WO2024058134A1 - コーティング層の除去方法及びコーティング層の除去装置 - Google Patents

コーティング層の除去方法及びコーティング層の除去装置 Download PDF

Info

Publication number
WO2024058134A1
WO2024058134A1 PCT/JP2023/033077 JP2023033077W WO2024058134A1 WO 2024058134 A1 WO2024058134 A1 WO 2024058134A1 JP 2023033077 W JP2023033077 W JP 2023033077W WO 2024058134 A1 WO2024058134 A1 WO 2024058134A1
Authority
WO
WIPO (PCT)
Prior art keywords
coating layer
base film
laminated film
pressure vessel
film
Prior art date
Application number
PCT/JP2023/033077
Other languages
English (en)
French (fr)
Inventor
裕一 森
裕太 井澤
知巳 深谷
太寿 西尾
Original Assignee
リンテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by リンテック株式会社 filed Critical リンテック株式会社
Publication of WO2024058134A1 publication Critical patent/WO2024058134A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B17/00Recovery of plastics or other constituents of waste material containing plastics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B17/00Recovery of plastics or other constituents of waste material containing plastics
    • B29B17/04Disintegrating plastics, e.g. by milling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/18Handling of layers or the laminate

Definitions

  • the present invention relates to a coating layer removal method and a coating layer removal device.
  • Patent Document 1 a resin base material having a coating on its surface is placed in a cleaning container, and the resin base material is mixed with an alkaline aqueous solution in an amount that makes the liquid level higher than the top of the resin base material deposited in the cleaning container.
  • a method for removing a resin substrate coating is disclosed, which includes a coating removal step of stirring at a temperature of 80 to 180° C. at a rotation speed of 2 to 100 m/sec at the tip of a stirring blade.
  • Patent Document 2 discloses a release film in which a release layer is formed on at least one side of a base film through an easily soluble resin layer, and the release film after use is made of an easily soluble resin.
  • a release film characterized in that the release layer on the surface of the film is separated and removed by immersing it in a solvent that can dissolve the easily soluble resin in the solvent, and only the base film is recovered.
  • a collection method is disclosed.
  • the method described in Patent Document 1 is a technique for removing a film on a resin base material using an alkaline aqueous solution.
  • the alkaline aqueous solution after use contains components in the film (for example, a stripping agent), and there is a problem in that the cleaning ability decreases when reused. Another problem is that it takes time and effort to purify the alkaline aqueous solution.
  • a release layer is laminated on at least one side of a base film with an easily soluble resin layer (water-soluble resin or water-dispersible resin) interposed therebetween.
  • the release layer is peeled from the release film by utilizing the property that the easily soluble resin layer is easily dissolved in a solvent.
  • the layer configuration of laminated films is diverse, for example, when the layer formed on the base film is a water-insoluble resin layer, in the method described in Patent Document 2, from the release film to the release layer. is difficult to remove. Furthermore, in the method described in Patent Document 2, there is a possibility that the easily soluble resin layer dissolved in the solvent will re-adhere to the release film. Furthermore, there is a possibility that the solvent may be contaminated by the easily soluble resin layer. In recent technology for recycling base films, there is a need for a technology that can more easily remove a film (coating layer) consisting of multiple layers laminated on a base film. Furthermore, it is desired that the solvent used be one that is easy to reuse.
  • An object of the present invention is to provide a coating layer removal method and a coating layer removal device that can easily and quickly remove the coating layer from a laminated film having a base film and a coating layer. .
  • a step of preparing a laminated film having a base film and a coating layer a step of storing the laminated film and treated water in a pressure vessel, and heating the treated water, A step of separating the laminated film into the base film and the coating layer by increasing the pressure in the pressure vessel to a pressure higher than 1 atmosphere, and recovering the separated base film. and a recovery step, wherein the coating layer includes an intermediate layer and a release agent layer, and the intermediate layer is disposed between the base film and the release agent layer.
  • the separated base film is submerged in the treated water, and the separated residues of the coating layer are submerged in the treated water. It is a process of floating The method for removing a coating layer according to [1] or [2] above.
  • a first discharge pipe is connected to a first discharge port disposed on the bottom side of the pressure vessel, and the base film is recovered.
  • the coating layer recovery step includes returning the atmospheric pressure in the pressure vessel to normal pressure, and then recovering the residue in the pressure vessel.
  • the treated water is allowed to overflow from the pressure vessel, and the residue of the coating layer flowing out due to the overflow of the treated water is guided to the outside of the pressure vessel through a second outlet disposed on the upper side of the pressure vessel.
  • the laminated film is a laminated film with a ceramic green sheet, and a ceramic green sheet is attached to a side of the coating layer opposite to the base film, as described in [1] to [6] above.
  • a coating layer removal device for removing the coating layer from a laminated film having a base film and a coating layer, comprising a storage means for storing the cut laminated film and treated water, and a storage means for storing the cut laminated film and treated water; a heating means for heating the treated water contained therein; a pressure control means for controlling the atmospheric pressure in the storage means to a pressure higher than 1 atmosphere; and a base film recovery disposed on the bottom side of the storage means.
  • An apparatus for removing a coating layer comprising means.
  • the base film collecting means is a first discharge port disposed on the bottom side of the storage means or a first discharge pipe connected to the bottom side of the storage means.
  • the coating layer removal device according to any one of the above.
  • a coating layer removal method and a coating layer removal device that can easily and quickly remove the coating layer from the laminated film.
  • FIG. 3 is a cross-sectional view of a laminated film used in the removal method according to the first embodiment.
  • FIG. 2 is a perspective view of a laminated film with ceramic green sheets.
  • 2B is a cross-sectional view of the removal device according to the second embodiment, taken along line XX of the top view shown in FIG. 2B.
  • FIG. FIG. 2B is a top view of the removal device shown in FIG. 2A.
  • FIG. 7 is a cross-sectional view of a pressure vessel for explaining a coating layer recovery means according to a second embodiment.
  • the coating layer removal method according to the present embodiment includes a step of preparing a laminated film having a base film and a coating layer (hereinafter also referred to as a preparation step). , a step of accommodating the laminated film and the treated water in a pressure vessel (hereinafter also referred to as an accommodating step); and heating the treated water and increasing the pressure in the pressure vessel to a pressure higher than 1 atmosphere. , a step of separating the laminated film into the base film and the coating layer (hereinafter also referred to as a separation step), and a base film recovery step of recovering the separated base film.
  • the coating layer includes an intermediate layer and a release agent layer, and the intermediate layer is disposed between the base film and the release agent layer.
  • the treated water is water for immersing the laminated film, and is used to penetrate into the interface between the base film and the coating layer to reduce their mutual adhesion.
  • the treated water is preferably ordinary water, ie, industrial water, and may be purified water or distilled water.
  • the water may be water obtained by reusing wastewater used in various industrial productions, or may be water obtained by reusing wastewater after being used in the implementation of this embodiment. When wastewater is to be reused, wastewater may be recycled as appropriate.
  • the treated water may contain an additive that adds functionality as appropriate, but it is preferable that it does not contain it. Examples of additives include surfactants and water-soluble organic solvents.
  • the concentration of the active ingredient of the additive in the treated water is preferably 0.2% by mass or less, and preferably 0.1% by mass or less, based on the total amount of the treated water. More preferably, the treated water is not water to which additives have been intentionally added. Furthermore, the treated water is preferably neither an alkaline aqueous solution prepared by intentionally adding a basic substance, nor an acidic aqueous solution prepared by intentionally adding an acidic substance. Treated water may contain basic and acidic substances as additives, as it is possible that wastewater can be easily recycled, but in that case, uniform wastewater standards (other It is preferable that the pH of the treated water is 5.8 or more and 8.6 or less so as to meet the criteria of item (2).
  • treated water is water that is not in the state of superheated water or hot water.
  • the temperature of the hot water is, for example, 40°C or more and 100°C or less.
  • superheated water is liquid treated water that is heated under pressure and has a temperature exceeding 100°C.
  • the laminated film is immersed in superheated water in a pressure vessel under pressure.
  • the superheated water tends to infiltrate the interface between the base film and the intermediate layer, and the intermediate layer is easily peeled off from the base film together with the release agent layer.
  • the coating layer can be easily removed from the laminated film in a short time.
  • the removal method according to the present embodiment uses water or hot water as the treated water, so the coating layer can be removed from the laminated film regardless of the chemical properties of the coating layer. can. Therefore, the removal method according to this embodiment is a new coating layer removal method for recovering and recycling the base film (preferably PET film).
  • the removal method according to the present embodiment does not leave any foreign matter (mainly blasting material) behind, compared to a method in which the coating layer is removed by blasting.
  • FIG. 1A is a cross-sectional view of a laminated film 50 used in the removal method according to this embodiment.
  • the laminated film 50 is a laminated film cut into strips.
  • Laminated film 50 has a base film 51 and a coating layer 52.
  • the coating layer 52 includes an intermediate layer 521 and a release agent layer 522, and the intermediate layer 521 is disposed between the base film 51 and the release agent layer 522.
  • a indicates the surface of the intermediate layer 521 on the base film side
  • b indicates the surface of the intermediate layer 521 on the release agent layer side.
  • d indicates the surface of the release agent layer
  • c indicates the surface of the release agent layer 522 on the intermediate layer side.
  • the base film and the intermediate layer are in direct contact with each other.
  • the base film 51 and the intermediate layer 521 are in direct contact
  • the intermediate layer 521 and the release agent layer 522 are in direct contact.
  • the intermediate layer is preferably hydrophilic and water-insoluble.
  • the effect of this embodiment (the effect that the coating layer can be easily removed from the laminated film in a short time) is more effectively achieved.
  • the reason for this is thought to be as follows.
  • the intermediate layer 521 in the laminated film 50 is in close contact with the base film 51 mainly due to hydrogen bonds and anchor effects (FIG. 1A). If the intermediate layer 521 is hydrophilic, superheated water will more easily infiltrate into the interface between the base film 51 and the intermediate layer 521 when the laminated film 50 is immersed in superheated water in a pressure vessel under pressure.
  • the hydrogen bond and anchor effect between the intermediate layer 521 and the base film 51 are weakened more quickly.
  • the intermediate layer 521 and the release agent layer 522 can be more easily peeled off from the base film 51, and the coating layer 52 (intermediate layer 521 and release agent layer 522) can be removed from the laminated film 50 more quickly.
  • the intermediate layer is water-insoluble, components of the intermediate layer 521 are prevented from eluting into superheated water during the separation step. Therefore, since the intermediate layer 521 is water-insoluble, contamination of superheated water can be prevented, and treated water (water or hot water) after use can be easily reused. Furthermore, since the removal method according to the present embodiment does not use an alkaline aqueous solution with a high concentration of alkaline components (for example, pH exceeding 8.6) as the treated water, unlike Patent Document 1, the treated water after use is not used. It has the advantage that there is no need to purify the water, and the cleaning ability of the treated water after use does not decrease.
  • the coating layer when the intermediate layer is hydrophilic and water-insoluble, the coating layer can be removed from the laminated film more easily and in a shorter time, and the treated water can be more easily reused.
  • the amount of "components to be removed" contained in the treated water is extremely small, so the purification process can be simplified and the environmental load can be reduced.
  • an intermediate layer is “hydrophilic” if the contact angle of water on the surface of the intermediate layer on the base film side is 55 degrees or less. do.
  • the contact angle is preferably 50 degrees or less, more preferably 45 degrees or less.
  • the contact angle is determined when the base film of the intermediate layer is contacted after the base film is separated from the laminated film, that is, after the intermediate layer is brought into contact with water and the interface between the intermediate layer and the base film is peeled off. This value is obtained by measuring the contact angle of water on the surface (peeled surface). Purified water is used as the water brought into contact with the intermediate layer when measuring the contact angle of water.
  • the intermediate layer is separated from the base film and the contact angle of water on the surface of the intermediate layer on the base film side is measured by the following method. The obtained value is taken as the contact angle of water on the surface of the intermediate layer on the base film side.
  • Adhesive tape with a width of 50 mm (manufactured by Nitto Denko Corporation, product name "Polyester Adhesive Tape No. 31B") was pasted on the surface of the release agent layer of the laminated film, and then cut into a size of 50 mm x 50 mm to form a test piece. Create. Next, a glass beaker with a capacity of 500 mL is filled with 300 mL of 90° C.
  • the entire test piece is immersed in the purified water and left for 3 hours. After that, it was confirmed that the test piece was separated into a laminate in which the release agent layer and the intermediate layer were integrally supported on the adhesive tape, and a base film, and the release agent layer and the intermediate layer were supported.
  • the adhesive tape is taken out of the purified water and dried at room temperature for 24 hours. Thereafter, the contact angle of water is measured on the surface of the intermediate layer supported on the adhesive tape (the surface of the intermediate layer that was in contact with the surface of the base film). The contact angle is measured by the sessile drop method using a contact angle meter (manufactured by Kyowa Interface Science Co., Ltd., product name "DM-701") according to JIS R3257:1999. For droplets, use distilled water.
  • the contact angle of water may be a value measured on the surface of the intermediate layer on the base film side after implementing the separation step of the present embodiment.
  • a value measured by the following method may be used. Put 2L of water (treated water) into a pressure vessel with a capacity of 5L, boil the water to 100°C using a heater, and then place the test piece (a test piece cut into a size of 50mm x 50mm) in boiling water at 100°C. Soak in. Next, the lid of the pressure vessel is closed, and heating is restarted so that the pressure inside the pressure vessel becomes 2 atmospheres.
  • whether or not the intermediate layer is "water-insoluble” is determined by the contact angle of water on the release agent layer surface (symbol d in FIG. 1A) and the intermediate layer measured using the following method. If the difference between the water contact angle on the base film side surface (in FIG. 1A, reference numeral a) is 30 degrees or more, the intermediate layer is determined to be water-insoluble. The difference in contact angle is preferably 40 degrees or more, more preferably 50 degrees or more. If the value of this difference is small, it means that the components constituting the intermediate layer were eluted into water and the partially exposed release agent layer was measured.
