WO2024051095A1 - Procédé de recyclage pour matériau d'électrode positive de batterie au sodium de prusse usagée, et utilisation - Google Patents

Procédé de recyclage pour matériau d'électrode positive de batterie au sodium de prusse usagée, et utilisation Download PDF

Info

Publication number
WO2024051095A1
WO2024051095A1 PCT/CN2023/077130 CN2023077130W WO2024051095A1 WO 2024051095 A1 WO2024051095 A1 WO 2024051095A1 CN 2023077130 W CN2023077130 W CN 2023077130W WO 2024051095 A1 WO2024051095 A1 WO 2024051095A1
Authority
WO
WIPO (PCT)
Prior art keywords
sodium
prussian
positive electrode
transition metal
cathode material
Prior art date
Application number
PCT/CN2023/077130
Other languages
English (en)
Chinese (zh)
Inventor
谢英豪
李爱霞
余海军
李长东
Original Assignee
广东邦普循环科技有限公司
湖南邦普循环科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东邦普循环科技有限公司, 湖南邦普循环科技有限公司 filed Critical 广东邦普循环科技有限公司
Publication of WO2024051095A1 publication Critical patent/WO2024051095A1/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/54Reclaiming serviceable parts of waste accumulators
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01CAMMONIA; CYANOGEN; COMPOUNDS THEREOF
    • C01C3/00Cyanogen; Compounds thereof
    • C01C3/08Simple or complex cyanides of metals
    • C01C3/12Simple or complex iron cyanides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/054Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Definitions

