WO2022170485A1 - 电池、用电装置、制备电池的方法和制备电池的装置 - Google Patents

电池、用电装置、制备电池的方法和制备电池的装置 Download PDF

Info

Publication number
WO2022170485A1
WO2022170485A1 PCT/CN2021/076279 CN2021076279W WO2022170485A1 WO 2022170485 A1 WO2022170485 A1 WO 2022170485A1 CN 2021076279 W CN2021076279 W CN 2021076279W WO 2022170485 A1 WO2022170485 A1 WO 2022170485A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
electrode terminal
pressure relief
battery cells
relief mechanism
Prior art date
Application number
PCT/CN2021/076279
Other languages
English (en)
French (fr)
Inventor
李金凤
王磊
秦峰
王鹏
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to PCT/CN2021/076279 priority Critical patent/WO2022170485A1/zh
Priority to CN202180071661.1A priority patent/CN116368659A/zh
Priority to EP21908114.8A priority patent/EP4071910A4/en
Priority to US17/846,529 priority patent/US20220376353A1/en
Publication of WO2022170485A1 publication Critical patent/WO2022170485A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/658Means for temperature control structurally associated with the cells by thermal insulation or shielding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/317Re-sealable arrangements
    • H01M50/325Re-sealable arrangements comprising deformable valve members, e.g. elastic or flexible valve members
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/482Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/64Heating or cooling; Temperature control characterised by the shape of the cells
    • H01M10/643Cylindrical cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6554Rods or plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/213Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for cells having curved cross-section, e.g. round or elliptic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/503Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing characterised by the shape of the interconnectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/547Terminals characterised by the disposition of the terminals on the cells
    • H01M50/548Terminals characterised by the disposition of the terminals on the cells on opposite sides of the cell
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the field of energy storage devices, and more particularly, to a battery, an electrical device, a method for preparing a battery, and a device for preparing a battery.
  • the present application provides a battery, an electrical device, a method for preparing a battery, and a device for preparing a battery, so as to improve the safety of the battery.
  • a battery comprising: a plurality of battery cells arranged along a first direction and electrically connected to each other, at least one of the two adjacent battery cells having a pressure relief mechanism, The pressure relief mechanism is arranged at one end of the battery cell along the first direction; a sampling part is connected to the battery cell and is used for signal acquisition of the battery cell; and a protective member is located at the between the two adjacent battery cells and opposite to the pressure relief mechanism, there is an exhaust space between the protective member and the pressure relief mechanism, wherein the protective member is fixed to the sampling pieces.
  • a sampling member is used for signal acquisition, and a pressure relief mechanism is formed at one end of at least one battery cell. Therefore, the pressure relief mechanism is located between two adjacent battery cells.
  • the temperature of the gas it sprays is as high as more than a thousand degrees.
  • the pressure relief mechanism is located between two adjacent battery cells, the heat generated by the thermal runaway battery cell will be further conducted to another battery cell disposed opposite to it, resulting in serious thermal runaway.
  • the sampling part is also located between the two battery cells, it is also easy to cause damage to the sampling part.
  • a protective member is fixed on the sampling part, so that the protective member is located between two adjacent battery cells and is opposite to the pressure relief mechanism, so that the protective member can be used to achieve heat insulation and fire prevention when thermal runaway occurs. , preventing the heat generated by the thermally runaway battery cell from being further conducted to another battery cell disposed opposite to it. Furthermore, by forming an exhaust space between the protective member and the pressure relief mechanism, the air guide exhaust can be easily performed, so that the aforementioned problem of thermal runaway diffusion does not occur.
  • a face of the guard member opposite the pressure relief mechanism is a plane.
  • a surface of the shield member opposite the pressure relief mechanism is a curved surface.
  • the surface of the protective member opposite to the pressure relief mechanism refers to the face of the protective member facing the pressure relief mechanism.
  • the protective member includes a base portion and a protruding portion, the base portion is disposed opposite to the pressure relief mechanism, the protruding portion is located at one end of the base portion along the second direction, and extends from the base portion in the second direction.
  • the base portion extends toward a direction close to the pressure relief mechanism, and the second direction is perpendicular to the first direction. That is, the base portion of the protective member is disposed opposite to the pressure relief mechanism, so as to prevent the excrement ejected from the pressure relief mechanism from being sprayed to the opposite battery cells.
  • the discharge of the pressure relief mechanism includes high temperature gas or liquid or solid impurities or flame, etc.
  • the excrement can be prevented from being directly sprayed to other adjacent battery cells, thereby reducing defects caused to other battery cells adjacent to one end in the second direction. influences.
  • the protective member has the protruding portion at both ends of the base portion along the second direction. This can more effectively prevent the excrement from being directly sprayed to other adjacent battery cells, thereby reducing adverse effects on other battery cells adjacent to both ends in the second direction.
  • a surface of the protruding portion adjacent to the base portion is a curved surface, and the curved surface is formed in a manner of being recessed toward the base portion. That is, by connecting the protruding portion and the base portion with the curved surface, the excrement ejected from the pressure relief mechanism can be smoothly guided.
  • a surface of the protruding portion adjacent to the base portion is provided with a plurality of protruding guide bars, the plurality of guide bars are arranged along a third direction, and the third direction is perpendicular to the first one direction and the second direction. Since the guide bars for guiding the flow are formed, and a plurality of guide bars are arranged in the third direction, the excrement can be better guided to both sides of the pressure relief mechanism in the second direction by using these guide bars.
  • a plurality of protrusions are formed between two adjacent guide bars. Such protrusions can more effectively reduce the flow rate of excrement.
  • the protrusions protrude from the surface of the guard member to a height that is less than the height to which the guide bars protrude from the surface of the guard member. Therefore, the protrusion will not affect the guiding effect of the guide bar on the excrement.
  • the area of the portion of the protective member disposed opposite to the pressure relief mechanism is 0.35-1.5 times the area of the pressure relief mechanism.
  • the mounting plate there is also a mounting plate, two ends of the mounting plate along the first direction are respectively connected to the two adjacent battery cells, and the mounting plate is used for fixing the sampling member.
  • the sampler can be fixed with a simple structure.
  • a plurality of ventilation holes are formed on the mounting plate, and a guide member is provided in an area of the mounting plate adjacent to the ventilation holes for guiding the excrement discharged from the pressure relief mechanism to the vent hole.
  • the guide can guide the excrement discharged from the pressure relief mechanism to the vent hole, thereby further preventing thermal runaway in adjacent battery cells.
  • the guide member and the mounting plate are of a one-piece structure, and the guide member has an inclined surface inclined from the guard member to the vent hole. That is, the guide is a part of the mounting plate, and an inclined surface inclined from the guard member toward the vent hole is formed on the mounting plate to guide the excrement discharged from the pressure relief mechanism to the vent hole of the mounting plate.
  • each of the battery cells includes a can body and two electrode terminals with opposite polarities, the two electrode terminals are respectively disposed at both ends of the can body along the first direction, and at least One of the electrode terminals protrudes from the can body in a direction away from the interior of the battery cell.
  • a gap is formed between the two adjacent battery cells, and a connecting portion of the sampling member is located in the gap, and the connecting portion is used to connect all the battery cells.
  • the electrode terminal of the battery cell, and the guard member is fixed to the connection portion.
  • the connecting portion is connected to a circumferential sidewall of the electrode terminal.
  • the connecting portion has elasticity and is configured to be deformed in response to an external force to fit the circumferential sidewall of the electrode terminal to achieve surface contact with the electrode terminal. Because the connecting part has elasticity, it can be elastically deformed under the action of external force to contact the electrode terminal surface, so the connecting part can be adaptively tightly fitted with the electrode terminal, and a stable electrical connection between the sampling element and the electrode terminal can be realized with a simple structure. .
  • the electrode terminal protruding from the can body is cylindrical, and the wrapping angle of the connecting portion to the electrode terminal is greater than 0 degrees and less than 180 degrees.
  • the connecting portion is clamped on the circumferential sidewall of the electrode terminal. That is, the connection portion is electrically connected to the circumferential side wall of the electrode terminal by a snap-fit connection method, whereby a stable electrical connection can be realized.
  • the connecting portion completely fits the sidewall of the electrode terminal.
  • the contact area between the two can be increased by making the connection part completely fit the circumferential side wall of the electrode terminal, and a more stable and good electrical connection can be achieved.
  • the size of the wrapping of the electrode terminal by the connecting portion is greater than or equal to 1/2 of the perimeter of the side wall of the electrode terminal and less than the perimeter of the side wall of the electrode terminal. Since the connecting portion is formed with an opening for engaging the circumferential side wall of the electrode terminal, and wraps the electrode terminal in a large area, the structural stability can be improved.
  • the electrode terminal protruding from the can body is cylindrical, and the wrapping angle of the connecting portion to the electrode terminal is greater than or equal to 180 degrees and less than 360 degrees. Since the electrode terminal is cylindrical, the sampling element can be more easily attached to the electrode terminal.
  • the inner surface of the connecting portion is provided with a plurality of convex portions for clamping the circumferential sidewall of the electrode terminal.
  • the circumferential sidewall of the electrode terminal is formed with a plurality of concave portions corresponding to the convex portions, and the convex portions are matched with the concave portions.
  • the two electrode terminals of each battery cell protrude from the can body in a direction away from the interior of the battery cell, and among two adjacent battery cells, one The electrode terminal of the battery cell and the electrode terminal of the other battery cell are disposed opposite to each other and are in contact with each other. Since the electrode terminals of the two adjacent battery cells are directly abutted to achieve electrical connection, the number of electrical connection parts can be reduced, and the energy density of the battery can be improved.
  • the electrode terminal of one of the battery cells and the electrode terminal of the other battery cell are welded together. By directly welding the two protruding electrode terminals in this way, stable electrical connection between the two adjacent battery cells can be achieved.
  • the electrode terminal of one battery cell and the electrode terminal of the other battery cell are welded together, and the The contact area of the sampling member and the electrode terminal and the welding area of the electrode terminal are staggered along the first direction.
  • uneven welding areas are often formed on the two electrode terminals.
  • an electrical device including: the battery of the first aspect.
  • the battery is used to provide electrical energy.
  • a method for preparing a battery comprising: providing a plurality of battery cells, the plurality of battery cells are arranged along a first direction and are electrically connected to each other, and at least one of two adjacent battery cells is One of the battery cells has a pressure relief mechanism, and the pressure relief mechanism is arranged at one end of the battery cell along the first direction; a sampling part is provided, and the sampling part is connected to the battery cell for performing signal acquisition on the battery cells; and providing a protective member, the protective member is located between the two adjacent battery cells and is opposite to the pressure relief mechanism, and the protective member is connected to the pressure relief mechanism. There is an exhaust space between the pressure relief mechanisms, wherein the protective member is fixed to the sampling member.
  • an apparatus for preparing a battery comprising: a first providing module for providing a plurality of battery cells, the plurality of battery cells are arranged along a first direction and are electrically connected to each other, and two adjacent battery cells are electrically connected to each other.
  • At least one of the battery cells has a pressure relief mechanism, and the pressure relief mechanism is arranged at one end of the battery cell along the first direction; a second providing module is used to provide a fixed protection a sampling part of a component; an installation module, used for connecting the sampling part to the battery cell, the sampling part is used for signal acquisition of the battery cell; and used for making the protective member located in the battery cell Between two adjacent battery cells and opposite to the pressure relief mechanism, there is an exhaust space between the protective member and the pressure relief mechanism.
  • FIG. 1 is a schematic diagram of a vehicle according to an embodiment of the application.
  • FIG. 2 is a schematic structural diagram of a battery according to an embodiment of the application.
  • FIG. 3 is a schematic structural diagram of a matrix arrangement of a plurality of battery cells according to an embodiment of the present application
  • FIG. 4 is a schematic structural diagram of a plurality of battery cells according to an embodiment of the present application.
  • FIG. 5 is an enlarged schematic structural diagram of an electrical connection portion of two battery cells according to an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of a sampling member formed with a protective member according to an embodiment of the application.
  • FIG. 7 is a schematic structural diagram of a protective member according to an embodiment of the application.
  • FIG. 8 is a schematic structural diagram of a protective member formed with guide bars according to an embodiment of the application.
  • FIG. 9 is a structure of a protective member according to another embodiment of the application.
  • FIG. 10 is a schematic structural diagram of a ventilation hole and a guide according to an embodiment of the application.
  • FIG. 11 is a schematic diagram of the assembly structure of the sampling part and the mounting plate according to an embodiment of the application, wherein, Fig. 11(a) is a three-dimensional schematic diagram of the separation of the sampling part and the mounting plate, and Fig. 11(b) is the installation of the sampling part and the mounting plate A schematic side view of the structure between two adjacent battery cells, FIG. 11(c) is a schematic three-dimensional structure when the sampling part is combined with the mounting plate;
  • Fig. 12 is a schematic diagram of the assembly structure of a sampling part and a mounting plate according to another embodiment of the application, wherein, Fig. 12(a) is a three-dimensional schematic diagram of the separation of the sampling part and the mounting plate, and Fig. 12(b) is the sampling part and the mounting plate A schematic side view of the structure installed between two adjacent battery cells, Fig. 12(c) is a schematic three-dimensional structure when the sampling part is combined with the mounting plate;
  • FIG. 13 is a schematic structural diagram of a sampling member according to another embodiment of the application, wherein FIG. 13(a) shows a state in which the sampling member is not in contact with the electrode terminal, and FIG. 13(b) shows a state in which the sampling member is in contact with the electrode terminal;
  • FIG. 14 is a schematic flowchart of a method for preparing a battery according to an embodiment of the present application.
  • FIG. 15 is a schematic block diagram of an apparatus for preparing a battery according to an embodiment of the present application.
  • the terms “installed”, “connected”, “connected” and “attached” should be understood in a broad sense, for example, it may be a fixed connection, It can also be a detachable connection, or an integral connection; it can be directly connected, or indirectly connected through an intermediate medium, and it can be internal communication between two components.
