WO2024051771A1 - 一种五元并六元杂环化合物的晶型及其制备方法和应用 - Google Patents

一种五元并六元杂环化合物的晶型及其制备方法和应用 Download PDF

Info

Publication number
WO2024051771A1
WO2024051771A1 PCT/CN2023/117439 CN2023117439W WO2024051771A1 WO 2024051771 A1 WO2024051771 A1 WO 2024051771A1 CN 2023117439 W CN2023117439 W CN 2023117439W WO 2024051771 A1 WO2024051771 A1 WO 2024051771A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
compound represented
crystal form
compound
preparation
Prior art date
Application number
PCT/CN2023/117439
Other languages
English (en)
French (fr)
Inventor
王玉光
吴添智
Original Assignee
广州再极医药科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广州再极医药科技有限公司 filed Critical 广州再极医药科技有限公司
Publication of WO2024051771A1 publication Critical patent/WO2024051771A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D495/00Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms
    • C07D495/02Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms in which the condensed system contains two hetero rings
    • C07D495/04Ortho-condensed systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • A61K31/519Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim ortho- or peri-condensed with heterocyclic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/06Antipsoriatics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/14Drugs for dermatological disorders for baldness or alopecia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/02Drugs for skeletal disorders for joint disorders, e.g. arthritis, arthrosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • A61P35/02Antineoplastic agents specific for leukemia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/13Crystalline forms, e.g. polymorphs

