WO2022252165A1 - 电池单体、电池、用电装置、以及制备电池单体的装置和方法 - Google Patents

电池单体、电池、用电装置、以及制备电池单体的装置和方法 Download PDF

Info

Publication number
WO2022252165A1
WO2022252165A1 PCT/CN2021/098017 CN2021098017W WO2022252165A1 WO 2022252165 A1 WO2022252165 A1 WO 2022252165A1 CN 2021098017 W CN2021098017 W CN 2021098017W WO 2022252165 A1 WO2022252165 A1 WO 2022252165A1
Authority
WO
WIPO (PCT)
Prior art keywords
tab
battery cell
electrode assembly
insulator
cell according
Prior art date
Application number
PCT/CN2021/098017
Other languages
English (en)
French (fr)
Inventor
周文林
李星
陈文伟
徐良帆
王鹏
金海族
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to PCT/CN2021/098017 priority Critical patent/WO2022252165A1/zh
Priority to JP2023504845A priority patent/JP7475536B2/ja
Priority to KR1020237002285A priority patent/KR20230027234A/ko
Priority to EP21943532.8A priority patent/EP4167348A4/en
Priority to CN202180075233.6A priority patent/CN116438696A/zh
Publication of WO2022252165A1 publication Critical patent/WO2022252165A1/zh
Priority to US18/094,035 priority patent/US20230163405A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/538Connection of several leads or tabs of wound or folded electrode stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0404Machines for assembling batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0431Cells with wound or folded electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6551Surfaces specially adapted for heat dissipation or radiation, e.g. fins or coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/147Lids or covers
    • H01M50/148Lids or covers characterised by their shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/147Lids or covers
    • H01M50/148Lids or covers characterised by their shape
    • H01M50/15Lids or covers characterised by their shape for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/183Sealing members
    • H01M50/186Sealing members characterised by the disposition of the sealing members
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/183Sealing members
    • H01M50/19Sealing members characterised by the material
    • H01M50/198Sealing members characterised by the material characterised by physical properties, e.g. adhesiveness or hardness
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/375Vent means sensitive to or responsive to temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/528Fixed electrical connections, i.e. not intended for disconnection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/533Electrode connections inside a battery casing characterised by the shape of the leads or tabs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/547Terminals characterised by the disposition of the terminals on the cells
    • H01M50/55Terminals characterised by the disposition of the terminals on the cells on the same side of the cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/552Terminals characterised by their shape
    • H01M50/553Terminals adapted for prismatic, pouch or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/574Devices or arrangements for the interruption of current
    • H01M50/578Devices or arrangements for the interruption of current in response to pressure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/584Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries
    • H01M50/586Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries inside the batteries, e.g. incorrect connections of electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/584Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries
    • H01M50/59Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries characterised by the protection means
    • H01M50/593Spacers; Insulating plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the battery field, and in particular to a battery cell, a battery, an electrical device, and a device and method for preparing the battery cell.
  • secondary batteries have received unprecedented attention and development.
  • the application range of secondary batteries is more and more extensive, for example, it is used in energy storage power systems such as water power, fire power, wind power and solar power stations, as well as power tools, electric bicycles, electric motorcycles, electric vehicles, military equipment, aerospace and other field.
  • the battery cells of the secondary battery generate heat during use. If the heat dissipation is not timely, or no effective heat dissipation channel is set, a series of chemical reactions will occur in the battery cell due to the high internal temperature, resulting in a decrease in the performance of the battery cell, which in turn will affect the overall performance of the secondary battery. In addition, when the battery cell is overheated and the gas generated by the electrolyte and active materials is too much, the internal pressure of the battery cell will increase rapidly. Due to the limited pressure that the battery case can withstand, there are safety hazards such as battery cell explosion. .
  • the present invention provides a battery cell, a battery, an electrical device, and a device and method for preparing a battery cell, which provide an additional heat dissipation channel through an additionally provided third tab, thereby improving the performance of the battery cell.
  • the cooling efficiency of internal heat is provided.
  • a battery cell comprising: a housing with a first opening; an electrode assembly accommodated in the housing, the electrode assembly having a first tab, a second tab and a third pole ear, the polarity of the first tab is opposite to that of the second tab, and the polarity of the third tab is the same as that of the first tab or the second tab; the end cap is used to close the The first opening; an insulating member disposed between the end cap and the electrode assembly; wherein, the third tab is configured to be connected to the insulating member.
  • the technical solution of the embodiment of the present application is additionally provided with a third tab, thereby increasing
  • the heat dissipation path of the battery cell ie, electrode assembly-third tab-insulator-end cover
  • the third tab is insulated from the end cover by the insulating member, that is, the casing and the end cover do not participate in the current loop, thereby improving the safety of the battery cell. Under the condition of overcurrent of the same current, the temperature of the battery cell in the embodiment of the present application is lower, thereby improving the overcurrent capability and safety performance of the battery cell.
  • the third tab is in contact with the insulating member.
  • the heat of the electrode assembly can be further reliably dissipated, thereby improving the heat dissipation efficiency.
  • the insulating member has a first portion in contact with the third tab, and the thickness of the first portion is smaller than that of other portions of the insulating member.
  • the thickness of the first portion is 0.1mm ⁇ 0.3mm.
  • the heat dissipation efficiency of the first part of the insulating member in contact with the third tab is further improved by reducing the thickness of the insulating member.
  • the insulator is provided with a receiving portion for receiving the third tab.
  • the first opening faces a first direction
  • the receiving portion has a second opening facing a second direction
  • the second direction is perpendicular to the first direction
  • the third tab passes through The second opening enters the receiving portion.
  • the position of the third tab can be limited, so that the third tab can be better bonded to the insulator, and the heat transfer loss caused by the assembly gap can be reduced. , improve the heat dissipation efficiency; on the other hand, it can insulate the end face of the bent third tab and the electrode assembly, and avoid the internal short circuit of the battery cell due to the contact between the bent third tab and the electrode assembly.
  • the insulator has a body and a cover plate, and the cover plate is configured to cover the first portion at a distance from the first portion in the first direction.
  • the body and the cover are detachably connected.
  • the body and the cover are snap-fitted.
  • the cover plate is configured to press against the third tab, so as to press the third tab against the body.
  • the third tab can be placed in the proper position of the first part of the insulator, and then the cover plate is covered, and the cover plate makes the third tab
  • the three-pole lug is against the body, thereby ensuring a better fit between the third pole lug and the insulator, and improving heat dissipation efficiency.
  • the end cover is provided with a pressure relief mechanism for releasing the internal pressure of the battery cell when the internal pressure or temperature of the battery cell reaches a predetermined threshold
  • the insulator is provided with an insulating baffle, used to block the contact between the third tab and the pressure relief mechanism, and in the first direction, the projection of the insulation baffle is set between the projection of the first part and the pressure relief mechanism between the projections.
  • the insulator is provided with a pressure relief hole corresponding to the pressure relief mechanism, and the insulating baffle is disposed between the first part and the pressure relief hole for blocking the The third tab passes through the pressure relief hole.
  • the insulator has a protruding part, and the protruding part is used to ensure that the pressure relief mechanism and the insulator are spaced apart, so as to prevent the insulator from contacting the pressure relief mechanism and destroying the pressure relief mechanism.
  • the pressure relief mechanism, the pressure relief hole is arranged on the protrusion, and the first part and the protrusion are connected through the insulating baffle.
  • the insulating baffle it is possible to prevent the third pole lug from contacting the end cover or the pressure relief mechanism provided on the end cover, thereby ensuring the insulation between the third pole lug and the end cover.
  • the width of the insulating baffle is smaller than the width of the third tab and the width of the protrusion. The small one is big.
  • the height of the insulating baffle is greater than the thickness of the third tab and the maximum distance from the pressure relief hole on the protrusion to the first part and the height of the insulating baffle is less than or equal to the distance from the first part to the end face of the electrode assembly.
  • the technical solutions of the embodiments of the present application can have good insulation and heat dissipation at the same time by reasonably setting the height and/or width of the insulating baffle.
  • a battery including the battery cell in the first aspect.
  • an electric device including the battery in the second aspect, and the battery is used to provide electric energy.
  • a device for preparing a battery cell comprising: a housing preparation module, the housing having a first opening and an accommodation space, the first opening communicating with the accommodation space; an electrode assembly preparation module, The electrode assembly is accommodated in the accommodation space, the electrode assembly has a first tab, a second tab and a third tab, and the first tab and the second tab are respectively used to communicate with the pole.