  • installed should be understood in a broad sense, for example, it may be a fixed connection, It can also be a detachable connection, or an integral connection; it can be directly connected, or indirectly connected through an intermediate medium, and it can be internal communication between two components.
  • multiple refers to two or more (including two), and similarly, “multiple groups” refers to two or more groups (including two groups), and “multiple sheets” refers to two or more sheets (includes two pieces).
  • the battery mentioned in the embodiments of the present application refers to a single physical module including a plurality of battery cells to provide higher voltage and capacity.
  • the batteries mentioned in this application may include battery modules or battery packs, and the like.
  • the battery cell includes an electrode assembly and an electrolyte, and the electrode assembly includes a positive electrode sheet, a negative electrode sheet and a separator.
  • the battery cell mainly relies on the movement of metal ions between the positive and negative plates to work.
  • the positive electrode sheet includes a positive electrode current collector and a positive electrode active material layer, the positive electrode active material layer is coated on the surface of the positive electrode current collector, the current collector without the positive electrode active material layer protrudes from the current collector coated with the positive electrode active material layer, and the positive electrode active material layer is not coated.
  • the current collector coated with the positive electrode active material layer serves as the positive electrode tab.
  • the material of the positive electrode current collector can be aluminum, and the positive electrode active material can be lithium cobalt oxide, lithium iron phosphate, ternary lithium, or lithium manganate.
  • the negative electrode sheet comprises a negative electrode current collector and a negative electrode active material layer, the negative electrode active material layer is coated on the surface of the negative electrode current collector, the current collector without the negative electrode active material layer protrudes from the current collector coated with the negative electrode active material layer, The current collector coated with the negative electrode active material layer was used as the negative electrode tab.
  • the material of the negative electrode current collector can be copper, and the negative electrode active material can be carbon or silicon.
  • the number of positive tabs is multiple and stacked together, and the number of negative tabs is multiple and stacked together.
  • the material of the diaphragm can be PP or PE, etc.
  • the electrode assembly may be a wound structure or a laminated structure, and the embodiment of the present application is not limited thereto.
  • the temperature of the gas ejected is as high as more than 1,000 degrees.
  • the pressure relief mechanism is located between two adjacent battery cells, the heat generated by the thermal runaway battery cell will be further conducted to another battery cell disposed opposite to it, resulting in serious thermal runaway.
  • the sampling part is also located between the two battery cells, it is also easy to cause damage to the sampling part.
  • a battery comprising: a plurality of battery cells arranged along a first direction and electrically connected to each other, at least one of the battery cells in two adjacent battery cells
  • the body has a pressure relief mechanism, and the pressure relief mechanism is arranged at one end of the battery cell along the first direction; a sampling part is connected to the battery cell and is used for signal acquisition of the battery cell; and a protective member, located between the two adjacent battery cells and opposite to the pressure relief mechanism, there is an exhaust space between the protective member and the pressure relief mechanism, wherein the protective A member is fixed to the sampling piece.
  • the protective member installed on the sampling part can be used to prevent heat from being heat-insulated and fireproof when thermal runaway occurs, preventing the heat generated by the thermally runaway battery cell from being further conducted to another battery cell disposed opposite to it, and the protective member can be used in the protective member.
  • the exhaust space formed between the pressure relief mechanism can easily conduct air guide and exhaust, so that the aforementioned problem of thermal runaway diffusion will not occur.
  • An embodiment of the present application provides an electrical device, and a battery is used to provide electrical energy.
  • the technical solutions described in the embodiments of this application are applicable to various devices using batteries, such as mobile phones, portable devices, notebook computers, battery cars, electric toys, electric tools, electric vehicles, ships, and spacecraft.
  • the spacecraft includes Planes, rockets, space shuttles and spaceships, etc.
  • the vehicle 100 may be a fuel vehicle, a gas vehicle or a new energy vehicle, and the new energy vehicle may be a pure electric vehicle, a hybrid vehicle or Extended range cars, etc.
  • the interior of the vehicle 100 may be provided with a motor 2 , a controller 3 and a battery 1 , and the controller 3 is used to control the battery 1 to supply power to the motor 2 .
  • the battery 1 may be provided at the bottom or the front or rear of the vehicle 100 .
  • the battery 1 can be used for power supply of the vehicle 100 , for example, the battery 1 can be used as the operating power source of the vehicle 100 , for the circuit system of the vehicle 100 , for example, for the starting, navigation and operation of the vehicle 100 .
  • the battery 1 can not only be used as the operating power source of the vehicle 100 , but also can be used as the driving power source of the vehicle 100 to provide driving power for the vehicle 100 instead of or partially instead of fuel or natural gas.
  • the battery 1 may include a plurality of battery cells 20, wherein the plurality of battery cells 20 may be connected in series or in parallel or in a mixed connection, and a mixed connection refers to a mixture of series and parallel connections.
  • the battery 1 may include a plurality of battery cells 10 , and each battery cell 10 includes a plurality of battery cells 10 arranged along the first direction X and electrically connected to each other. Connected battery cells 20 .
  • the plurality of battery cells 10 are arranged along the second direction Y.
  • the second direction Y is perpendicular to the first direction X. That is, the plurality of battery cells 20 in the battery 1 are arranged in a matrix-like structure.
  • the battery 1 may also have only one battery unit 10 , and the battery unit 10 includes a plurality of battery cells 20 arranged along the first direction X and electrically connected.
  • the battery 1 may further include a case body 11 , the interior of the case body 11 is a hollow structure, and a plurality of battery cells 20 are accommodated in the case body 11 .
  • the box body 11 may include two parts, which are referred to here as an upper cover 111 and a box shell 112 respectively.
  • the upper cover 111 and the box shell 112 are snapped together.
  • the shapes of the upper cover 111 and the case 112 may be determined according to the combined shape of the plurality of battery cells 20 .
  • both the upper cover 111 and the box shell 112 may be hollow cuboids with only one surface being an open surface, the opening of the upper cover 111 and the opening of the box shell 112 are arranged opposite to each other, and the upper cover 111 and the box shell 112 are snapped together to form a A box that closes the chamber.
  • the upper cover 111 is a rectangular parallelepiped with an opening and the box shell 112 is a plate shape, or the box shell 112 is a rectangular parallelepiped with an opening and the upper cover 111 is a plate shape.
  • a box with a closed chamber is formed. After the plurality of battery cells 20 are connected in parallel or in series or in a mixed connection, they are placed in the box formed by the upper cover 111 and the box shell 112 being fastened together.
  • the plurality of battery cells 20 are arranged along the first direction X and are electrically connected to each other to form the battery cell 10 .
  • the battery cell 10 is formed by connecting a plurality of battery cells 20 in series.
  • the plurality of battery cells 10 are arranged in the second direction Y, and the plurality of battery cells 10 are electrically connected through the bus member 60.
  • FIG. 4 it is a schematic structural diagram of a plurality of battery cells 10 according to an embodiment of the present application (three battery cells 10 are shown in FIG. 4 , and each battery cell 10 is shown with two battery cells 20 ).
  • the battery cell 20 includes a can body 21 , two electrode terminals 214 with opposite polarities, and one or more electrode assemblies (not shown) disposed in the can body 21 .
  • the can body 21 is determined according to the combined shape of one or more electrode assemblies.
  • the can body 21 may be a hollow cuboid, a square, or a cylinder.
  • the tank body 21 includes a casing 211 and an end cap 212 .
  • One end of the casing 211 along the first direction X has an opening, so that one or more electrode assemblies can be placed in the can body 21 from the opening, and the opening is closed with an end cap 212 .
  • the tank body 21 is filled with electrolyte, such as electrolyte.
  • both ends of the casing 211 along the first direction X have openings respectively, and the tank body 21 includes two end caps 212 , which respectively close the openings at both ends of the casing 211 .
  • the two electrode terminals 214 are respectively a positive electrode terminal and a negative electrode terminal, and are respectively disposed at both ends of the tank body 21 along the first direction. Specifically, the two electrode terminals 214 are respectively disposed on the two end caps 212 , and at least one The electrode terminals 214 protrude from the can body 21 in a direction away from the interior of the battery cells 20 . Since the two electrode terminals 214 are respectively disposed on the two end caps 212, the electrode terminals 214 can be insulated from the end caps 212, so the can body 21 can be insulated from the positive electrode and/or the negative electrode without being charged. When the can body 21 is not charged, the probability of short circuit can be reduced, thereby improving the safety performance of the battery cell 20 .
  • a plurality of (two are shown in FIG. 4 ) battery cells 20 are arranged along the first direction X and are electrically connected to each other to form the battery cell 10 .
  • the respective electrode terminals 214 of the two battery cells 20 that are electrically connected protrude from the can body 21 in a direction away from the interior of the battery cells 20 .
  • the electrode terminal 214 of one of the two battery cells 20 may also protrude from the can body 21 in a direction away from the interior of the battery cell 20 , while the electrode terminal 214 of the other battery cell 20 is connected to the end of the battery cell 20 .
  • Cover 212 is flush.
  • both electrode terminals 214 of each battery cell 20 protrude from the can body 21 in a direction away from the interior of the battery cell 20 .
  • the electrode terminals 214 of the two battery cells 20 are directly connected to achieve electrical connection.
  • the electrical connection of the two battery cells 20 can also be realized by connecting structures such as connecting sheets.
  • the electrode terminal 214 can be in various shapes such as a cylinder, a rectangular parallelepiped, a cube, and a polygonal cylinder, and the electrode terminal shown in this embodiment is a cylinder-shaped structure.
  • the battery cell 20 may be a rectangular parallelepiped, a cube or a cylinder, and the battery cell shown in this embodiment is a cylindrical structure.
  • first direction in this application refers to the axial direction of the battery cell.
  • FIG. 5 it is an enlarged schematic structural diagram of an electrical connection portion of two battery cells 20 according to an embodiment of the present application.
  • the sampling member 30 is at least partially located between two adjacent battery cells 20 and is connected to the electrode terminals 214 protruding from the tank body 21 for signalling the connected battery cells 20 collection.
  • a gap 213 is formed between the tanks 21 of two adjacent battery cells 20 , and the sampling member 30 is at least partially located in the gap 213 .
  • the battery 1 also has a mounting plate 31 , two ends of the mounting plate 31 along the first direction X are respectively connected to the can bodies 21 of two adjacent battery cells 20 , so that the mounting plate 31 is connected to the battery cells 20 .
  • One of the two adjacent battery cells 20 has a pressure relief mechanism 50 , and the pressure relief mechanism 50 is disposed at one end of the battery cell 20 along the first direction X.
  • a protective member 51 is provided on the surface of the sampling member 30 facing the pressure relief mechanism 50 .
  • the protective member 51 is arranged opposite to the pressure relief mechanism 50 .
  • an exhaust space is formed between the shield member 51 and the pressure relief mechanism 50 .
  • the pressure relief mechanism 50 faces the gap 213 of the two battery cells 20 , and the portion of the sampling member 30 for electrical connection with the electrode terminal 214 is located in the gap 213 .
  • the protective member 51 is located between two adjacent battery cells 20, and is disposed opposite to the pressure relief mechanism 50. When thermal runaway occurs, the protective member 51 can be used to achieve heat insulation and fire prevention, and prevent thermal runaway. The heat generated by the battery cell 20 is further conducted to another battery cell 20 disposed opposite to it. Furthermore, by forming an exhaust space between the shield member 51 and the pressure relief mechanism 50, the air guide exhaust can be easily performed, so that the problem of thermal runaway diffusion does not occur.
  • FIG. 6 it is a schematic structural diagram of a sampling member 30 formed with a protective member 51 according to an embodiment of the present application.
  • the electrode terminal 214 includes two end surfaces disposed along the first direction X and a circumferential side wall connecting the two end surfaces.
  • the sampling member 30 has a connection portion 301 for electrical connection with the protruding electrode terminal 214 .
  • the connecting portion 301 of the sampling member 30 is used for connecting to the circumferential side wall of the electrode terminal 214 for signal acquisition.
  • the electrode terminal 214 can be in various shapes such as a cylinder, a rectangular parallelepiped, a square, and a polygonal cylinder.
  • the circumferential side wall refers to the peripheral side of the cylinder. .
  • the sampling member 30 is fixed to the mounting plate 31 , and is mounted to the battery cell 20 via the mounting plate 31 . The specific structures of the sampling member 30 and the mounting plate 31 will be described in detail later based on FIGS. 11 to 13 .
  • the protective member 51 is fixed to the sampling member 30 .
  • the protective member 51 is located between two adjacent battery cells 20 and is opposite to the pressure relief mechanism 50, and there is an exhaust space between the protective member 51 and the pressure relief mechanism 50.
  • the guard member 51 is formed in a plane shape.
  • the protective member 51 is integrally formed with the sampling member 30 .
  • the guard member 51 is formed separately from the sampling member 30 , and the guard member 51 is fixed to the sampling member 30 .
  • the protective member 51 can be integrally formed with the sampling member 30 by means of in-mold injection molding, etc., or can be connected together by clamping, and can also be combined with the sampling member 30 by hot-press riveting or gluing.
  • the guard member 51 contains a heat insulating material. Further, the surface of the protective member 51 is coated with a fireproof material. Therefore, the protective member 51 can prevent the excrement ejected from the pressure relief mechanism 50 from being ejected to the opposite battery cells 20, thereby preventing the excrement from being ejected to the opposite battery cells 20 and causing thermal runaway. The protective member 51 can also cool and extinguish the waste while blocking the waste.
  • the protective member 51 can be made of one of mica, ceramic felt, aerogel, and glass fiber, or a combination of several of them.
  • the protective member 51 is at least partially disposed opposite to the pressure relief mechanism 50 .
  • the area of the portion where the protective member 51 is opposed to the pressure relief mechanism 50 is 0.35 to 1.5 times the area of the pressure relief mechanism 50 .
  • FIG. 7 it is a schematic structural diagram of a protective member 51 according to an embodiment of the present application.
  • the surface A of the protective member 51 opposite to the pressure relief mechanism 50 is a plane.
  • the protective member 51 includes a base portion 511 and a protruding portion 512 , the base portion 511 is disposed opposite the pressure relief mechanism 50 , and the protruding portions 512 are located at both ends of the base portion 511 along the second direction Y, and the pressure relief from the base portion 511 is close to the pressure relief mechanism 50 .
  • the direction of the mechanism 50 extends, the second direction Y is perpendicular to the first direction X.
  • the protruding portion 512 may also be formed only at one end of the base portion 511 along the second direction Y.
  • a surface of the protruding portion 512 adjacent to the base portion 511 is a curved surface B, and the curved surface B is formed so as to be recessed toward the base portion 511 .
  • the base portion 511 of the protective member 51 is disposed opposite the pressure relief mechanism 50 to prevent the excrement ejected from the pressure relief mechanism 50 from being sprayed to the oppositely disposed battery cells 20 .
  • the protruding portion 512 at one end of the base portion 511 along the second direction Y, the excrement can be prevented from being directly sprayed to the other adjacent battery cells 20, thereby reducing the impact on the adjacent one end in the second direction Y.
  • the other battery cells 20 have adverse effects.
  • the protective member 51 may have protruding portions 512 at both ends of the base portion 511 along the second direction Y.
