WO2024053142A1 - ころ軸受 - Google Patents

ころ軸受 Download PDF

Info

Publication number
WO2024053142A1
WO2024053142A1 PCT/JP2023/012792 JP2023012792W WO2024053142A1 WO 2024053142 A1 WO2024053142 A1 WO 2024053142A1 JP 2023012792 W JP2023012792 W JP 2023012792W WO 2024053142 A1 WO2024053142 A1 WO 2024053142A1
Authority
WO
WIPO (PCT)
Prior art keywords
bearing
roller
pocket
rollers
cage
Prior art date
Application number
PCT/JP2023/012792
Other languages
English (en)
French (fr)
Inventor
隆司 村井
聡希 中野
渓太 山田
真一 河田
晋 高野
Original Assignee
日本精工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本精工株式会社 filed Critical 日本精工株式会社
Publication of WO2024053142A1 publication Critical patent/WO2024053142A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/14Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load
    • F16C19/18Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/22Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings
    • F16C19/34Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load
    • F16C19/38Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with two or more rows of rollers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C23/00Bearings for exclusively rotary movement adjustable for aligning or positioning
    • F16C23/06Ball or roller bearings
    • F16C23/08Ball or roller bearings self-adjusting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/46Cages for rollers or needles
    • F16C33/48Cages for rollers or needles for multiple rows of rollers or needles

