WO2024051512A1 - 基于反应曲线的长度检测待检测样本的前带现象的方法和装置 - Google Patents

基于反应曲线的长度检测待检测样本的前带现象的方法和装置 Download PDF

Info

Publication number
WO2024051512A1
WO2024051512A1 PCT/CN2023/115262 CN2023115262W WO2024051512A1 WO 2024051512 A1 WO2024051512 A1 WO 2024051512A1 CN 2023115262 W CN2023115262 W CN 2023115262W WO 2024051512 A1 WO2024051512 A1 WO 2024051512A1
Authority
WO
WIPO (PCT)
Prior art keywords
sample
length
detected
time point
reaction
Prior art date
Application number
PCT/CN2023/115262
Other languages
English (en)
French (fr)
Inventor
庄献民
潘旱霖
刘希
Original Assignee
北京九强生物技术股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京九强生物技术股份有限公司 filed Critical 北京九强生物技术股份有限公司
Publication of WO2024051512A1 publication Critical patent/WO2024051512A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/02Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring length, width, or thickness
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor

Definitions

  • the present invention relates to the field of detection technology, and in particular to a method and device for detecting the prozone phenomenon of a sample to be detected based on the length of a reaction curve.
  • the immunoturbidimetric analysis method is a conventional detection method used in fully automatic biochemistry instruments and fully automatic hemagglutination meters. However, during use of this method, excessive amounts of antigens or antibodies may be encountered in the tested object. The resulting situation is called It is prozone phenomenon, and such specimens are called samples with prozone phenomenon. When detecting samples with prozone phenomenon, the instrument will use some judgment methods to give prompts, allowing the operator to dilute the sample with prozone phenomenon before testing, so as to obtain the correct concentration value.
  • the prozone sample judgment method currently used by the instrument is based on the change in the slope (i.e., first derivative) of the reaction curve.
  • the time axis representing the abscissa two time intervals are selected, namely the unstable interval and the linear interval.
  • the ratio of the slope of the linear interval to the slope of the unstable interval of the band sample is greater than the ratio of the slope of the normal sample, so that the sample with prozone phenomenon can be distinguished, and the system prompts the operator to dilute the sample with prozone phenomenon. Gives correct sample concentration information.
  • the methods used by fully automatic biochemical instruments are different from the above methods in details, they are all based on comparing the slope changes of the front and rear sections of the reaction curve.
  • the purpose of the present invention is to provide a method and device for detecting the prozone phenomenon of a sample to be detected based on the length of the reaction curve, which can obtain a reaction curve in which the absorbance changes with time.
  • a reaction curve in which the absorbance changes with time By comparing the length of the reaction curve with the reference length, it is possible to It can simply and effectively determine whether there is prozone phenomenon in the sample, and it can be used in combination with other methods to predict prozone samples to improve the reliability of the detection results.
  • a method for detecting the prozone phenomenon of a sample to be detected based on the length of the reaction curve includes: obtaining the sample to be detected; processing the original signal reaction data of the sample to be detected to obtain the absorbance over time Changing reaction curve; select the preset start time point and the preset end time point on the response curve of absorbance changing with time, and calculate the change of absorbance with time between the preset start time point and the preset end time point.
  • the length of the reaction curve ; compare the calculated length with the reference length. When the calculated length is greater than the reference length, it is determined that the prozone phenomenon exists in the sample to be detected.
  • the reference length is determined by using the length of the response curve of the normal sample's absorbance changing with time between the preset starting time point and the preset ending time point.
  • the reference length is determined by the following equation: Among them, L0 is the reference length, It is the average length of the response curves of the absorbance versus time of multiple normal samples between the preset start time point and the preset end time point, and C is the coefficient.
  • the original signal reaction data of the sample to be detected is the data of the transmitted light intensity changing with time collected by the optical detection system during the reaction process of the sample to be detected; the original signal reaction data of the sample to be detected is converted into the absorbance over time. The changing data is used to determine the response curve of the sample to be detected.
  • the method includes: when it is determined that prozone phenomenon exists in the sample to be detected, issuing a prompt.
  • a device for detecting the prozone phenomenon of a sample to be detected based on the length of a reaction curve which includes: an acquisition module configured to acquire the sample to be detected; a processing module configured to detect the sample to be detected The original signal reaction data of the detection sample is processed to obtain a reaction curve of absorbance changing with time; the calculation module is configured to select a preset starting time point and a preset ending time point on the reaction curve of absorbance changing with time, and calculate the preset starting time point and the preset ending time point.
  • a comparison module configured to compare the calculated length with a reference length, when the calculated length is greater than the reference length , determine the sample to be tested Prozone phenomenon exists.
  • the reference length is determined by using the length of the response curve of the normal sample's absorbance changing with time between the preset starting time point and the preset ending time point.