  • the surface of the protective member 51 opposite to the pressure relief mechanism 50 is shown as a plane structure, but the surface of the protective member 51 opposite to the pressure relief mechanism 50 may be a curved surface.
  • FIG. 8 it is a schematic structural diagram of a guide bar 501 formed on the protective member 51 according to an embodiment of the present application.
  • a plurality of protruding guide bars 501 are disposed on the surface of the protruding portion 512 adjacent to the base portion 511 , and the plurality of guide bars 501 are arranged along a third direction Z, which is perpendicular to the first direction X and the second direction Y. Since the guide bars 501 for guiding the flow are formed and a plurality of guide bars 501 are arranged in the third direction Z, the excrement can be better guided to the second direction Y of the pressure relief mechanism 50 by using these guide bars 501 .
  • a plurality of protrusions 502 are formed between two adjacent guide bars 501 .
  • the height by which the protrusion 502 protrudes from the surface of the guard member 51 is smaller than the height by which the guide bar 501 protrudes from the surface of the guard member 51 .
  • Such protrusions 502 can more effectively reduce the flow rate of the excrement, and the protrusions 502 will not affect the guiding effect of the guide bar 501 on the excrement.
  • FIG. 9 it is the structure of the protection member 51 according to another embodiment of the present application.
  • the surface of the protective member 51 opposite to the pressure relief mechanism 50 is a curved surface, and the curved surface is smoothly connected with the curved surface connecting the base portion 511 and the protruding portion 512 to form an integral body.
  • the flow of the excrement ejected from the pressure relief mechanism 50 is smoothly guided to both ends in the second direction Y as shown by the arrows in FIG. 9 .
  • both the guide bar 501 and the protrusion 502 shown in FIG. 8 can be formed on the guard member 51 shown in FIG. 9 , and the protruding portion 512 can also be formed only at one end of the base portion 511 along the second direction Y.
  • a ventilation hole 503 is formed on the mounting plate 31 , and a guide member 504 for guiding the exhaust gas to the ventilation hole 503 is formed.
  • vent holes 503 are formed on the mounting plate 31 , and a guide member 504 is provided in the region of the mounting plate 31 adjacent to the vent holes 503 for guiding the excrement of the pressure relief mechanism 51 to the vent hole 503 . Accordingly, the guide 504 can guide the excrement discharged from the pressure relief mechanism 50 to the vent hole 503 , thereby further preventing thermal runaway in the adjacent battery cells 20 .
  • the guide 504 may also have an integral structure with the mounting plate 31 , and the guide 504 has an inclined surface inclined from the guard member 51 to the ventilation hole 503 . That is, the guide 504 is a part of the mounting plate 31 , and the mounting plate 31 forms an inclined surface inclined from the guard member 51 to the vent hole 503 to guide the excrement discharged from the pressure relief mechanism 50 to the vent hole 503 of the mounting plate 31 .
  • FIG. 11 it is a schematic diagram of the assembly structure of the sampling member 30 and the mounting plate 31 according to an embodiment of the present application.
  • 11(a) is a three-dimensional schematic diagram of the separation of the sampling member 30 and the mounting plate 31 of the present embodiment
  • FIG. 11(b) is the sampling member 30 and the mounting plate 31 of the present embodiment installed on two adjacent batteries
  • FIG. 11( c ) is a schematic three-dimensional structure when the sampling member 30 and the mounting plate 31 are combined together in this embodiment.
  • the mounting plate 31 has a mounting portion 310 and two extending portions 312 .
  • the mounting portion 310 is connected between the two extending portions 312 and is used for fixing the sampling member 30 .
  • the sampling member 30 has a connecting portion 301 and a fixing portion 302 .
  • the extending direction of the fixing portion 302 intersects with the extending direction of the connecting portion 301 , so that the sampling member 30 is formed in a 7-shape or a T-shape, for example.
  • One sampling member 30 may have a plurality of connecting portions 301 arranged along the second direction Y, and each connecting portion 301 is connected to the circumferential sidewalls of the corresponding electrode terminals 214 of the battery cells 10 arranged along the second direction Y. Moreover, the mounting plate 31 is also extended in the second direction Y correspondingly, and a plurality of sampling pieces 30 can be mounted.
  • FIG. 11( a ) shows a configuration in which the sampling member 30 has three connection portions 301 .
  • the sampling member 30 can simultaneously collect electrical signals of the plurality of battery cells 20 arranged in the second direction Y, and the electrodes of the plurality of battery cells 20 that are electrically connected to the plurality of connection portions 301 of one sampling member 30
  • the terminals 214 can have equal potentials, so as to achieve voltage balance of the battery cells 20 and improve the consistency of the battery cells 20 .
  • the two extending portions 312 of the mounting plate 31 are respectively overlapped with the can bodies 21 of the two adjacent battery cells 20 .
  • the extension portion 312 is in the shape of a flat plate.
  • the extension portion 312 is bonded to the can body 21 of the battery cell 20 to fix the mounting plate 31 to the can body 21 .
  • the mounting portion 310 of the mounting plate 31 is recessed in a direction close to the gap 213 to form a groove 311 . Due to the existence of the groove 311 , circuit components for transmitting electrical signals can be arranged in the space of the groove 311 , thereby improving space utilization and improving the energy density of the battery.
  • the mounting portion 310 is engaged with the gap 213 , and in the first direction X, the width W1 of the mounting portion 310 is substantially the same as the width W of the gap 213 . Accordingly, when the mounting plate 31 is mounted, the mounting portion 310 can be used for positioning, and the movement between the two adjacent battery cells 20 can also be prevented.
  • the electrode terminal 214 includes two end surfaces disposed along the first direction X and a circumferential side wall connecting the two end surfaces.
  • the connection portion 301 of the sampling member 30 is connected to the circumferential side wall of the electrode terminal 214 for signal acquisition.
  • the fixing portion 302 of the sampling member 30 passes through the mounting portion 310 and is fixed with the mounting portion 310 , thereby fixing the sampling member 30 to the mounting plate 31 .
  • the electrode terminal 214 can be in various shapes such as a cylinder, a rectangular parallelepiped, a square, and a polygonal cylinder.
  • the circumferential side wall refers to the peripheral side of the cylinder. .
  • the mounting plate 31 and the sampling member 30 may be integrally formed by in-mold injection or other methods, or may be separate structures, connected together by snap connection, or may be connected by hot pressing riveting or the like.
  • the mounting plate 31 is formed of, for example, polycarbonate (Polycarbonate) and polyacrylonitrile (ABS) material to have an insulating function
  • the sampling member 30 is formed of, for example, aluminum alloy or steel, for collecting and transmitting signals.
  • the signal collected by the sampling element 30 is transmitted to a signal processor or the like for processing through a flexible flat cable (eg, FFC) or a flexible circuit board (eg, FPC) or the like.
  • the sampling member 30 is exposed on the upper surface of the mounting board 31 , so that the flexible flat cable (or the flexible circuit board) can be in contact with the sampling member 30 and the collected signals can be transmitted.
  • the extension portion 312 of the mounting plate 31 shown in the embodiment of the present application is formed such that the portion that contacts the can body of the battery cell 20 is a flat plate, but the structure of the mounting plate 31 is not limited to this, and can also be formed as Curved plates that fit in shape with the circumferential sides of the can body of the battery cells 20 that are in contact.
  • the battery 1 may also include a temperature sampler. The temperature sampler may be disposed on the mounting plate 31 and contact the can body 21 of the battery cell 20 to measure the temperature.
  • the connecting portion 301 is clamped to the circumferential sidewall of the electrode terminal 214 .
  • the connecting portion 301 is formed with an opening 304 on the opposite side of the mounting plate 31 and the opening 304 has elasticity.
  • the opening 304 is first made to pass through the elasticity. It is deformed and opened, and then clamped to the circumferential side wall of the electrode terminal 214 to be engaged with the electrode terminal 214 . After assembly, the elastic restoring force of the opening 304 can maintain the engagement with the electrode terminal 214 , so as to tightly fit the electrode terminal 214 .
  • Such an installation structure is simple and convenient, and no additional fixing structure is required.
  • the gap 213 between the two battery cells 20 can be fully utilized without occupying too much space for the configuration of the battery cells 20, and the energy density of the battery can be correspondingly improved.
  • the wrapping size of the connecting portion 301 to the electrode terminal 214 is greater than or equal to 1/2 of the circumferential sidewall circumference of the electrode terminal 214 and less than the circumferential sidewall circumference of the electrode terminal 214 . Since the connection portion 301 is formed with an opening for engaging the circumferential side wall of the electrode terminal 214 and wraps the electrode terminal 214 in a wide range, the structural stability can be improved.
  • the wrapping angle of the electrode terminal 214 by the connecting portion 301 is greater than or equal to 180 degrees and less than 360 degrees. Since the electrode terminal 214 is cylindrical, the sampling member 30 can be more easily attached to the electrode terminal 214 .
  • a plurality of protrusions 303 may be provided on the inner surface of the sampling member 30 for clamping the circumferential side surfaces of the electrode terminals 214 .
  • a plurality of concave portions corresponding to the convex portion 303 are formed on the circumferential side surface of the electrode terminal 214 to cooperate with the convex portion 303. Accordingly, movement or rotation of the connection portion 301 with respect to the electrode terminal 214 can be prevented, thereby improving connection stability.
  • FIG. 12 it is a schematic diagram of the assembly structure of the sampling member 30 and the mounting plate 31 according to another embodiment of the present application.
  • 12(a) is a schematic diagram of the three-dimensional structure in which the sampling member 30 and the mounting plate 31 of the present embodiment are separated
  • FIG. 12(b) is the sampling member 30 and the mounting plate 31 of the present embodiment installed on two adjacent batteries
  • FIG. 12( c ) is a schematic three-dimensional structure when the sampling member 30 and the mounting plate 31 are combined together in this embodiment.
  • the connecting portion 301 of the sampling member 30 completely fits the circumferential side wall of the electrode terminal 214 . Also, in the first direction X, the dimension W2 of the connection portion 301 is substantially the same as the dimension W of the gap 213 . As a result, the connecting portion 301 can be caught exactly in the gap 213 between the two battery cells 20 .
  • the connecting portion 301 is engaged with the circumferential side wall of the electrode terminal 214 .
  • the connecting portion 301 is formed with an opening 304 on the opposite side of the mounting plate 31 and the opening 304 has elasticity.
  • the opening 304 is first opened by elastic deformation, and then clamped to the electrode terminal.
  • the electrode terminal 214 is engaged with the circumferential side wall of the electrode terminal 214 .
  • the elastic restoring force of the opening 304 can maintain the engagement with the electrode terminal 214 , so as to tightly fit the electrode terminal 214 .
  • the wrapping size of the connecting portion 301 to the electrode terminal 214 is greater than or equal to 1/2 of the circumferential sidewall circumference of the electrode terminal 214 and less than the circumferential sidewall circumference of the electrode terminal 214 .
  • the wrapping angle of the electrode terminal 214 by the connecting portion 301 is greater than or equal to 180 degrees and less than 360 degrees.
  • the distal end 305 at the opening 304 of the connecting portion 301 is bent in the direction of the mounting plate 31 . Therefore, the sharp end 305 of the connecting portion 301 is prevented from contacting the circumferential side surface of the electrode terminal 214, which can prevent the end 305 of the connecting portion 301 from causing damage to the electrode terminal 214 during the clamping process.
  • the sampler 30 can be fixed by the distal end 305 , thereby further preventing the sampler 30 from falling off the electrode terminal 214 .
  • the ends 305 are accommodated in the gaps between the battery cells 10 adjacent in the Y direction. In this way, damage to the circumferential side surfaces of the battery cells 20 by the connection portions 301 can be reduced, and space can be effectively utilized.
  • FIG. 13 it is a schematic perspective view of the structure of a sampling member 30 according to another embodiment of the present application.
  • FIG. 13( a ) shows a state in which the connecting portion 301 of the sampling member 30 is not in contact with the electrode terminal 214 and has not yet been elastically deformed.
  • the shape of the circumferential side surface of the closing electrode terminal 214 is determined.
  • the sampling member 30 has a connecting portion 301 and a fixing portion 302 .
  • the connection portion 301 of the present embodiment is also connected to the circumferential side wall of the electrode terminal 214 .
  • the connecting portion 301 has elasticity, and can deform in response to the external force, so as to fit against the circumferential sidewall of the electrode terminal 214 , so as to achieve surface contact with the electrode terminal 214 .
  • the external force here may be the gravity of the battery cell 20 itself, the pressure during battery assembly, the fixing force of other fixing components, and the like.
  • the elastic deformation of the connecting portion 301 can adaptively fit the circumferential side wall of the electrode terminal 214 to achieve good surface contact with the electrode terminal 214 , thereby realizing the electrical connection between the sampling member 30 and the electrode terminal 214 more stably.
  • the connecting portion 301 is fixed to the support member 306 via the fixing portion 302 .
  • the two electrode terminals 214 of each battery cell 20 protrude from the can body 21 in a direction away from the interior of the battery cell 20 , and are in two adjacent battery cells 20 .
  • the electrode terminal 214 of one battery cell 20 and the electrode terminal 214 of the other battery cell 20 are disposed opposite to each other and are in contact with each other.
  • the electrode terminal 214 of one battery cell 20 is welded with the electrode terminal 214 of the other battery cell 20 .
  • the electrode terminals 214 of the two adjacent battery cells 20 are directly abutted to achieve electrical connection, the number of electrical connection parts can be reduced, and the energy density of the battery can be improved. Furthermore, by directly welding the two protruding electrode terminals 214 in this way, it is possible to realize stable electrical connection between the two adjacent battery cells 20 .
  • An embodiment of the present application further provides an electrical device, and the electrical device may include the battery 1 in the foregoing embodiments.
  • the battery 1 is used in the electrical device to provide electrical energy.
  • FIG. 14 shows a schematic flowchart of a method 400 for preparing a battery according to an embodiment of the present application. As shown in Figure 14, the method 400 may include:
  • the plurality of battery cells 20 are arranged along the first direction X and are electrically connected to each other, and at least one of the two adjacent battery cells 20 has a pressure relief mechanism 50, The pressure relief mechanism 50 is disposed at one end of the battery cell 20 along the first direction X;
  • the sampling part 30 is connected to the battery cell 20, and used for signal acquisition of the battery cell 20;
  • the protective member 51 is located between two adjacent battery cells 20, and is disposed opposite the pressure relief mechanism 50, and there is an exhaust space between the protective member 51 and the pressure relief mechanism 50,
  • the protective member 51 is fixed to the sampling member 30 .
  • FIG. 15 shows a schematic block diagram of an apparatus 500 for preparing a battery according to an embodiment of the present application.
  • the apparatus 500 for preparing a battery may include: a first supply module 510 , a second supply module 520 and an installation module 530 .
  • the first providing module 510 is used to provide a plurality of battery cells 20, the plurality of battery cells 20 are arranged along the first direction X and are electrically connected to each other, and at least one battery cell 20 in two adjacent battery cells 20 It has a pressure relief mechanism 50, and the pressure relief mechanism 50 is arranged at one end of the battery cell 20 along the first direction X;
  • the second providing module 520 is used to provide the sampling part 30 with the protective member 51 fixed;
  • the installation module 530 is used for connecting the sampling part 30 to the battery cells 20 , and the sampling part 30 is used for signal acquisition of the battery cells 20 ; and the protective member 51 is located between two adjacent battery cells 20 , and is arranged opposite to the pressure relief mechanism 51 , and there is an exhaust space between the protective member 51 and the pressure relief mechanism 50 .

Abstract

本申请实施例提供了一种电池、用电装置、制备电池的方法和装置。所述电池包括:多个电池单体,沿第一方向排列且相互电连接,相邻的两个电池单体中的至少一个所述电池单体具有泄压机构,所述泄压机构设置于所述电池单体沿所述第一方向的一端;采样件,连接于所述电池单体,用于对所述电池单体进行信号采集;和防护构件,位于所述相邻的两个电池单体之间,并且与所述泄压机构相对设置,所述防护构件与所述泄压机构之间具有排气空间,其中,所述防护构件固定于所述采样件。本申请实施例的技术方案,能够增强电池的安全性。

Description

电池、用电装置、制备电池的方法和制备电池的装置 技术领域
本申请涉及储能装置领域,并且更具体地,涉及一种电池、用电装置、制备电池的方法和制备电池的装置。
背景技术
节能减排是汽车产业可持续发展的关键。在这种情况下,电动车辆由于其节能环保的优势成为汽车产业可持续发展的重要组成部分。而对于电动车辆而言,电池技术又是关乎其发展的一项重要因素。
随着电池技术的不断发展,对电池的性能提出了更高的要求,希望电池能够同时考虑多方面的设计因素。
发明内容
本申请提供一种电池、用电装置、制备电池的方法和制备电池的装置,以提高电池的安全性。
第一方面,提供了一种电池,包括:多个电池单体,沿第一方向排列且相互电连接,相邻的两个电池单体中的至少一个所述电池单体具有泄压机构,所述泄压机构设置于所述电池单体沿所述第一方向的一端;采样件,连接于所述电池单体,用于对所述电池单体进行信号采集;和防护构件,位于所述相邻的两个电池单体之间,并且与所述泄压机构相对设置,所述防护构件与所述泄压机构之间具有排气空间,其中,所述防护构件固定于所述采样件。
本申请实施例的技术方案,对于在第一方向上排列且电连接的多个电池单体,利用采样件进行信号采集,且在至少一个电池单体的一端形成有泄压机构。因此,泄压机构处于相邻的两个电池单体之间。
通常当泄压机构打开时,其喷射出的气体的温度高达一千多度。当泄压机构处于相邻的两个电池单体之间时,热失控电池单体所产生的热量会进一步传导至与其相对设置的另一电池单体,造成严重的热失控。当采样件也处于两个电池单体之间时,还容易对采样件造成破坏。
本申请的技术方案通过在采样件固定有防护构件,使防护构件位于相邻的两个电池单体之间,且与泄压机构相对设置,能够在发生热失控时利用防 护构件实现隔热防火,阻止热失控电池单体所产生的热量进一步传导至与其相对设置的另一电池单体。而且通过在防护构件与泄压机构之间形成排气空间,能够容易地进行导气排气,使得不会发生前述的热失控扩散的问题。
在一些实施例中,所述防护构件的与所述泄压机构相对设置的面是平面。
在一些实施例中,所述防护构件的与所述泄压机构相对设置的面是曲面。
此处,防护构件的与泄压机构相对设置的面是指防护构件与泄压机构正对着的面。
在一些实施例中,所述防护构件包括基体部和凸出部,所述基体部与所述泄压机构相对设置,所述凸出部位于所述基体部沿第二方向的一端,并且从所述基体部朝靠近所述泄压机构的方向延伸,所述第二方向垂直于所述第一方向。即防护构件的基体部与泄压机构相对设置,以阻挡从泄压机构喷出的排泄物向相对的电池单体喷射。泄压机构的排泄物包括高温气体或液体或固体杂质或火焰等。而且通过在基体部的沿第二方向的一端形成有凸出部,能够阻挡排泄物直接喷向相邻的其他电池单体从而减小对在第二方向一端相邻的其它电池单体造成不良影响。
在一些实施例中,所述防护构件在所述基体部沿第二方向的两端均具有所述凸出部。由此能够更有效地阻挡排泄物直接喷向相邻的其他电池单体,从而减小对在第二方向两端相邻的其它电池单体造成不良影响。
在一些实施例中,所述凸出部的邻接所述基体部的表面是曲面,且所述曲面以向所述基体部凹陷的方式形成。即通过曲面将凸出部与基体部连接在一起,由此能够顺畅地引导从泄压机构喷出的排泄物。
在一些实施例中,所述凸出部的邻接所述基体部的表面设置有多个突出的引导条,所述多个引导条沿第三方向排列,所述第三方向垂直于所述第一方向和所述第二方向。由于形成有用于导流的引导条,且在第三方向上排列有多个引导条,能够利用这些引导条更好地将排泄物向泄压机构的第二方向的两侧引导。
在一些实施例中,在相邻的两个所述引导条之间形成有多个突起。这样的突起能够更有效地降低排泄物的流速。
在一些实施例中,所述突起从所述防护构件的表面凸出的高度小于所述引导条从所述防护构件的表面凸出的高度。由此,突起不会影响引导条对排泄物的导流效果。
在一些实施例中,所述防护构件与所述泄压机构相对设置的部分的面积为所述泄压机构面积的0.35~1.5倍。通过使防护构件在第一方向上与泄压机构相对设置的部分的面积处于该范围,能够有效地阻挡从泄压机构喷出的排泄物,良好地引导泄压机构的排气,防止相邻的电池单体发生热失控。
在一些实施例中,还具有安装板,所述安装板沿所述第一方向的两端分别连接于相邻的两个所述电池单体,所述安装板用于固定所述采样件。由此能够以简单的结构固定采样件。
在一些实施例中,在所述安装板形成有多个通气孔,且所述安装板邻近所述通气孔的区域设置有引导件,用于将从所述泄压机构排出的排泄物引导至所述通气孔。由此,引导件能够将泄压机构排出的排泄物向通气孔引导,从而进一步防止在相邻的电池单体引发热失控。
在一些实施例中,所述引导件与所述安装板为一体式结构,所述引导件具有从所述防护构件向所述通气孔倾斜的倾斜面。即,引导件是安装板的一部分,在安装板形成从防护构件向通气孔倾斜的倾斜面,以向安装板的通气孔引导从泄压机构排出的排泄物。
在一些实施例中,各个所述电池单体包括罐体和极性相反的两个电极端子,所述两个电极端子分别设置在所述罐体沿所述第一方向的两端,并且至少一个所述电极端子从所述罐体朝远离所述电池单体内部的方向突出。
在一些实施例中,在所述第一方向上,所述相邻的两个电池单体之间形成有间隙,所述采样件的连接部位于该间隙中,所述连接部用于连接所述电池单体的所述电极端子,所述防护构件固定于所述连接部。由此,能够利用相邻的电池单体之间的间隙配置采样件,减少采样件所占用的空间,使结构更加紧凑,提高电池的能量密度。
在一些实施例中,所述连接部连接于所述电极端子的周向侧壁。通过在从罐体突出的电极端子的周向侧壁而不是在电极端子的端面进行信号采集,能够进一步减少采样件的占用空间,使结构更加紧凑,提高电池的能量密度。
在一些实施例中,所述连接部具有弹性,被配置为响应外力作用而变形以贴合所述电极端子的所述周向侧壁,以与所述电极端子实现面接触。由于连接部具有弹性,在外力作用下能够弹性变形而与电极端子面接触,因此能够使连接部自适应地与电极端子紧密配合,以简单的结构实现采样件和电极端子之间稳定的电连接。
在一些实施例中,从所述罐体突出的所述电极端子呈圆柱状,所述连接部对所述电极端子的包裹角度大于0度且小于180度。
在一些实施例中,所述连接部卡接于所述电极端子的所述周向侧壁。即,利用卡合的连接方式将连接部与电极端子的周向侧壁电连接,由此能够实现稳固的电连接。
在一些实施例中,所述连接部完全贴合所述电极端子的侧壁。在通过弹性变形或卡接而实现电连接时,通过使连接部完全贴合电极端子的周向侧壁,能够提高两者的的接触面积,能够更稳定地实现良好的电连接。
在一些实施例中,所述连接部对所述电极端子的包裹尺寸大于或等于所述电极端子的侧壁周长的1/2且小于所述电极端子的侧壁周长。由于连接部形成有用于卡合电极端子周向侧壁的开口,且大范围地包裹电极端子,因此可以提高结构稳定性。
在一些实施例中,从所述罐体突出的所述电极端子呈圆柱状,所述连接部对所述电极端子的包裹角度为大于或等于180度且小于360度。由于电极端子为圆柱状,因此采样件可以更容易地安装于电极端子。
在一些实施例中,所述连接部的内表面设置有多个凸部,用于卡紧所述电极端子的所述周向侧壁。在一些实施例中,所述电极端子的所述周向侧壁形成有多个与所述凸部对应的凹部,所述凸部与所述凹部配合。由此能够阻止连接部相对于电极端子发生移动或转动,从而提高结构稳定性。
在一些实施例中,各个电池单体的所述两个电极端子均从所述罐体朝远离所述电池单体内部的方向突出,并且在相邻的两个所述电池单体中,一个所述电池单体的所述电极端子与另一个所述电池单体的所述电极端子相对设置且抵接。由于相邻的两个所述电池单体的电极端子直接抵接来实现电连接,因此可减少电连接部件,提高电池的能量密度。
在一些实施例中,在相邻的两个所述电池单体中,一个所述电池单体的所述电极端子与另一个所述电池单体的所述电极端子焊接在一起。通过像这样将两个突出的电极端子直接焊接,能够实现相邻的两个所述电池单体之间稳定电连接。
在一些实施例中,在相邻的两个所述电池单体中,一个所述电池单体的所述电极端子与另一个所述电池单体的所述电极端子焊接在一起,并且所述采样件与所述电极端子的接触区域与所述电极端子的焊接区域沿所述第一 方向错开。将两个电极端子进行焊接时,往往会在两个电极端子上形成凹凸不平的焊接区域。通过使采样件与电极端子的接触区域与电极端子的焊接区域在第一方向上错开,能够避免采样件连接到焊接区域而导致接触不良而采样精度降低,而且能够提高装配精度。
第二方面,提供了一种用电装置,包括:第一方面的电池。所述电池用于提供电能。
第三方面,提供了一种制备电池的方法,包括:提供多个电池单体,所述多个电池单体沿第一方向排列且相互电连接,相邻的两个电池单体中的至少一个所述电池单体具有泄压机构,所述泄压机构设置于所述电池单体沿所述第一方向的一端;提供采样件,所述采样件连接于所述电池单体,用于对所述电池单体进行信号采集;和提供防护构件,所述防护构件位于所述相邻的两个电池单体之间,并且与所述泄压机构相对设置,所述防护构件与所述泄压机构之间具有排气空间,其中,所述防护构件固定于所述采样件。
第四方面,提供了一种制备电池的装置,包括:第一提供模块,用于提供多个电池单体,所述多个电池单体沿第一方向排列且相互电连接,相邻的两个电池单体中的至少一个所述电池单体具有泄压机构,所述泄压机构设置于所述电池单体沿所述第一方向的一端;第二提供模块,用于提供固定有防护构件的采样件;安装模块,用于将所述采样件连接于所述电池单体,所述采样件用于对所述电池单体进行信号采集;并且用于使所述防护构件位于所述相邻的两个电池单体之间,并且与所述泄压机构相对设置,所述防护构件与所述泄压机构之间具有排气空间。
附图说明
此处所说明的附图用来提供对本申请的进一步理解,构成本申请的一部分,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1为本申请一个实施例的车辆的示意图;
图2为本申请一个实施例的电池的结构示意图;
图3为本申请一个实施例的多个电池单体矩阵状排列的结构示意图;
图4为本申请一个实施例的多个电池单元的结构示意图;
图5为本申请一个实施例的两个电池单体电连接部分的放大结构示意图;
图6为本申请一个实施例的采样件形成有防护构件的结构示意图;
图7为本申请一个实施例的防护构件的结构示意图;
图8为本申请一个实施例的防护构件形成有引导条的结构示意图;
图9为本申请另一实施例的防护构件的结构;
图10为本申请一个实施例的通气孔和引导件的结构示意图;
图11为本申请一个实施例的采样件与安装板的组装结构示意图,其中,图11(a)是采样件与安装板分离的立体结构示意图,图11(b)是采样件和安装板安装于相邻的两个电池单体之间的侧视结构示意图,图11(c)是采样件与安装板组合在一起时的立体结构示意图;
图12为本申请另一个实施例的采样件与安装板的组装结构示意图,其中,图12(a)是采样件与安装板分离的立体结构示意图,图12(b)是采样件和安装板安装于相邻的两个电池单体之间的侧视结构示意图,图12(c)是采样件与安装板组合在一起时的立体结构示意图;
图13为本申请另一个实施例的采样件的结构示意图,其中,图13(a)表示采样件未与电极端子接触的状态,图13(b)表示采样件与电极端子接触的状态;
图14为本申请一个实施例的制备电池的方法的示意性流程图;
图15为本申请一个实施例的制备电池的装置的示意性框图。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
除非另有定义,本申请所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同;本申请中在申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请;本申请的说明书和权利要求书及上述附图说明中的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。本申请的说明书和权利要求书或上述附图中的术语“第一”、“第二”等是用于区别不同对象,而不是用于描述特定顺序或主次关系。
在本申请中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本申请所描述的实施例可以与其它实施例相结合。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“附接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