  • Embodiments of the present application relate to the field of battery materials, such as a recycling method and application of waste Prussian sodium battery cathode materials.
  • Prussian sodium-like cathode material is a type of sodium-ion battery cathode material with an open frame structure. It is a metal-organic frame structure material. The metal and ferricyanide in its lattice are arranged according to Fe—C ⁇ N—M to form a three-dimensional structure. In the skeleton, Fe and metal M are arranged in a cube shape, and C ⁇ N roots are located on the edges of the cube. This type of material belongs to the cubic crystal system, with a particle size of about 20 to 50nm, and has three-dimensional sodium ion intercalation and extraction channels.
  • This type of material has the following advantages: (1) The rigid framework structure and open large pores and sites of the Prussian sodium-like cathode material can ensure that sodium ions with a larger ionic radius can be reversibly deintercalated during the charge and discharge process. It will not change the structure of the cathode material; (2) The Prussian sodium-like cathode material is based on the double-electron redox mechanism, and its theoretical capacity is as high as 170mAh/g; (3) The Prussian sodium-like cathode material has a simple synthesis process, low toxicity and low cost. Suitable for mass production.
  • the embodiments of the present application provide a method for recycling waste Prussian sodium battery cathode materials.
  • This method precipitates and separates the transition metals in the Prussian sodium cathode materials through acid dissolution and simultaneously destroys the original complexation of each group in the material. , so that [Fe(CN) 6 ] 4- stably exists in the liquid phase, and the liquid phase can further obtain pure sodium ferrocyanide through heating/crystallization or extraction.
  • This solution has simple operation steps and does not require the introduction of highly toxic or violently reactive reagents. It can simultaneously recover and separate transition metal ions, sodium ions and ferrocyanide in the Prussian sodium cathode material.
  • a method for recycling used Prussian sodium battery cathode materials including the following steps:
  • the transition metal elements in the Prussian sodium cathode material can be completely separated and processed through a specific organic acid reaction system, and at the same time, it can also ensure that [Fe(CN) 6 ] 4- will not occur in the material.
  • the cyanide breaks down and reacts with sodium ions to exist stably in the liquid phase.
  • This liquid phase can be obtained through subsequent treatment to pure sodium ferrocyanide, which can be further used to prepare new Prussian sodium cathode materials.
  • the recycling method described in this application has simple operation steps, low requirements for reaction reagents, conditions and equipment, and the purity and yield of the obtained materials are high, making it very suitable for industrial-scale treatment of used batteries.
  • the Prussian-based sodium cathode material includes manganese-based Prussian-based derivative sodium cathode material, nickel-based Prussian-based derivative sodium cathode material, cobalt-based Prussian-based derivative sodium cathode material, copper-based Prussian-based derivative sodium cathode material , at least one of the zinc-based Prussian derivative sodium cathode materials.
  • the organic acid is at least one of oxalic acid and acetic acid.
  • the transition metal precipitate is further prepared by calcination to prepare a transition metal oxide.
  • the transition metal precipitate is manganese metal precipitate, which is calcined at 220-280°C to prepare manganous oxide.
  • the transition metal element in the material is manganese
  • the resulting precipitate is manganese oxalate.
  • This material can be calcined at a specific temperature to directly generate manganous oxide. After further acid dissolution, it can be used to prepare Prussian sodium Synthetic manganese sources are used in cathode materials and other products.
  • Another object of this application is to provide a preparation method of Prussian sodium cathode material, which includes the following steps:
  • step (1) also includes removal of organic acids in the filtrate, and the removal of organic acids is performed by heating or extraction.
  • the filtrate obtained by the recycling method of waste Prussian sodium battery cathode materials described in this application only contains sodium ions, [Fe(CN) 6 ] 4- and organic acids, and organic acids can generally be heated It can be removed by volatilization (applicable to small molecular organic acids that can volatilize at 150°C) or extraction without leaving any residue.
  • the liquid phase can be directly dried by heating or crystallized to obtain high-purity sodium ferrocyanide powder.
  • This product can be further directly mixed with Transition metal salts are directly combined to prepare Prussian sodium cathode materials.
  • the transition metal salt is prepared from transition metal precipitation obtained by the recycling method of used Prussian sodium battery cathode materials described in this application.
  • the organic acid precipitate obtained through the recovery method described in this application can be simply oxidized and converted to obtain pure transition metal salts, and the Prussian sodium cathode material can be obtained by using this salt and the sodium ferrocyanide powder mentioned above. Realize the integrated process of recycling waste lithium-ion battery materials and implement it with high economical and cost-effectiveness.
  • the transition metal salt may also be a new salt.
  • the beneficial effect of the embodiments of the present application is that the embodiments of the present application provide a method for recycling waste Prussian sodium battery cathode materials.
  • This method precipitates and separates the transition metals in the Prussian sodium battery cathode materials through acid dissolution and simultaneously destroys the materials.
  • the original complexation of each group makes [Fe(CN) 6 ] 4- stably exist in the liquid phase.
  • the liquid phase can be heated/crystallized or extracted to further obtain pure sodium ferrocyanide.
  • This solution has simple operation steps and does not require the introduction of highly toxic or violently reactive reagents. It can simultaneously recover and separate transition metal ions, sodium ions and ferrocyanide in the Prussian sodium cathode material.
  • This application also provides a method for preparing a Prussian sodium cathode material.
  • This method uses the liquid phase obtained by the recovery method described in this application to further purify it to obtain sodium ferrocyanide. This material can be directly transferred to new materials or the results obtained in this application. Transition metal salts obtained by metal precipitation and refining are used to prepare Prussian sodium cathode materials.
  • the preparation method has low raw material cost and is cost-effective to implement.
  • Figure 1 is a scanning electron microscope image of the Prussian sodium cathode material obtained in Example 1 of the present application.
  • Figure 2 is the charge and discharge curve of the Prussian sodium cathode material obtained in Example 1 of the present application.
  • step (2) Calcining the manganese oxalate precipitate obtained in step (2) for 6 hours at 250°C in an oxygen atmosphere to obtain manganous oxide, and then dissolving the manganous oxide in 1 mol/L dilute hydrochloric acid to obtain a manganous chloride solution;
  • step (2) Calculate the manganese acetate precipitate obtained in step (2) for 6 hours at 250°C in an oxygen atmosphere to obtain manganous oxide, and then dissolve the manganous oxide in 1 mol/L dilute hydrochloric acid to obtain a manganous chloride solution;
  • step (2) Calcining the manganese oxalate precipitate obtained in step (2) for 6 hours at 250°C in an oxygen atmosphere to obtain manganous oxide, and then dissolving the manganous oxide in 1 mol/L dilute hydrochloric acid to obtain a manganous chloride solution;
  • Example 1 The only difference between this comparative example and Example 1 is that the molar ratio of Prussian sodium cathode material:oxalic acid in step (2) is 12:1.
  • Example 1 The only difference between this comparative example and Example 1 is that the Prussian sodium normal The electrode material was soaked in the oxalic acid solution for 48 hours. In step (3), the molar ratio of sodium ions and [Fe(CN) 6 ] 4- in the filtrate was measured to be 2.61:1, [Fe(CN) 6 ] 4- The recovery rate is low and cannot meet the recycling requirements.
  • Example 1 The only difference between this comparative example and Example 1 is that the temperature at which the Prussian sodium cathode material separated in step (2) was immersed in the oxalic acid solution was 100°C.
  • step (3) the sodium ions and [ The molar ratio of Fe(CN) 6 ] 4- is 2.92:1, and the recovery rate of [Fe(CN) 6 ] 4- is low and cannot meet the recovery requirements.
  • the products of each example are processed at a rate of 0.1C
  • the first discharge specific capacity reached 147 ⁇ 155mAh/g, which is equivalent to or even slightly better than the 146mAh/g of the product of Comparative Example 1; the capacity retention rate of the products of each embodiment can still reach 94 ⁇ 95% after 150 cycles at 1C rate, which is the same as the 146mAh/g of the product of Comparative Example 1.
  • the products in Comparative Example 1 are the same, indicating that the manganese-based Prussian sodium cathode material recovered and prepared by the recycling method described in this application has excellent electrochemical properties and can completely replace commercial similar products prepared with new materials in the existing market.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Toxicology (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Primary Cells (AREA)