  • the reference length is determined by the following equation: Among them, L0 is the reference length, is the average length of the response curves of the absorbance versus time of multiple normal samples between the preset start time point and the preset end time point, and C is the coefficient.
  • the processing module is configured as follows: the original signal reaction data of the sample to be detected is the data of the transmitted light intensity changing with time collected by the optical detection system during the reaction process of the sample to be detected; the original signal of the sample to be detected is The reaction data is converted into absorbance versus time data to determine the reaction curve of the sample to be detected.
  • the device includes a prompt module configured to issue a prompt when it is determined that prozone phenomenon exists in the sample to be detected.
  • the present invention adopts the above technical solution, which has the following beneficial effects: it can obtain a reaction curve in which the absorbance of the sample to be detected changes with time. By comparing the length of the reaction curve with the reference length, it can simply and effectively determine whether there is a precursor in the sample. Banding phenomenon, combined with other methods of predicting prebanding samples, improves the reliability of detection results.
  • FIG. 1 is a flow chart illustrating a method for detecting prozone phenomenon of a sample to be detected based on the length of a reaction curve according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram illustrating actual measured data of a sample to be detected according to a method of detecting the prozone phenomenon of a sample to be detected based on the length of a reaction curve according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram illustrating actual measured data of a normal sample of a method for detecting prozone phenomenon of a sample to be detected based on the length of a reaction curve according to an embodiment of the present invention.
  • FIG. 4 is a block diagram illustrating a device for detecting the prozone phenomenon of a sample to be detected based on the length of a reaction curve according to an embodiment of the present invention.
  • FIG. 1 is a flow chart illustrating a method for detecting prozone phenomenon of a sample to be detected based on the length of a reaction curve according to an embodiment of the present invention.
  • the method for detecting the prozone phenomenon of the sample to be detected based on the length of the reaction curve according to the embodiment of the present invention includes: Step S100: Obtain the sample to be detected; Step S200: Perform the original signal reaction data of the sample to be detected.
  • Step S300 select a preset start time point and a preset end time point on the reaction curve of absorbance changing with time, and calculate the preset start time point and the preset end time point The length of the reaction curve of absorbance changing with time;
  • Step S400 Compare the calculated length with the reference length. When the calculated length is greater than the reference length, it is determined that the prozone phenomenon exists in the sample to be detected.
  • the sample to be detected is obtained.
  • Antigens that are components to be analyzed may be present in the sample to be detected according to the embodiment of the present invention.
  • the detection principle of using the immunological method to measure the concentration of the tested antigen in the sample can be that after the antigen binds to the specific antibody in the system, the particles increase, causing the turbidity of the system to increase, and the heterogeneous absorbance to increase.
  • the concentration of the antigen in the system, which is the component to be analyzed is derived from the Beer-Beer's law (which describes the direct proportional relationship between absorbance and concentration).
  • the sample to be detected is a high-concentration antigen sample with prozone phenomenon, although the actual antigen concentration in the sample is high, it is apparently judged to be absent or low concentration, so the antigen is not present or the antigen concentration measurement is generated. False negative results with low values.
  • step S200 the original signal response data of the sample to be detected is processed to obtain a response curve of absorbance changing with time.
  • the original signal reaction data of the sample to be detected is the time-varying data of the transmitted light intensity collected by the optical detection system during the reaction process of the sample to be detected.
  • an optical detection system is composed of a light source, a lens, a filter, and an optical fiber.
  • the light source system is located on one side of the analysis tool. The light emitted by the light source illuminates the analysis tool. There is a The sample to be tested is undergoing a reaction, and the light after passing through the analysis tool is irradiated on the receiver.
  • the signal acquisition circuit in the receiver converts the received light amount into the transmitted light intensity, so that the change of the transmitted light intensity with time can be collected. number data, thereby forming original signal response data.
  • the original signal reaction data of the sample to be detected is converted into data of absorbance changing with time, thereby determining the response curve of the sample to be detected changing with time.
  • Step S300 according to the embodiment of the present invention also utilizes this feature.
  • FIG. 2 is a schematic diagram illustrating actual measured data of a sample to be detected according to a method of detecting the prozone phenomenon of a sample to be detected based on the length of a reaction curve according to an embodiment of the present invention.
  • a preset start time point T and a preset end time point T' are selected on the reaction curve of absorbance changing with time.
  • the selected preset start time point T is 11s
