WO2024055937A1 - 一种环硅氧烷阴离子开环连续聚合工艺 - Google Patents

一种环硅氧烷阴离子开环连续聚合工艺 Download PDF

Info

Publication number
WO2024055937A1
WO2024055937A1 PCT/CN2023/118055 CN2023118055W WO2024055937A1 WO 2024055937 A1 WO2024055937 A1 WO 2024055937A1 CN 2023118055 W CN2023118055 W CN 2023118055W WO 2024055937 A1 WO2024055937 A1 WO 2024055937A1
Authority
WO
WIPO (PCT)
Prior art keywords
cyclosiloxane
molecular weight
ring
opening
monomer
Prior art date
Application number
PCT/CN2023/118055
Other languages
English (en)
French (fr)
Inventor
李志波
刘月涛
赵娜
Original Assignee
青岛科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛科技大学 filed Critical 青岛科技大学
Publication of WO2024055937A1 publication Critical patent/WO2024055937A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/06Preparatory processes
    • C08G77/08Preparatory processes characterised by the catalysts used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/20Polysiloxanes containing silicon bound to unsaturated aliphatic groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/22Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen and oxygen
    • C08G77/24Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen and oxygen halogen-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/80Siloxanes having aromatic substituents, e.g. phenyl side groups

Definitions

  • the invention belongs to the new technical field of preparation of organic silicon polymer materials, and particularly relates to a cyclosiloxane anionic ring-opening continuous polymerization process.
  • Silicone materials have excellent physical and chemical properties, such as high-low temperature resistance, radiation resistance, oxidation resistance, high air permeability, weather resistance, mold release, hydrophobicity and physiological inertness, etc., and have been used in electronic appliances, chemical industry , metallurgy, construction, aerospace, aviation, medical materials and many other fields have been widely used, and the market potential is huge.
  • the synthesis of high molecular weight polysiloxane a key basic material in the silicone industry, generally uses the anionic ring-opening polymerization process of cyclosiloxane, which generally includes the steps of dehydration, purification, polymerization, neutralization and removal of monomers. Many domestic silicone companies Use this intermittent production process.
  • the so-called continuous production process that is, the refining of raw materials, polymerization, removal of small molecules and by-products, and cooling and discharging are all continuous operations. It is especially suitable for solid acid-catalyzed low molecular weight methyl polysiloxane or hydroxyl-terminated polysiloxane.
  • Preparation such as patents CN110408029A, CN112142976A, CN102898646A, etc.
  • Anionic continuous ring-opening polymerization process using cyclosiloxane There are not many reports on the preparation of high molecular weight polysiloxane.
  • patent CN1113923C discloses a continuous production method of silicone rubber raw rubber.
  • the preheater, polymerization reactor, low molecular weight removal device, and discharger are connected in series as a continuous polymerization device.
  • the polymerization reactor uses SV-type static mixers with gradually increasing diameters in series to achieve continuous production of high molecular weight silicone rubber raw rubber, with a molecular weight of up to 660,000, and a single-pass conversion rate of DMC up to 87.5%.
  • patent CN108384011A discloses a fully automatic methylvinyl silicone rubber continuous production device, including a four-stage material pretreatment mechanism, a mixer, a polymerizer, a pressure stabilizing and de-lowering mechanism, a screw extruder and a control system, which can avoid product This causes instability in volatile matter and molecular weight during the production process.
  • This document reports that the commercially available dendritic phosphazene base tBuP4 catalyzes the ring-opening polymerization of D4.
  • the catalyst dosage of 1/2340 mol% can achieve efficient polymerization of D4 at room temperature. , but the molecular weight is uncontrollable.
  • the present invention provides a cyclosiloxane anionic ring-opening continuous polymerization process.
  • An organic base is used as the cyclosiloxane anion ring-opening catalyst.
  • a feed pump with a flow meter is used as the feed.
  • the catalyst dosage is controlled by the flow rate.
  • the polymerization reactor uses a heatable biaxial stirring reactor, and the end of the reactor is connected to a vacuum device. This process can eliminate the dehydration and purification of monomers and the neutralization of catalysts. It has high monomer conversion rate, low volatile content, and saves energy consumption. It is especially suitable for the continuous production of high molecular weight polysiloxane.
  • the polymerization process is simple, the equipment investment is small, and it is suitable for large-scale production.
  • a first aspect of the present invention provides a cyclosiloxane anionic ring-opening continuous polymerization process, including:
  • a second aspect of the present invention provides high molecular weight polysiloxane prepared by the above-mentioned process.
  • the molecular weight of the high molecular weight polysiloxane is between 100,000 and 800,000.
  • the third aspect of the present invention provides the application of the above-mentioned high molecular weight polysiloxane in the fields of electronic appliances, chemical industry, metallurgy, construction, aerospace, aviation, and medical materials.
