WO2024055485A1 - 套刻误差的预补偿量的确定方法、装置及存储介质 - Google Patents

套刻误差的预补偿量的确定方法、装置及存储介质 Download PDF

Info

Publication number
WO2024055485A1
WO2024055485A1 PCT/CN2023/070321 CN2023070321W WO2024055485A1 WO 2024055485 A1 WO2024055485 A1 WO 2024055485A1 CN 2023070321 W CN2023070321 W CN 2023070321W WO 2024055485 A1 WO2024055485 A1 WO 2024055485A1
Authority
WO
WIPO (PCT)
Prior art keywords
preset
wafer
determining
level measurement
overlay error
Prior art date
Application number
PCT/CN2023/070321
Other languages
English (en)
French (fr)
Inventor
王正灏
宋兆捷
Original Assignee
长鑫存储技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 长鑫存储技术有限公司 filed Critical 长鑫存储技术有限公司
Publication of WO2024055485A1 publication Critical patent/WO2024055485A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor

Definitions

  • the present disclosure relates to, but is not limited to, methods, devices and storage media for determining the pre-compensation amount of overlay errors.
  • the wafer is placed on a wafer table for exposure.
  • defects may appear on the wafer table, such as the surface of the wafer table being worn and dented, and the wafer table needs to be replaced.
  • the wafer table before replacement was dented, and the wafer on the wafer table was also dented at the corresponding position.
  • the wafer is replaced with the new wafer table, since the surface of the new wafer table is flat, other positions of the wafer corresponding to the recessed position are convex when replaced with the new wafer table. , or in different batches and at the same position, the heights of the surfaces of different wafers may also be different.
  • the present disclosure provides a method, device and storage medium for determining the pre-compensation amount of overlay error.
  • a method for determining a pre-compensation amount of overlay error includes:
  • the height difference of the corresponding point in the first level measurement map and the second level measurement map is determined.
  • the first level measurement The picture shows the level measurement map of the wafer obtained under the second preset condition.
  • the second level measurement map is the level measurement map obtained under the first preset condition; the points correspond to the second preset condition. The position where the height difference is formed in the preset layer of the wafer under the first preset condition relative to the preset layer of the wafer under the first preset condition;
  • the pre-compensation amount of the overlay error is determined according to the initial reference amount of the point.
  • determining a reference angle based on the reference point includes:
  • the reference angle is determined based on the height of the first cone model and the first radius of the base.
  • the first cone model is formed according to preset rules, including any one of the following methods:
  • the first cone model is formed in such a way that the bottom surface of the first cone model is inscribed in the reference surface of the wafer;
  • the first cone model is formed in such a way that the bottom surface of the first cone model is circumscribed to the reference surface of the wafer;
  • the first cone is formed in such a way that the ratio of the area of the bottom surface of the first cone model to the area of the reference surface of the wafer satisfies a preset ratio range.
  • determining the initial reference quantities of all points in the first level measurement chart according to the reference angle includes:
  • the initial reference quantity is determined based on the second radius.
  • determining the initial reference amount according to the second radius includes:
  • the second radius is decomposed into an initial reference quantity of the X-axis and an initial reference quantity of the Y-axis.
  • determining the pre-compensation amount of the overlay error based on the initial reference amount of the point includes:
  • the pre-compensation amount of the overlay error is determined based on the initial reference amount of the X-axis and the initial reference amount of the Y-axis at all points in the first level measurement chart.
  • determining the pre-compensation amount of the overlay error based on the initial reference amount of the X-axis and the initial reference amount of the Y-axis at all points in the first level measurement chart includes:
  • the overlay error is determined based on the vector values of the initial reference quantities of the X-axis at all points in the first level measurement chart and the weight value.
  • the pre-compensation quantity of the The pre-compensation amount of the Y-axis in the preset coordinate system includes:
  • the product of the sum of the vector values of the initial reference quantities of the Y-axis at all points in the first level measurement chart and the weight is used as the Y-axis of the overlay error in the preset coordinate system amount of pre-compensation.
  • the determining method further includes:
  • the weight is determined according to preset parameters of the preset layer of the wafer.
  • the preset parameters include one or more of the following parameters:
  • the type of overlay mark of the preset layer The type of overlay mark of the preset layer, the size of the overlay mark of the preset layer, the size of the key dimensions in the overlay mark of the preset layer, the size of the overlay mark of the preset layer The distance between the marking marks, the thickness of the mask of the preset layer, and the selection method of the reference point.
  • determining the reference point in the first level measurement map according to the height difference includes any of the following methods:
  • the point whose height difference is closest to the average value of the height differences of all points is determined as the reference point in the first level measurement map.
  • switching the first preset condition to the second preset condition includes:
  • a device for determining a pre-compensation amount of overlay error includes:
  • the height difference determination module is configured to determine the height difference of corresponding points in the first level measurement map and the second level measurement map when the first preset condition is switched to the second preset condition during the wafer process.
  • the first level measurement map is a level measurement map of the wafer obtained under the second preset condition
  • the second level measurement map is the level measurement map obtained under the first preset condition;
  • the point The position corresponds to a position where a height difference is formed in the preset layer of the wafer under the second preset condition relative to the preset layer of the wafer under the first preset condition;
  • a reference point determination module configured to determine the reference point in the first level measurement map according to the height difference
  • a reference angle determination module configured to determine a reference angle according to the reference point
  • An initial reference quantity determination module configured to determine the initial reference quantity of all points in the first level measurement chart according to the reference angle
  • the pre-compensation amount determination module is configured to determine the pre-compensation amount of the overlay error according to the initial reference amount of the point.
  • the reference angle determination module is configured to:
  • the reference angle is determined based on the height of the first cone model and the first radius of the base.
  • the reference angle determination module is configured to form the first cone model in any one of the following ways:
  • the first cone model is formed in such a way that the bottom surface of the first cone model is inscribed in the reference surface of the wafer;
  • the first cone model is formed in such a way that the bottom surface of the first cone model is circumscribed to the reference surface of the wafer;
  • the first cone is formed in such a way that the ratio of the area of the bottom surface of the first cone model to the area of the reference surface of the wafer satisfies a preset ratio range.
  • the initial reference quantity determination module is configured to:
  • the initial reference quantity is determined based on the second radius.
  • the initial reference quantity determination module is configured to:
  • the second radius is decomposed into an initial reference quantity of the X-axis and an initial reference quantity of the Y-axis.
  • the pre-compensation amount determination module is configured to:
  • the pre-compensation amount of the overlay error is determined based on the initial reference amount of the X-axis and the initial reference amount of the Y-axis at all points in the first level measurement chart.
  • the pre-compensation amount determination module is configured to:
  • the pre-compensation amount determination module is configured to:
  • the product of the sum of the vector values of the initial reference quantities of the Y-axis at all points in the first level measurement chart and the weight is used as the Y-axis of the overlay error in the preset coordinate system amount of pre-compensation.
  • the determining method further includes:
  • a weight determination module is configured to determine the weight according to preset parameters of the preset layer of the wafer.
  • the preset parameters include one or more of the following parameters:
  • the type of overlay mark of the preset layer The type of overlay mark of the preset layer, the size of the overlay mark of the preset layer, the size of the key dimensions in the overlay mark of the preset layer, the size of the overlay mark of the preset layer The distance between the marking marks, the thickness of the mask of the preset layer, and the selection method of the reference point.
  • the reference point determination module is configured to determine the reference point in any one of the following ways:
  • the point whose height difference is closest to the average value of the height differences of all points is determined as the reference point in the first level measurement map.
  • switching the first preset condition to the second preset condition includes:
  • a device for determining a pre-compensation amount of overlay error including:
  • Memory used to store instructions executable by the processor
  • the processor is configured to execute the method provided by the exemplary embodiments of the present disclosure.
  • a non-transitory computer-readable storage medium which when instructions in the storage medium are executed by a processor of a determining device, enables the determining device to perform the exemplary embodiments of the present disclosure. The methods described are provided.
  • the method for determining the pre-compensation amount of overlay errors provided by the exemplary embodiments of the present disclosure can efficiently determine the compensation amount for the deviation between overlay errors after switching based on preset conditions, avoiding the need for intensive measurement sets in related technologies.
  • the shortcomings of calculation with engraved markers also avoid the uncertainty caused by different judgments due to manual measurement.
  • Figure 1 is a schematic flowchart of a method for determining a pre-compensation amount for overlay errors according to an exemplary embodiment
  • Figure 2 exemplarily shows the flow chart of the method for determining the reference angle according to the reference point in step S103;
  • Figure 3 is a schematic diagram of a first cone model according to an exemplary embodiment
  • FIG. 4 is a schematic diagram illustrating the determination of the reference angle ⁇ according to the first radius R of the base of the first cone model and the height Z of the first cone model according to an exemplary embodiment
  • Figure 5 exemplarily shows the flow chart of the method for determining the initial reference quantities of all points in the first level measurement chart according to the reference angle in step S104;
  • Figure 6 exemplarily shows the flow chart of the method for determining the initial reference amount according to the second radius in step S1043;
  • Figure 7 exemplarily shows a flow chart of a method for determining the pre-compensation amount of the overlay error based on the initial reference amount of the X-axis and the initial reference amount of the Y-axis at all points in the first level measurement chart;
  • Figure 8 is a schematic structural diagram of a device for determining a pre-compensation amount of overlay error according to an exemplary embodiment
  • FIG. 9 illustrates a device for determining a pre-compensation amount of overlay error according to an exemplary embodiment.
  • FIG. 1 is a schematic flowchart of a method for determining a pre-compensation amount for overlay errors according to an exemplary embodiment.
  • Step S101 During the wafer process, when the first preset condition is switched to the second preset condition, the height difference of the corresponding point in the first level measurement map and the second level measurement map is determined.
  • the first level measurement The measurement map is a level measurement map of the wafer obtained under the second preset condition
  • the second level measurement map is the level measurement map obtained under the first preset condition
  • the points correspond to the level measurement map of the wafer under the second preset condition.
  • a position where a height difference is formed in the preset layer of the circle relative to the preset layer of the wafer under the first preset condition;
  • Step S102 determine the reference point in the first level measurement map according to the height difference
  • Step S103 determine the reference angle according to the reference point
  • Step S104 determine the initial reference quantities of all points in the first level measurement map according to the reference angle
  • Step S105 Determine the pre-compensation amount of the overlay error based on the initial reference amount of the point.
  • a method for determining the pre-compensation amount of overlay error.
  • a leveling map of the wafer is drawn under different preset conditions.
  • the level measurement chart is a three-dimensional diagram used to characterize the height of the wafer surface, which can visually represent the height of different points.