  • the contact angle of water on the surface of the release agent layer is not particularly limited, but is usually 80 degrees or more, preferably 85 degrees or more, and more preferably 90 degrees or more. Further, the upper limit of the contact angle of water on the surface of the release agent layer is usually 150 degrees, preferably 140 degrees, and more preferably 130 degrees.
  • the contact angle of water on the surface of the release agent layer is measured by the sessile drop method using a contact angle meter (manufactured by Kyowa Kaimen Kagaku Co., Ltd., product name "DM-701") according to JIS R3257:1999. For droplets, use distilled water.
  • the removal method according to the present embodiment can be carried out using, for example, the coating layer removal apparatus according to the second embodiment (hereinafter also referred to as the removal apparatus according to the second embodiment).
  • FIG. 2A is a sectional view of the removal device 100 according to the second embodiment, and is a sectional view taken along line XX of the top view shown in FIG. 2B.
  • FIG. 2B is a top view of the removal device 100 shown in FIG. 2A.
  • the removing device 100 is a coating layer removing device 100 that removes a coating layer from a laminated film having a base film and a coating layer, and includes a storage means 1 for storing cut laminated films and treated water W1, and A heating means 16 for heating the treated water W1 accommodated inside the means 1, a pressure control means for controlling the atmospheric pressure inside the containing means 1 to a pressure higher than 1 atm, and a heating means 16 arranged on the bottom side of the containing means 1. A base film recovery means.
  • the removal device 100 also includes means for cutting the laminated film into small pieces (hereinafter also referred to as cutting means) and coating layer recovery means.
  • the cutting means (not shown) is a means for cutting the laminated film into strips.
  • Examples of the cutting means include a cutting machine equipped with a cutter.
  • Examples of the cutter include a cutter blade, water jet cutter, laser cutter, and ultrasonic cutter.
  • the storage means 1 stores the cut laminated film and treated water W1.
  • the housing means 1 includes a pressure vessel 10 and a pressure lid 12.
  • the pressure lid 12 is formed with a steam exhaust port (not shown) for discharging steam generated within the pressure vessel 10 to the outside, and a pressure regulating valve 14 as a pressure control means is provided at the steam exhaust port. is located.
  • a first outlet 19A is arranged at the bottom side of the pressure vessel 10, and a second outlet 18A is arranged at the upper side of the pressure vessel 10.
  • the bottom surface of the pressure vessel 10 is inclined, and the first discharge port 19A is arranged below the slope of the bottom surface.
  • a first discharge pipe 19 for discharging the base film 51 is connected to the first discharge port 19A of the pressure vessel 10, and a second discharge pipe 18 for discharging the coating layer dregs 52C is connected to the second discharge port 18A. ing.
  • the heating means 16 heats the treated water W1 via the storage means 1.
  • the heating means 16 is arranged so as to cover the periphery of the pressure vessel 10.
  • a known heater can be used as the heating means.
  • the arrangement position of the heating means is not particularly limited.
  • the pressure control means controls the atmospheric pressure within the accommodation means 1 to be higher than 1 atmosphere.
  • a pressure regulating valve for example, a safety valve
  • a pressure regulating valve for example, a relief valve
  • a pressure regulating valve used in a pressure cooker for example, a weight type and a spring type
  • the pressure control means may include a pressure sensor that measures the pressure inside the pressure vessel 10.
  • the pressure control means may further include a control section connected to a pressure sensor, a pressure regulating valve, and the like. In the case of FIG. 2A, the pressure control means is the pressure regulating valve 14.
  • the pressure regulating valve 14 regulates the pressure inside the pressure vessel 10 to a predetermined pressure by controlling the opening area of a steam outlet (not shown) formed in the pressure lid 12. Specifically, when the pressure inside the pressure vessel 10 rises above a predetermined pressure, the pressure regulating valve 14 opens the steam exhaust port (increases the opening area of the steam exhaust port), and the pressure inside the pressure vessel 10 increases. When the pressure drops below a predetermined pressure, the steam outlet is closed.
  • the opening or closing of the steam outlet by the pressure regulating valve 14 may be controlled, for example, by a computer control unit according to the pressure value acquired by a pressure sensor, or by controlling the pressure inside the pressure vessel 10 using a relief valve. It may be controlled by a spring force so that the pressure becomes a set pressure, or it may be controlled passively according to pressure changes in the pressure vessel 10, as when using a pressure regulating valve used in a pressure cooker.
  • the base film collecting means is means for collecting the base film 51 separated from the laminated film from the bottom side of the pressure vessel 10.
  • the base film recovery means is preferably a first discharge port 19A disposed on the bottom side of the storage means 1 or a first discharge pipe 19 connected to the bottom side of the storage means 1.
  • the base film collecting means is the first discharge pipe 19.
  • the first discharge pipe 19 is removably connected to the first discharge port 19A from the pressure vessel 10.
  • the first discharge pipe 19 has a first discharge valve 22 .
  • the first discharge pipe 19 can be opened and closed by the first discharge valve 22, and discharge of the base film 51 and the treated water W1 is controlled.
  • the coating layer recovery means is, for example, a means for opening the pressure lid 12 after returning the pressure inside the pressure vessel 10 to normal pressure and recovering the coating layer residue 52C separated from the laminated film from the upper side of the pressure vessel 10. be. It is preferable that the coating layer recovery means is arranged at the upper side of the accommodation means 1, and the coating layer recovery means is preferably arranged at the second discharge port 18A arranged at the upper side of the accommodation means 1 or the second discharge pipe connected to the upper side of the accommodation means 1. Preferably, it is 18.
  • FIG. 3 is a sectional view of the pressure vessel 10 for explaining the coating layer recovery means, and shows a state in which the pressure lid 12 of the pressure vessel 10 is opened in the removal apparatus of FIG. 2A.
  • the coating layer recovery means is a hose 30 (an example of water injection means) having a discharge port 31 and the second discharge pipe 18.
  • the second discharge pipe 18 is removably connected to the second discharge port 18A from the pressure vessel 10.
  • the second discharge pipe 18 has a second discharge valve 21 .
  • the second discharge pipe 18 can be opened and closed by the second discharge valve 21.
  • the water injection means is a means for overflowing the treated water W1.
  • the coating layer recovery means includes a tray having a mesh structure (for example, a colander), a filter, a scraping member (for example, a scraping plate, a scraping blade, etc.), It may be a container for waste collection, or a combination of any of these.
  • a tray having a mesh structure for example, a colander
  • a filter for example, a filter
  • a scraping member for example, a scraping plate, a scraping blade, etc.
  • the coating layer recovery means is a tray having a mesh structure
  • the coating layer residue 52C is collected by scooping the coating layer residue 52C from the opening 10A of the pressure vessel 10.
  • the removal method according to the first embodiment is performed, for example, through the following steps.
  • the preparation step is a step of preparing a laminated film having a base film and a coating layer.
  • the preparation step includes a step of cutting the laminated film unwound from the roll on which the laminated film is wound into strips (hereinafter also referred to as a cutting step).
  • the laminated film unwound from the rolls is cut into strips, for example, by passing sequentially between a pair of nip rolls and a pair of cutter blades.
  • the size of the cut laminated film is arbitrarily selected depending on the size of the pressure vessel.
  • the dimension of one side of the laminated film is preferably 15 cm or less, more preferably 10 cm or less, and still more preferably 5 cm or less.
  • the lower limit of the dimension of one side of the laminated film is preferably 5 mm or more.
  • the cutting step may be a step of cutting the prepared laminated film of any size into strips.
  • the cut laminated film may be collected into the pressure vessel 10 after being collected by a strip film collector, or the cut laminated film may be directly charged into the pressure vessel 10.
  • the laminated film is a laminated film with a ceramic green sheet, and the ceramic green sheet may be attached to the opposite side of the coating layer from the base film.
  • FIG. 1B is a perspective view of a ceramic green sheet-attached laminated film 50G.
  • FIG. 1B shows a state in which a ceramic green sheet-attached laminated film 50G is unwound from a roll 1G.
  • the ceramic green sheet residue 920 is attached to the surface of the coating layer 52. After the ceramic green sheet is peeled off, a recess 910 is formed, and the coating layer 52 is exposed from the recess 910.
  • the laminated film used in the removal method according to the present embodiment is preferably a laminated film with ceramic green sheets that has been used for manufacturing a multilayer ceramic capacitor (MLCC).
  • MLCC multilayer ceramic capacitor
  • the housing process is a process of housing the laminated film and the treated water W1 in the pressure vessel 10.
  • the accommodation process may be a process of putting the laminated film into the pressure vessel 10 containing the treated water W1, or a process of putting the treated water W1 into the pressure vessel 10 containing the laminated film.
  • the separation step the laminated film is separated from the base film 51 and the coating layer (for example, the coating layer residue 52C) by heating the treated water W1 and increasing the pressure inside the pressure vessel 10 to a pressure higher than 1 atmosphere.
  • This is the process of separating into two.
  • the treated water W1 in the pressure vessel 10 is heated by a heater to generate water vapor, thereby making the pressure in the pressure vessel 10 higher than 1 atmosphere.
  • the separation step is preferably a step in which the separated base film 51 is submerged in the treated water W1, and the separated coating layer dregs 52C are floated in the treated water W1.
  • the atmospheric pressure inside the pressure vessel 10 and the temperature of the heated treated water W1 are determined by Boyle-Charles' law, and are preferably in the following ranges.
  • the atmospheric pressure inside the pressure vessel 10 is preferably 1.2 atmospheres or more, more preferably 1.4 atmospheres or more, from the viewpoint of removing the coating layer in a shorter time.
  • the atmospheric pressure in the pressure vessel 10 is preferably 9.93 atmospheres or less, more preferably 4.7 atmospheres or less, from the viewpoint of suppressing melting of the resin component contained in the laminated film.
  • the temperature of the superheated water is preferably 105°C or higher, more preferably 110°C or higher.
  • the temperature of the superheated water is preferably 180°C or less, more preferably 150°C or less, from the viewpoint of suppressing melting of the resin component contained in the laminated film.
  • the retention time H1 of the laminated film in superheated water when the pressure inside the pressure vessel is over 1 atmosphere (preferably when the target pressure is) is preferably 5 minutes or more, and 10 minutes. More preferably, the time is more than 1 minute. Further, the holding time H1 is preferably 60 minutes or less, more preferably 40 minutes or less.
  • the base film recovery process is a process of recovering the separated base film 51.
  • the base film recovery step involves returning the atmospheric pressure inside the pressure vessel 10 to normal pressure, and then connecting the first discharge pipe 19 to the first discharge port 19A arranged on the bottom side of the pressure vessel 10. This is a step of discharging the base film 51 from the pressure vessel 10. Since the base film 51 easily sinks into the treated water W1, the base film 51 can be easily recovered from the pressure vessel 10 via the first discharge pipe 19.
  • the base film recovery process may be a process of directly recovering the base film 51 from the first outlet 19A of the pressure vessel 10. Water droplets are removed from the recovered base film 51 by a known method.
  • the removal method according to the present embodiment further includes a coating layer recovery step of recovering separated coating layer dregs 52C.
  • the coating layer recovery step after returning the pressure inside the pressure vessel to normal pressure, the treated water W1 in the pressure vessel is allowed to overflow from the pressure vessel, and the residue of the coating layer that flows out due to the overflow of the treated water is collected from the pressure vessel.
  • the step is to guide and collect the gas out of the pressure vessel through a second outlet disposed on the upper side. In the case of FIG. 3, by injecting water W2 into the pressure vessel 10 from the discharge port 31 of the hose 30, the treated water W1 in the pressure vessel 10 is caused to overflow.
  • the coating layer recovery step may be a step of directly recovering the coating layer residue 52C from the second outlet 18A of the pressure vessel 10 or the opening 10A (FIG. 3) of the pressure vessel 10.
  • the coating layer recovery step may be performed after the base film recovery step, the base film recovery step may be performed after the coating layer recovery step, or the base film recovery step may be performed after the coating layer recovery step.
  • the material film recovery step and the coating layer recovery step may be performed simultaneously.
  • the laminated film used in the embodiment has a base film and a coating layer.
  • the coating layer includes an intermediate layer and a release agent layer.
  • the intermediate layer is arranged between the base film and the release agent layer.
  • the intermediate layer may be a single layer, or may be a multilayer consisting of two or more intermediate layers of the same or different types.
  • the release agent layer may be a single layer, or may be a multilayer consisting of two or more release agent layers of the same or different types.
  • the laminated film preferably has a structure in which the base film and the intermediate layer are directly laminated, from the viewpoint of removing the coating layer from the laminated film and making it easy to recover the remaining base film.
  • direct lamination refers to a configuration in which, for example, there is no other layer between the base film and the intermediate layer, and the layers are in direct contact with each other.
  • the base film, the intermediate layer, and the release agent layer may be directly laminated in this order. That is, the structure may be such that there is no other layer between the base film, the intermediate layer, and the release agent layer, and the layers are in direct contact with each other.
  • a resin film is used in which a resin component that is scheduled to be collected is formed into a film.
  • resin films include polyester films such as polyethylene terephthalate film, polybutylene terephthalate, and polyethylene naphthalate; polyolefin films such as polyethylene film and polypropylene film; polyimide film; polyamide film; polycarbonate film; polyacetate film; ethylene-vinyl acetate copolymer.
  • Ethylene-(meth)acrylic acid copolymer film ethylene-(meth)acrylic acid ester copolymer film; cycloolefin polymer film; polyurethane film; polyphenylene sulfide film; cellophane; etc. can be used.
  • the density of the base film is preferably greater than the density of water at 40° C., and more preferably 1.0 g/cm 3 or more.
  • polyester films are preferred because they have a density higher than that of water at 40°C and excellent heat resistance and strength.
  • a polyester film containing any one of polyethylene terephthalate, polybutylene terephthalate, and polyethylene naphthalate as a main component is preferable.
  • the term "main component” or “main component” means that the proportion of the material in the entire mass is 50% by mass or more.
  • the resin film may contain known fillers, colorants, antistatic agents, antioxidants, organic lubricants, catalysts, and the like. Further, the resin film may be transparent or may be colored as desired.
  • at least one surface of the base film may be subjected to surface treatment such as sputtering, corona discharge, flame, ultraviolet irradiation, electron beam irradiation, and etching treatment such as oxidation, as necessary.
  • the thickness of the base film is not particularly limited, but from the viewpoint of strength, rigidity, etc., it is preferably 10 ⁇ m or more and 500 ⁇ m or less, more preferably 15 ⁇ m or more and 300 ⁇ m or less, and even more preferably 20 ⁇ m or more and 200 ⁇ m or less.
  • the release agent layer is preferably a layer formed from a release agent composition.
  • the release agent composition used to form the release agent layer is not particularly limited as long as it has release properties, and examples include silicone compounds; fluorine compounds; long-chain alkyl group-containing compounds; olefin resins, diene