  • the cyclosiloxane anionic ring-opening continuous polymerization process of the present invention is simple, eliminating the dehydration, purification and neutralization processes of the monomers, and due to the organic alkali anionic ring-opening catalyst used in the present invention, silicon
  • the single-pass conversion rate of oxyalkane monomer is high, reaching more than 95%, which is beneficial to the subsequent removal step, reducing the volatile content of the product and improving product quality;
  • the polymerization process of the present invention is simple, easy to operate, requires little equipment investment, has significant energy saving and consumption reduction, and is suitable for large-scale production.
  • the present invention proposes a cyclosiloxane.
  • the anionic ring-opening continuous polymerization process uses an organic base as the cyclosiloxane anionic ring-opening catalyst.
  • the feed adopts a feed pump with a flow meter.
  • the amount of catalyst is controlled by the flow rate.
  • the polymerization reactor adopts a heated biaxial stirring reactor. The end of the reactor is connected to a vacuum device.
  • This process can eliminate the dehydration and purification of monomers and the neutralization of catalysts. It has high monomer conversion rate, low volatile content, and saves energy consumption. It is especially suitable for the continuous production of high molecular weight polysiloxane. In addition, the polymerization process is simple, easy to operate, requires little equipment investment, and is suitable for large-scale production.
  • Step 1 Premix the organic base and cyclosiloxane monomer evenly as material A, the remaining cyclosiloxane monomer as material B, and the end-capping agent as material C.
  • Materials A, B, and C enter through the feed pump.
  • Polymerization reactor. Adjust the flow rates of A, B, and C to control the amount of catalyst, end-capping agent, and polymerization reaction time.
  • the molecular weight of the high molecular weight polysiloxane is between 30,000 and 1,000,000, preferably between 300,000 and 800,000.
  • the general structural unit formula of the high molecular weight polysiloxane is as follows:
  • x and y are natural numbers greater than zero;
  • R 1 is usually methyl, ethyl or phenyl;
  • R 2 is usually methyl, ethyl, phenyl, vinyl, trifluoropropyl, aminopropyl or nitrile group;
  • R 3 is usually methyl, vinyl or aminopropyl;
  • R 1 is usually methyl, ethyl or phenyl
  • R 2 is usually methyl, ethyl, phenyl, vinyl, trifluoropropyl, aminopropyl or nitrile
  • n is a natural number greater than 2;
  • the structure of the cyclosiloxane monomer is not specifically limited in this application.
  • the material B is one or any several types of cyclosiloxane monomer.
  • the end-capping agent C is usually vinyl double-headed, water, or aminopropyl double-headed, which can be selected depending on the end-capping needs of the product; the amount of end-capping agent can be calculated based on the molecular weight of the product, and is not specifically limited;
  • the catalyst dosage is 10 to 1000 ppm, preferably 50 to 500 ppm.
  • the polymerization reaction time is 10 min to 300 min, preferably 30 min to 120 min.
  • the polymerization reaction temperature is normal temperature to 150°C, preferably 40 to 80°C.
  • the vacuum degree of the vacuum equipment is 0.005-0.1MPa, preferably 0.01-0.05MPa.
  • the research of the present invention has found that using an organic base as a cyclosiloxane anion ring-opening catalyst has high ring-opening activity, small equilibrium side reactions, is insensitive to water and oxygen, and can eliminate the need for nitrogen protection and dehydration and purification of cyclosiloxane monomers. steps, and the use of organic base catalysts can significantly inhibit “backbiting” and “redistribution” during the polymerization process. Side reaction to increase the single-pass conversion rate of cyclosiloxane monomer.
  • the structure of the organic base is not specifically limited in this application.
  • the organic base is one or any several types of organic phosphazene compounds. More specifically, the present invention uses a cyclic organophosphazene base to achieve efficient ring-opening polymerization of D 4 at room temperature, the catalyst dosage is ⁇ 1/10000 mol%, and the polymer molecular weight increases with the increase in the monomer/initiator ratio. big.
  • the present invention has found that materials A, B, and C enter the polymerization reactor through a feed pump, and the amount of catalyst, end-capping agent, and polymerization reaction time can be adjusted through flow control, and the operation is simple.
  • the catalyst dosage is 10 to 1000 ppm, preferably 100 to 500 ppm, and is controlled by the feed pump flow rate.
  • the organophosphazene base catalyst used in the present invention is a cyclic phosphazene catalyst, and the commercially available organophosphazene base catalyst is a dendritic phosphazene. Compared with dendritic phosphazenes, cyclic phosphazenes show similar catalytic efficiency, but have higher controllability.
  • the polymerization reaction time is 10 min to 300 min, preferably 30 min to 120 min.
  • the polymerization reaction is always carried out in vacuum, which is more conducive to discharging materials.
  • the polymerization reaction temperature is normal temperature to 150°C, preferably 40 to 80°C.
