WO2022170483A1 - 电池、用电装置和制备电池的方法 - Google Patents

电池、用电装置和制备电池的方法 Download PDF

Info

Publication number
WO2022170483A1
WO2022170483A1 PCT/CN2021/076277 CN2021076277W WO2022170483A1 WO 2022170483 A1 WO2022170483 A1 WO 2022170483A1 CN 2021076277 W CN2021076277 W CN 2021076277W WO 2022170483 A1 WO2022170483 A1 WO 2022170483A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
electrode terminal
battery cell
battery according
peripheral side
Prior art date
Application number
PCT/CN2021/076277
Other languages
English (en)
French (fr)
Inventor
李金凤
秦峰
王鹏
王磊
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to EP21912310.6A priority Critical patent/EP4071921A4/en
Priority to CN202180065747.3A priority patent/CN116457978A/zh
Priority to PCT/CN2021/076277 priority patent/WO2022170483A1/zh
Priority to US17/854,291 priority patent/US20220407161A1/en
Publication of WO2022170483A1 publication Critical patent/WO2022170483A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/213Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for cells having curved cross-section, e.g. round or elliptic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/64Constructional details of batteries specially adapted for electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/66Arrangements of batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/482Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/284Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders with incorporated circuit boards, e.g. printed circuit boards [PCB]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/533Electrode connections inside a battery casing characterised by the shape of the leads or tabs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/552Terminals characterised by their shape
    • H01M50/559Terminals adapted for cells having curved cross-section, e.g. round, elliptic or button cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the field of batteries, and more particularly, to a battery, an electrical device and a method of making a battery.
  • the present application provides a battery, an electrical device and a method for preparing a battery, which can separately sample a plurality of battery cells that are electrically connected, improve the energy density of the battery and enhance the safety of the battery.
  • a battery comprising: a battery cell, including an end cap and an electrode terminal, the end cap is provided at an end of the battery cell along a first direction, and the electrode terminal is provided on the The electrode terminal includes two end faces and a peripheral side face, the two end faces are arranged along the first direction, and the peripheral side face connects the two side faces. an end surface; and a sampling assembly abutting against the peripheral side surface to collect electrical signals of the battery cells.
  • the sampling assembly abutting on the peripheral side of the battery terminal is used to collect signals, thereby reducing the space occupied by the sampling assembly and making the structure more compact. , improve the overall energy density of the battery. Moreover, the voltage or temperature signal of each battery cell can be grasped in real time, which further improves the safety of the battery.
  • the sampling assembly includes a connecting member and a supporting member, the connecting member is used for abutting with the electrode terminal, and the connecting member is fixed on the supporting member.
  • the connecting member has an abutting portion and a foot portion that are connected to each other, the foot portion is fixedly connected to the support member, the abutting portion has elasticity, and the abutting portion is connected to the electrode. contact with the terminals.
  • the elastic contact portion can be in contact with the electrode terminal, and the shape of the electrode terminal can be adapted to the elastic deformation of the contact portion, so that the electrical connection between the connector and the electrode terminal can be more stably achieved.
  • such an electrical connection method can effectively utilize the external force such as gravity or installation pressing force, and can realize stable electrical connection without additional connection and fixing means.
  • the connecting member has two feet, and two ends of the abutting portion are respectively connected with the two feet. That is, the technical solution of the present application adopts the two-end support method to support the abutting portion with the two leg portions. Compared with the one-side support method such as a cantilever beam, this can support more stably, prevent the cantilever structure from shaking easily and cause unstable electrical connection, thereby helping to ensure effective electrical connection.
  • the one-side support method such as a cantilever beam
  • the abutting portion is in contact with the electrode terminal surface, and conforms to the shape of the peripheral side surface of the electrode terminal. Accordingly, the contact portion in contact with the electrode terminal surface can be elastically deformed along the shape of the peripheral side surface of the electrode terminal, and can be tightly fitted with the electrode terminal adaptively, thereby further improving the contact stability.
  • the contact surface area between the electrode terminal and the abutting portion is more than 1/6 of the entire peripheral area of the peripheral side surface. Accordingly, when the contact portion is in contact with the electrode terminal surface, by making the contact area within this range, the contact can be performed more stably and stable signal acquisition can be realized.
  • the abutting portion is in point contact with the electrode terminal, and the number of contact points is two or more. That is, the contact portion and the electrode terminal of the present application may be electrically connected by point contact.
  • the abutting portion is in point contact with the electrode terminal, at least two points or more are in contact, and the stability of the contact sampling can be ensured.
  • a position of the abutting portion abutting with the electrode terminal is coated with a conductive medium.
  • the conductive medium is coated on the electrode terminal from the contact position, which can prevent passivation of the surface of the electrode terminal on the basis of ensuring the normal conduction of the connector.
  • the sampling assembly further includes a transmission line for transmitting electrical signals to the signal processor, the transmission line and the feet are embedded inside the support, the transmission line and the The feet are electrically connected. Since the transmission line is electrically connected with the feet, the feet of the connector can transmit the electrical signal collected by the abutting portion to the transmission line, and then to the bus component or the signal processor via the transmission line. Moreover, by arranging the transmission line and the feet of the connector inside the support by burying, the sampling assembly can be formed into an integrated structure, which saves space while effectively realizing electrical connection, and is convenient to manufacture and assemble.
  • the abutting portion and the support member have a gap in the abutting direction, so as to provide an elastic deformation space of the abutting portion.
  • the support member is provided with a concave portion, the concave portion matches the shape of the electrode terminal, and the concave portion is opposite to the abutting portion and is concave in a direction away from the abutting portion , to form the voids.
  • the width of the connecting member is smaller than the height of the electrode terminal protruding from the end cap.
  • the contact portion of the connector is in contact with the peripheral side surface of the electrode terminal. Accordingly, by making the width of the connecting member smaller than the protruding height of the electrode terminal in the first direction in which the end faces of the electrode terminal face each other, the connecting member can be prevented from protruding beyond the end face of the electrode terminal.
  • the battery includes a plurality of battery cells, a gap is formed between two battery cells adjacent to each other along the first direction, and the sampling assembly is disposed in the gap.
  • the support is caught in the gap.
  • a plurality of the battery cells are arranged in the first direction and electrically connected to form a battery cell column, and a plurality of the battery cell columns are arranged in the second direction to form a battery cell matrix , the second direction is perpendicular to the first direction. Accordingly, in the battery cell matrix, the first direction is the column direction, and the second direction is the row direction.
  • the electrical connection of the battery cells may be in series or in parallel. It may be that the respective protruding electrode terminals of two adjacent battery cells in the first direction are electrically connected, or the electrode terminals of one battery cell may protrude and be electrically connected to the shell or end cap of the other battery cell.
  • the connection alternatively, may also be via a connection piece.
  • the first direction is the direction in which the two end faces of the electrode terminal are arranged to face each other.
  • the direction in which the two battery cells that are electrically connected are arranged next to each other.
  • the support member extends along the second direction and has a plurality of the connecting members, and at least two connecting members are electrically connected so that at least two of the at least two connecting members abut against each other.
  • Equipotential of the electrode terminals That is, a plurality of (two or more, for example, three) battery cells that are adjacent in the second direction (row direction) are electrically connected to a plurality of connecting members that are adjacent in the row direction. Since the sampling assembly has a plurality of connecting pieces arranged in the second direction, and each connecting piece is connected to the peripheral side surface of the electrode terminal of the corresponding battery cell, the sampling assembly can simultaneously collect the electrical energy of the plurality of battery cells arranged in the second direction. Signals, and the electrode terminals of the plurality of battery cells electrically connected to the plurality of connecting pieces of one sampling assembly can have the same potential, so as to realize the voltage balance of the battery cells and improve the consistency of the battery cells.
  • multiple layers of the battery cell matrix are provided in a third direction, the third direction being perpendicular to the first direction and the second direction. That is, the third direction is a direction perpendicular to both the row direction and the column direction of the battery cell matrix.
  • a separating member is provided between the two layers of the battery cell matrix.
  • partition members are provided between the layers for ease of assembly.
  • the layers of the battery cell matrix arranged on both sides of the spacer can be supported by the spacer.
  • the sampling assemblies are respectively disposed on both sides of the separation member, so as to sample the two layers of the battery cell matrix separated by the separation member respectively.
  • the partition member is arranged between the two-layer battery cell arrays, so the sampling assemblies are arranged on both sides of the partition member in the third direction, and the sampling assemblies on both sides can be installed and supported by the partition member, so as to make full use of the inside of the battery. space, which can effectively improve the energy density.
  • a surface of the support member facing the partition member is formed into a shape conforming to the partition member.
  • the partition member is a flat plate
  • the surface of the support member facing the partition member is formed in a flat plate shape
  • the partition member is a wave shape
  • the surface of the support member facing the partition member is formed in a wave shape accordingly.
  • the electrode terminals are disposed at both ends of the battery cells in the first direction, and the electrode terminals of two adjacent battery cells are disposed opposite to each other and directly welded. That is, the electrode terminals at both ends of the positive and negative electrodes of the battery cells protrude from the end caps, and the battery terminals protruding from the end caps are electrically connected by welding. Therefore, no additional mechanism for electrical connection is required, the size of the structure for realizing electrical connection can be reduced, and the space for arranging battery cells in the battery can be fully utilized, thereby improving the energy density of the battery and making the electrical connection stable.
  • the abutting area of the sampling assembly and the electrode terminal avoids the welding area of the electrode terminal.
  • a welding seam is formed in the welding area.
  • the contact portion of the sampling assembly and the welding area are staggered in the first direction, or a welding notch is formed so that the welding area does not protrude from the peripheral side surface of the electrode terminal.
  • an electrical device comprising: the battery of the first aspect, the battery is used to provide electrical energy.
  • a method for preparing a battery comprising: providing a battery cell, the battery cell includes an end cap and an electrode terminal, the end cap is provided at an end of the battery cell along a first direction , the electrode terminal is arranged on the end cap and protrudes in a direction away from the interior of the battery cell, the electrode terminal includes two end faces and a peripheral side surface, and the two end faces are arranged along the first direction , the peripheral side surface is connected to the two end surfaces; and a sampling component is provided, the sampling component abuts on the peripheral side surface, so as to collect the electrical signal of the battery cell.
  • FIG. 1 is a schematic diagram of a vehicle according to an embodiment of the application.
  • FIG. 2 is a schematic structural diagram of a battery according to an embodiment of the application.
  • FIG. 3 is a schematic structural diagram of a battery cell and a sampling assembly according to an embodiment of the application;
  • FIG. 4 is a schematic structural diagram of a sampling assembly according to an embodiment of the present application.
  • FIG. 5 is a schematic diagram of the combined structure of a battery cell and a sampling assembly according to an embodiment of the application, wherein FIG. 5( a ) shows the state where the sampling assembly is not in contact with the electrode terminal, and FIG. 5( b ) shows the sampling assembly in contact with the electrode terminal the deformed state;
  • FIG. 6 is a schematic structural diagram of the sampling assembly in point contact with the electrode terminal of the application, wherein FIG. 6(a) shows an embodiment of the sampling assembly in point contact with the electrode terminal, and FIG. 6(b) shows the sampling assembly in point contact with the electrode terminal another embodiment of;
  • FIG. 7 is a schematic structural diagram of disposing a sampling assembly in a gap between two battery cells according to an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of battery cells arranged in a matrix according to an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of a supporting member fixed with a plurality of connected connecting members according to an embodiment of the application.
  • FIG. 10 is a schematic structural diagram of a temperature sampler of a sampling assembly according to an embodiment of the application.