  • a release agent composition having a thermoplastic resin material such as a thermoplastic resin as a main component can be used.
  • a release agent composition containing an energy ray-curable or thermosetting resin as a main component.
  • examples of the silicone compound include silicone compounds having organopolysiloxane as a basic skeleton. Further, examples of the silicone compound include thermosetting silicone compounds such as addition reaction type and condensation reaction type; energy ray curing type silicone compounds such as ultraviolet ray curing type and electron beam curing type; and the like.
  • examples of the fluorine compound include fluorine silicone compounds, fluorine boron compounds, and poly(perfluoroalkylene ether) chain-containing compounds.
  • the long-chain alkyl group-containing compound may be, for example, a polyvinyl carbamate obtained by reacting a long-chain alkyl isocyanate with a polyvinyl alcohol-based polymer. , an alkyl urea derivative obtained by reacting polyethyleneimine with a long-chain alkyl isocyanate, or a copolymer of a long-chain alkyl (meth)acrylate.
  • a long-chain alkyl-modified alkyd resin using a long-chain fatty acid as a modifier may be used as an alkyd resin obtained by a condensation reaction of a polyhydric alcohol and a polybasic acid.
  • a release agent composition containing an energy ray curable resin as a main component includes, for example, an energy ray curable compound having a reactive functional group selected from a (meth)acryloyl group, an alkenyl group, and a maleimide group, and a polyorganosiloxane.
  • an energy ray-curable compound and a polyorganosiloxane having mutually different molecular structures, polarities, and molecular weights are used.
  • the components become segregated near the outer surface of the release agent layer, and are then hardened by energy rays to fix the segregation. Thereby, the releasability of the release agent layer can be improved.
  • the release agent composition containing an energy ray curable resin as a main component may further contain a photopolymerization initiator.
  • release agent compositions containing a thermosetting resin as a main component include release agent compositions containing a melamine resin as a main component and release agent compositions containing an epoxy resin as a main component.
  • release agent compositions containing a melamine resin as a main component include compositions containing a melamine resin as a main ingredient, an acid catalyst for thermosetting the melamine resin, and a polyorganosiloxane that imparts release properties to the release agent layer.
  • a release agent composition containing an epoxy resin as a main component includes an epoxy resin as a main ingredient, an acidic or basic thermosetting catalyst for thermally curing the epoxy resin, and a polyorganic resin that imparts releasability to the release agent layer.
  • compositions containing siloxanes may be mentioned. Before curing, components derived from polyorganosiloxane become segregated near the outer surface of the release agent layer, and then harden to fix the segregation. Thereby, the releasability of the release agent layer can be improved.
  • the release agent layer may contain other additives in addition to the above-mentioned resin components.
  • other additives include anti-aging agents, light stabilizers, flame retardants, conductive agents, antistatic agents, and plasticizers.
  • the thickness of the release agent layer can be selected as appropriate and is not particularly limited, but for example, preferably 0.02 ⁇ m or more and 5 ⁇ m or less, more preferably 0.03 ⁇ m or more and 2 ⁇ m or less, and still more preferably 0.03 ⁇ m or more and 5 ⁇ m or less. 05 ⁇ m or more and 1.5 ⁇ m or less.
  • the intermediate layer is a layer made of a silane compound that is hydrophilic and water-insoluble, and exhibits polycondensation properties by hydrolysis, from the viewpoint of easier removal of the coating layer from the surface of the intermediate layer on the base film side. It is preferable that there be.
  • the silane compound preferably contains at least one kind selected from a tetrafunctional silane compound represented by the following general formula (a) and an oligomer thereof as a main component.
  • Si(OR) p (X) 4-p (a) [In general formula (a), R represents an alkyl group, and X represents a halogen atom. When a plurality of R's exist, the plurality of R's may be the same or different from each other. When a plurality of Xs exist, the plurality of Xs may be the same or different from each other. p represents an integer from 0 to 4. ] The number of carbon atoms in the alkyl group is preferably 1 or more and 4 or less.
  • the silane compounds represented by the general formula (a) may be used alone or in combination of two or more.
  • the silane compound represented by the general formula (a) preferably includes a silane compound in which p in the general formula (a) is 4.
  • the silane compound in which p in the general formula (a) is 4 ie, the tetrafunctional silane compound
  • At least one of tetramethoxysilane and tetraethoxysilane, or a mixture of tetramethoxysilane and tetraethoxysilane is preferred.
  • Methodsilicate 51 is an average tetramer oligomer of methoxysilane
  • Methodhylsilicate 53A is an average heptamer oligomer of tetramethoxysilane
  • “Ethylsilicate 40” is an average pentamer oligomer of tetraethoxysilane
  • “Ethylsilicate 48” which is an average 10-mer oligomer of tetraethoxysilane
  • EMS-485" which is a mixture of an average 10-mer oligomer of tetramethoxysilane and an average 10-mer oligomer of tetraethoxysilane (both , manufactured by Colcoat Co., Ltd.).
  • the laminated film used in each embodiment is preferably a laminated film that has been used for a specific purpose.
  • the adhesion between the base film and the coating layer (intermediate layer and release agent layer) during use is adjusted to the extent that the effects of this embodiment are not impaired.
  • the intermediate layer may contain a water-insoluble resin component together with the silane compound.
  • the intermediate layer may have a structure in which a composition containing a water-insoluble resin component is applied and cured. Examples of water-insoluble resin components include energy ray curable resins, epoxy resins, and melamine resins. It is preferable that the water-insoluble resin component can maintain water-insolubility even after being cured.
  • energy ray curable resins are preferred, such as dipentaerythritol tri(meth)acrylate, dipentaerythritol tetra(meth)acrylate, dipentaerythritol penta(meth)acrylate, dipentaerythritol hexaacrylate, etc. (meth)acrylate, pentaerythritol tri(meth)acrylate, and polyfunctional (meth)acrylate such as pentaerythritol tetra(meth)acrylate.
  • the intermediate layer further contains a photopolymerization initiator.
  • the photopolymerization initiator include 2-methyl-1[4-(methylthio)phenyl]-2-morpholinopropan-1-one, 2-benzyl-2-dimethylamino-1-(4-morpholinophenyl )-butanone-1 or 2-(dimethylamino)-2-[(4-methylphenyl)methyl]-1-[4-(4-morpholinyl)phenyl]-1-butanone is preferred.
  • the thickness of the intermediate layer is preferably 0.01 ⁇ m or more and 1 ⁇ m or less, more preferably 0.03 ⁇ m or more and 0.5 ⁇ m or less, and even more preferably 0.01 ⁇ m or more and 1 ⁇ m or less, from the viewpoint of easy water infiltration when the intermediate layer comes into contact with water. is 0.05 ⁇ m or more and 0.3 ⁇ m or less.
  • the removed coating layer residue has a structure having a release agent layer surface and a hydrophilic intermediate layer surface. becomes.
  • the surface of the release agent layer faces the air due to surface tension
  • the surface of the intermediate layer faces the water, resulting in stability.
  • debris with this configuration is more likely to exist at the boundary between water and air than in water.
  • the coating layer scum is an extremely thin film, it is thought that even if the density is a little high, the buoyancy due to surface tension will prevail, and since the intermediate layer is water-insoluble, it can continue to float on the water surface.
  • the laminated film used in each embodiment is generally used when manufacturing, transporting, storing, etc. other functional sheets and various parts used for specific applications. Used to protect the surfaces of sheets and parts. After actually fulfilling the role of protecting these parts, etc., they are often peeled off from the surface and discarded. Therefore, by using the laminated film, the coating layer and the base film can be easily separated from the laminated film, so this application has a high degree of contribution from the viewpoint of resource conservation and environmental protection.
  • the removal device 100 may have, for example, a circulation means that returns the treated water W1 in the pressure vessel 10 to the pressure vessel 10 again after filtering it with a filter.
  • the laminated film used in the removal method according to the embodiment does not need to be cut into pieces, and may be a sheet piece with a side dimension of several tens of centimeters, for example.
  • Example 1 (Preparation of evaluation sample) A biaxially stretched polyethylene terephthalate film (thickness: 31 ⁇ m) was prepared as a base film. Next, a hydrolyzed polycondensate of alkoxysilane S1 (manufactured by Colcoat Co., Ltd., product name "Colcoat HAS-1") and a polyfunctional acrylate dipentaerythritol hexaacrylate A1 (manufactured by Toagosei Co., Ltd., product name " Aronix M-400'') was mixed at a solid content ratio of 90:10 (S1:A1) to obtain a mixture M1.
  • a photopolymerization initiator (manufactured by IGM Resins B.V., product name "Omnirad 907") and 2-methyl-1[4-(methylthio)phenyl]-2-morpholinopropane-1- were added to the mixture M1.
  • p-toluenesulfonic acid monohydrate (manufactured by Tokyo Kasei Kogyo Co., Ltd.) was added, and finally isopropyl alcohol was added until the proportion of S1 was adjusted to the solids content.
  • a composition for forming an intermediate layer having a concentration of 1.0% by mass was obtained.
  • the mixing ratio of the photopolymerization initiator, 2-methyl-1[4-(methylthio)phenyl]-2-morpholinopropan-1-one, and p-toluenesulfonic acid monohydrate to mixture M1 is as follows. It is as follows.
  • ⁇ 2-Methyl-1[4-(methylthio)phenyl]-2-morpholinopropan-1-one A1 Ratio of 10% by mass to (100% by mass of solid content) - p-toluenesulfonic acid monohydrate: Ratio of 60 parts by mass of solid content to 100 parts by mass of S1 solid content
  • the intermediate layer forming composition was applied onto the base film using a bar coater, passed through a drying oven at 130°C for 1 minute, and then irradiated with ultraviolet rays (cumulative light amount: 250 mJ/cm 2 ).
  • a roll sample R1 of a film with an intermediate layer (thickness: 0.04 ⁇ m) was obtained. Thereafter, roll sample R1 was wound up.
  • dipentaerythritol hexaacrylate A1 solid content 100% by mass
  • acrylic-modified polydimethylsiloxane manufactured by Shin-Etsu Chemical Co., Ltd., trade name "X-22-164A", solid content 100% by mass
  • a photopolymerization initiator manufactured by IGM Resins B.V., trade name "Omnirad 907"
  • 2-methyl-1[4-(methylthio)phenyl]-2-morpholino 94 parts by mass of dipentaerythritol hexaacrylate A1 (solid content 100% by mass), which is a polyfunctional acrylate, and acrylic-modified polydimethylsiloxane (manufactured by Shin-Etsu Chemical Co., Ltd., trade name "X-22-164A”, solid content 100% by mass)
  • a photopolymerization initiator manufactured by IGM Resins B.V., trade name "Omnirad 907"
  • the rolled-up roll sample R1 is unwound, a release agent composition is applied onto the intermediate layer of the roll sample R1 using a bar coater, and after passing through a drying oven at 80°C for 1 minute, ultraviolet rays are applied.
  • a release agent layer (thickness: 1 ⁇ m) was formed by irradiation (accumulated light amount: 250 mJ/cm 2 ), and a roll sample R2 of a film with an intermediate layer and a release agent layer (a roll sample of a laminated film) was obtained.
  • This roll sample R2 was fed out with a nip roll and cut into pieces of 5 cm square, which were used as evaluation samples (preparation step).
  • the contact angle of water on the surface of the intermediate layer on the base film side was 43°.
  • the contact angle of water on the surface of the release agent layer was 93°.
  • the difference between the contact angle of water on the surface of the release agent layer and the contact angle of water on the surface of the intermediate layer on the base film side was calculated to be 50°.
  • a cylindrical stainless steel pressure vessel with a capacity of 5 L was used as the pressure vessel.
  • the flange-fixed lid on the top surface of the pressurized container is equipped with a pressure gauge and a relief valve as pressure control means. After putting 2L of water into this pressure vessel and boiling the water to 100°C using an induction heating (IH) heater, one evaluation sample was immersed in boiling water at 100°C (housing process), and the lid was closed. The scale of the relief valve was set to 2 atm and heating was restarted. Boiling (fumes) was confirmed to confirm that the pressure within the pressure vessel had reached 2 atmospheres, and after 15 minutes (maintained) in this state, the pressure inside the pressure vessel was returned to normal pressure (separation step).
  • the lid was opened and the contents of the pressure vessel were transferred to a recovery container equipped with drainage ports at the top and bottom. After confirming that the evaluation sample was separated into an upper layer and a lower layer, water was poured into the container. By pouring water, the residue of the coating layer in the upper layer flowed out from the upper drainage port, and the residue of the coating layer was collected using a tray with a mesh structure (coating layer collection step). The bottom of the collection container was slanted, and water and the base film were poured out from the lower drainage port, and only the base film was collected using a tray having a mesh structure (base film collection step).
  • Comparative Example 1 The evaluation sample of Comparative Example 1 was prepared in the same manner as Example 1, except that the intermediate layer forming composition was not applied on the base film, and a release agent layer was formed by applying a release agent composition. . Using the evaluation sample of Comparative Example 1, the release agent layer was removed in the same manner as in Example 1. When the thickness of the surface of the recovered base film was measured, it was confirmed that the thickness of the release agent layer was 1 ⁇ m. Since Si (silicon) contained in the release agent layer was confirmed in the analysis of the surface of the base film by XPS, it was confirmed that the release agent layer was not separated from the surface of the base film.
  • Si silicon
  • the contact angle of water on the surface of the release agent layer in the evaluation sample of Comparative Example 1 was 93°, but the evaluation sample of Comparative Example 1 did not have an intermediate layer and the release agent layer did not separate from the base film. The contact angle of water on the surface of the release agent layer on the base film side could not be measured.
  • Example 2 The same evaluation sample as that of Example 1 was used.
  • the pressure vessel used in the separation step of Example 1 was changed to a cylindrical stainless steel vessel with a capacity of 5 L, and the coating layer was removed by the following method. 2 L of water was put into this stainless steel container, and after boiling the water to 100°C using an IH heater, one evaluation sample was immersed in boiling water at 100°C. After holding this state for 15 minutes, the evaluation sample floating in the upper layer was taken out.
  • the thickness of the surface of the recovered base film was measured, it was confirmed that the thickness of the intermediate layer was 0.4 ⁇ m and the thickness of the release agent layer was 1 ⁇ m.
  • Si (silicon) contained in the intermediate layer and release agent layer was confirmed in the analysis of the surface of the base film by XPS, so the intermediate layer and release agent layer (coating layer) were not separated from the surface of the base film. It was confirmed.
  • Table 1 shows the composition of the coating layer used in each example, separation conditions, and separation results.
  • test piece was separated into a laminate in which the release agent layer and the intermediate layer were integrally supported on the adhesive tape, and a base film, and the release agent layer and the intermediate layer were supported.
  • the adhesive tape was taken out from the purified water and dried at room temperature for 24 hours. Thereafter, the contact angle of water was measured on the surface of the intermediate layer supported on the adhesive tape (the surface of the intermediate layer that was in contact with the surface of the base film). The contact angle was measured according to JIS R3257:1999 by the sessile drop method using a contact angle meter (manufactured by Kyowa Interface Science Co., Ltd., product name "DM-701"). For droplets, distilled water was used.
  • Example 1 Water-insoluble middle layer
  • SYMBOLS 1...Accommodating means 10...Pressure vessel, 12...Pressure lid, 14...Pressure control valve, 16...Heating means, 18...Second discharge pipe, 18A...Second discharge port, 19...First discharge pipe, 19A...No. 1 discharge port, 21... second discharge valve, 22... first discharge valve, 30... hose, 31... discharge port, 50, 50G... laminated film, 51... base film, 52... coating layer, 100... removing device, 521... Intermediate layer, 522... Release agent layer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)

