WO2024055442A1 - 车辆动力电池以及车辆动力电池组 - Google Patents

车辆动力电池以及车辆动力电池组 Download PDF

Info

Publication number
WO2024055442A1
WO2024055442A1 PCT/CN2022/136914 CN2022136914W WO2024055442A1 WO 2024055442 A1 WO2024055442 A1 WO 2024055442A1 CN 2022136914 W CN2022136914 W CN 2022136914W WO 2024055442 A1 WO2024055442 A1 WO 2024055442A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle power
power battery
current collector
battery
core
Prior art date
Application number
PCT/CN2022/136914
Other languages
English (en)
French (fr)
Inventor
陆珂伟
葛海龙
李钊
刘辙
陈秋云
孙昌瑞
Original Assignee
上海汽车集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海汽车集团股份有限公司 filed Critical 上海汽车集团股份有限公司
Publication of WO2024055442A1 publication Critical patent/WO2024055442A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6554Rods or plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6556Solid parts with flow channel passages or pipes for heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/507Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing comprising an arrangement of two or more busbars within a container structure, e.g. busbar modules
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to the field of battery technology, and more specifically, to a vehicle power battery and a vehicle power battery pack used to provide power for a vehicle.
  • the popularity of electric vehicles has put forward increasingly higher requirements for batteries in terms of fast charging performance, lifespan, safety, and cost.
  • the fast charge rate is an important indicator for measuring battery performance. It is defined as the ratio of the maximum battery charging current to the battery capacity. Therefore, the greater the fast charge rate, the faster the battery charges and the shorter the charging time.
  • the fast charging rate of the power battery of electric vehicles has also become one of the important indicators for measuring the performance of electric vehicles.
  • the charging speed of the power battery directly affects the user's experience and purchase intention.
  • the battery's fast charging rate is limited by the heat dissipation performance of the battery cell. At present, the heat generated by the battery core is mainly conducted to the outside through the bottom or side or large surface of the battery core.
  • the outside of the battery core top cover cannot be used as an effective device because the poles, high-voltage connection busbars between battery cells and low-voltage wiring harnesses occupy a large amount of space.
  • Heat dissipation surface When a large current flows through fast charging, the top cover of the battery cell cannot be used as an effective heat dissipation surface, and the heat dissipation capacity of the system is insufficient, resulting in a high internal temperature of the battery core (especially the welding between the current collector and the internal busbar of the battery core), and this It limits the fast charging rate and increases the fast charging time, resulting in poor user experience and hindering the rapid development of electric vehicles.
  • the heat generated by the battery core during fast charging cannot be dissipated in time, which will also affect the service life of the battery core.
  • the present invention proposes a vehicle power battery, which includes: a casing with an internal cavity formed inside the casing; and a top cover that is fixed to the The casing is configured to enclose the internal chamber and is provided with a set of battery terminals adapted to be electrically connected to an external circuit; an electric core is accommodated in the internal chamber, the electric core including a battery core stacked in the width direction; a plurality of winding cores together, each winding core is provided with a pair of current collectors on two sides separated along the height direction, and each current collector extends along the length direction; and a set of manifolds accommodated in the internal chamber rows, the set of bus bars being secured to the top cover, wherein each battery terminal is electrically connected to at least one bus bar, and each current collector is electrically connected to at least one bus bar, such that each current collector is Electrically connected to adjacent current collectors and/or corresponding battery terminals, and wherein each current collector is in surface contact with
  • the vehicle power battery further includes a pair of insulating plates housed in the internal chamber, the pair of insulating plates being disposed on both sides of the battery core,
  • Each insulating plate includes a support surface facing the electric core and a plurality of ribs protruding from the support surface, and wherein each rib and each bus bar are alternately arranged, so that each current collector is connected to its adjacent ribs and The busbars are against corresponding supporting surfaces.
  • each current collector is in surface contact with the corresponding rib and/or the corresponding supporting surface along the length direction.
  • each current collector is in surface contact with a corresponding rib and/or a corresponding supporting surface along its entire length.
  • each busbar extends from the top cover towards an end of the inner chamber opposite the top cover, such that each current collector extends along its entire length Make surface contact with the corresponding busbar.
  • each bus bar extends from the top cover to an end of the inner chamber opposite to the top cover.
  • the vehicle power battery further includes an insulating film disposed in the housing, the insulating film is shaped in compliance with the housing and defines the internal chamber.
  • the insulating film is sandwiched between the pair of insulating plates and the housing in the height direction; and/or the insulating film is sandwiched in the width direction. Clamped between the battery core and the casing.
  • At least one isolation plate is provided between adjacent winding cores.
  • the present invention also proposes a vehicle power battery pack, which includes a plurality of vehicle power batteries as described above, wherein the plurality of vehicle power batteries are arranged side by side, and the The vehicle power battery pack also includes at least one cooling device disposed across the plurality of vehicle power batteries.
  • Figure 1 is a schematic perspective view of a vehicle power battery according to the present invention.
  • Figure 2 is a schematic exploded view of a vehicle power battery according to the present invention.
  • Figure 3 is a schematic perspective view of the winding core of a vehicle power battery according to the present invention.
  • Figure 4 is a schematic perspective view of the cells and separators of the vehicle power battery according to the present invention.
  • Figure 5 is a schematic perspective view of the top cover and busbar of the vehicle power battery according to the present invention.
  • Figure 6 is a schematic perspective view of the top cover and busbar of the vehicle power battery according to the present invention.
  • Figure 7 is a schematic cross-sectional view of the vehicle power battery according to the present invention taken along line C-C in Figure 1;
  • Figure 8 is a schematic perspective view of a vehicle power battery pack according to the present invention.
  • the present invention aims to provide an improved vehicle power battery that can quickly and effectively transfer the heat generated by the battery core to the surface of the battery case through a novel internal design, which allows the surface of the battery case to be used as a Effective heat dissipation surface, especially the battery top cover, can be used as an effective heat dissipation surface, thereby improving the heat dissipation performance of the battery.
  • the improvement of heat dissipation performance helps to increase the fast charging rate of the battery, thereby shortening the charging time of the battery, so as to improve the user experience.
  • it helps to avoid excessive heat accumulation inside the battery to generate high temperatures, so as to ensure the battery life. The normal operation and service life of the core are protected from the effects of high temperatures.
  • the vehicle power battery is suitable for use as a DC power supply in a mobile platform.
  • the mobile platform can be, for example, a motor vehicle, a marine vehicle, an aerospace vehicle. tools, robots, or other types of mobile platforms that convert electrical energy into mechanical energy.
  • the battery could also be used in stationary power plants or other facilities that require onboard generation of DC power.
  • the battery can be configured as a lithium-ion battery type to achieve higher stored energy density and higher power handling capabilities at lower weight and volume.
  • the battery can also be configured as other battery types such as lead-acid batteries. Therefore, those skilled in the art can understand that the present invention is not intended to limit the battery to a specific type.
  • the vehicle power battery 100 is generally in the shape of a rectangular parallelepiped and includes a housing 110 and a top cover 120 intended to be attached to the housing 110 , where the housing 110 and the top cover 120 may be formed by It is made of metal materials such as aluminum alloy, steel, or non-metal materials such as plastic.
  • the materials of the housing 110 and the top cover 120 need to match each other to meet subsequent installation requirements, for example, to meet welding requirements.
  • the length, width and height of the vehicle power battery 100 and its various components can be considered to be defined relative to the length direction LL', the width direction WW' and the height direction HH'.
  • FIG. 2 a schematic exploded view of a vehicle power battery according to the present invention is shown.
  • an internal cavity 111 is formed inside the housing 110 , and the internal cavity 111 is provided with an opening at one end in the length direction LL′ to provide access to the interior through the opening. Path of chamber 111.
  • the top cover 120 is intended to be fixed to the housing 110 so as to cover this opening of the internal chamber 111 , thereby isolating or sealing the internal chamber 111 from the outside.
  • the vehicle power battery 100 also includes components and substances such as cells 130, bus bars 140, insulating plates 150, separator plates 170 (better shown in Figure 4) and electrolytes intended to be accommodated in the internal chamber 111.
  • the top cover 120 will seal the various components described above as well as the electrolyte in the internal chamber 111 after being attached to the housing 110 .
  • the electric core 130 includes a plurality of winding cores stacked together (which may also be referred to as rolled cores).
  • the electric core 130 includes a plurality of winding cores stacked together along the width direction WW′.
  • Four winding cores namely the first winding core 131 , the second winding core 132 , the third winding core 133 and the fourth winding core 134 .
  • these winding cores 131 - 134 may be arranged together in parallel or in series.
  • the battery core 130 may also include only one winding core. Those skilled in the art will understand that the specific number and arrangement of the winding cores cannot constitute a limitation on the scope of the present invention.
  • FIG. 3 a schematic perspective view of a winding core of a vehicle power battery according to the present invention is shown.
  • the following takes the first core 131 as an example to introduce the structure of the core.