  • these positions where height differences are formed can be called points, that is, the points correspond to the height formed in the preset layer of the wafer under the second preset condition relative to the preset layer of the wafer under the first preset condition. The difference in height between these points causes the difference between the overlay error under the first preset condition and the second preset condition.
  • the level measurement map of the wafer obtained under the second preset condition and the first preset condition can be determined.
  • the height difference of the corresponding point in the level measurement chart of the wafer obtained under the conditions is determined, and the reference point in the first level measurement chart is determined based on the height difference.
  • the reference point is a point used to determine the reference angle of the initial reference quantity of all points in the first level measurement chart.
  • the reference point can be determined according to any rule.
  • the reference angle can be determined based on the reference point.
  • the reference angle is used to determine the angle of the initial reference quantity for all points in the first level measurement chart. That is, the same reference angle is used to determine the first alignment.
  • the initial reference quantity corresponding to all points in the first alignment measurement chart can be used to determine the preset compensation amount for the overlay error after the first preset condition is switched to the second preset condition.
  • a method for determining the pre-compensation amount of overlay error is provided.
  • the reference point is determined through the height difference of the corresponding positioning in the first level measurement chart and the second level measurement chart.
  • the reference angle is determined based on the reference point and the reference angle is determined. It is used to determine the initial reference quantity of each point in the first level measurement map to determine the compensation amount for the overlay error of the preset layer of the wafer after the preset condition is switched.
  • the method for determining the pre-compensation amount of overlay errors provided by the exemplary embodiments of the present disclosure can efficiently determine the compensation amount for the deviation between overlay errors after switching based on preset conditions, avoiding the need for intensive measurement sets in related technologies.
  • the shortcomings of calculation with engraved markers also avoid the uncertainty caused by different judgments due to manual measurement.
  • the overlay error is the deviation between each photolithography layer and the previous photolithography layer relative to the alignment position during the exposure process of the wafer process. Therefore, the overlay error provided in the exemplary embodiments of the present disclosure
  • the method for determining the pre-compensation amount of the error is for each photolithography layer in the wafer exposure process, and the corresponding pre-compensation amount for the overlay error can be determined for each photolithography layer.
  • the preset condition is a condition that will produce a deviation in the overlay error before and after the switch when the preset condition is switched.
  • the switch from the first preset condition to the second preset condition can be any preset condition. When the preset conditions are switched, there will be a situation where the overlay error deviates before and after the switch.
  • switching from the first preset condition to the second preset condition may include:
  • the surface conditions of the previous wafer workbench and the current wafer workbench are different. Due to the switching of the wafer workbench, the corresponding preset layer of the wafer will be placed on different wafer workbench, that is, the preset layer. Suppose there is a difference in the overlay error of the photolithography layer, which needs to be compensated. In the wafer manufacturing process, when in different batches and at the same position, the surface heights of different wafers may also be different. Therefore, the overlay error of the preset photolithography layer will also be different, and it needs to be compensated. .
  • the present disclosure provides a pre-compensation amount for the overlay error.
  • the determination method avoids the problems in related technologies that require intensive measurement and overlay marking of markers for compensation calculations after exposing the wafer, as well as the uncertainty of different judgments due to manual measurement. .
  • the reference point may be determined according to any rule.
  • the reference point can be determined in any of the following ways:
  • the point whose height difference is closest to the average value of the height differences of the points is determined as the reference point in the first level measurement map.
  • the reference point is used to determine the reference angle. Therefore, depending on the selected reference point, the determined reference angle is also different. Therefore, the corresponding reference point can be determined as needed.
  • the reference angle can be determined based on the reference point, as shown in Figure 2.
  • Figure 2 exemplarily shows the flow chart of the method for determining the reference angle based on the reference point in step S103:
  • Step S1031 based on the vertex of the reference point as the vertex, form a first cone model extending toward the reference surface of the wafer according to preset rules;
  • Step S1032 determine the first radius of the bottom surface of the intersection between the first cone model and the reference surface of the wafer
  • Step S1033 Determine the reference angle based on the height of the first cone model and the first radius of the base.
  • a first cone model extending toward the reference surface of the wafer may be formed based on the vertex of the reference point according to a preset rule.
  • the reference plane of the wafer may include the plane where the top surface of the wafer lies under normal conditions.
  • the first cone model extends toward the reference surface of the wafer, and the bottom surface intersects with the reference surface and completely coincides with it.
  • the first radius of the base surface can be determined through the formed first cone model, and then the reference angle can be determined based on the height of the reference point.
  • the preset rule can be any rule that can form the first cone model.
  • it can include any of the following methods:
  • the first cone model is formed in such a way that the bottom surface of the first cone model is inscribed in the reference surface of the wafer;
  • the first cone model is formed in such a way that the bottom surface of the first cone model is circumscribed with the reference surface of the wafer;
  • the first cone model is formed in such a way that the ratio of the area of the bottom surface of the first cone model to the area of the reference surface of the wafer satisfies a preset ratio range.
  • the formation method of the first cone model can be arbitrarily combined with the selection of the reference point as needed. For example, the point with the largest height difference can be selected as the reference point, and the vertex of the reference point is used as the vertex.
  • the bottom surface of the volume model is inscribed in the reference surface of the wafer to form the first cone model; you can also select the point with the smallest height difference as the reference point, and use the vertex of the reference point as the vertex to form the first cone model.
  • the first cone model is formed in such a manner that the ratio of the area of the bottom surface of the model to the area of the reference surface of the wafer satisfies a preset ratio range. In practical applications, it can be determined as needed.
  • FIG. 3 is a schematic diagram of the first cone model according to an exemplary embodiment.
  • the point 310 with the largest height difference is used as the reference point, and its vertex is used as the vertex, extending toward the reference surface 210 of the wafer 200.
  • the bottom surface 311 of the first cone model is inscribed in the reference surface 210, and is inscribed with the reference surface of the wafer 200.
  • the surfaces 210 are completely overlapped to form the first cone model 300 .
  • the first radius R of the bottom surface 311 of the first cone model can be determined.
  • the height Z of the first cone model is the height from the vertex of the reference point to the reference surface of the wafer, that is, the height difference between the vertex of the reference point and the upper surface of the wafer.
  • the reference angle can be determined.
  • FIG. 4 is a schematic diagram of determining the reference angle ⁇ according to the first radius R of the base of the first cone model and the height Z of the first cone model according to an exemplary embodiment. It can be seen from FIG.
  • the reference angle ⁇ can be determined, that is, a triangle S is formed with the height Z and the first radius R of the first cone model as right-angled sides.
  • the angle between height Z and the hypotenuse of the triangle is the reference angle ⁇ .
  • the reference angle ⁇ can be obtained based on the following formula:
  • the initial reference quantities of all points in the first level measurement map can be determined based on the reference angle, that is, the vertex of each point in the first level measurement map is used as the vertex, and the reference angle ⁇ is used as The corresponding included angle forms a second cone model corresponding to each point.
  • the first radius of the bottom surface where the second cone model intersects with the reference surface of the wafer is determined.
  • the determined radius determines the initial reference quantity.
  • Figure 5 exemplarily shows the flow chart of the method for determining the initial reference quantities of all points in the first level measurement chart according to the reference angle in step S104:
  • Step S1041 form a second cone model formed by all points in the first level measurement map with the corresponding vertex as the vertex and facing the reference surface of the wafer.
  • Step S1042 based on the second radius of the bottom surface of the second cone model that intersects with the reference surface of the wafer;
  • Step S1043 Determine the initial reference amount according to the second radius.
  • the reference angle determined based on the reference point is used as the angle at which the cone model is formed at each point in the first level measurement chart, and the base surface of the cone model is determined based on the formed cone model.
  • the radius of each point is used to determine the initial reference amount of each point, that is, the initial reference amount of each point is determined with the same standard, which improves the accuracy of determining the pre-compensation amount of overlay error.
  • a method of determining an initial reference amount according to the second radius is also provided.
  • Figure 6 exemplarily shows the flow chart of the method for determining the initial reference amount according to the second radius in step S1043:
  • Step S10431 determine the quadrant of the corresponding point according to the preset coordinate system where the wafer is located;
  • Step S10432 According to the quadrant and the preset coordinate system, the second radius is decomposed into an initial reference amount of the X-axis and an initial reference amount of the Y-axis.
  • the quadrant where each point in the first level measurement map is located can be determined in the preset coordinate system where the wafer is located. According to the quadrant where each point is located and the preset coordinate system , decompose the second radius equally into the initial reference quantity of the X-axis and the initial reference quantity of the Y-axis.
  • the preset coordinate system is centered on the origin of the wafer, forming the X-axis and Y-axis, dividing the wafer into four quadrants, A, B, C and D.
  • the reference point 310 is in the second quadrant B, and uses the center of the circle with its base as the origin to equally decompose the initial reference quantity Rx of the X-axis and the initial reference quantity Ry of the Y-axis to the X-axis and Y-axis respectively.
  • the initial reference quantity of the X-axis and the initial reference quantity of the Y-axis at each point in the first level measurement chart are obtained.
  • determining the pre-compensation amount of the overlay error based on the initial reference amount of the point may include:
  • the pre-compensation amount of the overlay error is determined based on the initial reference amount of the X-axis and the initial reference amount of the Y-axis at all points in the first level measurement chart.
  • the initial reference quantity of the X-axis at each point in the first level measurement chart can be determined. and the initial reference amount of the Y-axis to determine the pre-compensation amount of the overlay error.
  • FIG. 7 exemplarily shows a flow chart of a method for determining a pre-compensation amount of an overlay error according to an initial reference amount of an X-axis and an initial reference amount of an Y-axis of all points in a first leveling measurement map:
  • Step S701 determine the weight value based on the compensation amount of the preset layer
  • Step S702 Determine the pre-compensation amount of the X-axis for the overlay error in the preset coordinate system based on the vector values and weight values of the initial reference quantities of the X-axis at all points in the first level measurement chart;
  • Step S703 Determine the Y-axis pre-compensation amount of the overlay error in the preset coordinate system based on the vector values and weight values of the initial reference quantities of the Y-axis at all points in the first level measurement chart.
  • the method for determining the pre-compensation amount of overlay error provided in is for each photolithography layer in the wafer exposure process.
  • Each photolithography layer is based on the characteristics of its photolithography pattern, and the overlay markers also have their own characteristics. characteristics, so when determining the pre-compensation amount of the overlay error of the corresponding photolithography layer, you can consider the corresponding weight, the vector value of the initial reference amount of the X-axis at all points in the level measurement chart, and determine the overlay error.