Abstract

La présente demande concerne le domaine des matériaux de batterie. La demande porte sur un procédé de recyclage pour un matériau d'électrode positive de batterie au sodium de Prusse usagée, et une utilisation. Le procédé de recyclage selon la présente demande comprend les étapes suivantes consistant à : (1) démonter une batterie au sodium-ion usagée, séparer un matériau d'électrode positive au sodium de Prusse sur une feuille d'électrode positive d'un collecteur de courant, et effectuer un lavage et un tamisage ; et (2) tremper le matériau d'électrode positive au sodium de Prusse séparé dans une solution d'acide organique pendant 2-24 h à 20-60°C, et filtrer pour obtenir un précipité de métal de transition et un filtrat contenant des ions sodium et [Fe(CN)6]4-, le rapport molaire entre le matériau d'électrode positive au sodium de Prusse séparé et un acide organique contenu dans la solution d'acide organique étant de (7-10) : 1. Selon cette solution, les étapes de l'opération sont simples, il n'est pas nécessaire d'introduire un réactif présentant une toxicité élevée ou provoquant une réaction violente, et les ions de métal de transition, les ions sodium et le ferrocyanure contenus dans le matériau d'électrode positive au sodium de Prusse peuvent être simultanément recyclés et séparés. La présente demande concerne en outre un procédé de préparation d'un matériau d'électrode positive au sodium de Prusse à partir d'un produit obtenu par le procédé de recyclage.
PCT/CN2023/077130 2022-09-05 2023-02-20 Procédé de recyclage pour matériau d'électrode positive de batterie au sodium de prusse usagée, et utilisation WO2024051095A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211087961.1 2022-09-05
CN202211087961.1A CN115472943B (zh) 2022-09-05 2022-09-05 一种废旧普鲁士类钠电池正极材料的回收方法及应用

Publications (1)

Publication Number Publication Date
WO2024051095A1 true WO2024051095A1 (fr) 2024-03-14

Family

ID=84369201

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/077130 WO2024051095A1 (fr) 2022-09-05 2023-02-20 Procédé de recyclage pour matériau d'électrode positive de batterie au sodium de prusse usagée, et utilisation

Country Status (2)

Country Link
CN (1) CN115472943B (fr)
WO (1) WO2024051095A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115472943B (zh) * 2022-09-05 2023-12-12 广东邦普循环科技有限公司 一种废旧普鲁士类钠电池正极材料的回收方法及应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102352448A (zh) * 2011-08-05 2012-02-15 南昌大学 用普鲁士蓝胶体纳米粒子从低浓度稀土溶液中回收稀土的方法
JP2014064991A (ja) * 2012-09-26 2014-04-17 Sumitomo Osaka Cement Co Ltd セシウムを含む廃液の処理方法
US20160221920A1 (en) * 2013-09-23 2016-08-04 Basf Se Process for the recovery of components forming a metal-organic framework material
KR20180026903A (ko) * 2016-09-05 2018-03-14 한국원자력연구원 프러시안 블루의 회수 방법 및 이를 이용한 세슘의 제거 방법
WO2021168600A1 (fr) * 2020-02-24 2021-09-02 辽宁星空钠电电池有限公司 Matériau d'électrode positive de batterie au bleu de prusse présentant une faible teneur en humidité, son procédé de préparation et batterie au sodium-ion
CN114497793A (zh) * 2022-01-25 2022-05-13 宁波大学 一种机械弯曲混合气体张力实现回收电极活性材料快速剥离的方法
CN115472943A (zh) * 2022-09-05 2022-12-13 广东邦普循环科技有限公司 一种废旧普鲁士类钠电池正极材料的回收方法及应用

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101752302B1 (ko) * 2015-10-16 2017-07-03 지엠텍(주) 프러시안 블루 회수 방법 및 장치
CN107364875A (zh) * 2017-06-22 2017-11-21 全球能源互联网研究院 一种制备普鲁士蓝正极材料的方法及钠离子电池
CN107699692A (zh) * 2017-09-18 2018-02-16 北京理工大学 一种回收及再生废旧锂离子电池正极材料的方法
CN110474042A (zh) * 2018-05-11 2019-11-19 中国科学院物理研究所 一种新型普鲁士蓝类钠电池正极材料及其用途
CN114229875B (zh) * 2021-10-26 2024-05-31 广东邦普循环科技有限公司 废旧钠离子电池综合回收方法
CN115000561A (zh) * 2022-06-28 2022-09-02 上海恩捷新材料科技有限公司 一种钠离子电池正极材料的回收利用方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102352448A (zh) * 2011-08-05 2012-02-15 南昌大学 用普鲁士蓝胶体纳米粒子从低浓度稀土溶液中回收稀土的方法
JP2014064991A (ja) * 2012-09-26 2014-04-17 Sumitomo Osaka Cement Co Ltd セシウムを含む廃液の処理方法
US20160221920A1 (en) * 2013-09-23 2016-08-04 Basf Se Process for the recovery of components forming a metal-organic framework material
KR20180026903A (ko) * 2016-09-05 2018-03-14 한국원자력연구원 프러시안 블루의 회수 방법 및 이를 이용한 세슘의 제거 방법
WO2021168600A1 (fr) * 2020-02-24 2021-09-02 辽宁星空钠电电池有限公司 Matériau d'électrode positive de batterie au bleu de prusse présentant une faible teneur en humidité, son procédé de préparation et batterie au sodium-ion
CN114497793A (zh) * 2022-01-25 2022-05-13 宁波大学 一种机械弯曲混合气体张力实现回收电极活性材料快速剥离的方法
CN115472943A (zh) * 2022-09-05 2022-12-13 广东邦普循环科技有限公司 一种废旧普鲁士类钠电池正极材料的回收方法及应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CHEM, SHOUCHUN: "IMPORTANT INORGANIC CHEMICAL REACTIONS), EDITION 3", 30 April 1994, article "[121]CH3COOH", XP009555139 *

Also Published As

Publication number Publication date
CN115472943B (zh) 2023-12-12
CN115472943A (zh) 2022-12-13

Similar Documents

Publication Publication Date Title
JP4916094B2 (ja) リチウムイオン二次電池正極材料用前駆体とその製造方法並びにそれを用いた正極材料の製造方法
CN109999750B (zh) 一种锆酸锂包覆锰系锂离子筛及其制备和应用
EP4269336A1 (fr) Méthode de recyclage de déchets de lithium fer phosphate et utilisation associée
CN108432031A (zh) 废锂离子电池中包含的LiCoO2的酸溶解方法
CN111048862B (zh) 一种高效回收锂离子电池正负极材料为超级电容器电极材料的方法
WO2023155539A1 (fr) Procédé de préparation d'un matériau de phosphate de ferrovanadium sodique et son application
WO2024051095A1 (fr) Procédé de recyclage pour matériau d'électrode positive de batterie au sodium de prusse usagée, et utilisation
CN110013822A (zh) 一种废旧锂离子电池回收并联产锂吸附剂的方法
WO2015027826A1 (fr) Matériau d'électrode positive pour batterie au lithium-ion et son procédé de préparation
CN108987749A (zh) 由磷矿制备磷酸铁的方法、磷酸锰铁锂及磷酸铁锂正极材料的制备方法
CN105695751A (zh) 一种电解锰阳极泥的净化工艺
WO2023024593A1 (fr) Procédé de récupération des déchets mixtes de manganate de lithium-nickel-cobalt et de phosphate de lithium-fer
CN114644327A (zh) 一种磷酸铁的制备方法及磷酸铁的应用
KR101536054B1 (ko) 전기화학법을 이용하여 간수부터 리튬을 회수하는 방법
CN111403842B (zh) 废旧锂电池正极材料的回收方法和球形氧化镍材料及应用
CN115472948A (zh) 一种利用废旧锰酸锂再生钠电正极材料的方法
WO2024060505A1 (fr) Procédé de récupération de matériau d'électrode positive de prusse et matériau d'électrode positive blanche de prusse à base de manganèse ainsi préparé
CN110137460A (zh) 一种锂/钠/钾离子电池用中空v3s4@c纳米管负极材料的制备方法
CN109231182A (zh) 由磷矿制备磷酸二氢铵的方法、磷酸锰铁锂及磷酸铁锂正极材料的制备方法
CN108529666A (zh) 由无机钛源制备钛酸锂的方法、产品及应用
CN103221557B (zh) 含镍酸性溶液的制造方法
CN116281917B (zh) 电池级无水磷酸铁及其制备方法、应用、磷酸铁锂的制备方法
CN116845408A (zh) 利用水基低共熔溶剂回收废弃钴酸锂电池正极材料的方法
CN116553502A (zh) 一种有效回收废旧磷酸铁锂电池正极材料的方法
Ma et al. Antisolvent crystallization from deep eutectic solvent leachates of LiNi1/3Mn1/3Co1/3O2 for recycling and direct synthesis of battery cathodes

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23861803

Country of ref document: EP

Kind code of ref document: A1