  • the structures of other cores are the same as the structure of the first core 131.
  • the first core 131 is generally in the form of a sheet or plate. , and by rolling the positive electrode piece 131a coated with the positive electrode material, the negative electrode piece 131b coated with the negative electrode material, the separator 131c between the positive electrode piece 131a and the negative electrode piece 131b, and the separator 131c located outside the negative electrode piece 131b.
  • a blank portion 131a' that is not coated with positive electrode material is left on one side of the positive electrode piece 131a, and on one side of the negative electrode piece 131b (with the blank portion of the positive electrode piece 131a).
  • a blank portion 131b' that is not coated with negative electrode material on the side opposite to 131a'.
  • the blank portion 131a' of the positive electrode sheet 131a will form a positive current collector (also called a positive tab) 131P extending along the entire length of the first core 131.
  • the blank portion 131b' of the negative electrode piece 131b will form a negative electrode current collector (also called a negative electrode tab) 131N extending along the entire length of the first winding core 131.
  • a negative electrode current collector also called a negative electrode tab
  • the current collectors 131P and 131N can be considered as electrodes of the first winding core 131, and the electric energy generated by the first winding core 131 can be output through the current collectors 131P and 131N.
  • the core according to the present invention adopts a full tab design, that is, by winding or stacking the positive electrode sheet 131a and the blank portion of the negative electrode piece 131b to directly form the tab (i.e., current collector), so that the current collector constitutes the entire end of the winding core without the need to additionally weld the tab on the wound or stacked blank portion.
  • this full-lug design shortens the distance that current flows and makes the current density distribution more uniform, which can increase power density and reduce heat generation.
  • the positive electrode material may be aluminum foil, and the negative electrode material may be copper foil.
  • both the positive electrode material and the negative electrode material may be lead oxide, and then after the roll core assembly is completed, a charge is applied to the roll core to convert the lead oxide on the positive electrode plate. to lead dioxide, and converts the lead oxide on the negative plate into lead.
  • the first winding core 131 can also be configured as other battery types, and the specific type of the first winding core 131 does not limit the scope of the present invention.
  • the battery core 130 includes a plurality of winding cores 131 - 134 , wherein each winding core has an edge along its upper and lower sides (two sides separated along the height direction HH′).
  • a pair of current collectors namely, a positive electrode current collector and a negative electrode current collector, extending in the length direction LL' (for example, over the entire length of the winding core)
  • a plurality of winding cores 131-134 are stacked together along the width direction WW', In order to form a group of adjacent current collectors on both sides of the battery core 130 .
  • At least one isolation plate 170 (for example, made of electrically insulating material such as PP, PET) is provided between adjacent cores to prevent the electrochemical reactions of adjacent cores from interfering with each other, which has the effect of Helps ensure the normal operation of each core.
  • These winding cores can be arranged in parallel or in series, and the arrangement of each winding core 131 - 134 can be changed by adjusting the orientation of the positive and negative current collectors of each winding core.
  • the vehicle power battery 100 includes a set of battery terminals disposed on the top cover 120 .
  • the set of battery terminals are made of, for example, conductive metals such as aluminum, copper, etc. and are suitable for For electrical connection with an external circuit, for example, allowing the vehicle power battery 100 to exchange electrical energy with the external circuit.
  • the set of battery terminals includes poles 121 , 122 , and more specifically, positive poles 121 and negative poles 122 , which extend through the top cover 120 so as to rest on the outer surface of the top cover 120 Exposed, therefore, the poles 121 and 122 can be electrically connected to an external circuit, so that the electric energy generated by the vehicle power battery 100 can be transmitted to the external circuit, or can receive electric energy from the external circuit to charge the vehicle power battery 100 .
  • the set of battery terminals may also include one or more voltage detection terminals 123, 124, 125. In the exemplary embodiment shown in FIGS. 5 and 6, the set of battery terminals includes three voltage detection terminals. Detection terminals 123, 124, 125.
  • the voltage detection terminals 123 , 124 and 125 also extend through the top cover 120 so as to be exposed on the outer surface of the top cover 120 . Therefore, as described in further detail below, by detecting the voltage between any two points of the positive pole 121, the negative pole 122, and the voltage detection terminals 123, 124, 125, a voltage connected between the two points can be detected. or the voltage of multiple cores 131-134.
  • an insulating member 128 is provided between each battery terminal and the top cover 120 to electrically insulate each battery terminal and the top cover 120 .
  • the insulation member 128 may be made of electrically insulating material such as PP, PET.
  • auxiliary components such as an explosion-proof window 126 and a liquid injection hole 127 can also be provided on the top cover 120.
  • the explosion-proof window 126 is configured to break when the internal pressure of the vehicle power battery 100 exceeds a threshold, thereby connecting the inside of the battery with the outside.
  • the liquid injection hole 127 is used from the outside of the vehicle power battery 100 to the inside of the vehicle power battery 100 (more specifically, the internal cavity). Chamber 111) is filled with electrolyte.
  • the liquid injection hole 127 can be closed when the liquid injection operation is not performed.
  • the vehicle power battery 100 also includes a set of bus bars 140 fixed to the top cover 120 .
  • the set of bus bars 140 are made of, for example, conductive metal such as aluminum or copper, and are intended to be fixed to the housing 110 along with the top cover 120 . and inserted into the internal chamber 111 .
  • the set of busbars 140 can be connected (eg by ultrasonic welding) to the current collector of each core in the battery core 130 on the one hand and can be connected (eg by ultrasonic welding) to the set of battery terminals on the other hand,
  • the set of busbars 140 can electrically connect the current collectors of adjacent winding cores to each other to achieve a series arrangement or a parallel arrangement of each winding core, and can connect the current collectors of the winding cores with the set of batteries.
  • the terminals are electrically connected to electrically couple each core with the set of battery terminals.
  • each winding core is arranged in series or in parallel inside the vehicle power battery 100 , which facilitates the installation outside the battery. Reserve more space to arrange more heat dissipation devices, thereby improving the heat dissipation performance of the battery.
  • a set of bus bars 140 includes five mutually independent bus bars, namely, a first bus bar 141 , a second bus bar 142 , a third bus bar 143 , and a fourth bus bar. 144 and fifth bus 145.
  • the battery core 130 includes four winding cores 131-134, wherein the current collectors of adjacent winding cores on the same side have opposite polarities to each other.
  • the positive electrode current collector 131P of the first winding core 131 is above and the negative electrode current collector 131N is below; the negative electrode current collector 132N of the second winding core 132 is above and the positive electrode current collector 132P is below; the positive electrode of the third winding core 133 is The current collector 133P is at the top, and the negative electrode current collector 133N is at the bottom; the negative electrode current collector 134N of the fourth winding core 134 is at the top, and the positive electrode current collector 134P is at the bottom.
  • the first bus 141 electrically connects the positive current collector 131P of the first core 131 to the positive pole 121; the second bus 142 connects the negative current collector 131N of the first core 131 to the positive current collector 131N of the second core 132.
  • 132P is electrically connected, and the two are electrically connected to the voltage detection terminal 123;
  • the third bus 143 electrically connects the negative electrode current collector 132N of the second winding core 132 and the positive electrode current collector 133P of the third winding core 133, and electrically connects the two.
  • the fourth bus 144 electrically connects the negative current collector 133N of the third core 133 and the positive current collector 134P of the fourth core 134, and electrically connects both to the voltage detection terminal 125;
  • the fifth bus bar 145 electrically connects the negative electrode current collector 134N of the fourth winding core 134 to the negative electrode post 122 .
  • the four cores 131-134 in the battery core 130 are arranged in series, and the positive current collector 131P of the first core 131 serves as the positive electrode of the battery core 130 and is electrically connected to the positive pole 121 of the battery.
  • the negative current collector 134N of the core 134 serves as the negative electrode of the battery core 130 and is electrically connected to the negative pole 122 of the battery, and the voltage on the first winding core 131 can be measured by detecting the positive pole 121 and the voltage detection terminal 123. By detecting the voltage The detection terminal 123 and the voltage detection terminal 124 can measure the voltage on the second battery core 132. The voltage on the third battery core 133 can be measured by detecting the voltage detection terminal 124 and the voltage detection terminal 125. The voltage detection terminal 125 and the voltage detection terminal 125 can detect the voltage on the third battery core 133. The negative pole 122 can measure the voltage on the fourth winding core 134 .
  • the voltage detection terminals 123-125 may not be provided.
  • the second bus bar 142, the third bus bar 143 and the fourth bus bar 144 are only configured to connect adjacent volumes.
  • the current collectors of the core are electrically connected to each other.
  • each winding core 131-134 can also be arranged in parallel.
  • the current collectors of adjacent winding cores on the same side have The same polarity as each other, that is, the positive electrode current collectors of each winding core are arranged on one side, and the negative electrode current collectors of each winding core are arranged on the other side.
  • the positive current collectors of the respective roll cores are then electrically connected to each other and to the positive pole of the battery by a number of bus bars, and the negative current collectors of the respective roll cores are electrically connected to each other and to the positive pole of the battery by a number of other bus bars. to the negative post of the battery. Therefore, whether arranged in series or in parallel, the positive and negative current collectors of each core will be electrically connected to the corresponding busbars so as to be electrically connected to adjacent current collectors and/or corresponding battery terminals.
  • each bus bar in the set of bus bars 140 is in surface contact with the current collector of the corresponding winding core along its length (that is, along the length direction LL').
  • This configuration is advantageous. By bringing the busbar and the current collector into surface contact, the contact area between the two can be increased, which helps to increase the cross section of electron flow and shorten the current path, and makes the distribution of current density more uniform.
  • the larger contact area also helps to quickly transfer the heat generated by the core to the bus, and the heat will be transferred through the bus to the pole and voltage detection terminal (if present) and further transferred to the top cover 120, which allows the surface of the top cover 120 to be used as an effective heat dissipation surface, and to quickly absorb heat by arranging heat dissipation devices (such as air cooling devices, water cooling devices, heat sinks, etc.) on the top cover 120 to achieve battery cooling purpose.
  • heat dissipation devices such as air cooling devices, water cooling devices, heat sinks, etc.
  • the above configuration not only helps to avoid excessive heat generation inside the battery, but also helps to quickly transfer the heat inside the battery to the outside of the battery, thereby reliably improving the heat dissipation performance of the battery, and the improvement in heat dissipation performance helps to improve Fast charging rate of the battery to shorten the charging time of the battery and thereby improve the user experience.
  • each busbar in the set of busbars 140 extends from the top cover 120 to a rear end of the interior chamber 111 opposite the top cover 120 .
  • the outer surface of the top cover 120 can be used as an effective heat dissipation surface, but also the rear surface of the housing 110 adjacent to the rear end of the internal cavity 111 can be used as an effective heat dissipation surface.
  • each busbar is in area contact with a respective current collector over its entire length. In this configuration, the contact area between the busbar and the current collector is further increased. Therefore, the above configurations can further suppress the generation of heat inside the battery and improve the heat dissipation performance of the battery.
  • the vehicle power battery 100 further includes a pair of insulating plates 150 disposed between the housing 110 and the battery core 130 .
  • the pair of insulating plates 150 are arranged on the upper side of the battery core 130 and the battery core 130 .
  • the lower side, wherein each insulating plate 150 is made of an electrically insulating material and has a supporting surface 151 facing the electric core 130 and one or more ribs 152 protruding from the supporting surface 151 toward the electric core 130, each rib 152 extending along The length direction LL' extends.
  • the current collector of each winding core is formed to have a free end facing the supporting surface 151 of the insulating plate 150 and two side walls located on both sides of the free end, wherein for each winding core
  • the free end of the current collector for example, the flat end 131P' of the positive current collector 131P
  • the free end of the current collector can be against the supporting surface 151 of the corresponding insulating plate 150
  • one of the two side walls of the current collector ( For example, the flat side portion 131P") of the positive current collector 131P is electrically connected to the corresponding bus bar 140 as described above, and the other of the two side walls of the current collector (e.g., the The flat sides 131P′′′) face or are adjacent to the respective ribs 152 .
  • each current collector has the ribs 152 and the bus bars 140 adjacent thereto and is positioned between the adjacent ribs 152 and the bus bars 140 140, or each current collector is provided with a rib 152 on one side and a bus bar 140 on the other side, and is against the supporting surface 151 between the two.
  • each current collector is provided with a rib 152 on one side and a bus bar 140 on the other side, and is against the supporting surface 151 between the two.
  • adjacent current collectors eg, positive electrode current collector 131P and negative electrode current collector 132N
  • current collectors located at the edge of the cell eg, positive electrode current collector 132N
  • the current collector 131P and the negative electrode current collector 134N can be isolated relative to the case 110 by the ribs 152, so the insulating plate 150 can not only support each winding core using the supporting surface 151, but also can use the ribs 152 to electrically connect adjacent current collectors relative to each other. Insulate and electrically insulate the current collector located at the edge of the cell relative to the case 110 .
  • the free end of the current collector may be in surface contact with the supporting surface 151 of the corresponding insulating plate 150 along the length direction LL' (eg, along the entire length of the current collector).
  • One of the two side walls of the fluid may be in surface contact with the corresponding bus bar 140 along the length direction LL' (eg, along the entire length of the current collector), and the other of the two side walls of the current collector
  • Surface contact with corresponding ribs 152 may be made along the length direction LL' (eg, along the entire length of the current collector).
  • the bus bar 140 can be used to absorb the heat generated by the fluid collection as described above, but also the insulating plate 150 can be used to absorb the heat generated by the fluid collection, because through the current collector and the supporting surface 151 and the rib 152 of the insulating plate 150 The surface contact increases the contact area between the current collector and the insulating plate 150 .
  • the insulating plate 150 can transfer heat to the upper and lower surfaces of the casing 110 , so that the upper and lower surfaces of the casing 110 can also be used as effective heat dissipation surfaces, that is, by connecting the two Arranging a heat dissipation device on the surface can effectively dissipate the heat inside the battery, so the above configuration helps to further improve the heat dissipation performance of the battery.
  • the insulating plate 150 may be made of an electrically insulating material such as PP, PET, or the like.
  • the insulating plate 150 may be made of a highly thermally conductive electrically insulating material such as aluminum nitride.
  • the vehicle power battery 100 further includes an insulating film 160 disposed in the housing 110 , and the internal chamber 111 is defined by the insulating film 160 , that is, the battery core 130 , the busbar 140.
  • the insulating plate 150, the isolating plate 170, the electrolyte, etc. are contained in the insulating film 160.
  • the insulating film 160 isolates the above-mentioned components and the electrolyte from the casing 110.
  • the insulating film 160 may be made of an electrically insulating material such as PP, PET, or the like.
  • the insulating film 160 can be used to hold the battery core 130, the busbar 140, the insulating plate 150, the separator 170, etc. during battery assembly, which helps the subsequent assembly to proceed more smoothly, and after the assembly is completed , the insulating film 160 can protect the housing 110 from being corroded by electricity or being corroded by the electrolyte.
  • the insulating film 160 may be shaped to conform to the housing 110 so as to eliminate the gap between the insulating film 160 and the housing 110.
  • the insulating film 160 is sandwiched between the battery core 130 (more specifically, the first winding core 131 and the fourth winding core 134 ) and the case 110 in the width direction WW', and It is sandwiched between the pair of insulating plates 150 and the housing 110 in the height direction HH'.
  • the battery core 130 more specifically, the first winding core 131 and the fourth winding core 134
  • the pair of insulating plates 150 and the housing 110 in the height direction HH'.
  • the upper surface and the lower surface of the housing 110 can be used as effective heat dissipation surfaces, but also the two side surfaces of the housing 110 can be used as effective heat dissipation surfaces.
  • Arranging a heat dissipation device can further effectively dissipate the heat inside the battery, so the above configuration helps to further improve the heat dissipation performance of the battery.
  • the six surfaces of the vehicle power battery 100 including the five surfaces of the casing 110 and the surface of the top cover 120 can be used as effective heat dissipation surfaces, which can greatly improve the efficiency of heat dissipation. Improve the heat dissipation performance of the battery, thereby greatly increasing the battery's fast charging rate.
  • the internal chamber 111 is defined by the inner surface of the casing 110 , and the vehicle power battery 100 includes a plurality of insulating films, wherein each insulating film wraps a roll core and its electrolyte and is connected to the roll. Busbars connected to cores. This configuration is beneficial to ensure the normal operation of vehicle power batteries in which each roll core is arranged in series, because each roll core, its electrolyte and busbar are wrapped by a separate insulating film, which can prevent the electrolyte from flowing in different rolls. flow between cores.
  • the insulating film is sandwiched between the side walls of the current collector and the corresponding ribs 152 , that is, the same as in the embodiments described above.
  • the ribs 152 are in direct surface contact.
  • the side walls of the current collector are in indirect surface contact with the corresponding ribs 152 through the insulating film, which also helps to improve the heat transfer between the battery core 130 and the ribs 152 .
  • the insulating film is sandwiched between the roll core and the casing 110, which helps to improve the connection between the battery core 130 and the casing. Heat transfer between bodies 110.
  • the vehicle power battery pack 10 includes a plurality of vehicle power batteries 100 .
  • Each vehicle power battery 100 is arranged side by side, so that the outer surface of the top cover 120 of each vehicle power battery 100 , the upper surface of the housing 110 , and the lower surface of the housing 110 are arranged side by side.
  • the surface and the rear surface are respectively coplanar, and respectively form the front surface 11 , the upper surface 12 , the lower surface 13 and the rear surface 14 of the vehicle power battery pack 10 .
  • the vehicle power battery pack 10 also includes a front cooling device 21 arranged on its front surface 11, an upper cooling device 22 arranged on its upper surface 12, a lower cooling device 23 arranged on its lower surface 13, and The rear cooling device 24 is arranged on its rear surface 14.
  • Each of the above-mentioned cooling devices is arranged across the plurality of vehicle power batteries 10, and may be a cooling plate or a meandering arrangement of cooling tubes.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

本发明提出了车辆动力电池以及车辆动力电池组。车辆动力电池包括:壳体,在壳体的内部形成有内部腔室;顶盖,其被固定至壳体以便封闭内部腔室,并且设有适合于与外部电路电连接的一组电池端子;容纳在内部腔室中的电芯,其包括沿着宽度方向堆叠在一起的多个卷芯,每个卷芯在沿着高度方向分开的两侧设有一对集流体,并且每个集流体沿着长度方向延伸;以及容纳在内部腔室中的一组汇流排,其被固定至顶盖,其中,每个电池端子与至少一个汇流排电连接,并且每个集流体与至少一个汇流排电连接,以使得每个集流体被电连接至相邻的集流体和/或相应的电池端子,并且其中,每个集流体沿着长度方向与相应的汇流排进行面接触。

Description

车辆动力电池以及车辆动力电池组 技术领域
本发明涉及电池技术领域,更具体地,涉及一种用于为车辆提供动力的车辆动力电池以及车辆动力电池组。
背景技术
电动车的普及对电池的快充性能、寿命、安全、成本等方面提出了越来越高的要求。快充倍率是衡量电池性能的一项重要指标,其被定义为电池充电的最大电流与电池容量之比,因此快充倍率越大则电池充电速度越快,充电消耗时间越短。电动车辆的动力电池的快充倍率也成为衡量电动车辆性能的重要指标之一,动力电池的充电速度直接影响着用户的体验以及购买意愿。然而,电池快充倍率的大小受限于电芯的散热性能。当前电芯产生热量主要通过电芯底部或侧面或大面传导到外部,电芯顶盖外部由于极柱及电芯间高压连接汇流排以及低压线束等零件占据了大量的空间从而无法作为有效的散热面。当快充大电流通过时,电芯顶盖处由于无法作为有效散热面,系统散热能力不足,从而导致电芯内部温度偏高(特别是集流体与电芯内部汇流片焊接处),而这限制了快充倍率大小,增加了快充时间,导致较差的用户体验,阻碍了电动车的快速发展。此外,快充时电芯产生的热量无法及时散出,也会影响电芯的使用寿命。
因此,在本领域中,亟需一种能够有效地将电池内部的热量传递至外部以便改善电池的散热性能的技术方案。
发明内容
为了解决上述现有技术中的问题,本发明提出了一种车辆动力电池,其包括:壳体,在所述壳体的内部形成有内部腔室;顶盖,所述顶盖被固定至所述壳体以便封闭所述内部腔室,并且设有适合于与外部电路电连接的一组电池端子;容纳在所述内部腔室中的电芯,所述电芯包括沿着宽度方向堆叠在一起的多个卷芯,每个卷芯在沿着高度方向分开的两侧设有一对集流体,并且每个集流体沿着长度方向延伸;以及容纳在所述内部腔室 中的一组汇流排,所述一组汇流排被固定至所述顶盖,其中,每个电池端子与至少一个汇流排电连接,并且每个集流体与至少一个汇流排电连接,以使得每个集流体被电连接至相邻的集流体和/或相应的电池端子,并且其中,每个集流体沿着长度方向与相应的汇流排进行面接触。
根据本发明的一种可选的实施方式,所述车辆动力电池还包括容纳在所述内部腔室中的一对绝缘板,所述一对绝缘板被设置在所述电芯的两侧,每个绝缘板包括面向所述电芯的支撑面以及从所述支撑面突出的多个肋条,并且其中,各个肋条和各个汇流排交替布置,以使得每个集流体在与其相邻的肋条和汇流排之间抵靠相应的支撑面。
根据本发明的一种可选的实施方式,每个集流体沿着长度方向与相应的肋条和/或相应的支撑面进行面接触。
根据本发明的一种可选的实施方式,每个集流体沿着其整个长度与相应的肋条和/或相应的支撑面进行面接触。
根据本发明的一种可选的实施方式,每个汇流排从所述顶盖朝向所述内部腔室的与所述顶盖相对的端部延伸,以使得每个集流体沿着其整个长度与相应的汇流排进行面接触。
根据本发明的一种可选的实施方式,每个汇流排从所述顶盖延伸直至所述内部腔室的与所述顶盖相对的端部。
根据本发明的一种可选的实施方式,所述车辆动力电池还包括设置在所述壳体中的绝缘膜,所述绝缘膜顺应所述壳体成形并限定所述内部腔室。
根据本发明的一种可选的实施方式,所述绝缘膜在高度方向上被夹持在所述一对绝缘板和所述壳体之间;并且/或者,所述绝缘膜在宽度方向上被夹持在所述电芯和所述壳体之间。
根据本发明的一种可选的实施方式,相邻的卷芯之间设有至少一个隔离板。
同样为了解决上述现有技术中的问题,本发明还提出了一种车辆动力电池组,其包括多个如前文所述的车辆动力电池,其中,多个车辆动力电池被并排布置,并且所述车辆动力电池组还包括至少一个横跨所述多个车辆动力电池布置的冷却装置。
本发明可以体现为附图中的示意性的实施例。然而,应注意的是,附 图仅仅是示意性的,任何在本发明的教导下所设想到的变化都应被视为包括在本发明的范围内。
附图说明
附图示出了本发明的示例性实施例。这些附图不应被解释为必然地限制本发明的范围,其中:
图1是根据本发明的车辆动力电池的示意性立体图;
图2是根据本发明的车辆动力电池的示意性分解图;
图3是根据本发明的车辆动力电池的卷芯的示意性立体图;
图4是根据本发明的车辆动力电池的电芯和隔离板的示意性立体图;
图5是根据本发明的车辆动力电池的顶盖和汇流排的示意性立体图;
图6是根据本发明的车辆动力电池的顶盖和汇流排的示意性立体图;
图7是沿着图1中的线C-C截取的根据本发明的车辆动力电池的示意性截面图;以及
图8是根据本发明的车辆动力电池组的示意性立体图。
具体实施方式
本发明的进一步的特征和优点将从以下参考附图进行的描述中变得更加明显。附图中示出了本发明的示例性实施例,并且各个附图并不必然地按照实际比例绘制。然而,本发明可以实现为许多不同的形式并且不应解释为必然地限制于这里示出公开的示例性实施例。相反,这些示例性实施例仅仅被提供用于说明本发明以及向本领域的技术人员传递本发明的精神和实质。
本发明旨在提供一种改进的车辆动力电池,该电池通过内部新颖的设计而能够将电芯产生的热量快速、有效地传递至电池壳体的表面,而这允许将电池壳体的表面作为有效散热面,尤其是能够将电池顶盖作为有效散热面,从而改善电池的散热性能。散热性能的改善一方面有助于提高电池的快充倍率,从而缩短电池的充电时间,以便改善用户的体验,另一方面有助于避免过多热量积聚在电池内部从而产生高温,以便确保电芯的正常运行和使用寿命免受高温的影响。
下面结合各个附图详细描述根据本发明的电池的可选但非限制性的实施方式。在各个附图中,以箭头LL’指示了长度方向,以箭头WW’指示了宽度方向,并且以箭头HH’指示了高度方向。但是需要指出的是,在本文中使用的指示相对方位的术语仅仅旨在借助于附图更加直观地陈述本发明的技术方案,以帮助本领域技术人员更容易地理解本发明的技术方案,这些术语不应以任何方式解释成是对本发明的保护范围的限制。
参考图1,其中示出了根据本发明的车辆动力电池的示意性立体图,该车辆动力电池适合于在移动平台中用作直流电源,移动平台例如可以是机动车辆、海上载具、航空航天载具、机器人或其他类型的将电能转化为机械能的移动平台。当然,该电池还可以在固定发电厂或需要机载生成直流电力的其他设施中使用。该电池可以配置为锂离子电池类型,以便以较低的重量和体积实现较高的储存能量密度和较高的功率承受能力。当然,该电池还可以配置为诸如铅酸电池之类的其他电池类型,因此本领域技术人员可以理解的是,本发明并非旨在将电池限制为某种具体类型,换句话说,电池的具体类型不能构成对本发明的保护范围的限制。在图1所示的示例性实施例中,车辆动力电池100大体呈长方体形状,并且包括壳体110以及旨在附接至壳体110的顶盖120,其中壳体110和顶盖120可以由铝合金、钢等金属材料、或者塑料等非金属材料制成,当然,壳体110和顶盖120的材质需要相互匹配以满足后续的安装要求,例如,满足焊接要求。车辆动力电池100以及其各个部件的长度、宽度和高度可以认为是相对于长度方向LL’、宽度方向WW’和高度方向HH’限定的。
参考图2,其中示出了根据本发明的车辆动力电池的示意性分解图。在图2所示的示例性实施例中,在壳体110内部形成有内部腔室111,所述内部腔室111在长度方向LL’上的一端处设有开口,以便通过该开口提供进出内部腔室111的路径。顶盖120旨在固定至壳体110以便覆盖内部腔室111的该开口,从而将内部腔室111相对于外部隔离或密封。车辆动力电池100还包括旨在容纳于内部腔室111中的电芯130、汇流排140、绝缘板150、隔离板170(图4中更佳地示出)以及电解液等部件和物质。因此,顶盖120将在附接至壳体110之后将上述各个部件以及电解液密封在内部腔室111中。特别地,电芯130包括堆叠在一起的多个卷芯(也可称为集卷), 在图2所示的示例性实施例中,电芯130包括沿着宽度方向WW’堆叠在一起的四个卷芯,即第一卷芯131、第二卷芯132、第三卷芯133以及第四卷芯134。如下文将进一步详细描述的,这些卷芯131-134可以以并联或串联的方式布置在一起。当然,在未示出的实施例中,电芯130也可以仅包括一个卷芯。本领域技术人员将会理解的是,卷芯的具体数量和布置方式不能构成对本发明的保护范围的限制。
参考图3,其中示出了根据本发明的车辆动力电池的卷芯的示意性立体图。下面以第一卷芯131为例介绍卷芯的结构,其他卷芯的结构与第一卷芯131的结构相同,如图3所示,第一卷芯131大体呈片状或板状的形式,并且通过将涂覆正极材料的正极极片131a、涂覆负极材料的负极极片131b、位于正极极片131a与负极极片131b之间的隔膜131c以及位于负极极片131b外侧的隔膜131c卷绕或堆叠在一起而形成,其中,在正极极片131a的一侧留有未涂覆正极材料的留白部分131a’,在负极极片131b的一侧(与正极极片131a的留白部分131a’相对的一侧)留有未涂覆负极材料的留白部分131b’。在卷绕或堆叠成第一卷芯131之后,正极极片131a的留白部分131a’将形成沿着第一卷芯131的整个长度延伸的正极集流体(也可称为正极极耳)131P,而负极极片的131b的留白部分131b’将形成沿着第一卷芯131的整个长度延伸的负极集流体(也可称为负极极耳)131N。在工作期间,电解液中的锂离子将在正极极片131a上的正极材料和负极极片131b上的负极材料之间流动,从而使得正极集流体131P与负极集流体131N之间产生电势差,因此集流体131P、131N可以被认为是第一卷芯131的电极,并且可以通过集流体131P、131N将第一卷芯131产生的电能输出。值得一提的是,由于集流体131P、131N沿着第一卷芯131的整个长度延伸,因此根据本发明的卷芯采用的是全极耳设计,即,通过卷绕或堆叠正极极片131a和负极极片131b的留白部分而直接形成极耳(即集流体),以使得集流体构成了卷芯的整个端部,而无需在卷绕或堆叠起来的留白部分上另外焊接极耳,该全极耳设计缩短了电流流经的距离,并且使得电流密度分布更加均匀,由此可以提高功率密度并减小发热量。在第一卷芯131被配置为锂离子电池类型的情况下,正极材料可以是铝箔,而负极材料可以是铜箔。在第一卷芯131被配置为铅酸电池类型的情况下,正极材料和 负极材料都可以是氧化铅,然后在卷芯装配完成后,向卷芯施加电荷以便将正极极片上的氧化铅转化为二氧化铅,并将负极极板上的氧化铅转化为铅。本领域技术人员可以理解的是,第一卷芯131也可以被配置成其他蓄电池类型,第一卷芯131的具体类型不能构成对本发明的保护范围的限制。
参考图4,其中示出了根据本发明的车辆动力电池的电芯130和隔离板170的示意性立体图。在图4所示的示例性实施例中,电芯130包括多个卷芯131-134,其中每个卷芯在其上侧和下侧(沿着高度方向HH’分开的两侧)具有沿着长度方向LL’(例如在卷芯的整个长度上)延伸的一对集流体,即,正极集流体和负极集流体,并且多个卷芯131-134沿着宽度方向WW’堆叠在一起,以便在电芯130的两侧各形成一组彼此相邻的集流体。另外,在相邻的卷芯之间设有至少一个隔离板170(例如由诸如PP、PET之类的电绝缘材料制成),以防止相邻卷芯进行的电化学反应相互干扰,这有助于确保各个卷芯的正常运行。这些卷芯可以以并联或串联的方式布置,并且通过调整各个卷芯的正极集流体和负极集流体的方位,可以改变各个卷芯131-134的布置方式。
参考图5和图6,其中示出了根据本发明的车辆动力电池的顶盖120和汇流排140的示意性立体图。在图5和图6所示的示例性实施例中,车辆动力电池100包括设置在顶盖120上的一组电池端子,所述一组电池端子例如由铝、铜等导电金属制成并且适合于与外部电路电连接,以例如允许车辆动力电池100与外部电路交换电能。具体地,所述一组电池端子包括极柱121、122,更具体地,正极极柱121和负极极柱122,极柱121、122延伸穿过顶盖120以便在顶盖120的外表面上露出,因此,极柱121、122可以与外部电路电连接,从而可以将车辆动力电池100产生的电能输送至外部电路,或者可以接收来自外部电路的电能以便为车辆动力电池100进行充电。特别地,所述一组电池端子还可以包括一个或多个电压检测端123、124、125,在图5和图6所示的示例性实施例中,所述一组电池端子包括三个电压检测端123、124、125。类似于极柱121、122,电压检测端123、124、125也延伸穿过顶盖120,以便在顶盖120的外表面上露出。因此,如下文进一步详细描述的,通过检测正极极柱121、负极极柱122以及电压检测端123、124、125中的任意两点之间的电压,可以检测连接在这两点 之间的一个或多个卷芯131-134的电压。另外,在各个电池端子与顶盖120之间还设有绝缘件128,以便将各个电池端子与顶盖120电绝缘。该绝缘件128可以由诸如PP、PET之类的电绝缘材料制成。
另外,还可以在顶盖120上设置防爆窗126和注液孔127等辅助部件,其中,防爆窗126被配置成在车辆动力电池100内部压力超过阈值时破碎,从而将电池内部与外部连通,以便卸掉电池内部的压力,并防止电池爆炸,这有助于提高电池的安全性,而注液孔127则用于从车辆动力电池100外部向车辆动力电池100内部(更具体地,内部腔室111)注入电解液。当然,注液孔127可以在不进行注液操作时封闭。
车辆动力电池100还包括固定至顶盖120上的一组汇流排140,所述一组汇流排140例如由铝、铜等导电金属制成,并且旨在随着顶盖120固定至壳体110而插入内部腔室111中。所述一组汇流排140一方面可以(例如通过超声波焊接)连接至电芯130中的每个卷芯的集流体,另一方面可以(例如通过超声波焊接)连接至所述一组电池端子,由此,所述一组汇流排140可以将相邻的卷芯的集流体彼此电连接,以便实现各个卷芯的串联布置或并联布置,并且可以将卷芯的集流体与所述一组电池端子电连接,以便将各个卷芯与所述一组电池端子电耦合。值得一提的是,所述一组汇流排140被容纳在内部腔室111中,也就是说,各个卷芯在车辆动力电池100的内部实现串联布置或并联布置,这有助于在电池外部预留更多空间以布置更多散热装置,从而改善电池的散热性能。
参考图7,其中示出了沿着图1中的线C-C截取的根据本发明的车辆动力电池的示意性截面图。在图7所示的示例性实施例中,一组汇流排140包括五个彼此独立的汇流排,即,第一汇流排141、第二汇流排142、第三汇流排143、第四汇流排144以及第五汇流排145。电芯130包括四个卷芯131-134,其中,相邻卷芯在同一侧的集流体具有彼此相反的极性。特别地,第一卷芯131的正极集流体131P在上方,负极集流体131N在下方;第二卷芯132的负极集流体132N在上方,正极集流体132P在下方;第三卷芯133的正极集流体133P在上方,负极集流体133N在下方;第四卷芯134的负极集流体134N在上方,正极集流体134P在下方。第一汇流排141将第一卷芯131的正极集流体131P电连接至正极极柱121;第二汇流排142 将第一卷芯131的负极集流体131N与第二卷芯132的正极集流体132P电连接,并将二者电连接至电压检测端123;第三汇流排143将第二卷芯132的负极集流体132N与第三卷芯133的正极集流体133P电连接,并将二者电连接至电压检测端124;第四汇流排144将第三卷芯133的负极集流体133N与第四卷芯134的正极集流体134P电连接,并将二者电连接至电压检测端125;第五汇流排145将第四卷芯134的负极集流体134N电连接至负极极柱122。在该配置下,电芯130中的四个卷芯131-134呈串联布置,第一卷芯131的正极集流体131P作为电芯130的正极电连接至电池的正极极柱121,第四卷芯134的负极集流体134N作为电芯130的负极电连接至电池的负极极柱122,并且通过检测正极极柱121与电压检测端123可以测得第一卷芯131上的电压,通过检测电压检测端123与电压检测端124可以测得第二电芯132上的电压,通过检测电压检测端124与电压检测端125可以测得第三电芯133上的电压,通过检测电压检测端125与负极极柱122可以测得第四卷芯134上的电压。当然,在不需要进行电压检测的情况下,可以不设置电压检测端123-125,此时,第二汇流排142、第三汇流排143和第四汇流排144仅被配置成将相邻卷芯的集流体彼此电连接。
虽然上文详细描述了各个卷芯131-134的串联布置方式,但是需要指出的是,这些卷芯也可以以并联方式布置,在并联布置方式中,相邻卷芯在同一侧的集流体具有彼此相同的极性,也就是说,各个卷芯的正极集流体都被设置在一侧,而各个卷芯的负极集流体都被设置在另一侧。然后通过若干汇流排将各个卷芯的正极集流体彼此电连接并将其电连接至电池的正极极柱,并且通过若干其他汇流排将各个卷芯的负极集流体彼此电连接并将其电连接至电池的负极极柱。因此,不论是串联布置还是并联布置,每个卷芯的正极集流体和负极集流体都将与相应的汇流排电连接,以便被电连接至相邻的集流体和/或相应的电池端子。
如图2和图7所示,所述一组汇流排140中的每个汇流排都沿着其长度(也就是说,沿着长度方向LL’)与相应卷芯的集流体进行面接触。该配置是有利的,通过使汇流排与集流体进行面接触,可以增大二者的接触面积,这有助于增大电子流通的截面并缩短电流路径,并且使电流密度的分布更加均匀,从而避免局部热点的出现,较大的接触面积还有助于将卷芯 产生的热量快速地传递至汇流排,而热量将通过汇流排传递至极柱和电压检测端(如果存在的话)并进一步传递至顶盖120,这允许将顶盖120的表面作为有效散热面,并通过在顶盖120上布置散热装置(例如风冷装置,水冷装置,散热片等)来快速吸收热量,以实现使电池降温的目的。因此,上述配置不仅有助于避免电池内部产生过多热量,而且有助于将电池内部的热量快速传递至电池外部,从而可靠地改善电池的散热性能,而散热性能的改善则有助于提高电池的快充倍率,以缩短电池的充电时间,从而改善用户体验。
特别地,所述一组汇流排140中的每个汇流排从顶盖120延伸直至内部腔室111的与顶盖120相对的后端。在该配置下,不仅能够将顶盖120的外表面作为有效散热面,而且能够将与内部腔室111的后端相邻的壳体110的后表面作为有效散热面。特别地,每个汇流排在相应集流体的整个长度上与该相应的集流体进行面接触。在该配置下,汇流排与集流体的接触面积被进一步增大。因此,上述配置均可以进一步地抑制电池内部热量的产生并改善电池的散热性能。
如图2和图7所示,车辆动力电池100还包括设置在壳体110和电芯130之间的一对绝缘板150,所述一对绝缘板150被布置在电芯130的上侧和下侧,其中,每个绝缘板150由电绝缘材料制成并且具有面向电芯130的支撑面151以及一个或多个从支撑面151朝向电芯130突出的肋条152,每个肋条152沿着长度方向LL’延伸。进一步参考图7,每个卷芯的集流体都被形成为具有面向绝缘板150的支撑面151的自由端以及位于该自由端两侧的两个侧壁,其中,对于每个卷芯的每个集流体来说,该集流体的自由端(例如,正极集流体131P的平坦端部131P’)可以抵靠相应绝缘板150的支撑面151,该集流体的两个侧壁中的一个(例如,正极集流体131P的平坦侧部131P”)按照如上文所述的方式与相应的汇流排140电连接,并且该集流体的两个侧壁中的另一个(例如,正极集流体131P的平坦侧部131P’”)面向相应的肋条152或者与相应的肋条152相邻。也就是说,在宽度方向WW’上,肋条152和汇流排140交替布置,以使得每个集流体都具有与其相邻的肋条152和汇流排140并且被定位在相邻的肋条152和汇流排140之间,或者说每个集流体都在一侧设有肋条152,而在另一侧设有 汇流排140,并且在两者之间抵靠支撑面151。在该配置下,如图7所示,相邻的集流体(例如,正极集流体131P和负极集流体132N)可以通过肋条152相对于彼此隔离,并且位于电芯边缘的集流体(例如,正极集流体131P和负极集流体134N)可以通过肋条152相对于壳体110隔离,因此绝缘板150不仅能够利用支撑面151支撑各个卷芯,而且能够利用肋条152将相邻的集流体相对于彼此电绝缘并将位于电芯边缘的集流体相对于壳体110电绝缘。
特别地,对于每个集流体来说,该集流体的自由端可以沿着长度方向LL’(例如,沿着集流体的整个长度)与相应绝缘板150的支撑面151进行面接触,该集流体的两个侧壁中的一个可以沿着长度方向LL’(例如,沿着集流体的整个长度)与相应的汇流排140进行面接触,并且该集流体的两个侧壁中的另一个可以沿着长度方向LL’(例如,沿着集流体的整个长度)与相应的肋条152进行面接触。在该配置下,不仅能够如上文所述利用汇流排140吸收集流体产生的热量,而且能够利用绝缘板150吸收集流体产生的热量,因为通过集流体与绝缘板150的支撑面151和肋条152的面接触而增大了集流体与绝缘板150的接触面积。进一步地,绝缘板150可以将热量传递至壳体110的上表面和下表面,这使得壳体110的上表面和下表面也可以被用作有效散热面,也就是说,通过在这两个表面上布置散热装置可以有效地散发电池内部的热量,因此上述配置有助于进一步改善电池的散热性能。
特别地,绝缘板150可以由诸如PP、PET之类的电绝缘材料制成。备选地,绝缘板150也可以由诸如氮化铝之类的高导热电绝缘材料制成。
如图2和图7所示,车辆动力电池100还包括设置在壳体110中的绝缘膜160,所述内部腔室111由所述绝缘膜160限定,也就是说,电芯130、汇流排140、绝缘板150、隔离板170以及电解液等被容纳在绝缘膜160中,绝缘膜160将上述各个部件和电解液与壳体110隔离。特别地,绝缘膜160可以由诸如PP、PET之类的电绝缘材料制成。在该配置下,可以在电池组装时,利用绝缘膜160来保持电芯130、汇流排140、绝缘板150、隔离板170等,这有助于更加顺利地进行后续组装,而且在组装完成之后,绝缘膜160可以保护壳体110免于被电腐蚀或者被电解液腐蚀。特别地,绝缘膜 160可以顺应壳体110成形,以便消除绝缘膜160和壳体110之间的间隙。
特别地,如图7所示,绝缘膜160在宽度方向WW’上被夹持在电芯130(更具体地,第一卷芯131和第四卷芯134)与壳体110之间,并且在高度方向HH’上被夹持在所述一对绝缘板150与壳体110之间。在该配置下,不仅壳体110的上表面和下表面可以用作有效散热面,壳体110的两个侧表面也可以用作有效散热面,也就是说,通过在这两个侧表面上布置散热装置可以进一步有效地散发电池内部的热量,因此上述配置有助于进一步改善电池的散热性能。特别地,如果将上述配置结合起来,那么包括壳体110的五个表面连同顶盖120的表面在内的车辆动力电池100的六个表面都可以用作有效散热面,这可以极大程度地改善电池的散热性能,从而大幅度地提高电池的快充倍率。
在未示出的实施例中,内部腔室111由壳体110的内表面限定,车辆动力电池100包括多个绝缘膜,其中,每个绝缘膜包裹一个卷芯及其电解液以及与该卷芯相连接的汇流排。该配置有利于确保其中各个卷芯呈串联布置方式的车辆动力电池的正常运行,因为每个卷芯及其电解液和汇流排都被单独的绝缘膜包裹,从而可以防止电解液在不同的卷芯之间流动。特别地,在每个卷芯的各个集流体处,绝缘膜被夹持在集流体的侧壁与相应的肋条152之间,也就是说,与上文所述实施例中集流体与相应的肋条152直接面接触的方式不同,集流体的侧壁通过绝缘膜与相应的肋条152间接面接触,而这也有助于改善电芯130与肋条152之间的热传递。特别地,对于位于电芯130边缘的卷芯(例如,卷芯131、134)来说,绝缘膜被夹持在该卷芯与壳体110之间,这有助于改善电芯130与壳体110之间的热传递。
参考图8,其中示出了根据本发明的车辆动力电池组的示意性立体图。如图8所示,车辆动力电池组10包括多个车辆动力电池100,各个车辆动力电池100并排布置,以使得各个车辆动力电池100的顶盖120的外表面、壳体110的上表面、下表面和后表面分别共面,并且分别形成车辆动力电池组10的前表面11、上表面12、下表面13和后表面14。特别地,车辆动力电池组10还包括布置在其前表面11上的前冷却装置21、布置在其上表面12上的上冷却装置22、布置在其下表面13上的下冷却装置23、以及布 置在其后表面14上的后冷却装置24,上述各个冷却装置横跨多个车辆动力电池10布置,并且可以是冷却板或蜿蜒布置的冷却管。
以上借助于附图详细描述了根据本发明的车辆动力电池以及车辆动力电池组的可选但非限制性的实施例。对于本领域内的那些普通技术人员来说,在不偏离本公开的精神和实质的情况下,对技术和结构的修改和补充以及对各实施例中的特征的重新组合显然都应视为包括在本发明的范围内。因此,在本发明的教导下所能够设想到的这些修改和补充都应被视为本发明的一部分。本发明的范围包括在本发明的申请日时已知的等效技术和尚未预见的等效技术。

Claims (10)

  1. 车辆动力电池,其包括:
    壳体(110),在所述壳体(110)的内部形成有内部腔室(111);
    顶盖(120),所述顶盖(120)被固定至所述壳体(110)以便封闭所述内部腔室(111),并且设有适合于与外部电路电连接的一组电池端子;以及容纳在所述内部腔室(111)中的:
    电芯(130),所述电芯(130)包括沿着宽度方向(WW’)堆叠在一起的多个卷芯,每个卷芯在沿着高度方向(HH’)分开的两侧设有一对集流体,并且每个集流体具有沿着长度方向(LL’)延伸的平坦端部以及位于所述平坦端部两侧的两个平坦侧部;
    一组汇流排(140),所述一组汇流排(140)被固定至所述顶盖(120),其中,每个电池端子与至少一个汇流排(140)电连接,并且每个集流体与至少一个汇流排(140)电连接;和
    一对绝缘板(150),所述一对绝缘板(150)被设置在所述电芯(130)的两侧,每个绝缘板(150)包括面向所述电芯(130)的支撑面(151)以及从所述支撑面(151)突出的多个肋条(152),
    并且其中,对于每个集流体,平坦端部与相应的支撑面(151)面接触,两个平坦侧部之一与相应的肋条(152)面接触,两个平坦侧部中的另一个与相应的汇流排(140)面接触。
  2. 根据权利要求1所述的车辆动力电池,其中,所述车辆动力电池还包括多个绝缘膜,每个绝缘膜包裹所述多个卷芯之一以及与其集流体相连接的汇流排,对于每个集流体,平坦端部通过相应的绝缘膜与相应的支撑面(151)间接面接触,两个平坦侧部之一通过相应的绝缘膜与相应的肋条(152)面接触。
  3. 根据权利要求1所述的车辆动力电池,其中,对于每个集流体,平坦端部与相应的支撑面(151)直接面接触,两个平坦侧部之一与相应的肋条(152)直接面接触。
  4. 根据权利要求1-3中的任一项所述的车辆动力电池,其中,对于每个集流体,平坦端部沿着整个长度与相应的支撑面(151)面接触,两个平坦侧部之一沿着整个长度与相应的肋条(152)面接触,两个平坦侧部中的另一个沿着整个长度与相应的汇流排(140)面接触。
  5. 根据权利要求1-3中的任一项所述的车辆动力电池,其中,每个汇流排(140)从所述顶盖(120)延伸直至所述内部腔室(111)的与所述顶盖(120)相对的端部。
  6. 根据权利要求3所述的车辆动力电池,其中,所述车辆动力电池还包括设置在所述壳体(110)中的绝缘膜(160),所述绝缘膜(160)顺应所述壳体(110)成形并限定所述内部腔室(111)。
  7. 根据权利要求6所述的车辆动力电池,其中,所述绝缘膜(160)在高度方向(HH’)上被夹持在所述一对绝缘板(150)和所述壳体(110)之间;并且/或者,所述绝缘膜(160)在宽度方向(WW’)上被夹持在所述电芯(130)和所述壳体(110)之间。
  8. 根据权利要求1-3中的任一项所述的车辆动力电池,其中,相邻的卷芯之间设有至少一个隔离板(170)。
  9. 车辆动力电池组,其包括多个根据权利要求1-8中的任一项所述的车辆动力电池,其中,多个车辆动力电池被并排布置,并且所述车辆动力电池组还包括至少一个横跨所述多个车辆动力电池布置的冷却装置。
  10. 根据权利要求9所述的车辆动力电池组,其中,每个车辆动力电池被布置成使得:顶盖(120)共面以形成所述车辆动力电池组的前表面,壳体(110)的与顶盖(120)相对的后表面共面以形成所述车辆动力电池组的后表面,并且壳体(110)的沿着高度方向(HH’)相对的上表面和下表面分别共面以分别形成所述车辆动力电池组的上表面和下表面;并且
    所述车辆动力电池组还包括分别横跨其前表面、后表面、上表面和下表面布置的前冷却装置(21)、后冷却装置(24)、上冷却装置(22)和下冷却装置(23)。
PCT/CN2022/136914 2022-09-15 2022-12-06 车辆动力电池以及车辆动力电池组 WO2024055442A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211118494.4 2022-09-15
CN202211118494.4A CN115207519B (zh) 2022-09-15 2022-09-15 车辆动力电池以及车辆动力电池组

Publications (1)

Publication Number Publication Date
WO2024055442A1 true WO2024055442A1 (zh) 2024-03-21

Family

ID=83572046

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/136914 WO2024055442A1 (zh) 2022-09-15 2022-12-06 车辆动力电池以及车辆动力电池组

Country Status (2)

Country Link
CN (1) CN115207519B (zh)
WO (1) WO2024055442A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102568793B1 (ko) * 2018-01-05 2023-08-22 삼성전자주식회사 무음극 리튬금속전지 및 그 제조방법
CN115207519B (zh) * 2022-09-15 2022-11-22 上海汽车集团股份有限公司 车辆动力电池以及车辆动力电池组

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120135283A1 (en) * 2010-11-25 2012-05-31 Chi-Young Lee Rechargeable battery
CN104795586A (zh) * 2014-01-17 2015-07-22 锂能源日本有限公司 蓄电元件
CN208127333U (zh) * 2018-04-27 2018-11-20 宁德时代新能源科技股份有限公司 二次电池
CN113314812A (zh) * 2021-06-25 2021-08-27 东莞新能安科技有限公司 电池组及用电设备
CN115207519A (zh) * 2022-09-15 2022-10-18 上海汽车集团股份有限公司 车辆动力电池以及车辆动力电池组

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5967477B2 (ja) * 2012-07-13 2016-08-10 三菱自動車工業株式会社 電池パック
CN202797166U (zh) * 2012-08-29 2013-03-13 浙江谷神能源科技股份有限公司 一种方形锂离子动力电池
CN205194790U (zh) * 2015-12-01 2016-04-27 浙江超威创元实业有限公司 一种便于自动组装的动力电池模组及电动车
CN110148809A (zh) * 2017-06-28 2019-08-20 湖南妙盛汽车电源有限公司 一种锂离子动力电池
JP6967192B2 (ja) * 2018-02-09 2021-11-17 トヨタ自動車株式会社 二次電池および組電池
CN108550896B (zh) * 2018-05-29 2020-12-29 江苏海基新能源股份有限公司 一种全极耳卷绕圆柱锂离子电池装配方法
KR102372383B1 (ko) * 2018-12-26 2022-03-07 주식회사 엘지에너지솔루션 에너지 밀도가 향상된 구조를 갖는 배터리 모듈, 이를 포함하는 배터리 팩 및 자동차
CN113451695B (zh) * 2020-11-17 2023-04-18 上海汽车集团股份有限公司 电池模组和电动车辆
JP2022097815A (ja) * 2020-12-21 2022-07-01 スズキ株式会社 車両用バッテリパックの構造
CN114696023A (zh) * 2020-12-31 2022-07-01 标致雪铁龙汽车股份有限公司 一种电池组及车辆
CN114069127A (zh) * 2021-12-08 2022-02-18 欣旺达电动汽车电池有限公司 电芯模组
CN114665177A (zh) * 2022-04-02 2022-06-24 合肥国轩高科动力能源有限公司 一种无模组电池系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120135283A1 (en) * 2010-11-25 2012-05-31 Chi-Young Lee Rechargeable battery
CN104795586A (zh) * 2014-01-17 2015-07-22 锂能源日本有限公司 蓄电元件
CN208127333U (zh) * 2018-04-27 2018-11-20 宁德时代新能源科技股份有限公司 二次电池
CN113314812A (zh) * 2021-06-25 2021-08-27 东莞新能安科技有限公司 电池组及用电设备
CN115207519A (zh) * 2022-09-15 2022-10-18 上海汽车集团股份有限公司 车辆动力电池以及车辆动力电池组

Also Published As

Publication number Publication date
CN115207519A (zh) 2022-10-18
CN115207519B (zh) 2022-11-22

Similar Documents

Publication Publication Date Title
WO2024055442A1 (zh) 车辆动力电池以及车辆动力电池组
US20220271387A1 (en) Battery module, battery pack, and vehicle
CN204857898U (zh) 电池模块、电池组和包括该电池组的装置
CN104285315B (zh) 具有高效冷却结构的电池模块
CN113346201A (zh) 圆柱型电池、电池模组和电池包
KR101560217B1 (ko) 냉각 효율이 향상된 전지모듈
CN216872114U (zh) 电池和用电设备
CN209860115U (zh) 电池模块
CN217182265U (zh) 电池和用电设备
KR20130123901A (ko) 우수한 냉각 효율성과 콤팩트한 구조의 전지모듈
WO2014077578A1 (ko) 전지모듈 냉각장치 및 이를 포함하는 전지모듈 어셈블리
EP3933993B1 (en) Battery, electrical apparatus and cell installation method
JP6661769B2 (ja) バッテリーモジュール及びこれを含むバッテリーパック、自動車
CN216251031U (zh) 圆柱型电池、电池模组和电池包
CN211208629U (zh) 电池、电池模组、电池包及电动车
US20230335845A1 (en) Battery, power consuming apparatus, and method and apparatus for manufacturing battery
WO2023092849A1 (zh) 电池单体、电池及用电设备
CN114188673B (zh) 电芯及电子设备
WO2023004726A1 (zh) 电池的箱体、电池、用电设备、制备电池的方法和设备
KR20140044423A (ko) 높은 냉각 효율성의 전지모듈
EP4152512A1 (en) Battery, electrical device and method for preparing battery
WO2024131355A1 (zh) 电池模组以及车辆
WO2022252165A1 (zh) 电池单体、电池、用电装置、以及制备电池单体的装置和方法
CN219086204U (zh) 圆柱电池
US9105882B2 (en) Energy storage cell

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22958629

Country of ref document: EP

Kind code of ref document: A1