Abstract

基材フィルム(51)と、コーティング層とを有する積層フィルムを準備する工程と、圧力容器(10)に積層フィルム、及び処理水(W1)を収容する工程と、処理水(W1)を加熱すると共に、圧力容器(10)内の気圧を1気圧よりも高い気圧にすることにより、積層フィルムを基材フィルム(51)とコーティング層(例えば、コーティング層のカス(52C))とに分離する工程と、分離された基材フィルム(51)を回収する基材フィルム回収工程と、を有し、コーティング層は、中間層及び剥離剤層を含み、中間層が基材フィルムと剥離剤層との間に配置されている、コーティング層の除去方法。

Description

コーティング層の除去方法及びコーティング層の除去装置
 本発明は、コーティング層の除去方法及びコーティング層の除去装置に関する。
 近年、地球資源保護や環境保護等の観点から、各種分野で、廃棄物の発生抑制、再使用、及び再生利用等の取組みを通じて、循環型社会の構築を目指す動きが活発化している。
 例えば、特許文献1には、表面に被膜を有する樹脂基材を洗浄容器中に入れ、洗浄容器内に堆積する樹脂基材の最上部よりも高い液面となる量のアルカリ性水溶液と共に樹脂基材を、80~180℃において、撹拌羽根の先端の回転速度2~100m/secで撹拌する被膜除去工程を含むことを特徴とする樹脂基材被膜の除去方法が開示されている。
 また、特許文献2には、基材フィルムの少なくとも片面に易溶解性樹脂層を介して離型層が形成されてなる離型フィルムで、かつ、使用後の離型フィルムを、易溶解性樹脂が溶解可能な溶媒中に浸漬して、易溶解性樹脂を溶媒中に溶解させることにより、フィルム表面の離型層を分離除去し、基材フィルムのみを回収することを特徴とする離型フィルムの回収方法が開示されている。
特開2004-027072号公報 特開2002-265665号公報
 特許文献1に記載の方法は、アルカリ性水溶液を用いて樹脂基材上の被膜を除去する技術である。使用後のアルカリ性水溶液には、被膜中の成分(例えば剥離剤)が含まれ、再利用すると洗浄能力が低下するという問題がある。またアルカリ性水溶液の浄化には手間がかかるという問題もある。
 特許文献2に記載の離型フィルムは、基材フィルムの少なくとも片面に易溶解性樹脂層(水溶性樹脂又は水分散性樹脂)を介して離型層が積層されている。特許文献2に記載の方法では、易溶解性樹脂層が溶媒に溶解され易い性質を利用して、離型フィルムから離型層を剥離する。
 しかしながら、積層フィルムの層構成は多様であるため、例えば、基材フィルム上に形成される層が非水溶性樹脂層である場合、特許文献2に記載の方法では、離型フィルムから離型層を除去することは困難である。また、特許文献2に記載の方法では、溶媒中に溶解した易溶解性樹脂層が離型フィルムに再付着する可能性がある。また、易溶解性樹脂層によって溶媒が汚染される可能性もある。
 近年の基材フィルムを再生する技術においては、基材フィルム上に積層された複層からなる被膜(コーティング層)をより容易に除去できる技術が求められている。また、使用する溶媒としては再利用し易い溶媒が望まれている。
 本発明の目的は、基材フィルムとコーティング層とを有する積層フィルムにおいて、積層フィルムからコーティング層を容易にかつ短時間で除去できるコーティング層の除去方法及びコーティング層の除去装置を提供することにある。
[1]基材フィルムと、コーティング層とを有する積層フィルムを準備する工程と、圧力容器に前記積層フィルム、及び処理水を収容する工程と、前記処理水を加熱すると共に、
前記圧力容器内の気圧を1気圧よりも高い気圧にすることにより、前記積層フィルムを前記基材フィルムと前記コーティング層とに分離する工程と、分離された前記基材フィルムを回収する基材フィルム回収工程と、を有し、前記コーティング層は、中間層及び剥離剤層を含み、前記中間層が前記基材フィルムと前記剥離剤層との間に配置されている、コーティング層の除去方法。
[2]前記積層フィルムを準備する工程は、前記積層フィルムが巻回されたロールから繰り出された前記積層フィルムを細片に切断する工程を含む、前記[1]に記載のコーティング層の除去方法。
[3]前記積層フィルムを前記基材フィルムと前記コーティング層とに分離する工程は、分離された前記基材フィルムを前記処理水に沈ませ、分離された前記コーティング層のカスを前記処理水に浮かせる工程である、
 前記[1]または[2]に記載のコーティング層の除去方法。
[4]前記基材フィルム回収工程は、前記圧力容器内の気圧を常圧に戻したのち、前記圧力容器の底部側に配置された第1排出口に第1排出管を繋いで前記基材フィルムを前記圧力容器から排出する工程である、前記[3]に記載のコーティング層の除去方法。
[5]分離された前記コーティング層のカスを回収するコーティング層回収工程をさらに有し、前記コーティング層回収工程は、前記圧力容器内の気圧を常圧に戻したのち、前記圧力容器内の前記処理水を前記圧力容器からオーバーフローさせ、前記処理水のオーバーフローに伴い流出する前記コーティング層のカスを、前記圧力容器の上部側に配置された第2排出口から前記圧力容器の外に誘導して回収する工程である、前記[1]から[4]のいずれか一項に記載のコーティング層の除去方法。
[6]前記中間層が、親水性かつ非水溶性である、前記[1]から[5]のいずれか一項に記載のコーティング層の除去方法。
[7]前記積層フィルムは、セラミックグリーンシート付き積層フィルムであり、前記コーティング層の前記基材フィルムとは反対側には、セラミックグリーンシートが付着している、前記[1]から[6]のいずれか一項に記載のコーティング層の除去方法。
[8]基材フィルムとコーティング層とを有する積層フィルムから前記コーティング層を除去するコーティング層の除去装置であって、切断された前記積層フィルム及び処理水を収容する収容手段と、前記収容手段の内部に収容された前記処理水を加熱する加熱手段と、前記収容手段内の気圧を1気圧よりも高い気圧に制御する圧力制御手段と、前記収容手段の底部側に配置された基材フィルム回収手段と、を備える、コーティング層の除去装置。
[9]前記積層フィルムを細片に切断する切断手段をさらに有する、前記[8]に記載のコーティング層の除去装置。
[10]前記収容手段の上部側に配置されたコーティング層回収手段をさらに有する、前記[8]または[9]に記載のコーティング層の除去装置。
[11]前記基材フィルム回収手段は、前記収容手段の底部側に配置された第1排出口または前記収容手段の底部側に連結する第1排出管である、前記[8]から[10]のいずれか一項に記載のコーティング層の除去装置。
 本発明の一態様によれば、基材フィルムとコーティング層とを有する積層フィルムにおいて、積層フィルムからコーティング層を容易にかつ短時間で除去できるコーティング層の除去方法及びコーティング層の除去装置を提供できる。
第1実施形態に係る除去方法で用いられる積層フィルムの断面図である。 セラミックグリーンシート付き積層フィルムの斜視図である。 第2実施形態に係る除去装置の断面図であり、図2Bに示す上面図のX-X線部分の断面図である。 図2Aに示す除去装置の上面図である。 第2実施形態に係るコーティング層回収手段を説明するための圧力容器の断面図である。
〔第1実施形態〕
〔コーティング層の除去方法〕
 本実施形態に係るコーティング層の除去方法(以下、本実施形態に係る除去方法とも称する)は、基材フィルムと、コーティング層とを有する積層フィルムを準備する工程(以下、準備工程とも称する)と、圧力容器に前記積層フィルム、及び処理水を収容する工程(以下、収容工程とも称する)と、前記処理水を加熱すると共に、前記圧力容器内の気圧を1気圧よりも高い気圧にすることにより、前記積層フィルムを前記基材フィルムと前記コーティング層とに分離する工程(以下、分離工程とも称する)と、分離された前記基材フィルムを回収する基材フィルム回収工程と、を有する。
 前記コーティング層は、中間層及び剥離剤層を含み、前記中間層が前記基材フィルムと前記剥離剤層との間に配置されている。
 本実施形態において処理水は、積層フィルムを浸漬させるための水であり、基材フィルムとコーティング層との界面に浸透して相互の密着力を低減させるために用いる。処理水としては、通常の水、すなわち工業用水であることが好ましく、精製水であっても蒸留水であってもよい。また、各種の工業生産に用いられた廃水を再利用した水であってもよく、本実施形態の実施に使用された後の廃水を再利用した水であってもよい。廃水を再利用する場合は、適宜、廃水を再生処理したものでもよい。
 作業効率を向上させる観点から、処理水は、適宜、機能性を付加する添加剤を含んでもよいが、含まない方が好ましい。添加剤としては、例えば、界面活性剤及び水溶性有機溶剤等が挙げられる。処理水が添加剤を含む場合、処理水中における添加剤の有効成分の濃度は、処理水の総量に対し、0.2質量%以下であることが好ましく、0.1質量%以下であることがより好ましく、さらには、処理水は、添加剤を意図的に加えた水ではないことが好ましい。
 また、処理水は、塩基性物質を意図的に加えて調製したアルカリ性水溶液でもないことが好ましく、酸性物質を意図的に加えて調製した酸性水溶液でもないことが好ましい。廃水を簡便な再生処理で済ませられる可能性があることから、処理水は、添加剤として塩基性物質及び酸性物質を含んでもよいが、その場合は、水質汚濁防止法に基づく一律排水基準(その他の項目)の基準に沿うよう、処理水のpHが、5.8以上8.6以下であることが好ましい。
 本明細書において、処理水は、過熱水の状態でない水または温水である。処理水が温水の場合、温水の温度は、例えば、40℃以上100℃以下である。
 本明細書において、過熱水とは、加圧下で加熱された100℃を超える液体の処理水である。
 本実施形態に係る除去方法では、積層フィルムを加圧下の圧力容器内で過熱水に浸漬することにより、積層フィルムを常圧下で温水(例えば40℃以上100℃以下の温水)に浸漬する場合に比べ、基材フィルムと中間層との界面に過熱水が浸潤し易くなり、中間層が剥離剤層と共に基材フィルムから剥がれ易くなる。その結果、積層フィルムからコーティング層を容易にかつ短時間で除去できる。
 また、本実施形態に係る除去方法では、アルカリ性水溶液を用いる特許文献1とは異なり、処理水として水や温水を用いるため、コーティング層の化学的性質によらずに、積層フィルムからコーティング層を除去できる。
 よって、本実施形態に係る除去方法は、基材フィルム(好ましくはPETフィルム)を回収して再生するための新たなコーティング層の除去方法である。
 また、本実施形態に係る除去方法は、コーティング層をブラスト処理して除去する方法に比べ、異物(主にブラスト材)の残留が生じない。
 図1Aは、本実施形態に係る除去方法で用いられる積層フィルム50の断面図である。
 積層フィルム50は、細片に切断された積層フィルムである。積層フィルム50は、基材フィルム51と、コーティング層52とを有する。コーティング層52は、中間層521及び剥離剤層522を含み、中間層521が基材フィルム51と剥離剤層522との間に配置されている。
 図1A中、aは、中間層521の基材フィルム側表面を示し、bは、中間層521の剥離剤層側表面を示す。dは、剥離剤層表面を示し、cは、剥離剤層522の中間層側表面を示す。
 本実施形態に係る積層フィルムにおいて、基材フィルムと中間層とが直接接触していることが好ましい。図1Aの場合、基材フィルム51と中間層521とが直接接触しており、かつ中間層521と剥離剤層522とが直接接触している。
 本実施形態に係る積層フィルムにおいて、中間層は親水性かつ非水溶性であることが好ましい。
 中間層が親水性である場合、本実施形態の効果(積層フィルムからコーティング層を容易にかつ短時間で除去できる効果)がより発現される。その理由は以下のように考えられる。
 積層フィルム50における中間層521は、主に、水素結合とアンカー効果とによって、基材フィルム51と密着している(図1A)。中間層521が親水性であると、加圧下の圧力容器内において、積層フィルム50が過熱水中に浸漬される際に、基材フィルム51と中間層521との界面に過熱水がより浸潤し易くなり、中間層521及び基材フィルム51の間の水素結合及びアンカー効果がより速く弱められると考えられる。その結果、中間層521が剥離剤層522と共に基材フィルム51からより剥がれ易くなり、積層フィルム50からコーティング層52(中間層521及び剥離剤層522)をより速く除去できると考えられる。
 中間層が非水溶性である場合、分離工程において、中間層521の成分が過熱水中に溶出することが抑制される。よって、中間層521が非水溶性であることで、過熱水の汚染を防止でき、使用後の処理水(水又は温水)を再利用し易くなる。
 また、本実施形態に係る除去方法は、処理水として、アルカリ成分が高濃度であるアルカリ性水溶液(例えばpHが8.6超え)を用いないため、特許文献1とは異なり、使用後の処理水を浄化する必要がなく、さらに使用後の処理水の洗浄能力も低下しないという利点がある。