  • the preset end time point T' is 27s. Since the physical shaking of the sample to be detected and the test reagent when mixing will cause drastic changes in the absorbance data within the initial time interval (for example, 0s to 10s), the data after a period of time (for example, 11s and later) is the real biochemical reaction. caused, therefore.
  • time interval is selected according to the embodiment of the present invention, it does not involve multiple factors such as the specific properties of the reaction curve, the components of the reagents, etc., as in the prior art, which selects two time intervals (i.e., the unstable interval and the linear interval). More simple and less prone to errors.
  • the length L of the time-varying response curve MM' is a function of the absorbance versus time response curve. Taking Figure 2 as an example, the length of MM' (ie, L) is 0.2182.
  • step S400 the calculated length L is compared with the reference length L0 Comparison is made. When the calculated length L is greater than the reference length L0, it is determined that the prozone phenomenon exists in the sample to be detected.
  • the reference length is determined using the length of the response curve of the normal sample's absorbance versus time between a preset starting time point and a preset ending time point.
  • the determination of the reference length L0 is described in detail.
  • the reference length is determined by the following equation:
  • K0 is the reference length
  • It is the average length of the response curves of the absorbance changes over time of multiple normal samples between the preset start time point and the preset end time point.
  • C is the coefficient, which can be determined based on multiple experiments.
  • FIG. 3 is a schematic diagram illustrating actual measured data of a normal sample of a method for detecting prozone phenomenon of a sample to be detected based on the length of a reaction curve according to an embodiment of the present invention.
  • the preset start time point is still selected as 11s, and the preset end time point is 27s.
  • the length NN' between the preset start time point and the preset end time point of the response curve of the normal sample's absorbance changing with time shown in Figure 3 is 0.0505.
  • Table 1 shows the lengths of the response curves of seven normal samples between the preset start time point and the preset end time point.
  • the present invention is not limited to this. More preferably, the average length of the response curves of 20 normal samples between the preset starting time point and the preset ending time point is taken as
  • C is a coefficient, and the value range of coefficient C can be between 0.8 and 1.2.
  • the reference length L0 can range from 0.0477 to 0.0715.
  • the calculated length L of the sample to be detected is 0.2182, and the value range of the reference length L0 is between 0.0477 and 0.0715. Since L>L0, it can be determined that there is Prozone phenomenon. According to subsequent testing, there is a prozone phenomenon in the sample to be tested, with a theoretical concentration of 9000mg/L and an actual measured concentration of 87.64mg/L.
  • the calculated length L of the sample to be detected is at the value of the reference length L0 Within the range, it can be determined that there is no prozone phenomenon in the sample to be detected.
  • a prompt is issued.
  • a device for detecting the prozone phenomenon of a sample to be detected based on the length of a reaction curve according to an embodiment of the present invention includes an acquisition module, a processing module, a calculation module and a comparison module.
  • the acquisition module can acquire the sample to be detected.
  • the processing module can process the original signal response data of the sample to be detected to obtain a response curve of absorbance changing with time.
  • the calculation module can select a preset start time point and a preset end time point on the response curve of absorbance changing with time, and calculate the response curve of absorbance changing with time between the preset starting time point and the preset end time point. length.
  • the comparison module can compare the calculated length with the reference length. When the calculated length is greater than the reference length, it is determined that the prozone phenomenon exists in the sample to be detected.
  • the device for detecting prozone phenomenon in a sample to be detected based on the length of a reaction curve according to an embodiment of the present invention may further include a prompt module, which may issue a prompt when it is determined that prozone phenomenon exists in the sample to be detected.
  • the processing module is configured such that the original signal reaction data of the sample to be detected is the data of the transmitted light intensity changing with time collected by the optical detection system during the reaction of the sample to be detected, and the original signal reaction data of the sample to be detected is converted into absorbance. The data changes over time to determine the response curve of the sample to be detected.
  • the reference length is determined using the length of the response curve of the normal sample's absorbance versus time between a preset starting time point and a preset ending time point.
  • the reference length is determined by the following equation: Among them, L0 is the reference length, It is the average length of the response curves of the absorbance versus time of multiple normal samples between the preset start time point and the preset end time point, and C is the coefficient.
  • a reaction curve in which the absorbance of the sample to be detected changes with time can be obtained.
  • the length of the reaction curve By comparing the length of the reaction curve with the reference length, it can be simply and effectively determined whether there is a prozone phenomenon in the sample, and compared with other predictions.
  • the combined use of proband sample methods improves the reliability of test results.