  • the research of the present invention has found that the vacuum equipment connected to the end of the reactor can reduce the degree of vacuum while increasing the viscosity of the polymerization reaction system, ensuring that high-viscosity products can continuously pass through the discharge port;
  • the vacuum degree of the vacuum equipment is 0.005-0.1MPa, preferably 0.01-0.05MPa.
  • the research of the present invention has found that: unlike the cyclosiloxane equilibrium ring-opening catalyst, the residue of the organic base catalyst of the present invention does not affect the high-temperature performance of the product, so the catalyst neutralization in the continuous polymerization process can be omitted.
  • the polymerization process is simple, the equipment investment is low, and it is especially suitable for large-scale production.
  • the invention also provides a method for preparing high molecular weight polysiloxane.
  • the organic base and cyclosiloxane monomer are uniformly premixed as material A, the remaining cyclosiloxane monomer is used as material B, and the end-capping agent is used as material C.
  • Materials A, B, and C enter the polymerization reactor through the feed pump. Adjust the flow rates of A, B, and C to control the amount of catalyst, the amount of end-capping agent, the polymerization time and the polymerization temperature, reduce the pressure, and continuously discharge the material.
  • High molecular weight polysiloxane High molecular weight polysiloxane.
  • the organic base and part of the cyclosiloxane monomer are premixed to facilitate the feeding in the continuous polymerization process. Because the catalyst dosage is extremely low, feeding alone is not conducive to instantaneous mixing, so an alkali gum premix is made. Regardless of whether it is used for continuous polymerization, the cyclic phosphazene catalyst of the present invention does not require a dehydration and purification process when catalyzing the ring-opening polymerization of cyclosiloxane monomers.
  • the present invention also provides high molecular weight polysiloxane prepared by any of the above methods, which can be used as high-temperature vulcanized silicone rubber and can be used in many fields such as electronic appliances, chemical industry, metallurgy, construction, aerospace, aviation, and medical materials.
  • the end-capping agent is tetramethyldivinyldisiloxane, which is commercially available;
  • the organic base catalyst is N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl
  • the molecular weight of vinyl-terminated methylpolysiloxane is designed to be 500,000: the organic base catalyst is mixed with part of methylcyclosiloxane at room temperature as material A, methylcyclosiloxane is used as material B, and the vinyl double-headed material is used as material A.
  • Material C adjust the flow rate of the feed pump, the reactor temperature is 50°C, control the feed mass ratio of A:B:C to 1/10000/3.72 and the residence time of the material in the dual-shaft stirring reactor to 30 minutes, and continuously discharge the material to obtain ethylene.
  • Base-capped methyl polysiloxane, GPC molecular weight is 510,000, monomer conversion rate is 96.0%, and volatile matter is 0.26%.
  • the molecular weight of vinyl-terminated methylphenyl polysiloxane is designed to be 500,000, and the molar weight of methylphenyl links is 30%: the organic base catalyst and part of the cyclosiloxane are mixed at room temperature as material A, and the cyclosiloxane is used as material B.
  • Material vinyl double head is used as material C, adjust the flow rate of the feed pump, the reactor temperature is 60°C, control the feed mass ratio of A:B:C to 1/10000/3.72 and the residence time of the material in the dual-shaft stirring reactor Discharge continuously for 30 minutes to obtain vinyl-terminated phenyl polysiloxane with a GPC molecular weight of 524,000, a monomer conversion rate of 95.1%, and a volatile matter of 0.31%.
  • the molecular weight of vinyl-terminated methylethyl polysiloxane is designed to be 500,000, and the molar weight of methylethyl linkage is 30%: the organic base catalyst and part of the cyclosiloxane are mixed at room temperature as material A, and the cyclosiloxane is used as material B.
  • Material, vinyl double head as C material adjust the feed pump flow rate, reactor temperature 80°C, control A:B:C
  • the feed mass ratio is 1/10000/3.72 and the residence time of the material in the biaxial stirring reactor is 30 minutes.
  • the material is continuously discharged to obtain vinyl-terminated phenyl polysiloxane.
  • the GPC molecular weight is 524,000 and the monomer conversion rate is 96.3. %, volatile matter 0.35%.
  • the molecular weight of vinyl-terminated methylpolysiloxane is designed to be 500,000, and commercially available tBuP 4 is used as the organic base catalyst: tBuP 4 is mixed with part of methylcyclosiloxane at room temperature as material A, methylcyclosiloxane As material B, vinyl double head as material C, adjust the flow rate of the feed pump, the reactor temperature is 80°C, control the feed mass ratio of A:B:C to 1/10000/3.72 and the material is in the dual-shaft stirring reactor The residence time is 30 minutes, and the material is continuously discharged to obtain vinyl-terminated methylpolysiloxane with a GPC molecular weight of 320,000, a monomer conversion rate of 87.5%, and a volatile matter of 0.44%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Silicon Polymers (AREA)

