WO2024058180A1 - 半導体装置形成用基板、半導体積層構造体、半導体装置、半導体装置形成用基板の製造方法、半導体積層構造体の製造方法及び半導体装置の製造方法 - Google Patents

半導体装置形成用基板、半導体積層構造体、半導体装置、半導体装置形成用基板の製造方法、半導体積層構造体の製造方法及び半導体装置の製造方法 Download PDF

Info

Publication number
WO2024058180A1
WO2024058180A1 PCT/JP2023/033217 JP2023033217W WO2024058180A1 WO 2024058180 A1 WO2024058180 A1 WO 2024058180A1 JP 2023033217 W JP2023033217 W JP 2023033217W WO 2024058180 A1 WO2024058180 A1 WO 2024058180A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon carbide
semiconductor
semiconductor device
substrate
layer
Prior art date
Application number
PCT/JP2023/033217
Other languages
English (en)
French (fr)
Inventor
直輝 重川
剣波 梁
Original Assignee
公立大学法人大阪
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 公立大学法人大阪 filed Critical 公立大学法人大阪
Publication of WO2024058180A1 publication Critical patent/WO2024058180A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/20Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/20Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy
    • H01L21/2003Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy characterised by the substrate
    • H01L21/2015Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy characterised by the substrate the substrate being of crystalline semiconductor material, e.g. lattice adaptation, heteroepitaxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/80Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier

Definitions

  • the present invention relates to a substrate for forming a semiconductor device, a semiconductor laminated structure, a semiconductor device, a method for manufacturing a substrate for forming a semiconductor device, a method for manufacturing a semiconductor laminated structure, and a method for manufacturing a semiconductor device.
  • Non-Patent Document 1 discloses that a thin film of silicon is deposited on the surface of a diamond substrate and a surface of gallium nitride, and the diamond substrate and gallium nitride are bonded by bonding the silicon to each other.
  • a semiconductor stacked structure has been proposed.
  • Non-Patent Document 2 a gallium nitride element was fabricated on a silicon carbide substrate, the silicon carbide substrate was ground to a thickness of 50 ⁇ m, and this silicon carbide substrate and a diamond substrate were bonded via a titanium thin film.
  • a semiconductor stacked structure has been proposed.
  • Patent Document 1 a silicon carbide substrate implanted with hydrogen ions is bonded to a diamond substrate, the silicon carbide substrate is smart cut by heat treatment, and gallium nitride is grown as a crystal on the thinned silicon carbide substrate.
  • a semiconductor device has been proposed.
  • Non-Patent Document 1 when the semiconductor laminated structure of Non-Patent Document 1 is subjected to heat treatment at a high temperature of 800° C. or higher, a reaction called meltback occurs at the interface between gallium nitride and silicon, forming voids and forming semiconductor elements (semiconductor devices). ), there is a problem in that reliability decreases when forming.
  • Non-Patent Document 2 has a silicon carbide substrate and a diamond substrate bonded via a titanium thin film, and titanium has a problem of lower thermal conductivity and poorer heat dissipation than silicon carbide. There is.
  • an object of the present invention is to provide a substrate for forming a semiconductor device, a semiconductor stacked structure, a semiconductor device, and a manufacturing method thereof, which can easily bond a diamond substrate and a semiconductor layer and have excellent heat dissipation and heat resistance.
  • the present invention has the following aspects. [1] having a diamond substrate and a silicon carbide layer located on part or all of one surface of the diamond substrate, The thickness of the silicon carbide layer is 20 nm or less, A substrate for forming a semiconductor device, wherein the arithmetic mean roughness Ra of the surface of the silicon carbide layer is 0.5 nm or less. [2] The substrate for forming a semiconductor device according to [1], wherein part or all of the silicon carbide contained in the silicon carbide layer is amorphous.
  • a semiconductor device comprising the semiconductor stacked structure according to any one of [3] to [5], wherein part or all of the silicon carbide contained in the silicon carbide layer is polycrystalline.
  • a method for manufacturing a substrate for forming a semiconductor device comprising: [8] A step of manufacturing a substrate for forming a semiconductor device by the method for manufacturing a substrate for forming a semiconductor device according to [7], Next, a method for manufacturing a semiconductor stacked structure, comprising: a bonding step of bonding the surface of the silicon carbide layer and a semiconductor layer containing nitride or oxide.
  • a step of manufacturing a semiconductor laminated structure by the method for manufacturing a semiconductor laminated structure according to [8], A method for manufacturing a semiconductor device, comprising a heat treatment step of subjecting the semiconductor stacked structure to a heat treatment at 800° C. or higher.
  • a diamond substrate and a semiconductor layer can be easily bonded, and the diamond substrate and the semiconductor layer can be easily bonded and have excellent heat dissipation and heat resistance.
  • FIG. 1 is a cross-sectional view of a substrate for forming a semiconductor device according to an embodiment of the present invention.
  • FIG. 1 is a cross-sectional view of a semiconductor stacked structure according to an embodiment of the present invention.
  • 1 is a cross-sectional view of a semiconductor device according to an embodiment of the present invention.
  • FIG. 2 is a flow diagram showing part of a method for manufacturing a semiconductor device according to an embodiment of the present invention.
  • FIG. 2 is a flow diagram showing part of a method for manufacturing a semiconductor device according to an embodiment of the present invention.
  • FIG. 2 is a flow diagram showing part of a method for manufacturing a semiconductor device according to an embodiment of the present invention.
  • TEM transmission electron microscope
  • the substrate for forming a semiconductor device of the present invention includes a diamond substrate and a silicon carbide layer located on part or all of one surface of the diamond substrate.
  • semiconductor device forming substrate 1 includes a diamond substrate 10 and a silicon carbide layer 20 located on one surface 10a of diamond substrate 10.
  • the thickness T 1 of the semiconductor device forming substrate 1 is, for example, preferably 1 to 500 ⁇ m, more preferably 10 to 400 ⁇ m, and even more preferably 50 to 300 ⁇ m.
  • the thickness T1 is equal to or greater than the above lower limit, the physical strength of the semiconductor device can be further increased.
  • the thickness T1 is less than or equal to the above upper limit, the size of the semiconductor device can be made more compact.
  • the thickness T1 can be measured using, for example, a digital caliper. In this specification, "thickness T 1 " is an arithmetic mean value of thicknesses at 10 randomly extracted locations.
  • the thickness T 10 of the diamond substrate 10 is, for example, preferably 10 to 500 ⁇ m, more preferably 30 to 400 ⁇ m, and even more preferably 50 to 300 ⁇ m.
  • the thickness T 10 can be measured using, for example, a digital caliper. In this specification, "thickness T 10 " is an arithmetic mean value of thicknesses at 10 randomly extracted locations.
  • the diamond substrate 10 has high thermal conductivity, and a semiconductor device including the diamond substrate 10 can further improve heat dissipation.
  • the thermal conductivity of the diamond substrate 10 is, for example, preferably 500 W/m ⁇ K or more, more preferably 700 W/m ⁇ K or more, and even more preferably 1000 W/m ⁇ K or more.
  • the upper limit of the thermal conductivity of the diamond substrate 10 is not particularly limited, and is, for example, 3000 W/m ⁇ K.
  • the thermal conductivity of the diamond substrate 10 is preferably 500 to 3000 W/m ⁇ K, more preferably 700 to 3000 W/m ⁇ K, and even more preferably 1000 to 3000 W/m ⁇ K.
  • the thermal conductivity of the diamond substrate 10 can be measured, for example, by a temperature gradient method, a disk heat flow meter method, or the like.
  • the thermal conductivity of the diamond substrate 10 can be adjusted by adjusting the purity, crystallinity, type of crystal, density, and combinations thereof of the diamond constituting the diamond substrate 10.
  • the thickness T 20 of the silicon carbide layer 20 is 20 nm or less, preferably 1 nm or more and 18 nm or less, more preferably 2 nm or more and 16 nm or less, and even more preferably 5 nm or more and 15 nm or less.
  • the thickness T 20 is equal to or greater than the above lower limit, the arithmetic mean roughness Ra of the surface 20a of the silicon carbide layer 20 can be further reduced.
  • the thickness T 20 is less than or equal to the above upper limit value, the heat dissipation of the semiconductor device can be further improved.
  • the thickness T 20 is determined, for example, by observing a cross section of the semiconductor device forming substrate 1 in the thickness direction using an electron microscope or the like. As the electron microscope, for example, a transmission electron microscope (TEM) can be used.
  • TEM transmission electron microscope
  • Silicon carbide layer 20 has higher thermal conductivity than a layer of simple silicon. Therefore, a semiconductor device including the silicon carbide layer 20 can have higher heat dissipation than a semiconductor device including a layer of simple silicon having the same thickness.
  • the thermal conductivity of silicon carbide layer 20 is, for example, preferably 100 W/m ⁇ K or more, more preferably 150 W/m ⁇ K or more, and even more preferably 200 W/m ⁇ K or more. When the thermal conductivity of silicon carbide layer 20 is equal to or higher than the above lower limit, the heat dissipation of the semiconductor device can be further improved.
  • the upper limit of the thermal conductivity of silicon carbide layer 20 is not particularly limited, but is set to, for example, 450 W/m ⁇ K.
  • the thermal conductivity of silicon carbide layer 20 is preferably 100 to 450 W/m ⁇ K, more preferably 150 to 450 W/m ⁇ K, and even more preferably 200 to 450 W/m ⁇ K.
  • the thermal conductivity of silicon carbide layer 20 can be measured, for example, by a temperature gradient method, a disk heat flow meter method, or the like.
  • the thermal conductivity of silicon carbide layer 20 can be adjusted by adjusting the purity, crystallinity, crystal type, density, and combinations thereof of silicon carbide constituting silicon carbide layer 20 .
  • Arithmetic mean roughness Ra of surface 20a of silicon carbide layer 20 is 0.5 nm or less, preferably 0.45 nm or less, and more preferably 0.4 nm or less.
  • the lower limit of the arithmetic mean roughness Ra of the surface 20a of the silicon carbide layer 20 is not particularly limited, and is, for example, 0.01 nm.
  • Arithmetic mean roughness Ra of surface 20a of silicon carbide layer 20 is preferably 0.01 to 0.5 nm, more preferably 0.01 to 0.45 nm, and even more preferably 0.01 to 0.4 nm.
  • Arithmetic mean roughness Ra of surface 20a of silicon carbide layer 20 is determined, for example, by analysis using an atomic force microscope (AFM).
  • the measurement conditions of the atomic force microscope (AFM) can be those described in Examples below.
  • silicon carbide contained in silicon carbide layer 20 is amorphous.
  • arithmetic mean roughness Ra of surface 20a of silicon carbide layer 20 can be further reduced.
  • Whether silicon carbide is amorphous or not can be determined by, for example, observing a cross section in the thickness direction of semiconductor device forming substrate 1 with an electron microscope. For example, if a striped structure is not observed in the silicon carbide layer 20 of the semiconductor device forming substrate 1 and silicon carbide does not fall under any of the cubic, hexagonal, and rhombohedral crystals, "contained in the silicon carbide layer 20" It is determined that at least a portion of silicon carbide is amorphous.
  • the electron microscope for example, a transmission electron microscope (TEM) can be used.
  • the semiconductor stacked structure of the present invention includes a diamond substrate, a semiconductor layer located on a part or all of one surface of the diamond substrate, and a silicon carbide layer located between the diamond substrate and the semiconductor layer.
  • the semiconductor layer contains nitride or oxide, the silicon carbide layer is a single layer, and the thickness of the silicon carbide layer is 20 nm or less.
  • the semiconductor laminated structure 2 includes a diamond substrate 10, a silicon carbide layer 20 located on one surface 10a of the diamond substrate 10, and a semiconductor layer 30 located on the surface 20a of the silicon carbide layer 20. has. That is, the semiconductor stacked structure 2 includes a diamond substrate 10, a semiconductor layer 30 located on one surface 10a of the diamond substrate 10, and a silicon carbide layer 20 located between the diamond substrate 10 and the semiconductor layer 30. .
  • the same components as those in FIG. 1 are denoted by the same reference numerals, and the description thereof will be omitted.
  • the thickness T 2 of the semiconductor laminated structure 2 is, for example, preferably 2 to 1000 ⁇ m, more preferably 5 to 700 ⁇ m, and even more preferably 10 to 500 ⁇ m.
  • the thickness T2 can be measured using, for example, a digital caliper. In this specification, "thickness T2 " is an arithmetic mean value of thicknesses at 10 randomly extracted locations.
  • Arithmetic mean roughness Ra of surface 20a of silicon carbide layer 20 at the interface between silicon carbide layer 20 and semiconductor layer 30 is preferably 0.5 nm or less, more preferably 0.45 nm or less, and further preferably 0.4 nm or less. preferable.
  • the arithmetic mean roughness Ra of the surface 20a of the silicon carbide layer 20 is less than or equal to the above upper limit, the bondability with the semiconductor layer 30 can be further improved. Therefore, the heat dissipation and heat resistance of the semiconductor device can be further improved.
  • the lower limit of the arithmetic mean roughness Ra of the surface 20a of the silicon carbide layer 20 is not particularly limited, and is, for example, 0.01 nm.
  • Arithmetic mean roughness Ra of surface 20a of silicon carbide layer 20 is preferably 0.01 to 0.5 nm, more preferably 0.01 to 0.45 nm, and even more preferably 0.01 to 0.4 nm.
  • the arithmetic mean roughness Ra of the surface 20a of the silicon carbide layer 20 is determined, for example, by removing the semiconductor layer 30 and then analyzing it using an atomic force microscope (AFM).
  • the measurement conditions of the atomic force microscope (AFM) can be those described in Examples below.
  • Silicon carbide layer 20 is a single layer.
  • “single layer” refers to a single layer formed in one process and does not include a bonding interface inside, and contains amorphous silicon carbide and is formed in a layered or striped shape. may have been done. Whether the silicon carbide layer 20 is a single layer or not can be determined by, for example, observing a cross section in the thickness direction of the semiconductor stacked structure 2 using a transmission electron microscope (TEM), and energy dispersive X-ray spectroscopy accompanying the TEM. This can be determined by elemental distribution analysis using (EDX).
  • TEM transmission electron microscope
  • EDX energy dispersive X-ray spectroscopy
  • the silicon carbide layer 20 is not a single layer, that is, a boundary line (bonding interface) parallel to the interface between the silicon carbide layer 20 and the semiconductor layer 30 can be confirmed in the silicon carbide layer-silicon carbide layer, and at that position. Elements (eg iron) originating from the bond are detected.
  • a silicon carbide layer is formed on each of the surface of the diamond substrate 10 to be bonded and the surface of the semiconductor layer 30 to be bonded, and these silicon carbide layers are bonded to each other.
  • a semiconductor laminated structure 2 with fewer bonding interfaces is realized compared to the case where the semiconductor layered structure 2 has fewer bonding interfaces. As a result, thermal resistance due to the bonding interface can be reduced, and heat dissipation and heat resistance can be further improved.
  • Semiconductor layer 30 contains nitride or oxide.
  • the nitride include gallium nitride (GaN), indium nitride (InN), aluminum nitride (AlN), and mixed crystals thereof.
  • the semiconductor layer 30 may have a multilayer structure made of these nitrides.
  • the oxide include gallium oxide (Ga 2 O 3 ), aluminum oxide (Al 2 O 3 ), and mixed crystals thereof.
  • the semiconductor layer 30 may have a multilayer structure made of these oxides.
  • the thickness T 30 of the semiconductor layer 30 is, for example, preferably 0.1 to 50 ⁇ m, more preferably 0.2 to 20 ⁇ m, and even more preferably 0.5 to 10 ⁇ m.
  • the output of the semiconductor device can be further increased.
  • the thickness T 30 is less than or equal to the above upper limit value, the temperature increase of the semiconductor device due to the thermal resistivity of the nitride or oxide contained in the semiconductor layer 30 can be suppressed, and the bondability with the diamond substrate 10 can be further improved. . Therefore, the heat dissipation and heat resistance of the semiconductor device can be further improved.
  • the thickness T 30 is determined, for example, by observing a cross section of the semiconductor stacked structure 2 in the thickness direction using an electron microscope or the like.
  • an electron microscope for example, a transmission electron microscope (TEM) can be used.
  • TEM transmission electron microscope
  • thickness T 30 is an arithmetic mean value of thicknesses at 10 randomly extracted locations.
  • the semiconductor device of the present invention includes the semiconductor stacked structure of the present invention, and part or all of the silicon carbide contained in the silicon carbide layer is polycrystalline.
  • the semiconductor device 3 includes a diamond substrate 10, a semiconductor layer 30 located on a part of one surface 10a of the diamond substrate 10, and a carbonized semiconductor layer 30 located between the diamond substrate 10 and the semiconductor layer 30. It has a silicon layer 20.
  • the semiconductor device 3 a portion of the semiconductor layer 30 and the silicon carbide layer 20 in the semiconductor stacked structure 2 are removed.
  • a gate electrode 41, a source electrode 42, and a drain electrode 43 are formed on the surface of the semiconductor layer 30.
  • the same components as those in FIG. 2 are denoted by the same reference numerals, and the explanation thereof will be omitted.
  • a known material can be used as a material constituting the gate electrode 41.
  • Examples of the material constituting the gate electrode 41 include nickel, gold, palladium, and the like.
  • As a material constituting the source electrode 42 a known material can be used. Examples of materials constituting the source electrode 42 include titanium, aluminum, nickel, gold, etc., and multilayer structures thereof.
  • As a material constituting the drain electrode 43 a known material can be used. Examples of the material constituting the drain electrode 43 include titanium, aluminum, nickel, gold, etc., and multilayer structures thereof.
  • the thickness of the gate electrode 41 is, for example, preferably 0.1 to 20 ⁇ m, more preferably 0.5 to 15 ⁇ m, and even more preferably 1 to 10 ⁇ m.
  • the thickness of the gate electrode 41 is equal to or greater than the above lower limit, the output of the semiconductor device 3 can be further increased.
  • the thickness of the gate electrode 41 is less than or equal to the above upper limit value, the gate electrode 41 can be miniaturized, and the operating frequency of the semiconductor device 3 is improved.
  • the thickness of the gate electrode 41 is less than or equal to the above upper limit value, the production efficiency of the semiconductor device 3 can be further improved.
  • the thickness of the source electrode 42 is similar to the thickness of the gate electrode 41.
  • the thickness of the drain electrode 43 is similar to the thickness of the gate electrode 41.
  • the thickness of the electrode can be measured using, for example, a digital caliper.
  • the thickness of the electrode is the arithmetic mean value of the thicknesses of 10 randomly extracted locations.
  • the shapes of the patterns of the gate electrode 41, source electrode 42, and drain electrode 43 are not particularly limited, and can be determined as appropriate depending on the application of the semiconductor device 3, etc.
  • the shapes of the patterns of the semiconductor layer 30 and the silicon carbide layer 20 to be removed are not particularly limited, and can be appropriately determined depending on the application of the semiconductor device 3, etc.
  • silicon carbide contained in silicon carbide layer 20 is polycrystalline.
  • the bonding strength between silicon carbide layer 20 and semiconductor layer 30 can be further increased. Therefore, the heat dissipation and heat resistance of the semiconductor device 3 can be further improved.
  • silicon carbide is polycrystalline or not can be determined by observing a cross section of the semiconductor device 3 in the thickness direction using an electron microscope. For example, if a striped structure is observed in a part of the silicon carbide layer, it means that the atoms in this part are arranged periodically, that is, it is crystallized.
  • TEM transmission electron microscope
  • the method for manufacturing a substrate for forming a semiconductor device of the present invention includes depositing silicon carbide on a part or all of one surface of a diamond substrate so that the thickness is 20 nm or less and the arithmetic mean roughness Ra of the surface is 0.5 nm.
  • the method includes the following deposition steps to form a silicon carbide layer.
  • the deposition step is a step of depositing silicon carbide on part or all of one surface of the diamond substrate to form a silicon carbide layer having a thickness of 20 nm or less and a surface arithmetic mean roughness Ra of 0.5 nm or less. It is.
  • methods for depositing silicon carbide include sputtering, vacuum deposition, chemical vapor deposition, and physical vapor deposition. As a method for depositing silicon carbide, a sputtering method is preferable because the thickness of the silicon carbide layer can be made uniform and thinner.
  • the sputtering method examples include a bipolar method, a magnetron method, reactive sputtering, ion beam sputtering, and electron cyclotron resonance (ECR) sputtering.
  • a magnetron method is preferable because silicon carbide can be deposited stably and the arithmetic mean roughness Ra of the surface can be easily controlled to 0.5 nm or less.
  • the method for manufacturing a semiconductor laminated structure of the present invention includes the steps of manufacturing a substrate for forming a semiconductor device by the method for manufacturing a substrate for forming a semiconductor device of the present invention, and then forming a silicon carbide layer on the surface of a silicon carbide layer and a nitride or an oxide. and a bonding step of bonding the semiconductor layer.
  • the process of manufacturing a substrate for forming a semiconductor device is similar to the method for manufacturing a substrate for forming a semiconductor device described above.
  • the bonding process is a process of bonding the surface of the silicon carbide layer and the semiconductor layer containing nitride or oxide, subsequent to the process of manufacturing a substrate for forming a semiconductor device.
  • Examples of the method for bonding the silicon carbide layer and the semiconductor layer include a surface activated bonding (SAB) method, a high pressure bonding method, a high vacuum bonding method, and the like.
  • SAB method is a method in which the surfaces to be bonded are cleaned with chemicals and pure water, activated with plasma or ions in a vacuum chamber, and then bonded in a low-temperature atmosphere from room temperature (for example, 25 degrees Celsius) to 400 degrees Celsius. be.
  • the high-pressure bonding method is a method in which the surfaces to be bonded are cleaned with a chemical solution and pure water, and then a high pressure of 0.1 MPa to 10 MPa is applied to the surfaces while heating them in the atmosphere.
  • the high vacuum bonding method is a method in which surfaces to be bonded are cleaned with a chemical solution and pure water, and then bonded in a high vacuum atmosphere of about 10 ⁇ 6 Pa to 10 ⁇ 3 Pa.
  • surface activated bonding is preferable because bonding can be performed at room temperature (eg, 5 to 30° C.) and bonding can be performed more easily.
  • the temperature in the bonding step is, for example, preferably 0 to 400°C, more preferably 0 to 100°C, and even more preferably 5 to 30°C (room temperature) from the viewpoint of suppressing deterioration of the silicon carbide layer and the semiconductor layer. preferable.
  • the method for manufacturing a semiconductor device of the present invention includes a step of manufacturing a semiconductor layered structure by the method of manufacturing a semiconductor layered structure of the present invention, and a heat treatment step of subjecting the semiconductor layered structure to heat treatment at 800° C. or higher.
  • the method for manufacturing a semiconductor device of this embodiment includes a step A-1, a step A-2, a step A-3, a step B-1, a step B-2, It has a step B-3 and a step B-4.
  • step A-1 is a step in which a nitride or oxide is crystal-grown on a crystal growth substrate to obtain a semiconductor layer and a first laminate.
  • the crystal growth substrate include a silicon substrate, a silicon carbide substrate, a sapphire substrate, and the like, and a silicon substrate is preferred from the viewpoint of cost.
  • crystal growth methods include metal organic chemical vapor deposition (MOCVD), molecular beam epitaxy (MBE), hydride vapor phase epitaxy (HVPE), sublimation, and flux methods.
  • MOCVD metal organic chemical vapor deposition
  • MBE molecular beam epitaxy
  • HVPE hydride vapor phase epitaxy
  • sublimation sublimation
  • flux methods As the crystal growth method, MOCVD is preferable from the viewpoint of crystal quality.
  • Step A-2 is a step of bonding the surface of the semiconductor layer of the first laminate to a support substrate to obtain a second laminate.
  • the supporting substrate is not particularly limited as long as it is suitable for supporting the semiconductor layer until the crystal growth substrate is removed from the semiconductor layer and the silicon carbide layer is bonded to the semiconductor layer in the subsequent process.
  • Examples of the support substrate include a silicon substrate, a silicon carbide substrate, a molybdenum substrate, and a glass substrate.
  • the method for joining the semiconductor layer and the supporting substrate is not particularly limited, and from the viewpoint of easy attachment and detachment and sufficient support of the semiconductor layer, bonding with wax, brazing material, solder, etc. are preferable.
  • Step A-3 is a step of removing the crystal growth substrate from the second laminate obtained in Step A-2, polishing the back surface of the semiconductor layer, and obtaining a third laminate.
  • the method for removing the crystal growth substrate is not particularly limited, and examples include methods such as cutting, grinding, polishing, and etching. Examples of methods for polishing the back surface of the semiconductor layer include chemical mechanical polishing (CMP).
  • step B-1 is a step of depositing silicon carbide on a diamond substrate to form a silicon carbide layer to obtain a fourth laminate (substrate for forming a semiconductor device).
  • methods for depositing silicon carbide on a diamond substrate include sputtering, vacuum deposition, chemical vapor deposition, and physical vapor deposition.
  • a sputtering method is preferable because the thickness of the silicon carbide layer can be made uniform and thinner.
  • Step B-2 joins the semiconductor layer of the third laminate obtained in Step A-3 and the silicon carbide layer of the fourth laminate obtained in Step B-1 to form a fifth laminate.
  • This is the process of obtaining a laminate.
  • the method for bonding the semiconductor layer of the third laminate and the silicon carbide layer of the fourth laminate include the SAB method, high pressure bonding method, high vacuum bonding method, and the like.
  • the SAB method is preferable because it can be bonded at room temperature and can be bonded more easily.
  • step B-3 is a step of removing the support substrate from the fifth laminate obtained in step B-2 to obtain a sixth laminate (semiconductor laminate structure).
  • methods for removing the support substrate from the fifth laminate include methods such as desorption, separation, grinding, polishing, and etching.
  • Step B-4 is a step in which the sixth laminate is subjected to treatments including mesa formation treatment and heat treatment to impart an element structure to the semiconductor layer.
  • the element structure refers to a structure including a buffer layer, a channel layer, a barrier layer, and a contact layer from the side closest to the silicon carbide layer.
  • the heating temperature during the heat treatment is, for example, preferably 800°C or higher, more preferably 850°C or higher, and even more preferably 900°C or higher. When the heating temperature is equal to or higher than the above lower limit, a sufficient element structure can be imparted to the semiconductor layer.
  • the upper limit of the heating temperature is not particularly limited, it is set to, for example, 1200° C. from the viewpoint of suppressing deterioration of the semiconductor layer.
  • the heating temperature during the heat treatment is preferably 800 to 1200°C, more preferably 850 to 1200°C, even more preferably 900 to 1200°C.
  • the sixth laminate By subjecting the sixth laminate to the heat treatment, polycrystallization of silicon carbide contained in the silicon carbide layer of the sixth laminate is promoted.
  • silicon carbide is polycrystalline, the bonding strength between the silicon carbide layer and the semiconductor layer can be further increased. Therefore, the heat dissipation and heat resistance of the semiconductor device can be further improved.
  • lithography is applied to this laminate to process the silicon carbide layer and semiconductor layer on the diamond substrate into a desired shape, and then the gate electrode, source electrode, and drain electrode are formed.
  • the layers are stacked to obtain a semiconductor element (semiconductor device).
  • known metals such as nickel, gold, titanium, aluminum, palladium, and multilayer structures thereof can be used.
  • the gate electrode, source electrode, and drain electrode are obtained by forming a metal laminated film by vacuum evaporation or the like.
  • heat treatment is performed to react with nitride or oxide contained in the semiconductor layer after forming the metal laminated film.
  • the heating temperature for this purpose is, for example, preferably 650°C or higher, more preferably 700°C or higher, and even more preferably 800°C or higher.
  • the silicon carbide layer located on the surface of the diamond substrate and the semiconductor layer are bonded, and a semiconductor element (semiconductor device) in which a gate electrode, a source electrode, and a drain electrode are formed on the surface of the semiconductor layer is obtained.
  • a rectangular substrate with a length of 4 mm, a width of 4 mm, and a thickness of 350 ⁇ m was prepared as a diamond substrate.
  • the arithmetic mean roughness Ra was 0.77 nm.
  • Silicon carbide was deposited on one surface of this diamond substrate by sputtering to form a silicon carbide layer with a thickness of 13 nm to obtain a fourth laminate (Step B-1).
  • the arithmetic mean roughness Ra was 0.37 nm. The conditions for measuring the arithmetic mean roughness Ra are shown below.
  • ⁇ Measuring device SPM-9600 (manufactured by Shimadzu Corporation)
  • ⁇ Measurement probe NCHR (manufactured by NanoWorld)
  • ⁇ Measurement range 1 ⁇ m 2
  • a silicon substrate with a diameter of 4 inches (101.6 mm) and a thickness of 500 ⁇ m is prepared as a substrate for crystal growth, and gallium nitride as a nitride is grown as a crystal on one surface of the silicon substrate by MOCVD.
  • a semiconductor layer having a thickness of 1 ⁇ m was formed to obtain a first laminate (Step A-1).
  • the semiconductor layer of the first laminate was cut into a rectangle with a length of 10 mm and a width of 12 mm.
  • a rectangular silicon substrate having a length of 20 mm, a width of 20 mm, and a thickness of 500 ⁇ m was bonded with wax to obtain a second laminate as a supporting substrate (Step A-2).
  • the crystal growth substrate of the second laminate was removed by etching with a hydrofluoric acid-nitric acid mixture, and the back surface of the semiconductor layer was polished by CMP to obtain a third laminate (step A-3).
  • Step B-2 the semiconductor layer of the third laminate and the silicon carbide layer of the fourth laminate were joined by the SAB method to obtain a fifth laminate
  • the support substrate of the obtained fifth laminate was removed by etching with a hydrofluoric acid-nitric acid mixture to obtain a sixth laminate (semiconductor laminate structure) (Step B-3).
  • a cross section of the obtained sixth laminate in the thickness direction was observed using a TEM.
  • FIG. 7 it was confirmed that a thin layer of silicon carbide (SiC thin layer) with a thickness of 13 nm was formed between the diamond substrate and the semiconductor layer (gallium nitride, GaN). No striped structure was observed in the thin layer of silicon carbide, confirming that at least a portion of the silicon carbide contained in the silicon carbide layer was amorphous.
  • Step B-4 A cross section in the thickness direction of the semiconductor laminated structure after the heat treatment was observed using a TEM.
  • the results are shown in FIG.
  • a striped structure is observed in the image showing a part of the silicon carbide layer (SiC thin layer) enlarged 1.5 times, and a part of the silicon carbide contained in the silicon carbide layer is It was confirmed that it was polycrystalline.

Abstract

本発明は、ダイヤモンド基板(10)と、ダイヤモンド基板(10)の一方の面(10a)の一部又は全部に位置する炭化ケイ素層(20)とを有し、炭化ケイ素層(20)の厚さが20nm以下であり、炭化ケイ素層(20)の表面(20a)の算術平均粗さRaが0.5nm以下である、半導体装置形成用基板(1)に関する。

Description

半導体装置形成用基板、半導体積層構造体、半導体装置、半導体装置形成用基板の製造方法、半導体積層構造体の製造方法及び半導体装置の製造方法
 本発明は、半導体装置形成用基板、半導体積層構造体、半導体装置、半導体装置形成用基板の製造方法、半導体積層構造体の製造方法及び半導体装置の製造方法に関する。
 本願は、2022年9月12日に、日本に出願された特願2022-144364号に基づき優先権を主張し、その内容をここに援用する。
 近年、半導体デバイス(半導体装置)の高出力化、高速化、高集積化に伴い、熱伝導率が高い半導体装置形成用基板が要望されている。このような半導体装置形成用基板として、500W/mK以上の高い熱伝導率を有するダイヤモンド基板が注目されている。一般に、ダイヤモンド基板の表面は粗く、半導体層と接合しにくいという問題がある。
 このような問題に対し、例えば、非特許文献1には、ダイヤモンド基板の表面と窒化ガリウムの表面とにそれぞれケイ素の薄膜を堆積し、ケイ素同士を接合してダイヤモンド基板と窒化ガリウムとを接合した半導体積層構造体が提案されている。
 例えば、非特許文献2には、炭化ケイ素基板上に窒化ガリウム素子を作製後、炭化ケイ素基板の厚さを50μmまで研削し、この炭化ケイ素基板とダイヤモンド基板とをチタンの薄膜を介して接合した半導体積層構造体が提案されている。
 例えば、特許文献1には、水素イオンが注入された炭化ケイ素基板をダイヤモンド基板と接合し、熱処理によって炭化ケイ素基板をスマートカットし、薄層化された炭化ケイ素基板上に窒化ガリウムを結晶成長させた半導体装置が提案されている。
Z.Cheng, et al., "Interfacial Thermal Conductance across Room-Temperature Bonded GaN-Diamond Interfaces for GaN-on-Diamond Devices," ACS Appl. Mater. Interfaces 12, pp. 8376-8384 (2020). Yuichi Minoura, et al., "Surface activated bonding of SiC/diamond for thermal management of high-output power GaN HEMTs," Jpn. J. Appl. Phys. 59, SGGD03 (2020).
特開2016-139655号公報
 しかしながら、非特許文献1の半導体積層構造体は、800℃以上の高温で熱処理を施すと、窒化ガリウムとケイ素との界面でメルトバックと呼ばれる反応が起こり、空隙が形成され、半導体素子(半導体装置)を形成した際に信頼性が低下するという問題がある。
 非特許文献2の半導体積層構造体は、炭化ケイ素基板とダイヤモンド基板とをチタンの薄膜を介して接合しており、チタンは、炭化ケイ素に比べて熱伝導率が低く、放熱性に劣るという問題がある。
 特許文献1の半導体装置は、スマートカット後の炭化ケイ素基板上に窒化ガリウムを結晶成長させることができるか否かが不明である。さらに、炭化ケイ素基板の厚さが厚く、放熱性に劣るという問題がある。
 そこで、本発明は、ダイヤモンド基板と半導体層とを容易に接合でき、放熱性及び耐熱性に優れる半導体装置形成用基板、半導体積層構造体、半導体装置及びこれらの製造方法を目的とする。
 本発明は以下の態様を有する。
[1]ダイヤモンド基板と、前記ダイヤモンド基板の一方の面の一部又は全部に位置する炭化ケイ素層とを有し、
 前記炭化ケイ素層の厚さが20nm以下であり、
 前記炭化ケイ素層の表面の算術平均粗さRaが0.5nm以下である、半導体装置形成用基板。
[2]前記炭化ケイ素層に含まれる炭化ケイ素の一部又は全部が非晶質である、[1]に記載の半導体装置形成用基板。
[3]ダイヤモンド基板と、
 前記ダイヤモンド基板の一方の面の一部又は全部に位置する半導体層と、
 前記ダイヤモンド基板と前記半導体層との間に位置する炭化ケイ素層と、を有し、
 前記半導体層は窒化物又は酸化物を含み、
 前記炭化ケイ素層は単層であり、
 前記炭化ケイ素層の厚さが20nm以下である、半導体積層構造体。
[4]前記炭化ケイ素層と、前記半導体層との境界面における、前記炭化ケイ素層の表面の算術平均粗さRaが0.5nm以下である、[3]に記載の半導体積層構造体。
[5]前記炭化ケイ素層に含まれる炭化ケイ素の一部又は全部が非晶質である、[3]又は[4]に記載の半導体積層構造体。
[6][3]~[5]のいずれかに記載の半導体積層構造体を含み、前記炭化ケイ素層に含まれる炭化ケイ素の一部又は全部が多結晶である、半導体装置。
[7]ダイヤモンド基板の一方の面の一部又は全部に炭化ケイ素を堆積して、厚さ20nm以下、かつ、表面の算術平均粗さRaが0.5nm以下の炭化ケイ素層を形成する堆積工程を有する、半導体装置形成用基板の製造方法。
[8][7]に記載の半導体装置形成用基板の製造方法により半導体装置形成用基板を製造する工程と、
 次いで、前記炭化ケイ素層の表面と窒化物又は酸化物を含む半導体層とを接合する接合工程と、を有する、半導体積層構造体の製造方法。
[9][8]に記載の半導体積層構造体の製造方法により半導体積層構造体を製造する工程と、
 前記半導体積層構造体に800℃以上の加熱処理を施す加熱処理工程と、を有する、半導体装置の製造方法。
 本発明の半導体装置形成用基板、半導体積層構造体、半導体装置及びこれらの製造方法によれば、ダイヤモンド基板と半導体層とを容易に接合でき、放熱性及び耐熱性に優れる。
本発明の一実施形態に係る半導体装置形成用基板の断面図である。 本発明の一実施形態に係る半導体積層構造体の断面図である。 本発明の一実施形態に係る半導体装置の断面図である。 本発明の一実施形態に係る半導体装置の製造方法の一部を示すフロー図である。 本発明の一実施形態に係る半導体装置の製造方法の一部を示すフロー図である。 本発明の一実施形態に係る半導体装置の製造方法の一部を示すフロー図である。 本発明の一実施形態に係る半導体積層構造体の加熱処理前の断面の透過型電子顕微鏡(TEM)の写真である。 本発明の一実施形態に係る半導体積層構造体の加熱処理後の断面のTEMの写真である。
[半導体装置形成用基板]
 本発明の半導体装置形成用基板は、ダイヤモンド基板と、ダイヤモンド基板の一方の面の一部又は全部に位置する炭化ケイ素層とを有する。
 以下、本発明の一実施形態に係る半導体装置形成用基板について、図面を参照して説明する。
 図1に示すように、半導体装置形成用基板1は、ダイヤモンド基板10と、ダイヤモンド基板10の一方の面10aに位置する炭化ケイ素層20とを有する。
 半導体装置形成用基板1の厚さTは、例えば、1~500μmが好ましく、10~400μmがより好ましく、50~300μmがさらに好ましい。厚さTが上記下限値以上であると、半導体装置の物理強度をより高められる。厚さTが上記上限値以下であると、半導体装置の大きさをよりコンパクトにできる。
 厚さTは、例えば、デジタルノギス等で測定できる。
 本明細書において、「厚さT」は、無作為に抽出した10箇所の厚さの算術平均値とする。
 ダイヤモンド基板10の厚さT10は、例えば、10~500μmが好ましく、30~400μmがより好ましく、50~300μmがさらに好ましい。厚さT10が上記下限値以上であると、半導体装置の物理強度をより高められる。厚さT10が上記上限値以下であると、半導体装置の大きさをよりコンパクトにできる。
 厚さT10は、例えば、デジタルノギス等で測定できる。
 本明細書において、「厚さT10」は、無作為に抽出した10箇所の厚さの算術平均値とする。
 ダイヤモンド基板10は、熱伝導率が高く、ダイヤモンド基板10を備える半導体装置は、放熱性をより高められる。
 ダイヤモンド基板10の熱伝導率は、例えば、500W/m・K以上が好ましく、700W/m・K以上がより好ましく、1000W/m・K以上がさらに好ましい。ダイヤモンド基板10の熱伝導率が上記下限値以上であると、半導体装置の放熱性をより高められる。ダイヤモンド基板10の熱伝導率の上限値は特に限定されず、例えば、3000W/m・Kとされる。ダイヤモンド基板10の熱伝導率は、500~3000W/m・Kが好ましく、700~3000W/m・Kがより好ましく、1000~3000W/m・Kがさらに好ましい。
 ダイヤモンド基板10の熱伝導率は、例えば、温度傾斜法、円板熱流計法等により測定できる。
 ダイヤモンド基板10の熱伝導率は、ダイヤモンド基板10を構成するダイヤモンドの純度、結晶化度、結晶の種類、密度及びこれらの組合せ等により調節できる。
 炭化ケイ素層20の厚さT20は、20nm以下であり、1nm以上18nm以下が好ましく、2nm以上16nm以下がより好ましく、5nm以上15nm以下がさらに好ましい。厚さT20が上記下限値以上であると、炭化ケイ素層20の表面20aの算術平均粗さRaをより低減できる。厚さT20が上記上限値以下であると、半導体装置の放熱性をより高められる。
 厚さT20は、例えば、半導体装置形成用基板1の厚さ方向の断面を電子顕微鏡等で観察することにより求められる。電子顕微鏡としては、例えば、透過型電子顕微鏡(TEM)を使用することができる。
 本明細書において、「厚さT20」は、無作為に抽出した10箇所の厚さの算術平均値とする。
 炭化ケイ素層20は、ケイ素単体の層に比べ、熱伝導率が高い。このため、炭化ケイ素層20を備える半導体装置は、同じ厚さのケイ素単体の層を備える半導体装置に比べて、放熱性をより高められる。
 炭化ケイ素層20の熱伝導率は、例えば、100W/m・K以上が好ましく、150W/m・K以上がより好ましく、200W/m・K以上がさらに好ましい。炭化ケイ素層20の熱伝導率が上記下限値以上であると、半導体装置の放熱性をより高められる。炭化ケイ素層20の熱伝導率の上限値は特に限定されないが、例えば、450W/m・Kとされる。炭化ケイ素層20の熱伝導率は、100~450W/m・Kが好ましく、150~450W/m・Kがより好ましく、200~450W/m・Kがさらに好ましい。
 炭化ケイ素層20の熱伝導率は、例えば、温度傾斜法、円板熱流計法等により測定できる。
 炭化ケイ素層20の熱伝導率は、炭化ケイ素層20を構成する炭化ケイ素の純度、結晶化度、結晶の種類、密度及びこれらの組合せ等により調節できる。
 炭化ケイ素層20の表面20aの算術平均粗さRaは、0.5nm以下であり、0.45nm以下が好ましく、0.4nm以下がより好ましい。炭化ケイ素層20の表面20aの算術平均粗さRaが上記上限値以下であると、後述する半導体積層構造体における半導体層との接合性をより高められる。このため、半導体装置における放熱性及び耐熱性をより高められる。炭化ケイ素層20の表面20aの算術平均粗さRaの下限値は特に限定されず、例えば、0.01nmとされる。炭化ケイ素層20の表面20aの算術平均粗さRaは、0.01~0.5nmが好ましく、0.01~0.45nmがより好ましく、0.01~0.4nmがさらに好ましい。
 炭化ケイ素層20の表面20aの算術平均粗さRaは、例えば、原子間力顕微鏡(AFM)を用いて解析すること等により求められる。原子間力顕微鏡(AFM)の測定条件としては、後述の実施例に記載の測定条件とすることができる。
 炭化ケイ素層20に含まれる炭化ケイ素の一部又は全部は、非晶質であることが好ましい。炭化ケイ素が非晶質であると、炭化ケイ素層20の表面20aの算術平均粗さRaをより低減できる。
 炭化ケイ素が非晶質であるか否かは、半導体装置形成用基板1の厚さ方向の断面を電子顕微鏡で観察すること等により判断できる。例えば、半導体装置形成用基板1の炭化ケイ素層20に縞状構造が認められず、炭化ケイ素が立方晶、六方晶、菱面体晶のいずれにも該当しない場合、「炭化ケイ素層20に含まれる炭化ケイ素の少なくとも一部は非晶質である」と判断する。電子顕微鏡としては、例えば、透過型電子顕微鏡(TEM)を使用することができる。
[半導体積層構造体]
 本発明の半導体積層構造体は、ダイヤモンド基板と、ダイヤモンド基板の一方の面の一部又は全部に位置する半導体層と、ダイヤモンド基板と半導体層との間に位置する炭化ケイ素層と、を有する。
 半導体層は窒化物又は酸化物を含み、炭化ケイ素層は単層であり、炭化ケイ素層の厚さは20nm以下である。
 以下、本発明の一実施形態に係る半導体積層構造体について、図面を参照して説明する。
 図2に示すように、半導体積層構造体2は、ダイヤモンド基板10と、ダイヤモンド基板10の一方の面10aに位置する炭化ケイ素層20と、炭化ケイ素層20の表面20aに位置する半導体層30とを有する。すなわち、半導体積層構造体2は、ダイヤモンド基板10と、ダイヤモンド基板10の一方の面10aに位置する半導体層30と、ダイヤモンド基板10と半導体層30との間に位置する炭化ケイ素層20とを有する。
 以下、図1と同じ構成には同じ符号を付し、その説明を省略する。
 半導体積層構造体2の厚さTは、例えば、2~1000μmが好ましく、5~700μmがより好ましく、10~500μmがさらに好ましい。厚さTが上記下限値以上であると、半導体装置の物理強度をより高められる。厚さTが上記上限値以下であると、半導体装置の大きさをよりコンパクトにできる。
 厚さTは、例えば、デジタルノギス等で測定できる。
 本明細書において、「厚さT」は、無作為に抽出した10箇所の厚さの算術平均値とする。
 炭化ケイ素層20と半導体層30との境界面における、炭化ケイ素層20の表面20aの算術平均粗さRaは、0.5nm以下が好ましく、0.45nm以下がより好ましく、0.4nm以下がさらに好ましい。炭化ケイ素層20の表面20aの算術平均粗さRaが上記上限値以下であると、半導体層30との接合性をより高められる。このため、半導体装置における放熱性及び耐熱性をより高められる。炭化ケイ素層20の表面20aの算術平均粗さRaの下限値は特に限定されず、例えば、0.01nmとされる。炭化ケイ素層20の表面20aの算術平均粗さRaは、0.01~0.5nmが好ましく、0.01~0.45nmがより好ましく、0.01~0.4nmがさらに好ましい。
 炭化ケイ素層20の表面20aの算術平均粗さRaは、例えば、半導体層30を除去した後、原子間力顕微鏡(AFM)を用いて解析すること等により求められる。原子間力顕微鏡(AFM)の測定条件としては、後述の実施例に記載の測定条件とすることができる。
 炭化ケイ素層20は、単層である。ここで、「単層」とは、一つの工程で形成された単一の層であり、内部に接合界面が含まれないことをいい、アモルファスの炭化ケイ素が含まれ、層状あるいは筋状に形成されていてもよい。
 炭化ケイ素層20が単層であるか否かは、例えば、半導体積層構造体2の厚さ方向の断面の透過型電子顕微鏡(TEM)による観察、及びTEMに付随するエネルギー分散型X線分光法(EDX)による元素分布分析により判断できる。炭化ケイ素層20が単層でない場合、すなわち、炭化ケイ素層-炭化ケイ素層内に炭化ケイ素層20と半導体層30との境界面に平行な境界線(接合界面)が確認できるとともに、その位置で接合に由来する元素(例えば、鉄)が検出される。
 炭化ケイ素層20を単層とすることにより、ダイヤモンド基板10の接合される面と、半導体層30の接合される面とのそれぞれに炭化ケイ素層を形成し、これらの炭化ケイ素層同士を接合する場合と比較して、接合界面の数が少ない半導体積層構造体2が実現される。その結果、接合界面に起因する熱抵抗を低下させることができ、放熱性及び耐熱性をより高められる。
 半導体層30は、窒化物又は酸化物を含む。窒化物としては、例えば、窒化ガリウム(GaN)、窒化インジウム(InN)、窒化アルミニウム(AlN)、及びこれらの混晶等が挙げられる。半導体層30は、これらの窒化物からなる多層構造であってもよい。
 酸化物としては、例えば、酸化ガリウム(Ga)、酸化アルミニウム(Al)、及びこれらの混晶等が挙げられる。半導体層30は、これらの酸化物からなる多層構造であってもよい。
 半導体層30の厚さT30は、例えば、0.1~50μmが好ましく、0.2~20μmがより好ましく、0.5~10μmがさらに好ましい。厚さT30が上記下限値以上であると、半導体装置の出力をより高められる。厚さT30が上記上限値以下であると、半導体層30に含まれる窒化物又は酸化物の熱抵抗率による半導体装置の温度上昇を抑制するとともに、ダイヤモンド基板10との接合性をより高められる。このため、半導体装置における放熱性及び耐熱性をより高められる。
 厚さT30は、例えば、半導体積層構造体2の厚さ方向の断面を電子顕微鏡等で観察することにより求められる。電子顕微鏡としては、例えば、透過型電子顕微鏡(TEM)を使用することができる。
 本明細書において、「厚さT30」は、無作為に抽出した10箇所の厚さの算術平均値とする。
[半導体装置]
 本発明の半導体装置は、本発明の半導体積層構造体を含み、炭化ケイ素層に含まれる炭化ケイ素の一部又は全部が多結晶である。
 以下、本発明の一実施形態に係る半導体装置について、図面を参照して説明する。
 図3に示すように、半導体装置3は、ダイヤモンド基板10と、ダイヤモンド基板10の一方の面10aの一部に位置する半導体層30と、ダイヤモンド基板10と半導体層30との間に位置する炭化ケイ素層20とを有する。
 半導体装置3は、半導体積層構造体2における半導体層30及び炭化ケイ素層20の一部が除去されている。ダイヤモンド基板10上に残された炭化ケイ素層20及び半導体層30のうち、半導体層30の表面には、ゲート電極41と、ソース電極42と、ドレイン電極43とが形成されている。
 以下、図2と同じ構成には同じ符号を付し、その説明を省略する。
 ゲート電極41を構成する材料としては、公知の材料を用いることができる。ゲート電極41を構成する材料としては、例えば、ニッケル、金、パラジウム等が挙げられる。
 ソース電極42を構成する材料としては、公知の材料を用いることができる。ソース電極42を構成する材料としては、例えば、チタン、アルミニウム、ニッケル、金等、及びそれらの多層構造が挙げられる。
 ドレイン電極43を構成する材料としては、公知の材料を用いることができる。ドレイン電極43を構成する材料としては、例えば、チタン、アルミニウム、ニッケル、金等、及びそれらの多層構造が挙げられる。
 ゲート電極41の厚さは、例えば、0.1~20μmが好ましく、0.5~15μmがより好ましく、1~10μmがさらに好ましい。ゲート電極41の厚さが上記下限値以上であると、半導体装置3の出力をより高められる。ゲート電極41の厚さが上記上限値以下であると、ゲート電極41の微細化が可能となり、半導体装置3の動作周波数が向上する。加えて、ゲート電極41の厚さが上記上限値以下であると、半導体装置3の生産効率をより高められる。
 ソース電極42の厚さは、ゲート電極41の厚さと同様である。
 ドレイン電極43の厚さは、ゲート電極41の厚さと同様である。
 電極の厚さは、例えば、デジタルノギス等で測定できる。電極の厚さは、無作為に抽出した10箇所の厚さの算術平均値とする。
 ゲート電極41、ソース電極42及びドレイン電極43のパターンの形状は特に限定されず、半導体装置3の用途等に応じて適宜決定できる。
 半導体積層構造体2において、除去される半導体層30及び炭化ケイ素層20のパターンの形状は特に限定されず、半導体装置3の用途等に応じて適宜決定できる。
 半導体装置3において、炭化ケイ素層20に含まれる炭化ケイ素の一部又は全部は、多結晶である。
 炭化ケイ素が多結晶であると、炭化ケイ素層20と半導体層30との接合強度をより高められる。このため、半導体装置3の放熱性及び耐熱性をより高められる。
 炭化ケイ素が多結晶であるか否かは、半導体装置3の厚さ方向の断面を電子顕微鏡で観察すること等により判断できる。例えば、炭化ケイ素層の一部に縞状構造が認められれば、この部分の原子が周期的に配列していること、すなわち、結晶化していることを意味する。このように、炭化ケイ素層の少なくとも一部に縞状構造が認められる場合、「炭化ケイ素層20に含まれる炭化ケイ素の少なくとも一部は多結晶である」と判断する。電子顕微鏡としては、例えば、透過型電子顕微鏡(TEM)を使用することができる。
[半導体装置形成用基板の製造方法]
 本発明の半導体装置形成用基板の製造方法は、ダイヤモンド基板の一方の面の一部又は全部に炭化ケイ素を堆積して、厚さ20nm以下、かつ、表面の算術平均粗さRaが0.5nm以下の炭化ケイ素層を形成する堆積工程を有する。
 堆積工程は、ダイヤモンド基板の一方の面の一部又は全部に炭化ケイ素を堆積して、厚さ20nm以下、かつ、表面の算術平均粗さRaが0.5nm以下の炭化ケイ素層を形成する工程である。
 炭化ケイ素を堆積する方法としては、例えば、スパッタリング法、真空蒸着法、化学蒸着法、物理蒸着法等が挙げられる。
 炭化ケイ素を堆積する方法としては、炭化ケイ素層の厚さを均一、かつより薄くできることから、スパッタリング法が好ましい。
 スパッタリング法としては、例えば、2極法、マグネトロン法、反応性スパッタリング、イオンビームスパッタリング、電子サイクロトロン共鳴(ECR)スパッタリング等が挙げられる。スパッタリング法としては、炭化ケイ素を安定して堆積でき、表面の算術平均粗さRaを0.5nm以下にしやすいことから、マグネトロン法が好ましい。
[半導体積層構造体の製造方法]
 本発明の半導体積層構造体の製造方法は、本発明の半導体装置形成用基板の製造方法により半導体装置形成用基板を製造する工程と、次いで、炭化ケイ素層の表面と窒化物又は酸化物を含む半導体層とを接合する接合工程と、を有する。
 半導体装置形成用基板を製造する工程は、上述した半導体装置形成用基板の製造方法と同様である。
 接合工程は、半導体装置形成用基板を製造する工程に次いで、炭化ケイ素層の表面と窒化物又は酸化物を含む半導体層とを接合する工程である。
 炭化ケイ素層と半導体層とを接合する方法としては、例えば、表面活性化接合(SAB)法、高圧接合法、高真空接合法等が挙げられる。
 SAB法は、接合する面を薬液及び純水で洗浄し、真空チャンバ内でプラズマやイオン等で活性化処理した後に、室温(例えば、25℃)から400℃までの低温雰囲気で接合する方法である。
 高圧接合法は、接合する面を薬液及び純水で洗浄した後に、大気中で加熱した状態で0.1MPaから10MPaまでの高圧力をかけて接合する方法である。
 高真空接合法は、接合する面を薬液及び純水で洗浄した後に、10-6Paから10-3Pa程度の高真空雰囲気下で接合する方法である。
 炭化ケイ素層と半導体層とを接合する方法としては、常温(例えば、5~30℃)で接合することが可能で、より容易に接合できることから、表面活性化接合が好ましい。
 接合工程における温度(接合温度)は、例えば、炭化ケイ素層及び半導体層の劣化を抑制する観点から、0~400℃が好ましく、0~100℃がより好ましく、5~30℃(常温)がさらに好ましい。
[半導体装置の製造方法]
 本発明の半導体装置の製造方法は、本発明の半導体積層構造体の製造方法により半導体積層構造体を製造する工程と、半導体積層構造体に800℃以上の加熱処理を施す加熱処理工程と、を有する。
 以下、本実施形態の半導体装置の製造方法について、図面を参照して説明する。
 図4~6に示すように、本実施形態の半導体装置の製造方法は、工程A-1と、工程A-2と、工程A-3と、工程B-1と、工程B-2と、工程B-3と、工程B-4とを有する。
 図4に示すように、工程A-1は、結晶成長用基板上で窒化物又は酸化物を結晶成長させ、半導体層を得、第一の積層体を得る工程である。
 結晶成長用基板としては、例えば、ケイ素基板、炭化ケイ素基板、サファイア基板等が挙げられ、コスト面から、ケイ素基板が好ましい。
 結晶成長の方法としては、例えば、有機金属化学気相成長法(MOCVD)、分子線成長法(MBE)、ハイドライド気相成長法(HVPE)、昇華法、フラックス法等が挙げられる。結晶成長の方法としては、結晶品質の観点から、MOCVDが好ましい。
 工程A-2は、第一の積層体の半導体層の表面と支持基板とを接合し、第二の積層体を得る工程である。
 支持基板としては、その後の工程において、半導体層から結晶成長用基板を除去し、半導体層に炭化ケイ素層を接合するまでの間、半導体層を支持するのに適したものであれば特に限定されない。支持基板としては、例えば、ケイ素基板、炭化ケイ素基板、モリブデン基板、ガラス基板等が挙げられる。
 半導体層と支持基板とを接合する方法は特に限定されず、脱着が容易で、かつ、半導体層を充分に支持する観点から、ワックスによる接着、ろう材、はんだ等が好ましい。
 工程A-3は、工程A-2で得られた第二の積層体から結晶成長用基板を除去し、半導体層の裏面を研磨し、第三の積層体を得る工程である。
 結晶成長用基板を除去する方法としては、特に限定されず、例えば、切削、研削、研磨、エッチング等の方法が挙げられる。
 半導体層の裏面を研磨する方法としては、例えば、化学的機械研磨(CMP)等が挙げられる。
 図5に示すように、工程B-1は、ダイヤモンド基板に炭化ケイ素を堆積して、炭化ケイ素層を形成し、第四の積層体(半導体装置形成用基板)を得る工程である。
 ダイヤモンド基板に炭化ケイ素を堆積する方法としては、例えば、スパッタリング法、真空蒸着法、化学蒸着法、物理蒸着法等が挙げられる。炭化ケイ素を堆積する方法としては、炭化ケイ素層の厚さを均一、かつより薄くできることから、スパッタリング法が好ましい。
 工程B-2は、工程A-3で得られた第三の積層体の半導体層と、工程B-1で得られた第四の積層体の炭化ケイ素層とを接合して、第五の積層体を得る工程である。
 第三の積層体の半導体層と、第四の積層体の炭化ケイ素層とを接合する方法としては、例えば、SAB法、高圧接合法、高真空接合法等が挙げられる。第三の積層体の半導体層と、第四の積層体の炭化ケイ素層とを接合する方法としては、常温で接合することが可能で、より容易に接合できることから、SAB法が好ましい。
 図6に示すように、工程B-3は、工程B-2で得られた第五の積層体から支持基板を除去して、第六の積層体(半導体積層構造体)を得る工程である。
 第五の積層体から支持基板を除去する方法としては、例えば、脱離、分離、研削、研磨、エッチング等の方法が挙げられる。
 工程B-4は、第六の積層体にメサ形成処理、加熱処理を含む処理を施し、半導体層に素子構造を付与する工程である。ここで、素子構造とは、炭化ケイ素層に近い側から、バッファ層、チャネル層、バリア層、コンタクト層を有する構造をいう。
 加熱処理を施す際の加熱温度は、例えば、800℃以上が好ましく、850℃以上がより好ましく、900℃以上がさらに好ましい。加熱温度が上記下限値以上であると、半導体層に充分に素子構造を付与できる。加熱温度の上限値は、特に限定されないが、半導体層の劣化を抑制する観点から、例えば、1200℃とされる。加熱処理を施す際の加熱温度は、800~1200℃が好ましく、850~1200℃がより好ましく、900~1200℃がさらに好ましい。
 第六の積層体に加熱処理を施すことで、第六の積層体の炭化ケイ素層に含まれる炭化ケイ素の多結晶化が促進される。炭化ケイ素が多結晶であると、炭化ケイ素層と半導体層との接合強度をより高められる。このため、半導体装置における放熱性及び耐熱性をより高められる。
 第六の積層体に加熱処理を施した後、この積層体にリソグラフィを施して、ダイヤモンド基板上の炭化ケイ素層及び半導体層を所望の形状に加工した後、ゲート電極、ソース電極及びドレイン電極を積層して、半導体素子(半導体装置)を得る。
 ゲート電極、ソース電極及びドレイン電極を構成する材料としては、例えば、ニッケル、金、チタン、アルミニウム、パラジウム、それらの多層構造等の公知の金属を使用できる。
 ゲート電極、ソース電極及びドレイン電極は、真空蒸着等による成膜により、金属積層膜を形成することにより得られる。ソース電極及びドレイン電極を形成する際には、金属積層膜の形成後に半導体層に含まれる窒化物又は酸化物と反応させるための熱処理が行われる。そのための加熱温度は、例えば、650℃以上が好ましく、700℃以上がより好ましく、800℃以上がさらに好ましい。
 以上の工程により、ダイヤモンド基板の表面に位置する炭化ケイ素層と半導体層とが接合され、半導体層の表面にゲート電極、ソース電極及びドレイン電極が形成された半導体素子(半導体装置)が得られる。
 以下に、実施例を用いて本発明をさらに詳しく説明するが、本発明はこれら実施例に限定されるものではない。
 ダイヤモンド基板として、長さ4mm、幅4mm、厚さ350μmの矩形の基板を用意した。このダイヤモンド基板の一方の面を、原子間力顕微鏡(AFM)を用いて解析したところ、算術平均粗さRaは0.77nmであった。このダイヤモンド基板の一方の面に炭化ケイ素をスパッタリング法により堆積し、厚さ13nmの炭化ケイ素層を形成し、第四の積層体を得た(工程B-1)。
 第四の積層体の炭化ケイ素層の表面を、AFMを用いて解析したところ、算術平均粗さRaは0.37nmであった。以下に算術平均粗さRaの測定条件を示す。
・測定装置:SPM-9600(島津製作所社製)
・測定プローブ:NCHR(NanoWorld社製)
・測定範囲:1μm
 次に、結晶成長用基板として、直径4インチ(101.6mm)、厚さ500μmのケイ素基板を用意し、このケイ素基板の一方の面に、窒化物として窒化ガリウムをMOCVDにより結晶成長させ、厚さ1μmの半導体層を形成し、第一の積層体を得た(工程A-1)。次に、切断により第一の積層体の半導体層を長さ10mm、幅12mmの矩形とした。支持基板として、長さ20mm、幅20mm、厚さ500μmの矩形のケイ素基板とをワックスにより接着し、第二の積層体を得た(工程A-2)。次に、第二の積層体の結晶成長用基板をフッ化水素酸-硝酸混合液によるエッチングにより除去して、半導体層の裏面をCMPにて研磨し、第三の積層体を得た(工程A-3)。
 次に、第三の積層体の半導体層と、第四の積層体の炭化ケイ素層とをSAB法により接合して、第五の積層体を得た(工程B-2)。得られた第五の積層体の支持基板をフッ化水素酸-硝酸混合液によるエッチングにより除去して、第六の積層体(半導体積層構造体)を得た(工程B-3)。
 得られた第六の積層体の厚さ方向の断面をTEMで観察した。結果を図7に示す。
 図7に示すように、ダイヤモンド基板と半導体層(窒化ガリウム、GaN)との間に、厚さ13nmの炭化ケイ素の薄層(SiC薄層)が形成されていることが確認できた。炭化ケイ素の薄層には縞状構造が観察されず、炭化ケイ素層に含まれる炭化ケイ素の少なくとも一部が非晶質であることが確認できた。
 次に、第六の積層体に1000℃で3分間加熱処理を施した(工程B-4)。加熱処理後の半導体積層構造体の厚さ方向の断面をTEMで観察した。結果を図8に示す。
 図8に示すように、炭化ケイ素層(SiC薄層)の一部を1.5倍に拡大して示した画像に縞状構造が認められ、炭化ケイ素層に含まれる炭化ケイ素の一部が多結晶であることが確認できた。
 また、図8に示すように、炭化ケイ素層と半導体層との界面にメルトバックは起こっておらず、半導体積層構造体は、充分な耐熱性を有することが確認できた。
 1 半導体装置形成用基板
 2 半導体積層構造体
 3 半導体装置
10 ダイヤモンド基板
10a ダイヤモンド基板の一方の面
20 炭化ケイ素層
20a 炭化ケイ素層の表面
30 半導体層
41 ゲート電極
42 ソース電極
43 ドレイン電極

Claims (9)

  1.  ダイヤモンド基板と、前記ダイヤモンド基板の一方の面の一部又は全部に位置する炭化ケイ素層とを有し、
     前記炭化ケイ素層の厚さが20nm以下であり、
     前記炭化ケイ素層の表面の算術平均粗さRaが0.5nm以下である、半導体装置形成用基板。
  2.  前記炭化ケイ素層に含まれる炭化ケイ素の一部又は全部が非晶質である、請求項1に記載の半導体装置形成用基板。
  3.  ダイヤモンド基板と、
     前記ダイヤモンド基板の一方の面の一部又は全部に位置する半導体層と、
     前記ダイヤモンド基板と前記半導体層との間に位置する炭化ケイ素層と、を有し、
     前記半導体層は窒化物又は酸化物を含み、
     前記炭化ケイ素層は単層であり、
     前記炭化ケイ素層の厚さが20nm以下である、半導体積層構造体。
  4.  前記炭化ケイ素層と、前記半導体層との境界面における、前記炭化ケイ素層の表面の算術平均粗さRaが0.5nm以下である、請求項3に記載の半導体積層構造体。
  5.  前記炭化ケイ素層に含まれる炭化ケイ素の一部又は全部が非晶質である、請求項3又は4に記載の半導体積層構造体。
  6.  請求項3又は4に記載の半導体積層構造体を含み、前記炭化ケイ素層に含まれる炭化ケイ素の一部又は全部が多結晶である、半導体装置。
  7.  ダイヤモンド基板の一方の面の一部又は全部に炭化ケイ素を堆積して、厚さ20nm以下、かつ、表面の算術平均粗さRaが0.5nm以下の炭化ケイ素層を形成する堆積工程を有する、半導体装置形成用基板の製造方法。
  8.  請求項7に記載の半導体装置形成用基板の製造方法により半導体装置形成用基板を製造し、
     次いで、前記炭化ケイ素層の表面と窒化物又は酸化物を含む半導体層とを接合する、半導体積層構造体の製造方法。
  9.  請求項8に記載の半導体積層構造体の製造方法により半導体積層構造体を製造し、
     前記半導体積層構造体に800℃以上の加熱処理を施す、半導体装置の製造方法。
PCT/JP2023/033217 2022-09-12 2023-09-12 半導体装置形成用基板、半導体積層構造体、半導体装置、半導体装置形成用基板の製造方法、半導体積層構造体の製造方法及び半導体装置の製造方法 WO2024058180A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-144364 2022-09-12
JP2022144364 2022-09-12

Publications (1)

Publication Number Publication Date
WO2024058180A1 true WO2024058180A1 (ja) 2024-03-21

Family

ID=90275100

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/033217 WO2024058180A1 (ja) 2022-09-12 2023-09-12 半導体装置形成用基板、半導体積層構造体、半導体装置、半導体装置形成用基板の製造方法、半導体積層構造体の製造方法及び半導体装置の製造方法

Country Status (1)

Country Link
WO (1) WO2024058180A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100178719A1 (en) * 2007-05-31 2010-07-15 Chien-Min Sung Diamond LED Devices and Associated Methods
US20140159055A1 (en) * 2012-12-12 2014-06-12 Element Six Limited Substrates for semiconductor devices
JP2018049868A (ja) * 2016-09-20 2018-03-29 住友電気工業株式会社 半導体積層構造体および半導体デバイス
JP2018514498A (ja) * 2015-05-14 2018-06-07 アールエフエイチアイシー コーポレイション ダイヤモンド−半導体複合基板を製造する方法
JP2020109796A (ja) * 2019-01-04 2020-07-16 富士通株式会社 半導体装置、半導体装置の製造方法及び基板接合方法
WO2023047691A1 (ja) * 2021-09-22 2023-03-30 日本碍子株式会社 支持基板と13族元素窒化物結晶基板との貼り合わせ基板

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100178719A1 (en) * 2007-05-31 2010-07-15 Chien-Min Sung Diamond LED Devices and Associated Methods
US20140159055A1 (en) * 2012-12-12 2014-06-12 Element Six Limited Substrates for semiconductor devices
JP2018514498A (ja) * 2015-05-14 2018-06-07 アールエフエイチアイシー コーポレイション ダイヤモンド−半導体複合基板を製造する方法
JP2018049868A (ja) * 2016-09-20 2018-03-29 住友電気工業株式会社 半導体積層構造体および半導体デバイス
JP2020109796A (ja) * 2019-01-04 2020-07-16 富士通株式会社 半導体装置、半導体装置の製造方法及び基板接合方法
WO2023047691A1 (ja) * 2021-09-22 2023-03-30 日本碍子株式会社 支持基板と13族元素窒化物結晶基板との貼り合わせ基板

Similar Documents

Publication Publication Date Title
KR101797428B1 (ko) 단결정 다이아몬드 성장용 기재 및 단결정 다이아몬드 기판의 제조 방법
US9650723B1 (en) Large area seed crystal for ammonothermal crystal growth and method of making
US8030176B2 (en) Method for preparing substrate having monocrystalline film
JP6667490B2 (ja) 多結晶質窒化アルミニウム焼結体の熱膨張処理、および半導体製造へのその応用
TWI364777B (en) Multilayered semiconductor wafer and process for manufacturing the same
JP6772711B2 (ja) 半導体積層構造体および半導体デバイス
JP4458116B2 (ja) エピタキシャル層成長用iii族窒化物半導体層貼り合わせ基板および半導体デバイス
US20090078943A1 (en) Nitride semiconductor device and manufacturing method thereof
CN111540684A (zh) 一种金刚石基异质集成氮化镓薄膜与晶体管的微电子器件及其制备方法
TWI600178B (zh) III -nitride composite substrate, a method of manufacturing the same, a laminated III-nitride compound substrate, a group III nitride semiconductor device, and a method of fabricating the same
US8748890B2 (en) Method of manufacturing semiconductor wafer, and composite base and composite substrate for use in that method
KR20090093887A (ko) 단결정 박막을 갖는 기판의 제조 방법
JP2011519181A (ja) 窒化ガリウム材料加工及びその関連するデバイス構造体
JP2019153603A (ja) 半導体基板及びその製造方法
KR20200041289A (ko) Ⅲ족-질화물 및 다이아몬드층을 갖는 웨이퍼
JP2021536673A (ja) ダイヤモンド基板上の半導体、ダイヤモンド基板上の半導体の調製に使用する前駆体、およびその製造方法
US20140159055A1 (en) Substrates for semiconductor devices
GB2562918A (en) Semiconductor device and method for producing semiconductor device
JP6146042B2 (ja) Iii族窒化物複合基板およびその製造方法、積層iii族窒化物複合基板、ならびにiii族窒化物半導体デバイスおよびその製造方法
WO2024058180A1 (ja) 半導体装置形成用基板、半導体積層構造体、半導体装置、半導体装置形成用基板の製造方法、半導体積層構造体の製造方法及び半導体装置の製造方法
KR20230056686A (ko) 다이아몬드 방열판을 갖는 헤테로에피택셜 구조
JP5598321B2 (ja) 半導体デバイスの製造方法
CN112530803B (zh) GaN基HEMT器件的制备方法
WO2021245724A1 (ja) 複合基板、複合基板の製造方法、半導体装置および半導体装置の製造方法
CN111226314B (zh) 多层复合基板结构及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23865532

Country of ref document: EP

Kind code of ref document: A1