Definitions

  • the present invention relates to roller bearings.
  • a roller bearing is a type of rolling bearing.
  • a roller bearing includes an inner ring and an outer ring that extend in the circumferential direction around a central shaft, rollers that are arranged between the inner ring and the outer ring, and a cage that is provided with pockets that hold the rollers (for example, (See Patent Document 1).
  • Patent Document 1 discloses a technique for reducing rotational noise of a roller bearing by setting the maximum diameter Dw of the roller and the minimum clearance C between the inner surface of the pocket and the inner surface of the pocket to values within a predetermined range. Specifically, the relationship between the maximum diameter Dw of the roller and the minimum clearance C is 0.01 ⁇ Dw ⁇ C ⁇ 0.02 ⁇ Dw.
  • An object of the present invention is to provide a roller bearing that can have a long service life.
  • a roller bearing includes an inner ring and an outer ring that extend in the circumferential direction around the central shaft, a plurality of rollers that are arranged between the inner ring and the outer ring, and a roller bearing that extends in the axial direction of the central shaft.
  • a cage in which a plurality of extending columnar portions are provided along the circumferential direction, and each of the plurality of rollers is held in a pocket between two circumferentially adjacent columnar portions among the plurality of columnar portions.
  • a pitch circle is a circle passing through the axis of the roller with the central axis as the center
  • the two pillar portions adjacent in the circumferential direction are arranged as a pitch circle when viewed from the axial direction of the central axis.
  • a first pillar part and a second pillar part a roller disposed in a pocket between the first pillar part and the second pillar part is a first roller, and a roller between the first pillar part and the second pillar part;
  • the pocket gap ratio which is the pocket gap divided by the maximum diameter of the first roller, is 0.005 or more. Less than .01.
  • roller bearings when the inner ring and outer ring rotate relative to each other, the rollers in the pockets of the cage rotate. Therefore, friction and slippage occur between the inner ring, outer ring, or cage and the rollers. This friction and slippage may cause damage to the inner or outer ring, such as peeling, or may cause the temperature of the inner or outer ring to increase, reducing the life of the roller bearing.
  • the pocket clearance ratio is less than 0.005, for example, when the inner ring is rotated relative to the outer ring, abnormal heat generation occurs due to some metal contact between the rollers in the cage pocket and the cage, resulting in , the temperature of the inner ring and outer ring becomes too high and it becomes unusable.
  • the pocket clearance ratio is 0.01 or more, for example, when the inner ring is rotated relative to the outer ring, the rollers in the pocket are likely to cause large skews, resulting in contact between the rollers and the inner ring, and between the rollers and the outer ring. As a result, peeling is likely to occur particularly on the inner ring, which has a high geometric surface pressure, and the life of the roller bearing is shortened. From the above, by setting the pocket gap ratio to 0.005 or more and less than 0.01, it is possible to extend the life of the roller bearing.
  • the pocket gap ratio is 0.00573 or more and 0.0099 or less. This makes it possible to further extend the life of the roller bearing.
  • FIG. 1 is a schematic cross-sectional view of a self-aligning roller bearing.
  • FIG. 2 is a schematic cross-sectional view of the self-aligning roller bearing according to the embodiment.
  • FIG. 3 is a schematic diagram of a part of the cage according to the embodiment viewed from the outer circumferential side.
  • FIG. 4 is a plan view of the spherical roller according to the embodiment.
  • FIG. 5 is a schematic diagram showing a cross section of the cage and the spherical rollers viewed from the axial direction.
  • FIG. 6 is a schematic cross-sectional view showing the relationship between the gap between the cage and the spherical rollers.
  • FIG. 7 is a graph showing pocket gap ratios and bearing life ratios for each type of cage in Examples.
  • FIG. 8 is a schematic diagram showing a cross section of the cage and spherical rollers as seen from the axial direction of the cage incorporated for the bearing rotation test.
  • FIG. 9 is a graph showing the relationship between the rotation speed of the bearing and the outer ring temperature.
  • FIG. 10 is a graph showing the relationship between pocket gap ratio and bearing life ratio.
  • FIG. 1 is a partially cross-sectional perspective view schematically showing a self-aligning roller bearing.
  • FIG. 2 is a schematic cross-sectional view of the self-aligning roller bearing according to the embodiment.
  • FIG. 3 is a schematic diagram of a part of the cage according to the embodiment viewed from the outer circumferential side.
  • the X1 side is one side in the axial direction of the inner ring 1 and the outer ring 2, and the X2 side is the other side in the axial direction.
  • FIG. 4 is a plan view of the spherical roller according to the embodiment.
  • the self-aligning roller bearing 100 includes an inner ring 1, an outer ring 2, spherical rollers (first rollers) 32, and a cage 4.
  • the inner ring 1 and the outer ring 2 have an annular shape extending in the circumferential direction around the central axis AX10.
  • a plurality of spherical rollers 32 are arranged in two rows with the axial center line CL of the inner ring 1 and outer ring 2 interposed therebetween.
  • rows of spherical rollers 32 arranged along the circumferential direction are formed on the X1 side (one side in the axial direction) and the X2 side (the other side) of the inner ring 1 and the outer ring 2 with the center line CL in between.
  • the axial centers AX20 of these two rows of spherical rollers 32 are inclined with respect to the central axis AX10.
  • the axis AX20 of the spherical roller 32 on the X1 side is inclined so as to approach the central axis AX10 as it goes toward the X1 side.
  • the axis AX20 of the spherical roller 32 on the X1 side is inclined radially inward toward the X1 side.
  • the axis AX20 of the spherical roller 32 on the X2 side is inclined toward the center axis AX10 as it goes toward the X2 side.
  • the axis AX20 of the spherical roller 32 on the X2 side is inclined radially inward as it goes to the X2 side.
  • the inner ring 1 has an outer circumferential surface 11 and an inner circumferential surface 12, and the outer circumferential surface 11 is provided with raceway surfaces 13 and 14 of the spherical rollers 32.
  • the raceway surface 13 is the raceway surface of the spherical roller 32 on the X1 side.
  • the raceway surface 13 is inclined radially inward toward the X1 side.
  • the raceway surface 14 is the raceway surface of the spherical roller 32 on the X2 side.
  • the raceway surface 14 is inclined radially inward toward the X2 side.
  • the outer ring 2 has an outer circumferential surface 22 and an inner circumferential surface 21, and the inner circumferential surface 21 becomes the raceway surface 23 of the rollers 3.
  • the inner circumferential surface 21 is a circular arc centered on the center O2.
  • the center O2 which is the center of curvature of the raceway surface 23 of the outer ring 2
  • the retainer 4 includes a rim portion (central annular portion, hereinafter referred to as the rim portion) 43 and a column portion 40.
  • the rim portion 43 extends annularly along the center line CL of the retainer 4. That is, the rim portion 43 is located at the center of the inner ring 1 and the outer ring 2 in the axial direction.
  • the column portion 40 extends from the rim portion 43 toward the X1 side or the X2 side.
  • the column portion 40 is substantially perpendicular to the rim portion 43.
  • the pillar portions 40 are arranged at equal intervals along the circumferential direction.
  • pockets 46 are provided between a pair of circumferentially adjacent pillars 40 and rim 43 and between a pair of circumferentially adjacent pillars 40 and rim 43.
  • the column portion 40 on the X2 side is arranged between two column portions 40 adjacent in the circumferential direction on the X1 side.
  • the rollers 3 applied to the self-aligning roller bearing 100 are, for example, spherical rollers 32 shown in FIG. 4.
  • the outer peripheral surface 32a of the spherical roller 32 has a spherical shape, and the diameter at the center in the axial direction is larger than the diameter at the end in the axial direction.
  • the spherical roller 32 has a maximum diameter D100 at the center in the axial direction of the axis AX20.
  • the spherical roller 32 is arranged in the pocket 46.
  • FIG. 5 is a schematic diagram showing a cross section of the cage and the spherical rollers viewed from the axial direction.
  • a pitch circle C1 is a circle centered on the center axis AX10 (see FIG. 1) and passing through the axis AX20 of the spherical roller 32.
  • the circumference of the pitch circle C1 is drawn with a straight dashed-dotted line.
  • the cage 4 can be, for example, cage 4A and cage 4B.
  • FIG. 1 shows an example in which cage 4B is applied.
  • the cage 4A has two pillar parts 40, a first pillar part 41A and a second pillar part 42A.
  • the cage 4B has two pillar parts 40, a first pillar part 41B and a second pillar part 42B.
  • the spherical rollers 32 are arranged between two circumferentially adjacent column parts 40.
  • the first column portion 41A and the second column portion 42A of the cage 4A are arranged on the circumference of the pitch circle C1.
  • the first column portion 41B and the second column portion 42B of the retainer 4B are arranged radially inward of the self-aligning roller bearing 100 than the first column portion 41A and the second column portion 42A. That is, the distance between the radial center of the first column portion 41A and the second column portion 42A of the cage 4A and the center axis AX10 of the self-aligning roller bearing 100 is determined by PCD (Pitch Circle Diameter). ).
  • the distance between the radial center portions of the first column portion 41B and the second column portion 42B of the retainer 4B and the central axis AX10 of the self-aligning roller bearing 100 is smaller than the PCD.
  • the center O1 is the center of the distance along the circumference of the pitch circle C1 between the radial center of the side surface 41Aa of the first column part 41A and the radial center of the side surface 42Aa of the second column part 42A in the cage 4A. shall be.
  • a virtual circle C2 passing through the side surface 41Aa and the side surface 42Aa with the center O1 as the center is shown by a broken line.
  • the side surface 41Aa and the side surface 42Aa of the cage 4A and the side surface 41Ba and the side surface 42Ba of the cage 4B are arcuate along the circumference of the virtual circle C2.