Abstract

本发明属于有机硅高分子材料的制备领域,特别涉及一种环硅氧烷阴离子开环连续聚合工艺,主要包括:反应物料通过进料泵进入外接真空装置的可加热聚合反应器,通过物料流速控制催化剂用量、封端剂用量以及聚合反应时间,根据单体的开环反应活性选择聚合反应温度,根据聚合反应物料黏度调节真空度大小,连续出料得高分子量聚硅氧烷。本发明单体的转化率高,有利于后续的脱低步骤,节能降耗明显;聚合工艺简单,省去单体的脱水提纯以及中和过程,设备投入小,适合大规模连续化生产;本发明制备的高分子量聚硅氧烷可作为高温硫化硅橡胶生胶,可应用于电子电器、化工、冶金、建筑、航天、航空、医用材料等的领域。

Description

一种环硅氧烷阴离子开环连续聚合工艺
本发明要求于2022年9月13日提交中国专利局、申请号为202211109008.2、发明名称为“一种环硅氧烷阴离子开环连续聚合工艺”的中国专利申请的优先权,其全部内容通过引用结合在本发明中。
技术领域
本发明属于有机硅高分子材料的新型制备技术领域,特别涉及一种环硅氧烷阴离子开环连续聚合工艺。
背景技术
公开该背景技术部分的信息仅仅旨在增加对本发明的总体背景的理解,而不必然被视为承认或以任何形式暗示该信息构成已经成为本领域一般技术人员所公知的现有技术。
有机硅材料具有优异的物理、化学性能,如耐高-低温性能、耐辐射性、耐氧化性、高透气性、耐候性、脱模性、憎水性以及生理惰性等,已在电子电器、化工、冶金、建筑、航天、航空、医用材料等众多领域中得到广泛的应用,市场潜力巨大。有机硅工业关键基础材料-高分子量聚硅氧烷的合成普遍采用环硅氧烷的阴离子开环聚合工艺,一般包括单体的脱水提纯、聚合、中和以及脱低步骤,国内有机硅企业多采用此间歇生产工艺。所谓连续生产工艺,即从原料精制、聚合、脱除小分子及副产物、冷却出料全部为连续操作,尤其适合固体酸催化的低分子量甲基聚硅氧烷或者羟基封端聚硅氧烷的制备,如专利CN110408029A、CN112142976A、CN102898646A等。采用环硅氧烷的阴离子连续开环聚合工艺 制备高分子量聚硅氧烷的报道不多,如专利CN1113923C公开了一种硅橡胶生胶的连续生产方法,将预热器、聚合反应器、脱低分子器、出料器串联作为连续聚合装置,其中聚合反应器采用直径逐渐增大的SV型静态混合器串联,实现高分子量硅橡胶生胶的连续生产,分子量可达66万,DMC的单程转化率可达87.5%。如专利CN108384011A公开了一种全自动甲基乙烯基硅橡胶连续生产装置,包括四级物料预处理机构、混合机、聚合器、稳压脱低机构、螺杆挤出机和控制系统,可避免产品在生产过程中造成挥发份及分子量不稳定的问题。Macromol.Rapid Commun.1995,16(6),449-453.这篇文献中报道了市售树枝状磷腈碱tBuP4催化D4开环聚合,1/2340mol%催化剂用量可在室温实现D4的高效聚合,但分子量不可控。然而,对于高分子量聚硅氧烷的连续聚合工艺,由于环硅氧烷阴离子开环聚合的平衡反应,单体转化率低,聚合反应后期体系粘度增大,导致的脱低能耗高等问题依然存在,已成为有机硅工业的共性问题。
论文《环硅氧烷开环聚合阴离子催化剂的研究进展》公开了“非离子磷腈碱作为环硅氧烷开环聚合的引发剂非常有效”,但对于连续聚合工艺并没有提及
论文《Fast synthesis of high molecular weights polydiethylsiloxanes and random poly(dimethylsiloxane-co-diethylsiloxane)copolysiloxanes via cyclic trimeric phosphazene base catalyzed ring-opening(co)polymerizatio》、《Controlled Ring-Opening Polymerization of Hexamethylcyclotrisiloxane Catalyzed by Trisphosphazene Organobase to Well-Defined Poly(dimethylsiloxane)s》、《Phosphazene superbase catalyzed ring-opening polymerization of cyclotetrasiloxane toward copolysiloxanes with high diphenyl siloxane content》将环状磷腈催化剂用于催化环硅氧烷单体开环聚合,但都是基于实验室理论性的研 究,且均属于间歇或者分步聚合,并不涉及到连续聚合的工艺。
发明内容
为了克服上述问题,本发明提供了一种环硅氧烷阴离子开环连续聚合工艺。采用有机碱作为环硅氧烷阴离子开环催化剂,进料采用带流量计的进料泵,通过流速控制催化剂用量,聚合反应器采用可加热的双轴搅拌反应器,反应器末端连接真空设备。本工艺可省去单体的脱水提纯以及催化剂的中和步骤,单体转化率高,挥发分含量低,节约能耗,尤其适用于高分子量聚硅氧烷的连续生产。另外,聚合工艺简单,设备投入小,适合大规模生产。
为了实现上述目的,本发明采用如下技术方案:
本发明的第一个方面,提供了一种环硅氧烷阴离子开环连续聚合工艺,包括:
将有机碱与部分环硅氧烷单体预混合,得到混合料;
将所述混合料、剩余部分环硅氧烷单体、封端剂混合均匀,在真空条件下开环聚合,连续出料,冷却,即得。
本发明的第二个方面,提供了上述的工艺制备的高分子量聚硅氧烷,高分子量聚硅氧烷的分子量为10~80万之间。
本发明的第三个方面,提供了上述的高分子量聚硅氧烷在电子电器、化工、冶金、建筑、航天、航空、医用材料领域中的应用。
本发明的有益效果
(1)与现有技术相比,本发明环硅氧烷阴离子开环连续聚合工艺简单,省去单体的脱水提纯以及中和过程,并且由于本发明所用的有机碱阴离子开环催化剂,硅氧烷单体的单程转化率高,可达95%以上,有利于后续的脱低步骤,降低产物的挥发分,提高产品质量;
(2)与现有技术相比,本发明聚合工艺简单,操作方便,设备投入小,节能降耗明显,适合大规模生产。
具体实施方式
应该指出,以下详细说明都是示例性的,旨在对本发明提供进一步的说明。除非另有指明,本发明使用的所有技术和科学术语具有与本发明所属技术领域的普通技术人员通常理解的相同含义。
正如背景技术所介绍的,针对目前高分子量聚硅氧烷的连续聚合工艺,单体转化率低,聚合反应后期体系粘度增大导致的脱低能耗高等问题,本发明提出一种环硅氧烷阴离子开环连续聚合工艺,采用有机碱作为环硅氧烷阴离子开环催化剂,进料采用带流量计的进料泵,通过流速控制催化剂用量,聚合反应器采用可加热的双轴搅拌反应器,反应器末端连接真空设备。本工艺可省去单体的脱水提纯以及催化剂的中和步骤,单体转化率高,挥发分含量低,节约能耗,尤其适用于高分子量聚硅氧烷的连续生产。另外,聚合工艺简单,操作方便,设备投入小,适合大规模生产。
具体步骤如下:
步骤一:将有机碱与环硅氧烷单体预混合均匀作为A物料,剩余部分环硅氧烷单体作为B物料,封端剂作为C物料,A、B、C物料通过进料泵进入聚合反应器。调节A、B、C流速控制催化剂用量、封端剂用量以及聚合反应时间,根据单体的开环反应活性选择聚合反应温度,根据聚合反应物料黏度调节真空度大小,连续出料,冷却,可得高分子量聚硅氧烷。
所述高分子量聚硅氧烷的分子量为3~100万之间,优选30~80万。
所述高分子量聚硅氧烷的结构单元通式如下:
其中,x和y为大于零的自然数;R1通常为甲基、乙基或者苯基;R2通常为甲基、乙基、苯基、乙烯基、三氟丙基、氨丙基或者腈基;R3通常为甲基、乙烯基或者氨丙基;
所述环硅氧烷单体的结构通式如下:
其中,R1通常为甲基、乙基或者苯基;R2通常为甲基、乙基、苯基、乙烯基、三氟丙基、氨丙基或者腈基;n为大于2的自然数;
本申请中对环硅氧烷单体的结构并不作具体的限定,在一些实施例中,所述物料B为环硅氧烷单体的一种或者任意几种。
所述封端剂C通常为乙烯基双封头、水、氨丙基双封头,可视产物封端需要选择;封端剂用量可根据产物分子量进行计算,不做具体限定;
所述催化剂用量为10~1000ppm,优选50~500ppm。
所述聚合反应时间为10min~300min,优选30min~120min。
所述聚合反应温度为常温~150℃,优选40~80℃。
所述真空设备的真空度为0.005~0.1MPa,优选0.01~0.05MPa。
本发明研究发现:采用有机碱作为环硅氧烷阴离子开环催化剂,开环活性高,平衡副反应小,对水、氧不敏感,可省去氮气保护以及环硅氧烷单体的脱水提纯步骤,而且有机碱催化剂的使用,可明显抑制聚合过程中的“反咬”与“再分布” 副反应,提高环硅氧烷单体的单程转化率。
本申请中对有机碱的结构并不作具体的限定,在一些实施例中,所述有机碱为有机磷腈类化合物的一种或者任意几种。更具体的,本发明采用环状有机磷腈碱同样可以在室温下实现D4的高效开环聚合,催化剂用量<1/10000mol%,且聚合物分子量随单体/引发剂的比例增加而增大。
本发明研究发现:A、B、C物料通过进料泵进入聚合反应器,可通过流量控制调控催化剂用量、封端剂用量与聚合反应时间,操作简单。
在一些实施例中,所述催化剂用量为10~1000ppm,优选,100~500ppm,由进料泵流速控制。本发明采用的有机磷腈碱催化剂为环状磷腈催化剂,市售的有机磷腈碱催化剂为树枝状磷腈。跟树枝状磷腈相比,环状磷腈表现出相近的催化效率,但可控性较高。
在一些实施例中,所述聚合反应时间为10min~300min,优选30min~120min。聚合反应一直在真空在进行,更有利于出料。
本发明研究发现:聚合反应温度需与环硅氧烷单体的开环活性匹配,以达到最高的单体单程转化率:
在一些实施例中,所述聚合反应温度为常温~150℃,优选40~80℃。
本发明研究发现:反应器末端连接真空设备,可在聚合反应体系粘度增大的同时,降低真空度,保证高粘度产物能连续通过出料口;
在一些实施例中,所述真空设备的真空度为0.005~0.1MPa,优选0.01~0.05MPa。
本发明研究发现:与环硅氧烷平衡型开环催化剂不同,本发明的有机碱催化剂的残留,并不影响产物的高温性能,所以可省去连续聚合过程中的催化剂中和 步骤,聚合工艺简单,设备投入少,尤其适合大规模生产。
本发明还提供一种高分子量聚硅氧烷的制备方法,将有机碱与环硅氧烷单体预混合均匀作为A物料,剩余部分环硅氧烷单体作为B物料,封端剂作为C物料,A、B、C物料通过进料泵进入聚合反应器,调节A、B、C流速控制催化剂用量、封端剂用量、聚合反应时间以及聚合反应温度,减压,连续出料,可得高分子量聚硅氧烷。
本发明将有机碱与部分环硅氧烷单体预混是为了方便在连续聚合过程进料,因为催化剂用量极低,单独进料不利于瞬间混匀,所以做成碱胶预混物。无论是否用于连续聚合,本发明环状磷腈催化剂催化环硅氧烷单体开环聚合都不需要脱水提纯的过程。
本发明还提供了上述任一方法制备的高分子量聚硅氧烷,可作为高温硫化硅橡胶生胶,应用于电子电器、化工、冶金、建筑、航天、航空、医用材料等众多领域。
下面结合具体的实施例,对本发明做进一步的详细说明,应该指出,所述具体实施例是对本发明的解释而不是限定。
以下实施例、对比例中,封端剂是四甲基二乙烯基二硅氧烷,市售;
有机碱催化剂为
其他原料也皆为市售产品。
实施例1
设计乙烯基封端三氟丙基聚硅氧烷分子量为50万:有机碱催化剂与部分三 氟丙基环硅氧烷常温下混合作为A物料、三氟丙基环硅氧烷作为B物料,乙烯基双封头作为C物料,调节进料泵流速以及真空度大小,反应器温度40℃,控制A:B:C进料质量比为1/10000/3.72和物料在双轴搅拌反应器的停留时间30min,连续出料,得乙烯基封端三氟丙基聚硅氧烷,GPC分子量为48万,分子量分布1.58,单体转化率95.3%,挥发分0.30%。
实施例2
设计乙烯基封端甲基聚硅氧烷分子量为50万:有机碱催化剂与部分甲基环硅氧烷常温下混合作为A物料、甲基环硅氧烷作为B物料,乙烯基双封头作为C物料,调节进料泵流速,反应器温度50℃,控制A:B:C进料质量比为1/10000/3.72和物料在双轴搅拌反应器的停留时间30min,连续出料,得乙烯基封端甲基聚硅氧烷,GPC分子量为51万,单体转化率96.0%,挥发分0.26%。
实施例3
设计乙烯基封端甲基苯基聚硅氧烷分子量为50万,甲基苯基链接摩尔量30%:有机碱催化剂与部分环硅氧烷常温下混合作为A物料、环硅氧烷作为B物料,乙烯基双封头作为C物料,调节进料泵流速,反应器温度60℃,控制A:B:C进料质量比为1/10000/3.72和物料在双轴搅拌反应器的停留时间30min,连续出料,得乙烯基封端苯基聚硅氧烷,GPC分子量为52.4万,单体转化率95.1%,挥发分0.31%。
实施例4
设计乙烯基封端甲基乙基聚硅氧烷分子量为50万,甲基乙基链接摩尔量30%:有机碱催化剂与部分环硅氧烷常温下混合作为A物料、环硅氧烷作为B物料,乙烯基双封头作为C物料,调节进料泵流速,反应器温度80℃,控制A:B:C 进料质量比为1/10000/3.72和物料在双轴搅拌反应器的停留时间30min,连续出料,得乙烯基封端苯基聚硅氧烷,GPC分子量为52.4万,单体转化率96.3%,挥发分0.35%。
对比例1
设计乙烯基封端甲基聚硅氧烷分子量为50万,采用市售的tBuP4作为有机碱催化剂:tBuP4与部分甲基环硅氧烷常温下混合作为A物料、甲基环硅氧烷作为B物料,乙烯基双封头作为C物料,调节进料泵流速,反应器温度80℃,控制A:B:C进料质量比为1/10000/3.72和物料在双轴搅拌反应器的停留时间30min,连续出料,得乙烯基封端甲基聚硅氧烷,GPC分子量为32万,单体转化率87.5%,挥发分0.44%。
对比例2
设计乙烯基封端三氟丙基聚硅氧烷分子量为50万:三氟丙基环硅氧烷与乙烯基双封头混合均匀,加入磷腈碱催化剂,60℃反应30min,150℃真空脱低6小时,得乙烯基封端三氟丙基聚硅氧烷,GPC分子量为35万,分子量分布1.63,单体转化率78.5%,挥发分0.70%。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (7)

  1. 一种环硅氧烷阴离子开环连续聚合工艺,其特征在于,包括:
    将有机碱与部分环硅氧烷单体预混合,得到混合料;
    将所述混合料、剩余部分环硅氧烷单体、封端剂混合均匀,在真空条件下开环聚合,连续出料,冷却,即得;
    所述有机碱为CTPB;
    所述有机碱的用量为10~1000ppm;
    所述开环聚合在20~150℃下,反应10min~300min;
    真空度为0.005~0.1MPa。
  2. 如权利要求1所述的环硅氧烷阴离子开环连续聚合工艺,其特征在于,所述开环聚合在40~80℃下,反应30min~120min。
  3. 如权利要求1所述的环硅氧烷阴离子开环连续聚合工艺,其特征在于,真空度为0.01~0.05MPa。
  4. 如权利要求1所述的环硅氧烷阴离子开环连续聚合工艺,其特征在于,所述环硅氧烷单体的结构通式如下:
    其中,R1为甲基、乙基或者苯基;R2为甲基、乙基、苯基、乙烯基、三氟丙基、氨丙基或者腈基;n为大于2的自然数。
  5. 如权利要求1所述的环硅氧烷阴离子开环连续聚合工艺,其特征在于,所述封端剂C为乙烯基双封头、水、氨丙基双封头。
  6. 如权利要求1-5任一项所述的工艺制备的高分子量聚硅氧烷,其特征在于,高分子量聚硅氧烷的分子量为10~80万之间。
  7. 权利要求6所述的高分子量聚硅氧烷,其特征在于,高分子量聚硅氧烷的结构单元通式如下:
    其中,x和y为大于零的自然数;R1为甲基、乙基或者苯基;R2为甲基、乙基、苯基、乙烯基、三氟丙基、氨丙基或者腈基;R3为甲基、乙烯基或者氨丙基。
PCT/CN2023/118055 2022-09-13 2023-09-11 一种环硅氧烷阴离子开环连续聚合工艺 WO2024055937A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211109008.2 2022-09-13
CN202211109008.2A CN115286796B (zh) 2022-09-13 2022-09-13 一种环硅氧烷阴离子开环连续聚合工艺

Publications (1)

Publication Number Publication Date
WO2024055937A1 true WO2024055937A1 (zh) 2024-03-21

Family

ID=83834672

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/118055 WO2024055937A1 (zh) 2022-09-13 2023-09-11 一种环硅氧烷阴离子开环连续聚合工艺

Country Status (2)

Country Link
CN (1) CN115286796B (zh)
WO (1) WO2024055937A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115286796B (zh) * 2022-09-13 2023-08-25 青岛科技大学 一种环硅氧烷阴离子开环连续聚合工艺

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0543694A (ja) * 1991-08-09 1993-02-23 Toshiba Silicone Co Ltd シロキサンポリマーの連続的製造法
CN1259534A (zh) * 1998-08-26 2000-07-12 陶氏康宁公司 生产有机硅聚合物的连续法
CN1303879A (zh) * 1999-11-23 2001-07-18 中国科学院化学研究所 一种环硅氧烷阴离子非平衡开环聚合的方法
US20100311922A1 (en) * 2009-06-07 2010-12-09 Tai-Kang Liu System and method for manufacturing organopolysiloxane
CN103122069A (zh) * 2013-02-28 2013-05-29 浙江大学 一种环硅氧烷免调聚连续制备聚硅氧烷的方法及装置
WO2018051792A1 (ja) * 2016-09-14 2018-03-22 国立研究開発法人産業技術総合研究所 ポリシロキサン構造含有化合物の製造方法及び高分子組成物
CN109280170A (zh) * 2018-09-17 2019-01-29 青岛科技大学 一种磷腈催化的官能化聚硅氧烷共聚物制备方法
CN115286796A (zh) * 2022-09-13 2022-11-04 青岛科技大学 一种环硅氧烷阴离子开环连续聚合工艺

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0543694A (ja) * 1991-08-09 1993-02-23 Toshiba Silicone Co Ltd シロキサンポリマーの連続的製造法
CN1259534A (zh) * 1998-08-26 2000-07-12 陶氏康宁公司 生产有机硅聚合物的连续法
CN1303879A (zh) * 1999-11-23 2001-07-18 中国科学院化学研究所 一种环硅氧烷阴离子非平衡开环聚合的方法
US20100311922A1 (en) * 2009-06-07 2010-12-09 Tai-Kang Liu System and method for manufacturing organopolysiloxane
CN103122069A (zh) * 2013-02-28 2013-05-29 浙江大学 一种环硅氧烷免调聚连续制备聚硅氧烷的方法及装置
WO2018051792A1 (ja) * 2016-09-14 2018-03-22 国立研究開発法人産業技術総合研究所 ポリシロキサン構造含有化合物の製造方法及び高分子組成物
CN109280170A (zh) * 2018-09-17 2019-01-29 青岛科技大学 一种磷腈催化的官能化聚硅氧烷共聚物制备方法
CN115286796A (zh) * 2022-09-13 2022-11-04 青岛科技大学 一种环硅氧烷阴离子开环连续聚合工艺

Also Published As

Publication number Publication date
CN115286796B (zh) 2023-08-25
CN115286796A (zh) 2022-11-04

Similar Documents

Publication Publication Date Title
WO2024055937A1 (zh) 一种环硅氧烷阴离子开环连续聚合工艺
CN105601814B (zh) 反式丁戊共聚橡胶的工业化生产方法及实施该方法的装置
CN112680180B (zh) 一种高粘接强度的加成型硅橡胶及其制备方法
WO2017143622A1 (zh) 一种利用乳酸催化合成丙交酯的方法
CN112552441B (zh) 一种钕系稀土橡胶的制备方法
WO2023045887A1 (zh) 一种二氧化碳基四元共聚物的制备方法
JP2628993B2 (ja) ブタジエンの塊状重合法
CN102225997B (zh) 一种高分子量氟硅橡胶生胶的制备方法
CN102532379A (zh) 制备稀土异戊橡胶的聚合方法
CA2497104A1 (en) Process for production of ethylene oxide copolymer
WO2024051671A1 (zh) 连续生产有机聚硅氧烷的聚合-终止装置及方法
CN105754078B (zh) 一种超临界二氧化碳中plla和peg嵌段共聚的方法
WO2024055630A1 (zh) 一种有机磷腈催化高分子量聚硅氧烷连续生产装置
CN110483762B (zh) 一种利用连续流微通道反应器合成热固型聚芳醚树脂的方法
CN109384466A (zh) 一种自由基引发剂改性聚硼硅氮烷高效制备致密SiBCN陶瓷的方法
CN111825705B (zh) 一种三氟化硼二甲基硫醚络合物的制备方法
WO2010022683A1 (zh) 一种利用双螺杆挤出机制备聚乳酸及其制品的方法
CN114015057B (zh) 高铝含量、低氧含量的聚铝碳硅烷、制备方法及SiAlC陶瓷
CN113429557B (zh) 一种低粘度聚醚多元醇的连续化制备方法
CN102234342B (zh) 应用于异戊橡胶生产的稀土催化剂的制备方法
CN115044047A (zh) 一种聚铝硅氮烷、制备方法及应用
JPH0543694A (ja) シロキサンポリマーの連続的製造法
CN110964200A (zh) 一种基于聚硅氧烷馏出物的羟基封端聚硅氧烷的制备方法
CN110256612A (zh) 一种氯化聚氯乙烯的制备方法
WO2013099670A1 (ja) メタクリル系重合体の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23864669

Country of ref document: EP

Kind code of ref document: A1