本申请中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本申请中字符“/”,一般表示前后关联对象是一种“或”的关系。
本申请中出现的“多个”指的是两个以上(包括两个),同理,“多组”指的是两组以上(包括两组),“多片”指的是两片以上(包括两片)。
本申请的实施例所提到的电池是指包括多个电池单体以提供更高的电压和容量的单一的物理模块。例如,本申请中所提到的电池可以包括电池模块或电池包等。
电池单体包括电极组件和电解液,电极组件包括正极片、负极片和隔离膜。电池单体主要依靠金属离子在正极片和负极片之间移动来工作。正极片包括正极集流体和正极活性物质层,正极活性物质层涂覆于正极集流体的表面,未涂敷正极活性物质层的集流体凸出于已涂覆正极活性物质层的集流体,未涂敷正极活性物质层的集流体作为正极极耳。以锂离子电池为例,正极集流体的材料可以为铝,正极活性物质可以为钴酸锂、磷酸铁锂、三元锂或锰酸锂等。负极片包括负极集流体和负极活性物质层,负极活性物质层涂覆于负极集流体的表面,未涂敷负极活性物质层的集流体凸出于已涂覆负极活性物质层的集流体,未涂敷负极活性物质层的集流体作为负极极耳。负极集流体的材料可以为铜,负极活性物质可以为碳或硅等。为了保证通过大电流而不发生熔断,正极极耳的数量为多个且层叠在一起,负极极耳的数量为多个且层叠在一起。隔膜的材质可以为PP或PE等。此外,电极组件可以是卷绕 式结构,也可以是叠片式结构,本申请实施例并不限于此。
电池技术的发展要同时考虑多方面的设计因素,例如,能量密度、循环寿命、放电容量、充放电倍率等性能参数,另外,还需要考虑电池的安全性。
目前,电动汽车的电池往往需要几十甚至上千个电池单体构成。
在实际应用中,由于电池单体之间具有某些参数的微小差异(例如电压、内阻、SOC(荷电状态)等),随着使用时间的增加,电池单体之间的差别会越来越大。如果对于这些差别放任不管,电池单体的一致性将会变差,影响电池的性能,甚至会造成严重后果,甚至引起起火、爆炸等事故。所以,在电池内会设置采样装置,在发现异常时可以作出相应的控制和处理。
现有技术中,通常当电池单体端部的泄压机构打开时,其喷射出的气体的温度高达一千多度。当泄压机构处于相邻的两个电池单体之间时,热失控电池单体所产生的热量会进一步传导至与其相对设置的另一电池单体,造成严重的热失控。当采样件也处于两个电池单体之间时,还容易对采样件造成破坏。
鉴于此,本申请提供了一种技术方案,一种电池,包括:多个电池单体,沿第一方向排列且相互电连接,相邻的两个电池单体中的至少一个所述电池单体具有泄压机构,所述泄压机构设置于所述电池单体沿所述第一方向的一端;采样件,连接于所述电池单体,用于对所述电池单体进行信号采集;和防护构件,位于所述相邻的两个电池单体之间,并且与所述泄压机构相对设置,所述防护构件与所述泄压机构之间具有排气空间,其中,所述防护构件固定于所述采样件。
由此,能够利用安装于采样件的防护构件,在发生热失控时隔热防火,阻止热失控电池单体所产生的热量进一步传导至与其相对设置的另一电池单体,并且利用在防护构件与泄压机构之间形成的排气空间,容易地进行导气排气,使得不会发生前述的热失控扩散的问题。
本申请一个实施例提供了一种用电装置,电池用于提供电能。
本申请实施例描述的技术方案均适用于各种使用电池的装置,例如,手机、便携式设备、笔记本电脑、电瓶车、电动玩具、电动工具、电动车辆、船舶和航天器等,例如,航天器包括飞机、火箭、航天飞机和宇宙飞船等。
应理解,本申请实施例描述的技术方案不仅仅局限适用于上述所描述的设备,还可以适用于所有使用电池的设备,但为描述简洁,下述实施例均以 电动车辆为例进行说明。
例如,如图1所示,为本申请一个实施例的一种车辆100的结构示意图,车辆100可以为燃油汽车、燃气汽车或新能源汽车,新能源汽车可以是纯电动汽车、混合动力汽车或增程式汽车等。车辆100的内部可以设置马达2,控制器3以及电池1,控制器3用来控制电池1为马达2的供电。例如,在车辆100的底部或车头或车尾可以设置电池1。电池1可以用于车辆100的供电,例如,电池1可以作为车辆100的操作电源,用于车辆100的电路系统,例如,用于车辆100的启动、导航和运行时的工作用电需求。在本申请的另一实施例中,电池1不仅仅可以作为车辆100的操作电源,还可以作为车辆100的驱动电源,替代或部分地替代燃油或天然气为车辆100提供驱动动力。
为了满足不同的使用电力需求,电池1可以包括多个电池单体20,其中,多个电池单体20之间可以串联或并联或混联,混联是指串联和并联的混合。
例如,如图2所示,为本申请一个实施例的一种电池1的结构示意图,电池1可以包括多个电池单元10,每个电池单元10包括多个沿第一方向X排列且相互电连接的电池单体20。多个电池单元10沿第二方向Y排列。第二方向Y垂直于第一方向X。即,电池1中的多个电池单体20排列成矩阵状的结构。可选地,电池1也可以只有一个电池单元10,电池单元10包括多个沿第一方向X排列且电连接的电池单体20。电池1还可以包括箱体11,箱体11内部为中空结构,多个电池单体20容纳于箱体11内。如图2所示,箱体11可以包括两部分,这里分别称为上盖111和箱壳112。上盖111和箱壳112扣合在一起。上盖111和箱壳112的形状可以根据多个电池单体20组合的形状而定。例如,上盖111和箱壳112均可以为中空长方体且各自只有一个面为开口面,上盖111的开口和箱壳112的开口相对设置,并且上盖111和箱壳112相互扣合形成具有封闭腔室的箱体。也可以为,上盖111为具有开口的长方体而箱壳112为板状,或者箱壳112为具有开口的长方体而上盖111为板状,上盖111和箱壳112相对设置并扣合而形成具有封闭腔室的箱体。多个电池单体20相互并联或串联或混联组合后,置于上盖111和箱壳112扣合后形成的箱体内。
如图3所示,多个电池单体20沿第一方向X排列且相互电连接而形成电池单元10。具体地,电池单元10通过多个电池单体20串联形成。多个电 池单元10沿第二方向Y排列,并且多个电池单元10之间通过汇流部件60进行电连接。
如图4所示,为本申请一个实施例的多个电池单元10(在图4中示出了3个电池单元10,每个电池单元10示出了2个电池单体20)结构示意图。
电池单体20包括罐体21、极性相反的两个电极端子214和设置于罐体21中的一个或多个电极组件(未图示)。罐体21根据一个或多个电极组件组合后的形状而定,例如,罐体21可以为中空的长方体或正方体或圆柱体。罐体21包括壳体211和端盖212。壳体211沿第一方向X的一端具有开口,以使一个或多个电极组件能从开口放置于罐体21内,并用端盖212封闭该开口。罐体21内填充有电解质,例如电解液。如图4所示,壳体211沿第一方向X的两端分别具有开口,并且罐体21包括两个端盖212,两个端盖212分别封闭壳体211的两端开口。
两个电极端子214分别为正电极端子和负电极端子,分别设置在罐体21沿第一方向的两端,具体地,两个电极端子214分别设置在两个端盖212上,并且至少一个电极端子214从罐体21朝远离电池单体20内部的方向突出。由于两个电极端子214分别设置在两个端盖212上,电极端子214可以与端盖212绝缘,因此罐体21可以做成与正极和/或负极绝缘而不带电。当罐体21不带电时,可以降低发生短路的概率,从而提高电池单体20的安全性能。
如图4所示,多个(在图4中示出2个)电池单体20沿第一方向X排列且相互电连接而形成电池单元10。在本实施例中,电连接的两个电池单体20各自的电极端子214均从罐体21朝远离电池单体20内部的方向突出。需要说明的是,还可以是两个电池单体20中的一者的电极端子214从罐体21朝远离电池单体20内部的方向突出,而另一个电池单体20的电极端子214与端盖212齐平。还可以是每个电池单体20的两个电极端子214均从罐体21朝远离电池单体20内部的方向突出。在本实施例中,两个电池单体20的电极端子214直接连接以实现电连接。需要说明的是,两个电池单体20的电连接还可以通过连接片等连接结构实现。电极端子214可以为圆柱状、长方体、正方体、多角柱体等各种形状,在本实施例中示出的电极端子为圆柱状的结构。电池单体20可以为长方体、正方体或圆柱体,在本实施例中示出的电池单体为圆柱体的结构。在电池单体为圆柱体时,本申请中的上述“第一方向”指的是电池单体的轴向。
如图5所示,为本申请一个实施例的两个电池单体20电连接部分的放大结构示意图。
在第一方向X上,采样件30至少部分位于相邻的两个电池单体20之间,并且连接于从罐体21突出的电极端子214,用于对所连接的电池单体20进行信号采集。具体地,在第一方向X上,相邻的两个电池单体20的罐体21之间形成有间隙213,采样件30至少部分位于该间隙213中。
电池1还具有安装板31,安装板31沿第一方向X的两端分别连接于相邻的两个电池单体20的罐体21,从而将安装板31连接于电池单体20。
相邻的两个电池单体20中的一个电池单体20具有泄压机构50,泄压机构50设置于电池单体20沿第一方向X的一端。在采样件30的面对泄压机构50的面设置有防护构件51。防护构件51与泄压机构50相对设置。在第一方向X上,在防护构件51与泄压机构50之间形成有排气空间。
由此,泄压机构50对着两个电池单体20的间隙213,而且采样件30的用于与电极端子214电连接的部位位于该间隙213中。本申请的技术方案使防护构件51位于相邻的两个电池单体20之间,且与泄压机构50相对设置,能够在发生热失控时利用防护构件51实现隔热防火,阻止热失控的电池单体20所产生的热量进一步传导至与其相对设置的另一电池单体20。而且通过在防护构件51与泄压机构50之间形成排气空间,能够容易地进行导气排出,使得不会发生热失控扩散的问题。
如图6所示,为本申请一个实施例的采样件30形成有防护构件51的结构示意图。
电极端子214包括沿第一方向X设置的两个端面和连接该两个端面的周向侧壁。采样件30具有用于与突出的电极端子214电连接的连接部301。采样件30的连接部301用于连接于电极端子214的周向侧壁,以进行信号采集。本申请中电极端子214可以为圆柱状、长方体、正方体、多边形柱体等各种形状,在本实施例中说明的电极端子为圆柱状的情况下,周向侧壁是指圆柱体的周侧面。采样件30固定于安装板31,并经由安装板31安装于电池单体20。关于采样件30和安装板31的具体结构,后文中基于图11~图13详细进行说明。
防护构件51固定于采样件30。防护构件51位于相邻的两个电池单体20之间并且与泄压机构50相对设置,而且防护构件51与泄压机构50之间 具有排气空间。在本实施例中,防护构件51形成为平面状。
可选的,防护构件51与采样件30一体形成。或者,防护构件51与采样件30分体形成且防护构件51固定于采样件30。例如,防护构件51可以与采样件30通过模内注塑等方式一体形成,也可以通过卡接而连接在一起,还可以通过热压铆接或粘贴等方式与采样件30结合。
防护构件51包含隔热材料。进一步,在防护构件51的表面涂覆有防火材料。从而,防护构件51能够阻挡从泄压机构50喷出的排泄物向相对的电池单体20喷射,防止排泄物喷射至相对设置的电池单体20而引发热失控。防护构件51在阻挡排泄物的同时还可以对排泄物有冷却和灭火的作用。防护构件51可以采用云母、陶瓷毡、气凝胶、玻璃纤维中的一种或者其中几种材料复合制成。
为了有效地引导从泄压机构50喷出的排泄物,防护构件51至少部分与泄压机构50相对设置。例如,防护构件51与泄压机构50相对设置的部分的面积为泄压机构50面积的0.35~1.5倍。通过使防护构件51在第一方向X上与泄压机构50相对设置的部分的面积处于该范围,能够有效地阻挡从泄压机构50喷出的排泄物,良好地引导泄压机构50的排气,防止相邻的电池单体20发生热失控。
如图7所示,为本申请一个实施例的防护构件51的结构示意图。
本实施例中,防护构件51的与泄压机构50相对设置的面A是平面。防护构件51包括基体部511和凸出部512,基体部511与泄压机构50相对设置,凸出部512位于基体部511沿第二方向Y的两端,并且从基体部511朝靠近泄压机构50的方向延伸,第二方向Y垂直于第一方向X。其中,凸出部512也可以仅形成于基体部511的沿第二方向Y的一端。凸出部512的邻接基体部511的表面是曲面B,且曲面B以向基体部511凹陷的方式形成。
通过采用上述结构,防护构件51的基体部511与泄压机构50相对设置,以阻挡从泄压机构50喷出的排泄物向相对设置的电池单体20喷射。而且,通过在基体部511的沿第二方向Y的一端形成有凸出部512,能够阻挡排泄物直接喷向相邻的其他电池单体20,从而减小对在第二方向Y一端相邻的其它电池单体20造成不良影响。进一步地,防护构件51可以在基体部511沿第二方向Y的两端均具有凸出部512。由此能够更有效地阻挡排泄物直接喷向相邻的其他电池单体20,从而减小对在第二方向Y两端相邻的其它电 池单体20造成不良影响。而且,通过用曲面将凸出部512与基体部511连接在一起,能够顺畅地引导从泄压机构50喷出的排泄物。
在本实施例中表示了防护构件51的与泄压机构50相对设置的面是平面的结构,但防护构件51的与泄压机构50相对设置的面也可以是曲面。
如图8所示,为本申请一个实施例的在防护构件51形成有引导条501的结构示意图。在凸出部512的邻接基体部511的表面设置有多个突出的引导条501,多个引导条501沿第三方向Z排列,第三方向Z垂直于第一方向X和第二方向Y。由于形成有用于导流的引导条501,且在第三方向Z上排列有多个引导条501,能够利用这些引导条501更好地将排泄物向泄压机构50的第二方向Y引导。
而且,在相邻的两个引导条501之间形成有多个突起502。突起502从防护构件51的表面凸出的高度小于引导条501从防护构件51的表面凸出的高度。这样的突起502能够更有效地降低排泄物的流速,而且突起502不会影响引导条501对排泄物的导流效果。
如图9所示,为本申请另一实施例的防护构件51的结构。在本实施例中,防护构件51的与泄压机构50相对设置的面为曲面,且该曲面与将基体部511和凸出部512连接的曲面光滑地连接而形成为一体。由此使得从泄压机构50喷出的排泄物的流动如图9中箭头所示,顺畅地被引导向第二方向Y的两端。另外,图8所示的引导条501、突起502均能够形成在图9所示的防护构件51上,凸出部512也可以仅形成于基体部511的沿第二方向Y的一端。
如图10所示,为本申请一个实施例的在安装板31形成有通气孔503,且形成有将排气向通气孔503引导的引导件504的结构示意图。
在安装板31形成有多个(在图10中示出了1个)通气孔503,且安装板31邻近通气孔503的区域设置有引导件504,用于将泄压机构51的排泄物引导至通气孔503。由此,引导件504能够将从泄压机构50排出的排泄物向通气孔503引导,从而进一步防止在相邻的电池单体20引发热失控。
引导件504也可以与安装板31为一体式结构,引导件504具有从防护构件51向通气孔503倾斜的倾斜面。即,引导件504是安装板31的一部分,在安装板31形成从防护构件51向通气孔503倾斜的倾斜面,以向安装板31的通气孔503引导从泄压机构50排出的排泄物。
如图11所示,为本申请一个实施例的采样件30与安装板31的组装结构示意图。其中,图11(a)是本实施例的采样件30与安装板31分离的立体结构示意图,图11(b)是本实施例的采样件30和安装板31安装于相邻的两个电池单体20之间的侧视结构示意图,图11(c)是本实施例的采样件30与安装板31组合在一起时的立体结构示意图。
如图11(a)所示,安装板31具有安装部310和两个延伸部312,安装部310连接于两个延伸部312之间且用于与采样件30固定。采样件30具有连接部301和固定部302。固定部302的延伸方向与连接部301的延伸方向相交,使得采样件30例如形成为7字形或T字形等。
一个采样件30可以具有多个沿第二方向Y排列的连接部301,各个连接部301连接于在第二方向Y上排列的电池单元10的对应的电极端子214的周向侧壁。而且,相应地安装板31也在第二方向Y上延伸设置,能够安装多个采样件30。在图11(a)中表示了采样件30具有3个连接部301的结构。由此,采样件30可以同时采集在第二方向Y上排列的多个电池单体20的电信号,并且与一个采样件30的多个连接部301电连接的多个电池单体20的电极端子214能够具有相等的电位,从而实现电池单体20的电压均衡,提高电池单体20的一致性。
如图11(b)所示,安装板31的两个延伸部312分别搭接于相邻的两个电池单体20的罐体21。延伸部312为平板状。延伸部312与电池单体20的罐体21粘接,从而将安装板31固定于罐体21。安装板31的安装部310朝靠近间隙213的方向凹陷而形成凹槽311。由于凹槽311的存在,因此能够在凹槽311的空间中布置传输电信号的电路部件,从而提升空间利用率,以提高电池的能量密度。
安装部310卡合于间隙213,在第一方向X上,安装部310的宽度W1与间隙213的宽度W大致相同。由此,在安装安装板31时,能够利用安装部310进行定位,并且也能够阻止相邻两个电池单体20之间发生移动。
电极端子214包括沿第一方向X设置的两个端面和连接该两个端面的周向侧壁。采样件30的连接部301连接于电极端子214的周向侧壁,以进行信号采集。采样件30的固定部302穿过安装部310并与安装部310固定,从而将采样件30固定于安装板31。本申请中电极端子214可以为圆柱状、长方体、正方体、多角柱体等各种形状,在本实施例中说明的电极端子为圆 柱状的情况下,周向侧壁是指圆柱体的周侧面。
安装板31与采样件30可以通过模内注塑等方法一体形成,也可以是分体的结构,通过卡接而连接在一起,还可以通过热压铆接等方式连接。安装板31例如由聚碳酸酯(Polycarbonate)和聚丙烯腈(ABS)材料形成而具有绝缘功能,采样件30例如由铝合金或钢形成,用于采集和传输信号。由采样件30采集的信号,通过柔性扁平排线(例如FFC)或柔性电路板(例如FPC)等传送至信号处理器等进行处理。采样件30裸露于安装板31的上表面,以方便柔性扁平排线(或柔性电路板)与采样件30接触并传输采集到的信号。另外,在本申请实施例中所示的安装板31的延伸部312形成为与电池单体20的罐体接触的部分为平板,但安装板31的结构并不限定于此,也能够形成为与所接触的电池单体20的罐体周向侧面形状配合的曲线板。而且,电池1还可以包括温度采样器。该温度采样器可以设置于安装板31,与电池单体20的罐体21接触以进行温度测量。
本实施例中,连接部301卡接于电极端子214的周向侧壁。如图11(c)所示,连接部301在与安装板31相反的一侧形成有开口304且该开口304具有弹性,在装配连接部301到电极端子214时,先使该开口304通过弹性变形而张开,进而卡到电极端子214的周向侧壁而与电极端子214卡合装配。在装配后,利用该开口304的弹性恢复力能够保持与电极端子214的卡合,从而与电极端子214紧密配合。这样的安装结构简单且方便,无需额外的固定结构。同时,能够充分利用两个电池单体20之间的间隙213,而不会占用过多的电池单体20的配置空间,能够相应地提高电池的能量密度。
为了实现稳定的电连接,连接部301对电极端子214的包裹尺寸大于或等于电极端子214的周向侧壁周长的1/2且小于电极端子214的周向侧壁周长。由于连接部301形成有用于卡合电极端子214的周向侧壁的开口,且大范围地包裹电极端子214,因此可以提高结构稳定性。
在从罐体21突出的电极端子214为圆柱状时,连接部301对电极端子214的包裹角度大于或等于180度且小于360度。由于电极端子214为圆柱状,因此采样件30可以更容易地安装于电极端子214。
如图11(c)所示,在采样件30的内表面可以设置有多个凸部303,用于卡紧电极端子214的周向侧面。为了进一步提高采样件30与电极端子214的装配精度和稳定性,电极端子214的周向侧面形成有多个与凸部303对应 的凹部,与凸部303配合。由此,能够阻止连接部301相对于电极端子214发生移动或转动,从而提高连接稳定性。
如图12所示,为本申请另一个实施例的采样件30与安装板31的组装结构示意图。其中,图12(a)是本实施例的采样件30与安装板31分离的立体结构示意图,图12(b)是本实施例的采样件30和安装板31安装于相邻的两个电池单体20之间的侧视结构示意图,图12(c)是本实施例的采样件30与安装板31组合在一起时的立体结构示意图。
本实施例中,采样件30的连接部301完全贴合电极端子214的周向侧壁。而且,在第一方向X上,连接部301的尺寸W2与间隙213的尺寸W大致相同。由此连接部301能够正好卡在两个电池单体20之间的间隙213中。
本实施例中,与图11所示的实施例同样,连接部301卡合于电极端子214的周向侧壁。连接部301在与安装板31相反的一侧形成有开口304且开口304具有弹性,在装配连接部301到电极端子214时,先使该开口304通过弹性变形而张开,进而卡到电极端子214的周向侧壁而与电极端子214卡合装配。在装配后,利用该开口304的弹性恢复力能够保持与电极端子214的卡合,从而与电极端子214紧密配合。为了实现稳定的电连接,连接部301对电极端子214的包裹尺寸大于或等于电极端子214的周向侧壁周长的1/2且小于电极端子214的周向侧壁周长。在从罐体21突出的电极端子214为圆柱状时,连接部301对电极端子214的包裹角度大于或等于180度且小于360度。
如图12(c)所示,连接部301的开口304处的末端305向安装板31的方向弯折。由此,使得连接部301不会以尖锐的末端305与电极端子214的周向侧面接触,能够防止在卡接过程中连接部301的末端305对电极端子214造成损伤。并且,能够利用末端305对采样件30进行固定,进一步防止采样件30从电极端子214上脱落。
另外,在图3所示的多个电池单元10在第二方向Y上排列的情况下,将该末端305收纳于在Y方向上相邻的电池单元10之间的空隙中。由此不仅能够减少连接部301对电池单体20的周向侧面的损伤,还能够有效利用空间。
如图13所示,为本申请另一个实施例的采样件30的结构的示意立体图。 图13(a)表示采样件30的连接部301没有与电极端子214接触,还未弹性变形的状态,图13(b)表示采样件30的连接部301与电极端子214接触且弹性变形,贴合电极端子214的周向侧面的形状。
采样件30具有连接部301和固定部302。本实施例的连接部301也同样连接于电极端子214的周向侧壁。连接部301具有弹性,在受到外力作用时,能够响应外力作用而变形,以贴合电极端子214的周向侧壁,从而与电极端子214实现面接触。这里的外力作用可以是电池单体20自身的重力、电池装配时的压力、其它固定部件的固定力等。在从罐体21突出的电极端子214呈圆柱状时,连接部301对电极端子214的包裹角度大于0度且小于180度。
由此,通过连接部301的弹性变形能够自适应地贴合电极端子214的周向侧壁,与电极端子214实现良好的面接触,从而更稳定地实现采样件30与电极端子214的电连接。连接部301经由固定部302固定于支撑件306。
另外,在本申请的一个实施例中,各个电池单体20的两个电极端子214均从罐体21朝远离电池单体20内部的方向突出,并且在相邻的两个电池单体20中,一个电池单体20的电极端子214与另一个电池单体20的电极端子214相对设置且抵接。而且,一个电池单体20的电极端子214与另一个电池单体20的电极端子214焊接在一起。
由于相邻的两个电池单体20的电极端子214直接抵接来实现电连接,因此可减少电连接部件,提高电池的能量密度。并且,通过像这样将两个突出的电极端子214直接焊接,能够实现相邻的两个电池单体20之间稳定的电连接。
将两个电极端子214进行焊接时,往往会在两个电极端子214上形成凹凸不平的焊接区域。通过使采样件30与电极端子214的接触区域与电极端子214的焊接区域在第一方向X上错开,能够避免采样件连接到焊接区域而导致接触不良而采样精度降低,而且能够提高装配精度。
本申请一个实施例还提供了一种用电装置,该用电装置可以包括前述各实施例中的电池1。电池1在该用电装置中用于提供电能。
上文描述了本申请实施例的电池和用电装置,下面将描述本申请实施例的制备电池的方法和装置,其中未详细描述的部分可参见前述各实施例。
图14示出了本申请一个实施例的制备电池的方法400的示意性流程图。如图14所示,该方法400可以包括:
410,提供多个电池单体20,多个电池单体20沿第一方向X排列且相互电连接,相邻的两个电池单体20中的至少一个电池单体20具有泄压机构50,泄压机构50设置于电池单体20沿第一方向X的一端;
420,提供采样件30,采样件30连接于电池单体20,用于对电池单体20进行信号采集;和
430,提供防护构件51,防护构件51位于相邻的两个电池单体20之间,并且与泄压机构50相对设置,防护构件51与泄压机构50之间具有排气空间,
其中,防护构件51固定于采样件30。
图15示出了本申请一个实施例的制备电池的装置500的示意性框图。如图15所示,制备电池的装置500可以包括:第一提供模块510、第二提供模块520和安装模块530。
第一提供模块510,用于提供多个电池单体20,多个电池单体20沿第一方向X排列且相互电连接,相邻的两个电池单体20中的至少一个电池单体20具有泄压机构50,泄压机构50设置于电池单体20沿第一方向X的一端;
第二提供模块520,用于提供固定有防护构件51的采样件30;
安装模块530,用于将采样件30连接于电池单体20,采样件30用于对电池单体20进行信号采集;并且用于使防护构件51位于相邻的两个电池单体20之间,并且与泄压机构51相对设置,防护构件51与泄压机构50之间具有排气空间。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换,但这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (30)