  • FIG. 6 is a schematic diagram showing the gap between the cage and the spherical rollers (in order to make the figure easier to read, the gap is exaggerated and drawn larger than in FIG. 5).
  • the gap in the pocket 46 of the cages 4A, 4B is calculated.
  • the case where the axis AX20 of the spherical roller 32 coincides with the center O1 means that the axis AX20 of the spherical roller 32 coincides with the center O1, which means that the axis AX20 of the spherical roller 32 coincides with the center O1.
  • the pocket gap is twice the second gap.
  • the pocket gap is the distance obtained by subtracting the maximum diameter D100 of the spherical roller (first roller) 32 from the distance between the first column portion 41A and the second column portion 42A along the pitch circle C1. This will be explained in detail below.
  • the second gap between the cage 4A and the spherical rollers 32 is calculated.
  • the radial center point of the side surface 42Aa of the second column portion 42A is defined as a point P1.
  • the intersection of the straight line connecting the axis AX20 of the spherical roller 32 and the point P1 and the outer circumferential surface 32a of the spherical roller 32 is defined as a point P2.
  • the distance between point P1 and point P2 is distance L10. That is, the second gap between the cage 4A and the spherical rollers 32 is the distance L10. Therefore, the pocket gap of the retainer 4A is 2 ⁇ L10.
  • the second gap between the cage 4B and the spherical rollers 32 is calculated. Since the cage 4B is located inside the pitch circle C1 in the radial direction, the second gap is calculated by applying the approximate formula shown below.
  • the radially inner end of the side surface 42Ba of the second column portion 42B of the retainer 4B is defined as a point P3.
  • the intersection of the straight line connecting the axis AX20 and the point P3 and the outer circumferential surface 32a of the spherical roller 32 is defined as a point P4.
  • the intersection angle between the straight line connecting the axis AX20 and the point P3 and the straight line connecting the axis AX20 and the point P1 is defined as an angle ⁇ .
  • a straight line passing through point P4 and parallel to the straight line connecting axis AX20 and point P1 and a straight line passing through point P3 and perpendicular to the straight line connecting points P4 and P3 intersect at point P5. .
  • a right triangle is formed by point P3, point P4, and point P5. That is, a right triangle is formed by a side p connecting points P3 and P4, a side q connecting points P4 and P5, and a side r connecting points P3 and P5.
  • Side q is the hypotenuse
  • side p and side r are two sides that sandwich a right angle. Note that the straight line connecting the points P3 and P5 is also a tangent to the virtual circle C2 at the point P3.
  • the second gap between the cage 4B and the spherical rollers 32 is the same as the distance L20 (length of side q), which is the distance between the points P4 and P5. Therefore, the pocket gap of the retainer 4B can be approximated as 2 ⁇ L20.
  • the distance L10 explained for the cage 4A is the same as the distance between the points P3 and P4 (the length of the side p), as explained for the cage 4B.
  • Example 1 In Example 1, the life ratio of spherical roller bearings A, B, and C (hereinafter simply referred to as bearings A, B, and C) was verified.
  • the life ratio is the ratio of the actual life time to the basic rated life of each bearing based on its dynamic load rating.
  • the actual life time is the time during which peeling occurs on any of the inner ring, outer ring, and rollers of the bearing. In this example, peeling occurred on the inner ring in all cases.
  • Bearing A, bearing B, and bearing C differed only in the pocket gap ratio, which is the pocket gap divided by the maximum diameter of the rollers, and other conditions were the same.
  • Bearing A, Bearing B, and Bearing C use the model number 22211 bearing (outer diameter is 100 mm, inner diameter is 55 mm, and width is 25 mm) as the basic bearing, and the outer ring, inner ring, and The roughness of the rollers and the heat treatment of the materials were all the same. The roughness conditions are shown below.
  • the wrap ratio between the rollers and the inner ring (radius of curvature of the rolling surface of the rollers/radius of curvature of the raceway surface of the inner ring) and the wrap ratio between the rollers and the outer ring (radius of curvature of the rolling surface of the rollers/radius of curvature of the raceway surface of the outer ring)
  • the radius of curvature was set to be the same for all bearings A, B, and C.
  • the cage 4A described in FIGS. 5 and 6 was used as the cage for bearings A and C, and the cage 4B explained in FIGS. 5 and 6 was used as the cage for bearing B. This will be explained in detail below.
  • test conditions are as follows. ⁇ Test radial load: 45200N ⁇ Test axial load: 0N ⁇ Inner ring rotation speed: 1500min -1 (outer ring fixed) ⁇ Lubrication method: JX Nippon Oil FBK oil RO68, forced supply circulation
  • the dynamic load rating (Cr), basic rating life (H), and pocket clearance ratio of each bearing are as follows. Since bearings A and C use cage 4A, the pocket clearance in bearings A and C was calculated as 2 ⁇ L10 (see FIG. 6). Since bearing B uses cage 4B, the pocket gap in bearing B was calculated as 2 ⁇ L20 (see FIG. 6).
  • FIG. 7 is a graph showing pocket gap ratios and bearing life ratios for each type of cage in Examples.
  • FIG. 8 is a schematic diagram showing a cross section of each cage and spherical rollers as seen from the axial direction of the cage incorporated for the bearing rotation test.
  • the life ratio of bearing A (pocket clearance ratio: 1.35%) is 0.23
  • the life ratio of bearing B (pocket clearance ratio: 0.87%) is 1.58
  • the life ratio of bearing C ( The life ratio of the pocket gap ratio (0.805%) was 2.3.
  • the pocket gap ratio of bearing B which has a pocket gap ratio between those of bearing A and bearing C, showed a life ratio between those of bearing A and bearing C. From the above, it was found that the lifetime can be extended by decreasing the pocket gap ratio.
  • the long life effect can be achieved by reducing the pocket gap ratio, which causes the rollers to come into contact with the inner surface of the pocket (roller guide surface) of the cage, creating frictional force and reducing the rotational speed of the rollers.
  • One of the factors is thought to be that this reduces the slippage between the rollers and the inner ring, thereby suppressing surface fatigue of the inner ring.
  • Example 2 In Example 1, it was possible to verify that the lifetime ratio was increased by decreasing the pocket gap ratio. In Example 2, the minimum value of the pocket gap ratio was verified. Specifically, among spherical roller bearings a, b, and c (hereinafter simply referred to as bearings a, b, and c), bearing c is compared with bearings a and b, and the pocket clearance ratio of bearing c is We verified the suitability of This will be explained in detail below.
  • Bearing a has the same design as bearing A of Example 1. Specifically, for the bearing a, the retainer 4A described in FIGS. 5 and 6 was applied to a bearing with model number 24128.
  • Bearing c has the same design as bearing C of Example 1. Specifically, the bearing c was obtained by applying the retainer 4A described in FIGS. 5 and 6 to a bearing model number 24128.
  • Bearing b has the same design as bearing B, and is a bearing (commercially available product) in which a retainer 4B' (two-piece bearing ring guide press retainer) shown in FIG. 8 is assembled to a bearing with model number 24128.
  • test conditions are as follows. ⁇ Test radial load: 75700N ⁇ Test axial load: 0N ⁇ Inner ring rotation speed: 1300, 1950, 2600min -1 , 3250min -1 (Bearing c only) ⁇ Lubrication method: JX Nippon Oil FBK oil VG68, forced supply circulation
  • point A indicates the pocket gap ratio and bearing life ratio in bearing A.
  • Point B indicates the pocket gap ratio and bearing life ratio in bearing B.
  • Point C indicates the pocket gap ratio and bearing life ratio in bearing C.
  • the pocket gap ratios of 0.5 and 0.573 are based on the above-mentioned verification of the temperature rise of bearing c.
  • the lower limit of the pocket gap ratio in the bearing is 0.005 (0.5%), preferably 0.00573 (0.5733%).
  • the upper limit of the pocket gap ratio is less than 0.01 (less than 1%), preferably 0.0099 (0.99%).
  • the self-aligning roller bearing (roller bearing) 100 includes an inner ring 1, an outer ring 2, a plurality of spherical rollers 32 (rollers 3), and a plurality of columnar parts 40 in the circumferential direction.
  • the cage 4 includes a cage 4 in which a spherical roller (first roller) 32 is held between two column parts 40 adjacent to each other. If the pocket gap is defined as the distance between the first column part 41A and the second column part 42A along the pitch circle C1 minus the maximum diameter D100 of the spherical roller (first roller) 32, then the pocket gap is the distance between the spherical roller 32 and the spherical roller 32.
  • the pocket gap ratio divided by the maximum diameter D100 is 0.005 or more and less than 0.01.
  • the self-aligning roller bearing 100 when the inner ring 1 and the outer ring 2 rotate relative to each other, the spherical rollers 32 in the cage 4 rotate. Therefore, friction and slippage occur between the inner ring 1, outer ring 2, or cage 4 and the spherical rollers 32. Due to this friction and slippage, for example, the rolling life of the inner ring 1 or outer ring 2 may be reduced due to peeling, etc., or the temperature of the inner ring 1 or outer ring 2 may become high, causing damage such as seizure to the spherical roller bearing 100. The service life of the product may be reduced.
  • the pocket clearance ratio is less than 0.005
  • the friction between the rollers and the inner surface of the pocket increases, and for example, when the inner ring 1 is rotated relative to the outer ring 2, It is expected that the rollers will generate abnormal heat, and as a result, the temperature of the inner ring 1 and outer ring 2 will become too high to be used.
  • the temperature increase gradient of bearing c and bearing a shown in FIG. 9 becomes large, exhibiting a temperature gradient greater than that of bearing b, and exceeding 110° C. even at 1950 min ⁇ 1 , for example.
  • the gap ratio is small, in the worst case, seizure will occur in a short time after the rotation starts.
  • the pocket gap ratio is 0.01 or more, for example, when the inner ring 1 is rotated relative to the outer ring 2, peeling tends to occur in the inner ring 1, and the life of the self-aligning roller bearing 100 is shortened. From the above, by setting the pocket gap ratio to 0.005 or more and less than 0.01, it is possible to extend the life of the self-aligning roller bearing 100. Further, by setting the pocket gap ratio to 0.00573 or more and 0.0099 or less, it is possible to further extend the life of the self-aligning roller bearing 100.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Rolling Contact Bearings (AREA)
  • Support Of The Bearing (AREA)