Definitions

  • the invention relates to a crystal form of a five- and six-membered heterocyclic compound and its preparation method and application.
  • the JAK-STAT signaling pathway is a signal transduction pathway stimulated by cytokines discovered in recent years. It is involved in many important biological processes such as cell proliferation, differentiation, apoptosis, and immune regulation. Compared with other signaling pathways, this signal The transmission process of the pathway is relatively simple. It mainly consists of three components, namely tyrosine kinase-related receptors, tyrosine kinase JAK and transcription factor STAT.
  • JAK inhibitors can selectively inhibit JAK kinase and block the JAK/STAT pathway.
  • Janus kinase is a non-receptor tyrosine protein kinase with 4 family members, namely JAK1, JAK2, TYK2 and JAK3, the first 3 are widely present in various tissues and cells, while JAK3 only exists in the bone marrow and lymphatic system.
  • JAK inhibitors are mainly used to screen therapeutic drugs for hematological diseases, tumors, rheumatoid arthritis and psoriasis.
  • the JAK-STAT pathway is widely present in various tissue cells in the body, especially plays an important role in the differentiation, proliferation, and anti-infection of lymphocyte lines, and is involved in the interaction and signal transduction of multiple inflammatory factors. Abnormal activation of this pathway It is closely related to a variety of diseases. Finding and screening JAK inhibitors will help to further study the regulatory mechanism of JA-STAT, thereby providing new drugs and means for preventing and treating related diseases. In addition, the occurrence, growth, invasion and metastasis of tumors are related to the JAK-STAT signal transduction pathway. The activation of STATs in normal signal transduction is rapid and short-lived, and the sustained activation of STATs is closely related to the malignant transformation process of cells.
  • organ transplant rejection psoriasis, tissue and organ fibrosis
  • bronchial asthma ischemic cardiomyopathy
  • heart failure myocardial infarction
  • blood system diseases and immune system diseases are all related to the JAK-STAT signaling pathway Closely related, this signaling pathway is not only important in maintaining the normal physiological functions of cells, but also plays an important regulatory role in the occurrence and development of diseases.
  • WO2014/111037 discloses a JAK kinase inhibitor of five- and six-membered heterocyclic compounds, which has the following structure of Formula 1:
  • Crystal form research has always been the focus of the pharmaceutical industry. Therefore, it is crucial to research and develop an advantageous crystal form with good fluidity, solubility, storage stability, good bioavailability, etc. for the production, storage, and transportation of drugs.
  • the technical problem to be solved by the present invention is to improve the storage stability of the five- and six-membered heterocyclic compounds in the prior art as shown in Formula 1, thereby providing a crystal form of the five- and six-membered heterocyclic compounds and Preparation methods and applications thereof.
  • the crystal form of the five-membered and six-membered heterocyclic compound of the present invention has good physical and chemical stability, is not easy to absorb moisture, and has very important value for the optimization and development of drugs.
  • the present invention provides a crystal form II of the compound shown in Formula 1, which uses CuK ⁇ radiation and has an X-ray powder diffraction pattern expressed at a 2 ⁇ angle at 8.928° ⁇ 0.2°, 10.781° ⁇ 0.2°, and 16.220° ⁇ There are characteristic peaks at 0.2°, 16.817° ⁇ 0.2°, 19.494° ⁇ 0.2°, 19.955° ⁇ 0.2° and 25.026° ⁇ 0.2°;
  • the crystalline Form II of the compound represented by Formula 1 uses CuK ⁇ radiation and an X-ray powder diffraction pattern expressed at a 2 ⁇ angle, and further has one or more of the following: Characteristic peaks: 6.976° ⁇ 0.2°, 12.775° ⁇ 0.2°, 13.316° ⁇ 0.2°, 13.967° ⁇ 0.2°, 16.450° ⁇ 0.2°, 17.598° ⁇ 0.2°, 19.377° ⁇ 0.2°, 20.875° ⁇ 0.2° , 22.119° ⁇ 0.2°, 24.798° ⁇ 0.2°, 25.752° ⁇ 0.2°, 26.778° ⁇ 0.2°, 27.959° ⁇ 0.2°, 28.541° ⁇ 0.2°, 28.957° ⁇ 0.2°, 30.160° ⁇ 0.2°, 33.201 ° ⁇ 0.2°, 34.555° ⁇ 0.2°, 34.916° ⁇ 0.2°, 36.340° ⁇ 0.2°, 36.602° ⁇ 0.2° and 37.986° ⁇ 0.2°.
  • the X-ray powder diffraction pattern of the crystal form II of the compound represented by Formula 1 can also be basically as shown in Figure 5.
  • the differential scanning calorimetry analysis pattern of the crystal form II of the compound represented by Formula 1 can also be basically as shown in Figure 6.
  • thermogravimetric analysis chart of the crystal form II of the compound represented by Formula 1 the weight loss from 25°C to before melting is 0.01495%, and the "%" is weight Percent ratio.
  • thermogravimetric analysis spectrum of the crystal form II of the compound represented by Formula 1 can also be basically as shown in Figure 7.
  • the hygroscopic weight gain of the sample in the analysis chart of the dynamic moisture adsorption analysis method of the crystal form II of the compound represented by Formula 1, in the relative humidity range from 0% to 95%, the hygroscopic weight gain of the sample is 0.1047%. , the "%" is the weight percentage.
  • the dynamic moisture adsorption analysis chart of the crystal form II of the compound represented by Formula 1 can also be basically as shown in Figure 8.
  • in the infrared absorption spectrum measured by potassium bromide tableting of the crystal form II of the compound represented by Formula 1 there are characteristic peaks at the following positions: 3375cm -1 , 3105cm -1 , 2966cm -1 , 2922cm -1, 1651cm -1 , 1595cm -1 , 1577cm -1 , 1523cm -1 , 1446cm -1 , 1479cm -1 , 1382cm -1 , 1342cm -1 , 1139cm -1 , 1020cm -1 , 883cm -1 and 686cm -1 .
  • the infrared absorption spectrum of the crystal form II of the compound represented by Formula 1 measured by potassium bromide tableting can also be basically as shown in Figure 9.
  • the present invention also provides a method for preparing the above-mentioned crystal form II of the compound represented by formula 1, which includes the following steps: beating the crystal form I of the compound represented by formula 1 in acetonitrile and drying to obtain formula 1 Crystal form II of the compound; wherein, the crystal form I of the compound represented by formula 1 uses CuK ⁇ radiation, and the X-ray powder diffraction pattern expressed at the 2 ⁇ angle is at 8.086° ⁇ 0.2° and 11.879° ⁇ 0.2°.
  • the volume to mass ratio of the acetonitrile to the compound of formula 1 is a conventional ratio in the art, preferably 10 times to 30 times, such as 20 times.
  • the method further includes: rotating and balancing at room temperature.
  • the drying is natural drying.
  • the present invention also provides a method for preparing the crystal form II of the compound represented by Formula 1, which includes the following steps: mixing the compound represented by Formula 1 with acetone, heating, dissolving, cooling at low temperature, and drying to obtain the formula 1 Form II of the compound shown.
  • the mixing may be mixing at a rotation speed of 400 rpm.
  • the volume to mass ratio of the acetone to the compound represented by Formula 1 is a conventional ratio in the art, preferably 20 times to 40 times, such as 30 times.
  • the heating is water bath heating, and the heating temperature is 40°C-60°C, such as 50°C.
  • the cooling temperature may be -10°C to -30°C or below, for example -20°C.
  • the cooling time may be 10 hours to 16 hours, such as 12 hours.
  • the drying may be natural drying.
  • the present invention also provides a method for preparing the above-mentioned crystal form II of the compound represented by Formula 1, which includes the following steps:
  • the good solvent may be one of ethyl acetate, acetone, dichloromethane or tetrahydrofuran.
  • the heating may be water bath heating, and the heating temperature is 40°C-60°C, such as 50°C.
  • the antisolvent may be n-heptane or methyl tert-butyl ether.
  • the volume-to-mass ratio of the good solvent to the compound represented by Formula 1 can be 30 times to 180 times, such as 30 times, 50 times, 90 times or 180 times.
  • the volume ratio of the good solvent and the antisolvent can be 1: (0.5-5), such as 1:0.8, 1:1, 1:1.7, 1:2.9, 1:3.2 or 1:4.2.
  • step (2) the mixing may be the antisolvent added dropwise to the solution in step (1).
  • the drying may be natural drying.
  • the present invention also provides a crystal form III of the compound shown in Formula 1, which uses CuK ⁇ radiation and has an X-ray powder diffraction pattern expressed at a 2 ⁇ angle at 7.577° ⁇ 0.2°, 10.415° ⁇ 0.2°, and 14.809°. There are characteristic peaks at ⁇ 0.2°, 19.797° ⁇ 0.2°, 20.813° ⁇ 0.2°, 21.939° ⁇ 0.2°, 22.663° ⁇ 0.2°, 27.689° ⁇ 0.2° and 29.791° ⁇ 0.2°;
  • the crystalline Form III of the compound represented by Formula 1 uses CuK ⁇ radiation and an X-ray powder diffraction pattern expressed at a 2 ⁇ angle, and further has one or more of the following: Diffraction peaks: 5.515° ⁇ 0.2°, 8.137° ⁇ 0.2°, 11.632° ⁇ 0.2°, 16.258° ⁇ 0.2°, 17.347° ⁇ 0.2°, 19.318° ⁇ 0.2°, 23.108° ⁇ 0.2°, 24.664° ⁇ 0.2° , 25.282° ⁇ 0.2°, 25.998° ⁇ 0.2°, 28.387° ⁇ 0.2°, 30.347° ⁇ 0.2°, 32.742° ⁇ 0.2°, 34.932° ⁇ 0.2°, 35.679° ⁇ 0.2°, 37.573° ⁇ 0.2° and 38.218 ° ⁇ 0.2°.
  • the X-ray powder diffraction pattern of the crystal form III of the compound represented by Formula 1 can also be basically as shown in Figure 10.
  • the differential scanning calorimetry analysis diagram of the crystal form III of the compound represented by Formula 1 can also be basically as shown in Figure 11.
  • thermogravimetric analysis chart of the crystal form III of the compound represented by Formula 1 in the thermogravimetric analysis chart of the crystal form III of the compound represented by Formula 1, the weight loss from 25°C to before melting is 0.1066%, and the "%" is weight Percent ratio.
  • thermogravimetric analysis chart of the crystal form III of the compound represented by Formula 1 can also be basically as shown in Figure 12.
  • the hygroscopic weight gain of the sample was 0.4084% in the relative humidity range from 0% to 95%, as described "%" is weight percentage.
  • the dynamic moisture adsorption analysis chart of the crystal form III of the compound represented by Formula 1 can also be basically as shown in Figure 13.
  • the present invention also provides a method for preparing the above-mentioned crystal form III of the compound represented by Formula 1, which includes the following steps:
  • the crystalline form I of the compound represented by Formula 1 uses CuK ⁇ radiation, and the X-ray powder diffraction pattern expressed at the 2 ⁇ angle is at 8.086° ⁇ 0.2°, 11.879° ⁇ 0.2°, and 14.375° ⁇ 0.2°. , 15.434° ⁇ 0.2°, 16.213° ⁇ 0.2°, 17.372° ⁇ 0.2°, 17.618° ⁇ 0.2°, 19.066° ⁇ 0.2°, 19.897° ⁇ 0.2°, 22.997° ⁇ 0.2°, 23.240° ⁇ 0.2°, 24.033 There are characteristic peaks at ° ⁇ 0.2°, 25.339° ⁇ 0.2°, 25.641° ⁇ 0.2°, 30.179° ⁇ 0.2°, 31.164° ⁇ 0.2° and 32.816° ⁇ 0.2°.
  • the volume ratio of the methanol to the water is preferably (5-15):1, such as 10:1.
  • the volume to mass ratio of the mixed solvent to the compound of Formula 1 is a conventional ratio in the art, preferably 90 times to 110 times, such as 100 times.
  • the volume to mass ratio of the water to the compound of formula 1 is a conventional ratio in the art, preferably 20 times to 30 times, such as 25 times.
  • the mixing method is preferably to drop water into the solution of step (1).
  • the mixing temperature is preferably 45°C to 55°C, such as 50°C.
  • the drying is preferably vacuum drying.
  • the drying temperature is preferably 40°C to 50°C, such as 45°C.
  • the present invention also provides the use of crystalline form II or crystalline form III of the compound represented by the above formula 1 in the preparation of JAK kinase inhibitors.
  • the present invention also provides the use of crystalline form II or crystalline form III of the compound represented by the above formula 1 in the preparation of medicaments for preventing and/or treating diseases related to JAK kinase.
  • the medicine can be used in combination with other therapeutic agents to prevent and/or treat diseases related to JAK kinase.
  • the other therapeutic agents can be used to prevent and/or treat diseases related to JAK kinase.
  • the diseases related to JAK kinase include but are not limited to: cancer and immune diseases.
  • the cancer includes, but is not limited to, one or more of myeloproliferative neoplasms, lymphomas, and leukemias.
  • the immune diseases include but are not limited to: one or more of rheumatoid arthritis, alopecia areata, atopic dermatitis, vitiligo and psoriasis.
  • the present invention also provides a crystalline form II or crystalline form III of the compound represented by the above formula 1 for preparation and use in the prevention and/or treatment of cancer. or application in drugs for immune diseases.
  • the medicine can be used in combination with other therapeutic agents to prevent and/or treat cancer or immune diseases.
  • the other therapeutic agents can be used to prevent and/or treat cancer or immune diseases.
  • the cancer includes, but is not limited to, one or more of myeloproliferative neoplasms, lymphomas and leukemias.
  • the immune diseases include but are not limited to: one or more of rheumatoid arthritis, alopecia areata, atopic dermatitis, vitiligo and psoriasis.
  • the present invention also provides a pharmaceutical composition, which contains a therapeutically effective amount of crystalline form II and/or crystalline form III of the compound represented by Formula 1 and pharmaceutical excipients.
  • the pharmaceutical composition can be made into various types of unit dosage forms, such as tablets, pills, powders, solutions, emulsions, ointments, capsules or liniments.
  • the present invention also provides the use of the above pharmaceutical composition in the preparation of JAK kinase inhibitors.
  • the present invention also provides the use of the above pharmaceutical composition in the preparation of medicaments for preventing and/or treating diseases related to JAK kinase.
  • the medicine can be used in combination with other therapeutic agents to prevent and/or treat diseases related to JAK kinase.
  • the other therapeutic agents can be used to prevent and/or treat diseases related to JAK kinase.
  • the diseases related to JAK kinase include but are not limited to: cancer and immune diseases.
  • the cancer includes, but is not limited to, one or more of myeloproliferative neoplasms, lymphomas, and leukemias.
  • the immune diseases include but are not limited to: one or more of rheumatoid arthritis, alopecia areata, atopic dermatitis, vitiligo and psoriasis.
  • the present invention also provides the use of the above pharmaceutical composition in the preparation of drugs for preventing and/or treating cancer or immune diseases.
  • the medicine can be used in combination with other therapeutic agents to prevent and/or treat cancer or immune diseases.
  • the other therapeutic agents can be used to prevent and/or treat cancer or immune diseases.
  • the cancer includes, but is not limited to, one or more of myeloproliferative neoplasms, lymphomas and leukemias.
  • the immune diseases include but are not limited to: one or more of rheumatoid arthritis, alopecia areata, atopic dermatitis, vitiligo and psoriasis.
  • therapeutically effective amount refers to an amount administered to a patient that is sufficient to effectively treat a disease.
  • the therapeutically effective amount will vary depending on the type of compound, type of disease, severity of the disease, age of the patient, etc., but can be adjusted by those skilled in the art as appropriate.
  • pharmaceutical excipients refers to all substances included in pharmaceutical preparations, except active pharmaceutical ingredients, and is generally divided into two categories: excipients and additives. For details, please refer to the “Pharmacopoeia of the People's Republic of China (2020 Edition)” and Handbook of Pharmaceutical Excipients (Paul J Sheskey, Bruno C Hancock, Gary P Moss, David J Goldfarb, 2020, 9th Edition).
  • prevention means a reduction in the risk of acquiring or developing a disease or disorder (i.e., resulting in at least one of the absence of clinical symptoms of the disease in a subject who may have been exposed to the agent causing the disease or susceptible to the disease prior to the onset of the disease) .
  • treatment means ameliorating a disease or disorder (i.e. preventing the disease or reducing the extent or severity of its clinical symptoms); or Or, improve at least one physical parameter, which may not be noticed by the subject; or slow down the progression of the disease.
  • the crystalline forms of the present invention can be identified by one or several solid analysis methods. Such as X-ray powder diffraction, single crystal X-ray diffraction, infrared absorption spectrum, differential scanning calorimetry, thermal weight loss curve, etc.
  • X-ray powder diffraction single crystal X-ray diffraction
  • infrared absorption spectrum differential scanning calorimetry
  • thermal weight loss curve etc.
  • the peak intensity and/or peak situation of X-ray powder diffraction may vary due to different experimental conditions.
  • the measured 2 ⁇ value will have an error of about ⁇ 0.2°, and the relative intensity value of the peak is more dependent on certain properties of the sample being measured, such as the size of the crystal, than the position of the peak.
  • the measured peak intensity may vary by approximately ⁇ 20%.
  • room temperature means “10 to 30°C”.
  • the reagents and raw materials used in the present invention are all commercially available.
  • the positive and progressive effect of the present invention is that the crystal form II and crystal form III of the compound represented by Formula 1 provided by the present invention have good physical and chemical stability, are not easy to absorb moisture, and are of very important value for the optimization and development of drugs.
  • Figure 1 is an X-ray powder diffraction pattern of Form I of the compound represented by Formula 1.
  • Figure 2 is a differential scanning calorimetry analysis chart of Form I of the compound represented by Formula 1.
  • Figure 3 is a thermogravimetric analysis diagram of crystalline form I of the compound represented by formula 1.
  • Figure 4 is a dynamic moisture adsorption diagram of the crystal form I of the compound represented by Formula 1.
  • Figure 5 is an X-ray powder diffraction pattern of Form II of the compound represented by Formula 1.
  • Figure 6 is a differential scanning calorimetry analysis chart of Form II of the compound represented by Formula 1.
  • Figure 7 is a thermogravimetric analysis chart of the crystal form II of the compound represented by Formula 1.
  • Figure 8 is a dynamic moisture adsorption diagram of the crystal form II of the compound represented by Formula 1.
  • Figure 9 is an infrared absorption spectrum of the crystal form II of the compound represented by formula 1.
  • Figure 10 is an X-ray powder diffraction pattern of Form III of the compound represented by Formula 1.
  • Figure 11 is a differential scanning calorimetry analysis chart of Form III of the compound represented by Formula 1.
  • Figure 12 is a thermogravimetric analysis chart of crystal form III of the compound represented by Formula 1.
  • Figure 13 is a dynamic moisture adsorption diagram of crystal form III of the compound represented by formula 1.
  • Figure 14 is an X-ray powder diffraction pattern of Form IV of the compound represented by Formula 1.
  • Figure 15 is a differential scanning calorimetry analysis chart of Form IV of the compound represented by Formula 1.
  • Figure 16 is a thermogravimetric analysis diagram of crystalline form IV of the compound represented by formula 1.
  • Figure 17 is an X-ray powder diffraction pattern of Form V of the compound represented by Formula 1.
  • Figure 18 is a differential scanning calorimetry analysis chart of Form V of the compound represented by Formula 1.
  • Figure 19 is a thermogravimetric analysis diagram of crystalline form V of the compound represented by Formula 1.
  • Figure 20 is an X-ray powder diffraction pattern of Form VI of the compound represented by Formula 1.
  • Figure 21 is a differential scanning calorimetry analysis chart of the crystal form VI of the compound represented by Formula 1.
  • compound 1-e (4.0g, 10.3mmol), 2,4-dichlorothieno[3,2-d]pyrimidine (2.52g, 12.4mmol) and sodium carbonate (3.3g, 31.2mmol) were mixed Suspended in a mixed solvent of dioxane (25 mL) and water (25 mL), add [1,1'-bis(diphenylphosphorus)ferrocene]palladium dichloride (1.1g, 1.5mmol), and the mixture Stir the reaction at 80°C for 16 hours, concentrate the reaction solution under reduced pressure, add water (200mL) to the residue, extract with dichloromethane (200mL ⁇ 3), combine the organic phases, add water (100mL ⁇ 3) and saturated brine (100mL) ), dried over anhydrous sodium sulfate, filtered, and the filtrate was concentrated under reduced pressure.
  • sodium hydride (1.3g, 32.1mmol) was added to a solution of 4-nitropyrazole (3.3g, 29.2mmol) in anhydrous tetrahydrofuran (30mL). After stirring for 1 hour, slowly add methyl iodide ( 2 mL) and continued stirring at room temperature for 2 hours. The mixture was poured into ice water (100 mL), extracted with ethyl acetate (50 mL ⁇ 3), the organic phase was dried over anhydrous sodium sulfate, filtered, and the filtrate was concentrated under reduced pressure.
  • the crystal form II is also obtained. After being left for 6 days and then characterized by XRPD, it was still crystalline form II.
  • the light source is CuK ⁇
  • the X-ray intensity is 40KV/40mA
  • the scanning mode is Theta-theta
  • step size is 0.05°
  • scanning speed is 0.5 seconds/step.
  • the X-ray powder diffraction pattern of the crystal form VI of the compound of Formula 1 prepared in Example 6 is shown in Figure 20, in which the 2 ⁇ angle values of the characteristic diffraction peaks are 6.808° ⁇ 0.2°, 10.582° ⁇ 0.2°, and 12.200°. ⁇ 0.2°, 16.811° ⁇ 0.2°, 18.568° ⁇ 0.2°, 20.510° ⁇ 0.2°, 21.094° ⁇ 0.2°, 22.062° ⁇ 0.2°, 25.346° ⁇ 0.2°, 27.293° ⁇ 0.2° and 28.831° ⁇ 0.2 °.
  • test sample was prepared using the potassium bromide tableting method, and the infrared absorption spectrum was collected in the wave number range of 4000 to 400 cm -1 .
  • the number of scans of the test sample is 45, and the instrument resolution is 4cm -1 .
  • the weight of the crystal form II sample only increased by 0.1047% from 0% RH to 95% RH, and there was almost no hygroscopicity.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Medicinal Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • Dermatology (AREA)
  • Rheumatology (AREA)
  • Immunology (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Pain & Pain Management (AREA)
  • Hematology (AREA)
  • Oncology (AREA)
  • Epidemiology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