  • an end cover preparation module the end cover is used to close the first opening
  • an insulating part preparation module the insulating part is arranged on one side of the end cover facing the electrode assembly A side is used to isolate the end cover from the electrode assembly; wherein, the third tab is configured to conduct heat from the electrode assembly to the end cover through the insulating member.
  • a method for preparing a battery cell comprising: providing a casing, the casing has a first opening and an accommodating space, the first opening communicates with the accommodating space; providing an electrode assembly, the The electrode assembly is accommodated in the accommodating space, the electrode assembly has a first tab, a second tab and a third tab, the first tab and the second tab are respectively used for polarity Two opposite electrode terminals are connected; an end cap is provided, and the end cap is used to close the first opening; an insulator is provided, and the insulator is provided on a side of the end cap facing the electrode assembly, for The end cap and the electrode assembly are isolated; wherein the third tab is configured to conduct heat from the electrode assembly to the end cap through the insulating member.
  • FIG. 1 is an exploded perspective view of a battery cell according to an embodiment of the present application.
  • Fig. 2 is a perspective view of an end cap and an insulating member according to an embodiment of the present application.
  • FIG. 3 is a cross-sectional view of a battery cell according to an embodiment of the present application.
  • FIG. 4 is an enlarged view showing the insulator shown in FIG. 3 .
  • Fig. 5 is a top view of an assembled electrode assembly and insulator according to an embodiment of the present application.
  • Fig. 6 is a perspective view of an insulating member according to an embodiment of the present application.
  • Fig. 7 is a perspective view of another embodiment of an insulating member of the present application.
  • FIG. 8 is an exploded perspective view of a battery cell according to another embodiment of the present application.
  • FIG. 9 is a schematic diagram of a device in which a battery is used as a power source according to an embodiment of the present application.
  • FIG. 10 is a schematic diagram of a device for preparing a battery cell according to an embodiment of the present application.
  • FIG. 11 is a schematic diagram of a method for preparing a battery cell according to an embodiment of the present application.
  • connection In the description of this application, it should be noted that, unless otherwise clearly stipulated and limited, the terms “installation”, “connection”, “connection” and “attachment” should be understood in a broad sense, for example, it may be a fixed connection, It can also be detachably connected or integrally connected; it can be directly connected or indirectly connected through an intermediary, and it can be internal communication between two components. Those of ordinary skill in the art can understand the specific meanings of the above terms in this application according to specific situations.
  • Multiple appearing in this application refers to more than two (including two), similarly, “multiple groups” refers to more than two groups (including two groups), and “multi-piece” refers to more than two (Includes two pieces).
  • FIG. 1 shows a secondary battery cell 60 having a square structure.
  • secondary batteries include lithium-ion batteries, lithium-sulfur batteries, sodium-lithium-ion batteries, sodium-ion batteries, or magnesium-ion batteries.
  • a secondary battery cell 60 includes a casing 1 having a first opening 11 ; an electrode assembly 2 housed in the casing 11 , and the electrode assembly 2 has a first tab 21 , the second tab 22 and the third tab 23, the polarity of the first tab 21 and the second tab 22 are opposite, and the polarity of the third tab 23 is the same as that of the first tab 21 or the second tab 22;
  • the cover 4 is used to close the first opening 11 ;
  • the insulating member 5 is disposed between the end cover 4 and the electrode assembly 2 ; wherein, the third tab 23 is configured to be connected to the insulating member 5 .
  • the third tab 23 is in contact with the insulating member 5 .
  • the battery cell 60 may be in the form of a cylinder, a flat body, a cuboid or other shapes. Battery cells are generally divided into three types according to the way of packaging: cylindrical battery cells, square square battery cells and pouch battery cells.
  • the battery mentioned in the embodiments of the present application refers to a single physical module including one or more battery cells to provide higher voltage and capacity.
  • the battery may include a battery module or a battery pack or the like.
  • Batteries generally include a case for enclosing one or more battery cells. The box can prevent liquid or other foreign objects from affecting the charging or discharging of the battery cells.
  • a plurality of battery cells 60 may be connected in series and/or in parallel via electrode terminals for various applications.
  • the application of batteries includes three levels: battery cells, battery modules and battery packs.
  • the level of the battery module can be omitted, that is, the battery pack is formed directly from the battery cells. This improvement has improved the gravimetric energy density and volumetric energy density of the battery system while significantly reducing the number of components.
  • the battery cell 60 includes an electrode assembly and an electrolyte, and the electrode assembly is composed of a positive electrode sheet, a negative electrode sheet and a separator.
  • a battery cell works primarily by moving metal ions between the positive and negative plates.
  • the positive electrode sheet includes a positive electrode current collector and a positive electrode active material layer.
  • the positive electrode active material layer is coated on the surface of the positive electrode current collector.
  • the current collector without the positive electrode active material layer protrudes from the current collector coated with the positive electrode active material layer.
  • the current collector coated with the positive electrode active material layer serves as the positive electrode tab.
  • the material of the positive electrode current collector can be aluminum, and the positive electrode active material can be lithium cobaltate, lithium iron phosphate, ternary lithium or lithium manganate.
  • the negative electrode sheet includes a negative electrode current collector and a negative electrode active material layer.
  • the negative electrode active material layer is coated on the surface of the negative electrode current collector.
  • the current collector coated with the negative electrode active material layer serves as the negative electrode tab.
  • the material of the negative electrode current collector may be copper, and the negative electrode active material may be carbon or silicon.
  • the number of positive pole tabs is multiple and stacked together, and the number of negative pole tabs is multiple and stacked together.
  • the material of the diaphragm can be PP or PE, etc.
  • first tab 21 and the second tab 22 have opposite polarities, and may be the above-mentioned positive tab or negative tab, respectively.
  • the third tab 23 is formed on the current collector where the first tab 21 or the second tab 22 is located, that is, the third tab 23 may have the same polarity as the first tab 21 or the second tab 22 .
  • the casing 1 is used to accommodate the electrode assembly 2 , and a first opening 11 is formed at one end.
  • the present application has no special limitation on the shape of the casing 1, which may be cylindrical, square or any other shape.
  • the casing 1 is generally made of metal or hard plastic, so as to provide necessary strength and hardness protection for the contained electrode assembly 2 .
  • the number of electrode assemblies 2 accommodated in the housing 1 can be one or more, and those skilled in the art can select according to specific actual needs.
  • the end cap 4 is used to close the first opening 11 of the casing 1 to seal the electrode assembly and the electrolyte contained in the casing 1 .
  • the end cap 4 can be made of metal or hard plastic. Many functional components such as electrode terminals, explosion-proof valves or liquid injection holes can be attached on the end cover 4.
  • the insulator 5 is disposed between the end cap 4 and the electrode assembly 2 , that is, on the side of the end cap 4 facing the electrode assembly 2 , that is, the insulator 5 is disposed on the inner side of the end cap 4 and attached to the end cap 4 .
  • the insulator 5 is used to insulate the electrode assembly 2 from the end cap 4, so that the electric energy of the electrode assembly 2 can only be connected to the electrode terminal through the positive tab or the negative tab.
  • the insulator 5 can be made of PP or PET material.
  • the third tab 23 is in contact with the insulating member 5 (refer to FIG. 3 ).
  • the insulator 5 between the end cap 4 and the electrode assembly 2 is hollowed out at a position corresponding to the electrode terminal 3, so that when the secondary battery is charged and discharged, only the electrode assembly 2-the first tab 21—electrode terminal 3—external power supply or equipment—electrode terminal 3—a complete current loop is formed between the second tab 22 and the third tab 23 is insulated from the end cap 4 . That is, the purpose of the added third tab 23 is not to add an additional current loop, but to conduct the heat inside the electrode assembly 2 to the end cap 4 through the insulating member 5 .
  • the third tab 23 increases the heat dissipation path of the battery cell 60 (That is, electrode assembly 2-third tab 23-insulator 5-end cap 4), thereby improving the heat dissipation efficiency of the battery cell.
  • the temperature of the battery cell in the embodiment of the present application is lower, thereby improving the overcurrent capability and safety performance of the battery cell.
  • a cooling device may be further provided outside the end cover 4 of the battery cell 60 , so that the heat dissipation performance of the battery cell 60 is further improved.
  • the battery cell 60 shown in FIG. 1 and FIG. 2 includes two sets of electrode assemblies 2 .
  • the first to third tabs 21 - 23 are respectively provided for each group of electrode assemblies 2 , that is, the number of the first to third tabs 21 - 23 is two.
  • the technical solution of the present application is not limited thereto, and only one set of electrode assemblies 2 may be provided in the battery cell 60 , at this time, the number of the first to third tabs 21 - 23 is one.
  • the insulating member 5 has a first portion 51 in contact with the third tab 23 , and the thickness of the first portion 51 is smaller than that of other parts of the insulating member 5 .
  • Figure 3 shows that the upper surface of the third tab 23 is in contact with the first part 51 of the insulator 5 after being bent. Such an arrangement can make the third tab 23 have a larger contact area with the insulator 5 , improve the cooling effect.
  • the thickness of the first portion 51 is 0.1mm ⁇ 0.3mm.
  • the thickness of other parts of the insulating member 5 is set according to the parameters of the battery cell 60 , and is generally 0.6mm ⁇ 0.7mm.
  • the heat dissipation efficiency is further improved by reducing the thickness of the first portion 51 of the insulating member 5 in contact with the third tab 23 .
  • the third tab 23 contacts the insulator 5 after being bent, occupying a larger space between the end cap 4 and the electrode assembly 2, and thinning the first part 51 can also make this part of the space effectively accommodate the third tab 23.
  • the tab 23 increases the energy density of the battery cell 60 .
  • the insulator is further provided with a receiving portion 52 for receiving the third tab 23 .
  • the height direction of the battery cell in the vertical direction is the D1 direction
  • the thickness direction of the battery cell is D2 direction
  • the width direction of the battery cell is D3 direction, as shown in FIG. 1 .
  • the accommodating portion is formed as a cavity structure (refer to FIG. 4 ) having an opening on one side (second opening 520), that is, has: a top surface and a bottom surface opposite along the first direction D1, wherein the bottom surface includes the first portion 51;
  • Direction D1 connects the top and bottom sides.
  • the second opening 520 of the receiving portion 52 faces the second direction D2, and the second direction D2 is perpendicular to the first direction D1 toward which the first opening 11 faces, and the third tab 23 enters the receiving portion 52 through the second opening 520 .
  • the position of the third tab 23 can be limited, so that the third tab 23 can be better bonded to the insulating member 5, and the gap required for assembly can be reduced.
  • the resulting heat transfer loss can improve the heat dissipation efficiency; on the other hand, the end face of the third tab 23 and the electrode assembly 2 can be insulated to avoid a short circuit in the battery cell 60 due to the contact between the third tab 23 and the electrode assembly 2 .
  • the insulator 5 has a body 53 and a cover 521 .
  • the main body 53 is a part of the insulator 5 attached to the end cap 4
  • the cover plate 521 is a part of the insulator 5 disposed below the main body 53 and closer to the electrode assembly 2 .
  • the cover plate 521 is configured to cover the first portion 51 in a manner of forming a space from the first portion 51 in the first direction D1.
  • the body 53 and the cover plate 521 form a receiving chamber 52
  • the third tab 23 is accommodated in the receiving chamber 52 .
  • the contact area between the third tab 23 and the first part 51 will decrease, and the degree of bonding will decrease, thereby reducing the heat dissipation efficiency.
  • the three-pole ear 23 is in close contact with the first part 51 .
  • the interval can be set to be slightly smaller than the thickness of the third tab 23 (that is, the third tab 23 and the receiving cavity 52 have an interference fit), so that once the third tab 23 is inserted into the receiving cavity through the second opening 520 , even during the use of the battery, the third tab 23 can continue to be in close contact with the first part 51 .
  • the body 53 and the cover plate 521 can be integrally formed to save working procedures and improve product production efficiency.
  • the body 53 and the cover plate 521 are detachably connected.
  • the body 53 and the cover plate 521 may be snap-fitted to facilitate processing and reduce manufacturing costs.
  • the cover plate 521 is configured to press against the third tab 23 so as to press the third tab 23 against the body 53 .
  • the third tab 23 can be placed at a proper position on the first part 51 of the insulating member 5, and then the cover plate 521 is covered, and the cover plate 521 is covered.
  • the plate 521 makes the third tab 23 abut against the body 53 , so as to ensure a better fit between the third tab 23 and the insulator 5 and improve heat dissipation efficiency.
  • a pressure relief mechanism 41 (refer to FIG. 2 ) is provided on the end cover 4 for releasing the internal pressure of the battery cell 60 when the internal pressure or temperature of the battery cell 60 reaches a predetermined threshold.
  • An insulating baffle 522 (refer to FIG. 7 ) is provided on the insulator 5 to block the contact between the third tab 23 and the pressure relief mechanism 41.
  • the projection of the insulating baffle 522 is set on the first part 51.
  • the insulating baffle 522 may be a side wall of the receiving cavity 52 , which is opposite to the second opening 520 in the second direction D2 .
  • the insulator 5 is provided with a pressure relief hole (not shown) corresponding to the pressure relief mechanism 41 .
  • the pressure relief hole provides a pressure relief passage between the inside of the battery cell 60 and the pressure relief mechanism 41 on the end cover 4 .
  • the insulating baffle 522 is disposed between the first part 51 and the pressure relief hole, and is used to prevent the third tab 23 from contacting the end cover 4 through the pressure relief hole, so as to ensure the insulation between the third tab 23 and the end cover 4 .
  • the insulator 5 has a protruding portion 54, which is used to ensure that the pressure relief mechanism 41 and the insulator 5 are spaced apart, and provide an avoidance space for the pressure relief mechanism 41 to avoid the insulator 5 contacts with the pressure relief mechanism 41 to destroy the pressure relief mechanism 41.
  • the pressure relief hole may be disposed on the protruding portion 54 , and the first portion 51 and the protruding portion 54 are connected by an insulating baffle 522 . Thus, the insulation between the third tab 23 and the end cover 4 can be ensured.
  • the width of the insulating baffle 522 is larger than the smaller one of the width of the third tab 23 and the width of the protrusion 54 . Therefore, the insulating baffle 522 can prevent the third tab 23 from passing through the pressure relief hole provided on the protruding portion 54 and contact the end cover 4 , so as to ensure the insulation between the third tab 23 and the end cover 4 .
  • the height of the insulating barrier 522 is greater than the thickness of the third tab 23 and the maximum distance from the pressure relief hole on the protrusion 54 to the first part 51, and the insulating barrier
  • the height of the plate 522 is less than or equal to the distance from the first part 51 to the end surface of the electrode assembly 2 .
  • the third tab 23 is closely attached to the insulating member 5 to improve the heat dissipation efficiency; on the other hand, it can ensure that the third tab 23 and the end
  • the cover 4 and the pressure release mechanism 41 are insulated, so as to have good insulation and heat dissipation at the same time.
  • the third tab 23 may be located between the first tab 21 and the second tab 22 and correspond to the position of the protrusion 54 .
  • a receiving portion 52 is respectively provided for each of the third tabs 23 , and the two receiving portions 52 are oppositely arranged in the second direction D2 via the protruding portion 54 of the insulator 5 .
  • the first tab 21 and the second tab 22 may be respectively disposed at both ends of the electrode assembly 2 along the first direction D1 .
  • the present application also provides a battery, which includes the battery cell of the present application.
  • the battery may also include other structures, which will not be detailed here.
  • the battery may also include a busbar, which is used to realize the electrical connection between multiple battery cells 60 , such as parallel connection or series connection or mixed connection.
  • an embodiment of the present application also provides an electrical device, which may include the battery cells 60 in the foregoing embodiments.
  • the electrical device may be a vehicle, ship or spacecraft.
  • the battery cell of the embodiment of the present application is described above with reference to FIG. 1 to FIG. 8 , and the device and method for preparing the battery cell of the embodiment of the present application will be described below in conjunction with FIG. 9 and FIG. 10 . the foregoing embodiments.
  • FIG. 10 shows a schematic block diagram of a device 600 for preparing a battery cell according to an embodiment of the present application.
  • the device 600 for preparing a battery cell according to the embodiment of the present application includes: a casing preparation module 610, the casing has a first opening and an accommodating space; an electrode assembly preparation module 620, the electrode assembly is accommodated in the accommodating space, and the electrode assembly has a first The tab, the second tab, and the third tab, the polarity of the first tab is opposite to that of the second tab, and the polarity of the third tab is the same as that of the first tab or the second tab; the end cap preparation module 630, The end cover is used to close the first opening; the insulating member preparation module 640, the insulating member is arranged between the end cover and the electrode assembly; wherein, the third tab is configured to be connected to the insulating member.
  • FIG. 11 is a schematic flowchart of a method 700 for preparing a battery cell according to an embodiment of the present application.
  • the method 700 includes: providing a casing 710, the casing has a first opening and an accommodating space; providing an electrode assembly 720, the electrode assembly is accommodated in the accommodating space, and the electrode assembly has a first tab, a second pole ear and the third lug, the polarity of the first lug is opposite to that of the second lug, and the polarity of the third lug is the same as that of the first lug or the second lug; an end cap 730 is provided, and the end cap is used to close the first lug An opening; an insulating member 740 is provided, and the insulating member is disposed between the end cap and the electrode assembly; wherein, the third tab is configured to be connected to the insulating member.
  • the present application is not limited to the above-mentioned embodiments.
  • the above-mentioned embodiments are merely examples, and within the scope of the technical solution of the present application, embodiments that have substantially the same configuration as the technical idea and exert the same function and effect are included in the technical scope of the present application.
  • various modifications conceivable by those skilled in the art are added to the embodiments, and other forms constructed by combining some components in the embodiments are also included in the scope of the present application. .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Gas Exhaust Devices For Batteries (AREA)
  • Secondary Cells (AREA)

Abstract

本申请的实施例提供一种电池单体,包括:壳体,具有第一开口;电极组件,容纳于壳体内,电极组件具有第一极耳、第二极耳和第三极耳,第一极耳与第二极耳极性相反,第三极耳与第一极耳或第二极耳极性相同;端盖,用于封闭第一开口;绝缘件,设置于端盖与电极组件之间;其中,第三极耳配置为与绝缘件连接。本申请通过额外设置的电极组件-第三极耳-绝缘件-端盖的散热路径,能够提高电池单体的散热效率,进而提高电池单体的过流能力和安全性能。

Description

电池单体、电池、用电装置、以及制备电池单体的装置和方法 技术领域
本申请涉及电池领域,尤其涉及一种电池单体、电池、用电装置以及制备电池单体的装置和方法。
背景技术
近年来,随着化石能源的日益枯竭及环境污染的压力越来越大,二次电池得到了前所未有的重视和发展。二次电池的应用范围越来越广泛,例如应用于水力、火力、风力和太阳能电站等储能电源系统,以及电动工具、电动自行车、电动摩托车、电动汽车、军事装备、航空航天等多个领域。
二次电池的电池单体在使用过程中会产生热量。如果散热不及时,或是未设置有效的散热通道,电池单体会因内部温度过高而发生一系列化学反应,导致电池单体性能下降,进而影响二次电池的整体性能。此外,当电池单体过热导致电解液和活性物质产生的气体过多时,电池单体内部压力会迅速增大,由于电池壳体等所能承受的压力有限,故存在电池单体爆炸等安全隐患。
发明内容
鉴于上述问题,本发明提供了一种电池单体、电池、用电装置以及制备电池单体的设备和方法,其通过额外设置的第三极耳来提供额外的散热通道,从而提高电池单体内部热量的散热效率。
第一方面,提供了一种电池单体,包括:壳体,具有第一开口;电极组件,容纳于所述壳体内,所述电极组件具有第一极耳、第二极耳和第三极耳,所述第一极耳与所述第二极耳极性相反,所述第三极耳与所述第一极耳或所述第二极耳极性相同;端盖,用于封闭所述第一开口;绝缘件,设置于所述端盖与所述电极组件之间;其中,所述第三极耳配置为与所述绝缘件连接。
由此,本申请实施例的技术方案相较于现有的电池单体的散热路径(电极组件-第一、第二极耳-电极端子),因额外设置了第三极耳,从而增加了电池单体的散热路径(即,电极组件-第三极耳-绝缘件-端盖),提高了电池单体的散热效率。另外,第三极耳通过绝缘件与端盖绝缘,即,壳体、 端盖不参与电流回路,从而提升电池单体的安全性。在同等电流过流的情况下,本申请实施例的电池单体温度较低,从而提高了电池单体的过流能力和安全性能。
在一些实施例中,所述第三极耳与所述绝缘件接触。
由此,能够进一步可靠地将电极组件的热量导出,从而提高散热效率。
在一些实施例中,所述绝缘件具有与所述第三极耳接触的第一部分,所述第一部分的厚度小于所述绝缘件的其他部分的厚度。
在一些实施例中,所述第一部分的厚度为0.1mm~0.3mm。
由此,在保证第三极耳和端盖的绝缘性的前提下,通过减薄绝缘件的厚度,使得绝缘件与第三极耳接触的第一部分的散热效率进一步提高。
在一些实施例中,所述绝缘件设置有容纳部,用于容纳所述第三极耳。
在一些实施例中,所述第一开口朝向第一方向,所述容纳部具有朝向第二方向的第二开口,所述第二方向垂直于所述第一方向,所述第三极耳通过所述第二开口进入所述容纳部。
由此,通过将第三极耳设置在容纳部内,一方面可以限定第三极耳的位置,使第三极耳更好地与绝缘件贴合,减小装配间隙所带来的热传递损失,提高散热效率;另一方面可以使折弯的第三极耳和电极组件的端面绝缘,避免由于折弯的第三极耳和电极组件接触而造成电池单体内部短路。
在一些实施例中,所述绝缘件具有本体和盖板,所述盖板被设置为:以在所述第一方向上与所述第一部分形成间隔的方式,覆盖所述第一部分。
在一些实施例中,所述本体和所述盖板为可拆卸连接。
在一些实施例中,所述本体和所述盖板为卡扣连接。
在一些实施例中,所述盖板被配置为抵压所述第三极耳,以将所述第三极耳抵靠于所述本体。
通过本体和盖板可拆卸连接,例如卡扣连接的设计,在安装过程中,可以先将第三极耳放置在绝缘件的第一部分的合适位置,然后盖上盖板,并且盖板使第三极耳抵靠在本体上,从而确保第三极耳和绝缘件更好地贴合,提高散热效率。
在一些实施例中,所述端盖上设置有泄压机构,用于在电池单体的内部压力或温度达到预定阈值时泄放所述电池单体的内部压力,所述绝缘件上设置有绝缘挡板,用于阻挡所述第三极耳和所述泄压机构接触,在所述 第一方向上,所述绝缘挡板的投影设置于所述第一部分的投影与所述泄压机构的投影之间。
在一些实施例中,所述绝缘件上设置有对应于所述泄压机构的泄压孔,所述绝缘挡板设置于所述第一部分与所述泄压孔之间,用于阻挡所述第三极耳穿过所述泄压孔。
在一些实施例中,所述绝缘件具有突起部,所述突起部用于确保所述泄压机构和所述绝缘件间隔设置,避免所述绝缘件与所述泄压机构接触而破坏所述泄压机构,所述泄压孔设置在所述突起部上,所述第一部分和所述突起部通过所述绝缘挡板连接。
由此,通过设置绝缘挡板,可以防止第三极耳与端盖或设置在端盖上的泄压机构接触,从而确保第三极耳与端盖之间的绝缘性。
在一些实施例中,沿与所述第一方向和所述第二方向垂直的第三方向,所述绝缘挡板的宽度比所述第三极耳的宽度与所述突起部的宽度中较小的一个大。
在一些实施例中,沿所述第一方向,所述绝缘挡板的高度比所述第三极耳的厚度与所述突起部上的泄压孔到所述第一部分的最大距离中较大的一个大,并且所述绝缘挡板的高度小于等于所述第一部分到所述电极组件端面的距离。
如果绝缘挡板的高度和/或宽度过大,可能造成安装后第三极耳与绝缘件不能很好地贴合,存在造成热传递损失的间隙,进而可能降低散热效率;如果绝缘挡板的高度和/宽度过小,可能无法通过绝缘挡板实现第三极耳与端盖以及泄压机构之间绝缘的效果。因此,本申请实施例的技术方案通过合理地设置绝缘挡板的高度和/或宽度,可以同时具有良好的绝缘性和散热性。
第二方面,提供了一种电池,包括第一方面的电池单体。
第三方面,提供了一种用电装置,包括第二方面的电池,所述电池用于提供电能。
第四方面,提供一种制备电池单体的装置,包括:壳体制备模块,所述壳体具有第一开口和容纳空间,所述第一开口与所述容纳空间连通;电极组件制备模块,所述电极组件容纳于所述容纳空间内,所述电极组件具有第一极耳、第二极耳和第三极耳,所述第一极耳和所述第二极耳分别用 于与极性相反的两个电极端子连接;端盖制备模块,所述端盖,用于封闭所述第一开口;绝缘件制备模块,所述绝缘件设置于所述端盖面向所述电极组件的一侧,用于隔离所述端盖和所述电极组件;其中,所述第三极耳配置为将所述电极组件的热量经所述绝缘件传导至所述端盖。
第五方面,提供了一种制备电池单体的方法,包括:提供壳体,所述壳体具有第一开口和容纳空间,所述第一开口与所述容纳空间连通;提供电极组件,所述电极组件容纳于所述容纳空间内,所述电极组件具有第一极耳、第二极耳和第三极耳,所述第一极耳和所述第二极耳分别用于与极性相反的两个电极端子连接;提供端盖,所述端盖用于封闭所述第一开口;提供绝缘件,所述绝缘件设置于所述端盖面向所述电极组件的一侧,用于隔离所述端盖和所述电极组件;其中,所述第三极耳配置为将所述电极组件的热量经所述绝缘件传导至所述端盖。
附图说明
此处所说明的附图用来提供对本申请的进一步理解,构成本申请的一部分,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1是本申请一实施例的电池单体的立体分解图。
图2是本申请一实施例的端盖和绝缘件的立体图。
图3是本申请一实施例的电池单体的剖视图。
图4是放大示出图3所示的绝缘件的图。
图5是本申请一实施例的装配后的电极组件和绝缘件的俯视图。
图6是本申请一实施例的绝缘件的立体图。
图7是本申请另一实施例的绝缘件的立体图。
图8是本申请另一实施例的电池单体的立体分解图。
图9是本申请一实施例的电池用作电源的装置的示意图。
图10是本申请一实施例的制备电池单体的装置的示意图。
图11是本申请一实施例的制备电池单体的方法的示意图。
附图标记说明:
1壳体
11第一开口
12容纳空间
2电极组件
21第一极耳
22第二极耳
23第三极耳
3电极端子
4端盖
41泄压机构
5绝缘件
51第一部分
52容纳部
520第二开口
521盖板
522绝缘挡板
53本体
54突起部
60电池单体
600制备电池单体的装置
610壳体制备模块
620电极组件制备模块
630端盖制备模块
640绝缘件制备模块
具体实施例
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
除非另有定义,本申请所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同;本申请中在申请的说明书中所使 用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请;本申请的说明书和权利要求书及上述附图说明中的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。本申请的说明书和权利要求书或上述附图中的术语“第一”、“第二”等是用于区别不同对象,而不是用于描述特定顺序或主次关系。
在本申请中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本申请所描述的实施例可以与其它实施例相结合。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“附接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
本申请中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本申请中字符“/”,一般表示前后关联对象是一种“或”的关系。
本申请中出现的“多个”指的是两个以上(包括两个),同理,“多组”指的是两组以上(包括两组),“多片”指的是两片以上(包括两片)。
图1示出方形结构的二次电池单体60。本申请中,二次电池包括锂离子电池、锂硫电池、钠锂离子电池、钠离子电池或镁离子电池等。
参照图1至图3,本申请一实施例的二次电池单体60包括壳体1,具有第一开口11;电极组件2,容纳于壳体11内,电极组件2具有第一极耳21、第二极耳22和第三极耳23,第一极耳21和第二极耳22极性相反,第三极耳23与第一极耳21或第二极耳22极性相同;端盖4,用于封闭第一开口11;绝缘件5,设置于端盖4与电极组件2之间;其中,第三极耳23配置为与绝缘件5连接。可选地,第三极耳23与绝缘件5接触。
电池单体60可呈圆柱体、扁平体、长方体或其它形状等。电池单体一般按封装的方式分成三种:柱形电池单体、方体方形电池单体和软包电池单体。
本申请的实施例所提到的电池是指包括一个或多个电池单体以提供更高的电压和容量的单一的物理模块。例如,电池可以包括电池模块或电池包等。电池一般包括用于封装一个或多个电池单体的箱体。箱体可以避免液体或其他异物影响电池单体的充电或放电。
多个电池单体60可经由电极端子而被串联和/或并联在一起以应用于各种应用场合。在一些诸如电动汽车等的大功率应用场合,电池的应用包括三个层次:电池单体、电池模块和电池包。随着技术的发展,电池模块这个层次可以被省略,也即,直接由电池单体形成电池包。这一改进使得电池系统的重量能量密度、体积能量密度得到提升的同时零部件数量显著下降。
电池单体60包括电极组件和电解质,电极组件由正极片、负极片和隔膜组成。电池单体主要依靠金属离子在正极片和负极片之间移动来工作。正极片包括正极集流体和正极活性物质层,正极活性物质层涂覆于正极集流体的表面,未涂敷正极活性物质层的集流体凸出于已涂覆正极活性物质层的集流体,未涂敷正极活性物质层的集流体作为正极极耳。以锂离子电池为例,正极集流体的材料可以为铝,正极活性物质可以为钴酸锂、磷酸铁锂、三元锂或锰酸锂等。负极片包括负极集流体和负极活性物质层,负极活性物质层涂覆于负极集流体的表面,未涂敷负极活性物质层的集流体凸出于已涂覆负极活性物质层的集流体,未涂敷负极活性物质层的集流体作为负极极耳。负极集流体的材料可以为铜,负极活性物质可以为碳或硅等。为了保证通过大电流而不发生熔断,正极极耳的数量为多个且层叠在一起,负极极耳的数量为多个且层叠在一起。隔膜的材质可以为PP或PE等。
本申请中,第一极耳21和第二极耳22的极性相反,可以分别为上述的正极极耳或者负极极耳。第三极耳23形成于第一极耳21或第二极耳22所在的集流体,即,第三极耳23可以与第一极耳21或第二极耳22的极性相同。
壳体1用于容纳电极组件2,一端形成第一开口11。本申请对壳体1的形状没有特别的限制,其可以是圆柱形、方形或其他任意的形状。壳体1一般为金属或硬质塑料材质,以对容纳的电极组件2提供必要的强度和硬度的保护。容纳于壳体1内的电极组件2的数量可以为一个或多个,本领域技术人员可根据具体实际需求进行选择。
端盖4用于封闭壳体1的第一开口11,以封闭容纳在壳体1内的电极组件和电解质。端盖4可以由金属或者硬质塑料制成。端盖4上可以附接电极 端子、防爆阀或者注液孔等诸多功能性组件。
绝缘件5设置于端盖4与电极组件2之间,即设置于端盖4面向电极组件2的一侧,也就是绝缘件5设置于端盖4的内侧,附接于端盖4。绝缘件5用于将电极组件2与端盖4进行绝缘,使得电极组件2的电能仅可以通过正极极耳或负极极耳与电极端子连接。绝缘件5可以为PP、PET材料制成。
可选地,第三极耳23与绝缘件5接触(参照图3)。可选地,位于端盖4和电极组件2之间的绝缘件5在对应于电极端子3的位置处镂空,由此,当二次电池充放电时,仅在电极组件2-第一极耳21-电极端子3-外部电源或设备-电极端子3-第二极耳22之间形成完整的电流回路,而第三极耳23与端盖4之间绝缘。即,增设的第三极耳23的目的并不在于增加额外的电流回路,而是在于将电极组件2内部的热量经由绝缘件5导出至端盖4。
因此,相较于现有的电池单体的散热路径(电极组件2-第一、第二极耳21、22-电极端子3),第三极耳23增加了电池单体60的散热路径(即,电极组件2-第三极耳23-绝缘件5-端盖4),从而提高了电池单体的散热效率。在同等电流过流的情况下,本申请实施例的电池单体温度较低,从而提高了电池单体的过流能力和安全性能。可选地,还可以在电池单体60的端盖4的外侧进一步设置冷却装置,使得电池单体60的散热性能进一步提升。
值得注意的是,图1、图2所示的电池单体60中包含两组电极组件2。此时,针对每组电极组件2分别设置第一至第三极耳21~23,即,第一至第三极耳21~23的数量均为两个。本申请的技术方案不限于此,也可以在电池单体60中仅设置一组电极组件2,此时第一至第三极耳21~23的数量均为一个。
可选地,如图3、图4所示,绝缘件5具有与第三极耳23接触的第一部分51,第一部分51的厚度小于绝缘件5的其他部分的厚度。
图3中示出了第三极耳23通过弯折后,其上表面与绝缘件5的第一部分51接触,这样的设置,可以使得第三极耳23与绝缘件5具有较大的接触面积,提高散热效果。
可选地,第一部分51的厚度为0.1mm~0.3mm。绝缘件5的其他部分的厚度根据电池单体60的参数进行设置,通常为0.6mm~0.7mm。在保证第三极耳23和端盖4的绝缘性的前提下,通过减薄绝缘件5与第三极耳23接触的第一部分51的厚度,进一步提高散热效率。并且,第三极耳23经弯折后与绝缘件5接触,占据了较大的端盖4与电极组件2之间的空间,减薄第一部 分51还可以使得这部分空间可以有效容纳第三极耳23,提高电池单体60的能量密度。
可选地,如图5、图6所示,绝缘件还设置有容纳部52,用于容纳第三极耳23。
本申请实施例中,可选地,定义电池单体直立摆放并且电极端子朝上或朝下的状态时,竖直方向的电池单体的高度方向为D1方向,电池单体的厚度方向为D2方向,电池单体的宽度方向为D3方向,如图1所示。
容纳部形成为具有一面开口(第二开口520)的腔体结构(参照图4),即具有:沿第一方向D1相对的顶面和底面,其中,底面包括第一部分51;以及沿第一方向D1连接顶面和底面的侧面。
容纳部52的第二开口520朝向第二方向D2,第二方向D2垂直于第一开口11所朝向的第一方向D1,第三极耳23通过第二开口520进入容纳部52。
由此,通过将第三极耳23设置在容纳部52内,一方面可以限定第三极耳23的位置,使第三极耳23更好地与绝缘件5贴合,减小装配间隙所带来的热传递损失,提高散热效率;另一方面可以使第三极耳23和电极组件2的端面绝缘,避免由于第三极耳23和电极组件2接触而造成电池单体60内的短路。
可选地,如图7所示,绝缘件5具有本体53和盖板521。本体53为贴合端盖4设置的绝缘件5的部分,盖板521为设置于本体53的下方,更接近电极组件2的绝缘件5的部分。可选地,盖板521被设置为:以在第一方向D1上与第一部分51形成间隔的方式,覆盖第一部分51。由此,本体53和盖板521形成容纳腔52,第三极耳23容纳于容纳腔52内。值得注意的是,盖板521与第一部分51的间隔过大时,第三极耳23与第一部分51的接触面积减少,贴合程度降低,从而降低散热效率,因此优选通过盖板521使第三极耳23与第一部分51紧密贴合。例如,可以将间隔设为略小于第三极耳23的厚度(即,第三极耳23和容纳腔52过盈配合),由此,一旦第三极耳23通过第二开口520插入容纳腔,即使在电池的使用过程中,第三极耳23也可以与第一部分51持续紧密贴合。
本体53和盖板521可以一体成型,以节约工序,提高产品生产效率。或者,如图7所示,本体53和盖板521可拆卸连接,可选地,本体53和盖板521可以为卡扣连接,以方便加工,降低制造成本。
可选地,盖板521被配置为抵压第三极耳23,以将第三极耳23抵靠于本体53。由此,通过本体53和盖板521的可拆卸连接,在安装过程中,可以先将第三极耳23放置在绝缘件5的第一部分51的合适位置,然后盖上盖板521,并且盖板521使第三极耳23抵靠在本体53上,从而确保第三极耳23和绝缘件5更好地贴合,提高散热效率。
可选地,端盖4上设置有泄压机构41(参照图2),用于在电池单体60的内部压力或温度达到预定阈值时泄放电池单体60的内部压力。绝缘件5上设置有绝缘挡板522(参照图7),用于阻挡第三极耳23和泄压机构41接触,在第一方向D1上,绝缘挡板522的投影设置于第一部分51的投影与泄压机构41的投影之间。绝缘挡板522可以是容纳腔52的侧壁,其与第二开口520在第二方向D2相对。
可选地,绝缘件5上设置有对应于泄压机构41的泄压孔(未图示)。泄压孔在电池单体60内部与端盖4上的泄压机构41之间提供泄压通道。绝缘挡板522设置于第一部分51与泄压孔之间,用于阻挡第三极耳23穿过泄压孔与端盖4接触,确保第三极耳23与端盖4绝缘。
可选地,如图2和图7所示,绝缘件5具有突起部54,突起部54用于确保泄压机构41和绝缘件5间隔设置,为泄压机构41提供避让空间,避免绝缘件5与泄压机构41接触而破坏泄压机构41。泄压孔可以设置在突起部54上,第一部分51和突起部54通过绝缘挡板522连接。由此,可以确保第三极耳23与端盖4绝缘。
可选地,沿与第一方向D1和第二方向D2垂直的第三方向D3,绝缘挡板522的宽度比第三极耳23的宽度与突起部54的宽度中较小的一个大。由此,通过绝缘挡板522可以避免第三极耳23穿过突起部54上设置的泄压孔与端盖4接触,确保第三极耳23与端盖4的绝缘性。
可选地,沿第一方向D1,绝缘挡板522的高度比第三极耳23的厚度与突起部54上的泄压孔到第一部分51的最大距离中较大的一个大,并且绝缘挡板522的高度小于等于第一部分51到电极组件2端面的距离。由此,既可以保证第三极耳23不能穿过突起部54上设置的泄压孔与端盖4接触,又可以避免因绝缘挡板高度过高而导致壳体和端盖不能适配的问题。
由此,通过合理的设置绝缘挡板522的高度和宽度,一方面可以确保第三极耳23与绝缘件5紧密贴合,提高散热效率;另一方面,可以确保第三极 耳23与端盖4以及泄压机构41之间绝缘,从而可以同时具有良好的绝缘性和散热性。
值得注意的是,如图5、图6所示,当电池单体60包含在第二方向D2上叠置的两组电极组件2时,即,第一极耳21、第二极耳22和第三极耳23的数量均为两个时,第三极耳23可以位于第一极耳21和第二极耳22之间且与突起部54所在位置相对应。针对各第三极耳23分别设置容纳部52,并且两个容纳部52在第二方向D2上隔着绝缘件5的突起部54相对设置。由此,可以使得空间设计更加紧凑。
此外,还可以对本申请的技术方案进行各种变形。例如,如图8所示,第一极耳21和第二极耳22可以分别设置在电极组件2沿第一方向D1的两端。第三极耳23也可以为多个,多个第三极耳23也可以分别设置在电极组件2沿第一方向D1的一端或者两端。
此外,本申请还提供一种电池,电池包括本申请的电池单体。电池还可以包括其他结构,在此不再一一赘述。例如,电池还可以包括汇流部件,汇流部件用于实现多个电池单体60之间的电连接,例如并联或串联或混联。
此外,本申请一个实施例还提供了一种用电装置,该用电装置可以包括前述各实施例中的电池单体60。可选地,如图9所示,用电装置可以为车辆、船舶或航天器。
上文中结合图1至图8描述了本申请实施例的电池单体,下面将结合图9和图10描述本申请实施例的制备电池单体的装置和方法,其中未详细描述的部分可参见前述各实施例。
图10示出本申请实施例的制备电池单体的装置600的示意性框图。根据本申请实施例的制备电池单体的装置600包括:壳体制备模块610,壳体具有第一开口和容纳空间;电极组件制备模块620,电极组件容纳于容纳空间内,电极组件具有第一极耳、第二极耳和第三极耳,第一极耳与第二极耳极性相反,第三极耳与第一极耳或第二极耳极性相同;端盖制备模块630,端盖,用于封闭第一开口;绝缘件制备模块640,绝缘件设置于端盖与电极组件之间;其中,第三极耳配置为与所述绝缘件连接。
图11本申请实施例的制备电池单体的方法700的示意性流程图。如图10所示,该方法700包括:提供壳体710,壳体具有第一开口和容纳空间;提供电极组件720,电极组件容纳于容纳空间内,电极组件具有第一极耳、第二极 耳和第三极耳,第一极耳与第二极耳极性相反,第三极耳与第一极耳或第二极耳极性相同;提供端盖730,端盖用于封闭第一开口;提供绝缘件740,绝缘件设置于端盖与电极组件之间;其中,第三极耳配置为与所述绝缘件连接。
最后,需要说明的是,本申请不限定于上述实施例。上述实施例仅为例示,在本申请的技术方案范围内具有与技术思想实质相同的构成、发挥相同作用效果的实施例均包含在本申请的技术范围内。此外,在不脱离本申请主旨的范围内,对实施例施加本领域技术人员能够想到的各种变形、将实施例中的一部分构成要素加以组合而构筑的其它方式也包含在本申请的范围内。

Claims (19)

  1. 一种电池单体,包括:
    壳体,具有第一开口;
    电极组件,容纳于所述壳体内,所述电极组件具有第一极耳、第二极耳和第三极耳,所述第一极耳与所述第二极耳极性相反,所述第三极耳与所述第一极耳或所述第二极耳极性相同;
    端盖,用于封闭所述第一开口;
    绝缘件,设置于所述端盖与所述电极组件之间;
    其中,所述第三极耳配置为与所述绝缘件连接。
  2. 根据权利要求1所述的电池单体,其中,
    所述第三极耳与所述绝缘件接触。
  3. 根据权利要求2所述的电池单体,其中,
    所述绝缘件具有与所述第三极耳接触的第一部分,所述第一部分的厚度小于所述绝缘件的其他部分的厚度。
  4. 根据权利要求3所述的电池单体,其中,所述第一部分的厚度为0.1mm~0.3mm。
  5. 根据权利要求1~4中任一项所述的电池单体,其中,
    所述绝缘件设置有容纳部,用于容纳所述第三极耳。
  6. 根据权利要求5所述的电池单体,其中,
    所述第一开口朝向第一方向,
    所述容纳部具有朝向第二方向的第二开口,所述第二方向垂直于所述第一方向,所述第三极耳通过所述第二开口进入所述容纳部。
  7. 根据权利要求5或6所述的电池单体,其中,
    所述绝缘件具有本体和盖板,
    所述盖板被设置为:以在所述第一方向上与所述第一部分形成间隔的 方式,覆盖所述第一部分。
  8. 根据权利要求7所述的电池单体,其中,
    所述本体和所述盖板为可拆卸连接。
  9. 根据权利要求8所述的电池单体,其中,
    所述本体和所述盖板为卡扣连接。
  10. 根据权利要求7~9中任一项所述的电池单体,其中,
    所述盖板被配置为抵压所述第三极耳,以将所述第三极耳抵靠于所述本体。
  11. 根据权利要求1~10中任一项所述的电池单体,其中,
    所述端盖上设置有泄压机构,用于在电池单体的内部压力或温度达到预定阈值时泄放所述电池单体的内部压力,
    所述绝缘件上设置有绝缘挡板,用于阻挡所述第三极耳和所述泄压机构接触;
    在所述第一方向上,所述绝缘挡板的投影设置于所述第一部分的投影与所述泄压机构的投影之间。
  12. 根据权利要求11所述的电池单体,其中,
    所述绝缘件上设置有对应于所述泄压机构的泄压孔,
    所述绝缘挡板设置于所述第一部分与所述泄压孔之间,用于阻挡所述第三极耳穿过所述泄压孔。
  13. 根据权利要求11或12所述的电池单体,其中,
    所述绝缘件具有突起部,所述突起部用于使得所述泄压机构和所述绝缘件间隔设置,所述泄压孔设置在所述突起部上,
    所述第一部分和所述突起部通过所述绝缘挡板连接。
  14. 根据权利要求13所述的电池单体,其中,
    沿与所述第一方向和所述第二方向垂直的第三方向,所述绝缘挡板的宽度比所述第三极耳的宽度与所述突起部的宽度中较小的一个大。
  15. 根据权利要求13所述的电池单体,其中,
    沿所述第一方向,所述绝缘挡板的高度比所述第三极耳的厚度与所述突起部上的泄压孔到所述第一部分的最大距离中较大的一个大,并且所述绝缘挡板的高度小于等于所述第一部分到所述电极组件端面的距离。
  16. 一种电池,包括如权利要求1-15中任一项所述的电池单体。
  17. 一种用电装置,包括如权利要求16所述的电池,所述电池用于提供电能。
  18. 一种制备电池单体的装置,包括:
    壳体制备模块,所述壳体具有第一开口和容纳空间;
    电极组件制备模块,所述电极组件容纳于所述容纳空间内,所述电极组件具有第一极耳、第二极耳和第三极耳,所述第一极耳与所述第二极耳极性相反,所述第三极耳与所述第一极耳或所述第二极耳极性相同;
    端盖制备模块,所述端盖,用于封闭所述第一开口;
    绝缘件制备模块,所述绝缘件设置于所述端盖与所述电极组件之间;
    其中,所述第三极耳配置为与所述绝缘件连接。
  19. 一种制备电池单体的方法,包括:
    提供壳体,所述壳体具有第一开口和容纳空间;
    提供电极组件,所述电极组件容纳于所述容纳空间内,所述电极组件具有第一极耳、第二极耳和第三极耳,所述第一极耳与所述第二极耳极性相反,所述第三极耳与所述第一极耳或所述第二极耳极性相同;
    提供端盖,所述端盖用于封闭所述第一开口;
    提供绝缘件,所述绝缘件设置于所述端盖与所述电极组件之间;
    其中,所述第三极耳配置为与所述绝缘件连接。
PCT/CN2021/098017 2021-06-02 2021-06-02 电池单体、电池、用电装置、以及制备电池单体的装置和方法 WO2022252165A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
PCT/CN2021/098017 WO2022252165A1 (zh) 2021-06-02 2021-06-02 电池单体、电池、用电装置、以及制备电池单体的装置和方法
JP2023504845A JP7475536B2 (ja) 2021-06-02 2021-06-02 電池セル、電池、電力利用装置、並びに電池セルを製造する装置及び方法
KR1020237002285A KR20230027234A (ko) 2021-06-02 2021-06-02 전지 셀, 전지, 전기 장치, 및 전지 셀의 제조 장치 및 방법
EP21943532.8A EP4167348A4 (en) 2021-06-02 2021-06-02 BATTERY CELL, BATTERY, POWER CONSUMING DEVICE, AND BATTERY CELL MANUFACTURING APPARATUS AND METHOD
CN202180075233.6A CN116438696A (zh) 2021-06-02 2021-06-02 电池单体、电池、用电装置、以及制备电池单体的装置和方法
US18/094,035 US20230163405A1 (en) 2021-06-02 2023-01-06 Battery cell, battery, electrical device and device and method for preparing battery cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/098017 WO2022252165A1 (zh) 2021-06-02 2021-06-02 电池单体、电池、用电装置、以及制备电池单体的装置和方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/094,035 Continuation US20230163405A1 (en) 2021-06-02 2023-01-06 Battery cell, battery, electrical device and device and method for preparing battery cell

Publications (1)

Publication Number Publication Date
WO2022252165A1 true WO2022252165A1 (zh) 2022-12-08

Family

ID=84322724

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/098017 WO2022252165A1 (zh) 2021-06-02 2021-06-02 电池单体、电池、用电装置、以及制备电池单体的装置和方法

Country Status (6)

Country Link
US (1) US20230163405A1 (zh)
EP (1) EP4167348A4 (zh)
JP (1) JP7475536B2 (zh)
KR (1) KR20230027234A (zh)
CN (1) CN116438696A (zh)
WO (1) WO2022252165A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN207409606U (zh) * 2017-02-21 2018-05-25 深圳市格瑞普电池有限公司 易于散热的锂离子电池组
CN109860797A (zh) * 2017-06-28 2019-06-07 湖南妙盛汽车电源有限公司 一种锂离子动力电池
CN209434258U (zh) * 2019-03-13 2019-09-24 宁德新能源科技有限公司 电池结构
US20190372085A1 (en) * 2017-05-29 2019-12-05 Lg Chem, Ltd. Battery pack and manufacturing method therefor
CN209993628U (zh) * 2019-05-30 2020-01-24 中兴高能技术有限责任公司 一种电池的止动架、盖板组件和电池
CN210668610U (zh) * 2019-01-28 2020-06-02 天津荣事顺发电子有限公司 一种电池包散热和温度平衡装置
CN212751072U (zh) * 2020-07-13 2021-03-19 长沙宝锋能源科技有限公司 一种多极耳软包锂离子电池

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006172870A (ja) 2004-12-15 2006-06-29 Toyota Motor Corp 電池と組電池
KR101073010B1 (ko) 2010-04-19 2011-10-12 삼성에스디아이 주식회사 이차 전지
JP5422524B2 (ja) * 2010-09-03 2014-02-19 三菱重工業株式会社 電池
DE102012218991A1 (de) 2012-10-18 2014-06-12 Bayerische Motoren Werke Aktiengesellschaft Energiespeicherzelle und Energiespeichermodul
JP5668742B2 (ja) * 2012-10-18 2015-02-12 トヨタ自動車株式会社 蓄電モジュールおよび蓄電装置
JP6020920B2 (ja) 2013-04-09 2016-11-02 株式会社デンソー 蓄電素子
US9666907B2 (en) 2013-09-03 2017-05-30 Ut-Battelle, Llc Thermal management for high-capacity large format Li-ion batteries
JP2017059508A (ja) 2015-09-18 2017-03-23 リチウム エナジー アンド パワー ゲゼルシャフト ミット ベシュレンクテル ハフッング ウント コンパニー コマンディトゲゼルシャフトLithium Energy and Power GmbH & Co. KG 蓄電素子
JP7166901B2 (ja) 2018-12-10 2022-11-08 古河電気工業株式会社 電池冷却装置
KR102582068B1 (ko) * 2019-11-25 2023-09-22 컨템포러리 엠퍼렉스 테크놀로지 씨오., 리미티드 배터리 셀, 배터리 모듈, 배터리 팩, 배터리 셀을 전원으로 사용하는 장치, 및 배터리셀 조립 방법

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN207409606U (zh) * 2017-02-21 2018-05-25 深圳市格瑞普电池有限公司 易于散热的锂离子电池组
US20190372085A1 (en) * 2017-05-29 2019-12-05 Lg Chem, Ltd. Battery pack and manufacturing method therefor
CN109860797A (zh) * 2017-06-28 2019-06-07 湖南妙盛汽车电源有限公司 一种锂离子动力电池
CN210668610U (zh) * 2019-01-28 2020-06-02 天津荣事顺发电子有限公司 一种电池包散热和温度平衡装置
CN209434258U (zh) * 2019-03-13 2019-09-24 宁德新能源科技有限公司 电池结构
CN209993628U (zh) * 2019-05-30 2020-01-24 中兴高能技术有限责任公司 一种电池的止动架、盖板组件和电池
CN212751072U (zh) * 2020-07-13 2021-03-19 长沙宝锋能源科技有限公司 一种多极耳软包锂离子电池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4167348A4 *

Also Published As

Publication number Publication date
EP4167348A1 (en) 2023-04-19
US20230163405A1 (en) 2023-05-25
EP4167348A4 (en) 2024-09-04
JP7475536B2 (ja) 2024-04-26
CN116438696A (zh) 2023-07-14
KR20230027234A (ko) 2023-02-27
JP2023541773A (ja) 2023-10-04

Similar Documents

Publication Publication Date Title
EP2595238B1 (en) Battery pack having compact structure
EP3424094B1 (en) Battery pack
US10217980B2 (en) Secondary battery
US8895181B2 (en) Battery module
JP2011124214A (ja) 二次電池
KR102332343B1 (ko) 전지 모듈
WO2023070290A1 (zh) 电池单体、电池、用电设备、制造电池单体的方法和设备
KR102113155B1 (ko) 전지모듈 및 전지팩
KR20150113479A (ko) 이차전지
CN219017777U (zh) 电池单体、电池、用电设备以及制备电池单体的装置
WO2022252165A1 (zh) 电池单体、电池、用电装置、以及制备电池单体的装置和方法
WO2023155208A1 (zh) 电池、用电设备、制备电池的方法和设备
WO2022170485A1 (zh) 电池、用电装置、制备电池的方法和制备电池的装置
KR20230129053A (ko) 배터리, 전기 장치, 배터리 제조 방법 및 장치
KR20220039589A (ko) 배터리 모듈, 배터리 팩, 및 이를 포함하는 자동차
WO2023004832A1 (zh) 电池单体、电池、装置、以及电池单体的制造方法和制造设备
KR20080071313A (ko) 이차 전지
CN116544570B (zh) 电池单体、电池及用电装置
US20240047785A1 (en) Battery cell, battery, electrical device, and battery cell manufacturing method
CN218957868U (zh) 单体电池以及车辆
CN220400841U (zh) 电池连接巴片、电池和用电装置
CN218996884U (zh) 一种电池壳体和二次电池
WO2024145827A1 (zh) 电池单体、电池及用电装置
WO2023231457A1 (zh) 电极组件、电池单体、电池及用电装置
WO2023070288A1 (zh) 端盖组件、电池单体及其制备方法、电池和用电装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21943532

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023504845

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021943532

Country of ref document: EP

Effective date: 20230110

NENP Non-entry into the national phase

Ref country code: DE