  • the pre-compensation amount of the X-axis under the preset coordinate system is based on the weight value and the vector value of the initial reference amount of the Y-axis at all points in the first level measurement chart to determine the overlay error under the preset coordinate system.
  • the pre-compensation amount of the Y-axis is based on the weight value and the vector value of the initial reference amount of the Y-axis at all points in the first level measurement chart to determine the overlay error under the preset coordinate system.
  • the sum of the vector values of the initial reference quantities of the X-axis at all points in the first level measurement chart multiplied by the weight can be used as the overlay error in the preset coordinate system
  • the pre-compensation amount of the amount of pre-compensation can be used as the overlay error in the preset coordinate system.
  • the wafer is divided into four quadrants, A, B, C and D based on the preset coordinate system. If the point is located in the first quadrant A, the vector value of the initial reference quantity of the X-axis and the vector value of the initial reference quantity of the Y-axis are both positive; if the point is located in the second quadrant B, the vector value of the initial reference quantity of the X-axis If the value is positive, the vector value of the initial reference quantity of the Y-axis is negative; if the point is located in the third quadrant C, the vector value of the initial reference quantity of the X-axis and the vector value of the initial reference quantity of the Y-axis are both negative values.
  • the vector value of the initial reference value of the X-axis is negative, and the vector value of the initial reference value of the Y-axis is positive.
  • the reference point 310 is in the second quadrant B, the X-axis is a positive value, and the Y-axis is a negative value.
  • the vector value of the initial reference quantity Rx of the X-axis of the reference point 310 is a positive value 100, and the initial reference value of the Y-axis is 100.
  • the vector value of quantity Ry is negative -100.
  • the vector values of the initial reference quantities of the X-axis at all points in the first level measurement chart are determined, and the product of the vector values of the initial reference quantities of the The pre-compensation amount of the X-axis in the preset coordinate system for the overlay error on the layer.
  • determine the vector value of the initial reference quantity of the Y-axis at all points in the first level measurement chart and use the product of the vector value of the initial reference quantity of the Y-axis at all points and the weight as the preset layer of the wafer The pre-compensation amount of the Y-axis in the preset coordinate system for the overlay error.
  • the method further includes determining the weight according to preset parameters of the preset layer of the wafer.
  • the method for determining the pre-compensation amount of overlay error provided in the exemplary embodiment of the present disclosure is for each photolithography layer in the wafer exposure process, and each photolithography layer is based on the characteristics of its photolithography pattern. Overlay markers also have their own characteristics. Therefore, when determining the pre-compensation amount for the overlay error of the corresponding photolithography layer, the characteristics of the preset layer, that is, the preset parameters of the preset layer, are taken into consideration to determine the corresponding weight. .
  • Preset parameters may include one or more of the following parameters:
  • the type of the overlay mark of the preset layer the size of the overlay mark of the preset layer, the size of the critical dimension (Critical Dimension, CD) in the overlay mark of the preset layer, the The distance between the overlay marks of the preset layer, the thickness of the mask of the preset layer, and the selection method of the reference point.
  • CD Critical Dimension
  • the photolithography patterns and overlay markers of each photolithography layer on the wafer have their own characteristics, and will also have different effects on the overlay error when the preset conditions are switched. Therefore, , when determining the pre-compensation amount of the overlay error of the corresponding photolithography layer, the corresponding weight can be considered according to the characteristics of the photolithography layer, that is, according to the preset parameters of the preset layer, the corresponding weight for determining the photolithography layer can be determined. The weight of the pre-compensation amount for the overlay error of the engraving layer.
  • the preset parameters may include parameters related to the overlay mark of the preset layer and parameters related to the mask of the preset layer.
  • the reference point can be determined in different ways.
  • the selection of the reference point has different effects on the determination of the pre-compensation amount of the overlay error. Therefore, when determining the weight of the preset layer
  • the selection of reference points can also be considered.
  • the weight of the preset layer can be a fixed value determined with reference to the historical data of the preset parameters of the preset layer; it can also be a fixed value determined based on the changing state of the historical data of the preset parameters of the preset layer; it can also be The fixed value determined with reference to the historical data of the weight of the preset layer may also be a fixed value determined by the change state of the historical data of the weight of the preset layer.
  • FIG. 8 is a device for determining a pre-compensation amount of overlay error according to an exemplary embodiment.
  • Structural diagram. The determining device includes:
  • the height difference determination module 801 is configured to determine the height of the corresponding point in the first level measurement map and the second level measurement map when the first preset condition is switched to the second preset condition during the wafer process.
  • the difference is that the first level measurement map is a level measurement map of the wafer obtained under the second preset condition, and the second level measurement map is the level measurement map obtained under the first preset condition;
  • the point position corresponds to a position where a height difference is formed in the preset layer of the wafer under the second preset condition relative to the preset layer of the wafer under the first preset condition;
  • the reference point determination module 802 is configured to determine the reference point in the first level measurement map according to the height difference
  • the reference angle determination module 803 is configured to determine the reference angle according to the reference point
  • the initial reference quantity determination module 804 is configured to determine the initial reference quantity of all points in the first level measurement chart according to the reference angle;
  • the pre-compensation amount determination module 805 is configured to determine the pre-compensation amount of the overlay error according to the initial reference amount of the point.
  • the reference angle determination module 803 is configured to:
  • the reference angle is determined based on the height of the first cone model and the first radius of the base.
  • the reference angle determination module 803 is configured to form the first cone model in any one of the following ways:
  • the first cone model is formed in such a way that the bottom surface of the first cone model is inscribed in the reference surface of the wafer;
  • the first cone model is formed in such a way that the bottom surface of the first cone model is circumscribed to the reference surface of the wafer;
  • the first cone is formed in such a way that the ratio of the area of the bottom surface of the first cone model to the area of the reference surface of the wafer satisfies a preset ratio range.
  • the initial reference quantity determination module 804 is configured to:
  • the initial reference quantity is determined based on the second radius.
  • the initial reference quantity determination module 804 is configured to:
  • the second radius is decomposed into an initial reference quantity of the X-axis and an initial reference quantity of the Y-axis.
  • the pre-compensation amount determination module 805 is configured to:
  • the pre-compensation amount of the overlay error is determined based on the initial reference amount of the X-axis and the initial reference amount of the Y-axis at all points in the first level measurement chart.
  • the pre-compensation amount determination module 805 is configured to:
  • the pre-compensation amount determination module 805 is configured to:
  • the product of the sum of the vector values of the initial reference quantities of the Y-axis at all points in the first level measurement chart and the weight is used as the Y-axis of the overlay error in the preset coordinate system amount of pre-compensation.
  • the determining method further includes:
  • the weight determination module 806 is configured to determine the weight according to the preset parameters of the preset layer of the wafer.
  • the preset parameters include one or more of the following parameters:
  • the type of overlay mark of the preset layer The type of overlay mark of the preset layer, the size of the overlay mark of the preset layer, the size of the key dimensions in the overlay mark of the preset layer, the size of the overlay mark of the preset layer The distance between the marking marks, the thickness of the mask of the preset layer, and the selection method of the reference point.
  • the reference point determination module 802 is configured to determine the reference point in any one of the following ways:
  • the point whose height difference is closest to the average value of the height differences of all points is determined as the reference point in the first level measurement map.
  • switching the first preset condition to the second preset condition includes:
  • FIG. 9 is a block diagram of a computer device 900 that provides an apparatus for determining a pre-compensation amount of overlay errors according to an exemplary embodiment.
  • the device may be the evaluation device or the access device in the above-described exemplary embodiments of the present disclosure, for example, the computer device 900 may be provided as a terminal device.
  • a computer device 900 includes a processor 901, and the number of processors can be set to one or more as needed.
  • Computer device 900 also includes memory 902 for storing instructions, such as application programs, executable by processor 901. The number of memories can be set to one or more as needed.
  • the stored applications can be one or more.
  • the processor 901 is configured to execute instructions to perform the above method.
  • embodiments of the present disclosure may be provided as methods, apparatuses (devices), or computer program products. Accordingly, the present disclosure may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment that combines software and hardware aspects. Furthermore, the present disclosure may take the form of a computer program product embodied on one or more computer-usable storage media having computer-usable program code embodied therein.
  • Computer storage media includes volatile and nonvolatile, removable and non-removable media implemented in any method or technology for storage of information such as computer readable instructions, data structures, program modules or other data , including but not limited to RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, Digital Versatile Disk (DVD) or other optical disk storage, magnetic cassettes, tapes, magnetic disk storage or other magnetic storage devices, or may be used Any other medium that stores the desired information and can be accessed by the computer, etc.
  • communication media typically embodies computer readable instructions, data structures, program modules or other data in a modulated data signal such as a carrier wave or other transport mechanism and may include any information delivery media.
  • a non-transitory computer-readable storage medium including instructions such as a memory 902 including instructions, which are executable by the processor 901 of the device 900 to complete the above method is provided.
  • the non-transitory computer-readable storage medium may be ROM, random access memory (RAM), CD-ROM, magnetic tape, floppy disk, optical data storage device, etc.
  • a non-transitory computer-readable storage medium which when instructions in the storage medium are executed by a processor of the determining apparatus, enables the determining apparatus to perform exemplary implementations of the present disclosure.
  • the method described is provided in the example.
  • These computer program instructions may also be stored in a computer-readable memory that causes a computer or other programmable data processing apparatus to operate in a particular manner, such that the instructions stored in the computer-readable memory produce an article of manufacture including the instruction means, the instructions
  • the device implements the functions specified in a process or processes of the flowchart and/or a block or blocks of the block diagram.
  • These computer program instructions may also be loaded onto a computer or other programmable data processing device, causing a series of operating steps to be performed on the computer or other programmable device to produce computer-implemented processing, thereby executing on the computer or other programmable device.
  • Instructions provide steps for implementing the functions specified in a process or processes of a flowchart diagram and/or a block or blocks of a block diagram.
  • the method for determining the pre-compensation amount of overlay errors provided by the exemplary embodiments of the present disclosure can efficiently determine the compensation amount for the deviation between overlay errors after switching based on preset conditions, avoiding the need for intensive measurement sets in related technologies.
  • the shortcomings of calculation with engraved markers also avoid the uncertainty caused by different judgments due to manual measurement.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

本公开提供一种套刻误差的预补偿量的确定方法、装置和存储介质。所述确定方法包括:在晶圆制程中,当第一预设条件切换至第二预设条件时,确定第一水准量测图和第二水准量测图中对应点位的高度差;根据所述高度差,确定所述第一水准量测图中的参考点位;根据所述参考点位确定参考角度;根据所述参考角度,确定所述第一水准量测图中所有点位的初始参考量;根据所述点位的所述初始参考量确定所述套刻误差的预补偿量。

Description

套刻误差的预补偿量的确定方法、装置及存储介质
本公开基于申请号为202211129765.6,申请日为2022年09月16日,申请名称为“套刻误差的预补偿量的确定方法、装置及存储介质”的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本公开作为参考。
技术领域
本公开涉及但不限于套刻误差的预补偿量的确定方法、装置及存储介质。
背景技术
相关技术中,在晶圆制程中,晶圆被放置到晶圆工作台(wafer table)进行曝光。随着制程的行进,晶圆工作台出现缺陷,例如晶圆工作台的表面磨损出现凹陷的情况,需要对晶圆工作台进行更换。在更换前的晶圆工作台有凹陷的情况,晶圆工作台上的晶圆在对应的位置也是凹陷的。在将晶圆更换至更换后的即新的晶圆工作台后,由于新的工作台的表面平整,更换至新的晶圆工作台上的晶圆的对应于凹陷位置的其他位置时凸起的,或者在不同批次下,在相同位置下,不同晶圆的表面的高度也可能不尽相同。如果继续基于更换前的晶圆工作台的套刻误差进行处理,会大大降低产品的良率。为了克服这一缺陷,需要在晶圆更换至新的晶圆工作台之后,对晶圆曝光后,经过密集的量测套刻标记物(Overlay mark,OVL mark)来计算补偿值,以用于补偿晶圆工作台更换前后的套刻误差之间的差异,这种处理方式非常浪费人力物力和时间,且会因为工程师的不同,对量测出来的结果有着不同判断,而存在一定的不确定性。
发明内容
以下是对本公开详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本公开提供一种套刻误差的预补偿量的确定方法、装置及存储介质。
根据本公开的第一方面,提供一种套刻误差的预补偿量的确定方法,所述确定方法包括:
在晶圆制程中,当第一预设条件切换至第二预设条件时,确定第一水准量测图和第二水准量测图中对应点位的高度差,所述第一水准量测图为第二预设条件下获取晶圆的水准量测图,所述第二水准量测图为第一预设条件下获取的水准量测图;所述点位对应于第二预设条件下的晶圆的预设层中相对于第一预设条件下的晶圆的预设层中形成高度差的位置;
根据所述高度差,确定所述第一水准量测图中的参考点位;
根据所述参考点位确定参考角度;
根据所述参考角度,确定所述第一水准量测图中所有点位的初始参考量;
根据所述点位的所述初始参考量确定所述套刻误差的预补偿量。
在一些示例性的实施例中,根据所述参考点位确定参考角度,包括:
基于所述参考点位的顶点为顶点,按照预设规则形成向所述晶圆的参考面延伸的第一圆锥体模型;
确定所述第一圆锥体模型与所述晶圆的参考面的相交的底面的第一半径;
根据所述第一圆锥体模型的高、所述底面的第一半径确定所述参考角度。
在一些示例性的实施例中,基于所述参考点位的顶点为顶点,按照预设规则形成第一圆锥体模型,包括下述方式中的任意一种:
以所述参考点位的顶点为顶点,以所述第一圆锥体模型的底面内切于所述晶圆的参考 面的方式,形成所述第一圆锥体模型;
以所述参考点位的顶点为顶点,以所述第一圆锥体模型的底面外切于所述晶圆的参考面的方式,形成所述第一圆锥体模型;
以所述参考点位的顶点为顶点,以所述第一圆锥体模型的底面的面积与所述晶圆的参考面的面积的比满足预设比例范围的方式,形成所述第一圆锥体模型。
在一些示例性的实施例中,根据所述参考角度,确定所述第一水准量测图中所有点位的初始参考量,包括:
根据所述参考角度,形成所述第一水准量测图中所有点位以对应的顶点为顶点,朝向晶圆的参考面所形成的第二圆锥体模型;
根据所述第二圆锥体模型的与晶圆的参考面相交的底面的第二半径;
根据所述第二半径确定所述初始参考量。
在一些示例性的实施例中,根据所述第二半径确定所述初始参考量,包括:
根据所述晶圆所在的预设坐标系,确定对应的点位所在象限;
根据所述象限以及所述预设坐标系,将所述第二半径等量分解为X轴的初始参考量和Y轴的初始参考量。
在一些示例性的实施例中,根据所述点位的所述初始参考量确定所述套刻误差的预补偿量,包括:
根据所述第一水准量测图中所有点位的X轴的初始参考量和Y轴的初始参考量,确定所述套刻误差的预补偿量。
在一些示例性的实施例中,根据所述第一水准量测图中所有点位的X轴的初始参考量和Y轴的初始参考量,确定所述套刻误差的预补偿量,包括:
确定基于所述预设层的补偿量的权重值;
根据所述第一水准量测图中所有点位的X轴的初始参考量的矢量值以及所述权重值,确定所述套刻误差的在所述预设坐标系下的X轴的预补偿量;
根据所述第一水准量测图中所有点位的Y轴的初始参考量的矢量值以及所述权重值,确定所述套刻误差的在所述预设坐标系下的Y轴的预补偿量。
在一些示例性的实施例中,根据所述第一水准量测图中所有点位的X轴的初始参考量的矢量值以及所述权重值,确定所述套刻误差的在所述预设坐标系下的X轴的预补偿量,根据所述第一水准量测图中所有点位的Y轴的初始参考量的矢量值以及所述权重值,确定所述套刻误差的在所述预设坐标系下的Y轴的预补偿量,包括:
将所述第一水准量测图中所有点位的X轴的初始参考量的矢量值之和与所述权重的乘积,作为所述套刻误差的在所述预设坐标系下的X轴的预补偿量;
将所述第一水准量测图中所有点位的Y轴的初始参考量的矢量值之和与所述权重的乘积,作为所述套刻误差的在所述预设坐标系下的Y轴的预补偿量。
在一些示例性的实施例中,所述确定方法还包括:
根据所述晶圆的所述预设层的预设参数,确定所述权重。
在一些示例性的实施例中,所述预设参数包括下述参数中的一种或多种:
所述预设层的套刻标记物的类型、所述预设层的套刻标记物的尺寸、所述预设层的套刻标记物中的关键尺寸的大小、所述预设层的套刻标记物之间的距离的大小、所述预设层的掩膜的厚度、参考点位的选择方式。
在一些示例性的实施例中,根据所述高度差,确定所述第一水准量测图中的参考点位,包括下述方式中的任意一种:
将高度差最大的点位确定为所述第一水准量测图中的所述参考点位;
将高度差最小的点位确定为所述第一水准量测图中的所述参考点位;或者
将高度差最接近所有点位的高度差的平均值的点位确定为所述第一水准量测图中的 所述参考点位。
在一些示例性的实施例中,第一预设条件切换至第二预设条件,包括:
由前一晶圆工作台切换至当前晶圆工作台;和/或
由前一批次的晶圆切换至当前批次的晶圆。
根据本公开的第二方面,提供一种套刻误差的预补偿量的确定装置,所述确定装置包括:
高度差确定模块,被配置为在晶圆制程中,当第一预设条件切换至第二预设条件时,确定第一水准量测图和第二水准量测图中对应点位的高度差,所述第一水准量测图为第二预设条件下获取晶圆的水准量测图,所述第二水准量测图为第一预设条件下获取的水准量测图;所述点位对应于第二预设条件下的晶圆的预设层中相对于第一预设条件下的晶圆的预设层中形成高度差的位置;
参考点位确定模块,被配置为根据所述高度差,确定所述第一水准量测图中的参考点位;
参考角度确定模块,被配置为根据所述参考点位确定参考角度;
初始参考量确定模块,被配置为根据所述参考角度,确定所述第一水准量测图中所有点位的初始参考量;
预补偿量确定模块,被配置为根据所述点位的所述初始参考量确定所述套刻误差的预补偿量。
在一些示例性的实施例中,所述参考角度确定模块被配置为:
基于所述参考点位的顶点为顶点,按照预设规则形成向所述晶圆的参考面延伸的第一圆锥体模型;
确定所述第一圆锥体模型与所述晶圆的参考面的相交的底面的第一半径;
根据所述第一圆锥体模型的高、所述底面的第一半径确定所述参考角度。
在一些示例性的实施例中,所述参考角度确定模块被配置为按照下述方式中的任意一种形成所述第一圆锥体模型:
以所述参考点位的顶点为顶点,以所述第一圆锥体模型的底面内切于所述晶圆的参考面的方式,形成所述第一圆锥体模型;
以所述参考点位的顶点为顶点,以所述第一圆锥体模型的底面外切于所述晶圆的参考面的方式,形成所述第一圆锥体模型;
以所述参考点位的顶点为顶点,以所述第一圆锥体模型的底面的面积与所述晶圆的参考面的面积的比满足预设比例范围的方式,形成所述第一圆锥体模型。
在一些示例性的实施例中,所述初始参考量确定模块被配置为:
根据所述参考角度,形成所述第一水准量测图中所有点位以对应的顶点为顶点,朝向晶圆的参考面所形成的第二圆锥体模型;
根据所述第二圆锥体模型的与晶圆的参考面相交的底面的第二半径;
根据所述第二半径确定所述初始参考量。
在一些示例性的实施例中,所述初始参考量确定模块被配置为:
根据所述晶圆所在的预设坐标系,确定对应的点位所在象限;
根据所述象限以及所述预设坐标系,将所述第二半径等量分解为X轴的初始参考量和Y轴的初始参考量。
在一些示例性的实施例中,所述预补偿量确定模块被配置为:
根据所述第一水准量测图中所有点位的X轴的初始参考量和Y轴的初始参考量,确定所述套刻误差的预补偿量。
在一些示例性的实施例中,所述预补偿量确定模块被配置为:
确定基于所述预设层的补偿量的权重值;
根据所述第一水准量测图中所有点位的X轴的初始参考量的矢量值以及所述权重值,确定所述套刻误差的在所述预设坐标系下的X轴的预补偿量;
根据所述第一水准量测图中所有点位的Y轴的初始参考量的矢量值以及所述权重值,确定所述套刻误差的在所述预设坐标系下的Y轴的预补偿量。
在一些示例性的实施例中,所述预补偿量确定模块被配置为:
将所述第一水准量测图中所有点位的X轴的初始参考量的矢量值之和与所述权重的乘积,作为所述套刻误差的在所述预设坐标系下的X轴的预补偿量;
将所述第一水准量测图中所有点位的Y轴的初始参考量的矢量值之和与所述权重的乘积,作为所述套刻误差的在所述预设坐标系下的Y轴的预补偿量。
在一些示例性的实施例中,所述确定方法还包括:
权重确定模块,被配置为根据所述晶圆的所述预设层的预设参数,确定所述权重。
在一些示例性的实施例中,所述预设参数包括下述参数中的一种或多种:
所述预设层的套刻标记物的类型、所述预设层的套刻标记物的尺寸、所述预设层的套刻标记物中的关键尺寸的大小、所述预设层的套刻标记物之间的距离的大小、所述预设层的掩膜的厚度、参考点位的选择方式。
在一些示例性的实施例中,所述参考点位确定模块被配置为按照下述方式中的任意一种确定所述参考点位:
将高度差最大的点位确定为所述第一水准量测图中的所述参考点位;
将高度差最小的点位确定为所述第一水准量测图中的所述参考点位;或者
将高度差最接近所有点位的高度差的平均值的点位确定为所述第一水准量测图中的所述参考点位。
在一些示例性的实施例中,第一预设条件切换至第二预设条件,包括:
由前一晶圆工作台切换至当前晶圆工作台;和/或
由前一批次的晶圆切换至当前批次的晶圆。
根据本公开的第三方面,提供一种套刻误差的预补偿量的确定装置,包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为执行本公开示例性的实施例所提供的所述的方法。
根据本公开的第四方面,提供一种非临时性计算机可读存储介质,当所述存储介质中的指令由确定装置的处理器执行时,使得确定装置能够执行本公开示例性的实施例所提供的所述的方法。
本公开示例性的实施例所提供的套刻误差的预补偿量的确定方法可以高效确定基于预设条件切换后套刻误差之间的偏差的补偿量,避免了相关技术中需要密集量测套刻标记物进行计算所存在的缺陷,也避免了由于人工量测所出现的不同的判断所存在的不确定性的问题。
在阅读并理解了附图和详细描述后,可以明白其他方面。
附图说明
并入到说明书中并且构成说明书的一部分的附图示出了本公开的实施例,并且与描述一起用于解释本公开实施例的原理。在这些附图中,类似的附图标记用于表示类似的要素。下面描述中的附图是本公开的一些实施例,而不是全部实施例。对于本领域技术人员来讲,在不付出创造性劳动的前提下,可以根据这些附图获得其他的附图。
图1是根据一示例性实施例示出的套刻误差的预补偿量的确定方法的流程示意图;
图2示例性地示出了步骤S103中根据参考点位确定参考角度的方法流程图;
图3是根据一示例性实施例示出的第一圆锥体模型的示意图;
图4是根据一示例性实施例示出的根据第一圆锥体模型的底面的第一半径R和第一圆锥体模型的高Z确定参考角度α的示意图;
图5示例性地示出了步骤S104中根据参考角度,确定第一水准量测图中所有点位的初始参考量的方法流程图;
图6示例性地示出了步骤S1043中根据第二半径确定初始参考量的方法流程图;
图7示例性的示出了根据第一水准量测图中所有点位的X轴的初始参考量和Y轴的初始参考量,确定套刻误差的预补偿量的方法流程图;
图8是根据一示例性实施例示出的套刻误差的预补偿量的确定装置的结构示意图;
图9是根据一示例性实施例示出的提供一种套刻误差的预补偿量的确定装置。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例中的附图,对公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。需要说明的是,在不冲突的情况下,本公开中的实施例及实施例中的特征可以相互任意组合。
本公开提供了一种套刻误差的预补偿量的确定方法,如图1所示,图1是根据一示例性实施例示出的套刻误差的预补偿量的确定方法的流程示意图。
步骤S101,在晶圆制程中,当第一预设条件切换至第二预设条件时,确定第一水准量测图和第二水准量测图中对应点位的高度差,第一水准量测图为第二预设条件下获取晶圆的水准量测图,第二水准量测图为第一预设条件下获取的水准量测图;点位对应于第二预设条件下的晶圆的预设层中相对于第一预设条件下的晶圆的预设层中形成高度差的位置;
步骤S102,根据高度差,确定第一水准量测图中的参考点位;
步骤S103,根据参考点位确定参考角度;
步骤S104,根据参考角度,确定第一水准量测图中所有点位的初始参考量;
步骤S105,根据点位的初始参考量确定套刻误差的预补偿量。
在本公开示例性的实施例中,为了提高确定在晶圆制程中,由于制程条件的变化而使得变化后的晶圆的预设层之间的套刻误差的产生的差异的效率,提供了一种套刻误差的预补偿量的确定方法。
在晶圆制程中,在不同的预设条件下,会绘制晶圆的水准量测图(leveling map)。水准量测图用于表征晶圆表面高度的三维立体图,能够直观表现不同点位的高度。在晶圆制程中,当第一预设条件切换至第二预设条件时,由于预设条件的转换,使得在该两个预设条件下的晶圆的预设层上出现高度不同的位置,这些形成高度差的位置可以称为点位,即点位对应于第二预设条件下的晶圆的预设层中相对于第一预设条件下的晶圆的预设层中形成高度差的位置,这些点位的高度差异造成了第一预设条件和第二预设条件下的套刻误差之间的差异。
为了能确定第一预设条件切换至第二预设条件后套刻误差之间的差异的补偿量,可以确定第二预设条件下所获取的晶圆的水准量测图与第一预设条件下所获取的晶圆的水准量测图中对应点位的高度差,根据高度差确定第一水准量测图中的参考点位。参考点位为用于确定第一水准量测图中所有点位的初始参考量的参考角度的点位。可以根据任一规则确定参考点位。
在参考点位确定后,可以根据参考点位确定参考角度,参考角度用于确定第一水准量 测图中所有点位的初始参考量的角度,即使用相同的参考角度,确定第一对准量测图中每个点位对应的初始参考量。可以第一对准量测图中的所有点位对应的初始参考量来确定第一预设条件切换至第二预设条件后,套刻误差的预设补偿量。
本公开示例性的实施例中,在晶圆制程中,由于预设条件的切换,造成了晶圆的预设层对应的套刻误差的差异,为了提高确定这一差异的确定效率,提供了一种套刻误差的预补偿量的确定方法,通过第一水准量测图和第二水准量测图中对应定位的高度差,确定参考点位,根据参考点位确定参考角度,将参考角度用于确定第一水准量测图中每个点位的初始参考量,以确定预设条件切换后晶圆的预设层的套刻误差的补偿量。本公开示例性的实施例所提供的套刻误差的预补偿量的确定方法可以高效确定基于预设条件切换后套刻误差之间的偏差的补偿量,避免了相关技术中需要密集量测套刻标记物进行计算所存在的缺陷,也避免了由于人工量测所出现的不同的判断所存在的不确定性的问题。
套刻误差是在晶圆制程的曝光工艺中,每个光刻层与前一光刻层之间相对于对准位置的偏差,因此,在本公开示例性的实施例中所提供的套刻误差的预补偿量的确定方法是针对晶圆的曝光工艺中每一个光刻层的,对于每一光刻层都可以确定对应的套刻误差的预补偿量。
在本公开示例性的实施例中,预设条件为当预设条件切换时,会产生切换前后套刻误差的偏差的条件,第一预设条件切换至第二预设条件可以为任一预设条件切换时,会产生切换前后套刻误差的偏差的情景,例如第一预设条件切换至第二预设条件可以包括:
由前一晶圆工作台切换至当前晶圆工作台;和/或
由前一批次的晶圆切换至当前批次的晶圆。
在晶圆制程中,前一晶圆工作台与当前晶圆工作台的表面状态不同,会由于晶圆工作台的切换使得晶圆在不同的晶圆工作台时对应的预设层,即预设光刻层的套刻误差存在差异,需要对其进行补偿。在晶圆制程中,当不同批次下,在相同位置下,不同晶圆的表面高度也可能不尽相同,因此,预设光刻层的套刻误差也会存在差异,需要对其进行补偿。
考虑到在晶圆制程中,晶圆工作台的更换前后套刻误差的不同或者不同批次下对应晶圆的表面的高度差的不同,本本公开提供了一种套刻误差的预补偿量的确定方法,避免了相关技术中需要对晶圆曝光后,进行密集量测套刻标记物进行补偿计算所存在的问题,以及由于人工量测所出现的不同的判断所存在的不确定性的问题。
在本公开示例性的实施例中,参考点可以根据任一规则确定参考点位。例如可以按照下述方式中任意一种确定参考点位:
将高度差最大的点位确定为第一水准量测图中的参考点位;
将高度差最小的点位确定为第一水准量测图中的参考点位;或者
将高度差最接近点位的高度差的平均值的点位确定为第一水准量测图中的参考点位。
参考点位是用于对参考角度的确定的,因此,所选择的参考点位不同,所确定的参考角度也不同,因此可以根据需要确定对应的参考点位。
在确定了参考点位之后,可以根据参考点位确定参考角度,如图2所示,图2示例性地示出了步骤S103中根据参考点位确定参考角度的方法流程图:
步骤S1031,基于参考点位的顶点为顶点,按照预设规则形成向晶圆的参考面延伸的第一圆锥体模型;
步骤S1032,确定第一圆锥体模型与晶圆的参考面的相交的底面的第一半径;
步骤S1033,根据第一圆锥体模型的高、底面第一半径确定所述参考角度。
在本公开示例性的实施例中,为了确定参考角度,可以基于参考点的顶点按照预设规则形成向晶圆的参考面延伸第一圆锥体模型。晶圆的参考面可以包括晶圆在正常条件下顶表面所在的平面。第一圆锥体模型向晶圆的参考面延伸,底面与参考面相交完全重 合。可以通过所形成的第一圆锥体模型确定底面的第一半径,再根据参考点位的高,可以确定参考角度。
预设规则可以为任意可以形成第一圆锥体模型的规则。例如可以包括下述任意方式中的一种:
以参考点位的顶点为顶点,以第一圆锥体模型的底面内切于晶圆的参考面的方式,形成第一圆锥体模型;
以参考点位的顶点为顶点,以第一圆锥体模型的底面外切于晶圆的参考面的方式,形成第一圆锥体模型;
以参考点位的顶点为顶点,以第一圆锥体模型的底面的面积与晶圆的参考面的面积的比满足预设比例范围的方式,形成第一圆锥体模型。
第一圆锥体模型的形成方式可以与参考点位的选择可以根据需要做任意组合,例如,可以选择高度差最大的点作为参考点位,同时以参考点位的顶点为顶点,以第一圆锥体模型的底面内切于晶圆的参考面的方式,形成第一圆锥体模型;也可以选择高度差最小的点作为参考点位,同时以参考点位的顶点为顶点,以第一圆锥体模型的底面的面积与晶圆的参考面的面积的比满足预设比例范围的方式,形成第一圆锥体模型。在实际应用中,可以根据需要确定。
在本公开示例性的实施例中,以高度差最大的点作为参考点位,同时以参考点位的顶点为顶点,以第一圆锥体模型的底面内切于晶圆的参考面的方式,形成第一圆锥体模型为例进行说明,如图3所示,图3是根据一示例性实施例示出的第一圆锥体模型的示意图。以高度差最大的点位310作为参考点位,以其顶点作为顶点,向晶圆200的参考面210延伸,第一圆锥体模型的底面311内切于参考面210,且与晶圆的参考面210完全重合,形成第一圆锥体模型300。根据第一圆锥体模型,可以确定第一圆锥体模型的底面311的第一半径R。
第一圆锥体模型的高Z,即参考点位的顶点到晶圆的参考面的高,也即参考点位的顶点相对于晶圆的上表面的高度差。根据第一圆锥体模型的高,底面的第一半径,可以确定参考角度。如图4所示,图4是根据一示例性实施例示出的根据第一圆锥体模型的底面的第一半径R和第一圆锥体模型的高Z确定参考角度α的示意图。结合图3可知,在以高度差最大的点位310的顶点作为顶点,向晶圆200的参考面210延伸,确定了第一圆锥体模型的底面311后,即可以确定底面311的第一半径R。根据第一圆锥体模型的高Z和第一半径R,即可以确定参考角度α,即以第一圆锥体模型的高Z和第一半径R为直角边形成三角形S,第一圆锥体模型的高Z与三角形的斜边之间的夹角即为参考角度α。参考角度α可以基于下述公式获得:
Figure PCTCN2023070321-appb-000001
在确定了参考角度后,可以根据参考角度确定第一水准量测图中所有点位的初始参考量,即以第一水准量测图中每个点位的顶点为顶点,以参考角度α作为对应的夹角,形成每个点位对应的第二圆锥体模型,根据所确定的第二圆锥体模型,确定第二圆锥体模型与晶圆的参考面相交的底面的第一半径,根据所确定的半径确定初始参考量。如图5所示,图5示例性地示出了步骤S104中根据参考角度,确定第一水准量测图中所有点位的初始参考量的方法流程图:
步骤S1041,根据参考角度,形成第一水准量测图中所有点位以对应的顶点为顶点,朝向晶圆的参考面所形成的第二圆锥体模型,
步骤S1042,根据第二圆锥体模型的与晶圆的参考面相交的底面的第二半径;
步骤S1043,根据第二半径确定初始参考量。
在确定了参考角度后,根据参考角度,确定第一水准量测图中每个点位对应的第二 圆锥体模型,以及根据第二圆锥体模型确定第二半径,根据第二半径确定初始参考量。在本公开示例性的实施例中,将根据参考点位确定的参考角度作为第一水准量测图中每个点位形成圆锥体模型的角度,并基于此形成的圆锥体模型所确定的底面的半径来确定每个点位的初始参考量,即以相同的标准确定每个点位的初始参考量,提高了确定套刻误差的预补偿量的准确性。
在本公开示例性的实施例中,还提供了根据第二半径确定初始参考量的方法。如图6所示,图6示例性地示出了步骤S1043中根据第二半径确定初始参考量的方法流程图:
步骤S10431,根据晶圆所在的预设坐标系,确定对应的点位所在象限;
步骤S10432,根据所在象限以及预设坐标系,将第二半径等量分解为X轴的初始参考量和Y轴的初始参考量。
在本公开示例性的实施例中,可以晶圆所在的预设坐标系,确定第一水准量测图中的每个点位所在的象限,根据每个点位所在的象限以及预设坐标系,将第二半径等量分解为X轴的初始参考量和Y轴的初始参考量。
如图3所示,图3中,预设坐标系以晶圆的原点为中心,形成X轴和Y轴,将晶圆分为四个象限,A,B,C和D。参考点位310在第二象限B内,以其底面所在的圆的圆心作为原点分别向X轴和Y轴等量分解X轴的初始参考量Rx和Y轴的初始参考量Ry。以此类推,得到第一水准量测图中每个点位的X轴的初始参考量和Y轴的初始参考量。
在本公开示例性的实施例中,根据点位的初始参考量确定套刻误差的预补偿量,可以包括:
根据第一水准量测图中所有点位的X轴的初始参考量和Y轴的初始参考量,确定套刻误差的预补偿量。
在确定了第一水准量测图中每个点位的X轴的初始参考量和Y轴的初始参考量后,可以根据第一水准量测图中每个点位的X轴的初始参考量和Y轴的初始参考量,确定套刻误差的预补偿量。
在本公开示例性的实施例中,如图7所示,图7示例性的示出了根据第一水准量测图中所有点位的X轴的初始参考量和Y轴的初始参考量,确定套刻误差的预补偿量的方法流程图:
步骤S701,确定基于预设层的补偿量的权重值;
步骤S702,根据第一水准量测图中所有点位的X轴的初始参考量的矢量值以及权重值,确定套刻误差的在预设坐标系下的X轴的预补偿量;
步骤S703,根据第一水准量测图中所有点位的Y轴的初始参考量的矢量值以及权重值,确定套刻误差的在预设坐标系下的Y轴的预补偿量。
基于权重值以及第一套刻误差是在晶圆制程的曝光工艺中,每个光刻层与前一光刻层之间相对于对准位置的偏差,因此,在本公开示例性的实施例中所提供的套刻误差的预补偿量的确定方法是针对晶圆的曝光工艺中每一个光刻层的,每个光刻层基于其光刻图形的特点,套刻标记物也有其自身的特点,因此在确定对应的光刻层的套刻误差的预补偿量时,可以考虑对应的权重,水准量测图中所有点位的X轴的初始参考量的矢量值,确定套刻误差的在预设坐标系下的X轴的预补偿量,基于权重值以及第一水准量测图中所有点位的Y轴的初始参考量的矢量值,确定套刻误差的在预设坐标系下的Y轴的预补偿量。
在本公开示例性的实施例中,可以将第一水准量测图中所有点位的X轴的初始参考量的矢量值之和与权重的乘积,作为套刻误差的在预设坐标系下的X轴的预补偿量;将第一水准量测图中所有点位的Y轴的初始参考量的矢量值之和与权重的乘积,作为套刻误差的在预设坐标系下的Y轴的预补偿量。
参考图3可知,晶圆基于预设坐标系被划分为四个象限,A,B,C和D。如果点位位于第一象限A,X轴的初始参考量的矢量值和Y轴的初始参考量的矢量值均为正值;如 果点位位于第二象限B,X轴的初始参考量的矢量值为正值,Y轴的初始参考量的矢量值为负值;如果点位位于第三象限C,X轴的初始参考量的矢量值和Y轴的初始参考量的矢量值均为负值;如果点位位于第四象限D,X轴的初始参考量的矢量值为负值,Y轴的初始参考量的矢量值为正值。例如,参考点位310在第二象限B内,X轴为正值,Y轴为负值,参考点位310的X轴的初始参考量Rx的矢量值为正值100,Y轴的初始参考量Ry的矢量值为负值-100。以此类推,确定第一水准量测图中所有点位的X轴的初始参考量的矢量值,将所有点位的X轴的初始参考量的矢量值与权重的乘积作为晶圆在预设层上的套刻误差的在预设坐标系下的X轴的预补偿量。同理,确定第一水准量测图中所有点位的Y轴的初始参考量的矢量值,将所有点位的Y轴的初始参考量的矢量值与权重的乘积作为晶圆的预设层上的套刻误差的在预设坐标系下的Y轴的预补偿量。
在本公开示例性的实施例中,还包括根据晶圆的预设层的预设参数,确定权重。
在本公开示例性的实施例中所提供的套刻误差的预补偿量的确定方法是针对晶圆的曝光工艺中每一个光刻层的,每个光刻层基于其光刻图形的特点,套刻标记物也有其自身的特点,因此,在确定对应的光刻层的套刻误差的预补偿量时,考虑到预设层的特点,即预设层的预设参数,确定对应的权重。
预设参数可以包括下述参数中的一种或多种:
所述预设层的套刻标记物的类型、所述预设层的套刻标记物的尺寸、所述预设层的套刻标记物中的关键尺寸(Critical Dimension,CD)的大小、所述预设层的套刻标记物之间的距离的大小、所述预设层的掩膜的厚度、参考点位的选择方式。
在晶圆制备过程中,到晶圆上每个光刻层的光刻图形、套刻标记物均有其自身的特点,也会在预设条件切换时对套刻误差产生不同的影响,因此,在确定对应的光刻层的套刻误差的预补偿量时,可以根据光刻层的自身的特点,考虑对应的权重,即根据预设层的预设参数,确定对应的用于确定光刻层的套刻误差的预补偿量的权重。预设参数可以包括预设层的套刻标记物相关参数以及预设层的掩膜相关的参数。在本公开示例性的实施例中,可以根据不同的方式确定参考点位,参考点位的选取对于套刻误差的预补偿量的确定有着不同的影响,因此,在确定预设层的权重时也可以考虑参考点位的选择方式。
预设层的权重可以为参考预设层的预设参数的历史数据所确定的固定值;也可以为根据预设层的预设参数的历史数据的变化状态所确定的固定值;也可以为参考预设层的权重的历史数据所确定的固定值,也可以为预设层的权重的历史数据的变化状态所确定的固定值。
本公开示例性的实施例中,考虑到每个光刻层的光刻图形、套刻标记物、掩膜、以及参考点位的选择方式的不同,在确定对套刻误差的预补偿量时,设置对应的权重,提高了对套刻误差的预补偿量确定的准确性。
本公开示例性的实施例中,提供了一种套刻误差的预补偿量的确定装置,图8所示,图8是根据一示例性实施例示出的套刻误差的预补偿量的确定装置的结构示意图。所述确定装置包括:
高度差确定模块801,被配置为在晶圆制程中,当第一预设条件切换至第二预设条件时,确定第一水准量测图和第二水准量测图中对应点位的高度差,所述第一水准量测图为第二预设条件下获取晶圆的水准量测图,所述第二水准量测图为第一预设条件下获取的水准量测图;所述点位对应于第二预设条件下的晶圆的预设层中相对于第一预设条件下的晶圆的预设层中形成高度差的位置;
参考点位确定模块802,被配置为根据所述高度差,确定所述第一水准量测图中的参考点位;
参考角度确定模块803,被配置为根据所述参考点位确定参考角度;
初始参考量确定模块804,被配置为根据所述参考角度,确定所述第一水准量测图中所有点位的初始参考量;
预补偿量确定模块805,被配置为根据所述点位的所述初始参考量确定所述套刻误差的预补偿量。
在一些示例性的实施例中,所述参考角度确定模块803被配置为:
基于所述参考点位的顶点为顶点,按照预设规则形成向所述晶圆的参考面延伸的第一圆锥体模型;
确定所述第一圆锥体模型与所述晶圆的参考面的相交的底面的第一半径;
根据所述第一圆锥体模型的高、所述底面的第一半径确定所述参考角度。
在一些示例性的实施例中,所述参考角度确定模块803被配置为按照下述方式中的任意一种形成所述第一圆锥体模型:
以所述参考点位的顶点为顶点,以所述第一圆锥体模型的底面内切于所述晶圆的参考面的方式,形成所述第一圆锥体模型;
以所述参考点位的顶点为顶点,以所述第一圆锥体模型的底面外切于所述晶圆的参考面的方式,形成所述第一圆锥体模型;
以所述参考点位的顶点为顶点,以所述第一圆锥体模型的底面的面积与所述晶圆的参考面的面积的比满足预设比例范围的方式,形成所述第一圆锥体模型。
在一些示例性的实施例中,所述初始参考量确定模块804被配置为:
根据所述参考角度,形成所述第一水准量测图中所有点位以对应的顶点为顶点,朝向晶圆的参考面所形成的第二圆锥体模型;
根据所述第二圆锥体模型的与晶圆的参考面相交的底面的第二半径;
根据所述第二半径确定所述初始参考量。
在一些示例性的实施例中,所述初始参考量确定模块804被配置为:
根据所述晶圆所在的预设坐标系,确定对应的点位所在象限;
根据所述象限以及所述预设坐标系,将所述第二半径等量分解为X轴的初始参考量和Y轴的初始参考量。
在一些示例性的实施例中,所述预补偿量确定模块805被配置为:
根据所述第一水准量测图中所有点位的X轴的初始参考量和Y轴的初始参考量,确定所述套刻误差的预补偿量。
在一些示例性的实施例中,所述预补偿量确定模块805被配置为:
确定基于所述预设层的补偿量的权重值;
根据所述第一水准量测图中所有点位的X轴的初始参考量的矢量值以及所述权重值,确定所述套刻误差的在所述预设坐标系下的X轴的预补偿量;
根据所述第一水准量测图中所有点位的Y轴的初始参考量的矢量值以及所述权重值,确定所述套刻误差的在所述预设坐标系下的Y轴的预补偿量。
在一些示例性的实施例中,所述预补偿量确定模块805被配置为:
将所述第一水准量测图中所有点位的X轴的初始参考量的矢量值之和与所述权重的乘积,作为所述套刻误差的在所述预设坐标系下的X轴的预补偿量;
将所述第一水准量测图中所有点位的Y轴的初始参考量的矢量值之和与所述权重的乘积,作为所述套刻误差的在所述预设坐标系下的Y轴的预补偿量。
在一些示例性的实施例中,所述确定方法还包括:
权重确定模块806,被配置为根据所述晶圆的所述预设层的预设参数,确定所述权重。
在一些示例性的实施例中,所述预设参数包括下述参数中的一种或多种:
所述预设层的套刻标记物的类型、所述预设层的套刻标记物的尺寸、所述预设层的套刻标记物中的关键尺寸的大小、所述预设层的套刻标记物之间的距离的大小、所述预设层 的掩膜的厚度、参考点位的选择方式。
在一些示例性的实施例中,所述参考点位确定模块802被配置为按照下述方式中的任意一种确定所述参考点位:
将高度差最大的点位确定为所述第一水准量测图中的所述参考点位;
将高度差最小的点位确定为所述第一水准量测图中的所述参考点位;或者
将高度差最接近所有点位的高度差的平均值的点位确定为所述第一水准量测图中的所述参考点位。
在一些示例性的实施例中,第一预设条件切换至第二预设条件,包括:
由前一晶圆工作台切换至当前晶圆工作台;和/或
由前一批次的晶圆切换至当前批次的晶圆。
关于上述实施例中的装置,其中各个模块执行操作的具体方式已经在有关该方法的实施例中进行了详细描述,此处将不做详细阐述说明。
图9是根据一示例性实施例示出的提供一种套刻误差的预补偿量的确定装置,即计算机设备900的框图。该装置可以是本公开上述示例性实施例中的评测装置或者访问装置,例如,计算机设备900可以被提供为终端设备。参照图9,计算机设备900包括处理器901,处理器的个数可以根据需要设置为一个或者多个。计算机设备900还包括存储器902,用于存储可由处理器901的执行的指令,例如应用程序。存储器的个数可以根据需要设置一个或者多个。其存储的应用程序可以为一个或者多个。处理器901被配置为执行指令,以执行上述方法。
本领域技术人员应明白,本公开的实施例可提供为方法、装置(设备)、或计算机程序产品。因此,本公开可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本公开可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质上实施的计算机程序产品的形式。计算机存储介质包括在用于存储信息(诸如计算机可读指令、数据结构、程序模块或其他数据)的任何方法或技术中实施的易失性和非易失性、可移除和不可移除介质,包括但不限于RAM、ROM、EEPROM、闪存或其他存储器技术、CD-ROM、数字多功能盘(DVD)或其他光盘存储、磁盒、磁带、磁盘存储或其他磁存储装置、或者可以用于存储期望的信息并且可以被计算机访问的任何其他的介质等。此外,本领域技术人员公知的是,通信介质通常包含计算机可读指令、数据结构、程序模块或者诸如载波或其他传输机制之类的调制数据信号中的其他数据,并且可包括任何信息递送介质。
在示例性实施例中,提供了一种包括指令的非临时性计算机可读存储介质,例如包括指令的存储器902,上述指令可由装置900的处理器901执行以完成上述方法。例如,所述非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
在本公开示例性的实施例中,提供一种非临时性计算机可读存储介质,当所述存储介质中的指令由确定装置的处理器执行时,使得确定装置能够执行本公开示例性的实施例所提供的所述的方法。
本公开是参照根据本公开实施例的方法、装置(设备)和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方 式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
在本公开中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括……”限定的要素,并不排除在包括所述要素的物品或者设备中还存在另外的相同要素。
尽管已描述了本公开的优选实施例,但本领域技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本公开范围的所有变更和修改。
显然,本领域技术人员可以对本公开进行各种改动和变型而不脱离本公开的精神和范围。这样,倘若本公开的这些修改和变型属于本公开权利要求及其等同技术的范围之内,则本公开的意图也包含这些改动和变型在内。
工业实用性
本公开示例性的实施例所提供的套刻误差的预补偿量的确定方法可以高效确定基于预设条件切换后套刻误差之间的偏差的补偿量,避免了相关技术中需要密集量测套刻标记物进行计算所存在的缺陷,也避免了由于人工量测所出现的不同的判断所存在的不确定性的问题。

Claims (15)

  1. 一种套刻误差的预补偿量的确定方法,其中,所述确定方法包括:
    在晶圆制程中,当第一预设条件切换至第二预设条件时,确定第一水准量测图和第二水准量测图中对应点位的高度差,所述第一水准量测图为第二预设条件下获取晶圆的水准量测图,所述第二水准量测图为第一预设条件下获取的水准量测图;所述点位对应于第二预设条件下的晶圆的预设层中相对于第一预设条件下的晶圆的预设层中形成高度差的位置;
    根据所述高度差,确定所述第一水准量测图中的参考点位;
    根据所述参考点位确定参考角度;
    根据所述参考角度,确定所述第一水准量测图中所有点位的初始参考量;
    根据所述点位的所述初始参考量确定所述套刻误差的预补偿量。
  2. 根据权利要求1所述的套刻误差的预补偿量的确定方法,其中,根据所述参考点位确定参考角度,包括:
    基于所述参考点位的顶点为顶点,按照预设规则形成向所述晶圆的参考面延伸的第一圆锥体模型;
    确定所述第一圆锥体模型与所述晶圆的参考面的相交的底面的第一半径;
    根据所述第一圆锥体模型的高、所述底面的第一半径确定所述参考角度。
  3. 根据权利要求2所述的套刻误差的预补偿量的确定方法,其中,基于所述参考点位的顶点为顶点,按照预设规则形成第一圆锥体模型,包括下述方式中的任意一种:
    以所述参考点位的顶点为顶点,以所述第一圆锥体模型的底面内切于所述晶圆的参考面的方式,形成所述第一圆锥体模型;
    以所述参考点位的顶点为顶点,以所述第一圆锥体模型的底面外切于所述晶圆的参考面的方式,形成所述第一圆锥体模型;
    以所述参考点位的顶点为顶点,以所述第一圆锥体模型的底面的面积与所述晶圆的参考面的面积的比满足预设比例范围的方式,形成所述第一圆锥体模型。
  4. 根据权利要求2或3所述的套刻误差的预补偿量的确定方法,其中,根据所述参考角度,确定所述第一水准量测图中所有点位的初始参考量,包括:
    根据所述参考角度,形成所述第一水准量测图中所有点位以对应的顶点为顶点,朝向晶圆的参考面所形成的第二圆锥体模型;
    根据所述第二圆锥体模型的与晶圆的参考面相交的底面的第二半径;
    根据所述第二半径确定所述初始参考量。
  5. 根据权利要求4所述的套刻误差的预补偿量的确定方法,其中,根据所述第二半径确定所述初始参考量,包括:
    根据所述晶圆所在的预设坐标系,确定对应的点位所在象限;
    根据所述象限以及所述预设坐标系,将所述第二半径等量分解为X轴的初始参考量和Y轴的初始参考量。
  6. 根据权利要求5所述的套刻误差的预补偿量的确定方法,其中,根据所述点位的所述初始参考量确定所述套刻误差的预补偿量,包括:
    根据所述第一水准量测图中所有点位的X轴的初始参考量和Y轴的初始参考量,确定所述套刻误差的预补偿量。
  7. 根据权利要求6所述的套刻误差的预补偿量的确定方法,其中,根据所述第一水准量测图中所有点位的X轴的初始参考量和Y轴的初始参考量,确定所述套刻误差的预补偿量,包括:
    确定基于所述预设层的补偿量的权重值;
    根据所述第一水准量测图中所有点位的X轴的初始参考量的矢量值以及所述权重值,确定所述套刻误差的在所述预设坐标系下的X轴的预补偿量;
    根据所述第一水准量测图中所有点位的Y轴的初始参考量的矢量值以及所述权重值,确定所述套刻误差的在所述预设坐标系下的Y轴的预补偿量。
  8. 根据权利要求7所述的套刻误差的预补偿量的确定方法,其中,根据所述第一水准量测图中所有点位的X轴的初始参考量的矢量值以及所述权重值,确定所述套刻误差的在所述预设坐标系下的X轴的预补偿量,根据所述第一水准量测图中所有点位的Y轴的初始参考量的矢量值以及所述权重值,确定所述套刻误差的在所述预设坐标系下的Y轴的预补偿量,包括:
    将所述第一水准量测图中所有点位的X轴的初始参考量的矢量值之和与所述权重的乘积,作为所述套刻误差的在所述预设坐标系下的X轴的预补偿量;
    将所述第一水准量测图中所有点位的Y轴的初始参考量的矢量值之和与所述权重的乘积,作为所述套刻误差的在所述预设坐标系下的Y轴的预补偿量。
  9. 根据权利要求7所述的套刻误差的预补偿量的确定方法,其中,所述确定方法还包括:
    根据所述晶圆的所述预设层的预设参数,确定所述权重。
  10. 根据权利要求9所述的套刻误差的预补偿量的确定方法,其中,所述预设参数包括下述参数中的一种或多种:
    所述预设层的套刻标记物的类型、所述预设层的套刻标记物的尺寸、所述预设层的套刻标记物中的关键尺寸的大小、所述预设层的套刻标记物之间的距离的大小、所述预设层的掩膜的厚度、参考点位的选择方式。
  11. 根据权利要求1所述的套刻误差的预补偿量的确定方法,其中,根据所述高度差,确定所述第一水准量测图中的参考点位,包括下述方式中的任意一种:
    将高度差最大的点位确定为所述第一水准量测图中的所述参考点位;
    将高度差最小的点位确定为所述第一水准量测图中的所述参考点位;或者
    将高度差最接近所有点位的高度差的平均值的点位确定为所述第一水准量测图中的所述参考点位。
  12. 根据权利要求1所述的套刻误差的预补偿量的确定方法,其中,第一预设条件切换至第二预设条件,包括:
    由前一晶圆工作台切换至当前晶圆工作台;和/或
    由前一批次的晶圆切换至当前批次的晶圆。
  13. 一种套刻误差的预补偿量的确定装置,其中,所述确定装置包括:
    高度差确定模块,被配置为在晶圆制程中,当第一预设条件切换至第二预设条件时,确定第一水准量测图和第二水准量测图中对应点位的高度差,所述第一水准量测图为第二预设条件下获取晶圆的水准量测图,所述第二水准量测图为第一预设条件下获取的水准量测图;所述点位对应于第二预设条件下的晶圆的预设层中相对于第一预设条件下的晶圆的预设层中形成高度差的位置;
    参考点位确定模块,被配置为根据所述高度差,确定所述第一水准量测图中的参考点位;
    参考角度确定模块,被配置为根据所述参考点位确定参考角度;
    初始参考量确定模块,被配置为根据所述参考角度,确定所述第一水准量测图中所有点位的初始参考量;
    预补偿量确定模块,被配置为根据所述点位的所述初始参考量确定所述套刻误差的预补偿量。
  14. 一种套刻误差的预补偿量的确定装置,其中,包括:
    处理器;
    用于存储处理器可执行指令的存储器;
    其中,所述处理器被配置为执行权利要求1-11任意一项所述的方法。
  15. 一种非临时性计算机可读存储介质,当所述存储介质中的指令由确定装置的处理器执行时,使得确定装置能够执行权利要求1-11任一所述的方法。
PCT/CN2023/070321 2022-09-16 2023-01-04 套刻误差的预补偿量的确定方法、装置及存储介质 WO2024055485A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211129765.6A CN117761971A (zh) 2022-09-16 2022-09-16 套刻误差的预补偿量的确定方法、装置及存储介质
CN202211129765.6 2022-09-16

Publications (1)

Publication Number Publication Date
WO2024055485A1 true WO2024055485A1 (zh) 2024-03-21

Family

ID=90274162

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/070321 WO2024055485A1 (zh) 2022-09-16 2023-01-04 套刻误差的预补偿量的确定方法、装置及存储介质

Country Status (2)

Country Link
CN (1) CN117761971A (zh)
WO (1) WO2024055485A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090231563A1 (en) * 2008-03-11 2009-09-17 Asml Netherlands B.V. Method and Lithographic Apparatus for Measuring and Acquiring Height Data Relating to a Substrate Surface
CN103779248A (zh) * 2012-10-18 2014-05-07 中芯国际集成电路制造(上海)有限公司 一种半导体器件制备过程的监控系统及方法
US20160334712A1 (en) * 2014-01-10 2016-11-17 Asml Netherlands B.V. Lithographic apparatus, device manufacturing method and associated data processing apparatus and computer program product
EP3270225A1 (en) * 2016-07-11 2018-01-17 ASML Netherlands B.V. Method and apparatus for determining a fingerprint of a performance parameter
CN114675513A (zh) * 2022-03-11 2022-06-28 上海华力集成电路制造有限公司 一种套刻精度的监控方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090231563A1 (en) * 2008-03-11 2009-09-17 Asml Netherlands B.V. Method and Lithographic Apparatus for Measuring and Acquiring Height Data Relating to a Substrate Surface
CN103779248A (zh) * 2012-10-18 2014-05-07 中芯国际集成电路制造(上海)有限公司 一种半导体器件制备过程的监控系统及方法
US20160334712A1 (en) * 2014-01-10 2016-11-17 Asml Netherlands B.V. Lithographic apparatus, device manufacturing method and associated data processing apparatus and computer program product
EP3270225A1 (en) * 2016-07-11 2018-01-17 ASML Netherlands B.V. Method and apparatus for determining a fingerprint of a performance parameter
CN114675513A (zh) * 2022-03-11 2022-06-28 上海华力集成电路制造有限公司 一种套刻精度的监控方法

Also Published As

Publication number Publication date
CN117761971A (zh) 2024-03-26

Similar Documents

Publication Publication Date Title
CN111158217B (zh) 一种套刻偏差的确定方法及系统
CN109884862B (zh) 三维存储器曝光系统中套刻偏差的补偿装置及方法
CN103197501B (zh) 一种阵列基板及其制备方法和显示装置
WO2024055485A1 (zh) 套刻误差的预补偿量的确定方法、装置及存储介质
CN115356898A (zh) 提高光刻套刻精度的方法
US20210223704A1 (en) System, software application, and method for lithography stitching
JP6381197B2 (ja) 計測装置、計測方法、リソグラフィ装置、及び物品製造方法
KR20220120457A (ko) 기판상의 복수의 영역의 배열을 구하는 방법, 노광 장치, 물품의 제조 방법, 비일시적 기억 매체, 및 정보처리장치
JP2011233744A (ja) 露光方法および半導体デバイスの製造方法
JP2011066323A (ja) 露光処理の補正方法
CN109656093B (zh) 设计光掩模的布局的方法以及制造光掩模的方法
JP5673947B2 (ja) マスクパターンの補正方法、プログラム及び該補正方法を用いたフォトマスク
JP2023053800A (ja) 基板上の複数のショット領域の配列を求める方法、露光方法、露光装置、物品の製造方法、プログラム及び情報処理装置
CN113608412B (zh) 一种半导体器件及其制作方法和电子设备
KR102658787B1 (ko) 형성 방법, 시스템, 리소그래피 장치, 물품 제조 방법, 및 프로그램
US10281828B2 (en) Exposure method
WO2022142364A1 (zh) 光罩摆放误差校正方法和装置
KR102311933B1 (ko) 대상물 식별 및 비교
CN117406563B (zh) 套刻对准标记的位置偏移量检测方法及半导体的加工方法
CN104281019A (zh) 光刻的迭对值校准方法
CN115470744A (zh) 一种标识位置确定方法、设备及系统
Hellmich et al. Process development and validation of next generation 3D calibration standards for application in optical microscopy
JP2015005666A (ja) 露光装置、情報管理装置、露光システムおよびデバイス製造方法
TW202101125A (zh) 形成方法、形成裝置及物品之製造方法
WO2018216091A1 (ja) 半導体チップの設計方法、半導体チップの設計プログラム、半導体デバイスの製造方法、及び演算装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23864232

Country of ref document: EP

Kind code of ref document: A1