提供了一种如式1所示化合物的晶型Ⅱ或晶型Ⅲ及其制备方法和应用。所述晶型具有较好的物理化学稳定性,不易吸湿,对药物的优化和开发具有非常重要的价值。

Description

一种五元并六元杂环化合物的晶型及其制备方法和应用
本申请要求申请日为2022/9/8的中国专利申请2022111004551的优先权。本申请引用上述中国专利申请的全文。
技术领域
本发明涉及一种五元并六元杂环化合物的晶型及其制备方法和应用。
背景技术
JAK-STAT信号通路是近年来发现的一条由细胞因子刺激的信号转导通路,参与细胞的增殖、分化、凋亡以及免疫调节许多重要的生物学过程,与其他信号通路相比,这条信号通路的传递过程相对简单,它主要由三个组分组成,即酪氨酸激酶相关受体、酪氨酸激酶JAK和转录因子STAT。
JAK抑制剂可选择性抑制JAK激酶,阻断JAK/STAT通路,Janus激酶是一种非受体型酪氨酸蛋白激酶,有4个家族成员,分别是JAK1、JAK2、TYK2和JAK3,前3者广泛存在于各种组织和细胞中,而JAK3仅存在于骨髓和淋巴系统。临床上JAK抑制剂主要用于筛选血液系统疾病、肿瘤、类风湿性关节炎及银屑病等治疗药物。
JAK-STAT通路广泛存在于机体内各种组织细胞内,尤其对淋巴细胞系的分化、增殖、抗感染具有重要作用,并参与多种炎症因子的相互作用和信号转导,该通路的异常活化与多种疾病密切相关,寻找与筛选JAK抑制剂有助于深入研究JA-STAT的调控机制,进而为防治相关疾病提供新的药物及手段。另外,肿瘤的发生、生长、侵袭和转移与JAK-STAT信号转导通路有关,正常信号转导中STATs的激活快速而短暂,STATs的持续性激活与细胞的恶性转化进程密切相关。
最新的研究表明:器官移植排斥、银屑病、组织和器官纤维化、支气管哮喘、缺血性心肌病、心力衰竭、心肌梗死、血液系统疾病以及免疫系统疾病都与JAK-STAT信号转导通路密切相关,这条信号通路不但对维持细胞的正常的生理功能具有重要意义,而且对疾病的发生和发展也有重要的调控作用。
WO2014/111037公开了一种五元并六元杂环化合物的JAK激酶抑制剂,具有式1如下结构:
众所周知,多晶型是药物生产中普遍存在的现象,不同晶型在热力学、动力学和物理性质等方面 有较大差异,可能对原料药及制剂的稳定性、制剂的生产工艺、溶出度及生物利用度等产生影响,进而可能影响药物的安全性、有效性和质量可控性,所以药物的多晶型研究一直是制药行业关注的焦点。所以研究开发出一种具有较好的流动性,溶解性,储存稳定性,很好的生物利用度等的优势晶型对于药品的生产、储存、运输等至关重要。
发明内容
本发明所要解决的技术问题是为改善现有技术中如式1所示的五元并六元杂环化合物的储存稳定性,从而提供了一种五元并六元杂环化合物的晶型及其制备方法和应用。本发明的五元并六元杂环化合物的晶型具有较好的物理化学稳定性,不易吸湿,对药物的优化和开发具有非常重要的价值。
本发明提供了一种如式1所示化合物的晶型II,其使用CuKα辐射,以2θ角表示的X-射线粉末衍射图,在8.928°±0.2°、10.781°±0.2°、16.220°±0.2°、16.817°±0.2°、19.494°±0.2°、19.955°±0.2°和25.026°±0.2°处有特征峰;
(如上所示,如式1所示化合物不含有溶剂)。
在本发明一些优选实施方案中,所述的如式1所示化合物的晶型II,其使用CuKα辐射,以2θ角表示的X-射线粉末衍射图,还进一步在以下一处或多处有特征峰:6.976°±0.2°、12.775°±0.2°、13.316°±0.2°、13.967°±0.2°、16.450°±0.2°、17.598°±0.2°、19.377°±0.2°、20.875°±0.2°、22.119°±0.2°、24.798°±0.2°、25.752°±0.2°、26.778°±0.2°、27.959°±0.2°、28.541°±0.2°、28.957°±0.2°、30.160°±0.2°、33.201°±0.2°、34.555°±0.2°、34.916°±0.2°、36.340°±0.2°、36.602°±0.2°和37.986°±0.2°。
在本发明一些优选实施方案中,所述的如式1所示化合物的晶型II的X-射线粉末衍射图谱还可基本上如图5所示。
在本发明一些优选实施方案中,所述的如式1所示化合物的晶型II的差示扫描量热法分析图中,在205℃±5℃处有吸收峰,熔化热优选为95.70J/g。
在本发明一些优选实施方案中,所述的如式1所示化合物的晶型II的差示扫描量热分析图谱还可基本上如图6所示。
在本发明一些优选实施方案中,所述的如式1所示化合物的晶型II的热失重分析法分析图中,从25℃至熔融前,失重为0.01495%,所述“%”为重量百分数比。
在本发明一些优选实施方案中,所述的如式1所示化合物的晶型II的热失重分析法分析图谱还可基本上如图7所示。
在本发明一些优选实施方案中,所述的如式1所示化合物的晶型II的动态水分吸附分析法分析图中,从0%~95%相对湿度范围内,样品吸湿增重为0.1047%,所述“%”为重量百分数比。
在本发明一些优选实施方案中,所述的如式1所示化合物的晶型II的动态水分吸附分析图谱还可基本上如图8所示。
在本发明一些优选实施方案中,所述的如式1所示化合物的晶型II用溴化钾压片测得的红外吸收光谱图中,在以下位置处有特征峰:3375cm-1、3105cm-1、2966cm-1、2922cm-1、1651cm-1、1595cm-1、1577cm-1、1523cm-1、1446cm-1、1479cm-1、1382cm-1、1342cm-1、1139cm-1、1020cm-1、883cm-1和686cm-1
在本发明一些优选实施方案中,所述的如式1所示化合物的晶型II用溴化钾压片测得的红外吸收光谱图还可基本上如图9所示。
本发明还提供了上述的如式1所示化合物的晶型II的制备方法,其包括如下步骤:在乙腈中,将式1所示化合物的晶型I进行打浆,干燥,得到式1所示化合物的晶型II;其中,所述的式1所示化合物的晶型I,其使用CuKα辐射,以2θ角表示的X-射线粉末衍射图,在8.086°±0.2°、11.879°±0.2°、14.375°±0.2°、15.434°±0.2°、16.213°±0.2°、17.372°±0.2°、17.618°±0.2°、19.066°±0.2°、19.897°±0.2°、22.997°±0.2°、23.240°±0.2°、24.033°±0.2°、25.339°±0.2°、25.641°±0.2°、30.179°±0.2°、31.164°±0.2°和32.816°±0.2°处有特征峰。
所述的晶型II的制备方法中,所述的乙腈与所述的式1化合物的体积质量比为本领域常规的比例,优选10倍~30倍,例如20倍。
所述的晶型II的制备方法中,所述的打浆后,还进一步包括:室温下旋转平衡。
所述的晶型II的制备方法中,所述的干燥为自然干燥。
本发明还提供了上述的如式1所示化合物的晶型II的制备方法,其包括如下步骤:将式1所示化合物与丙酮混合,加热,溶解,低温冷却,干燥,得到所述式1所示化合物的晶型II。
所述的晶型II的制备方法中,所述的混合可为转速400rpm下混合。
所述的晶型II的制备方法中,所述丙酮与所述式1所示化合物的体积质量比为本领域常规的比例,优选20倍~40倍,例如30倍。
所述的晶型II的制备方法中,所述的加热为水浴加热,所述的加热温度为40℃-60℃,例如50℃。
所述的晶型II的制备方法中,所述的溶解后,还进一步包括过滤。
所述的晶型II的制备方法中,所述冷却温度可为-10℃~-30℃以下,例如-20℃。
所述的晶型II的制备方法中,所述的冷却时间可为10小时-16小时,例如12小时。
所述的晶型II的制备方法中,所述的干燥可为自然干燥。
本发明还提供了上述的如式1所示化合物的晶型II的制备方法,其包括如下步骤:
(1)将式1所示化合物与良溶剂混合,加热,溶解;
(2)搅拌下,将步骤(1)的溶液与反溶剂混合,干燥,得到所述式1所示化合物的晶型II。
所述的晶型II的制备方法中,所述良溶剂可为乙酸乙酯、丙酮、二氯甲烷或四氢呋喃中的一种。
所述的晶型II的制备方法中,所述的加热可为水浴加热,所述的加热温度为40℃-60℃,例如50℃。
所述的晶型II的制备方法中,所述反溶剂可为正庚烷或甲基叔丁基醚。
所述的晶型II的制备方法中,所述良溶剂与所述式1所示化合物的体积质量比可为30倍~180倍,例如30倍、50倍、90倍或180倍。
所述的晶型II的制备方法中,所述良溶剂与所述反溶剂的体积比可为1:(0.5-5),例如1:0.8、1:1、1:1.7、1:2.9、1:3.2或1:4.2。
所述的晶型II的制备方法中,步骤(2)中,所述的混合可为所述反溶剂滴加到所述步骤(1)的溶液。
所述的晶型II的制备方法中,所述的干燥可为自然干燥。
本发明还提供了一种如式1所示化合物的晶型III,其使用CuKα辐射,以2θ角表示的X-射线粉末衍射图,在7.577°±0.2°、10.415°±0.2°、14.809°±0.2°、19.797°±0.2°、20.813°±0.2°、21.939°±0.2°、22.663°±0.2°、27.689°±0.2°和29.791°±0.2°处有特征峰;
(如上所示,如式1所示化合物不含有溶剂)。
在本发明一些优选实施方案中,所述的如式1所示化合物的晶型III,其使用CuKα辐射,以2θ角表示的X-射线粉末衍射图,还进一步在以下一处或多处有衍射峰:5.515°±0.2°、8.137°±0.2°、11.632°±0.2°、16.258°±0.2°、17.347°±0.2°、19.318°±0.2°、23.108°±0.2°、24.664°±0.2°、25.282°±0.2°、25.998°±0.2°、28.387°±0.2°、30.347°±0.2°、32.742°±0.2°、34.932°±0.2°、35.679°±0.2°、37.573°±0.2°和38.218°±0.2°。
在本发明一些优选实施方案中,所述的如式1所示化合物的晶型III的X-射线粉末衍射图还可基本上如图10所示。
在本发明一些优选实施方案中,所述的如式1所示化合物的晶型III的差示扫描量热法分析图中,在162℃±5℃处有吸收峰,熔化热优选为116.7J/g。
在本发明一些优选实施方案中,所述的如式1所示化合物的晶型III的差示扫描量热法分析图还可基本上如图11所示。
在本发明一些优选实施方案中,所述的如式1所示化合物的晶型III的热失重分析法分析图中,从25℃至熔融前,失重为0.1066%,所述“%”为重量百分数比。
在本发明一些优选实施方案中,所述的如式1所示化合物的晶型III的热失重分析图谱还可基本上如图12所示。
在本发明一些优选实施方案中,所述的如式1所示化合物的晶型III的动态水分吸附分析中,从0%~95%相对湿度范围内,样品吸湿增重为0.4084%,所述“%”为重量百分数比。
在本发明一些优选实施方案中,所述的如式1所示化合物的晶型III的动态水分吸附分析图谱还可基本上如图13所示。
本发明还提供了上述的如式1所示化合物的晶型III的制备方法,其包括如下步骤:
(1)将式1所示化合物的晶型I与甲醇/水的混合溶剂混合;
(2)在搅拌下,将步骤(1)的溶液与水混合;
(3)干燥,得到式1所示化合物的晶型III;
其中,所述的式1所示化合物的晶型I,其使用CuKα辐射,以2θ角表示的X-射线粉末衍射图,在8.086°±0.2°、11.879°±0.2°、14.375°±0.2°、15.434°±0.2°、16.213°±0.2°、17.372°±0.2°、17.618°±0.2°、19.066°±0.2°、19.897°±0.2°、22.997°±0.2°、23.240°±0.2°、24.033°±0.2°、25.339°±0.2°、25.641°±0.2°、30.179°±0.2°、31.164°±0.2°和32.816°±0.2°处有特征峰。
所述的步骤(1)中,所述的甲醇与所述水的体积比优选(5~15):1,例如10:1。
所述的步骤(1)中,所述的混合溶剂与所述式1化合物的体积质量比为本领域常规的比例,优选90倍~110倍,例如100倍。
所述的步骤(2)中,所述的水与所述式1化合物的体积质量比为本领域常规的比例,优选20倍~30倍,例如25倍。
所述的步骤(2)中,所述的混合的方式优选将水滴加到步骤(1)的溶液中。
所述的步骤(2)中,所述的混合的温度优选45℃~55℃,例如50℃。
所述的步骤(3)中,所述的干燥优选真空干燥。
所述的步骤(3)中,所述的干燥的温度优选40℃~50℃,例如45℃。
本发明还提供了一种如上述的式1所示化合物的晶型II或晶型III在制备JAK激酶抑制剂中的应用。
本发明还提供了一种如上述的式1所示化合物的晶型II或晶型III在制备用于预防和/或治疗与JAK激酶有关的疾病的药物中的应用。
本发明中,所述的药物可与其他治疗剂联合应用于预防和/或治疗与JAK激酶有关的疾病。
本发明中,所述的其他治疗剂可以用于预防和/或治疗与JAK激酶有关的疾病。
本发明中,所述与JAK激酶有关的疾病包括但不限于:癌症和免疫性疾病。
本发明中,所述的癌症包括但不限于:骨髓增生性肿瘤、淋巴瘤、白血病中的一种或多种。
本发明中,所述的免疫性疾病包括但不限于:类风湿性关节炎、斑秃脱发、特应性皮炎、白癜风和银屑病中的一种或多种。
本发明还提供了一种如上述的式1所示化合物的晶型II或晶型III在制备用于预防和/或治疗癌症 或免疫性疾病的药物中的应用。
本发明中,所述的药物可与其他治疗剂联合应用于预防和/或治疗癌症或免疫性疾病。
本发明中,所述的其他治疗剂可以用于预防和/或治疗癌症或免疫性疾病。
本发明中,所述的癌症包括但不限于:骨髓增生性肿瘤、淋巴瘤和白血病中的一种或多种。
本发明中,所述的免疫性疾病包括但不限于:类风湿性关节炎、斑秃脱发、特应性皮炎、白癜风和银屑病中的一种或多种。
本发明还提供了一种药物组合物,其包含治疗有效量的如上述的式1所示化合物的晶型II和/或晶型III和药用辅料。
本发明中,所述的药物组合物可以制成各种类型的单位剂型,如片剂、丸剂、粉剂、溶液、乳液、膏剂、胶囊或搽剂等。
本发明还提供了一种如上述的药物组合物在制备JAK激酶抑制剂中的应用。
本发明还提供了一种如上述的药物组合物在制备用于预防和/或治疗与JAK激酶有关的疾病的药物中的应用。
本发明中,所述的药物可与其他治疗剂联合应用于预防和/或治疗与JAK激酶有关的疾病。
本发明中,所述的其他治疗剂可以用于预防和/或治疗与JAK激酶有关的疾病。
本发明中,所述与JAK激酶有关的疾病包括但不限于:癌症和免疫性疾病。
本发明中,所述的癌症包括但不限于:骨髓增生性肿瘤、淋巴瘤、白血病中的一种或多种。
本发明中,所述的免疫性疾病包括但不限于:类风湿性关节炎、斑秃脱发、特应性皮炎、白癜风和银屑病中的一种或多种。
本发明还提供了一种如上述的药物组合物在制备用于预防和/或治疗癌症或免疫性疾病的药物中的应用。
本发明中,所述的药物可与其他治疗剂联合应用于预防和/或治疗癌症或免疫性疾病。
本发明中,所述的其他治疗剂可以用于预防和/或治疗癌症或免疫性疾病。
本发明中,所述的癌症包括但不限于:骨髓增生性肿瘤、淋巴瘤和白血病中的一种或多种。
本发明中,所述的免疫性疾病包括但不限于:类风湿性关节炎、斑秃脱发、特应性皮炎、白癜风和银屑病中的一种或多种。
术语“治疗有效量”是指给予患者的、足以有效治疗疾病的量。治疗有效量将根据化合物种类、疾病种类、疾病的严重度、患者的年龄等变化,但可由本领域技术人员视情况调整。
术语“药用辅料”是指除活性药物成分以外,包含在药物制剂中的所有物质,一般分为赋形剂和附加剂两大类。具体可参见《中华人民共和国药典(2020年版)》、Handbook of Pharmaceutical Excipients(Paul J Sheskey,Bruno C Hancock,Gary P Moss,David J Goldfarb,2020,9th Edition)。
本发明中,“预防”是指获得或发生疾病或障碍的风险降低(即导致可能暴露于导致疾病试剂或疾病发作前易感疾病的受试者中未发生疾病的临床症状的至少一种)。
本发明中,“治疗”指改善疾病或障碍(即阻止疾病或减少表现其临床症状的程度或严重性);或 者,改善至少一种身体参数,其可能不被受试者察觉;或者减缓疾病进展。
本发明的晶型可以通过一种或几种固体分析方法进行鉴定。如X-射线粉末衍射、单晶X-射线衍射、红外吸收光谱、差示扫描量热、热失重曲线等。本领域技术人员知道,X-射线粉末衍射的峰强度和/或峰情况可能会因为实验条件不同而不同。同时,由于仪器不同的精确度,测得的2θ值会有约±0.2°的误差,而峰的相对强度值比峰的位置更依赖于所测定样品的某些性质,如晶体的尺寸大小,纯度高低,因此测得的峰强度可能出现约±20%的偏差。尽管存在实验误差、仪器误差和取向优先等,本领域技术人员还是可以从本专利提供的X-射线粉末衍射数据获得足够的鉴别各个晶型的信息。在红外光谱测定中,由于各种型号的仪器性能不同、供试品制备时研磨程度的差异或吸水程度不同等差异,对光谱的形状及吸收峰的位置均会有一定程度的影响。而在DSC测量中,根据加热速率、晶体形状和纯度和其它测量参数,实际获得的吸热峰的初始温度、最高温度和熔化热数据均具有一定程度的可变性。
本发明中,“室温”指“10~30℃”。
在不违背本领域常识的基础上,上述各优选条件,可任意组合,即得本发明各较佳实例。
本发明所用试剂和原料均市售可得。
本发明的积极进步效果在于:本发明提供的式1所示化合物的晶型II和晶型III具有较好的物理化学稳定性,不易吸湿,对药物的优化和开发具有非常重要的价值。
附图说明
图1为如式1所示化合物的晶型I的X-射线粉末衍射图。
图2为如式1所示化合物的晶型I的差示扫描量热分析图。
图3为如式1所示化合物的晶型I的热失重分析图。
图4为如式1所示化合物的晶型I的动态水分吸附图。
图5为如式1所示化合物的晶型II的X-射线粉末衍射图。
图6为如式1所示化合物的晶型II的差示扫描量热分析图。
图7为如式1所示化合物的晶型II的热失重分析图。
图8为如式1所示化合物的晶型II的动态水分吸附图。
图9为如式1所示化合物的晶型II的红外吸收光谱图。
图10为如式1所示化合物的晶型III的X-射线粉末衍射图。
图11为如式1所示化合物的晶型III的差示扫描量热分析图。
图12为如式1所示化合物的晶型III的热失重分析图。
图13为如式1所示化合物的晶型III的动态水分吸附图。
图14为如式1所示化合物的晶型IV的X-射线粉末衍射图。
图15为如式1所示化合物的晶型IV的差式扫描量热分析图。
图16为如式1所示化合物的晶型IV的热失重分析图。
图17为如式1所示化合物的晶型V的X-射线粉末衍射图。
图18为如式1所示化合物的晶型V的差式扫描量热分析图。
图19为如式1所示化合物的晶型V的热失重分析图。
图20为如式1所示化合物的晶型VI的X-射线粉末衍射图。
图21为如式1所示化合物的晶型VI的差式扫描量热分析图。
具体实施方式
下面通过实施例的方式进一步说明本发明,但并不因此将本发明限制在所述的实施例范围之中。下列实施例中未注明具体条件的实验方法,按照常规方法和条件,或按照商品说明书选择。
实施例1如式1所示的化合物的制备
化合物1-f的合成
氮气气氛下,将氰甲基三苯基溴化膦(13.4g,35.09mmol)的无水四氢呋喃(100mL)悬浮液冷却到0℃,慢慢滴加到2.5M正丁基锂正己烷溶液(15.5mL,38.59mmol)。在0℃继续搅拌30分钟后,加入1-Boc-3-氮杂环丁酮(6.0g,35.09mmol)并升至室温搅拌1小时。加饱和氯化铵溶液(50mL)淬灭反应,用乙酸乙酯(150mL×3)萃取,有机相合并,依次用水(100mL×3)和饱和食盐水(100mL)洗,无水硫酸钠干燥,过滤,减压浓缩滤液,残余物经硅胶柱层析纯化(石油醚/乙酸乙酯=5:1)的白色固体1-f(2.5g,产率:37%)。LC-MS(ESI):m/z=217[M+Na]+
化合物1-e的合成
将化合物1-f(6.0g,30.93mmol)和4-吡唑硼酸频那醇酯(9.2g,47.42mmol)溶于乙腈(60mL)中,加入1,8-二氮杂双环[5,4,0]十一碳-7-烯(10.0g,65.79mmol)。此混合物于60℃下搅拌反应18小时。减压浓缩反应液,残余物加入1N盐酸水溶液(100mL),用乙酸乙酯(100mL×3)萃取,有机相合并,依次用水(60mL×3)和饱和食盐水(60mL)洗,无水硫酸钠干燥,过滤,减压浓缩滤液,残余物经硅胶柱层析纯化(石油醚/乙酸乙酯=3:1)的白色固体1-e(7.1g,产率59.2%)。LC-MS(ESI): m/z=389[M+H]+
化合物1-d的合成
氮气气氛下,将化合物1-e(4.0g,10.3mmol),2,4-二氯噻吩并[3,2-d]嘧啶(2.52g,12.4mmol)和碳酸钠(3.3g,31.2mmol)悬浮于二氧六环(25mL)和水(25mL)的混合溶剂中,加入[1,1’-双(二苯基磷)二茂铁]二氯化钯(1.1g,1.5mmol),混合物在80℃下搅拌反应16小时,减压浓缩反应液,残余物加水(200mL),用二氯甲烷(200mL×3)萃取,有机相合并,依次用水(100mL×3)和饱和食盐水(100mL)洗,无水硫酸钠干燥,过滤,减压浓缩滤液,残余物经硅胶柱层析纯化(石油醚/乙酸乙酯=2:1)的浅黄色固体1-d(3.2g,产率63%)。LC-MS(ESI):m/z=431[M+H]+
化合物1-c的合成
将化合物1-d(310mg,0.72mmol)溶于二氯甲烷(2mL)中,加入盐酸二氧六环溶液(4N,1mL),混合物在室温下搅拌反应16小时,减压浓缩反应液,残余物加入二氯甲烷(10mlL)和三乙胺(2mL),混合物冷却到0℃,慢慢滴加乙基磺酰氯(154mg,1.37mmol),滴加完毕继续在0℃搅拌30分钟,加入水(5mL),用二氯甲烷(10mL×3)萃取,有机相合并,依次用水(10mL×3)和饱和食盐水(10mL)洗,无水硫酸钠干燥,过滤,减压浓缩滤液,残余物经硅胶柱层析纯化(石油醚/乙酸乙酯=2:1)得化合物1-c(108mg,收率34%)。LC-MS(ESI):m/z:423[M+H]+
化合物1-b的合成
0℃下,将氢化钠(1.3g,32.1mmol)加入到4-硝基吡唑(3.3g,29.2mmol)的无水四氢呋喃(30mL)溶液中,搅拌1小时后,慢慢加入碘甲烷(2mL),并在室温下继续搅拌2小时。此混合物倒入冰水(100mL)中,用乙酸乙酯(50mL×3)萃取,有机相有无水硫酸钠干燥,过滤,滤液减压浓缩,残余物加入石油醚和乙酸乙酯(20:1)的混合溶剂(20mL),搅拌,有固体析出,过滤,固体在真空中干燥8小时得白色固体1-b(2.6g,产率:70%)。产品无需纯化,直接投入下一步反应。LC-MS(ESI):m/z=128[M+H]+
化合物1-a的合成
氢气气氛下,10%的钯-碳(0.2g)加入到化合物15-b(1.0g,7.87mmol)的乙醇(15ml)溶液中,混合物于25℃反应18小时后,过滤,滤液减压浓缩,残余物经硅胶柱层析纯化(石油醚/乙酸乙酯=1:1)得到红色油状物1-a(700mg,产率92%)。
化合物1的合成
氮气气氛下,将三(二亚苄基茚丙酮)二钯(55mg,0.06mmol)和2,2’-双(二苯基膦)-1,1’-联萘(40mg,0.06mmol)加入到化合物1-c,化合物1-a(138mg,1.42mmol)和碳酸铯(309mg,0.95mmol)的二氧六环(4mL)悬浮液中,于120℃微波反应60分钟,冷却至室温,加入二氯甲烷(20mL)稀释,过滤,滤液减压浓缩,残余物经高效液相制备(流动相:乙腈,水(0.05%三氟乙酸):梯度:60%-90%-10%)得到浅黄色固体化合物1的晶型I(23mg,产率:14%)。LC-MS(ESI):m/z=484[M+H]+
实施例2式1化合物晶型II的制备
方法一、
称取20mg按照实施例1制备方法得到的式1化合物的晶型I到玻璃小瓶中,往小瓶中加入20倍体积的乙腈溶剂,超声1分钟后得到悬浊液,将悬浊液小瓶包裹铝箔遮光后置于Labquaker旋转器上,开始在室温下(约25℃)360度旋转平衡,室温平衡期间,取样(0.8mL),离心,剩余固体自然干燥后得到的样品经XRPD表征为晶型II。
方法二、
称取20mg式1化合物到玻璃小瓶中,置于50℃水浴中,转速为400rpm,向小瓶中加入30倍体积的丙酮,加热得到澄清溶液。趁热将样品溶液用0.45μm滤膜过滤,续滤液转移至5mL离心管中,将离心管立即放到-20℃冰箱中保存,过夜,离心后取出固体,自然干燥后经XRPD表征为晶型II。
方法三、
称取20mg式1化合物到玻璃小瓶中,置于50℃水浴中,转速为400rpm,加入90倍体积的良溶剂乙酸乙酯,加热得到澄清溶液,保温15分钟,搅拌状态下缓慢滴加70倍体积的反溶剂正庚烷,有固体析出,继续搅拌10分钟,取样,离心,自然干燥后经XRPD表征为晶型II。放置8天后再经XRPD表征仍为晶型II。
按照方法三同样的操作方法,将乙酸乙酯更换为下表中的良溶剂,同样得到晶型II。
按照方法三同样的操作方法,使用如下表中的良溶剂和反溶剂,同样得到晶型II。放置6天后再经XRPD表征仍为晶型II。

实施例3式1化合物晶型III的制备
称取50mg按照实施例1制备方法得到的式1化合物到玻璃小瓶中,往小瓶中加入100倍甲醇/水(体积比=10:1)的混合溶剂,超声1分钟得到悬浊液,将悬浊液置于50℃水浴中搅拌4小时,缓慢滴加25倍水,保温搅拌过夜,第二天降温至室温继续搅拌3天,45℃真空干燥,得到的样品经XRPD表征为晶型III。
实施例4式1化合物晶型IV的制备
称取20mg按照实施例1制备方法得到的式1化合物到玻璃小瓶中,往小瓶中加入适量体积的二氯甲烷,超声促使化合物溶解,得到式1化合物的饱和溶液,溶清后继续超声5分钟,将溶清后的溶液用0.45μm滤膜过滤,续滤液转移至5mL离心管中,玻璃小瓶包裹铝箔遮光后敞口放置,室温下(约25℃)自然挥发溶剂,得到的样品经XRPD表征为晶型IV(二氯甲烷溶剂化物)。
实施例5式1化合物晶型V的制备
称取20mg按照实施例1制备方法得到的式1化合物到玻璃小瓶中,往小瓶中加入适量体积的四氢呋喃,超声促使化合物溶解,得到式1化合物的饱和溶液,溶清后继续超声5分钟,将溶清后的溶液用0.45μm滤膜过滤,续滤液转移至10mL玻璃瓶中,玻璃小瓶包裹铝箔遮光后敞口放置,室温下(约25℃)自然挥发溶剂,得到的样品经XRPD表征为晶型V(四氢呋喃溶剂化物)。
实施例6式1化合物晶型VI的制备
称取20mg按照实施例1制备方法得到的式1化合物到玻璃小瓶中,往小瓶中加入适量体积的1,4二氧六环,超声促使化合物溶解,得到式1化合物的饱和溶液,溶清后继续超声5分钟,将溶清后的溶液用0.45μm滤膜过滤,续滤液转移至5mL离心管中,玻璃小瓶包裹铝箔遮光后敞口放置,室温下(约25℃)自然挥发溶剂,得到的样品经XRPD表征为晶型VI(1,4二氧六环溶剂化物)。
实施例7粉末X-射线衍射分析(XRPD)
方法:取适量样品平铺于单晶硅片上,于室温条件下进行XRPD测试,具体实验参数如下:光源为CuKα,X-射线强度为40KV/40mA,扫描模式为Theta-theta,扫描角度范围4°~40°,步长为0.05°,扫描速度为0.5秒/步。
由实施例1制备得到的式1化合物晶型I的X-射线粉末衍射图如图1所示,其中特征衍射峰的2θ角的值为6.599°±0.2°、8.086°±0.2°、11.879°±0.2°、12.589°±0.2°、13.184°±0.2°、14.375°±0.2°、15.434°±0.2°、16.213°±0.2°、17.372°±0.2°、17.618°±0.2°、18.502°±0.2°、19.066°±0.2°、19.897°±0.2°、22.074°±0.2°、22.997°±0.2°、23.240°±0.2°、24.033°±0.2°、25.339°±0.2°、25.641°±0.2°、27.694°±0.2°、28.640°±0.2°、29.540°±0.2°、30.179°±0.2°、31.164°±0.2°、32.816°±0.2°、34.022°±0.2°、35.920°±0.2°、36.472°±0.2°和38.536°±0.2°。
由实施例2制备得到的式1化合物晶型II的X-射线粉末衍射图如图5所示,其中特征衍射峰的 2θ角的值为:6.976°±0.2°、8.928°±0.2°、10.781°±0.2°、12.775°±0.2°、13.316°±0.2°、13.967°±0.2°、16.220°±0.2°、16.450°±0.2°、16.817°±0.2°17.598°±0.2°、19.377°±0.2°、19.494°±0.2°、19.955°±0.2°20.875°±0.2°、22.119°±0.2°、24.798°±0.2°、25.026°±0.2°、25.752°±0.2°、26.778°±0.2°、27.959°±0.2°、28.541°±0.2°、28.957°±0.2°、30.160°±0.2°、33.201°±0.2°、34.555°±0.2°、34.916°±0.2°、36.340°±0.2°、36.602°±0.2°和37.986°±0.2°
由实施例3制备得到的式1化合物晶型III的X-射线粉末衍射图如图10所示,其中特征衍射峰的2θ角的值为5.515°±0.2°、7.577°±0.2°、8.137°±0.2°、10.415°±0.2°、11.632°±0.2°、14.809°±0.2°、16.258°±0.2°、17.347°±0.2°、19.318°±0.2°、19.797°±0.2°、20.813°±0.2°、21.939°±0.2°、22.663°±0.2°、23.108°±0.2°、24.664°±0.2°、25.282°±0.2°、25.998°±0.2°、27.689°±0.2°28.387°±0.2°、29.791°±0.2°30.347°±0.2°、32.742°±0.2°、34.932°±0.2°、35.679°±0.2°、37.573°±0.2°和38.218°±0.2°。
由实施例4制备得到的式1化合物晶型IV的X-射线粉末衍射图如图14所示,其中特征衍射峰的2θ角的值为8.994°±0.2°、10.136°±0.2°、12.324°±0.2°、12.684°±0.2°、15.595°±0.2°、16.110°±0.2°、16.816°±0.2°、18.461°±0.2°、19.309°±0.2°、19.815°±0.2°、20.351°±0.2°、22.032°±0.2°、23.327°±0.2°、23.846°±0.2°、24.526°±0.2°、25.386°±0.2°、26.121°±0.2°、26.896°±0.2°、27.381°±0.2°、28.970°±0.2°和30.712°±0.2°。
由实施例5制备得到的式1化合物晶型V的X-射线粉末衍射图如图17所示,其中特征衍射峰的2θ角的值为5.486°±0.2°、7.138°±0.2°、8.075°±0.2°、9.609°±0.2°、10.355°±0.2°、10.678°±0.2°、10.965°±0.2°、11.570°±0.2°、14.764°±0.2°、15.685°±0.2°、16.221°±0.2°、16.836°±0.2°、17.169°±0.2°、17.270°±0.2°、17.350°±0.2°、17.881°±0.2°、18.117°±0.2°、19.215°±0.2°、19.712°±0.2°、20.796°±0.2°、21.253°±0.2°、21.590°±0.2°、21.902°±0.2°、22.726°±0.2°、23.095°±0.2°、24.946°±0.2°、25.151°±0.2°、25.344°±0.2°、25.985°±0.2°、28.011°±0.2°、28.294°±0.2°、和29.713°±0.2°。
由实施例6制备得到的式1化合物晶型VI的X-射线粉末衍射图如图20所示,其中特征衍射峰的2θ角的值为6.808°±0.2°、10.582°±0.2°、12.200°±0.2°、16.811°±0.2°、18.568°±0.2°、20.510°±0.2°、21.094°±0.2°、22.062°±0.2°、25.346°±0.2°、27.293°±0.2°和28.831°±0.2°。
实施例8红外吸收光谱分析(IR)
依据中国药典2015年版四部通则0402红外分光光度法,采用溴化钾压片法制备供试品,在4000~400cm-1波数范围内收集红外吸收光谱。供试品的扫描次数为45次,仪器分辨率为4cm-1
如式1所示的化合物的晶型II的红外吸收光谱图如图9所示,其中特征峰、振动类型、基团和吸收峰强度还可如下表1所示。
表1

实施例9差示扫描量热分析(DSC)
称取式1化合物晶型I样品2.8790mg,置于非密闭铝盘中,氮气流(50mL/分钟)环境中,样品在25℃平衡,然后以10℃/分钟的升温速率从25℃加热至300℃,在温度161.62℃~164.54℃熔化热为82.79J/g,在温度204.67℃~206.86℃熔化热为61.82J/g,如图2所示。
称取式1化合物晶型II样品2.3250mg,置于非密闭铝盘中,氮气流(50mL/分钟)环境中,样品在25℃平衡,然后以10℃/分钟的升温速率从25℃加热至300℃,在温度205.24℃~206.20℃熔化热为95.70J/g,如图6所示。
称取式1化合物晶型III样品1.4970mg,置于非密闭铝盘中,氮气流(50mL/分钟)环境中,样品在25℃平衡,然后以10℃/分钟的升温速率从25℃加热至300℃,在温度161.79℃~165.64℃熔化热为116.7J/g,如图11所示。
称取式1化合物晶型IV样品2.0230mg,置于非密闭铝盘中,氮气流(50mL/分钟)环境中,样品在25℃平衡,然后以10℃/分钟的升温速率从25℃加热至300℃,在125℃前有一个小的溶剂峰,应该为溶剂二氯甲烷,在温度138.96℃~146.82℃熔化热为72.33J/g,在温度203.51℃~205.84℃熔化热52.06J/g,如图15所示。
称取式1化合物晶型V样品1.5680mg,置于非密闭铝盘中,氮气流(50mL/分钟)环境中,样品在25℃平衡,然后以10℃/分钟的升温速率从25℃加热至300℃,在145℃之前有两个小的吸收峰,在159.05℃~162.46℃熔化热为25.09J/g,在温度202.63℃~205.35℃熔化热为76.74J/g,如图18所示。
称取式1化合物晶型VI样品1.5480mg,置于非密闭铝盘中,氮气流(50mL/分钟)环境中,样品在25℃平衡,然后以10℃/分钟的升温速率从25℃加热至300℃,在125℃之前有两个小的溶剂吸收峰,在202.08℃~204.61.46℃熔化热为74.37J/g,如图21所示。
实施例10热失重分析(TGA)
称取式1化合物晶型I样品8.1060mg,置于铂金样品盘中,氮气流(50mL/分钟)环境中,以10℃/分钟的升温速率从25℃加热至300℃,如图3所示。从25℃~100℃有1.690%失重,可能为样品中少量的溶剂或水,100℃至熔点前几乎无失重。
称取式1化合物晶型II样品10.4510mg,置于铂金样品盘中,氮气流(50mL/分钟)环境中,以10℃/分钟的升温速率从25℃加热至300℃,如图7所示。从25℃至熔融前仅仅有0.01495%的失重,表明该样品中几乎无溶剂或水残留。
称取式1化合物晶型III样品5.1880mg,置于铂金样品盘中,氮气流(50mL/分钟)环境中,以10℃/分钟的升温速率从25℃加热至300℃,如图12所示。从25℃到熔融前仅有0.1066%失重,表 明该样品中几乎没有溶剂或水残留。
称取式1化合物晶型IV样品4.6640mg,置于铂金样品盘中,氮气流(50mL/分钟)环境中,以10℃/分钟的升温速率从25℃加热至300℃,如图16所示。从25℃~125℃有2.193%失重,应该为溶剂二氯甲烷。
称取式1化合物晶型V样品2.1270mg,置于铂金样品盘中,氮气流(50mL/分钟)环境中,以10℃/分钟的升温速率从25℃加热至300℃,如图19所示。从25℃~95℃有3.670%失重,应该为游离的四氢呋喃,95℃~145℃之间有5.932%失重,对应于DSC上的溶剂峰,应该为进入晶格的四氢呋喃。
实施例11动态水分吸附分析(DVS)
称取式1化合物晶型I样品10mg,温度25℃,湿度从0%RH条件下干燥60min后,测试湿度从0%RH~95%RH变化时样品的吸湿特征,以及湿度从95%RH~0%RH变化时样品的去湿特征。湿度每步长变化为5%RH,平衡标准为5min内重量变化率小于0.01%/min,最长平衡时间为2小时,结果显示从0%RH~95%RH样品增重3.025%,如图4所示。
称取式1化合物晶型II样品10mg,温度25℃,湿度从0%RH条件下干燥60min后,测试湿度从0%RH~95%RH变化时样品的吸湿特征,以及湿度从95%RH~0%RH变化时样品的去湿特征。湿度每步长变化为5%RH,平衡标准为5min内重量变化率小于0.01%/min,最长平衡时间为2小时,结果显示从0%RH~95%RH样品增重0.1047%,如图8所示。
称取式1化合物晶型III样品10mg,温度25℃,湿度从0%RH条件下干燥60min后,测试湿度从0%RH~95%RH变化时样品的吸湿特征,以及湿度从95%RH~0%RH变化时样品的去湿特征。湿度每步长变化为5%RH,平衡标准为5min内重量变化率小于0.01%/min,最长平衡时间为2小时,结果显示从0%RH~95%RH样品增重0.4084%,如图13所示。
实施例12稳定性试验
分别精密称取适量式1化合物晶型II、晶型III到20ml无色透明玻璃瓶中,将样品瓶分别放置在对应的影响因素(高温60℃、高湿92.5%RH)和加速条件(40℃/75%RH)下,放置1周和2周后取出,用于HPLC检测样品含量和有关物质以考察晶型II、晶型III的化学稳定性,以及用于外观、XRPD和DSC表征以考察两个晶型的物理稳定性。同时分别精密称取晶型II、晶型III样品到20ml无色透明玻璃瓶中并加盖盖紧,作为HPLC分析的标准样品放置于-20℃冰箱保存。试验结果如下表2和表3所示:
表2


备注:表格中“/”表示:无变化。
表3
稳定性试验研究结果表明:晶型III在-20℃、高温高湿光照和加速条件下,放置两周时间后,表现出良好的化学稳定性,但是在上述条件下均发现有部分晶型III转化为晶型II;晶型II在-20℃、高温高湿和加速条件下表现出良好的物理化学稳定性。
同时晶型II从0%RH~95%RH样品仅增重0.1047%,几乎没有吸湿性。

Claims (16)

  1. 一种如式1所示化合物的晶型II,其特征在于,其使用CuKα辐射,以2θ角表示的X-射线粉末衍射图在8.928°±0.2°、10.781°±0.2°、16.220°±0.2°、16.817°±0.2°、19.494°±0.2°、19.955°±0.2°和25.026°±0.2°处有特征峰;
  2. 如权利要求1所述的如式1所示化合物的晶型II,其特征在于,其使用CuKα辐射,以2θ角表示的X-射线粉末衍射图还在以下一处或多处有特征峰:6.976°±0.2°、12.775°±0.2°、13.316°±0.2°、13.967°±0.2°、16.450°±0.2°、17.598°±0.2°、19.377°±0.2°、20.875°±0.2°、22.119°±0.2°、24.798°±0.2°、25.752°±0.2°、26.778°±0.2°、27.959°±0.2°、28.541°±0.2°、28.957°±0.2°、30.160°±0.2°、33.201°±0.2°、34.555°±0.2°、34.916°±0.2°、36.340°±0.2°、36.602°±0.2°和37.986°±0.2°;
    和/或,其差示扫描量热法分析图中,在205℃±5℃处有吸收峰,熔化热优选为95.70J/g;
    和/或,其热失重分析法分析图中,从25℃至熔融前,失重为0.01495%,所述“%”为重量百分数比;
    和/或,其动态水分吸附分析法分析图中,从0%~95%相对湿度范围内,样品吸湿增重为0.1047%,所述“%”为重量百分数比;
    和/或,其用溴化钾压片测得的红外吸收光谱图中,在以下位置处有特征峰:3375cm-1、3105cm- 1、2966cm-1、2922cm-1、1651cm-1、1595cm-1、1577cm-1、1523cm-1、1446cm-1、1479cm-1、1382cm-1、1342cm-1、1139cm-1、1020cm-1、883cm-1和686cm-1
  3. 如权利要求2所述的如式1所示化合物的晶型II,其特征在于,其使用CuKα辐射,以2θ角表示的X-射线粉末衍射图,在6.976°±0.2°、8.928°±0.2°、10.781°±0.2°、12.775°±0.2°、13.316°±0.2°、13.967°±0.2°、16.220°±0.2°、16.450°±0.2°、16.817°±0.2°、17.598°±0.2°、19.377°±0.2°、19.494°±0.2°、19.955°±0.2°、20.875°±0.2°、22.119°±0.2°、24.798°±0.2°、25.026°±0.2°、25.752°±0.2°、26.778°±0.2°、27.959°±0.2°、28.541°±0.2°、28.957°±0.2°、30.160°±0.2°、33.201°±0.2°、34.555°±0.2°、34.916°±0.2°、36.340°±0.2°、36.602°±0.2°和37.986°±0.2°处有特征峰。
  4. 如权利要求2所述的如式1所示化合物的晶型II,其特征在于,其使用CuKα辐射,以2θ角表示的X-射线粉末衍射图基本上如图5所示;
    和/或,其差示扫描量热法分析图谱基本上如图6所示;
    和/或,其热失重分析法分析图谱基本上如图7所示;
    和/或,其动态水分吸附分析法分析图谱基本上如图8所示;
    和/或,其用溴化钾压片测得的红外吸收光谱图基本上如图9所示。
  5. 一种如式1所示化合物的晶型III,其特征在于,其使用CuKα辐射,以2θ角表示的X-射线粉末衍射图在7.577°±0.2°、10.415°±0.2°、14.809°±0.2°、19.797°±0.2°、20.813°±0.2°、21.939°±0.2°、22.663°±0.2°、27.689°±0.2°和29.791°±0.2°处有特征峰;
  6. 如权利要求5所述的如式1所示化合物的晶型III,其特征在于,其使用CuKα辐射,以2θ角表示的X-射线粉末衍射图还在以下一处或多处有特征峰:5.515°±0.2°、8.137°±0.2°、11.632°±0.2°、16.258°±0.2°、17.347°±0.2°、19.318°±0.2°、23.108°±0.2°、24.664°±0.2°、25.282°±0.2°、25.998°±0.2°、28.387°±0.2°、30.347°±0.2°、32.742°±0.2°、34.932°±0.2°、35.679°±0.2°、37.573°±0.2°和38.218°±0.2°;
    和/或,其差示扫描量热法分析图中,在162℃±5℃处有吸收峰,熔化热优选为116.7J/g;
    和/或,其热失重分析法分析图中,从25℃至熔融前,失重为0.1066%,所述“%”为重量百分数比;
    和/或,所述的如式1所示化合物的晶型III的动态水分吸附分析中,从0%~95%相对湿度范围内,样品吸湿增重为0.4084%,所述“%”为重量百分数比。
  7. 如权利要求6所述的如式1所示化合物的晶型III,其特征在于,其使用CuKα辐射,以2θ角表示的X-射线粉末衍射图,在5.515°±0.2°、7.577°±0.2°、8.137°±0.2°、10.415°±0.2°、11.632°±0.2°、14.809°±0.2°、16.258°±0.2°、17.347°±0.2°、19.318°±0.2°、19.797°±0.2°、20.813°±0.2°、21.939°±0.2°、22.663°±0.2°、23.108°±0.2°、24.664°±0.2°、25.282°±0.2°、25.998°±0.2°、27.689°±0.2°、28.387°±0.2°、29.791°±0.2°、30.347°±0.2°、32.742°±0.2°、34.932°±0.2°、35.679°±0.2°、37.573°±0.2°和38.218°±0.2°处有特征峰。
  8. 如权利要求6所述的如式1所示化合物的晶型III,其特征在于,其使用CuKα辐射,以2θ角表示的X-射线粉末衍射图基本上如图10所示;
    和/或,其差示扫描量热法分析图基本上如图11所示;
    和/或,其热失重分析法分析图基本上如图12所示;
    和/或,其动态水分吸附分析法分析图基本上如图13所示。
  9. 如权利要求1-4中任一项所述的如式1所示化合物的晶型II的制备方法,其特征在于,所述的如式1所示化合物的晶型II的制备方法为如下任一方案;
    方案一、
    所述制备方法包括如下步骤:在乙腈中,将式1所示化合物的晶型I进行打浆,干燥,得到式1所示化合物的晶型II;其中,所述的式1所示化合物的晶型I,其使用CuKα辐射,以2θ角表示的X-射线粉末衍射图,在8.086°±0.2°、11.879°±0.2°、14.375°±0.2°、15.434°±0.2°、16.213°±0.2°、17.372°±0.2°、17.618°±0.2°、19.066°±0.2°、19.897°±0.2°、22.997°±0.2°、23.240°±0.2°、24.033°±0.2°、25.339°±0.2°、25.641°±0.2°、30.179°±0.2°、31.164°±0.2°和32.816°±0.2°处有特征峰;
    方案二、
    所述制备方法包括如下步骤:将式1所示化合物与丙酮混合,加热,溶解,低温冷却,干燥,得到所述式1所示化合物的晶型II;
    方案三、
    所述制备方法包括如下步骤:
    (1)将式1所示化合物与良溶剂混合,加热,溶解;
    (2)搅拌下,将步骤(1)的溶液与反溶剂混合,干燥,得到所述式1所示化合物的晶型II。
  10. 如权利要求9所述的如式1所示化合物的晶型II的制备方法,其特征在于,所述的如式1所示化合物的晶型II的制备方法满足如下条件中的一个或多个:
    (1)方案一中,所述的乙腈与所述的式1化合物的体积质量比为10倍~30倍,例如20倍;
    (2)方案一中,所述的打浆后,还进一步包括:室温下旋转平衡;
    (3)方案一中,所述的干燥为自然干燥;
    (4)方案二中,所述的混合为转速400rpm下混合;
    (5)方案二中,所述丙酮与所述式1所示化合物的体积质量比为20倍~40倍,例如30倍;
    (6)方案二中,所述的加热为水浴加热,所述的加热温度为40℃-60℃,例如50℃;
    (7)方案二中,所述的溶解后,还进一步包括过滤;
    (8)方案二中,所述冷却温度为-10℃~-30℃以下,例如-20℃;
    (9)方案二中,所述的冷却时间为10小时-16小时,例如12小时;
    (10)方案二中,所述的干燥为自然干燥;
    (11)方案三中,所述良溶剂为乙酸乙酯、丙酮、二氯甲烷或四氢呋喃中的一种;
    (12)方案三中,所述的加热为水浴加热,所述的加热温度为40℃-60℃,例如50℃;
    (13)方案三中,所述反溶剂为正庚烷或甲基叔丁基醚;
    (14)方案三中,所述良溶剂与所述式1所示化合物的体积质量比为30倍~180倍,例如30倍、50倍、90倍或180倍;
    (15)方案三中,所述良溶剂与所述反溶剂的体积比为1:(0.5-5),例如1:0.8、1:1、1:1.7、1:2.9、1:3.2或1:4.2;
    (16)方案三中,步骤(2)中,所述的混合为所述反溶剂滴加到所述步骤(1)的溶液;
    和(17)方案三中,所述的干燥为自然干燥。
  11. 如权利要求5-8中任一项所述的如式1所示化合物的晶型III的制备方法,其特征在于,其包括如下步骤:
    (1)将式1所示化合物的晶型I与甲醇/水的混合溶剂混合;
    (2)在搅拌下,将步骤(1)的溶液与水混合;
    (3)干燥,得到式1所示化合物的晶型III;
    其中,所述的式1所示化合物的晶型I,其使用CuKα辐射,以2θ角表示的X-射线粉末衍射图,在8.086°±0.2°、11.879°±0.2°、14.375°±0.2°、15.434°±0.2°、16.213°±0.2°、17.372°±0.2°、17.618°±0.2°、19.066°±0.2°、19.897°±0.2°、22.997°±0.2°、23.240°±0.2°、24.033°±0.2°、25.339°±0.2°、25.641°±0.2°、30.179°±0.2°、31.164°±0.2°和32.816°±0.2°处有特征峰。
  12. 如权利要求11所述的如式1所示化合物的晶型III的制备方法,其特征在于,所述的如式1所示化合物的晶型III的制备方法满足如下条件中的一个或多个:
    (1)所述步骤(1)中,所述的甲醇与所述水的体积比为(5~15):1,例如10:1;
    (2)所述步骤(1)中,所述的混合溶剂与所述式1化合物的体积质量比为90倍~110倍,例如100倍;
    (3)所述步骤(2)中,所述的水与所述式1化合物的体积质量比为20倍~30倍,例如25倍;
    (4)所述步骤(2)中,所述的混合的方式为将水滴加到步骤(1)的溶液中;
    (5)所述步骤(2)中,所述的混合的温度为45℃~55℃,例如50℃;
    (6)所述步骤(3)中,所述的干燥为真空干燥;
    和(7)所述步骤(3)中,所述的干燥的温度为40℃~50℃,例如45℃。
  13. 一种药物组合物,其包含治疗有效量的如权利要求1-4中任一项所述的式1所示化合物的晶型II和/或如权利要求5-8中任一项所述的式1所示化合物的晶型III和药用辅料;所述的药物组合物的剂型可为片剂、丸剂、粉剂、溶液、乳液、膏剂、胶囊或搽剂。
  14. 一种如权利要求1-4中任一项所述的式1所示化合物的晶型II、如权利要求5-8中任一项所述的式1所示化合物的晶型III或如权利要求13所述的药物组合物在制备JAK激酶抑制剂中的应用。
  15. 一种如权利要求1-4中任一项所述的式1所示化合物的晶型II、如权利要求5-8中任一项所述的式1所示化合物的晶型III或如权利要求13所述的药物组合物在制备用于预防和/或治疗与JAK激酶有关的疾病的药物中的应用;所述的药物可与其他治疗剂联合应用于预防和/或治疗与JAK激酶有关的疾病;所述的其他治疗剂可以用于预防和/或治疗与JAK激酶有关的疾病;所述与JAK激酶有关的疾病优选癌症和免疫性疾病;所述的癌症优选骨髓增生性肿瘤、淋巴瘤、白血病中的一种或多种;所述的免疫性疾病优选类风湿性关节炎、斑秃脱发、特应性皮炎、白癜风和银屑病中的一种或多种。
  16. 一种如权利要求1-4中任一项所述的式1所示化合物的晶型II、如权利要求5-8中任一项所述的式1所示化合物的晶型III或如权利要求13所述的药物组合物在制备用于预防和/或治疗癌症或免疫性疾病的药物中的应用;所述的药物可与其他治疗剂联合应用于预防和/或治疗癌症或免疫性疾 病;所述的其他治疗剂可以用于预防和/或治疗癌症或免疫性疾病;所述的癌症优选骨髓增生性肿瘤、淋巴瘤和白血病中的一种或多种;所述的免疫性疾病优选类风湿性关节炎、斑秃脱发、特应性皮炎、白癜风和银屑病中的一种或多种。
PCT/CN2023/117439 2022-09-08 2023-09-07 一种五元并六元杂环化合物的晶型及其制备方法和应用 WO2024051771A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211100455.1 2022-09-08
CN202211100455 2022-09-08

Publications (1)

Publication Number Publication Date
WO2024051771A1 true WO2024051771A1 (zh) 2024-03-14

Family

ID=90161252

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/117439 WO2024051771A1 (zh) 2022-09-08 2023-09-07 一种五元并六元杂环化合物的晶型及其制备方法和应用

Country Status (2)

Country Link
CN (1) CN117700428A (zh)
WO (1) WO2024051771A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102307875A (zh) * 2009-02-09 2012-01-04 苏伯俭股份有限公司 吡咯并嘧啶基axl激酶抑制剂
CN102762571A (zh) * 2009-12-23 2012-10-31 拜奥克里斯特制药公司 作为janus激酶抑制剂的杂环化合物
CN103936757A (zh) * 2013-01-18 2014-07-23 上海昀怡健康管理咨询有限公司 五元并六元杂环化合物、其制备方法、药物组合物和应用
CN111943959A (zh) * 2019-05-17 2020-11-17 上海再极医药科技有限公司 一种jak抑制剂的合成方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102307875A (zh) * 2009-02-09 2012-01-04 苏伯俭股份有限公司 吡咯并嘧啶基axl激酶抑制剂
CN102762571A (zh) * 2009-12-23 2012-10-31 拜奥克里斯特制药公司 作为janus激酶抑制剂的杂环化合物
CN103936757A (zh) * 2013-01-18 2014-07-23 上海昀怡健康管理咨询有限公司 五元并六元杂环化合物、其制备方法、药物组合物和应用
CN111943959A (zh) * 2019-05-17 2020-11-17 上海再极医药科技有限公司 一种jak抑制剂的合成方法

Also Published As

Publication number Publication date
CN117700428A (zh) 2024-03-15

Similar Documents

Publication Publication Date Title
EP2387563B2 (en) Malate salt of n- (4- { [ 6, 7-bis (methyloxy) quinolin-4-yl]oxy}phenyl-n' - (4 -fluorophenyl) cyclopropane-1,1-dicarboxamide, and crystalline forms thereof for the treatment of cancer
CN107531678A (zh) Egfr抑制剂及其药学上可接受的盐和多晶型物及其应用
CN109970745A (zh) 取代的吡咯并三嗪类化合物及其药物组合物及其用途
RU2648990C1 (ru) Кристаллы лобаплатина, способы получения и применения в фармацевтике
JP7351061B2 (ja) 縮合環ピリミジン系化合物の塩、結晶形並びにその製造方法と使用
CN105085542B (zh) 噁唑烷酮类化合物的晶型和无定形
WO2021000687A1 (zh) Pac-1晶型的制备方法
WO2024051771A1 (zh) 一种五元并六元杂环化合物的晶型及其制备方法和应用
WO2023193563A1 (zh) 一种噻吩并吡啶化合物的晶型a、制备方法及其药物组合物
TWI662031B (zh) 1-{2-氟-4-[5-(4-異丁基苯基)-1,2,4-噁二唑-3-基]-苄基}-3-吖丁啶羧酸的晶型
US11566000B2 (en) Crystalline form of sofpironium bromide and preparation method thereof
TWI762825B (zh) 酪胺酸激酶抑制劑的一馬來酸鹽的晶型及其製備方法
CN117769553A (zh) 一种氟取代的吡啶并吡唑类化合物的晶型及其制备方法
CN113754596A (zh) 一种吉非替尼的共晶体
CN114437076A (zh) 一种酮咯酸与异烟肼共晶及其制备方法
WO2022247772A1 (zh) 一种含氧杂环化合物的晶型、其制备方法及应用
CN109516991A (zh) 一种枸橼酸托法替尼晶型化合物及其制备方法
TWI826013B (zh) 咪唑啉酮衍生物的晶型
WO2023131017A1 (zh) 一种稠环衍生物的晶型、其制备方法及其应用
WO2023185638A1 (zh) 一种喹啉衍生物的晶型及其制备方法
WO2023207944A1 (zh) Fgfr4抑制剂的晶型及应用
WO2022237808A1 (zh) 吡咯并嘧啶类化合物的晶型及其制备方法
JP2023545165A (ja) 多置換ベンゼン環化合物マレイン酸塩の結晶形、その調製方法及びその用途
CN114573523A (zh) 一种氯唑沙宗-2-吲哚甲酸共晶
TW202413370A (zh) 二氫吡啶酮衍生物或其溶劑合物之結晶

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23862465

Country of ref document: EP

Kind code of ref document: A1