Abstract

ころ軸受は、内輪および外輪と、複数のころと、中心軸の軸方向に延びる柱部が周方向に沿って複数設けられ、且つ、複数の柱部のうち周方向に隣接する2つの柱部の間にころが保持される保持器と、を備える。中心軸の軸方向から見て、周方向に隣接する第1柱部と第2柱部とのピッチ円に沿った距離からころの最大径を引いた距離をポケット隙間とした場合、ポケット隙間をころの最大径で割ったポケット隙間比は、0.005以上0.01未満である。

Description

ころ軸受
 本発明は、ころ軸受に関する。
 ころ軸受は、転がり軸受の一種である。ころ軸受は、中心軸の軸回りの周方向に延びる内輪および外輪と、内輪と外輪との間に配置されるころと、ころを保持するポケットが設けられた保持器と、を備える(例えば、特許文献1参照)。特許文献1には、ころの最大直径Dwと、ポケットの内面ところとの最小すきまCとを所定範囲の値にして、ころ軸受の回転音を低減させる技術が開示されている。具体的には、ころの最大直径Dwと最小すきまCとの関係は、0.01×Dw≦C≦0.02×Dwである。
特開2018-169044号公報
 近年、ころ軸受を用いる機械装置において、当該機械装置の寿命を長くしたいという産業界の要望が高まっているため、ころ軸受の長寿命化も望まれている。
 本発明は、長寿命化を図ることが可能なころ軸受を提供することを目的とする。
 本発明の一態様に係るころ軸受は、中心軸の軸回りの周方向に延びる内輪および外輪と、前記内輪と前記外輪との間に配置される複数のころと、前記中心軸の軸方向に延びる柱部が前記周方向に沿って複数設けられ、且つ、複数の前記柱部のうち前記周方向に隣接する2つの柱部の間のポケットに前記複数のころのそれぞれが保持される保持器と、を備え、前記中心軸を中心として前記ころの軸心を通る円をピッチ円とした場合、前記中心軸の前記軸方向から見て、前記周方向に隣接する前記2つの柱部を第1柱部および第2柱部とし、前記第1柱部と前記第2柱部との間のポケットに配置されるころを第1ころとし、前記第1柱部と前記第2柱部との前記ピッチ円に沿った距離から前記第1ころの最大径を引いた距離をポケット隙間とした場合、当該ポケット隙間を前記第1ころの最大径で割ったポケット隙間比は、0.005以上0.01未満である。
 ころ軸受においては、内輪と外輪とが相対回転する際に、保持器のポケット内のころが回転する。従って、内輪、外輪または保持器と、ころとの間に摩擦や滑りが生じる。この摩擦や滑りによって、例えば、内輪または外輪に剥離等の損傷が生じたり、内輪または外輪の温度が高温になったりして、ころ軸受の寿命が低下する場合がある。
 ポケット隙間比が0.005未満の場合は、例えば内輪を外輪に対して相対回転させる場合に、保持器ポケット内のころと保持器とに一部の金属接触に伴う異常発熱が生じ、その結果、内輪や外輪の温度が高くなり過ぎて使用できなくなる。一方、ポケット隙間比が0.01以上になると、例えば内輪を外輪に対して相対回転させる場合に、ポケット内のころが大きなスキュー等を起こし易くなる為、ころと内輪、ころと外輪との接触部の滑りが増加し、その結果、特に幾何的に面圧の高い内輪に剥離が生じやすくなってころ軸受の寿命が低下する。以上より、ポケット隙間比を0.005以上0.01未満に設定することにより、ころ軸受の長寿命化を図ることが可能となる。
 NSKテクニカルジャーナル(NO.682(2007))記載のように、ポケット隙間比を小さくすることによってころ軸受の寿命が延びる理由を簡単に説明する。ポケット隙間比を小さくすると、上述のようにころ挙動(スキュー等)を抑制するとともに、ころとポケット内面とがより近づくため、ころとポケット内面とがより強く接触して、自転するころとポケット内面との摩擦力が一時的に大きくなり、ころの自転数が減少する。その結果、ころと内輪との回転速度(周速)の差が小さくなり、内輪に対するころの滑りが小さくなる。従って、ポケット隙間比を小さくすることにより、内輪に剥離が生じる時間である実寿命時間が長くなるものと考えられる。
 望ましい態様では、前記ポケット隙間比は、0.00573以上0.0099以下である。これにより、ころ軸受のさらなる長寿命化を図ることが可能となる。
 本発明によれば、ころ軸受の長寿命化を図ることが可能となる。
図1は、自動調心ころ軸受の断面の模式図である。 図2は、実施形態に係る自動調心ころ軸受の断面の模式図である。 図3は、実施形態に係る保持器の一部を外周側から見た模式図である。 図4は、実施形態に係る球面ころの平面図である。 図5は、軸方向から見た保持器および球面ころの断面を示す模式図である。 図6は、保持器と球面ころとの隙間の関係を示す断面模式図である。 図7は、実施例において、保持器の種類ごとのポケット隙間比および軸受の寿命比を示すグラフである。 図8は、軸受回転試験用に組み込んだ保持器の軸方向から見た保持器および球面ころの断面を示す模式図である。 図9は、軸受の回転数と外輪温度との関係を示すグラフである。 図10は、ポケット隙間比と軸受の寿命比との関係を示すグラフである。
 本発明を実施するための形態(実施形態)につき、図面を参照しつつ詳細に説明する。以下の実施形態に記載した内容により本発明が限定されるものではない。また、以下に記載した構成要素には、当業者が容易に想定できるもの、実質的に同一のものが含まれる。さらに、以下に記載した構成要素は適宜組み合わせることが可能である。さらに、同一構造の部位には同一符号を付けて、説明を省略する。
[実施形態]
(自動調心ころ軸の構成)
 まず、ころ軸受の一種である自動調心ころ軸の構成を説明する。図1は、自動調心ころ軸受を模式的に示す一部断面の斜視図である。図2は、実施形態に係る自動調心ころ軸受の断面の模式図である。図3は、実施形態に係る保持器の一部を外周側から見た模式図である。X1側は内輪1および外輪2の軸方向の一方側であり、X2側は軸方向の他方側である。図4は、実施形態に係る球面ころの平面図である。
 図1および図2に示すように、自動調心ころ軸受100は、内輪1と、外輪2と、球面ころ(第1ころ)32と、保持器4と、を備える。内輪1および外輪2は、中心軸AX10の軸回りの周方向に延びる円環状の形状を有する。自動調心ころ軸受100においては、内輪1および外輪2の軸方向の中心線CLを挟んで、複数の球面ころ32が2列に配置される。即ち、周方向に沿って並ぶ球面ころ32の列が、中心線CLを挟んで内輪1および外輪2のX1側(軸方向の一方側)とX2側(他方側)とにそれぞれ形成される。
 図2に示すように、中心軸AX10を含む断面において、これら2列の球面ころ32の軸心AX20は、中心軸AX10に対して傾斜している。具体的には、X1側の球面ころ32の軸心AX20は、X1側に行くに従って中心軸AX10に近づくように傾斜する。換言すると、X1側の球面ころ32の軸心AX20は、X1側に行くに従って径方向内側に向かうように傾斜する。
 図2に示すように、X2側の球面ころ32の軸心AX20は、X2側に行くに従って中心軸AX10に近づくように傾斜する。換言すると、X2側の球面ころ32の軸心AX20は、X2側に行くに従って径方向内側に向かうように傾斜する。
 図2に示すように、内輪1は、外周面11と内周面12とを有し、外周面11には、球面ころ32の軌道面13、14が設けられる。軌道面13は、X1側の球面ころ32の軌道面である。軌道面13は、X1側に行くに従って径方向内側に向かうように傾斜する。軌道面14は、X2側の球面ころ32の軌道面である。軌道面14は、X2側に行くに従って径方向内側に向かうように傾斜する。
 外輪2は、外周面22と内周面21とを有し、内周面21がころ3の軌道面23となる。ここで、中心軸AX10と中心線CLとの交点を中心O2とすると、内周面21は中心O2を中心とする円弧である。このように、自動調心ころ軸受100においては、外輪2の軌道面23の曲率中心である中心O2が自動調心ころ軸受100の中心軸AX10と一致しているために調心性を有する。
 図3に示すように、保持器4は、リム部(中央円環部、以下、リム部と称する)43と、柱部40とを備える。リム部43は、保持器4の中心線CLに沿って環状に延びる。即ち、リム部43は、内輪1および外輪2の軸方向の中央に位置する。柱部40は、リム部43からX1側またはX2側に向けて延びる。柱部40は、リム部43と略直交する。柱部40は、周方向に沿って等間隔に配置される。ここで、周方向に隣接する一対の柱部40とリム部43との間、および、周方向に隣接する一対の柱部40とリム部43との間に、ポケット46が設けられる。また、中心軸AX10の軸方向から見た場合に、X1側で周方向に隣接する2つの柱部40の間に、X2側の柱部40が配置される。また、自動調心ころ軸受100に適用するころ3は、例えば図4に示す球面ころ32である。球面ころ32の外周面32aは、球面形状を有し、軸方向の端部の径よりも軸方向の中央部の径が大きい。球面ころ32は、軸心AX20の軸方向の中央部において最大径D100を有する。ポケット46に球面ころ32が配置される。
(保持器および球面ころの概要)
 図5は、軸方向から見た保持器および球面ころの断面を示す模式図である。図5において、中心軸AX10(図1参照)を中心として球面ころ32の軸心AX20を通る円をピッチ円C1とする。図5では、ピッチ円C1の円周を直線状の一点鎖線で描いている。
 図5に示すように、保持器4は、例えば保持器4Aおよび保持器4Bが適用可能である図1は、4Bが適用された例を記載している。保持器4Aは、2つの柱部40である第1柱部41Aおよび第2柱部42Aを有する。保持器4Bは、2つの柱部40である第1柱部41Bおよび第2柱部42Bを有する。中心軸AX10の軸方向から見た場合に、周方向に隣接する2つの柱部40の間に球面ころ32が配置される。
 軸方向から見て、保持器4Aの第1柱部41Aおよび第2柱部42Aは、ピッチ円C1の円周上に配置される。保持器4Bの第1柱部41Bおよび第2柱部42Bは、第1柱部41Aおよび第2柱部42Aよりも自動調心ころ軸受100の径方向内側に配置される。即ち、保持器4Aの第1柱部41Aおよび第2柱部42Aにおける径方向中央部と、自動調心ころ軸受100の中心軸AX10との距離は、PCD(Pitch Circle Diameter、転動体ピッチ円径)である。保持器4Bの第1柱部41Bおよび第2柱部42Bにおける径方向中央部と、自動調心ころ軸受100の中心軸AX10との距離は、PCDよりも小さい。
 ここで、保持器4Aにおける第1柱部41Aの側面41Aaの径方向中央と第2柱部42Aの側面42Aaの径方向中央との、ピッチ円C1の円周に沿った距離の中央を中心O1とする。中心O1を中心として、側面41Aaおよび側面42Aaを通る仮想円C2を破線で示す。保持器4Aの側面41Aaおよび側面42Aaと、保持器4Bの側面41Baおよび側面42Baとは、仮想円C2の円周に沿った円弧状である。
(保持器におけるポケットの隙間)
 図6は、保持器と球面ころとの隙間(図を見やすくするため、図5に比べて隙間を誇張して大きく記載している)を示す模式図である。球面ころ32の軸心AX20が中心O1に一致している場合において、保持器4A、4Bのポケット46における隙間を算出する。球面ころ32の軸心AX20が中心O1に一致している場合とは、保持器4Aにおける第1柱部41Aの側面41Aaと球面ころ32の外周面32aとのピッチ円C1の円周に沿った第1隙間と、第2柱部42Aの側面42Aaと球面ころ32の外周面32aとのピッチ円C1の円周に沿った第2隙間と、が同一である場合を意味する。第1隙間と第2隙間とを合わせた隙間をポケット隙間と称する。なお、保持器4Bについても同様に、第1隙間と第2隙間とが同一であり、第1隙間と第2隙間とを合わせた隙間をポケット隙間と称する。図6では、ポケット隙間のうち、第2隙間を算出するため、ポケット隙間は、第2隙間の2倍となる。換言すると、第1柱部41Aと第2柱部42Aとのピッチ円C1に沿った距離から球面ころ(第1ころ)32の最大径D100を引いた距離がポケット隙間である。以下、詳細に説明する。
 まず、保持器4Aと球面ころ32との第2隙間を算出する。図6に示すように、第2柱部42Aの側面42Aaの径方向中央の点を点P1とする。球面ころ32の軸心AX20と点P1とを結ぶ直線と、球面ころ32の外周面32aとの交点を点P2とする。点P1と点P2との距離は、距離L10である。即ち、保持器4Aと球面ころ32との第2隙間は、距離L10である。従って、保持器4Aのポケット隙間は、2×L10である。
 次に、保持器4Bと球面ころ32との第2隙間を算出する。保持器4Bは、ピッチ円C1よりも径方向の内側に位置するため、以下に示す近似式を適用して第2隙間を算出する。
 図6に示すように、保持器4Bの第2柱部42Bの側面42Baにおける径方向内側の端を点P3とする。軸心AX20と点P3とを結ぶ直線と、球面ころ32の外周面32aとの交点を点P4とする。軸心AX20と点P3とを結ぶ直線と、軸心AX20と点P1とを結ぶ直線との交差角を角度θとする。