  • FIG. 11 is a schematic flowchart of a method for preparing a battery according to an embodiment of the present application.
  • the terms “installed”, “connected”, “connected” and “attached” should be understood in a broad sense, for example, it may be a fixed connection, It can also be a detachable connection, or an integral connection; it can be directly connected, or indirectly connected through an intermediate medium, and it can be internal communication between two components.
  • installed should be understood in a broad sense, for example, it may be a fixed connection, It can also be a detachable connection, or an integral connection; it can be directly connected, or indirectly connected through an intermediate medium, and it can be internal communication between two components.
  • multiple refers to two or more (including two), and similarly, “multiple groups” refers to two or more groups (including two groups), and “multiple sheets” refers to two or more sheets (includes two pieces).
  • the battery mentioned in the embodiments of the present application refers to a single physical module including one or more battery cells to provide higher voltage and capacity.
  • the batteries mentioned in this application may include battery modules or battery packs, and the like.
  • the battery cell includes an electrode assembly and an electrolyte, and the electrode assembly is composed of a positive electrode sheet, a negative electrode sheet and a separator.
  • the battery cell mainly relies on the movement of metal ions between the positive and negative plates to work.
  • the positive electrode sheet includes a positive electrode current collector and a positive electrode active material layer, the positive electrode active material layer is coated on the surface of the positive electrode current collector, the current collector without the positive electrode active material layer protrudes from the current collector coated with the positive electrode active material layer, and the positive electrode active material layer is not coated.
  • the current collector coated with the positive electrode active material layer serves as the positive electrode tab.
  • the material of the positive electrode current collector can be aluminum, and the positive electrode active material can be lithium cobalt oxide, lithium iron phosphate, ternary lithium, or lithium manganate.
  • the negative electrode sheet comprises a negative electrode current collector and a negative electrode active material layer, the negative electrode active material layer is coated on the surface of the negative electrode current collector, the current collector without the negative electrode active material layer protrudes from the current collector coated with the negative electrode active material layer, The current collector coated with the negative electrode active material layer was used as the negative electrode tab.
  • the material of the negative electrode current collector can be copper, and the negative electrode active material can be carbon or silicon.
  • the number of positive tabs is multiple and stacked together, and the number of negative tabs is multiple and stacked together.
  • the material of the diaphragm can be PP or PE, etc.
  • the electrode assembly may be a wound structure or a laminated structure, and the embodiment of the present application is not limited thereto.
  • a sampling structure is usually provided on the end face of a battery cell for sampling.
  • a battery comprising: a battery cell, including an end cap and an electrode terminal, the end cap is provided at an end of the battery cell along a first direction, the The electrode terminal is arranged on the end cap and protrudes in a direction away from the interior of the battery cell, the electrode terminal includes two end surfaces and a peripheral side surface, the two end surfaces are arranged along the first direction, the A peripheral side surface is connected to the two end surfaces; and a sampling assembly abuts on the peripheral side surface to collect electrical signals of the battery cells.
  • An embodiment of the present application provides an electrical device, and a battery is used to provide electrical energy.
  • the technical solutions described in the embodiments of this application are applicable to various devices using batteries, such as mobile phones, portable devices, notebook computers, battery cars, electric toys, electric tools, electric vehicles, ships, and spacecraft.
  • the spacecraft includes Planes, rockets, space shuttles and spaceships, etc.
  • the vehicle 1 may be a fuel vehicle, a gas vehicle or a new energy vehicle, and the new energy vehicle may be a pure electric vehicle, a hybrid vehicle or Extended range cars, etc.
  • the interior of the vehicle 1 may be provided with a motor 40 , a controller 30 and a battery 10 , and the controller 30 is used to control the battery 10 to supply power to the motor 40 .
  • the battery 10 may be provided at the bottom of the vehicle 1 or at the front or rear of the vehicle.
  • the battery 10 can be used for power supply of the vehicle 1 , for example, the battery 10 can be used as the operating power source of the vehicle 1 , for the circuit system of the vehicle 1 , for example, for the starting, navigation and operation power requirements of the vehicle 1 .
  • the battery 10 can not only be used as the operating power source of the vehicle 1 , but also can be used as the driving power source of the vehicle 1 to provide driving power for the vehicle 1 in place of or partially in place of fuel or natural gas.
  • the battery may include multiple battery cells, wherein the multiple battery cells may be connected in series or in parallel or in a mixed connection, and a mixed connection refers to a mixture of series and parallel connections.
  • the battery 10 may include a plurality of battery cells 20 .
  • the battery 10 may further include a case body 11 , the interior of the case body 11 is a hollow structure, and a plurality of battery cells 20 are accommodated in the case body 11 .
  • the box body 11 may include two parts, which are referred to here as an upper cover 111 and a box shell 112 respectively, and the upper cover 111 and the box shell 112 are fastened together.
  • the shapes of the upper cover 111 and the case 112 may be determined according to the combined shape of the plurality of battery cells 20 , and both the upper cover 111 and the case 112 may have an opening.
  • both the upper cover 111 and the box shell 112 may be hollow cuboids with only one surface being an open surface, the opening of the upper cover 111 and the opening of the box shell 112 are arranged opposite to each other, and the upper cover 111 and the box shell 112 are snapped together to form a A box that closes the chamber.
  • the upper cover 111 is a rectangular parallelepiped with an opening and the box shell 112 is a plate shape, or the box shell 112 is a rectangular parallelepiped with an opening and the upper cover 111 is a plate shape.
  • a box with a closed chamber is formed.
  • a plurality of battery cells 20 are connected in parallel or in series or mixed with each other and then placed in the box formed by the upper cover 111 and the box shell 112 being fastened together.
  • the battery 10 may also include other structures, which will not be repeated here.
  • a combination of multi-layer battery cells 20 is provided, or a plurality of battery cells 20 are formed in a battery module, and a plurality of battery modules 10 are provided in the battery 10, or a confluence component, a signal collection wire harness, a processor are provided Wait.
  • FIG. 3 it is a schematic diagram of a combined structure of a battery cell 20 and a sampling assembly 30 according to an embodiment of the present application.
  • the battery cell 20 includes a case 211 , an end cap 212 and one or more electrode assemblies (not shown) disposed in the case 211 .
  • the casing 211 is determined according to the combined shape of one or more electrode assemblies.
  • the casing 211 can be a hollow cuboid, a cube or a cylinder, and the casing 211 has an opening so that one or more electrode assemblies can be placed in the casing.
  • the end cap 212 covers the opening and is connected to the housing 211 to form a closed cavity in which the electrode assembly is placed.
  • the casing 211 is filled with electrolyte, such as electrolyte.
  • the battery cell 20 has positive and negative electrode lead-out parts, one of which may be the electrode terminal 214 provided on the end cover 212 , the other is a part of the casing 211 or a part of the end cover 212 , or both.
  • the electrode terminal 214 is provided on the end cap 212 .
  • the protruding electrode terminal 214 can be in various shapes such as a cylinder, a rectangular parallelepiped, a square, and a polygonal cylinder. In this embodiment, a structure in which the electrode terminal 214 is a cylinder is described.
  • the battery cell 20 may be a rectangular parallelepiped, a cube or a cylinder. In this embodiment, the battery cell 20 is a cylinder whose axis coincides with the axis of the cylindrical electrode terminal 214 .
  • the end cap 212 is disposed at the end of the battery cell 20 along the first direction X, and the electrode terminal 214 is disposed on the end cap 212 , and is directed away from the interior of the battery cell 20 Protruding, the electrode terminal 212 includes two end surfaces A (only one end surface is shown in the figure) and a peripheral side surface B, the two end surfaces A are arranged along the first direction X, and the peripheral side surface B connects the two end surfaces A.
  • the sampling assembly 30 is in contact with the peripheral side surface B of the electrode terminal 214 to collect electrical signals of the battery cells 20 .
  • the sampling assembly 30 Since the sampling assembly 30 abuts on the peripheral side B of the battery terminal 214 protruding from the end cap 212 , the sampling assembly 30 can be installed in a space formed on the peripheral side B of the battery terminal 214 by the battery terminal 214 protruding from the end cap 212 .
  • the space formed by the side surfaces of the electrode terminals 214 and the end caps 212 in this way, and installing the sampling assembly 30 in a space that would otherwise be vacant it is possible to fully utilize the interior of the battery 10 compared to the configuration in which the sampling assembly is disposed on the end face A of the battery cell 20 . Therefore, the energy density of the battery 10 can be increased accordingly, and all the battery cells 20 in the battery 10 can be sampled separately with a simple structure.
  • the position where the sampling member 30 performs signal collection may be any position on the peripheral side surface B of the battery terminal 214 .
  • FIG. 4 it is a schematic structural diagram of a sampling assembly 30 according to an embodiment of the present application.
  • the sampling assembly 30 includes a connecting member 301 and a supporting member 303 .
  • the connecting member 301 is used for abutting with the electrode terminal 214 , and the connecting member 301 is fixed to the supporting member 303 . Thereby, the contact of the connector 301 and the electrode terminal 214 can be maintained by the support 303, and stable electrical connection can be realized.
  • the signal collected by the sampling component 30 is transmitted to the signal processor or the like via the signal transmission harness (eg FFC) or signal transmission line (eg FPC), etc., and is used for the control of the battery cell 20, and the specific structure is not repeated.
  • the signal transmission harness eg FFC
  • signal transmission line eg FPC
  • the connecting member 301 has an abutting portion 311 and a foot portion 312 that are connected to each other.
  • the foot portion 312 is fixedly connected to the supporting member 303
  • the abutting portion 311 is elastic and protrudes relative to the supporting member 303 .
  • the elastic contact portion 311 can be used to contact the electrode terminal 214, and the shape of the electrode terminal 214 can be adapted to the elastic deformation of the contact portion 311, so that the connection between the connector 301 and the electrode terminal 214 can be realized more stably. electrical connection.
  • such an electrical connection method can effectively utilize the external force such as gravity or installation pressing force, and can realize stable electrical connection without additional connection and fixing means.
  • the support 303 or the transmission line provided on the support 303 can be used to transmit electrical signals, and the sampling assembly 30 can be formed in an integrated structure, which is more effective Make use of the battery installation space and improve the energy density of the battery.
  • the connector 301 is formed of a conductive material, such as metal such as copper.
  • the supporter 303 is formed of a conductive material when an electrical signal is transmitted using the supporter 303 .
  • the support 303 may also be formed of an insulating material, such as by an injection molding process, when transmitting the electrical signal via the transmission line.
  • the connector 301 has two leg portions 312 , and both ends of the abutting portion 311 are respectively connected to the two leg portions 312 . If the connecting member 301 is supported by a cantilever beam-type one-side support, the connecting member 301 is easy to shake, resulting in unstable electrical connection. Compared with this, in the embodiment of the present application, the abutting portion 311 is connected to the two leg portions 312 to realize the support on both sides, which can support more stably and is beneficial to ensure effective electrical connection.
  • FIG. 5 it is a schematic diagram of the combined structure of the battery cell 20 and the sampling assembly 30 according to an embodiment of the application, wherein FIG. ) represents a state in which the sampling assembly 30 is deformed in contact with the electrode terminal 214 .
  • the width W1 of the connecting member 301 is smaller than the height W2 of the electrode terminal 214 protruding from the end cap 212.
  • the contact portion 311 of the connector 301 is in contact with the peripheral side surface B of the electrode terminal 214. Therefore, in order to prevent the connector 301 from protruding beyond the end surface A of the electrode terminal 214 and affecting the assembly of other components, the electrode terminal In the first direction X opposite to the end face A of the 214 , the width W1 of the connecting member 301 is made smaller than the protruding height W2 of the electrode terminal 214 .
  • the abutting portion 311 is elastically deformed, is in surface contact with the electrode terminal 214 , and adheres to the shape of the peripheral side surface B of the electrode terminal 214 .
  • the contact surface area of the contact portion 311 with the electrode terminal 214 is 1/6 or more of the entire circumference area of the peripheral side surface B of the electrode terminal 214 .
  • the contact portion 311 that is in surface contact with the electrode terminal 214 is elastically deformed along the shape of the peripheral side surface B of the electrode terminal 214, and can be tightly fitted with the electrode terminal 214 adaptively, and the contact area is large enough to improve the surface contact. stability.
  • the abutting portion 311 elastically deforms when in contact with the electrode terminal 214 , in order to provide a space for elastic deformation of the abutting portion 311 , the abutting portion 311 and the support member 303 have a gap in the abutting direction thereof.
  • the surface 321 of the support member 303 close to the abutting portion 311 is formed with a concave portion 331
  • the concave portion 331 matches the shape of the electrode terminal 214
  • the concave portion 331 is opposite to the abutting portion 311 and faces away from the abutting portion 311
  • the direction is recessed to form the gap, so that when the abutting portion 311 is elastically deformed, a corresponding elastic deformation space can be provided. Therefore, when the abutting portion 311 is elastically deformed, it does not collide with the surface 321 of the support member 303 close to the abutting portion 311 , and the deformation of the abutting portion 311 is not affected.
  • FIG. 6 it is a schematic structural diagram of a point contact between the sampling assembly 30 and the electrode terminal 214 according to the embodiment of the present application.
  • the contact portion 311 is in point contact with the electrode terminal 214 , and the number of contact points is two or more.
  • a plurality of abutting portions 311 protrude from the support member 303 to make point contact with the electrode terminals 214 .
  • one abutting portion 311 protrudes from the support member 303 and the surface of the abutting portion 311 in contact with the electrode terminal 214 is formed in a wavy shape so as to contact the electrode terminal at a plurality of points. 214 contacts. Accordingly, even when the contact portion 301 is in point contact with the electrode terminal 214, the stability of the contact sampling can be ensured.
  • the position of the abutting portion 311 abutting against the electrode terminal 214 is coated with a conductive medium. Since the electrode terminal 214 is made of metal such as aluminum, surface passivation will occur after long-term use, which will affect signal acquisition. Therefore, a protective layer needs to be formed on the surface of the electrode terminal 214 .
  • a conductive medium By coating the surface of the abutting portion 301 with a conductive medium, when the abutting portion 311 abuts on the surface of the electrode terminal 214 , the conductive medium is coated on the electrode terminal 214 through contact, thus ensuring that the connecting member 301 conducts electricity normally.
  • the conductive medium refers to a conductive material such as conductive glue or conductive grease that can be well coated on the abutting portion 311 .
  • the sampling assembly 30 further includes a transmission line 302 .
  • the transmission line 302 is used to transmit the electrical signal to the signal processor, and the transmission line 302 and a part of the foot 312 of the connecting member 301 are both embedded in the support member 303 .
  • the transmission line 302 is electrically connected to the leg portion 312 . Since the transmission line 302 is electrically connected to the foot portion 312 , the foot portion 312 of the connector 301 can transmit the electrical signal collected by the abutment portion 311 to the transmission line 302 , and to the bus component or signal processor via the transmission line 302 .
  • the transmission line 302 is embedded in the support member 303, which can reduce the possibility of the transmission line 302 contacting other components, and improve the accuracy of electrical signal transmission.
  • the sampling assembly 30 can be formed into an integrated structure, which saves space while effectively realizing electrical connection, and is convenient to manufacture and assemble.
  • FIG. 7 it is a schematic structural diagram of disposing the sampling assembly 30 in the gap between two adjacent battery cells 20 .
  • the battery includes a plurality of battery cells 20 , a gap 213 is formed between two battery cells 20 adjacent to each other along the first direction X, and the sampling assembly 30 is disposed in the gap 213 .
  • a gap is formed between two adjacent battery cells may mean that the end caps or electrode terminals of the two battery cells 20 are not in contact to form a gap between the two battery cells 20, or may be Although the end caps or the electrode terminals of the two battery cells are in contact with each other, a gap is formed at a portion other than the contact portion. For example, in one embodiment of the present application shown in FIG.
  • the electrode terminals 214 protrude from the end caps 212 of the battery cells 20 , and two adjacent battery cells 20 are electrically connected through the electrode terminals 214 , so that the two adjacent battery cells 20 are electrically connected through the electrode terminals 214 .
  • a gap is formed between the end caps 212 of the battery cells 20 except for the electrical connection portion of the electrode terminal 214 .
  • the support member 303 is clamped in the gap 213 , so that the support member 303 can be easily positioned and installed.
  • the width W3 of the support member 303 in the first direction X is substantially the same as the width W of the gap 213 , and thus.
  • the support member 303 can also maintain and stabilize the connection position of the two battery cells 20, limit excessive relative movement between the two battery cells 20, improve the structural stability, and can prevent the support member 303 The looseness occurs so that the connection between the sampling assembly 30 and the electrode terminal 214 is affected.
  • the electrode terminal 214 in the present application can be in various shapes such as a cylinder, a rectangular parallelepiped, a cube, and a polygonal cylinder. In this embodiment, the electrode terminal is described as a cylindrical structure.
  • the battery cell 20 may be a cuboid, a cube or a cylinder.
  • the battery cell 20 is described as a cylinder, and its axis coincides with the axis of the cylindrical electrode terminal (that is, in a section perpendicular to the axis) , the peripheral side surface B of the case of the battery cell is concentric with the peripheral side surface of the electrode terminal).
  • FIG. 8 it is a schematic structural diagram of the battery cells 20 arranged in a matrix according to an embodiment of the present application.
  • the battery cells 20 and the electrode terminals 214 are both formed in a cylindrical shape, and a plurality of battery cells 20 are arranged in the first direction X (ie, the axial direction of the battery cells 20 ) and are electrically connected to form a battery cell row 801 ,
  • a plurality of battery cell columns 801 are arranged in a second direction Y to form a battery cell matrix 80 , and the second direction Y is perpendicular to the first direction X.
  • the first direction X is the column direction
  • the second direction Y is the row direction.
  • each battery cell 20 arranged in the column direction X can be grasped by collecting the voltage or temperature signal of the electrode terminals 214 between the plurality of battery cells 20 adjacent in the column direction Y, respectively. status, and efficiently control the safety of each battery cell. Furthermore, since the battery cell rows 801 are arranged in multiple rows in the row direction (Y direction) of the battery cell matrix 80 , the installation space in the battery 10 can be rationally utilized, and the energy density of the entire battery 10 can be improved as much as possible.
  • a multi-layered battery cell matrix 80 is provided in a third direction Z that is perpendicular to both the column direction X and the row direction Y of the battery cell matrix 80 .
  • the multi-layered battery cell matrix 80 two adjacent layers of the battery cell matrix 80 are arranged staggered.
  • the battery cell rows 801 configured as one layer of the battery cell matrix 80 are arranged in the gap between two adjacent battery cell rows 801 of the other layer of the battery cell matrix 80 , or arranged in another layer.
  • the outermost battery cell row 801 of the battery cell matrix 80 is in the space between other components of the adjacent battery cells.
  • a partition member 50 is provided between the two-layer battery cell arrays 80 to separate the two.
  • the partition member 50 is provided between the layers for the convenience of assembly.
  • the separating member 50 can also support the layers of the battery cell matrix 80 disposed on both sides thereof.
  • the separator member 50 is a thermal management member of the battery.
  • the thermal management components can contain fluids to regulate the temperature of the plurality of battery cells.
  • the fluid here can be liquid or gas, and adjusting the temperature refers to heating or cooling a plurality of battery cells.
  • the thermal management component is used for containing a cooling fluid so as to reduce the temperature of the plurality of battery cells.
  • the thermal management component may also be referred to as a cooling component, a cooling system or a cooling plate etc.
  • the fluid it accommodates can also be called cooling medium or cooling fluid, more specifically, it can be called cooling liquid or cooling gas.
  • the thermal management component may also be used for heating to increase the temperature of a plurality of battery cells, which is not limited in the embodiment of the present application.
  • the fluid can be circulated to achieve better temperature regulation.
  • the fluid may be water, a mixture of water and ethylene glycol, or air, or the like.
  • the partition member 50 as the thermal management member in this way, the temperature of the two-layer battery cell matrix 80 can be adjusted by one thermal management member, the thermal management efficiency is improved, the installation space is reduced, and the energy of the battery is improved. density.
  • the partition member 50 can be formed to have alternately arranged in the YZ cross-section perpendicular to the X direction of the battery cell matrix 80 in accordance with the peripheral side profile of each battery cell 20 in the battery cell matrix 80 .
  • the wave shape of the convex and concave parts respectively correspond to the space between the adjacent battery cell rows 801 of the two-layer battery cell matrix 80 separated by the partition member 50 , and the convex portion and the concave portion are along the battery cells.
  • the matrix 80 is extended in the X direction.
  • sampling assemblies 30 are respectively disposed on both sides of the partition member 50 to sample the two-layer battery cell arrays 80 separated by the partition member 50 .
  • the partition member 50 is provided between the two-layer battery cell arrays 80 . Therefore, by forming the sampling assemblies 30 on both sides of the partition member 50 in the third direction Z, the partition member 50 can be used to mount or support the two sides of the battery cell matrix 80 .
  • the sampling assembly 30 can effectively improve the energy density by making full use of the space in the battery.
  • the third direction Z is the vertical direction, so that the abutment of the abutment portion 311 can be achieved by the own gravity of the battery cell 20 without additionally disposing other force-applying components.
  • the surface 322 (refer FIG. 5( b )) of the support 303 facing the partition member 50 is formed in a shape that fits the partition member 50 . That is, if the partition member 50 is flat, the surface 322 of the support 303 is formed in a flat shape, and if the partition 50 is wavy as described above, the surface 322 of the support 303 is formed in a corrugated shape accordingly. Thereby, the supporting effect of the partition member 50 on the support member 303 can be fully utilized.
  • FIG. 9 it is a schematic structural diagram of a supporting member 303 with a plurality of connecting members 301 fixed and connected according to an embodiment of the present application.
  • the support member 303 extends along the row direction Y of the battery cell matrix 80 , and has a plurality of (more than two, three in the figure) connecting members 301 to electrically connect at least two connecting members 301 , so that the at least two electrode terminals 214 contacted by the at least two connectors 301 become equal potential. That is, the plurality of battery cells 20 adjacent in the second direction Y are electrically connected to the plurality of connection members 301 adjacent in the row direction Y, respectively.
  • the sampling assembly 30 has a plurality of connecting members 301 arranged along the second direction Y, and each connecting member 301 is connected to the peripheral side surface B of the electrode terminal 214 of the corresponding battery unit 20, the sampling assembly 30 can simultaneously collect in the second direction Y
  • the electrical signals of the plurality of battery cells 20 are arranged, and the electrode terminals 214 of the plurality of battery cells 20 that are electrically connected to the plurality of connecting pieces 301 of one sampling assembly 30 can have the same potential, so as to realize the Voltage balance, improve the consistency of battery cells.
  • the battery cell matrix 80 of FIG. 8 when a plurality of battery cell columns 801 are arranged in the second direction Y, in order to signal the electrode terminals 214 of all the battery cell columns arranged in the second direction Y For acquisition, multiple connectors 301 are required.
  • two or more connectors 301 are formed into a set, a set of connectors 301 is fixed to a support 303, and multiple sets of such structures are arranged to form a serial-parallel-mixed structure, which can avoid installation troubles. cumulative error.
  • both ends of the battery cells 20 in the first direction X are provided with electrode terminals 214 protruding from the end caps 212 , and the electrode terminals 214 of two adjacent battery cells 20 are disposed opposite to each other and Direct welding. That is, the electrode terminals 214 at both ends of the positive and negative electrodes of the battery cell 20 protrude from the end cap 212 , and the battery terminals 214 protruding from the end cap 212 are electrically connected by welding. Therefore, no additional mechanism for electrical connection is required, the size of the structure for realizing electrical connection can be reduced, and the space for installing the battery cells 20 in the battery 10 can be fully utilized, thereby increasing the energy density of the battery 10 .
  • the two electrode terminals 214 are electrically connected by direct welding, a welding seam is formed in the welding region.
  • the contact area between the contact portion 311 and the electrode terminal 214 avoids the welding area of the electrode terminal 214 .
  • the contact portion 311 of the sampling assembly 30 and the welding area are staggered in the first direction X, or a welding notch is formed so that the welding area does not protrude from the peripheral side surface B of the electrode terminal 214 . As a result, it is possible to avoid a decrease in sampling accuracy and improve assembly accuracy.
  • FIG. 10 it is a schematic structural diagram of the temperature sampler 31 of the sampling assembly 30 according to the embodiment of the present application.
  • the sampling assembly 30 further includes a temperature sampler 31 .
  • the temperature sampler 31 is disposed on the other electrode terminal 214 of the two electrode terminals 214 that is different from the electrode terminal 214 that is in contact with the connector 301 . . In this way, the voltage and temperature of the battery can be simultaneously collected, which further improves the safety of the battery.
  • FIG. 11 shows a schematic flowchart of a method 400 for preparing a battery according to an embodiment of the present application. As shown in Figure 11, the method 400 may include:
  • the battery cell 20 includes an end cap 212 and an electrode terminal 214, the end cap 212 is disposed at the end of the battery cell 20 along the first direction X, the electrode terminal 214 is disposed on the end cap 212, and Protruding in a direction away from the interior of the battery cell 20, the electrode terminal 214 includes two end surfaces A and a peripheral side surface B, the two end surfaces A are arranged along the first direction X, and the peripheral side surface B connects the two end surfaces A;

Abstract

本申请实施例提供了一种电池、用电装置、制备电池的方法和装置。所述电池包括:电池单体,包括端盖和电极端子,所述端盖设置在所述电池单体沿第一方向的端部,所述电极端子设置在所述端盖上,且向远离所述电池单体内部的方向突出,所述电极端子包括两个端面和周侧面,所述两个端面沿所述第一方向设置,所述周侧面连接所述两个端面;和采样组件,抵接于所述周侧面,以采集所述电池单体的电信号。

Description

电池、用电装置和制备电池的方法 技术领域
本申请涉及电池领域,并且更具体地,涉及一种电池、用电装置和制备电池的方法。
背景技术
随着电池技术的不断发展,对电池的性能提出了更高的要求,希望电池能够同时考虑多方面的设计因素。
发明内容
本申请提供一种电池、用电装置和制备电池的方法,能够对电连接的多个电池单体分别进行采样,提高电池的能量密度并且增强电池的安全性。
第一方面,提供了一种电池,包括:电池单体,包括端盖和电极端子,所述端盖设置在所述电池单体沿第一方向的端部,所述电极端子设置在所述端盖上,且向远离所述电池单体内部的方向突出,所述电极端子包括两个端面和周侧面,所述两个端面沿所述第一方向设置,所述周侧面连接所述两个端面;和采样组件,抵接于所述周侧面,以采集所述电池单体的电信号。
本申请实施例的技术方案,对于具有端盖和电极端子的电池单体,利用抵接于电池端子的周侧面的采样组件来采集信号,从而能够减少采样组件所占用的空间,使结构更加紧凑,提高电池整体的能量密度。而且能够实时地掌握每一个电池单体的电压或温度信号,进一步提高电池的安全性。
在一些实施例中,所述采样组件包括连接件和支撑件,所述连接件用于与所述电极端子抵接,所述连接件固定于所述支撑件。由此能够用支撑件保持连接件与电极端子的接触,实现稳定的电连接。
在一些实施例中,所述连接件具有互相连接的抵接部和脚部,所述脚部与所述支撑件固定连接,所述抵接部具有弹性,所述抵接部与所述电极端子抵接。通过采用该结构,能够利用具有弹性的抵接部与电极端子接触,通过抵接部的弹性变形来适应电极端子的形状,从而能够更稳定地实现连接件与电极端子的电连接。而且,这样的电连接方式能够有效利用重力或安装挤压力等外力作用,不需要另外的连接固定手段就能够实现稳定的电连接。另外, 通过使连接件的脚部与支撑件固定连接,能够利用支撑件或设置于支撑件的传输线等传递电信号,能够以集成的结构形成采样组件,从而能够更为有效地利用电池的设置空间,提高电池的能量密度。
在一些实施例中,所述连接件具有两个脚部,所述抵接部的两端分别与两个脚部连接。即,本申请的技术方案采用两端支撑方式利用两个脚部支撑抵接部。这相比于悬臂梁那样的单侧支撑的方式能够更稳定地进行支撑,防止悬臂结构易于晃动而导致的电连接不稳定,从而有利于保证有效的电连接。
在一些实施例中,所述抵接部与所述电极端子面接触,且贴合所述电极端子的所述周侧面的形状。由此,与电极端子面接触的抵接部能够沿着电极端子的周侧面的形状进行弹性变形,可以自适应地与电极端子紧密配合,进一步提高接触的稳定性。
在一些实施例中,所述电极端子与所述抵接部的接触面面积为所述周侧面整周面积的1/6以上。由此,在抵接部与电极端子面接触的情况下,通过使接触面积处于该范围,能够更稳定地进行接触而实现稳定的信号采集。
在一些实施例中,所述抵接部与所述电极端子点接触,且接触点数量为2以上。即,本申请的抵接部与电极端子也可以通过点接触而实现电连接。在抵接部与电极端子点接触的情况下,至少在2点以上接触,能够保证接触采样的稳定性。
在一些实施例中,所述抵接部的与所述电极端子抵接的位置涂覆有导电介质。在抵接部抵接于电极端子表面时,导电介质从接触位置涂覆到电极端子上,在保证连接件正常导电的基础上还能够防止电极端子表面发生钝化。
在一些实施例中,所述采样组件还包括传输线,所述传输线用于将电信号向信号处理器传输,所述传输线和所述脚部埋设在所述支撑件内部,所述传输线与所述脚部电连接。由于传输线与脚部电连接,连接件的脚部能够将抵接部采集到的电信号传送至传输线,并经由传输线向汇流部件或信号处理器传送。而且通过采用埋设的方式在支撑件的内部设置传输线和连接件的脚部,能够将采样组件形成为集成结构,在有效实现电连接的同时更为节省空间,且制造、组装方便。
在一些实施例中,所述抵接部与所述支撑件在抵接方向具有空隙,以提供所述抵接部的弹性变形空间。在一些实施例中,所述支撑件设有凹部,所述凹部与所述电极端子的形状相匹配,且所述凹部与所述抵接部相对设置且 朝向远离所述抵接部的方向凹陷,以形成所述空隙。通过为弹性的抵接部预留形变空间,能够避免结构失效,提高组装成品率。
在一些实施例中,在所述第一方向上,所述连接件的宽度小于所述电极端子突出于所述端盖的高度。如上所述,连接件的抵接部与电极端子的周侧面接触。由此,通过在电极端子的端面相对的第一方向上,使连接件的宽度小于电极端子的突出高度,能够防止连接件伸出至电极端子的端面之外。
在一些实施例中,所述电池包括多个电池单体,沿所述第一方向相邻的两个电池单体之间形成有间隙,所述采样组件设置于所述间隙中。通过利用形成在相邻的电池单体间的间隙来设置采样组件,能够减少采样组件所占用的空间,而有效利用本身空置的空间来布置采样组件,使结构更加紧凑,以提高整体能量密度。
在一些实施例中,所述支撑件卡置于所述间隙中。通过采用该结构,能够方便地进行支撑件的定位。
在一些实施例中,多个所述电池单体在所述第一方向上排列并电连接而形成电池单体列,多个所述电池单体列在第二方向上排列构成电池单体矩阵,所述第二方向与所述第一方向垂直。由此,该电池单体矩阵中,第一方向成为列方向,第二方向成为行方向。通过对在列方向上相邻的多个电池单体之间的电极端子分别进行电压或温度的信号采集,能够掌握在列方向上排列的每个电池单体的电压或温度状态,高效地控制各个电池单体的安全性。
其中,电池单体的电连接可以是串联也可以是并联。可以是在第一方向上相邻的两个电池单体各自的突出设置的电极端子电连接,也可以是一个电池单体的电极端子突出而与另一个电池单体的壳体或端盖电连接,或者,也可以是经由连接片连接。如上所述,第一方向是电极端子的两个端面相对设置的方向。在此也是电连接的两个电池单体相邻设置的方向。
在一些实施例中,所述支撑件沿所述第二方向延伸,且具有多个所述连接件,至少两个连接件电连接以使所述至少两个连接件抵接的至少两个所述电极端子等电位。即,在第二方向(行方向)上相邻的多个(2个以上,例如3个)电池单体与在行方向上相邻的多个连接件电连接。由于采样组件具有多个沿第二方向排列的连接件,各连接件连接于对应电池单元的电极端子的周侧面,因此采样组件可以同时采集在第二方向上排列的多个电池单体的电信号,并且与一个采样组件的多个连接件电连接的多个电池单体的电极端 子能够具有相等的电位,从而实现电池单体的电压均衡,提高电池单体的一致性。
在一些实施例中,在第三方向上设置有多层所述电池单体矩阵,所述第三方向与所述第一方向和所述第二方向垂直。即,所述第三方向是与电池单体矩阵的行方向和列方向均垂直的方向。通过在第三方向上排列多层电池单体矩阵,能够充分利用电池内的设置空间。
在一些实施例中,在两层所述电池单体矩阵之间,设置有将两者隔开的分隔部件。在配置有多层电池单体矩阵的情况下,为了便于组装,在层与层之间设置有分隔部件。而且利用该分隔部件还能够对在其两侧设置的电池单体矩阵的层有支撑作用。
在一些实施例中,在所述第三方向上,在所述分隔部件的两侧分别设置所述采样组件,以对被所述分隔部件分隔开的两层所述电池单体矩阵分别进行采样。如上所述,分隔部件设置在两层的电池单体矩阵之间,因此在分隔部件的第三方向上的两面均设置采样组件,能够利用分隔部件安装和支撑两侧的采样组件,充分利用电池内的空间,能够有效提高能量密度。
在一些实施例中,所述支撑件的面对所述分隔部件的表面形成为与所述分隔部件贴合的形状。例如,分隔部件如果为平板状,则支撑件的面对分隔部件的表面形成为平板状,分隔部件如果为波浪形状,则支撑件的面对分隔部件的表面相应地形成为波浪形状。由此能够充分利用分隔部件对支撑件的支撑作用。
在一些实施例中,在所述电池单体的所述第一方向的两端均设置有所述电极端子,相邻的两个电池单体的所述电极端子相对设置并直接焊接。即,电池单体的正负极两端的电极端子均从端盖突出,突出于端盖的电池端子通过焊接实现电连接。由此不需要另外设置用于电连接的机构,能够减小实现电连接的结构的尺寸,充分利用电池内的电池单体设置空间,从而提高电池的能量密度,而且还能够使得电连接稳固。
在一些实施例中,所述采样组件与所述电极端子的抵接区域避让所述电极端子的焊接区域。在两个电极端子通过直接焊接而实现电连接的情况下,在焊接区域形成焊缝。通过使采样件与焊接区域不干涉,能够避免采样精度降低、提高装配精度。例如,使采样组件的抵接部与焊接区域在第一方向上错开位置,或者形成焊接用凹口,使得焊接区域不会突出电极端子的周侧面。
第二方面,提供了一种用电装置,包括:第一方面的电池,所述电池用于提供电能。
第三方面,提供了一种制备电池的方法,包括:提供电池单体,所述电池单体包括端盖和电极端子,所述端盖设置在所述电池单体沿第一方向的端部,所述电极端子设置在所述端盖上,且向远离所述电池单体内部的方向突出,所述电极端子包括两个端面和周侧面,所述两个端面沿所述第一方向设置,所述周侧面连接所述两个端面;和提供采样组件,所述采样组件抵接于所述周侧面,以采集所述电池单体的电信号。
附图说明
此处所说明的附图用来提供对本申请的进一步理解,构成本申请的一部分,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1为本申请一个实施例的车辆的示意图;
图2为本申请一个实施例的电池的结构示意图;
图3为本申请一个实施例的电池单体和采样组件的结构示意图;
图4为本申请一个实施例的采样组件的结构示意图;
图5为本申请一个实施例的电池单体和采样组件的组合结构示意图,其中,图5(a)表示采样组件未与电极端子接触的状态,图5(b)表示采样组件与电极端子接触而变形的状态;
图6为本申请的采样组件与电极端子点接触的结构示意图,其中,图6(a)表示采样组件与电极端子点接触的一个实施例,图6(b)表示采样组件与电极端子点接触的另一个实施例;
图7为本申请一个实施例的在两个电池单体间的间隙中设置采样组件的结构示意图;
图8为本申请一个实施例的电池单体排列成矩阵状的结构示意图;
图9为本申请一个实施例的支撑件固定有相连接的多个连接件的结构示意图;
图10为本申请一个实施例的采样组件的温度采样器的结构示意图;
图11为本申请一个实施例的制备电池的方法的示意性流程图。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
除非另有定义,本申请所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同;本申请中在申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请;本申请的说明书和权利要求书及上述附图说明中的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。本申请的说明书和权利要求书或上述附图中的术语“第一”、“第二”等是用于区别不同对象,而不是用于描述特定顺序或主次关系。
在本申请中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本申请所描述的实施例可以与其它实施例相结合。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“附接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
本申请中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本申请中字符“/”,一般表示前后关联对象是一种“或”的关系。
本申请中出现的“多个”指的是两个以上(包括两个),同理,“多组”指的是两组以上(包括两组),“多片”指的是两片以上(包括两片)。
本申请的实施例所提到的电池是指包括一个或多个电池单体以提供更高的电压和容量的单一的物理模块。例如,本申请中所提到的电池可以包括电池模块或电池包等。
电池单体包括电极组件和电解液,电极组件由正极片、负极片和隔离膜组成。电池单体主要依靠金属离子在正极片和负极片之间移动来工作。正极片包括正极集流体和正极活性物质层,正极活性物质层涂覆于正极集流体的表面,未涂敷正极活性物质层的集流体凸出于已涂覆正极活性物质层的集流体,未涂敷正极活性物质层的集流体作为正极极耳。以锂离子电池为例,正极集流体的材料可以为铝,正极活性物质可以为钴酸锂、磷酸铁锂、三元锂或锰酸锂等。负极片包括负极集流体和负极活性物质层,负极活性物质层涂覆于负极集流体的表面,未涂敷负极活性物质层的集流体凸出于已涂覆负极活性物质层的集流体,未涂敷负极活性物质层的集流体作为负极极耳。负极集流体的材料可以为铜,负极活性物质可以为碳或硅等。为了保证通过大电流而不发生熔断,正极极耳的数量为多个且层叠在一起,负极极耳的数量为多个且层叠在一起。隔膜的材质可以为PP或PE等。此外,电极组件可以是卷绕式结构,也可以是叠片式结构,本申请实施例并不限于此。
电池技术的发展要同时考虑多方面的设计因素,例如,能量密度、循环寿命、放电容量、充放电倍率等性能参数,另外,还需要考虑电池的安全性。
目前,电动汽车的电池往往需要几十甚至上千个电池单体构成。
在实际应用中,由于电池单体之间具有某些参数的微小差异(例如电压、内阻、SOC(荷电状态)等),随着使用时间的增加,电池单体之间的差别会越来越大。如果对于这些差别放任不管,电池单体的一致性将会变差,影响电池的性能,甚至会造成严重后果,甚至引起起火、爆炸等事故。所以,在电池内,会设置采样装置,在发现异常时可以作出相应的控制和处理。
现有技术中,通常在电池单体的端面设置采样结构以进行采样。
但是,这样的现有技术存在下述问题:由于在电池单体的端面设置采样结构,会导致电池内的空间被占据,而相应导致电池整体的能量密度下降,而且不能够以简单的结构对电池内的全部电池单体分别进行采样。
鉴于此,本申请提供了一种技术方案,一种电池,包括:电池单体,包括端盖和电极端子,所述端盖设置在所述电池单体沿第一方向的端部,所述电极端子设置在所述端盖上,且向远离所述电池单体内部的方向突出,所述电极端子包括两个端面和周侧面,所述两个端面沿所述第一方向设置,所述周侧面连接所述两个端面;和采样组件,抵接于所述周侧面,以采集所述电池单体的电信号。由此,对于每个电池单体能够对其周侧面进行实时的信号 采集,从而能够实时地掌握每一个电池单体的电压或温度信号,进一步提高电池的安全性。而且能够减少采样组件所占用的空间,使结构更加紧凑,提高电池的能量密度。
本申请一个实施例提供了一种用电装置,电池用于提供电能。
本申请实施例描述的技术方案均适用于各种使用电池的装置,例如,手机、便携式设备、笔记本电脑、电瓶车、电动玩具、电动工具、电动车辆、船舶和航天器等,例如,航天器包括飞机、火箭、航天飞机和宇宙飞船等。
应理解,本申请实施例描述的技术方案不仅仅局限适用于上述所描述的设备,还可以适用于所有使用电池的设备,但为描述简洁,下述实施例均以电动车辆为例进行说明。
例如,如图1所示,为本申请一个实施例的一种车辆1的结构示意图,车辆1可以为燃油汽车、燃气汽车或新能源汽车,新能源汽车可以是纯电动汽车、混合动力汽车或增程式汽车等。车辆1的内部可以设置马达40,控制器30以及电池10,控制器30用来控制电池10为马达40的供电。例如,在车辆1的底部或车头或车尾可以设置电池10。电池10可以用于车辆1的供电,例如,电池10可以作为车辆1的操作电源,用于车辆1的电路系统,例如,用于车辆1的启动、导航和运行时的工作用电需求。在本申请的另一实施例中,电池10不仅仅可以作为车辆1的操作电源,还可以作为车辆1的驱动电源,替代或部分地替代燃油或天然气为车辆1提供驱动动力。
为了满足不同的使用电力需求,电池可以包括多个电池单体,其中,多个电池单体之间可以串联或并联或混联,混联是指串联和并联的混合。
例如,如图2所示,为本申请一个实施例的一种电池10的结构示意图,电池10可以包括多个电池单体20。电池10还可以包括箱体11,箱体11内部为中空结构,多个电池单体20容纳于箱体11内。如图2所示,箱体11可以包括两部分,这里分别称为上盖111和箱壳112,上盖111和箱壳112扣合在一起。上盖111和箱壳112的形状可以根据多个电池单体20组合的形状而定,上盖111和箱壳112可以均具有一个开口。例如,上盖111和箱壳112均可以为中空长方体且各自只有一个面为开口面,上盖111的开口和箱壳112的开口相对设置,并且上盖111和箱壳112相互扣合形成具有封闭腔室的箱体。也可以为,上盖111为具有开口的长方体而箱壳112为板状,或者箱壳112为具有开口的长方体而上盖111为板状,上盖111和箱壳112 相对设置并扣合而形成具有封闭腔室的箱体。多个电池单体20相互并联或串联或混联组合后置于上盖111和箱壳112扣合后形成的箱体内。
可选地,电池10还可以包括其他结构,在此不再一一赘述。例如设置多层的电池单体20的组合体,或者将多个电池单体20形成于一个电池模块,在电池10中设置有多个电池模块10,或者设置汇流部件、信号采集线束、处理器等。
如图3所示,为本申请一个实施例的电池单体20和采样组件30的组合结构示意图。
电池单体20包括壳体211、端盖212和设置于壳体211中的一个或多个电极组件(未图示)。壳体211根据一个或多个电极组件组合后的形状而定,例如,壳体211可以为中空的长方体或正方体或圆柱体,且壳体211具有开口以便一个或多个电极组件可以放置于壳体211内。端盖212覆盖开口并且与壳体211连接,以形成放置电极组件的封闭的腔体。壳体211内填充有电解质,例如电解液。
电池单体20具有正负电极引出部,可以是其中一者为设置于端盖212的电极端子214,另一者为壳体211的一部分或端盖212的一部分,也可以是两者均为设置于端盖212的电极端子214。突出的电极端子214可以为圆柱状、长方体、正方体、多边形柱体等各种形状,在本实施例中说明电极端子214为圆柱状的结构。而且电池单体20可以为长方体、正方体或圆柱体,在本实施例中说明电池单体20为圆柱体,且其轴线与圆柱状的电极端子214的轴线重合的结构。
如图3所示,电池单体20中,端盖212设置在电池单体20沿第一方向X的端部,电极端子214设置在端盖212上,且向远离电池单体20内部的方向突出,电极端子212包括两个端面A(在图中仅显示一个端面)和周侧面B,两个端面A沿第一方向X设置,周侧面B连接两个端面A。采样组件30抵接于电极端子214的周侧面B,以采集电池单体20的电信号。
由于采样组件30抵接于从端盖212突出的电池端子214的周侧面B,能够利用电池端子214从端盖212突出而在电池端子214的周侧面B形成的空间来设置采样组件30。通过像这样利用电极端子214侧面和端盖212形成的空间,在本来会空置的空间设置采样组件30,与在电池单体20的端面A设置采样件的结构相比,能够充分利用电池10内的空间,而相应提高电池 10的能量密度,而且能够以简单的结构对电池10内的全部电池单体20分别进行采样。其中,采样件30进行信号采集的部位可以是电池端子214的周侧面B的任意位置。
如图4所示,为本申请一个实施例的采样组件30的结构示意图。
采样组件30包括连接件301和支撑件303,连接件301用于与电极端子214抵接,连接件301固定于支撑件303。由此能够用支撑件303保持连接件301与电极端子214的接触,实现稳定的电连接。
由采样组件30采集到的信号,经由信号传输线束(例如FFC)或信号传输线路(例如FPC)等传送至信号处理器等,而用于电池单体20的控制,具体结构不赘述。
连接件301具有互相连接的抵接部311和脚部312,脚部312与支撑件303固定连接,抵接部311具有弹性且相对支撑件303凸出。通过采用该结构,能够利用具有弹性的抵接部311与电极端子214接触,通过抵接部311的弹性变形来适应电极端子214的形状,从而能够更稳定地实现连接件301与电极端子214的电连接。而且,这样的电连接方式能够有效利用重力或安装挤压力等外力作用,不需要另外的连接固定手段就能够实现稳定的电连接。另外,通过使连接件301的脚部312与支撑件303固定连接,能够利用支撑件303或设置于支撑件303的传输线等传递电信号,能够以集成的结构形成采样组件30,从而更为有效地利用电池的设置空间,提高电池的能量密度。
连接件301由导电材料形成,例如铜等金属。在利用支撑件303传递电信号时,支撑件303由导电材料形成。在经由传输线传递电信号时,支撑件303也可以由绝缘材料形成,例如通过注塑工艺形成。
而且,连接件301具有两个脚部312,抵接部311的两端分别连接两个脚部312。如果采用悬臂梁式的单侧支撑的方式支撑连接件301,则连接件301易于晃动而导致电连接不稳定。与此相比,本申请的实施例使抵接部311连接两个脚部312而实现两侧支撑,能够更稳定地进行支撑,有利于保证有效的电连接。
如图5所示,为本申请一个实施例的电池单体20和采样组件30的组合结构示意图,其中,图5(a)表示采样组件30未与电极端子214接触的状态,图5(b)表示采样组件30与电极端子214接触而变形的状态。
如图5(a)所示,在第一方向X上,连接件301的宽度W1小于电极 端子214突出于端盖212的高度W2。如上所述,连接件301的抵接部311与电极端子214的周侧面B接触,因此,为了防止连接件301伸出至电极端子214的端面A之外,影响其他部件的装配,在电极端子214的端面A相对的第一方向X上,使连接件301的宽度W1小于电极端子214的突出高度W2。
如图5(b)所示,抵接部311弹性变形,与电极端子214面接触且贴合电极端子214的周侧面B的形状。而且,在抵接部311与电极端子214面接触的情况下,抵接部311对电极端子214的接触面面积为电极端子214的周侧面B整周面积的1/6以上。由此,与电极端子214面接触的抵接部311沿着电极端子214的周侧面B的形状进行弹性变形,可以自适应地与电极端子214紧密配合,且接触面积足够大,能够提高面接触的稳定性。
由于抵接部311在与电极端子214接触时会弹性变形,为了提供抵接部311的弹性变形空间,抵接部311与支撑件303在两者的抵接方向具有空隙。在本实施例中,支撑件303的靠近抵接部311的表面321形成有凹部331,凹部331与电极端子214的形状相匹配,凹部331与抵接部311相对设置且朝向远离抵接部311的方向凹陷,从而形成该空隙,使得在抵接部311弹性变形时能够提供相应的弹性变形空间。由此,抵接部311在弹性变形时不会碰撞到支撑件303的靠近抵接部311的表面321,抵接部311的变形不会受到影响。
如图6所示,为本申请实施例的采样组件30与电极端子214点接触的结构示意图。
在本申请的实施例中,抵接部311与电极端子214点接触,且接触点数量为2以上。一个实施例中,如图6(a)所示,多个抵接部311从支撑件303突出而与电极端子214点接触。另一个实施例中,如图6(b)所示,一个抵接部311从支撑件303突出且抵接部311与电极端子214接触的表面形成为波浪状,以在多个点与电极端子214点接触。由此,在抵接部301与电极端子214点接触的情况下,也能够保证接触采样的稳定性。
在一些实施例中,抵接部311的与电极端子214抵接的位置涂覆有导电介质。由于电极端子214材质为金属例如铝,长时间使用后会出现表面钝化而影响信号采集,因此需要在电极端子214表面形成防护层。通过在抵接部301的表面涂布导电介质,在抵接部311抵接于电极端子214的表面时,导 电介质经由接触而涂覆到电极端子214上,于是能够在保证连接件301正常导电的基础上防止电极端子214表面发生钝化。导电介质,指的是导电胶或导电脂等能够很好的涂覆于抵接部311上的导电材质。
在本申请的一个实施例中,采样组件30还包括传输线302,传输线302用于将电信号向信号处理器传输,而且传输线302和连接件301的脚部312的一部分均埋设在支撑件303的内部,传输线302与脚部312电连接。由于传输线302与脚部312电连接,连接件301的脚部312能够将抵接部311采集到的电信号传送至传输线302,并经由传输线302向汇流部件或信号处理器传送。传输线302埋设于支撑件303内,可以减小传输线302与其他部件接触的可能性,提高电信号传输的准确性,而且通过采用埋设的方式在支撑件303的内部设置传输线302和脚部312的一部分,能够将采样组件30形成为集成结构,在有效实现电连接的同时更为节省空间,且制造、组装方便。
如图7所示,为在相邻的两个电池单体20间的间隙中设置采样组件30的结构示意图。
在本申请的一个实施例中,电池包括多个电池单体20,沿第一方向X相邻的两个电池单体20之间形成有间隙213,采样组件30设置于间隙213中。此处,“相邻的两个电池单体之间形成有间隙”可以是两个电池单体20的端盖或电极端子不接触而在两个电池单体20之间形成间隙,也可以是虽然两个电池单体的端盖或电极端子相互接触,但除了接触部位之外的部分存在间隔而形成间隙。例如,图7所示的本申请的一个实施例中,电极端子214从电池单体20的端盖212突出,且相邻的两个电池单体20经由电极端子214电连接,从而在两个电池单体20的端盖212之间,在除了电极端子214的电连接部位以外存在间隔而形成间隙。通过像这样利用形成在相邻的电池单体20间的间隙213来设置采样组件30,能够减少采样组件30所占用的空间,而有效利用本身空置的空间来布置采样组件30,使结构更加紧凑,以提高整体能量密度。其中,电极端子214的电连接可以是串联也可以是并联。
支撑件303卡置于间隙213中,由此能够方便地进行支撑件303的定位,并安装支撑件303。可选的是,支撑件303在第一方向X上的宽度W3与间隙213的宽度W大致相同,由此。支撑件303还能够对两个电池单体20的连接位置有一定的保持和稳定作用,限制两个电池单体20之间的过大的相对运动,提高结构稳定性,且能够防止支撑件303松动而导致采样组件30 与电极端子214的连接受到影响的情况发生。
以下基于附图8说明电池里多个电池单体20矩阵状排列的结构。如上所述,本申请中电极端子214可以为圆柱状、长方体、正方体、多角柱体等各种形状,在本实施例中说明电极端子为圆柱状的结构。而且,电池单体20可以为长方体、正方体或圆柱体,在本实施例中说明电池单体20为圆柱体,且其轴线与圆柱状的电极端子的轴线重合(即在垂直于轴线的截面中,电池单体的壳体周侧面B与电极端子的周侧面同心)的结构。
如图8所示,为本申请一个实施例的电池单体20排列成矩阵状的结构示意图。其中,电池单体20和电极端子214均形成为圆柱状,多个电池单体20在第一方向X(即电池单体20的轴向)上排列并电连接而形成电池单体列801,多个电池单体列801在第二方向Y上排列构成电池单体矩阵80,第二方向Y与第一方向X垂直。即,该电池单体矩阵80中,第一方向X成为列方向,第二方向Y成为行方向。通过对在列方向Y上相邻的多个电池单体20之间的电极端子214分别进行电压或温度的信号采集,能够掌握在列方向X上排列的每个电池单体20的电压或温度状态,高效地控制各个电池单体的安全性。而且,由于这样的电池单体列801在电池单体矩阵80的行方向(Y方向)上排列有多列,能够合理利用电池10中的设置空间,尽可能地提高电池10整体的能量密度。
另外,如图8所示,在与电池单体矩阵80的列方向X和行方向Y均垂直的第三方向Z上,设置有多层电池单体矩阵80。多层的电池单体矩阵80中相邻的两层电池单体矩阵80交错地设置。具体地说,配置成一层电池单体矩阵80的电池单体列801设置在另一层电池单体矩阵80的相邻两列电池单体列801之间的空隙中,或设置在另一层电池单体矩阵80的最外侧的电池单体列801与其相邻的电池的其他部件的空隙中。通过这样交错地设置多层电池单体矩阵80,能够充分利用电池单体列80之间的空隙,进一步提高电池的能量密度。
如图8所示,在两层电池单体矩阵80之间,设置有将两者隔开的分隔部件50。在配置有多层电池单体矩阵80的情况下,为了方便组装,在层与层之间设置有分隔部件50。而且利用该分隔部件50还能够对其两侧设置的电池单体矩阵80的层有支撑作用。
可选的,分隔部件50是电池的热管理部件。热管理部件能够容纳流体 以对多个电池单体调节温度。这里的流体可以是液体或气体,调节温度是指对多个电池单体进行加热或者冷却。在将电池单体20冷却或降温的情况下,该热管理部件用于容纳冷却流体以使多个电池单体温度降低,此时,热管理部件也可以称为冷却部件、冷却系统或冷却板等,其容纳的流体也可以称为冷却介质或冷却流体,更具体的,可以称为冷却液或冷却气体。另外,热管理部件也可以用于加热以使多个电池单体升温,本申请实施例对此并不限定。可选的,所述流体可以是循环流动的,以达到更好的温度调节的效果。可选的,流体可以为水、水和乙二醇的混合液或者空气等。
通过像这样使分隔部件50为热管理部件,能够由一个热管理部件对两层的电池单体矩阵80进行温度调节,热管理效率变高,而且设置空间变小,有助于提高电池的能量密度。
另外,如图8所示,分隔部件50能够配合电池单体矩阵80中各电池单体20的周侧面轮廓,形成为在与电池单体矩阵80的X方向垂直的YZ截面中具有交替设置的凸部和凹部的波浪形状。具体地说,该凸部和凹部分别对应于被分隔部件50隔开的两层电池单体矩阵80各自的相邻的电池单体列801之间的空隙,该凸部和凹部沿电池单体矩阵80的X方向延伸设置。
可选的,在第三方向Z上,在分隔部件50的两侧分别设置有采样组件30,以对被分隔部件50分隔开的两层电池单体矩阵80分别进行采样。如上所述,分隔部件50设置在两层的电池单体矩阵80之间,因此通过在分隔部件50的第三方向Z的两面均形成采样组件30,能够利用分隔部件50安装或支撑两侧的采样组件30,充分利用电池内的空间,能够有效提高能量密度。
在一些实施例中,第三方向Z为竖直方向,由此可以利用电池单体20的自身的重力实现抵接部311的抵接,不需要额外设置其他的施力部件。
支撑件303的面对分隔部件50的表面322(参照图5(b))形成为与分隔部件50贴合的形状。即,分隔部件50如果为平板状,则支撑件303的表面322形成为平板状,分隔部件50如果如上所述为波浪形状,则支撑件303的表面322相应地形成为波浪形状。由此能够充分利用分隔部件50对支撑件303的支撑作用。
如图9所示,为本申请一个实施例的支撑件303固定有相连接的多个连接件301的结构示意图。如图9所示,支撑件303沿电池单体矩阵80的行方向Y延伸设置,且具有多个(2个以上,图示为3个)连接件301,将至 少两个连接件301电连接,以使该至少两个连接件301所抵接的至少两个电极端子214成为等电位。即,在第二方向Y上相邻的多个电池单体20与在行方向Y上相邻的多个连接件301分别电连接。
由于采样组件30具有多个沿第二方向Y排列的连接件301,各连接件301连接于对应电池单元20的电极端子214的周侧面B,因此采样组件30可以同时采集在第二方向Y上排列的多个电池单体20的电信号,并且与一个采样组件30的多个连接件301电连接的多个电池单体20的电极端子214能够具有相等的电位,从而实现电池单体20的电压均衡,提高电池单体的一致性。
另外,在图8的电池单体矩阵80中在第二方向Y上排列有多列电池单体列801时,为了对在第二方向Y上排列的所有电池单体列的电极端子214进行信号采集,需要多个连接件301。本申请的实施例使2个以上的连接件301成为一组,将一组连接件301固定于一个支撑件303,并设置多组这样的结构,形成串并混联的结构,能够避免安装的累积误差。
本申请的一个实施例中,在电池单体20的第一方向X的两端均设置有从端盖212突出的电极端子214,相邻的两个电池单体20的电极端子214相对设置并直接焊接。即,电池单体20的正负极两端的电极端子214均从端盖212突出,突出于端盖212的电池端子214通过焊接实现电连接。由此不需要另外设置用于电连接的机构,能够减小实现电连接的结构的尺寸,充分利用电池10内的电池单体20设置空间,从而提高电池10的能量密度。
进而,在两个电极端子214通过直接焊接而电连接的情况下,在焊接区域形成焊缝。抵接部311与电极端子214的接触区域避让电极端子214的焊接区域。例如,使采样组件30的抵接部311与焊接区域在第一方向X上错开位置,或者形成焊接用凹口,使得焊接区域不会突出电极端子214的周侧面B。由此能够避免采样精度降低、提高装配精度。
如图10所示,为本申请实施例的采样组件30的温度采样器31的结构示意图。
在本申请的一个实施例中,采样组件30还包括温度采样器31。在相邻的两个电池单体20的电极端子214相对设置的情况下,该温度采样器31设置在两个电极端子214中不同于与连接件301接触的电极端子214的另一个电极端子214。由此能够对电池的电压和温度同时进行信号采集,进一步提 高电池的安全性。
上文描述了本申请实施例的电池和用电装置,下面将描述本申请实施例的制备电池的方法,其中未详细描述的部分可参见前述各实施例。
图11示出了本申请一个实施例的制备电池的方法400的示意性流程图。如图11所示,该方法400可以包括:
410,提供电池单体20,电池单体20包括端盖212和电极端子214,端盖212设置在电池单体20沿第一方向X的端部,电极端子214设置在端盖212上,且向远离电池单体20内部的方向突出,电极端子214包括两个端面A和周侧面B,两个端面A沿所述第一方向X设置,周侧面B连接两个端面A;
420,提供采样组件30,采样组件30抵接于周侧面B,以采集电池单体20的电信号。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换,但这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (24)

  1. 一种电池,包括:
    电池单体,包括端盖和电极端子,所述端盖设置在所述电池单体沿第一方向的端部,所述电极端子设置在所述端盖上,且向远离所述电池单体内部的方向突出,所述电极端子包括两个端面和周侧面,所述两个端面沿所述第一方向设置,所述周侧面连接所述两个端面;和
    采样组件,抵接于所述周侧面,以采集所述电池单体的电信号。
  2. 根据权利要求1所述的电池,其中,所述采样组件包括连接件和支撑件,所述连接件用于与所述电极端子抵接,所述连接件固定于所述支撑件。
  3. 根据权利要求1或2所述的电池,其中,所述连接件具有互相连接的抵接部和脚部,所述脚部与所述支撑件固定连接,所述抵接部具有弹性,所述抵接部与所述电极端子抵接。
  4. 根据权利要求3所述的电池,其中,所述连接件具有两个脚部,所述抵接部的两端分别与两个脚部连接。
  5. 根据权利要求3或4所述的电池,其中,所述抵接部与所述电极端子面接触,且贴合所述电极端子的所述周侧面的形状。
  6. 根据权利要求5所述的电池,其中,所述电极端子与所述抵接部的接触面面积为所述周侧面整周面积的1/6以上。
  7. 根据权利要求3或4所述的电池,其中,所述抵接部与所述电极端子点接触,且接触点数量为2以上。
  8. 根据权利要求3至7中任一项所述的电池,其中,所述抵接部的与所述电极端子抵接的位置涂覆有导电介质。
  9. 根据权利要求3至8中任一项所述的电池,其中,所述采样组件还包括传输线,所述传输线用于将电信号向信号处理器传输,所述传输线和所述脚部埋设在所述支撑件内部,所述传输线与所述脚部电连接。
  10. 根据权利要求3至9中任一项所述的电池,其中,所述抵接部与所述支撑件在抵接方向具有空隙,以提供所述抵接部的弹性变形空间。
  11. 根据权利要求10所述的电池,所述支撑件设有凹部,所述凹部与所述电极端子的形状相匹配,且所述凹部与所述抵接部相对设置且朝向远离所述抵接部的方向凹陷,以形成所述空隙。
  12. 根据权利要求2至11中任一项所述的电池,其中,在所述第一方向 上,所述连接件的宽度小于所述电极端子突出于所述端盖的高度。
  13. 根据权利要求1至12中任一项所述的电池,所述电池包括多个电池单体,沿所述第一方向相邻的两个电池单体之间形成有间隙,所述采样组件设置于所述间隙中。
  14. 根据权利要求13所述的电池,其中,所述支撑件卡置于所述间隙中。
  15. 根据权利要求1至14中任一项所述的电池,其中,多个所述电池单体在所述第一方向上排列并电连接而形成电池单体列,多个所述电池单体列在第二方向上排列构成电池单体矩阵,所述第二方向与所述第一方向垂直。
  16. 根据权利要求15所述的电池,其中,所述支撑件沿所述第二方向延伸,且具有多个所述连接件,至少两个连接件电连接以使所述至少两个连接件抵接的至少两个所述电极端子等电位。
  17. 根据权利要求15或16所述的电池,其中,在第三方向上设置有多层所述电池单体矩阵,所述第三方向与所述第一方向和所述第二方向垂直。
  18. 根据权利要求17所述的电池,其中,在两层所述电池单体矩阵之间,设置有将两者隔开的分隔部件。
  19. 根据权利要求18所述的电池,其中,在所述第三方向上,在所述分隔部件的两侧分别设置所述采样组件,以对被所述分隔部件分隔开的两层所述电池单体矩阵分别进行采样。
  20. 根据权利要求18或19所述的电池,其中,所述支撑件的面对所述分隔部件的表面形成为与所述分隔部件贴合的形状。
  21. 根据权利要求1至20中任一项所述的电池,其中,在所述电池单体的所述第一方向的两端均设置有所述电极端子,相邻的两个电池单体的所述电极端子相对设置并直接焊接。
  22. 根据权利要求21所述的电池,其中,所述采样组件与所述电极端子的抵接区域避让所述电极端子的焊接区域。
  23. 一种用电装置,其包括权利要求1至22中任一项所述的电池,所述电池用于提供电能。
  24. 一种制备电池的方法,包括:
    提供电池单体,所述电池单体包括端盖和电极端子,所述端盖设置在所述电池单体沿第一方向的端部,所述电极端子设置在所述端盖上,且向远离所述电池单体内部的方向突出,所述电极端子包括两个端面和周侧面,所述 两个端面沿所述第一方向设置,所述周侧面连接所述两个端面;和
    提供采样组件,所述采样组件抵接于所述周侧面,以采集所述电池单体的电信号。
PCT/CN2021/076277 2021-02-09 2021-02-09 电池、用电装置和制备电池的方法 WO2022170483A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP21912310.6A EP4071921A4 (en) 2021-02-09 2021-02-09 BATTERY, ELECTRICAL DEVICE AND METHOD FOR PRODUCING A BATTERY
CN202180065747.3A CN116457978A (zh) 2021-02-09 2021-02-09 电池、用电装置和制备电池的方法
PCT/CN2021/076277 WO2022170483A1 (zh) 2021-02-09 2021-02-09 电池、用电装置和制备电池的方法
US17/854,291 US20220407161A1 (en) 2021-02-09 2022-06-30 Battery, electrical apparatus, and preparation method of battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/076277 WO2022170483A1 (zh) 2021-02-09 2021-02-09 电池、用电装置和制备电池的方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/854,291 Continuation US20220407161A1 (en) 2021-02-09 2022-06-30 Battery, electrical apparatus, and preparation method of battery