 以上より、本実施形態の除去方法において、中間層が親水性かつ非水溶性であると、積層フィルムからコーティング層をより容易にかつ短時間で除去でき、さらに処理水を再利用し易くなる。また、処理水を排水する場合も再利用する場合も、処理水中に含まれる「除去すべき成分」は極少であるため、浄化処理を簡便化でき、かつ、環境負荷を低減できる。
 本明細書において、中間層が「親水性」であるか否かは、中間層の基材フィルム側表面の水の接触角が55度以下である場合、当該中間層は親水性であると判断する。
 図1Aで示す積層フィルム50の場合、中間層521の基材フィルム側表面(図1A中、符号a)の水の接触角が55度以下である場合、当該中間層521は親水性である。
 また、基材フィルムの分離性の促進の観点から、当該接触角は、好ましくは50度以下、より好ましくは45度以下である。当該接触角は、積層フィルムから基材フィルムを分離させた後、すなわち、中間層を水と接触させ、中間層と基材フィルムとの界面を剥離させた後、中間層の基材フィルムに接触していた面(剥離面)の、水の接触角を測定して得られる値である。水の接触角を測定する際に中間層と接触させる水としては、精製水を用いる。
 具体的には、以下の方法で、基材フィルムから中間層を分離し中間層の基材フィルム側表面の水の接触角を測定する。得られた値を中間層の基材フィルム側表面の水の接触角とする。
 積層フィルムの剥離剤層表面に、幅50mmの粘着テープ(日東電工株式会社製、製品名「ポリエステル粘着テープNo.31B」)を貼付し、その後、50mm×50mmのサイズに裁断して試験片を作製する。
 次いで、容量500mLのガラス製ビーカーに300mLの処理水としての90℃の精製水を充填し、試験片全体を精製水中に浸漬して3時間放置する。その後、試験片が、剥離剤層と中間層が一体となって粘着テープに担持された積層体と、基材フィルムとに分離されていることを確認し、剥離剤層と中間層を担持した粘着テープを精製水中から取り出し、室温下で24時間乾燥させる。その後、粘着テープ上に担持されている中間層の表面(基材フィルム表面に接触していた中間層の表面)について水の接触角を測定する。接触角は、接触角計(協和界面科学株式会社製、製品名「DM-701」)を使用し、静滴法によってJIS R3257:1999に準じて測定する。液滴については、蒸留水を使用する。
 また、前記水の接触角は、本実施形態の分離工程を実施した後の、中間層の基材フィルム側表面を測定した値でもよい。具体的には、以下の方法で測定した値でもよい。
 容量5Lの圧力容器に水(処理水)を2L入れ、ヒーターを用いて水を100℃に沸騰させた後、前記試験片(50mm×50mmのサイズに裁断した試験片)を100℃の沸騰水中に浸漬する。次いで、圧力容器の蓋を閉じ、圧力容器内の気圧が2気圧になるように加熱を再開する。沸騰(噴気)を確認して圧力容器内の圧力が2気圧に到達したことを確認し、この状態で15分経過(保持)した後に圧力容器内を常圧に戻す。
 その後、圧力容器内において、前記試験片が、剥離剤層と中間層が一体となって粘着テープに担持された積層体と、基材フィルムとに分離されていることを確認し、剥離剤層と中間層を担持した粘着テープを処理水から取り出し、室温下で24時間乾燥させる。その後、粘着テープ上に担持されている中間層の表面(基材フィルム表面に接触していた中間層の表面)について水の接触角を測定する。
 本明細書において、中間層が「非水溶性」であるか否かは、以下の方法を用いて測定される剥離剤層表面(図1A中、符号d)の水の接触角と、中間層の基材フィルム側表面(図1A中、符号a)の水の接触角との差が30度以上である場合、当該中間層は非水溶性であると判断する。当該接触角の差は、好ましくは40度以上、より好ましくは50度以上である。この差の値が小さい場合は、中間層を構成する成分が水に溶出して、部分的に表出した剥離剤層を測定したことを意味する。
 また、剥離剤層表面の水の接触角は特に制限はないが、通常80度以上を示し、好ましくは85度以上、より好ましくは90度以上である。また、剥離剤層表面の水の接触角の上限値は通常150度であり、好ましくは140度であり、より好ましくは130度である。
 剥離剤層表面の水の接触角は、接触角計(協和界面科学株式会社製、製品名「DM-701」)を使用し、静滴法によってJIS R3257:1999に準じて測定される。液滴については、蒸留水を使用する。
 本実施形態に係る除去方法は、例えば、第2実施形態に係るコーティング層の除去装置(以下、第2実施形態に係る除去装置とも称する)を用いて実施できる。
〔第2実施形態〕
〔コーティング層の除去装置100〕
 図2Aは、第2実施形態に係る除去装置100の断面図であり、図2Bに示す上面図のX-X線部分の断面図である。図2Bは、図2Aに示す除去装置100の上面図である。
 除去装置100は、基材フィルムとコーティング層とを有する積層フィルムからコーティング層を除去するコーティング層の除去装置100であって、切断された積層フィルム及び処理水W1を収容する収容手段1と、収容手段1の内部に収容された処理水W1を加熱する加熱手段16と、収容手段1内の気圧を1気圧よりも高い気圧に制御する圧力制御手段と、収容手段1の底部側に配置された基材フィルム回収手段と、を備える。
 また、除去装置100は、積層フィルムを細片に切断する手段(以下、切断手段とも称する)と、コーティング層回収手段とを備える。
<切断手段>
 切断手段(不図示)は、積層フィルムを細片に切断する手段である。切断手段としては、カッターを備える切断機等が挙げられる。カッターとしては、例えば、カッター刃、ウォータージェットカッター、レーザーカッター、及び超音波カッター等が挙げられる。
<収容手段1>
 収容手段1は、切断された積層フィルム及び処理水W1を収容する。収容手段1は、圧力容器10と、圧力蓋12とを備える。
 図2Aの場合、圧力蓋12には、圧力容器10内で発生した蒸気を外部へ放出する蒸気排出口(不図示)が形成されおり、その蒸気排出口に圧力制御手段としての圧力調節弁14が配置されている。圧力容器10の底部側には、第1排出口19Aが配置され、圧力容器10の上部側には、第2排出口18Aが配置されている。圧力容器10の底面は傾斜しており、この底面の勾配の下方に第1排出口19Aが配置されている。圧力容器10の第1排出口19Aには基材フィルム51を排出する第1排出管19が連結され、第2排出口18Aにはコーティング層のカス52Cを排出する第2排出管18が連結されている。
<加熱手段16>
 加熱手段16は、収容手段1を介して処理水W1を加熱する。
 加熱手段16は、圧力容器10の周囲を覆うように配置されている。
 加熱手段としては公知のヒーターを用いることができる。加熱手段の配置位置は特に限定されない。
<圧力制御手段>
 圧力制御手段は、収容手段1内の気圧を1気圧よりも高い気圧に制御する。
 圧力制御手段としては、圧力調節弁(例えば安全弁)、圧力調節バルブ(例えばリリーフバルブ)、及び圧力鍋に用いる調圧弁(例えば、重り式及びスプリング式)等を用いることができる。
 圧力制御手段は、圧力容器10の内部の圧力を測定する圧力センサを有していてもよい。圧力制御手段は、圧力センサ及び圧力調節弁等に接続された制御部をさらに有していてもよい。図2Aの場合、圧力制御手段は、圧力調節弁14である。
 圧力調節弁14は、圧力蓋12に形成された蒸気排出口(不図示)の開口面積を制御することで、圧力容器10内の圧力を所定の圧力に調節する。具体的には、圧力調節弁14は、圧力容器10内の圧力が所定圧力よりも上昇すると、蒸気排出口を開放し(蒸気排出口の開口面積を増加し)、圧力容器10内の圧力が所定圧力よりも下降すると、蒸気排出口を閉鎖する。
 圧力調節弁14による蒸気排出口の開放または閉鎖は、例えば、圧力センサが取得した圧力値に応じてコンピュータの制御部で制御してもよいし、リリーフバルブを用いて、圧力容器10内の圧力が設定圧力になるようにばね力で制御してもよいし、圧力鍋に用いる調圧弁を用いた時のように、圧力容器10内の圧力変化に応じて受動的に制御してもよい。
<基材フィルム回収手段>
 基材フィルム回収手段は、積層フィルムから分離された基材フィルム51を圧力容器10の底部側から回収する手段である。
 基材フィルム回収手段は、収容手段1の底部側に配置された第1排出口19Aまたは収容手段1の底部側に連結する第1排出管19であることが好ましい。
 図2Aの場合、基材フィルム回収手段は、第1排出管19である。第1排出管19は、圧力容器10から取り外し可能に第1排出口19Aに連結されている。第1排出管19は、第1排出弁22を有する。第1排出弁22により第1排出管19の開閉が可能であり、基材フィルム51及び処理水W1の排出が制御される。
<コーティング層回収手段>
 コーティング層回収手段は、例えば、圧力容器10内の気圧を常圧に戻した後に圧力蓋12を開け、積層フィルムから分離されたコーティング層のカス52Cを圧力容器10の上部側から回収する手段である。
 コーティング層回収手段は、収容手段1の上部側に配置されていることが好ましく、収容手段1の上部側に配置された第2排出口18Aまたは収容手段1の上部側に連結する第2排出管18であることが好ましい。
 図3は、コーティング層回収手段を説明するための圧力容器10の断面図であり、図2Aの除去装置において、圧力容器10の圧力蓋12を開けた状態を示している。
 図3の場合、コーティング層回収手段は、吐出口31を有するホース30(注水手段の一例)及び第2排出管18である。第2排出管18は、圧力容器10から取り外し可能に第2排出口18Aに連結されている。第2排出管18は、第2排出弁21を有する。第2排出弁21により第2排出管18の開閉が可能になっている。
 注水手段は、処理水W1をオーバーフローさせるための手段である。
 コーティング層回収手段は、第2排出口18A及び第2排出管18の他、網目構造を有するトレイ(例えば、ザル等)、フィルター、掻取り部材(例えば、掻取り板及び掻取りブレード等)、カス回収用容器、及びこれらのいずれかの組み合わせであってもよい。
 例えば、コーティング層回収手段が網目構造を有するトレイである場合、コーティング層のカス52Cを圧力容器10の開口部10Aからすくい取ることで、コーティング層のカス52Cを回収する。
 第2実施形態に係る除去装置100を用いた場合、第1実施形態に係る除去方法は、例えば、以下の工程を経て実施される。
<準備工程>
 準備工程は、基材フィルムと、コーティング層とを有する積層フィルムを準備する工程である。
 準備工程は、積層フィルムが巻回されたロールから繰り出された積層フィルムを細片に切断する工程(以下、切断工程とも称する)を含むことが好ましい。
 ロールから繰り出された積層フィルムは、例えば、一対のニップロールと、一対のカッター刃との間を順に通過することにより、細片に切断される。
 切断された積層フィルムの大きさは、圧力容器の大きさに応じて任意に選択される。
 例えば、切断された積層フィルムが四角形状である場合、積層フィルムの一辺の寸法は、好ましくは15cm以下、より好ましくは10cm以下、さらに好ましくは5cm以下である。積層フィルムの一辺の寸法の下限値は、5mm以上であることが好ましい。
 なお、切断される前の積層フィルムは、ロールに巻回されていなくてもよい。
 切断工程は、準備した任意の大きさの積層フィルムを細片に切断する工程であってもよい。
 切断された積層フィルムは、例えば、細片フィルム回収器で回収した後に、圧力容器10へ投入してもよいし、切断された積層フィルムを直接圧力容器10に投入してもよい。
 積層フィルムは、セラミックグリーンシート付き積層フィルムであり、コーティング層の基材フィルムとは反対側には、セラミックグリーンシートが付着していてもよい。
 図1Bは、セラミックグリーンシート付き積層フィルム50Gの斜視図である。
 図1Bには、ロール1Gからセラミックグリーンシート付き積層フィルム50Gが繰り出された状態が示されている。
 セラミックグリーンシートの残渣920は、コーティング層52の表面に付着している。セラミックグリーンシートが剥離された後は、凹部910となっており、凹部910からコーティング層52が露出している。
 本実施形態に係る除去方法で用いる積層フィルムは、積層セラミックコンデンサ(MLCC)の製造に用いられた後の、セラミックグリーンシート付き積層フィルムであることが好ましい。
 積層フィルムとして、セラミックグリーンシート付き積層フィルムを用いた場合、本実施形態に係る分離工程では、基材フィルムと中間層との界面に過熱水が浸潤することにより、コーティング層は、セラミックグリーンシートが付着した状態で基材フィルムから剥がれ易くなる。セラミックグリーンシートが付着したコーティング層のカスは、処理水W1に浮きやすい性質を有するため、コーティング層回収手段により、収容手段1の上部側から容易に回収できる。
<収容工程>
 収容工程は、圧力容器10に積層フィルム、及び処理水W1を収容する工程である。
 収容工程は、処理水W1が収容された圧力容器10に積層フィルムを入れる工程であってもよいし、積層フィルムが収容された圧力容器10に処理水W1を入れる工程であってもよい。
<分離工程>
 分離工程は、処理水W1を加熱すると共に、圧力容器10内の気圧を1気圧よりも高い気圧にすることにより、積層フィルムを基材フィルム51とコーティング層(例えば、コーティング層のカス52C)とに分離する工程である。
 図2Aの場合、圧力容器10内の処理水W1を、ヒーターにより加熱し水蒸気を発生させることで、圧力容器10内の気圧を1気圧よりも高い気圧にする。
 分離工程は、分離された基材フィルム51を処理水W1中に沈ませ、分離されたコーティング層のカス52Cを処理水W1に浮かせる工程であることが好ましい。
 分離工程において、圧力容器10内の気圧、及び加熱された処理水W1(過熱水)の温度は、ボイルシャルルの法則により、それぞれ決定されるが、好適には以下の範囲である。
 圧力容器10内の気圧は、コーティング層をより短時間で除去する観点から、1.2気圧以上が好ましく、1.4気圧以上がより好ましい。圧力容器10内の気圧は、積層フィルムに含まれる樹脂成分の溶融を抑制する観点から、9.93気圧以下が好ましく、4.7気圧以下がより好ましい。
 過熱水の温度は、コーティング層をより短時間で除去する観点から、105℃以上が好ましく、110℃以上がより好ましい。過熱水の温度は、積層フィルムに含まれる樹脂成分の溶融を抑制する観点から、180℃以下が好ましく、150℃以下がより好ましい。
 分離工程において、圧力容器内が1気圧超えの気圧であるときの(好ましくは目的とする気圧であるときの)、過熱水中における積層フィルムの保持時間H1は、例えば、5分以上が好ましく、10分以上がより好ましい。また、前記保持時間H1は、60分以下が好ましく、40分以下がより好ましい。
<基材フィルム回収工程>
 基材フィルム回収工程は、分離された基材フィルム51を回収する工程である。
 図2Aの場合、基材フィルム回収工程は、圧力容器10内の気圧を常圧に戻したのち、圧力容器10の底部側に配置された第1排出口19Aに第1排出管19を繋いで基材フィルム51を圧力容器10から排出する工程である。
 基材フィルム51は、処理水W1に沈み易いため、第1排出管19を介して基材フィルム51を圧力容器10から容易に回収できる。
 基材フィルム回収工程は、基材フィルム51を圧力容器10の第1排出口19Aから直接回収する工程であってもよい。回収された基材フィルム51は、公知の方法で水滴が除去される。
<コーティング層回収工程>
 本実施形態に係る除去方法は、分離されたコーティング層のカス52Cを回収するコーティング層回収工程をさらに有することが好ましい。
 コーティング層回収工程は、圧力容器内の気圧を常圧に戻したのち、圧力容器内の処理水W1を圧力容器からオーバーフローさせ、処理水のオーバーフローに伴い流出するコーティング層のカスを、圧力容器の上部側に配置された第2排出口から圧力容器の外に誘導して回収する工程であることが好ましい。
 図3の場合、ホース30の吐出口31から圧力容器10内へ水W2を注入することにより、圧力容器10内の処理水W1をオーバーフローさせる。このオーバーフローにより、処理水W1の上面に浮いたコーティング層のカス52Cは、第2排出管18を介して圧力容器10から容易に回収される。
 コーティング層回収工程は、コーティング層のカス52Cを圧力容器10の第2排出口18Aもしくは圧力容器10の開口部10A(図3)から直接回収する工程であってもよい。
 第1実施形態に係る除去方法は、基材フィルム回収工程の後に、コーティング層回収工程を実施してもよいし、コーティング層回収工程の後に基材フィルム回収工程を実施してもよいし、基材フィルム回収工程及びコーティング層回収工程を同時に実施してもよい。
 前記実施形態で用いる積層フィルムの構成について説明する。
〔積層フィルム〕
 前記実施形態で用いる積層フィルムは、基材フィルムと、コーティング層とを有する。コーティング層は、中間層及び剥離剤層を含む。中間層は、基材フィルムと剥離剤層との間に配置されている。
 中間層は単層であってもよいし、同種又は異種の2層以上の中間層からなる複層であってもよい。剥離剤層は単層であってもよいし、同種又は異種の2層以上の剥離剤層からなる複層であってもよい。
 積層フィルムは、当該積層フィルムからコーティング層を除去し、残存する基材フィルムを回収し易くする観点から、基材フィルムと中間層とが、直接積層している構成であることが好ましい。ここで、「直接積層」とは、例えば、基材フィルムと、中間層との間に、他の層を有さずに、各層が互いに直接接触している構成を指す。
 また、積層フィルムの一態様としては、基材フィルムと、中間層と、剥離剤層とがこの順で直接積層していてもよい。すなわち、基材フィルムと、中間層と、剥離剤層との間に、他の層を有さずに、各層が互いに直接接触している構成であってもよい。
<基材フィルム>
 基材フィルムは、回収を予定している樹脂成分が製膜された樹脂フィルムが使用される。樹脂フィルムとしては、ポリエチレンテレフタレートフィルム、ポリブチレンテレフタレート、ポリエチレンナフタレート等のポリエステルフィルム;ポリエチレンフィルム、ポリプロピレンフィルム等のポリオレフィンフィルム;ポリイミドフィルム;ポリアミドフィルム;ポリカーボネートフィルム;ポリアセテートフィルム;エチレン-酢酸ビニル共重合体(EVA)フィルム;エチレン-(メタ)アクリル酸共重合体フィルム;エチレン-(メタ)アクリル酸エステル共重合体フィルム;シクロオレフィンポリマーフィルム;ポリウレタンフィルム;ポリフェニレンスルフィドフィルム;セロハン;等を用いることができる。
 基材フィルムの密度は、40℃における水の密度よりも大きいことが好ましく、1.0g/cm以上であることがより好ましい。これにより、圧力容器から基材フィルムを回収する際に、積層フィルムから分離された基材フィルムが処理水中に沈み易くなるため、圧力容器の底部側から基材フィルムを容易に回収することができる。
 基材フィルムの中でも、40℃における水の密度よりも大きく、かつ耐熱性及び強度に優れる点で、ポリエステルフィルムが好ましい。ポリエステルフィルムとしては、樹脂の回収及び再生がし易い観点から、ポリエチレンテレフタレート、ポリブチレンテレフタレート、及びポリエチレンナフタレートのいずれかを主たる構成成分とするポリエステルフィルムが好ましい。本明細書において、主たる構成成分又は主成分とは、材料全体の質量に占める割合が50質量%以上であることを意味する。
 また、樹脂フィルムは、公知のフィラー、着色剤、帯電防止剤、酸化防止剤、有機滑剤、及び触媒等を含有してもよい。また、樹脂フィルムは、透明なものであっても、所望により着色等されていてもよい。また、基材フィルムの少なくとも1つの表面に予めスパッタリング、コロナ放電、火炎、紫外線照射、電子線照射、及び酸化等のエッチング処理等の表面処理を必要に応じて施してもよい。
 基材フィルムの厚さは、特に制限はないが、強度、剛性等の観点から、好ましくは10μm以上500μm以下、より好ましくは15μm以上300μm以下、更に好ましくは20μm以上200μm以下である。
<剥離剤層>
 前記剥離剤層は、剥離剤組成物から形成された層であることが好ましい。
 前記剥離剤層の形成に用いられる剥離剤組成物としては、剥離性を有するものであれば特に制限はなく、例えば、シリコーン系化合物;フッ素化合物;長鎖アルキル基含有化合物;オレフィン系樹脂、ジエン系樹脂などの熱可塑性樹脂材料;などを主成分とする剥離剤組成物を用いることができる。また、エネルギー線硬化型又は熱硬化型樹脂を主成分とする剥離剤組成物を使用することが好ましい。これらの剥離剤組成物は、1種を単独で用いてもよく、又は、2種以上を組み合わせて用いてもよい。
 シリコーン系化合物を主成分とする剥離剤組成物において、前記シリコーン系化合物としては、基本骨格としてオルガノポリシロキサンを有するシリコーン系化合物が挙げられる。また、前記シリコーン系化合物としては、付加反応型及び縮合反応型などの熱硬化型シリコーン系化合物;紫外線硬化型、及び電子線硬化型などのエネルギー線硬化型シリコーン系化合物;などが挙げられる。
 フッ素化合物を主成分とする剥離剤組成物において、前記フッ素化合物としては、フッ素シリコーン化合物、フッ素ボロン化合物、及びポリ(パーフルオロアルキレンエーテル)鎖含有化合物などが挙げられる。
 長鎖アルキル基含有化合物を主成分とする剥離剤組成物において、前記長鎖アルキル基含有化合物としては、例えば、ポリビニルアルコール系重合体に、長鎖アルキルイソシアネートを反応させて得られたポリビニルカーバメートや、ポリエチレンイミンに、長鎖アルキルイソシアネートを反応させて得られたアルキル尿素誘導体、あるいは長鎖アルキル(メタ)アクリレートの共重合体などが挙げられる。さらに、多価アルコールと多塩基酸との縮合反応によって得られるアルキド樹脂に、長鎖脂肪酸を変性剤として用いた長鎖アルキル変性アルキッド樹脂が用いられてもよい。
 エネルギー線硬化型樹脂を主成分とする剥離剤組成物としては、例えば、(メタ)アクリロイル基、アルケニル基及びマレイミド基から選択される反応性官能基を有するエネルギー線硬化性化合物と、ポリオルガノシロキサンとを含むものが好ましい。この剥離剤組成物により形成された剥離剤層においては、相互に分子構造、極性、及び分子量が異なるエネルギー線硬化性化合物及びポリオルガノシロキサンを用いているので、硬化前にポリオルガノシロキサンに由来する成分が剥離剤層の外表面付近に偏析した状態となり、その後エネルギー線により硬化し偏析が固定化する。これにより、剥離剤層の剥離性を向上することができる。エネルギー線硬化型樹脂を主成分とする剥離剤組成物としては、更に、光重合開始剤を含んでいてもよい。
 熱硬化型樹脂を主成分とする剥離剤組成物としては、例えば、メラミン樹脂を主成分とする剥離剤組成物及びエポキシ樹脂を主成分とする剥離剤組成物が挙げられる。メラミン樹脂を主成分とする剥離剤組成物としては、主剤であるメラミン樹脂、メラミン樹脂を熱硬化させる酸触媒、及び剥離剤層に剥離性を付与するポリオルガノシロキサンを含む組成物が挙げられる。また、エポキシ樹脂を主成分とする剥離剤組成物としては、主剤であるエポキシ樹脂、及びエポキシ樹脂を熱硬化させる酸又は塩基性の熱硬化触媒、及び剥離剤層に剥離性を付与するポリオルガノシロキサンを含む組成物が挙げられる。硬化前にポリオルガノシロキサンに由来する成分が剥離剤層の外表面付近に偏析した状態となり、その後硬化して偏析が固定化する。これにより、剥離剤層の剥離性を向上することができる。
 また、前記剥離剤層には、前述の樹脂成分以外に、その他の添加剤を含有していてもよい。その他の添加剤としては、例えば、老化防止剤、光安定剤、難燃剤、導電剤、帯電防止剤、及び可塑剤等が挙げられる。
 剥離剤層の厚さは、適宜、選択することが可能であり、特に制限はないが、例えば、好ましくは0.02μm以上5μm以下、より好ましくは0.03μm以上2μm以下、更に好ましくは0.05μm以上1.5μm以下である。
<中間層>
 前記中間層としては、親水性かつ非水溶性を示し、中間層の基材フィルム側表面からコーティング層をより容易に除去する観点から、加水分解により重縮合性を示すシラン系化合物からなる層であることが好ましい。
 前記シラン系化合物としては、下記一般式(a)で表される4官能シラン系化合物及びそのオリゴマーから選ばれる少なくとも1種を主成分として含むことが好ましい。
 Si(OR)(X)4-p   (a)
〔一般式(a)中、Rはアルキル基を表し、Xはハロゲン原子を表す。Rが複数存在する場合、複数のRは、互いに同一でも、異なっていてもよい。Xが複数存在する場合、複数のXは、互いに同一でも、異なっていてもよい。pは0以上4以下の整数を表す。〕
 アルキル基の炭素数は、1以上4以下であることが好ましい。
 なお、前記一般式(a)で表されるシラン系化合物は、単独で又は2種以上を組み合わせて用いてもよい。
 また、前記一般式(a)で表されるシラン系化合物としては、前記一般式(a)中のpが4であるシラン系化合物を含むことが好ましい。
 前記一般式(a)中のpが4であるシラン系化合物(すなわち4官能シラン系化合物)は、テトラアルコキシシランであることが好ましい。前記テトラアルコキシシランのより好ましい具体例としては、テトラメトキシシラン、テトラエトキシシラン、テトラプロポキシシラン、及びテトラブトキシシラン等が挙げられる。これらの中でも、入手の容易性及び加水分解反応の反応性の観点から、テトラメトキシシラン及びテトラエトキシシランの少なくとも一方、又は、テトラメトキシシラン及びテトラエトキシシランの混合物であることが好ましい。
 前記シラン系化合物の加水分解重縮合物としては市販品を用いることもでき、当該市販品の好適例としては、「コルコート(登録商標)N-103X」、「コルコート(登録商標)PX」、テトラメトキシシランの平均4量体オリゴマーである「メチルシリケート51」、テトラメトキシシランの平均7量体オリゴマーである「メチルシリケート53A」、テトラエトキシシランの平均5量体オリゴマーである「エチルシリケート40」、テトラエトキシシランの平均10量体オリゴマーである「エチルシリケート48」、及びテトラメトキシシランの平均10量体オリゴマーとテトラエトキシシランの平均10量体オリゴマーとの混合物である「EMS-485」(いずれも、コルコート株式会社製)等が挙げられる。
 各実施形態で用いられる積層フィルムは、特定の用途に使用された後の積層フィルムであることが好ましい。特定の用途に使用される時(実用時)の積層フィルムは、本実施形態の効果を損なわない範囲において、使用時における基材フィルムとコーティング層(中間層及び剥離剤層)との密着性を向上させるために、中間層に前記シラン系化合物と共に非水溶性の樹脂成分を配合した構成であってもよい。中間層は、非水溶性の樹脂成分を配合した組成物を塗布し硬化された構成であってもよい。
 非水溶性の樹脂成分としては、例えば、エネルギー線硬化型樹脂、エポキシ樹脂およびメラミン樹脂が挙げられる。非水溶性の樹脂成分は、硬化された後においても、非水溶性を確保できることが好ましい。
 非水溶性の樹脂成分としては、エネルギー線硬化性樹脂が好ましく、例えば、ジペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、およびペンタエリスリトールテトラ(メタ)アクリレートなどの多官能(メタ)アクリレートが挙げられる。
 また、中間層にエネルギー線硬化性樹脂を配合する場合、中間層は更に光重合開始剤を含むことが好ましい。光重合開始剤としては、例えば、2-メチル-1[4-(メチルチオ)フェニル]-2-モルフォリノプロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタノン-1、または2-(ジメチルアミノ)-2-[(4-メチルフェニル)メチル]-1-[4-(4-モルホリニル)フェニル]-1-ブタノンが好ましい。
 前記中間層の厚さは、中間層が水と接した際に、水が浸潤し易くなる観点から、好ましくは0.01μm以上1μm以下、より好ましくは0.03μm以上0.5μm以下、更に好ましくは0.05μm以上0.3μm以下である。
 本発明の各実施形態で用いられる積層フィルムが、親水性かつ非水溶性の中間層をもつことにより、除去されたコーティング層のカスは、剥離剤層表面と親水性の中間層表面を持つ構成となる。この構成のカスを水に浸漬すると、表面張力により剥離剤層表面が空気に対向し、中間層表面が水に対面することで安定する。すなわち、この構成のカスは水中よりも水と空気の境界に存在しやすい。ここで、コーティング層のカスは極薄の膜なので少々密度が大きくても表面張力による浮力が勝り、さらに中間層が非水溶性であることで水の表面に浮き続けることができると考えられる。
 各実施形態で用いられる積層フィルム(例えば切断される前の積層フィルム)は、一般に、特定の用途に用いられる他の機能性シートや各種部品の製造、運搬、保管時等に、これらの機能性シートや部品の表面を保護する目的等で用いられる。実際にこれらの部品等の保護の役目を果たした後は、表面から剥離され、廃棄されることも多い。そのため、前記積層フィルムを用いることで、積層フィルムからコーティング層と基材フィルムとを容易に分離することができるため、資源保護、環境保護の観点からも、貢献度の高い用途である。
〔実施形態の変形例〕
 本発明は、前記実施形態に限定されない。本発明は、本発明の目的を達成できる範囲での変形及び改良等を含むことができる。
〔変形例1〕
 第2実施形態に係る除去装置100は、例えば、圧力容器10内の処理水W1をフィルターで濾過した後に、再度圧力容器10に戻す循環手段を有してもよい。
〔変形例2〕
 前記実施形態に係る除去方法で用いる積層フィルムは、細片化されていなくてもよく、例えば、一辺の寸法が数十センチのシート片であってもよい。
 以下、実施例を挙げて本発明をさらに詳細に説明する。本発明はこれら実施例に何ら限定されない。
[実施例1]
(評価サンプルの作製)
 基材フィルムとして二軸延伸ポリエチレンテレフタレートフィルム(厚さ:31μm)を用意した。
 次に、アルコキシシランの加水分解重縮合物S1(コルコート株式会社製、製品名「コルコートHAS-1」)と、多官能アクリレートであるジペンタエリスリトールヘキサアクリレートA1(東亜合成株式会社製、製品名「アロニックスM-400」)とを固形分比90:10(S1:A1)で混合し、混合物M1を得た。
 混合物M1に対し、光重合開始剤(IGM Resins B.V.製、製品名「Omnirad 907」)、及び2-メチル-1[4-(メチルチオ)フェニル]-2-モリフォリノプロパン-1-オン(固形分100質量%)を添加した後、さらにp-トルエンスルホン酸一水和物(東京化成工業株式会社製)を添加し、最後にイソプロピルアルコールを混合して、S1の割合が固形分1.0質量%である中間層形成用組成物を得た。
 なお、混合物M1に対する光重合開始剤、2-メチル-1[4-(メチルチオ)フェニル]-2-モリフォリノプロパン-1-オン、及びp-トルエンスルホン酸一水和物の混合割合は以下の通りである。
・光重合開始剤:A1(固形分100質量%)に対して、10質量%の割合・2-メチル-1[4-(メチルチオ)フェニル]-2-モリフォリノプロパン-1-オン:A1(固形分100質量%)に対して、10質量%の割合・p-トルエンスルホン酸一水和物:S1固形分100質量部に対して、固形分60質量部の割合
 次に、バーコーターで、基材フィルム上に中間層形成用組成物を塗布し、130℃で1分間乾燥炉内を通過させたのち、紫外線を照射(積算光量:250mJ/cm)して中間層付きフィルム(厚さ:0.04μm)のロールサンプルR1を得た。その後、ロールサンプルR1を巻き取った。
 次に多官能アクリレートであるジペンタエリスリトールヘキサアクリレートA1(固形分100質量%)94質量部と、アクリル変性ポリジメチルシロキサン(信越化学工業株式会社製、商品名「X-22-164A」、固形分100質量%)1質量部と、光重合開始剤(IGM Resins B.V.社製、商品名「Omnirad907」)と、2-メチル-1[4-(メチルチオ)フェニル]-2-モリフォリノプロパン-1-オン、固形分100質量%)5質量部とを、イソプロピルアルコール/メチルエチルケトン混合溶剤(質量比3/1)で希釈して、A1の割合が固形分20質量%である剥離剤組成物を得た。
 次に、巻き取ったロールサンプルR1を繰り出し、剥離剤組成物をバーコーターで、前記ロールサンプルR1の中間層の上に塗布し、80℃で1分間乾燥炉内を通過させたのち、紫外線を照射(積算光量:250mJ/cm)して剥離剤層(厚さ:1μm)を形成し、中間層及び剥離剤層付きフィルムのロールサンプルR2(積層フィルムのロールサンプル)を得た。
 このロールサンプルR2をニップロールで繰出しながら、5cm角になるように切断しながら細片化し、これを評価サンプルとして用いた(準備工程)。
 実施例1の評価サンプルにおける中間層の基材フィルム側表面の水の接触角は43°であった。剥離剤層表面の水の接触角は93°であった。剥離剤層表面の水の接触角と、中間層の基材フィルム側表面の水の接触角との差は、50°と算出された。
(コーティング層の除去)
 圧力容器として、容量5Lの円筒状ステンレス製加圧容器を用いた。この加圧容器上面のフランジ固定式の蓋には、圧力計と、圧力制御手段としてのリリーフバルブとが備えられている。この圧力容器に水を2L入れ、Induction Heating(IH)ヒーターを用いて水を100℃に沸騰させた後、1つの評価サンプルを100℃の沸騰水中に浸漬し(収容工程)、蓋を閉じ、リリーフバルブの目盛を2気圧にセットして加熱を再開した。沸騰(噴気)を確認して圧力容器内の圧力が2気圧に到達したことを確認し、この状態で15分経過(保持)した後に圧力容器内を常圧に戻した(分離工程)。
 蓋を開け、上下部に排水口を備え付けた回収容器に圧力容器内の中身を移し替え、評価サンプルが上層の部分と下層の部分に分かれていることを確認後、注水を行った。注水を行うことで、上層部分にあるコーティング層のカスは上部排水口から流れ出ていき、網目構造を有するトレイでコーティング層のカスを回収した(コーティング層回収工程)。回収容器の底部は斜めになっており、下部排水口から水と基材フィルムとを流し出し、網目構造を有するトレイを用いて基材フィルムのみを回収した(基材フィルム回収工程)。
 回収した基材フィルム表面の膜厚を測定すると測定限界に達しており、X線光電子分光法(XPS)による基材フィルム表面の分析においても中間層及び剥離剤層(コーティング層)に含まれるSi(ケイ素)が測定限界値以下であり、基材フィルム単体に分離出来ていることを確認した。
 目視においても、基材フィルムの表面から中間層と剥離剤層(コーティング層)が全面で取れていることを確認した。
 基材フィルム表面の膜厚は、光干渉法膜厚測定システム(フィルメトリクス社製、品番:F20)を用いて測定した。
[比較例1]
 比較例1の評価サンプルは、基材フィルム上に中間層形成用組成物を塗布せず、剥離剤組成物を塗布して剥離剤層を形成したこと以外、実施例1と同様にして作製した。
 比較例1の評価サンプルを用いて、実施例1と同様の方法で剥離剤層を除去した。
 回収した基材フィルム表面の膜厚を測定すると、剥離剤層の厚さである1μmを確認した。XPSによる基材フィルム表面の分析において剥離剤層に含まれるSi(ケイ素)が確認されたことから、基材フィルムの表面から剥離剤層が分離されていないことを確認した。
 比較例1の評価サンプルにおける剥離剤層表面の水の接触角は93°であったが、比較例1の評価サンプルは、中間層を有さず剥離剤層が基材フィルムから分離しなかったため、剥離剤層の基材フィルム側表面の水の接触角は測定不能であった。
[比較例2]
 実施例1の評価サンプルと同一の評価サンプルを用いた。
 実施例1の分離工程で用いた圧力容器を、容量5Lの円筒状ステンレス製容器に変更し、以下の方法でコーティング層を除去した。
 このステンレス製容器に水を2L入れ、IHヒーターを用いて水を100℃に沸騰させた後、1つの評価サンプルを100℃の沸騰水中に浸漬した。この状態で15分保持した後、上層に浮遊している評価サンプルを取り出した。
 回収した基材フィルムの表面の膜厚を測定すると、中間層の厚さである0.4μm及び剥離剤層の厚さである1μmを確認した。XPSによる基材フィルム表面の分析において中間層及び剥離剤層に含まれるSi(ケイ素)が確認されたことから、基材フィルムの表面から中間層及び剥離剤層(コーティング層)が分離されていないことを確認した。
 表1に、各例で用いたコーティング層の構成、分離条件及び分離結果を示す。
[中間層の評価]
(中間層の親水性)
 実施例1の評価サンプルを用いて、以下の方法により、実施例1の中間層の基材フィルム側表面の水の接触角を測定した。結果は前述の通りである。
 まず、評価サンプルの剥離剤層表面に、5cm角にカットした粘着テープ(日東電工株式会社製、製品名「ポリエステル粘着テープNo.31B」)を貼付し、これを試験片として用いた。
 次いで、容量500mLのガラス製ビーカーに300mLの処理水としての90℃の精製水を充填し、試験片全体を精製水中に浸漬して3時間放置した。その後、試験片が、剥離剤層と中間層が一体となって粘着テープに担持された積層体と、基材フィルムとに分離されていることを確認し、剥離剤層と中間層を担持した粘着テープを精製水中から取り出し、室温下で24時間乾燥させた。その後、粘着テープ上に担持されている中間層の表面(基材フィルム表面に接触していた中間層の表面)について水の接触角を測定した。接触角は、接触角計(協和界面科学株式会社製、製品名「DM-701」)を使用し、静滴法によってJIS R3257:1999に準じて測定した。液滴については、蒸留水を使用した。
(中間層の非水溶性)
 実施例1及び比較例1の評価サンプルを用いて、既述の方法により、剥離剤層表面の水の接触角をそれぞれ測定した。結果は前述の通りである。
 実施例1については、測定された剥離剤層表面の水の接触角と、前述の方法で測定された中間層の基材フィルム側表面の水の接触角との差を算出した。
 1…収容手段、10…圧力容器、12…圧力蓋、14…圧力調節弁、16…加熱手段、18…第2排出管、18A…第2排出口、19…第1排出管、19A…第1排出口、21…第2排出弁、22…第1排出弁、30…ホース、31…吐出口、50,50G…積層フィルム、51…基材フィルム、52…コーティング層、100…除去装置、521…中間層、522…剥離剤層。

Claims (11)

  1.  基材フィルムと、コーティング層とを有する積層フィルムを準備する工程と、
     圧力容器に前記積層フィルム、及び処理水を収容する工程と、
     前記処理水を加熱すると共に、前記圧力容器内の気圧を1気圧よりも高い気圧にすることにより、前記積層フィルムを前記基材フィルムと前記コーティング層とに分離する工程と、
     分離された前記基材フィルムを回収する基材フィルム回収工程と、を有し、
     前記コーティング層は、中間層及び剥離剤層を含み、
     前記中間層が前記基材フィルムと前記剥離剤層との間に配置されている、
     コーティング層の除去方法。
  2.  前記積層フィルムを準備する工程は、前記積層フィルムが巻回されたロールから繰り出された前記積層フィルムを細片に切断する工程を含む、
     請求項1に記載のコーティング層の除去方法。
  3.  前記積層フィルムを前記基材フィルムと前記コーティング層とに分離する工程は、分離された前記基材フィルムを前記処理水に沈ませ、分離された前記コーティング層のカスを前記処理水に浮かせる工程である、
     請求項1に記載のコーティング層の除去方法。
  4.  前記基材フィルム回収工程は、
     前記圧力容器内の気圧を常圧に戻したのち、前記圧力容器の底部側に配置された第1排出口に第1排出管を繋いで前記基材フィルムを前記圧力容器から排出する工程である、
     請求項3に記載のコーティング層の除去方法。
  5.  分離された前記コーティング層のカスを回収するコーティング層回収工程をさらに有し、前記コーティング層回収工程は、前記圧力容器内の気圧を常圧に戻したのち、前記圧力容器内の前記処理水を前記圧力容器からオーバーフローさせ、前記処理水のオーバーフローに伴い流出する前記コーティング層のカスを、前記圧力容器の上部側に配置された第2排出口から前記圧力容器の外に誘導して回収する工程である、
     請求項3に記載のコーティング層の除去方法。
  6.  前記中間層が、親水性かつ非水溶性である、
     請求項1に記載のコーティング層の除去方法。
  7.  前記積層フィルムは、セラミックグリーンシート付き積層フィルムであり、
     前記コーティング層の前記基材フィルムとは反対側には、セラミックグリーンシートが付着している、
     請求項1に記載のコーティング層の除去方法。
  8.  基材フィルムとコーティング層とを有する積層フィルムから前記コーティング層を除去するコーティング層の除去装置であって、
     切断された前記積層フィルム及び処理水を収容する収容手段と、
     前記収容手段の内部に収容された前記処理水を加熱する加熱手段と、
     前記収容手段内の気圧を1気圧よりも高い気圧に制御する圧力制御手段と、
     前記収容手段の底部側に配置された基材フィルム回収手段と、を備える、
     コーティング層の除去装置。
  9.  前記積層フィルムを細片に切断する切断手段をさらに有する、請求項8に記載のコーティング層の除去装置。
  10.  前記収容手段の上部側に配置されたコーティング層回収手段をさらに有する、
     請求項8に記載のコーティング層の除去装置。
  11.  前記基材フィルム回収手段は、前記収容手段の底部側に配置された第1排出口または前記収容手段の底部側に連結する第1排出管である、
     請求項8に記載のコーティング層の除去装置。
     
PCT/JP2023/033077 2022-09-13 2023-09-11 コーティング層の除去方法及びコーティング層の除去装置 WO2024058134A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-145175 2022-09-13
JP2022145175 2022-09-13

Publications (1)

Publication Number Publication Date
WO2024058134A1 true WO2024058134A1 (ja) 2024-03-21

Family

ID=90275011

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/033077 WO2024058134A1 (ja) 2022-09-13 2023-09-11 コーティング層の除去方法及びコーティング層の除去装置

Country Status (1)

Country Link
WO (1) WO2024058134A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03193417A (ja) * 1989-10-13 1991-08-23 Davidson Textron Inc インターフェース位置で連結する層状プラスチックを分離及び回収するための方法
JPH1158383A (ja) * 1997-08-27 1999-03-02 Takao Takase 廃プラスチック異材被覆層剥離方法
JP2002219425A (ja) * 2001-01-25 2002-08-06 Panakku Kogyo Kk 加圧式洗浄装置
JP2004050681A (ja) * 2002-07-22 2004-02-19 Toray Ind Inc セラミックグリーンシートの製造方法
US20140377575A1 (en) * 2012-01-27 2014-12-25 Innovia Films Limited In-mould labelling process
JP2023000623A (ja) * 2021-06-18 2023-01-04 国立大学法人東北大学 水熱処理による熱可塑性樹脂成形体の回収方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03193417A (ja) * 1989-10-13 1991-08-23 Davidson Textron Inc インターフェース位置で連結する層状プラスチックを分離及び回収するための方法
JPH1158383A (ja) * 1997-08-27 1999-03-02 Takao Takase 廃プラスチック異材被覆層剥離方法
JP2002219425A (ja) * 2001-01-25 2002-08-06 Panakku Kogyo Kk 加圧式洗浄装置
JP2004050681A (ja) * 2002-07-22 2004-02-19 Toray Ind Inc セラミックグリーンシートの製造方法
US20140377575A1 (en) * 2012-01-27 2014-12-25 Innovia Films Limited In-mould labelling process
JP2023000623A (ja) * 2021-06-18 2023-01-04 国立大学法人東北大学 水熱処理による熱可塑性樹脂成形体の回収方法

Similar Documents

Publication Publication Date Title
CN102753636B (zh) 用于半导体加工的暂时晶片粘结方法
US9029269B2 (en) Wafer bonding system and method for bonding and debonding thereof
EP2108027B1 (en) Hardcoat composition
KR101907010B1 (ko) 웨이퍼 가공체, 웨이퍼 가공용 부재, 웨이퍼 가공용 가접착재 및 박형 웨이퍼의 제조 방법
JP5068674B2 (ja) 半導体加工のための一時的なウェハ結合法
JP5532918B2 (ja) 保護ガラス付ガラス基板を用いた表示装置の製造方法
JP6258012B2 (ja) ハードコートフィルム、透明導電性フィルムおよび静電容量タッチパネル
CN106318291B (zh) 晶片加工用临时粘合构件、晶片加工用层叠体以及薄晶片的制造方法
JP2013179135A (ja) ウエハ加工体、ウエハ加工用部材、ウエハ加工用仮接着材、及び薄型ウエハの製造方法
WO2024058134A1 (ja) コーティング層の除去方法及びコーティング層の除去装置
KR20160148612A (ko) 경화성 조성물, 가접착재 및 이들을 이용한 부재와 기재의 가접착 방법
JP2021175812A (ja) ポリエステルのリサイクルシステム及びリサイクル方法
JP2021160350A (ja) ポリエステルフィルムの回収方法、回収装置及び機能層除去剤
WO2024058132A1 (ja) グリーンシート付きコーティング層の除去方法及びグリーンシート付きコーティング層の除去装置
WO2023189670A1 (ja) コーティング層の除去方法及びコーティング層の除去装置
JP7422944B2 (ja) 基材の分離方法
JP2022095499A (ja) ポリエステルフィルムの回収方法、回収装置及び機能層除去剤
WO2023048103A1 (ja) 剥離シート
WO2023189669A1 (ja) コーティング層の除去方法及びコーティング層の除去装置
WO2005021258A1 (ja) 表面保護フィルム及びその製造方法
WO2024058133A1 (ja) コーティング層の除去方法及びコーティング層の除去装置
CN117957115A (zh) 剥离片
CN117999157A (zh) 基材的分离方法
WO2023189661A1 (ja) 剥離シート
JP7246817B2 (ja) 紫外線吸収吸着フィルム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23865487

Country of ref document: EP

Kind code of ref document: A1