 ここで、点P4を通り且つ軸心AX20と点P1とを結ぶ直線に平行な直線と、点P3を通り且つ点P4と点P3とを結ぶ直線に直角な直線とは、点P5で交差する。すると、点P3、点P4および点P5で直角三角形が形成される。即ち、点P3と点P4とを結ぶ辺pと、点P4と点P5とを結ぶ辺qと、点P3と点P5とを結ぶ辺rとで直角三角形が形成される。辺qが斜辺であり、辺pおよび辺rが直角を挟む2辺である。なお、点P3と点P5とを結ぶ直線は、仮想円C2の点P3における接線でもある。従って、保持器4Bと球面ころ32との第2隙間は、点P4と点P5との距離である距離L20(辺qの長さ)と同一である。よって、保持器4Bのポケット隙間は、2×L20と近似することができる。
 次に、保持器4Aと球面ころ32とのポケット隙間と、保持器4Bと球面ころ32とのポケット隙間との大小関係について説明する。
 保持器4Aで説明した距離L10は、保持器4Bで説明したように、点P3と点P4との距離(辺pの長さ)と同一である。ここで、(辺qの長さ)=(辺pの長さ)/cosθである。0度<θ<90度であり0<cosθ<1となるため、1<1/cosθである。よって、(辺pの長さ)<(辺qの長さ)=(辺pの長さ)/cosθとなる。以上より、距離L10<距離L20となるため、保持器4Aのポケット隙間よりも、保持器4Bのポケット隙間の方が長い。
[実施例]
 次に、実施例を通して、本発明をさらに具体的に説明する。
 [実施例1]
 実施例1においては、自動調心ころ軸受A、B、C(以下、単に、軸受A、B、Cと称する)の寿命比を検証した。寿命比とは、各軸受の動定格荷重によるそれぞれの基本定格寿命に対する実寿命時間の比である。実寿命時間とは、軸受のうち内輪、外輪、ころのいずれかに剥離が発生した時間である。なお、本実施例では全て内輪に剥離が発生した。
 軸受A、軸受Bおよび軸受Cは、ポケット隙間をころの最大径で割ったポケット隙間比のみが相違し、その他の条件を同一にした。具体的には、軸受A、軸受Bおよび軸受Cは、型番22211の軸受(外径が100mm、内径が55mm、幅が25mm)を基本軸受とし、各軸受A、B、Cの外輪、内輪およびころの粗さおよび材料熱処理も全て同一とした。粗さ条件を下記に示す。また、ころと内輪との抱き率(ころの転動面の曲率半径/内輪の軌道面の曲率半径)およびころと外輪との抱き率(ころの転動面の曲率半径/外輪の軌道面の曲率半径)は、軸受A、軸受Bおよび軸受Cの全てで同等に設定した。軸受A、Cの保持器は、図5および図6で説明した保持器4Aを適用し、軸受Bの保持器は、図5および図6で説明した保持器4Bを適用した。以下、具体的に説明する。
(粗さ条件)
・外輪の粗さ:0.3umRa
・内輪の粗さ:0.07umRa
・球面ころの粗さ:0.05umRa
 試験条件は、以下のとおりである。
・試験ラジアル荷重:45200N
・試験アキシアル荷重:0N
・内輪回転数:1500min-1(外輪固定)
・潤滑方式:JX日鉱日石FBKオイルRO68、強制供給循環
 各軸受の動定格荷重(Cr)、基本定格寿命(H)、ポケット隙間比は、以下のとおりである。軸受A、Cは保持器4Aを用いているため、軸受A、Cにおけるポケット隙間は、2×L10(図6参照)として算出した。軸受Bは保持器4Bを用いているため、軸受Bにおけるポケット隙間は、2×L20(図6参照)として算出した。
(軸受A)
 動定格荷重(Cr):10400kgf
 基本定格寿命(H):176時間
 ポケット隙間比:0.0135(1.35%)
(軸受B)
 動定格荷重(Cr):12150kgf
 基本定格寿命(H):278時間
 ポケット隙間比:0.00866(0.87%)
(軸受C)
 動定格荷重(Cr):11680kgf
 基本定格寿命(H):245時間
 ポケット隙間比:0.00805(0.805%)
(試験結果)
 軸受A、B、Cの内輪を寿命まで回転させ、各軸受における寿命比とポケット隙間比を調べた結果を図7に示す。図7は、実施例において、保持器の種類ごとのポケット隙間比および軸受の寿命比を示すグラフである。図8は、軸受回転試験用に組み込んだ保持器の軸方向から見た各保持器および球面ころの断面を示す模式図である。
 図7に示すように、軸受A(ポケット隙間比:1.35%)の寿命比は0.23、軸受B(ポケット隙間比:0.87%)の寿命比は1.58、軸受C(ポケット隙間比:0.805%)の寿命比は2.3であった。
 軸受Aのようにポケット隙間比が大きいと寿命比は著しく低下し、逆に、軸受Cのようにポケット隙間比が小さいと寿命比は大幅に増加することが判明した。また、ポケット隙間比が、軸受Aと軸受Cとの中間のポケット隙間比である軸受Bのポケット隙間比では、軸受Aと軸受Cとの中間の寿命比を示した。以上より、ポケット隙間比を小さくすれば寿命が延びることが分かった。
 このように、長寿命効果が得られるのは、ポケット隙間比を小さくすることで、ころと保持器のポケット内面(ころ案内面)とが接触して摩擦力が生じ、ころの自転数が低下することにより、ころと内輪との滑りが小さくなる為、内輪の表面疲労が抑制されることが一つの要因と考えられる。以下、簡単に説明する。
 ころは自転しているため、ころと外輪およびころと内輪とが接触して摩擦力が生じる。また、ころと保持器のポケット内面(ころ案内面)とが接触することによっても摩擦力が生じる。特に、負荷圏(負荷圏出入り口を含む)においては、非負荷圏よりも当該摩擦力がより大きくなる。ここで、ポケット隙間比を小さくすると、ころとポケット内面とがより近づくため、ころとポケット内面とがより強く接触して、自転するころとポケット内面との摩擦力が一時的に大きくなり、ころの自転数が減少する。その結果、ころと内輪との回転速度(周速)の差が小さくなり、内輪に対するころとの滑りが小さくなる。以上より、ポケット隙間比を小さくすることにより、内輪に剥離が生じる時間である実寿命時間が長くなり、寿命比も延びるものと考えられる。
 [実施例2]
 実施例1では、ポケット隙間比を小さくすることにより寿命比が高くなることを検証することができた。実施例2では、ポケット隙間比の最小値を検証した。具体的には、自動調心ころ軸受a、b、c(以下、単に、軸受a、b、cと称する)のうち、軸受cを軸受a、bと比較しつつ、軸受cのポケット隙間比の適正を検証した。以下、詳細に説明する。
 軸受aは、実施例1の軸受Aと同等の設計である。具体的には、軸受aは、型番24128の軸受に、図5および図6で説明した保持器4Aを適用した。軸受cは、実施例1の軸受Cと同等の設計である。具体的には、軸受cは、型番24128の軸受に、図5および図6で説明した保持器4Aを適用した。軸受bは、軸受Bと同等の設計であり、型番24128の軸受に、図8に示す保持器4B´(二体型軌道輪案内プレス保持器)を組みつけた軸受(市販品)である。
(各軸受の詳細仕様)
(軸受a)
 動定格荷重(Cr):835KN
 基本静定格ラジアル荷重(C0r):1160KN
 ポケット隙間比:0.0163(1.63%)
(軸受b)
 動定格荷重(Cr):796KN
 基本静定格ラジアル荷重(C0r):1160KN
(軸受c)
 動定格荷重(Cr):945KN
 基本静定格ラジアル荷重(C0r):1330KN
 ポケット隙間比:0.00573(0.5733%)
 試験条件は、以下のとおりである。
・試験ラジアル荷重:75700N
・試験アキシアル荷重:0N
・内輪回転数:1300、1950、2600min-1、3250min-1(軸受cのみ)
・潤滑方式:JX日鉱日石FBKオイルVG68、強制供給循環
(試験結果)
 軸受a、b、cの内輪を各回転数で回転させ、各回転数に対する外輪の温度を測定した。前述したように、軸受cにおけるポケット隙間比は、0.00573(0.5733%)である。よって、以下においては、軸受cの温度に問題がないかどうかを中心に、図9を参照しつつ説明する。図9は、軸受の回転数と外輪温度との関係を示すグラフである。図10は、ポケット隙間比と軸受の寿命比との関係を示すグラフである。
 図9に示すように、回転数が1300、1950、および、2600min-1において、軸受cは軸受aと同等の温度上昇を示し、軸受cは軸受bよりも温度上昇が低く抑制されることが分かった。また、回転数が3250min-1において、軸受cの温度は115.1度である。この115.1度は、回転数が2600min-1における軸受bの温度110.3度と同等である。更に正確には、軸受cの温度が110度になる回転数は3100min-1である。3100-2600=500であるため、軸受cは軸受bよりも500min-1の余裕回転数を有する。
 以上の軸受cの温度上昇の結果より、軸受におけるポケット隙間比の下限値は、0.005(0.5%)、好ましくは0.00573(0.5733%)であることが裏付けられた。
 これらの結果を図10のグラフにまとめて記載した。図10において、点Aは、軸受Aにおけるポケット隙間比と軸受の寿命比を示す。点Bは、軸受Bにおけるポケット隙間比と軸受の寿命比を示す。点Cは、軸受Cにおけるポケット隙間比と軸受の寿命比を示す。ポケット隙間比の0.5および0.573は、前述した軸受cの温度上昇の検証に基づく。
 点Aと点Bと点Cとを近似曲線(破線)で繋げると、ポケット隙間比が大きくなるに従って、寿命比が低下することが分かる。この近似曲線によれば、寿命比が1になるポケット隙間比は、0.99である。
 以上をまとめると、軸受におけるポケット隙間比の下限値は、0.005(0.5%)、好ましくは0.00573(0.5733%)である。ポケット隙間比の上限値は、0.01未満(1%未満)であり、好ましくは0.0099(0.99%)である。
 以上説明したように、本実施形態に係る自動調心ころ軸受(ころ軸受)100は、内輪1および外輪2と、複数の球面ころ32(ころ3)と、複数の柱部40のうち周方向に隣接する2つの柱部40の間に球面ころ(第1ころ)32が保持される保持器4と、を備える。第1柱部41Aと第2柱部42Aとのピッチ円C1に沿った距離から球面ころ(第1ころ)32の最大径D100を引いた距離をポケット隙間とした場合、ポケット隙間を球面ころ32の最大径D100で割ったポケット隙間比は、0.005以上0.01未満である。
 自動調心ころ軸受100においては、内輪1と外輪2とが相対回転する際に、保持器4内の球面ころ32が回転する。従って、内輪1、外輪2または保持器4と、球面ころ32との間に摩擦や滑りが生じる。この摩擦や滑りによって、例えば、内輪1または外輪2に剥離等による転がり寿命低下が生じたり、内輪1または外輪2の温度が高温になったりして、焼き付き等の損傷による自動調心ころ軸受100の寿命が低下する場合がある。
 一方で、ポケット隙間比が0.005未満の場合は、ころとポケット内面での摩擦(一部金属接触も発生し始める)が増大し、例えば内輪1を外輪2に対して相対回転させる場合に、ころの異常発熱を伴い、結果的に内輪1や外輪2の温度が高くなり過ぎて使用できなくなる事が予想される。この場合、図9に示す軸受cや軸受aの温度上昇勾配が大きくなり、軸受b以上の温度勾配を示し、例えば1950min-1でも110℃を超えるようなことも想定される。更に、隙間比が小さい場合には、最悪回転開始とともに短時間で焼き付きに至る。一方、ポケット隙間比が0.01以上になると、例えば内輪1を外輪2に対して相対回転させる場合に、内輪1に剥離が生じやすくなって自動調心ころ軸受100の寿命が低下する。以上より、ポケット隙間比は、0.005以上0.01未満に設定することにより、自動調心ころ軸受100の長寿命化を図ることが可能となる。また、ポケット隙間比を0.00573以上0.0099以下に設定することにより、自動調心ころ軸受100のさらなる長寿命化を図ることが可能となる。
 なお、ポケット隙間比を小さくすることによって自動調心ころ軸受100の寿命が延びる理由を簡単に説明する。ポケット隙間比を小さくすると、球面ころ32とポケット内面とがより近づくため、球面ころ32とポケット内面とがより強く接触して、自転する球面ころ32とポケット内面との摩擦力が一時的に大きくなり、球面ころ32の自転数が減少する。その結果、球面ころ32と内輪1との回転速度(周速)の差が小さくなり、内輪1に対するころとの滑りが小さくなる。従って、ポケット隙間比を小さくすることにより、内輪1に剥離が生じる時間である実寿命時間が長くなるものと考えられる。
1 内輪
2 外輪
3 ころ
4、4A、4B、4B´ 保持器
11 外周面
12 内周面
13、14 軌道面
21 内周面
22 外周面
23 軌道面
32 球面ころ(第1ころ)
32a 外周面
40 柱部
41A、41B 第1柱部
41Aa、41Ba 側面
42A、42B 第2柱部
42Aa、42Ba 側面
43 リム部(中央円環部)
46 ポケット
100 自動調心ころ軸受(ころ軸受)
AX10 中心軸
AX20 軸心
C1 ピッチ円
C2 仮想円
CL 中心線
D100 最大径
L10 距離
L20 距離
O1、O2 中心

Claims (2)

  1.  中心軸の軸回りの周方向に延びる内輪および外輪と、前記内輪と前記外輪との間に配置される複数のころと、前記中心軸の軸方向に延びる柱部が前記周方向に沿って複数設けられ、且つ、複数の前記柱部のうち前記周方向に隣接する2つの柱部の間のポケットに前記複数のころのそれぞれが保持される保持器と、を備え、
     前記中心軸を中心として前記ころの軸心を通る円をピッチ円とした場合、
     前記中心軸の前記軸方向から見て、
     前記周方向に隣接する前記2つの柱部を第1柱部および第2柱部とし、前記第1柱部と前記第2柱部との間のポケットに配置されるころを第1ころとし、
     前記第1柱部と前記第2柱部との前記ピッチ円に沿った距離から前記第1ころの最大径を引いた距離をポケット隙間とした場合、
     当該ポケット隙間を前記第1ころの最大径で割ったポケット隙間比は、0.005以上0.01未満である、
     ころ軸受。
  2.  前記ポケット隙間比は、0.00573以上0.0099以下である、
     請求項1に記載のころ軸受。
PCT/JP2023/012792 2022-09-08 2023-03-29 ころ軸受 WO2024053142A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022143023 2022-09-08
JP2022-143023 2022-09-08

Publications (1)

Publication Number Publication Date
WO2024053142A1 true WO2024053142A1 (ja) 2024-03-14

Family

ID=90192207

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/012792 WO2024053142A1 (ja) 2022-09-08 2023-03-29 ころ軸受

Country Status (2)

Country Link
JP (1) JP2024038991A (ja)
WO (1) WO2024053142A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007127167A (ja) * 2005-11-02 2007-05-24 Nsk Ltd 保持器付自動調心ころ軸受
JP2008144795A (ja) * 2006-12-07 2008-06-26 Nsk Ltd 保持器付自動調心ころ軸受

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007127167A (ja) * 2005-11-02 2007-05-24 Nsk Ltd 保持器付自動調心ころ軸受
JP2008144795A (ja) * 2006-12-07 2008-06-26 Nsk Ltd 保持器付自動調心ころ軸受

Also Published As

Publication number Publication date
JP2024038991A (ja) 2024-03-21

Similar Documents

Publication Publication Date Title
JP4513028B2 (ja) 自動調心転がり軸受及び自動調心転がり軸受用保持器
US9593718B2 (en) Multipoint contact ball bearing
US20110222807A1 (en) Tandem angular ball bearing
JP2007051703A (ja) 円錐ころ軸受、及びこれを用いたトランスミッション用軸受装置
WO2013080824A1 (ja) ころ軸受
JP2012202453A (ja) 自動調心ころ軸受
WO2024053142A1 (ja) ころ軸受
US20160025134A1 (en) Cage for angular ball bearing
JP2009074679A (ja) 自動調心ころ軸受
JPH09291942A (ja) ラジアル転がり軸受
JP2006214456A (ja) 転がり軸受
JP2014105809A (ja) 転がり軸受用保持器
WO2017208908A1 (ja) ころ軸受
JP6694288B2 (ja) コロ軸受
JP2006112555A (ja) 調心輪付きころ軸受
JP6696610B2 (ja) 転がり軸受用かご型保持器
JP2022144638A (ja) 針状ころ軸受
WO2024053321A1 (ja) ころ軸受
CN114341511A (zh) 交叉滚子轴承
JP2013053716A (ja) 調心機能付き転がり軸受及び回転輪支持構造
JP2007333084A (ja) 軸受用保持器
JP2012172784A (ja) 玉軸受
JP4322641B2 (ja) 円筒ころ軸受
WO2016194981A1 (ja) 円すいころ軸受
WO2022209598A1 (ja) ころ軸受、ころ軸受ユニット、モータ、ころ軸受の製造方法及びころ軸受の静音方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23862692

Country of ref document: EP

Kind code of ref document: A1