  1. 一种电池,包括:
    多个电池单体,沿第一方向排列且相互电连接,相邻的两个电池单体中的至少一个所述电池单体具有泄压机构,所述泄压机构设置于所述电池单体沿所述第一方向的一端;
    采样件,连接于所述电池单体,用于对所述电池单体进行信号采集;和
    防护构件,位于所述相邻的两个电池单体之间,并且与所述泄压机构相对设置,所述防护构件与所述泄压机构之间具有排气空间,
    其中,所述防护构件固定于所述采样件。
  2. 根据权利要求1所述的电池,其中,所述防护构件的与所述泄压机构相对设置的面是平面。
  3. 根据权利要求1所述的电池,其中,所述防护构件的与所述泄压机构相对设置的面是曲面。
  4. 根据权利要求1所述的电池,其中,所述防护构件包括基体部和凸出部,所述基体部与所述泄压机构相对设置,所述凸出部位于所述基体部沿第二方向的一端,并且从所述基体部朝靠近所述泄压机构的方向延伸,所述第二方向垂直于所述第一方向。
  5. 根据权利要求4所述的电池,其中,所述防护构件在所述基体部沿第二方向的两端均具有所述凸出部。
  6. 根据权利要求4或5所述的电池,其中,所述凸出部的邻接所述基体部的表面是曲面,且所述曲面以向所述基体部凹陷的方式形成。
  7. 根据权利要求6所述的电池,其中,所述凸出部的邻接所述基体部的表面设置有多个突出的引导条,所述多个引导条沿第三方向排列,所述第三方向垂直于所述第一方向和所述第二方向。
  8. 根据权利要求7所述的电池,其中,在相邻的两个所述引导条之间形成有多个突起。
  9. 根据权利要求8所述的电池,其中,所述突起从所述防护构件的表面凸出的高度小于所述引导条从所述防护构件的表面凸出的高度。
  10. 根据权利要求1至9所述的电池,其中,所述防护构件与所述泄压机构相对设置的部分的面积为所述泄压机构面积的0.35~1.5倍。
  11. 根据权利要求1至10中任一项所述的电池,其中,还具有安装板, 所述安装板沿所述第一方向的两端分别连接于相邻的两个所述电池单体,所述安装板用于固定所述采样件。
  12. 根据权利要求11所述的电池,其中,在所述安装板形成有多个通气孔,且所述安装板邻近所述通气孔的区域设置有引导件,用于将从所述泄压机构排出的排泄物引导至所述通气孔。
  13. 根据权利要求12所述的电池,其中,所述引导件与所述安装板为一体式结构,所述引导件具有从所述防护构件向所述通气孔倾斜的倾斜面。
  14. 根据权利要求1至13中任一项所述的电池,其中,各个所述电池单体包括罐体和极性相反的两个电极端子,所述两个电极端子分别设置在所述罐体沿所述第一方向的两端,并且至少一个所述电极端子从所述罐体朝远离所述电池单体内部的方向突出。
  15. 根据权利要求14所述的电池,其中,在所述第一方向上,所述相邻的两个电池单体之间形成有间隙,所述采样件的连接部位于该间隙中,所述连接部用于连接所述电池单体的所述电极端子,所述防护构件固定于所述连接部。
  16. 根据权利要求15所述的电池,其中,所述连接部连接于所述电极端子的周向侧壁。
  17. 根据权利要求16所述的电池,其中,所述连接部具有弹性,被配置为响应外力作用而变形以贴合所述电极端子的所述周向侧壁,以与所述电极端子实现面接触。
  18. 根据权利要求17所述的电池,其中,从所述罐体突出的所述电极端子呈圆柱状,所述连接部对所述电极端子的包裹角度大于0度且小于180度。
  19. 根据权利要求16所述的电池,其中,所述连接部卡接于所述电极端子的所述周向侧壁。
  20. 根据权利要求16所述的电池,其中,所述连接部完全贴合所述电极端子的侧壁。
  21. 根据权利要求19或20所述的电池,其中,所述连接部对所述电极端子的包裹尺寸大于或等于所述电极端子的侧壁周长的1/2且小于所述电极端子的侧壁周长。
  22. 根据权利要求19或20所述的电池,其中,从所述罐体突出的所述电极端子呈圆柱状,所述连接部对所述电极端子的包裹角度为大于或等于 180度且小于360度。
  23. 根据权利要求19所述的电池,其中,所述连接部的内表面设置有多个凸部,用于卡紧所述电极端子的所述周向侧壁。
  24. 根据权利要求23所述的电池,其中,所述电极端子的所述周向侧壁形成有多个与所述凸部对应的凹部,所述凸部与所述凹部配合。
  25. 根据权利要求14至24中任一项所述的电池,其中,各个电池单体的所述两个电极端子均从所述罐体朝远离所述电池单体内部的方向突出,并且在相邻的两个所述电池单体中,一个所述电池单体的所述电极端子与另一个所述电池单体的所述电极端子相对设置且抵接。
  26. 根据权利要求25所述的电池,其中,在相邻的两个所述电池单体中,一个所述电池单体的所述电极端子与另一个所述电池单体的所述电极端子焊接在一起。
  27. 根据权利要求14所述的电池,其中,在相邻的两个所述电池单体中,一个所述电池单体的所述电极端子与另一个所述电池单体的所述电极端子焊接在一起,并且所述采样件与所述电极端子的接触区域与所述电极端子的焊接区域沿所述第一方向错开。
  28. 一种用电装置,其包括权利要求1至27中任一项所述的电池,所述电池用于提供电能。
  29. 一种制备电池的方法,包括:
    提供多个电池单体,所述多个电池单体沿第一方向排列且相互电连接,相邻的两个电池单体中的至少一个所述电池单体具有泄压机构,所述泄压机构设置于所述电池单体沿所述第一方向的一端;
    提供采样件,所述采样件连接于所述电池单体,用于对所述电池单体进行信号采集;和
    提供防护构件,所述防护构件位于所述相邻的两个电池单体之间,并且与所述泄压机构相对设置,所述防护构件与所述泄压机构之间具有排气空间,
    其中,所述防护构件固定于所述采样件。
  30. 一种制备电池的装置,包括:
    第一提供模块,用于提供多个电池单体,所述多个电池单体沿第一方向排列且相互电连接,相邻的两个电池单体中的至少一个所述电池单体具有泄压机构,所述泄压机构设置于所述电池单体沿所述第一方向的一端;
    第二提供模块,用于提供固定有防护构件的采样件;
    安装模块,用于将所述采样件连接于所述电池单体,所述采样件用于对所述电池单体进行信号采集;并且用于使所述防护构件位于所述相邻的两个电池单体之间,并且与所述泄压机构相对设置,所述防护构件与所述泄压机构之间具有排气空间。
PCT/CN2021/076279 2021-02-09 2021-02-09 电池、用电装置、制备电池的方法和制备电池的装置 WO2022170485A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2021/076279 WO2022170485A1 (zh) 2021-02-09 2021-02-09 电池、用电装置、制备电池的方法和制备电池的装置
CN202180071661.1A CN116368659A (zh) 2021-02-09 2021-02-09 电池、用电装置、制备电池的方法和制备电池的装置
EP21908114.8A EP4071910A4 (en) 2021-02-09 2021-02-09 BATTERY, ELECTRICAL DEVICE, AND METHOD AND DEVICE FOR MANUFACTURING BATTERY
US17/846,529 US20220376353A1 (en) 2021-02-09 2022-06-22 Battery, electric apparatus, method for preparing battery, and apparatus for preparing battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/076279 WO2022170485A1 (zh) 2021-02-09 2021-02-09 电池、用电装置、制备电池的方法和制备电池的装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/846,529 Continuation US20220376353A1 (en) 2021-02-09 2022-06-22 Battery, electric apparatus, method for preparing battery, and apparatus for preparing battery

Publications (1)

Publication Number Publication Date
WO2022170485A1 true WO2022170485A1 (zh) 2022-08-18

Family

ID=82838084

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/076279 WO2022170485A1 (zh) 2021-02-09 2021-02-09 电池、用电装置、制备电池的方法和制备电池的装置

Country Status (4)

Country Link
US (1) US20220376353A1 (zh)
EP (1) EP4071910A4 (zh)
CN (1) CN116368659A (zh)
WO (1) WO2022170485A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN206471390U (zh) * 2017-01-24 2017-09-05 临汾市沃特玛电池有限公司 一种电池箱安全防护结构
US20170373287A1 (en) * 2015-01-27 2017-12-28 Denso Corporation Battery pack
CN110148692A (zh) * 2019-05-10 2019-08-20 北京新能源汽车股份有限公司 电池模组及具有其的车辆
CN209860056U (zh) * 2019-04-30 2019-12-27 宁德时代新能源科技股份有限公司 电池模组及电池包
CN111081937A (zh) * 2019-12-30 2020-04-28 中国矿业大学 一种具有应急处理及后处理装置的电池系统
CN112331992A (zh) * 2019-11-08 2021-02-05 宁德时代新能源科技股份有限公司 电池包及装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6523607B2 (ja) * 2013-04-08 2019-06-05 株式会社Gsユアサ バッテリモジュール
CN206758598U (zh) * 2017-05-13 2017-12-15 赣州市创翔电源有限公司 一种太阳能电动汽车用蓄电池

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170373287A1 (en) * 2015-01-27 2017-12-28 Denso Corporation Battery pack
CN206471390U (zh) * 2017-01-24 2017-09-05 临汾市沃特玛电池有限公司 一种电池箱安全防护结构
CN209860056U (zh) * 2019-04-30 2019-12-27 宁德时代新能源科技股份有限公司 电池模组及电池包
CN110148692A (zh) * 2019-05-10 2019-08-20 北京新能源汽车股份有限公司 电池模组及具有其的车辆
CN112331992A (zh) * 2019-11-08 2021-02-05 宁德时代新能源科技股份有限公司 电池包及装置
CN111081937A (zh) * 2019-12-30 2020-04-28 中国矿业大学 一种具有应急处理及后处理装置的电池系统

Also Published As

Publication number Publication date
CN116368659A (zh) 2023-06-30
US20220376353A1 (en) 2022-11-24
EP4071910A4 (en) 2023-10-04
EP4071910A1 (en) 2022-10-12

Similar Documents

Publication Publication Date Title
EP2595238B1 (en) Battery pack having compact structure
US20080107961A1 (en) Rechargeable battery
CN214589171U (zh) 电池及用电装置
WO2023174266A1 (zh) 壳体、电池单体、电池及用电设备
WO2023164997A1 (zh) 端盖组件、电池单体、电池及用电装置
WO2024016451A1 (zh) 顶盖组件、电池单体、电池及用电设备
CN117203830A (zh) 电池单体、电池、用电设备、制造电池单体的方法和设备
US20230420798A1 (en) Battery, electric apparatus, and method and apparatus for manufacturing battery
WO2023179192A1 (zh) 电池和用电设备
CN219017777U (zh) 电池单体、电池、用电设备以及制备电池单体的装置
WO2023065923A1 (zh) 电池单体、电池和用电设备
WO2022170485A1 (zh) 电池、用电装置、制备电池的方法和制备电池的装置
WO2023133748A1 (zh) 电池模块、电池、用电设备、制备电池的方法和设备
KR20080028091A (ko) 이차 전지
WO2022170484A1 (zh) 电池、用电装置、制备电池的方法和制备电池的装置
KR20230015253A (ko) 배터리, 전력 소비 장치, 배터리 제조 방법 및 장치
WO2023004832A1 (zh) 电池单体、电池、装置、以及电池单体的制造方法和制造设备
CN220400755U (zh) 电池和用电装置
CN218957868U (zh) 单体电池以及车辆
CN216773350U (zh) 一种电池模组、电池包及用电装置
WO2023082192A1 (zh) 电池单体、电池、用电装置、制备电池的方法和装置
WO2023178600A1 (zh) 集流构件、电池单体、电池及用电设备
WO2022170483A1 (zh) 电池、用电装置和制备电池的方法
WO2022252165A1 (zh) 电池单体、电池、用电装置、以及制备电池单体的装置和方法
WO2024020910A1 (zh) 电池单体、电池以及用电装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021908114

Country of ref document: EP

Effective date: 20220701

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21908114

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE