連結原子数は、1~10であることが好ましく、1~7であることがより好ましく、1~4以下であることが更に好ましく、1又は3であることが特に好ましい。上記連結原子数とは、2つの配位官能基同士を結ぶ最少の原子数をいう。上記連結基を構成する原子の数は、一義的に決定されず、適宜に設定できる。一例を示すと、例えば、3~30とすることができ、3~20であることが好ましく、3~10であることがより好ましい。例えば、連結基が-CH-CH-である場合、分子構造を構成する原子の数は6となるが、連結原子数は2となる。
 本発明において、酸性金属抽出剤が2以上の連結基を有する場合、少なくとも1つの連結基が上記連結基であればよく、すべての連結基が上記連結基であることが好ましい。
 本発明の酸性金属抽出剤は、その分子構造中に、抽出対象とする異族金属イオンに対して配位結合する配位官能基として、下記配位官能基群G1に含まれるいずれかの官能基(単に配位官能基ともいう。)を2個以上する。
 酸性金属抽出剤が有する配位官能基の種類数は、特に制限されず、1種でも2種以上でもよいが、1~6種であることが好ましく、1種又は2種であることがより好ましい。酸性金属抽出剤が有する2個以上の配位官能基の種類は、同一でも異なっていてもよく、同一であることが好ましい。特に、酸性金属抽出剤が有する2個以上の配位官能基は、その化学構造が同じであることが好ましい。また、酸性金属抽出剤が有する配位官能基の合計数は、2個以上であれば特に制限されず、適宜に設定される。例えば、2~6個であることが好ましく、2~4個であることがより好ましく、2個であることが更に好ましい。
<配位官能基群G1>
カルボキシ基、リン酸基、ホスホン酸基、スルホン酸基(-S(=O)OR)、スルフィン酸基(-S(=O)OR
 
 リン酸基及びホスホン酸基は、通常、-OP(=O)(OR又は-P(=O)(ORで表されるが、本発明における配位官能基としてのリン酸基及びホスホン酸基は、それぞれ、-XP(=Z)(X又は-P(=Z)(Xで表される基を意味する。ここで、Xは、酸素原子、窒素原子又は硫黄原子を示し、酸素原子が好ましく、Xは、単結合、酸素原子、窒素原子又は硫黄原子を示し、酸素原子が好ましい。Zは、酸素原子又は硫黄原子を示し、酸素原子が好ましい。各基におけるX、X及びZの組み合わせは、特に制限されず、適宜に組み合わせることができる。リン酸基及びホスホン酸基は、それぞれ、X、X及びZがいずれも酸素原子である、-OP(=O)(OR又は-P(=O)(ORで表される基であることが特に好ましい。
 本発明において、配位官能基中のRは、水素原子又は置換基を示す。Rとしてとりうる置換基としては、特に制限されず、例えば、後述する置換基Zから選択される基が挙げられる。中でも、Rとしてとりうる置換基としては、油相への溶解性の点で、アルキル基、アルケニル基、アルキニル基、アリール基等の炭化水素基が好ましく、アルキル基、アルケニル基又はアルキニル基がより好ましく、アルキル基が更に好ましい。Rとしてとりうるアルキル基、アルケニル基及びアルキニル基は、置換基Zの説明(特に炭素数)に関わらず、後述する式(I)のRとしてとりうる各基と同義であることが好ましい。
 リン酸基及びホスホン酸基がそれぞれ有する2つのRは、同一でも異なっていてもよいが、異なっていることが好ましい。また、酸性金属抽出剤が有する複数のRは、少なくとも1つは残りのRと異なっていることが好ましく、少なくとも1つは水素原子であることがより好ましい。油相への溶解性、選択性及び回収率の点で、1つの配位官能基中における1つのRが水素原子であり、残り1つのRは置換基であること(酸性配位官能基であること)がより好ましい。
 カルボキシ基は塩を形成していてもよく、また、リン酸基、ホスホン酸基、スルホン酸基、スルフィン酸基は、Rcが水素原子をとる場合、塩を形成していてもよい。塩を形成するカチオンとしては、特に制限されず、例えば、金属カチオン、特に第1族又は第2族の金属カチオン、有機カチオン等が挙げられる。有機カチオンとしては、特に限定されないが、アンモニウムカチオン、アルキルアンモニウムカチオン等が挙げられる。
 酸性金属抽出剤が有する配位官能基としては、上記配位官能基群G1に属する官能基の中でも、カルボキシ基、リン酸基、ホスホン酸基が好ましく、リン酸基、ホスホン酸基がより好ましく、ホスホン酸基が更に好ましい。
 酸性金属抽出剤が複数種の配位官能基を有する場合、配位官能基の組み合わせは、特に限定されず、配位官能基群G1に含まれる配位官能基同士を適宜に組み合わせることができる。
 酸性金属抽出剤としては、上述の連結基に2個以上のカルボキシ基を導入したカルボン酸化合物、上述の連結基に2個以上のリン酸基若しくはホスホン酸基を導入したリン酸エステル化合物、又は、上述の連結基に2個以上のスルホン酸基若しくはスルフィン酸基を導入したスルホン酸エステル化合物が好ましく、金属イオンの選択性及び回収率の点で、上述の連結基に2個以上のリン酸基若しくはホスホン酸基を導入したリン酸エステル化合物が好ましい。なお、カルボン酸化合物、リン酸エステル化合物、スルホン酸エステル化合物は、それぞれ、配位官能基としてカルボキシ基、リン酸基若しくはホスホン酸基、又は、スルホン酸基若しくはスルフィン酸基を最も多く有する化合物であり、その他の配位官能基を有していてもよい。
 酸性金属抽出剤は、配位官能基群G1に含まれる配位官能基以外の置換基を有していてもよく、有していてもよい置換基としては、例えば、後述する置換基Zから選択される基が挙げられる。
 酸性金属抽出剤の分子量は、特に制限されないが、例えば、150~2,000とすることができ、油相への溶解性等の点で、180~1,400であることが好ましく、200~800であることがより好ましい。
 酸性金属抽出剤は、配位官能基を2個以上有しており、そのうちの少なくとも1つは、カルボキシ基、又はRの1つが水素原子である各酸性配位官能基を有している。本発明において、酸性金属抽出剤とは、水素イオン(H)を解離する酸性金属抽出剤であって、酸解離定数pKaで規定することができ、例えば、pKaが0.1~12の酸性金属抽出剤であることが好ましく、0.5~12の酸性金属抽出剤であることがより好ましく、pKaが1~8の酸性金属抽出剤であることが更に好ましい。本発明において、pKaは、中和滴定法によって測定した値とする。
 本発明の酸性金属抽出剤は、下記式(I)で表されることが好ましい。下記式(I)で表される化合物は、2個のリン酸基若しくはホスホン酸基を有するリン酸エステル化合物である。
Figure JPOXMLDOC01-appb-C000005
 式(I)において、Rは、置換若しくは無置換のアルキレン基、置換若しくは無置換のアルケニレン基、又は、置換若しくは無置換のアルキニレン基を示す。
 Rとしてとりうるアルキレン基、アルケニレン基及びアルキニレン基は、それぞれ、直鎖状、分岐鎖状、環状のいずれでもよく、直鎖状又は分岐鎖状が好ましく、直鎖状がより好ましく、炭素数が2以上である場合、両端の炭素原子が式(I)中のX又はXに結合する直鎖状であることが更に好ましい。
 アルキレン基、アルケニレン基及びアルキニレン基の総炭素数(全炭素数)は、それぞれ、特に限定されず、適宜に設定され、例えば、1~20であることが好ましく、1~15であることがより好ましく、1~12であることが更に好ましく、金属イオンへの配位のしやすさ、配位イオンの安定性等の点で、1又は3であることが特に好ましく、1であることが最も好ましい。ただし、アルキレン基、アルケニレン基及びアルキニレン基において、式(I)中のX及びXを結合する最短の炭素鎖を構成する炭素数は、金属イオンへの配位のしやすさ、配位イオンの安定性等を考慮して、1~10とすることができ、1~6であることが好ましく、1~4であることがより好ましく、1又は3であることが更に好ましく、1であることが特に好ましい。本発明においては、各基の総炭素数と、X及びXを結合する最短の炭素鎖を構成する炭素数とが同一であることが好ましい。なお、各基を構成する総炭素数及び最短の炭素鎖を構成する炭素数には各基が有する置換基を構成する炭素数を算入しない。
 アルキレン基、アルケニレン基及びアルキニレン基は、それぞれ、置換基を有していてもよいが、置換基を有していないことが好ましい。アルキレン基、アルケニレン基及びアルキニレン基が有していてもよい置換基としては、特に制限されないが、例えば、後述する置換基Z(ただし、上述の配位官能基を除く。)から選択される基が挙げられ、具体的には、アルコキシ基、アミノ基、アルキル基(好ましくはメチル基、エチル基)等が挙げられる。
 Rは、置換若しくは無置換のアルキレン基が好ましく、無置換のアルキレン基がより好ましく、総炭素数1又は3の無置換のアルキレン基が更に好ましく、無置換のメチレン基が特に好ましい。
 R及びRは、それぞれ、置換若しくは無置換のアルキル基、置換若しくは無置換アルケニル基、又は、置換若しくは無置換アルキニル基を示す。
 R及びRとしてとりうるアルキレン基、アルケニレン基及びアルキニレン基は、それぞれ、直鎖状、分岐鎖状、環状のいずれでもよく、直鎖状又は分岐鎖状が好ましく、分岐鎖状がより好ましい。R及びRとしてとりうる各基が分岐鎖状である場合、各基中に存在する分岐炭素原子数は、特に制限されず、例えば、1~8個とすることができるが、1個又は2個であることが好ましい。
 R及びRとしてとりうる各基の炭素数は、それぞれ、特に限定されず、適宜に設定され、油相への溶解性の点で、例えば、1~30であることが好ましく、6~20であることがより好ましく、6~15であることが更に好ましい。各基の炭素数についての各範囲において上限を11とすることも好ましい態様の1つである。本発明において、炭素数6以上の基を「長鎖」ということがある。R及びRとしてとりうる各基の分子量については、それぞれ、特に限定されず、適宜に設定することができ、上記炭素数の範囲内で設定することが好ましい態様の1つであり、R及びRのいずれの基も分子量が160未満であることも好ましい態様の1つである。
 R及びRは、同一でも異なっていてもよく、同一であることが好ましい。R及びRの組み合わせとしては、特に制限されず適宜の組み合わせを採用できるが、アルキル基同士の組み合わせが好ましく、無置換アルキル基同士の組み合わせがより好ましい。
 R及びRとしてとりうる各基は、それぞれ、置換基を有していてもよいが、置換基を有していないことが好ましい。各基が有していてもよい置換基としては、特に制限されないが、例えば、後述する置換基Z(ただし、上述の配位官能基を除く。)から選択される基が挙げられる。
 RとR及びRとの組み合わせは、特に制限されず、それぞれの好ましいもの同士の組み合わせが挙げられ、具体的には、Rが置換若しくは無置換のアルキレン基で、R及びRがいずれも置換若しくは無置換のアルキル基である組み合わせが好ましく、Rが無置換のアルキレン基で、R及びRがいずれも無置換のアルキル基である組み合わせがより好ましい。
 X~Xは、それぞれ、単結合、-O-、-NH-又は-S-を示す。ただし、X及びXの少なくとも1つは、-O-又は-S-であることが好ましく、-O-であることがより好ましい。
 X及びXは、いずれも、単結合又は-O-が好ましく、単結合がより好ましい。
 X~Xは、いずれも、-O-、-NH-又は-S-が好ましく、-O-がより好ましい。
 X~Xは、すべてが同一でも、少なくとも1つが異なっていてもよい。
 X~Xの組み合わせは、特に制限されず、それぞれの好ましいもの同士の組み合わせが挙げられ、具体的には、X及びXが単結合又は-O-で、X~Xが-O-である組み合わせが好ましく、X及びXが単結合で、X~Xが-O-である組み合わせがより好ましい。
 Y及びYは、それぞれ、酸素原子又は硫黄原子を示し、酸素原子が好ましい。
 Y及びYは、同一でも異なっていてもよく、同一であることが好ましい。
 Y及びYとX~Xとの組み合わせは、特に制限されず、それぞれの好ましいもの同士の組み合わせが挙げられ、X~Xの上記好ましい組み合わせと、Y及びYが酸素原子である組み合わせが好ましい。
 Z及びZは、それぞれ、水素原子又は炭化水素基を示す。
 Z及びZとしてとりうる炭化水素基としては、アルキル基、アルケニル基、アラルキル基、アリール基が挙げられ、アルキル基、アルケニル基、アリール基が好ましく、アルキル基が好ましい。アルキル基、アルケニル基、アラルキル基、アリール基としては、特に制限されないが、後述する置換基Zの対応する基と同義である。ただし、アルキル基の炭素数は、1~10がより好ましく、1~6が更に好ましく、1~4が特に好ましい。アルケニル基の炭素数は、2~10がより好ましく、2~6が更に好ましい。アラルキル基の炭素数は、7~14がより好ましく、7~12が更に好ましい。アリール基の炭素数は、6~10がより好ましく、6が更に好ましい。
 この炭化水素基は、置換基Zから選択される基を置換基(ただし、上述の配位官能基を除く。)として更に有していてもよいが、無置換の炭化水素基であることがより好ましい。
 式(I)で表される酸性金属抽出剤が酸性金属抽出剤となる点で、Z及びZの少なくとも一方が水素原子であり、両方とも水素原子であることが好ましい。
 Z及びZとしてとりうる炭化水素基と、R及びRとしてとりうる基とは、異なる種類でもよいが、同一種であることが好ましく、例えば、Z及びZの一方、R及びRのいずれも、アルキル基であることがより好ましく、無置換アルキル基であることが更に好ましい。一方、Z及びZとしてとりうる炭化水素基と、R及びRとしてとりうる基とは、同一であってもよいが、少なくとも炭素数の点で、異なることが好ましい。例えば、Z及びZとしてとりうる炭化水素基の炭素数がR及びRとしてとりうる基の炭素数よりも小さいことが好ましく、Z及びZとしてとりうる炭化水素基(アリール基を除く。)は炭素数1~6(好ましくは1~4)の短鎖であることがより好ましく、一方、R及びRとしてとりうる基は炭素数6~30(好ましくは6~20)の長鎖であることがより好ましい。
 R~RとX~XとY及びYとZ及びZとの組み合わせは、特に制限されず、それぞれの好ましいもの同士の組み合わせが挙げられる。
 式(I)で表される酸性金属抽出剤は、置換基を有していてもよい。有していてもよい置換基としては、例えば、後述する置換基Zから選択される基、ただし、配位官能基群G1に含まれる配位官能基以外の基が挙げられる。
 酸性金属抽出剤は、公知の方法、例えば特許文献1及び2に記載の方法等を参照して、合成できる。例えば、酸性金属抽出剤の合成方法として、実施例で説明する合成方法を挙げることができる。
 酸性金属抽出剤の具体例としては、実施例で合成又は準備したもの以外にも下記に示すものを挙げることができるが、本発明はこれらに限定されない。下記具体例において、Meはメチル基を示す。
Figure JPOXMLDOC01-appb-C000006
 - 置換基Z -
 アルキル基(好ましくは炭素数1~20のアルキル基、例えばメチル、エチル、イソプロピル、t-ブチル、ペンチル、ヘプチル、1-エチルペンチル、ベンジル、2-エトキシエチル、1-カルボキシメチル等)、アルケニル基(好ましくは炭素数2~20のアルケニル基、例えば、ビニル、アリル、オレイル等)、アルキニル基(好ましくは炭素数2~20のアルキニル基、例えば、エチニル、ブタジイニル、フェニルエチニル等)、シクロアルキル基(好ましくは炭素数3~20のシクロアルキル基、例えば、シクロプロピル、シクロペンチル、シクロヘキシル、4-メチルシクロヘキシル等、本発明においてアルキル基というときには通常シクロアルキル基を含む意味であるが、ここでは別記する。)、アリール基(好ましくは炭素数6~26のアリール基、例えば、フェニル、1-ナフチル、4-メトキシフェニル、2-クロロフェニル、3-メチルフェニル等)、アラルキル基(好ましくは炭素数7~23のアラルキル基、例えば、ベンジル、フェネチル等)、ヘテロ環基(好ましくは炭素数2~20のヘテロ環基で、より好ましくは、少なくとも1つの酸素原子、硫黄原子、窒素原子を有する5又は6員環のヘテロ環基である。ヘテロ環基には芳香族ヘテロ環基及び脂肪族ヘテロ環基を含む。例えば、テトラヒドロピラン環基、テトラヒドロフラン環基、2-ピリジル、4-ピリジル、2-イミダゾリル、2-ベンゾイミダゾリル、2-チアゾリル、2-オキサゾリル、ピロリドン基等)、アルコキシ基(好ましくは炭素数1~20のアルコキシ基、例えば、メトキシ、エトキシ、イソプロピルオキシ、ベンジルオキシ等)、アリールオキシ基(好ましくは炭素数6~26のアリールオキシ基、例えば、フェノキシ、1-ナフチルオキシ、3-メチルフェノキシ、4-メトキシフェノキシ等)、ヘテロ環オキシ基(上記ヘテロ環基に-O-基が結合した基)、アルコキシカルボニル基(好ましくは炭素数2~20のアルコキシカルボニル基、例えば、エトキシカルボニル、2-エチルヘキシルオキシカルボニル、ドデシルオキシカルボニル等)、アリールオキシカルボニル基(好ましくは炭素数7~26のアリールオキシカルボニル基、例えば、フェノキシカルボニル、1-ナフチルオキシカルボニル、3-メチルフェノキシカルボニル、4-メトキシフェノキシカルボニル等)、ヘテロ環オキシカルボニル基(上記ヘテロ環基に-O-CO-基が結合した基)、アミノ基(好ましくは炭素数0~20のアミノ基、アルキルアミノ基、アリールアミノ基を含み、例えば、アミノ(-NH)、N,N-ジメチルアミノ、N,N-ジエチルアミノ、N-エチルアミノ、アニリノ等)、スルファモイル基(好ましくは炭素数0~20のスルファモイル基、例えば、N,N-ジメチルスルファモイル、N-フェニルスルファモイル等)、アシル基(アルキルカルボニル基、アルケニルカルボニル基、アルキニルカルボニル基、アリールカルボニル基、ヘテロ環カルボニル基を含み、好ましくは炭素数1~20のアシル基、例えば、アセチル、プロピオニル、ブチリル、オクタノイル、ヘキサデカノイル、アクリロイル、メタクリロイル、クロトノイル、ベンゾイル、ナフトイル、ニコチノイル等)、アシルオキシ基(アルキルカルボニルオキシ基、アルケニルカルボニルオキシ基、アルキニルカルボニルオキシ基、ヘテロ環カルボニルオキシ基を含み、好ましくは炭素数1~20のアシルオキシ基、例えば、アセチルオキシ、プロピオニルオキシ、ブチリルオキシ、オクタノイルオキシ、ヘキサデカノイルオキシ、アクリロイルオキシ、メタクリロイルオキシ、クロトノイルオキシ、ニコチノイルオキシ等)、アリーロイルオキシ基(好ましくは炭素数7~23のアリーロイルオキシ基、例えば、ベンゾイルオキシ、ナフトイルオキシ等)、カルバモイル基(好ましくは炭素数1~20のカルバモイル基、例えば、N,N-ジメチルカルバモイル、N-フェニルカルバモイル等)、アシルアミノ基(好ましくは炭素数1~20のアシルアミノ基、例えば、アセチルアミノ、ベンゾイルアミノ等)、アルキルチオ基(好ましくは炭素数1~20のアルキルチオ基、例えば、メチルチオ、エチルチオ、イソプロピルチオ、ベンジルチオ等)、アリールチオ基(好ましくは炭素数6~26のアリールチオ基、例えば、フェニルチオ、1-ナフチルチオ、3-メチルフェニルチオ、4-メトキシフェニルチオ等)、ヘテロ環チオ基(上記ヘテロ環基に-S-基が結合した基)、アルキルスルホニル基(好ましくは炭素数1~20のアルキルスルホニル基、例えば、メチルスルホニル、エチルスルホニル等)、アリールスルホニル基(好ましくは炭素数6~22のアリールスルホニル基、例えば、ベンゼンスルホニル等)、アルキルシリル基(好ましくは炭素数1~20のアルキルシリル基、例えば、モノメチルシリル、ジメチルシリル、トリメチルシリル、トリエチルシリル等)、アリールシリル基(好ましくは炭素数6~42のアリールシリル基、例えば、トリフェニルシリル等)、アルコキシシリル基(好ましくは炭素数1~20のアルコキシシリル基、例えば、モノメトキシシリル、ジメトキシシリル、トリメトキシシリル、トリエトキシシリル等)、アリールオキシシリル基(好ましくは炭素数6~42のアリールオキシシリル基、例えば、トリフェニルオキシシリル等)、ホスホリル基(好ましくは炭素数0~20のリン酸基、例えば、-OP(=O)(R)、ホスホニル基(好ましくは炭素数0~20のホスホニル基、例えば、-P(=O)(R)、ホスフィニル基(好ましくは炭素数0~20のホスフィニル基、例えば、-P(R)、ホスホン酸基(好ましくは炭素数0~20のホスホン酸基、例えば、-PO(OR)、スルホ基(スルホン酸基)、カルボキシ基、ヒドロキシ基、スルファニル基、シアノ基、ハロゲン原子(例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子等)が挙げられる。Rは、水素原子又は置換基(好ましくは置換基Zから選択される基)である。
 また、これらの置換基Zで挙げた各基は、上記置換基Zが更に置換していてもよい。
 上記アルキル基、アルキレン基、アルケニル基、アルケニレン基、アルキニル基及び/又はアルキニレン基等は、環状でも鎖状でもよく、また直鎖でも分岐していてもよい。
[金属イオンの分離回収方法]
 次いで、本発明の酸性金属抽出剤を用いた本発明の金属イオンの分離回収方法を説明する。
 本発明の金属イオンの分離回収方法(以下、本発明の分離回収方法ということがある。)は、周期表の第4周期から第6周期の第9族及び第10族に属する金属イオン(特定の金属イオン群)のうち異なる族に属する2種以上の金属イオンを含有する水相と、上述の本発明の酸性金属抽出剤を含有する油相とを混合して、水層中に存在する異なる族に属する2種以上の金属イオン(異族金属イオン)を油相に抽出分離する方法である。上記水相と油相とを混合することにより、本発明の酸性金属抽出剤が配位した異族金属イオンを水相から油相に移動(抽出)させて、高選択性かつ高回収率で分離回収することができる。ここで、油相に抽出させる異族金属イオンは、水相に含有する複数種の異族金属イオンのうち、すべての種類であってもよく、その一部、ただし2種以上であってもよい。本発明においては、水相に含有する2種以上の異族金属イオンの全種類を油相に抽出することが好ましい。本発明の分離回収方法は、有価金属元素のイオンとして、特定の金属イオン群のうち異族金属イオン、特に望ましくは同周期異族金属イオンであるコバルトイオン及びニッケルイオンであって、そのうちの1種の金属イオンを高選択性かつ高回収率で油相に抽出することができる。
 本発明の分離回収方法は、本発明の酸性金属抽出剤が、湿式抽出法において、水相に存在する特定の金属イオン群に含まれる2種以上の異族金属イオンを一緒に油相に抽出するものの、そのうちの1種の金属イオンを高選択性かつ高回収率で抽出できるという特性、機能を見出して、2種以上の異族金属イオンを分離回収するという新たな用途に適用したものである。
<水相>
 水相を形成する水は、特に限定されないが、(超)純水、イオン交換水等を用いることができる。
 水相は、周期表の第4周期から第6周期の第9族及び第10族に属する金属イオン(特定の金属イオン群)を含み、この特定の金属イオン群は異なる族に属する2種以上の金属イオンを含んでいる。
 特定の金属イオン群に含まれる金属イオンとしては、第4周期から第6周期の第9族及び第10族に属する金属イオンであり、具体的には、Co、Rh、Ir、Ni、Pd、Ptの各イオンが挙げられる。特定の金属イオン群に含まれる金属イオンとしては、第4周期又は第5周期の第9族及び第10族に属する金属イオンであることが好ましく、第4周期の第9族及び第10族に属する金属イオンであることがより好ましい。特定の金属イオン群を構成する金属イオンの種類数は、2~6種であり、2~5種であることが好ましく、2~4種であることがより好ましい。
 水相は、上記特定の金属イオン群のうち、2種以上の異族金属イオンを含んでいる。2種以上の異族金属イオンとしては、第9族元素のイオンと第10族元素イオンとを適宜に組み合わせることができ、例えば、CoとNi、Pd又はPtとの組み合わせ、RhとNi、Pd又はPtとの組み合わせ、IrとNi、Pd又はPtとの組み合わせが挙げられ、CoとNi、Pd又はPtとの組み合わせが好ましい。2種以上の異族金属イオンとしては、上記組み合わせの中でも、通常、湿式抽出法では選択性及び回収率の点で採用が難しいとされる同周期異族金属イオンの組み合わせが好ましく、CoとNiとの組み合わせ、RhとPdとの組み合わせ、IrとPtとの組み合わせが挙げられ、CoとNiとの組み合わせが好ましい。水相に含まれる異族金属イオンの種類数は、2種以上であればよく、例えば、2~4種であることが好ましく、2種であることがより好ましい。
 水相は、特定の金属イオン群以外の金属イオン、例えば、第9族及び第10族以外の族に属する金属元素のイオンを1種又は2種以上含んでいてもよい。本発明の分離回収方法の一態様においては、第7周期に属する金属元素のイオンを含んでいないことが好ましく、第6周期及び第7周期に属する金属元素のイオンを含んでいないことが好ましく、特定の金属イオン群に含まれる金属イオン以外の金属イオンを含んでいないことが更に好ましい。ここで、水相が金属イオンを「含んでいない」とは、水相に金属イオンを積極的に混入しないことを意味し、水相に不可避的に混入される金属イオンをも含まないことを意味するものではなく、例えば、水相の金属イオン含有量(濃度)が100質量ppm以下であることをいう。
 金属イオンとしては、適宜に準備することができ、例えば、各種金属塩(金属元素の硝酸、硫酸等の無機酸若しくは酢酸等の有機酸等の塩)、採掘された金属(イオン)の混合物、金属廃棄物からの回収物、その他の廃棄物、例えば廃電池(LiB)からの金属回収物等、更にこれらの混合物等を用いることができる。廃LiBからの金属回収物としては、公知の方法、例えば湿式処理、電気分解等による回収物が挙げられる。
 水相中における特定の金属イオン群の総含有量は、特に限定されず適宜に設定されるが、例えば、1,000~1,000,000質量ppmとすることができ、1,000~100,000質量ppmであることが好ましく、1,000~50,000質量ppmであることがより好ましい。
 特定の金属イオン群のうち第9族に属する金属イオンの合計含有量は、特に限定されず適宜に設定されるが、例えば、1,000~60,000質量ppmとすることができ、1,000~30,000質量ppmであることが好ましい。第9族に属する各金属イオンの含有量は、上記合計含有量を考慮して適宜に設定され、例えば、500~40,000質量ppmとすることができ、1,000~20,000質量ppmであることが好ましい。
 特定の金属イオン群のうち第10族に属する金属イオンの合計含有量は、特に限定されず適宜に設定されるが、例えば、1,000~60,000質量ppmとすることができ、1,000~30,000質量ppmであることが好ましい。第10族に属する各金属イオンの含有量は、上記合計含有量を考慮して適宜に設定され、例えば、500~40,000質量ppmとすることができ、1,000~20,000質量ppmであることが好ましい。
 本発明において、異族金属イオンの関係にある各金属イオンの含有量は、他の金属イオンの含有量に対して多くても少なくてもよい。本発明の分離回収方法は、高選択性で異族金属イオンを分離回収できるため、異族金属イオンの含有量を特定の比率に設定する必要はない。例えば、第9族に属する金属イオンの合計含有量は第10族に属する金属イオンの合計含有量より多くても少なくてもよく、同じとすることもできる。異族金属イオンの含有量の比率についての一例を挙げると、最大抽出量で抽出される金属イオンの含有量に対する他の族に属する金属イオン(抽出されない金属イオンを含む。)の含有量の質量比[最大抽出量の金属イオンの含有量:他の族に属する金属イオンの含有量]は、例えば、100:1~10,000とすることができ、100:10~5,000とすることが好ましく、100:50~1,000とすることがより好ましく、100:70~130とすることが更に好ましい。
 本発明において、水相が特定の金属イオン群以外の金属イオンを含有する場合、その合計含有量は、特に限定されないが、50,000質量ppm以下であることが好ましく、30,000質量ppm以下であることがより好ましい。
 水相のpHは、特に制限されず適宜に設定されるが、金属イオンの溶解性、錯イオンの形成等を考慮すると、例えば、0.1~10とすることが好ましく、選択性及び回収率の点で、0.5~7.0とすることがより好ましく、特に回収率を高めることができる点で、1.0~6.5とすることが更に好ましく、5.0~6.5とすることが特に好ましい。水相のpHは、例えば、酸又はアルカリを用いて調整することができる。酸としては、公知のものを特に限定されることなく用いることができ、硫酸、塩酸、硝酸、リン酸等の無機酸、ギ酸、酢酸、シュウ酸、有機リン酸、有機スルホン酸等の有機酸が挙げられる。アルカリとしては、公知のものを特に限定されることなく用いることができ、無機アルカリ、有機アルカリを挙げることができ、無機アルカリが好ましい。無機アルカリとしては、例えば、第1族又は第2族の金属の水酸化物、炭酸塩等の金属アルカリ、更にはアンモニア水、塩化アンモニウム等が挙げられる。有機アルカリとしては、有機アンモニウム塩等が挙げられる。
 水相の温度は、特に制限されず、例えば、10~60℃とすることができる。
 水相は、必要に応じて、金属イオンに配位する配位子(化合物)又は配位子を発生させる化合物等を含有していてもよい。
 水相は、水中に、各種の金属イオンを溶解して調製することができる。水相の調製条件は、特に限定されない。例えば、調製温度は10~60℃とすることができる。
<油相>
 本発明の分離回収方法には、上述の水相に対して、本発明の酸性金属抽出剤を1種又は2種以上含有する油相(有機相)を用いる。
 本発明の酸性金属抽出剤は、有機溶媒に対する溶解性を示して油相中に存在して水相と油相との界面近傍に存在する異族金属イオンに配位結合し、2種以上の異族金属イオンを油相に移動させる機能を示す。本発明において、有機溶媒に対する溶解性とは、後述する含有量で酸性金属抽出剤が有機溶媒に溶解可能な性質を意味する。
 油相を形成する有機溶媒は、特に限定されず、適宜の有機溶媒を用いることができる。例えば、アルコール溶媒、エーテル溶媒、炭化水素系溶媒(芳香族溶媒、脂肪族溶媒)、ハロゲン溶媒等が挙げられる。中でも、炭化水素系溶媒が好ましく、石油の分流成分である各種溶媒がより好ましく、芳香族系、パラフィン系、ナフテン系、ケロシン、ガソリン、ナフサ、灯油、軽油の炭化水素系溶媒が更に好ましい。
 油相中における酸性金属抽出剤の含有量は、上述の金属イオンの各含有量、金属イオンへの配位量、配位官能基数等を考慮して適宜に設定される。例えば、油相中の含有量は、20~10,000ミリモル/L(mM)とすることができ、50~1,000ミリモル/Lとすることが好ましく、100~500ミリモル/Lとすることがより好ましい。
 油相の温度は、特に制限されず、例えば、10~60℃とすることができる。
 油相は、本発明の酸性金属抽出剤の他に適宜の成分を含有していてもよい。
 油相は、有機溶媒に、酸性金属抽出剤を溶解して調製することができる。油相の調製条件は、特に限定されず、例えば、調製温度を10~60℃とすることができる。
(接触、混合)
 本発明の分離回収方法においては、上記水相と油相とを混合し、静置する。
 このときの混合条件及び静置条件は、特に制限されず、適宜に設定できる。例えば、混合は各種の混合装置を用いて行うことができる。混合装置としては、磁気攪拌子(スターラーチップ)を用いた方法、メカニカルスターラーを用いた方法、更に、ミキサー等を用いた方法が挙げられる。攪拌条件(攪拌速度、攪拌時間等)は、水相と油相とを混合できる条件(酸性金属抽出剤が金属イオンに配位結合する条件)であればよく、金属イオン及び酸性金属抽出剤との組み合わせ、混合温度、更には混合装置に応じて適宜に設定される。例えば、攪拌時間としては、攪拌条件等により一義的に決定されないが、例えば10分~24時間とすることができる。
 静置条件は、水相と油相とが二層に分離する条件であればよく、例えば、静置時間は、混合停止後、10分~24時間とすることができる。
 混合温度及び静置温度も特に制限されず、例えば、10~60℃とすることができる。
 水相と油相との混合において、水相と油相との混合割合は、金属イオンの含有量(濃度)、酸性金属抽出剤の含有量(濃度)等に応じて適宜に設定され、一義的に決定されない。例えば、上記各濃度を満たす水相及び油相を混合する場合、水相100mLに対して油相を50~2,000mLの割合とすることができ、80~1,000mLの割合とすることが好ましく、80~200mLの割合とすることが好ましい。一方、水相に存在する金属イオンに着目すると、特定の金属イオン群の総含有量(モル)に対して、酸性金属抽出剤が0.5~20モル倍となる割合で油相を混合することが好ましい。また、酸性金属抽出剤が配位しうる金属イオンの総含有量に対する酸性金属抽出剤の含有量(混合量ともいう。金属イオンの総モル数に対する金属抽出剤のモル数の割合:モル比)としては、例えば、0.5~20.0当量とすることができる。ここで、酸性金属抽出剤が配位しうる金属イオンとは、酸性金属抽出剤が配位して油相に抽出される異族金属イオンをいう。
 水相と油相との混合において、混合系のpHを調整することもできる。ここで、抽出する特定の金属イオンに対して設定されるpHは、一義的ではなく、金属抽出剤のpKa、金属抽出剤と金属イオンの錯体形成定数、金属イオンの配位数等を考慮して、適宜に決定される。混合系のpHとしては、例えば、2~14とすることが好ましく、3.0~7.0とすることがより好ましく、3.0~5.0とすることが更に好ましい。pHの調製は、上述の酸若しくはアルカリ、又はその水溶液等を用いて行うことができるが、アンモニウムイオンを用いないことが好ましい態様の1つである。
 水相と油相との混合において、混合系のpHを調整する場合、上述の、水相と油相との混合、及び混合後の静置は、pHを調整した後に行う。
 このようにして水相と油相とを混合し、静置して得られる、水相と油相とが相分離した二相分離流体(溶媒抽出相、溶媒抽出系)は、水相と油相とが接触した状態で互いに層状に相分離して存在している。そして、上述の特定の金属イオン群のうち酸性金属抽出剤が配位結合した2種以上の異族金属イオンが油相に存在(移動)している。特定の金属イオン群のうち油相に抽出される2種以上の異族金属イオンとしては、特に制限されず、例えば、上述の、水相に含まれる2種以上の異族金属イオン(組み合わせ)と同じであることが好ましい。油相に抽出される異族金属イオンの種類数は、2種以上であればよく、例えば、2~4種であることが好ましく、2種であることがより好ましい。
 本発明の分離回収方法における上記水相と油相とを混合、静置する簡便な方法により、特定の金属イオン群のうち2種以上の異族金属イオンを油相に抽出しつつも、そのうちの1種の金属イオンを高選択性かつ高回収率で分離回収することができる。
 高選択性かつ高回収率で分離回収できる1種の金属イオンは、金属イオンの族若しくは周期、更には含有量、酸性金属抽出剤の種類等により、一義的に決定されない。例えば、第9族に属する金属イオンを高選択性かつ高回収率で分離回収でき、同周期異族金属イオンの共存下においても第9族に属する金属イオンCoイオン又はRhイオンをそれぞれ高選択性かつ高回収率で分離回収できる。
 本発明の分離回収方法は、上述のようにして、水相中に存在する特定の金属イオン群のうち2種以上の異族金属イオンを油相に抽出しながら、そのうちの1種の金属イオン、特に第9族に属する金属イオンを高選択性かつ高回収率で回収することができるから、油相から逆抽出した2種以上の異族金属イオンを含む水相を、更に本発明の分離回収方法に供することにより、回収率を大きく損なうことなく、1種の金属イオンの選択性を更に高めることができ、結果的に、高純度の金属イオンを高回収率で回収できる。
 このような本発明の分離回収方法は2種以上の金属イオンの抽出方法ということもできる。
 本発明の分離回収方法において、酸性金属抽出剤は単独で金属イオンに配位して、この金属イオンを油相に抽出することができるため、水相及び油相は、金属イオンに配位する化合物又は配位子を発生させる化合物等を含有していなくてもよい。本発明の分離回収方法においては、通常、必須成分として特定の金属イオン群を含有する水相と、必須成分として本発明の酸性金属抽出剤を含有する油相とを用いる。
 本発明の分離回収方法は、上述の水相と油相とを混合、静置する工程以外の工程を有していてもよい。例えば、水相と油相とを混合、静置する工程で得られた油相から異族金属イオンを逆抽出(単離)する方法、逆抽出した異族金属イオンを化合物(塩)として回収する工程、逆抽出した異族金属イオン又はその化合物を精製する工程、更には、元素の周期表における第1族又は第2族に属する金属元素のイオンを予め除去する工程等が挙げられる。油相から異族金属イオンを逆抽出(単離)する方法としては、公知の方法を特に制限されることなく適用することができ、例えば、硫酸、塩酸、硝酸等の無機酸を用いて、液相を酸性、例えば、pH2~4とすることにより、行うことができる。逆抽出した異族金属イオンを化合物として回収する方法としては、公知の方法を特に制限されることなく適用することができる。
 以下に、実施例に基づき本発明について更に詳細に説明するが、本発明はこれにより限定して解釈されるものではない。以下の実施例において組成を表す「部」及び「%」は、特に断らない限り質量基準である。
[酸性金属抽出剤の合成及び準備]
 下記に示す金属抽出剤を合成又は準備した。
Figure JPOXMLDOC01-appb-C000007
PC-88A:下記に示す(2-エチルヘキシル)ホスホン酸モノ-2-エチルヘキシル(東京化成工業社製)
VA-10:Versatic acid 10 (ヘキシオン社製)
Figure JPOXMLDOC01-appb-C000008
<酸性金属抽出剤E-1の合成>
 以下のようにして、酸性金属抽出剤E-1を合成した。
 後述する酸性金属抽出剤E-2の合成において、メチレンジホスホン酸を1,3-プロピレンジホスホン酸に変更したこと以外は、酸性金属抽出剤E-2の合成と同様にして、酸性金属抽出剤E-1を合成した。得られた酸性金属抽出剤E-1を、酸性金属抽出剤E-2と同様にして同定した。
<酸性金属抽出剤E-2の合成>
 以下のようにして、酸性金属抽出剤E-2を合成した。
 すなわち、500mL三口ナスフラスコにメチレンジホスホン酸(東京化成工業社製)15.4g、2-エチルヘキサノール(富士フイルム和光純薬社製)22.8g、テトラヒドロフラン(富士フイルム和光純薬社製)150gを加え、リフラックス状態で撹拌して溶解させた。
 これとは別に、500mLメスシリンダーにN,N’-ジシクロヘキシルカルボジイミド(富士フイルム和光純薬社製)39.7g及びテトラヒドロフラン150gの溶液を準備した。
 この溶液を上述の三口ナスフラスコ内へ3時間かけて滴下し、滴下終了後から更に5時間撹拌した。得られた溶液を室温で放冷し、析出した白色結晶をろ過にて除去し、トルエンで洗浄した。ろ液から溶媒を減圧留去し、化合物E-2を透明な液体として得た(収率98%)。
 こうして合成した酸性金属抽出剤E-2を以下のようにして同定した。
 すなわち、H-NMRを重クロロホルム中で測定(装置:BLUKER400)した。その結果を図1に示す。
 図1に示すH-NMRチャートにおいて、2-エチルヘキシルオキシ基のO原子の隣に位置する水素原子(δ3.98)と、P原子に挟まれた炭素原子に直結する水素原子(δ2.35)の積分比が4:2程度であることから、メチレンジホスホン酸に対して2-エチルヘキシル基が2つ導入されたことが分かる。よって、得られた化合物が上記E-2で示す構造であると同定した。
<酸性金属抽出剤E-3の合成>
 以下のようにして、酸性金属抽出剤E-3を合成した。
 すなわち、500mL三口ナスフラスコに、酸性金属抽出剤E-2を35.0g、エタノール(富士フイルム和光純薬社製)を11.4g、テトラヒドロフランを100g加え、リフラックス状態で攪拌した。これとは別に、500mLメスシリンダーにN,N’-ジシクロヘキシルカルボジイミド(富士フイルム和光純薬社製)21.6g及びテトラヒドロフラン100gの溶液を準備した。この溶液を上述の三口ナスフラスコ内へ3時間かけて滴下し、滴下終了後から更に5時間撹拌した。得られた溶液を室温で放冷し、析出した白色結晶をろ過にて除去し、トルエンで洗浄した。ろ液から溶媒を減圧留去し、化合物E-3を透明な液体として得た(収率98%)。
 こうして合成した酸性金属抽出剤E-3を以下のようにして同定した。
 すなわち、重クロロホルム中のH-NMRを測定(装置:BLUKER400)して、得られたチャートを図2に示す。また、LC-MS(装置:LCMS-8050)にて化合物のフラグメントイオンを確検出した。
 図2に示すH-NMRチャートにおいて、2-エチルヘキシルオキシ基のO原子の隣に位置する水素原子(δ3.97)と、P原子に挟まれた炭素原子に直結する水素原子(δ2.42)の積分比が4:2程度であることから、メチレンジホスホン酸に対して2-エチルヘキシル基が2つ導入されていることが分かる。また、2-エチルヘキシルオキシ基のO原子の隣に位置する水素原子(δ3.97)とエトキシ基のO原子の隣に位置する水素原子(δ4.19)の積分比が2:1程度であることから、2-エチルヘキシル基とエチル基が2:1で導入されていると推定される。また、LC-MSよりフラグメントイオン429.4が得られた。酸性金属抽出剤E-3のExact Mass(精密質量)は428.3であることから、[M+H]イオンに相当すると推定される。
 以上のことから、得られた化合物が上記E-3で示す構造であると同定した。
<酸性金属抽出剤E-4の合成>
 以下のようにして、酸性金属抽出剤E-4を合成した。
 すなわち、1L三口ナスフラスコに、エタノール300g、ナトリウムエトキシド(富士フイルム和光純薬社製)43.8g、1-ブロモ-2-エチルヘキサン(東京化成工業社製)112g、マロン酸ジエチル(東京化成工業社製)46.4gを加えて、リフラックス状態で12時間撹拌した。得られた溶液から析出した固体をろ過にて除去し、ろ液から一部の溶媒を減圧留去した。得られた溶液に水を100g加えた後、pHが1~2になるまで2M(mol/L)の塩酸を加えた後、トルエンにて抽出操作を実施し、有機相の溶媒を留去することにより、ジエチル-2,2-ビス(2-エチルヘキシル)マロネートを得た(収率97%)。
 続いて、2L三口フラスコにエタノールを550g、4MのNaOH溶液を550g、ジエチル-2,2-ビス(2-エチルヘキシル)マロネートを108g加え、リフラックス状態で7時間撹拌した。得られた溶液を室温で放冷した後、エタノールを減圧留去し、トルエンを450g加えた。水層をトルエンで3回洗浄したのち、2M塩酸を加えpHを1~2に調整し、トルエンで化合物を抽出し、有機層から溶媒を減圧留去することで、酸性金属抽出剤E-4を合成した(収率98%)。
<酸性金属抽出剤E-5の合成>
 以下のようにして、酸性金属抽出剤E-5を合成した。
 上述の酸性金属抽出剤E-2の合成において、メチレンジホスホン酸を1,2-エチレンジホスホン酸に変更したこと以外は、酸性金属抽出剤E-2の合成と同様にして、酸性金属抽出剤E-5を合成した。得られた酸性金属抽出剤E-5を、酸性金属抽出剤E-2と同様にして同定した。
<酸性金属抽出剤E-6の合成>
 以下のようにして、酸性金属抽出剤E-6を合成した。
 学術文献J.Org.Chem.2013,78,270-277に記載の化合物1cの合成法に従い、金属抽出剤E-6の合成及び同定を実施した。
<金属抽出剤E-7の合成>
 以下のようにして、金属抽出剤E-7を合成した。
 上述の酸性金属抽出剤E-3の合成において、エタノールを22.8g、N,N’-ジシクロヘキシルカルボジイミドを43.2g使用したこと以外は同様にして、金属抽出剤E-7を合成した。得られた金属抽出剤E-7を、酸性金属抽出剤E-3と同様にして同定した。
<酸性金属抽出剤E-8の合成>
 以下のようにして、酸性金属抽出剤E-8を合成した。
 参考文献2の実施例1に記載の化合物の合成法に従い、金属抽出剤E-8の合成及び同定を実施した。
 合成又は準備した酸性金属抽出剤について、分子量、及び上記方法により算出したpKaを表1-2に示す。
[金属イオン含有水溶液(水相)の調製]
 1Lメスフラスコに、硫酸コバルト(II)七水和物(富士フイルム和光純薬社製)を71.6g、硫酸ニッケル(II)七水和物(富士フイルム和光純薬社製)を71.8g加え、超純水でメスアップした後に、40℃で、撹拌して溶解させ、2種の異族金属イオンを含有する金属イオン含有水溶液(W1)を調製した。
 また、表1-1に示す金属イオンの組み合わせで超純水に各硫酸塩を溶解して、2種の異族金属イオンを含有する金属イオン含有水溶液(W2)、及びコバルトイオンとマンガンイオンとを含有する金属イオン含有水溶液(W3)をそれぞれ調製した。
<金属抽出剤溶液(油相)の調製>
 100mLメスフラスコに、合成又は準備した各金属抽出剤を加え、ケロシン(富士フイルム和光純薬社製)を用いて、室温で、メスアップすることで、各酸性金属抽出剤を含有する酸性金属抽出剤溶液(Y1)~(Y6)、(Y8)、(Yc1)及び(Yc2)(濃度310mM)をそれぞれ調製した。
 また、酸性金属抽出剤溶液(Y1)の調製において、酸性金属抽出剤E-1に代えて金属抽出剤E-7溶液(Y1)を用いたこと以外は、酸性金属抽出剤溶液(Y1)の調製と同様にして、金属抽出剤溶液(Y7)を調製した。
<実施例1>
 30mLバイアル管に、調製した金属イオン含有水溶液(W1)10mLに対して、酸性抽出剤溶液(Y1)を12mL加えて、スターラーチップにより25℃で30分撹拌した。このときの、配位しうる金属イオン(抽出された異族金属イオンと同義であり、実施例1ではCo及びNi)の総含有量に対する酸性金属抽出剤の混合量(単位:当量)は0.73であった。その後、10M水酸化ナトリウム水溶液又は10M塩酸を加えて、混合液のpHを表1-2の「混合時pH」欄に示す値に調整し、更に25℃で30分間撹拌した後、同温度で1時間静置した。有機相(油相)と水相との2層に分離したことを確認し、分液して水相を取り出して、金属イオンの分離回収を行った。実施例1で抽出された金属イオン、及び最大抽出量の金属イオンを、表1-2の「抽出された金属イオン」欄の「種類」欄及び「最大抽出量」欄に、それぞれ、示す。
<実施例2~9及び比較例1~4>
 実施例1において、金属イオン含有水溶液及び金属抽出剤溶液を表1-1の「水相」欄及び表1-2(以下、併せて表1という。)の「油相」欄に示す組み合わせに変更するとともに、水相と油相との混合時のpHを表1-2の「混合時pH」欄に示す値に、かつ配位しうる金属イオンの総含有量に対する酸性金属抽出剤の混合量(単位:当量)を表1-2の「混合量」欄に示す値にそれぞれ設定して混合、静置したこと以外は、実施例1と同様にして、実施例2~9及び比較例1~4の金属イオンの分離回収を行った。各実施例において、抽出された金属イオン、及び最大抽出量の金属イオンを、表1-2の「抽出された金属イオン」欄の「種類」欄及び「最大抽出量」欄に、それぞれ、示す。
 実施例及び比較例で用いた各水相、及び抽出後の各水相に対して、pHメーター(SK-620pHII、サトテック社製)を用いてpHを測定し、誘導結合プラズマ発光分光分析(ICP-OES)装置(Optima 7300D(商品名)、パーキンエルマー社製)を用いて、溶存金属イオンの含有量をそれぞれ定量した。実施例及び比較例で用いた各水相のpH、及び各水相の溶存金属イオンの含有量の測定値を、それぞれ、表1-2の「水相pH」欄、表1-1の「抽出前の水相における金属イオン濃度(ppm)」欄、及び表1-1の「抽出後の水相における金属イオン濃度(ppm)」欄に、それぞれ示す。こうして測定した最大抽出量の金属イオンの抽出量(ppm)を他の金属イオンの合計抽出量(ppm)で除して、抽出量の比率を算出した結果を、表1-2の「選択比」欄に示す。なお、他の金属イオンが抽出されない比較例1及び2については「選択比」を「100」と表記した。
 また、実施例及び比較例において、水相と油相との混合時のpHを同様にして測定した結果を「混合時pH」欄に示す。更に、酸性金属抽出剤の、配位しうる金属イオンの総含有量に対する混合量を表1-2の各「混合量」欄に示す。なお、表1-2において、混合量の単位は当量であるが、省略する。
 なお、本実験を水層の金属イオン濃度を1/5に減らしたこと以外は実施例1~9及び比較例1~4と同様にして実験を行ったところ、同様の結果が得られた。
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
 表1に示す、「抽出前の水相における金属イオン濃度(ppm)」と「抽出後の水相における金属イオン濃度(ppm)」との対比の結果等から次のことが分かる。
 水相からの金属イオンの分離回収において、従来の酸性金属抽出剤である、PC-88A及びVA-10を用いた比較例1及び2は、いずれも、金属イオン含有水溶液(W1)中に存在する2種の異族金属イオンのうちCoイオンのみを油相に抽出できる。しかし、Coイオンの回収率は、高々、20%及び13%に過ぎない。また、比較例3は、水相から抽出分離する金属イオンとして第7族に属するMnイオンと第9族に属するCoイオンとを用いた実験例であるが、本発明の酸性金属抽出剤E-1を用いても、Coイオンを高い選択性で分離回収できない。更に、比較例4は、活性水素を有さない金属抽出剤E-7を用いた実験例であるが、異なる族に属する2種の金属イオンであるCoイオン及びニッケルイオンのいずれも抽出することができない。
 これに対して、本発明の酸性金属抽出剤を用いた実施例1~9は、いずれも、金属イオン含有水溶液中に存在する特定の金属イオン群のうち2種の異族金属イオンを油相に抽出できている。そのうえ、最大抽出量の金属イオン(実施例1~4、7~9:Coイオン、実施例5及び6:Rhイオン)は、最大抽出量の金属イオン以外の金属イオンに対して高い選択比で、ほぼ全量を水相から油相に抽出できている。
 実施例1~4、7~9、特に選択比が30又は19の実施例2及び3では、有価金属元素、例えばリチウムイオン電池の製造に重要なコバルトイオン及びニッケルイオンの両者を抽出しながらも、物理的挙動及び化学的挙動が類似しているこれら同周期異族金属イオンのうちのCoイオンを高選択性かつ高回収率で回収できることが示されている。このように、比較例及び実施例との対比から、本発明の酸性金属抽出剤は、第4周期から第6周期の第9族及び第10族に属する特定の金属イオン群のうち異なる族に属する2種以上の金属イオンに選択的に配位する特有の機能を示すと考えられ、その結果、特定の金属イオン群において、廃LiB等から回収可能な第9族及び第10族に属する金属イオンのうち1種の金属イオンを高選択性かつ高回収率で分離回収できることが初めて見出された。
 このように本発明の酸性金属抽出剤が特定の金属イオン群における2種以上の異族金属イオンを水相から油相に抽出しつつも、そのうちの1種の金属イオンを高選択性かつ高回収率で分離回収できる理由の詳細はまだ明らかではないが、金属イオンに酸性金属抽出剤が配位して形成される錯イオンの安定性(配位環の環員数及び錯イオンの歪)と、油相に対する相溶性(油相への移動(抽出)のしやすさ)とのバランスが良化されたことによるものと考えられる。
 以上の結果から、上記各実施例で得られた油相を通常の方法及び条件で逆抽出することにより、油相に高選択性かつ高回収率で抽出された金属イオンを、高選択性を損なうことなく高い回収量で、しかも簡便に、分離回収できることが分かる。
 ところで、複数の金属イオンを含有する水相から特定の金属イオンを回収する技術においては、一般的に、特定の金属イオンを高い選択性及び回収率で回収することは難しく、比較例1及び2のように高い選択性を維持すると回収率が低下するため、所定の回収率を達成するためには複数回の分離回収操作を要するのが実情である。これに対して、本発明は、簡便な方法で、2種の異族金属イオンのうちの1種を高い選択性で、ほぼ全量を水相から油相に抽出できる。そのため、得られた油相から逆抽出工程等により、1種の金属イオンを高い回収率で、しかも選択性を更に向上させながら、簡便かつ少ない工程数で回収することができる点においても、上記実情を鑑みると、本発明の技術的意義は大きい。
 本発明をその実施態様とともに説明したが、我々は特に指定しない限り我々の発明を説明のどの細部においても限定しようとするものではなく、添付の請求の範囲に示した発明の精神と範囲に反することなく幅広く解釈されるべきであると考える。
 本願は、2022年9月15日に日本国で特許出願された特願2022-147026に基づく優先権を主張するものであり、これはここに参照してその内容を本明細書の記載の一部として取り込む。

Claims (10)

  1.  周期表の第4周期から第6周期の第9族及び第10族に属する金属イオンのうち異なる族に属する2種以上の金属イオンを含有する水相と、下記配位官能基群G1から選択される配位官能基を2つ以上有する酸性金属抽出剤を含有する油相とを混合して、異なる族に属する2種以上の金属イオンを抽出分離する、金属イオンの分離回収方法。
    <配位官能基群G1>
    カルボキシ基、リン酸基、ホスホン酸基、スルホン酸基、スルフィン酸基
  2.  前記酸性金属抽出剤がリン酸エステル化合物である、請求項1に記載の分離回収方法。
  3.  前記酸性金属抽出剤が下記式(I)で表される、請求項1に記載の分離回収方法。
    Figure JPOXMLDOC01-appb-C000001
     式(I)中、Rは、置換又は無置換の、アルキレン基、アルケニレン基又はアルキニレン基を示す。
    及びRは、各々独立に、置換又は無置換の、アルキル基、アルケニル基又はアルキニル基を示す。
    ~Xは、各々独立に、単結合、-O-、-NH-又は-S-を示す。
    及びYは、各々独立に、酸素原子又は硫黄原子を示す。
    及びZは、各々独立に、水素原子又は炭化水素基を示す。ただし、Z及びZの少なくとも一方は水素原子である。
  4.  前記Rが無置換のアルキレン基である、請求項3に記載の分離回収方法。
  5.  前記異なる族に属する2種以上の金属イオンがコバルトイオン及びニッケルイオンである、請求項1に記載の分離回収方法。
  6.  前記異なる族に属する2種以上の金属イオンが廃電池からの金属回収物である、請求項5に記載の分離回収方法。
  7.  湿式抽出法において、周期表の第4周期から第6周期の第9族及び第10族に属する金属イオンのうち異なる族に属する2種以上の金属イオンを抽出分離する酸性金属抽出剤であって、
     カルボキシ基、リン酸基、ホスホン酸基、スルホン酸基及びスルフィン酸基から選択される配位官能基を2つ以上有する、酸性金属抽出剤。
  8.  前記異なる族に属する2種以上の金属イオンがコバルトイオン及びニッケルイオンである、請求項7に記載の酸性金属抽出剤。
  9.  下記式(I)で表される、請求項7に記載の酸性金属抽出剤。
    Figure JPOXMLDOC01-appb-C000002
     式(I)中、Rは、置換又は無置換の、アルキレン基、アルケニレン基又はアルキニレン基を示す。
    及びRは、各々独立に、置換又は無置換の、アルキル基、アルケニル基又はアルキニル基を示す。
    ~Xは、各々独立に、単結合、-O-、-NH-又は-S-を示す。
    及びYは、各々独立に、酸素原子又は硫黄原子を示す。
    及びZは、各々独立に、水素原子又は炭化水素基を示す。ただし、Z及びZの少なくとも一方は水素原子である。
  10.  前記Rが無置換のアルキレン基である、請求項9に記載の酸性金属抽出剤。
PCT/JP2023/033378 2022-09-15 2023-09-13 金属イオンの分離回収方法及び酸性金属抽出剤 WO2024058215A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-147026 2022-09-15
JP2022147026 2022-09-15

Publications (1)

Publication Number Publication Date
WO2024058215A1 true WO2024058215A1 (ja) 2024-03-21

Family

ID=90275211

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/033378 WO2024058215A1 (ja) 2022-09-15 2023-09-13 金属イオンの分離回収方法及び酸性金属抽出剤

Country Status (1)

Country Link
WO (1) WO2024058215A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5929697A (ja) * 1982-08-12 1984-02-16 Sakai Chem Ind Co Ltd ホスホン酸エステル、ホスホン酸エステルの製造方法ホスホン酸エステルを含有する金属抽出剤
JPS63183135A (ja) * 1987-01-08 1988-07-28 ヘンケル・コマンディットゲゼルシャフト・アウフ・アクチャン ホスホノアルカンカルボン酸部分エステル系金属イオン抽出剤

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5929697A (ja) * 1982-08-12 1984-02-16 Sakai Chem Ind Co Ltd ホスホン酸エステル、ホスホン酸エステルの製造方法ホスホン酸エステルを含有する金属抽出剤
JPS63183135A (ja) * 1987-01-08 1988-07-28 ヘンケル・コマンディットゲゼルシャフト・アウフ・アクチャン ホスホノアルカンカルボン酸部分エステル系金属イオン抽出剤

Similar Documents

Publication Publication Date Title
CN110300810B (zh) 稀土金属的分离
JP5035788B2 (ja) 希土類金属の抽出剤と抽出方法
KR20230015426A (ko) 카르복실산계 화합물, 그의 제조방법 및 응용
US11401579B2 (en) Rare earth metal oxide process including extracting rare earth metal from acidic solution with an ionic liquid composition
JP4151842B2 (ja) 新規なホスホン酸アミド化合物、その製造方法及び用途
JP5679158B2 (ja) 希土類金属の溶媒抽出用有機相の製造方法
WO2016090809A1 (zh) 含氨基中性膦萃取剂用于萃取分离四价铈的用途和方法
TWI826466B (zh) 離子液體製備技術
WO2016090808A1 (zh) 含氨基中性膦萃取剂用于萃取分离钍的用途和方法
CN112639142B (zh) 逆流稀土分离工艺
CN113481391B (zh) 一种分离稀土元素的方法
WO2024058215A1 (ja) 金属イオンの分離回収方法及び酸性金属抽出剤
US8500846B2 (en) Rare metal extractant
WO2024058216A1 (ja) 金属抽出剤、及びこの金属抽出剤を用いた金属イオンの分離回収方法
US20240186606A1 (en) Separation recovery method of metal ions, and two-phase separated fluid
US11958754B2 (en) Enhanced separation of rare earth metals
WO2023054120A1 (ja) 金属イオンの分離回収方法、及び二相分離流体
CN108220632B (zh) 一种稀土回收富集工艺
JP7485769B2 (ja) N,n-ジヒドロカルビルアミドカルボン酸並びにその調製方法及び使用
CN113480443A (zh) 一种n,n-二烃基氨基羧酸化合物及其制备方法和应用
CN113430373A (zh) 一种分离稀土元素的方法
WO2024074783A1 (fr) Utilisation de dérivés lipophiles d'acides aminopolycarboxyliques pour l'extraction de terres rares d'une solution aqueuse acide
EA040373B1 (ru) Разделение редкоземельных металлов

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23865564

Country of ref document: EP

Kind code of ref document: A1