Landscapes

  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Urology & Nephrology (AREA)
  • Molecular Biology (AREA)
  • Hematology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Microbiology (AREA)
  • Cell Biology (AREA)
  • Biotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Plasma & Fusion (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Abstract

本发明涉及基于反应曲线的长度检测待检测样本的前带现象的方法和装置。一种基于反应曲线的长度检测待检测样本的前带现象的方法包括:获取待检测样本;对待检测样本的原始信号反应数据进行处理,得到吸光度随时间变化的反应曲线;在吸光度随时间变化的反应曲线上选取预设起始时间点和预设结束时间点,计算在预设起始时间点与预设结束时间点之间的吸光度随时间变化的反应曲线的长度;将计算出的长度与参考长度进行比较,当计算出的长度大于参考长度时,确定出待检测样本中存在前带现象。通过将反应曲线的长度与参考长度进行比较,可以简单、有效地确定样本中是否存在前带现象,与其它预测前带样本方法结合使用,提高了检测结果的可靠性。

Description

基于反应曲线的长度检测待检测样本的前带现象的方法和装置 技术领域
本发明涉及检测技术领域,尤其涉及一种基于反应曲线的长度检测待检测样本的前带现象的方法和装置。
背景技术
免疫比浊分析法是全自动生化仪及全自动血凝仪上使用的常规检测方法,但是该方法在使用过程中可能会碰到被测对象抗原或抗体过量的现象,由此产生的状况称为前带现象,此类标本称之为具有前带现象的样本。在检测具有前带现象的样本时,仪器将使用一些判断方法给出提示,使操作者将具有前带现象的样本做稀释处理后再进行检测,从而得到正确的浓度值。
目前仪器使用的前带标本判断方法以反应曲线的斜率(即,一阶导数)变化为基础,在表示横坐标的时间轴上,选取两个时间区间,即不稳定区间和线性区间,根据前带样本其线性区间斜率与不稳定区间斜率的比值大于正常样本斜率的比值,从而能够分辩出具有前带现象的样本,进而给出系统提示,操作者对具有前带现象的样本进行稀释处理,给出正确的样本浓度信息。全自动生化仪所使用的方法虽然在细节上与上述方法有所不同,但都是以比较反应曲线前后段斜率变化为基础的方法。然而,上述基于一阶导数分析的处理,依赖于时间区间的选取,而区间选取涉及到反应曲线具体性质,试剂的组分等多种因素,复杂且易发生错误。并且这种方法需要确定的参数较多,运算复杂。
上述对背景技术的陈述仅是为了方便对本发明技术方案(使用的技术手段、解决的技术问题以及产生的技术效果等方面)的深入理解,而不应当被视为承认或以任何形式暗示该消息构成已为本领域技术人员所公知的现有技术。
发明内容
本发明的目的是提供一种基于反应曲线的长度检测待检测样本的前带现象的方法和装置,其能够获得吸光度随时间变化的反应曲线,通过将反应曲线的长度与参考长度进行比较,可以简单、有效地确定样本中是否存在前带现象,与其它预测前带样本方法结合使用,提高了检测结果的可靠性。
根据本发明的实施方案,提供了一种基于反应曲线的长度检测待检测样本的前带现象的方法,其包括:获取待检测样本;对待检测样本的原始信号反应数据进行处理,得到吸光度随时间变化的反应曲线;在吸光度随时间变化的反应曲线上选取预设起始时间点和预设结束时间点,计算在预设起始时间点与预设结束时间点之间的吸光度随时间变化的反应曲线的长度;将计算出的长度与参考长度进行比较,当计算出的长度大于参考长度时,确定出待检测样本中存在前带现象。
进一步地,所述参考长度是利用正常样本的吸光度随时间变化的反应曲线在预设起始时间点与预设结束时间点之间的长度确定的。
进一步地,通过如下的等式来确定参考长度:其中,L0是参考长度,是多个正常样本的吸光度随时间变化的反应曲线在预设起始时间点与预设结束时间点之间的长度的平均值,C是系数。
进一步地,待检测样本的原始信号反应数据是在待检测样本的反应过程中利用光学检测系统采集到的透射光强度随时间变化的数据;将待检测样本的原始信号反应数据转换为吸光度随时间变化的数据,从而确定出待检测样本的反应曲线。
进一步地,所述方法包括:当确定出待检测样本中存在前带现象时,发出提示。
根据本发明的另一个实施方案,提供了一种基于反应曲线的长度检测待检测样本的前带现象的装置,其包括:获取模块,其配置为获取待检测样本;处理模块,其配置为对待检测样本的原始信号反应数据进行处理,得到吸光度随时间变化的反应曲线;计算模块,其配置为在吸光度随时间变化的反应曲线上选取预设起始时间点和预设结束时间点,计算预设起始时间点与预设结束时间点之间的吸光度随时间变化的反应曲线的长度;比较模块,其配置为将计算出的长度与参考长度进行比较,当计算出的长度大于参考长度时,确定出待检测样本 中存在前带现象。
进一步地,所述参考长度是利用正常样本的吸光度随时间变化的反应曲线在预设起始时间点与预设结束时间点之间的长度确定的。
进一步地,通过如下的等式来确定参考长度:其中,L0是参考长度,是多个正常样本的吸光度随时间变化的反应曲线的在预设起始时间点与预设结束时间点之间的长度的平均值,C是系数。
进一步地,所述处理模块配置为:待检测样本的原始信号反应数据是在待检测样本的反应过程中利用光学检测系统采集到的透射光强度随时间变化的数据;将待检测样本的原始信号反应数据转换为吸光度随时间变化的数据,从而确定出待检测样本的反应曲线。
进一步地,所述装置包括提示模块,其配置为当确定出待检测样本中存在前带现象时,发出提示。
本发明采取以上技术方案,其具有以下有益效果:能够获得待检测样本的吸光度随时间变化的反应曲线,通过将反应曲线的长度与参考长度进行比较,可以简单、有效地确定样本中是否存在前带现象,与其它预测前带样本方法结合使用,提高了检测结果的可靠性。
附图说明
下文将结合附图对本发明的示例性实施例进行更为详细的说明。为清楚起见,不同附图中相同的部件以相同标记示出。需要说明的是,附图仅起到示意作用,其并不必然按照比例绘制。在这些附图中:
图1是示出根据本发明的实施方案的基于反应曲线的长度检测待检测样本的前带现象的方法的流程图。
图2是示出根据本发明的实施方案的基于反应曲线的长度检测待检测样本的前带现象的方法的待检测样本的实际测得的数据的示意图。
图3是示出根据本发明的实施方案的基于反应曲线的长度检测待检测样本的前带现象的方法的正常样本的实际测得的数据的示意图。
图4是示出根据本发明的实施方案的基于反应曲线的长度检测待检测样本的前带现象的装置的框图。
具体实施方式
下面对本发明的实施方案作详细说明,本实施方案在以本发明技术方案为前提下进行实施,给出了详细的实施方式和具体的操作过程,但本发明的保护范围不限于下述的实施方案。
图1是示出根据本发明的实施方案的基于反应曲线的长度检测待检测样本的前带现象的方法的流程图。如图1所示,根据本发明的实施方案的基于反应曲线的长度检测待检测样本的前带现象的方法包括:步骤S100:获取待检测样本;步骤S200:对待检测样本的原始信号反应数据进行处理,得到吸光度随时间变化的反应曲线;步骤S300、在吸光度随时间变化的反应曲线上选取预设起始时间点和预设结束时间点,计算预设起始时间点与预设结束时间点之间的吸光度随时间变化的反应曲线的长度;步骤S400:将计算出的长度与参考长度进行比较,当计算出的长度大于参考长度时,确定出待检测样本中存在前带现象。
在步骤S100,获取待检测样本。根据本发明的实施方案的待检测样本中可以存在作为分析对象成分的抗原。作为示例,使用免疫方法测量样本中被测抗原浓度的检测原理可以是,当抗原与系统中特异性的抗体结合之后,颗粒增大使系统的浊度增加,异致吸光度增大,从而可以通过朗伯-比尔定律(其刻画吸光度与浓度之间的正比关系),推导系统中作为分析对象成分的抗原的浓度。
然而,根据本发明的实施方案的待检测样本中的抗原可能过量。在待检测样本为具有前带现象的高浓度抗原样本的情况下,虽然样本中的实际抗原浓度为高浓度但表观上被判断为不存在或低浓度,因此产生抗原不存在或抗原浓度测量值偏低的假阴性的结果。
在步骤S200,对待检测样本的原始信号反应数据进行处理,得到吸光度随时间变化的反应曲线。
具体地,待检测样本的原始信号反应数据是在待检测样本的反应过程中利用光学检测系统采集到的透射光强度随时间变化的数据。在一个示例性实施方案中,一种光学检测系统由光源、透镜、滤光片以及光纤构成,光源系统位于分析用具的一侧,光源所发出的光照射在分析用具上,分析用具内放置有正在进行反应的待检测样本,透过分析用具之后的光照射在接收器上,接收器内的信号采集电路将接收到的光量转换为透射光强,由此可以采集到透射光强度随时间变化的数 据,从而形成原始信号反应数据。
随后,将待检测样本的原始信号反应数据转换为吸光度随时间变化的数据,从而确定出待检测样本随时间变化的反应曲线。
当存在前带现象时,由于抗原过剩,抗原抗体之间存在更多的结合与解离过程,其在反应曲线上表现出其特殊性。具体表现为更多的波动,从而使整个反应曲线长度变大。根据本发明的实施方案的步骤S300也正是利用这一特征。
图2是示出根据本发明的实施方案的基于反应曲线的长度检测待检测样本的前带现象的方法的待检测样本的实际测得的数据的示意图。
在步骤S300,在吸光度随时间变化的反应曲线上选取预设起始时间点T和预设结束时间点T'。如图2所示,作为示例,选取的预设起始时间点T为11s,预设结束时间点T'为27s。由于待检测样本和测试试剂在混合时的物理晃动会造成初始时间区间内(例如,0s至10s)的吸光度数据变化剧烈,因此一段时间以后(例如,11s及以后)的数据才是真正生化反应引起的,因此。根据本发明的实施方案虽然选取了时间区间,但是没有像现有技术中选取两个时间区间(即不稳定区间和线性区间)那样涉及到反应曲线具体性质,试剂的组分等多种因素,更加简单和不易发生错误。
在吸光度随时间变化的反应曲线上选取了预设起始时间点T和预设结束时间点T'之后,计算在预设起始时间点T与预设结束时间点T'之间的吸光度随时间变化的反应曲线MM'的长度L。例如,可以根据公式来计算反应曲线MM'的长度L,y是吸光度随时间变化的反应曲线的函数。以图2为例,MM'的长度(即,L)为0.2182。
在步骤S300计算出预设起始时间点T与预设结束时间点T'之间的吸光度随时间变化的反应曲线的长度为L之后,在步骤S400,将计算出的长度L与参考长度L0进行比较,当计算出的长度L大于参考长度L0时,确定出待检测样本中存在前带现象。
根据本发明的实施方案,参考长度是利用正常样本的吸光度随时间变化的反应曲线在预设起始时间点与预设结束时间点之间的长度确定的。在下文中,对参考长度L0的确定进行详细描述。
根据本发明的实施方案,通过如下的等式来确定参考长度:
其中,K0是参考长度,是多个正常样本的吸光度随时间变化的反应曲线在预设起始时间点与预设结束时间点之间的长度的平均值,C是系数,可以根据多次试验确定。
图3是示出根据本发明的实施方案的基于反应曲线的长度检测待检测样本的前带现象的方法的正常样本的实际测得的数据的示意图。如图3所示,仍选取预设起始时间点为11s,预设结束时间点为27s。图3所示的正常样本的吸光度随时间变化的反应曲线的在预设起始时间点与预设结束时间点之间的长度NN'为0.0505。
表1示出了七个正常样本的反应曲线在预设起始时间点与预设结束时间点之间的长度。
表1
相应地, 但本发明不限于此,更优选地,将20个正常样本的反应曲线在预设起始时间点与预设结束时间点之间的长度的平均值作为
此外,C是系数,系数C的取值范围可以在0.8至1.2之间。
因此,根据参考长度L0的取值范围可以在0.0477至0.0715之间。
根据本发明的示例性实施方案,计算出的待检测样本的长度L=0.2182,参考长度L0的取值范围在0.0477至0.0715之间,由于L>L0,因此,可以确定出待检测样本中存在前带现象。根据后续检测,待检测样本中存在前带现象,理论浓度9000mg/L,实测浓度87.64mg/L。
相反地,如果计算出的待检测样本的长度L在参考长度L0的取值 范围内,则可以确定出待检测样本中不存在前带现象。
根据本发明的实施方案,当确定出待检测样本中存在前带现象时,发出提示。
图4是示出根据本发明的实施方案的基于反应曲线的长度检测待检测样本的前带现象的装置的框图。如图4所示,根据本发明的实施方案的基于反应曲线的长度检测待检测样本的前带现象的装置包括获取模块、处理模块、计算模块以及比较模块。获取模块可以获取待检测样本。处理模块可以对待检测样本的原始信号反应数据进行处理,得到吸光度随时间变化的反应曲线。计算模块可以在吸光度随时间变化的反应曲线上选取预设起始时间点和预设结束时间点,计算预设起始时间点与预设结束时间点之间的吸光度随时间变化的反应曲线的长度。比较模块可以将计算出的长度与参考长度进行比较,当计算出的长度大于参考长度时,确定出待检测样本中存在前带现象。根据本发明的实施方案的基于反应曲线的长度检测待检测样本的前带现象的装置可以进一步包括提示模块,提示模块可以在确定出待检测样本中存在前带现象时发出提示。
处理模块配置为待检测样本的原始信号反应数据是在待检测样本的反应过程中利用光学检测系统采集到的透射光强度随时间变化的数据,并且将待检测样本的原始信号反应数据转换为吸光度随时间变化的数据,从而确定出待检测样本的反应曲线。
根据本发明的实施方案,参考长度是利用正常样本的吸光度随时间变化的反应曲线在预设起始时间点与预设结束时间点之间的长度确定的。具体地,通过如下的等式来确定参考长度:其中,L0是参考长度,是多个正常样本的吸光度随时间变化的反应曲线在预设起始时间点与预设结束时间点之间的长度的平均值,C是系数。
根据本发明的实施方案的基于反应曲线的长度检测待检测样本的前带现象的方法和装置的效果如下。
根据本发明的实施方案,能够获得待检测样本的吸光度随时间变化的反应曲线,通过将反应曲线的长度与参考长度进行比较,可以简单、有效地确定样本中是否存在前带现象,与其它预测前带样本方法结合使用,提高了检测结果的可靠性。
本发明的各种实施方案并非所有可能组合的穷举性列表,而是旨在描述本发明的代表性方面,并且以各种实施方案描述的内容可以独立地或以两种或更多种的组合来应用。
以上示例性实施方案所呈现的描述仅用以说明本发明的技术方案,并不想要成为毫无遗漏的,也不想要把本发明限制为所描述的精确形式。显然,本领域的普通技术人员根据上述教导做出很多改变和变化都是可能的。选择示例性实施方式并进行描述是为了解释本发明的特定原理及其实际应用,从而使得本领域的其它技术人员便于理解、实现并利用本发明的各种示例性实施方式及其各种选择形式和修改形式。本发明的保护范围意在由所附权利要求书及其等效形式所限定。

Claims (10)

  1. 一种基于反应曲线的长度检测待检测样本的前带现象的方法,其特征在于,包括:
    获取待检测样本;
    对待检测样本的原始信号反应数据进行处理,得到吸光度随时间变化的反应曲线;
    在吸光度随时间变化的反应曲线上选取预设起始时间点和预设结束时间点,计算预设起始时间点与预设结束时间点之间的吸光度随时间变化的反应曲线的长度;
    将计算出的长度与参考长度进行比较,当计算出的长度大于参考长度时,确定出待检测样本中存在前带现象。
  2. 根据权利要求1所述的基于反应曲线的长度检测待检测样本的前带现象的方法,其特征在于,
    所述参考长度是利用正常样本的吸光度随时间变化的反应曲线在预设起始时间点与预设结束时间点之间的长度确定的。
  3. 根据权利要求1所述的基于反应曲线的长度检测待检测样本的前带现象的方法,其特征在于,通过如下的等式来确定参考长度:
    其中,L0是参考长度,是多个正常样本的吸光度随时间变化的反应曲线在预设起始时间点与预设结束时间点之间的长度的平均值,C是系数。
  4. 根据权利要求1所述的基于反应曲线的长度检测待检测样本的前带现象的方法,其特征在于,
    待检测样本的原始信号反应数据是在待检测样本的反应过程中利用光学检测系统采集到的透射光强度随时间变化的数据;
    将待检测样本的原始信号反应数据转换为吸光度随时间变化的数据,从而确定出待检测样本的反应曲线。
  5. 根据权利要求1所述的基于反应曲线的长度检测待检测样本的前带现象的方法,进一步包括:
    当确定出待检测样本中存在前带现象时,发出提示。
  6. 一种基于反应曲线的长度检测待检测样本的前带现象的装置,其特征在于,包括:
    获取模块,其配置为获取待检测样本;
    处理模块,其配置为对待检测样本的原始信号反应数据进行处理,得到吸光度随时间变化的反应曲线;
    计算模块,其配置为在吸光度随时间变化的反应曲线上选取预设起始时间点和预设结束时间点,计算预设起始时间点与预设结束时间点之间的吸光度随时间变化的反应曲线的长度;
    比较模块,其配置为将计算出的长度与参考长度进行比较,当计算出的长度大于参考长度时,确定出待检测样本中存在前带现象。
  7. 根据权利要求6所述的基于反应曲线的长度检测待检测样本的前带现象的装置,其特征在于,
    所述参考长度是利用正常样本的吸光度随时间变化的反应曲线在预设起始时间点与预设结束时间点之间的长度确定的。
  8. 根据权利要求6所述的基于反应曲线的长度检测待检测样本的前带现象的装置,其特征在于,通过如下的等式来确定参考长度:
    其中,L0是参考长度,是多个正常样本的吸光度随时间变化的反应曲线的在预设起始时间点与预设结束时间点之间的长度的平均值,C是系数。
  9. 根据权利要求6所述的基于反应曲线的长度检测待检测样本的前带现象的装置,其特征在于,所述处理模块配置为:
    待检测样本的原始信号反应数据是在待检测样本的反应过程中利用光学检测系统采集到的透射光强度随时间变化的数据;
    将待检测样本的原始信号反应数据转换为吸光度随时间变化的数据,从而确定出待检测样本的反应曲线。
  10. 根据权利要求6所述的基于反应曲线的长度检测待检测样本的前带现象的装置,其特征在于,进一步包括:
    提示模块,其配置为当确定出待检测样本中存在前带现象时,发出提示。
PCT/CN2023/115262 2022-09-06 2023-08-28 基于反应曲线的长度检测待检测样本的前带现象的方法和装置 WO2024051512A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211084406.3 2022-09-06
CN202211084406.3A CN117664882A (zh) 2022-09-06 2022-09-06 基于反应曲线的长度检测待检测样本的前带现象的方法和装置

Publications (1)

Publication Number Publication Date
WO2024051512A1 true WO2024051512A1 (zh) 2024-03-14

Family

ID=90066961

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/115262 WO2024051512A1 (zh) 2022-09-06 2023-08-28 基于反应曲线的长度检测待检测样本的前带现象的方法和装置

Country Status (2)

Country Link
CN (1) CN117664882A (zh)
WO (1) WO2024051512A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2790019A1 (de) * 2013-04-10 2014-10-15 Siemens Healthcare Diagnostics Products GmbH High Dose Hook Erkennung
CN110542660A (zh) * 2019-09-29 2019-12-06 迈克医疗电子有限公司 检测试样反应中前带效应的方法、装置以及检测系统
CN110542662A (zh) * 2019-09-29 2019-12-06 迈克医疗电子有限公司 检测试样反应中前带效应的方法、装置及光学检测系统
CN110567900A (zh) * 2019-09-29 2019-12-13 迈克医疗电子有限公司 试样反应中抗原过量的判断方法、装置及光学检测系统
WO2021042308A1 (zh) * 2019-09-04 2021-03-11 深圳迈瑞生物医疗电子股份有限公司 识别免疫比浊法中钩状效应的方法、装置及计算机可读介质

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2790019A1 (de) * 2013-04-10 2014-10-15 Siemens Healthcare Diagnostics Products GmbH High Dose Hook Erkennung
WO2021042308A1 (zh) * 2019-09-04 2021-03-11 深圳迈瑞生物医疗电子股份有限公司 识别免疫比浊法中钩状效应的方法、装置及计算机可读介质
CN110542660A (zh) * 2019-09-29 2019-12-06 迈克医疗电子有限公司 检测试样反应中前带效应的方法、装置以及检测系统
CN110542662A (zh) * 2019-09-29 2019-12-06 迈克医疗电子有限公司 检测试样反应中前带效应的方法、装置及光学检测系统
CN110567900A (zh) * 2019-09-29 2019-12-13 迈克医疗电子有限公司 试样反应中抗原过量的判断方法、装置及光学检测系统

Also Published As

Publication number Publication date
CN117664882A (zh) 2024-03-08

Similar Documents

Publication Publication Date Title
US4157871A (en) System for rate immunonephelometric analysis
JP4796265B2 (ja) 免疫測定方法及び免疫測定装置
CA2914659C (en) Method for the detection of the prozone effect of photometric assays
US8121365B2 (en) Method and system for determining an optimal dilution of a reagent
WO2021179622A1 (zh) 数字化等离子免疫吸附试剂盒及其制造和测试方法
CA1081497A (en) System for rate immunonephelometric analysis
CN110567900B (zh) 试样反应中抗原过量的判断方法、装置及光学检测系统
WO2024051512A1 (zh) 基于反应曲线的长度检测待检测样本的前带现象的方法和装置
WO2024046267A1 (zh) 基于反应曲线的曲率检测待检测样本的前带现象的方法和装置
US5019999A (en) Immunoanalysis method for discriminating between antigen excess and antibody excess conditions
JP2002506981A (ja) タンパクの測定方法および装置
WO1995006876A1 (fr) Procede et appareil pour immunodosage optique
WO2009020621A1 (en) Method and system for determining an optimal dilution of a reagent
CN115876995A (zh) 一种免疫荧光层析动力学检测方法及系统
CN110455760B (zh) 一种基于dmd的色散型afs光源散射干扰扣除方法
CN113484244A (zh) 一种基于免疫比浊法的凝血分析仪试剂定标方法
Park et al. Internal Quality Control Data of Urine Reagent Strip Tests and Derivation of Control Rules Based on Sigma Metrics
JP2024109033A (ja) 検出待ちサンプルのプロゾーン現象を検出するための定量化方法及び装置
JP6422414B2 (ja) 検体の比濁分析決定(nephelometricdetermination)を行う方法
CN117538271A (zh) 检测待检测样本的前带现象的方法和装置
JP2595267B2 (ja) 測光的評価を用いる物質の測定法
Casavant et al. Comparison of a semiautomated fluorescent immunoassay system and indirect immunofluorescence for detection of antinuclear antibodies in human serum
JPH03274462A (ja) 検体検査方法及び装置、並びに検体検査用試薬
JPS63247644A (ja) 免疫反応測定方法
TW202338350A (zh) 快速篩檢試紙中和抗體週期讀取量測方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23862208

Country of ref document: EP

Kind code of ref document: A1