Publications (1)

Publication Number Publication Date
WO2022170483A1 true WO2022170483A1 (zh) 2022-08-18

Family

ID=82838083

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/076277 WO2022170483A1 (zh) 2021-02-09 2021-02-09 电池、用电装置和制备电池的方法

Country Status (4)

Country Link
US (1) US20220407161A1 (zh)
EP (1) EP4071921A4 (zh)
CN (1) CN116457978A (zh)
WO (1) WO2022170483A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120276427A1 (en) * 2011-04-26 2012-11-01 Duk-Jung Kim Rechargeable battery
CN103137934A (zh) * 2011-11-21 2013-06-05 矢崎总业株式会社 蓄电池用电线布线结构
CN203503754U (zh) * 2013-09-26 2014-03-26 中航锂电(洛阳)有限公司 锂离子动力电池盖板组件及使用该组件的锂离子动力电池
US20140356668A1 (en) * 2013-05-30 2014-12-04 Robert Bosch Gmbh Rechargeable battery module
CN207967147U (zh) * 2018-03-08 2018-10-12 宁德时代新能源科技股份有限公司 电池模组
CN210607527U (zh) * 2019-09-27 2020-05-22 欣旺达电动汽车电池有限公司 温度采样电芯和动力电池组

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7775810B2 (en) * 2008-06-12 2010-08-17 Delphi Technologies, Inc. Voltage tap apparatus for series connected conductive case battery cells
JP2010157399A (ja) * 2008-12-26 2010-07-15 Autonetworks Technologies Ltd 電池モジュール
JP6353070B2 (ja) * 2014-04-01 2018-07-04 深▲せん▼市智輪電動車駆動技術有限公司 動力電池及びその電池セル状態収集装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120276427A1 (en) * 2011-04-26 2012-11-01 Duk-Jung Kim Rechargeable battery
CN103137934A (zh) * 2011-11-21 2013-06-05 矢崎总业株式会社 蓄电池用电线布线结构
US20140356668A1 (en) * 2013-05-30 2014-12-04 Robert Bosch Gmbh Rechargeable battery module
CN203503754U (zh) * 2013-09-26 2014-03-26 中航锂电(洛阳)有限公司 锂离子动力电池盖板组件及使用该组件的锂离子动力电池
CN207967147U (zh) * 2018-03-08 2018-10-12 宁德时代新能源科技股份有限公司 电池模组
CN210607527U (zh) * 2019-09-27 2020-05-22 欣旺达电动汽车电池有限公司 温度采样电芯和动力电池组

Also Published As

Publication number Publication date
US20220407161A1 (en) 2022-12-22
EP4071921A1 (en) 2022-10-12
EP4071921A4 (en) 2023-10-18
CN116457978A (zh) 2023-07-18

Similar Documents

Publication Publication Date Title
EP2421065B1 (en) Rechargeable battery
JP5743356B2 (ja) バッテリー・モジュールとこれを含むバッテリーパック
EP3553845A1 (en) Battery pack
WO2022134985A1 (zh) 电池单体、电池以及用电装置
WO2022116473A1 (zh) 电池、用电设备及电池的制造方法
WO2024016876A1 (zh) 固态电池模组
JPH11121025A (ja) 二次電池
US20220349950A1 (en) Battery, electric apparatus, and method for preparing battery
WO2022170483A1 (zh) 电池、用电装置和制备电池的方法
WO2023155208A1 (zh) 电池、用电设备、制备电池的方法和设备
WO2023133748A1 (zh) 电池模块、电池、用电设备、制备电池的方法和设备
WO2023159486A1 (zh) 电池、用电设备、制备电池的方法和设备
WO2023000511A1 (zh) 电池模块、电池、用电设备、制备电池的方法和设备
WO2023155207A1 (zh) 电池、用电设备、制备电池的方法和设备
WO2023004726A1 (zh) 电池的箱体、电池、用电设备、制备电池的方法和设备
WO2022170484A1 (zh) 电池、用电装置、制备电池的方法和制备电池的装置
WO2023092344A1 (zh) 电池单体、电池、用电装置、制备电池单体的方法和装置
CN220368104U (zh) 电池
WO2023082192A1 (zh) 电池单体、电池、用电装置、制备电池的方法和装置
WO2022170485A1 (zh) 电池、用电装置、制备电池的方法和制备电池的装置
WO2023050022A1 (zh) 电池及其制造方法和制造装置、用电装置
WO2023155211A1 (zh) 电池、用电设备、制备电池的方法和设备
WO2023155212A1 (zh) 电池、用电设备、制备电池的方法和设备
WO2023155209A1 (zh) 电池、用电设备、制备电池的方法和设备
CN219371103U (zh) 圆柱电池及电池组

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021912310

Country of ref document: EP

Effective date: 20220705

WWE Wipo information: entry into national phase

Ref document number: 202180065747.3

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE