WO2023155539A1 - Procédé de préparation d'un matériau de phosphate de ferrovanadium sodique et son application - Google Patents

Procédé de préparation d'un matériau de phosphate de ferrovanadium sodique et son application Download PDF

Info

Publication number
WO2023155539A1
WO2023155539A1 PCT/CN2022/135815 CN2022135815W WO2023155539A1 WO 2023155539 A1 WO2023155539 A1 WO 2023155539A1 CN 2022135815 W CN2022135815 W CN 2022135815W WO 2023155539 A1 WO2023155539 A1 WO 2023155539A1
Authority
WO
WIPO (PCT)
Prior art keywords
solution
sodium
preparation
acid
phosphate
Prior art date
Application number
PCT/CN2022/135815
Other languages
English (en)
Chinese (zh)
Inventor
余海军
谢英豪
李爱霞
张学梅
李长东
Original Assignee
广东邦普循环科技有限公司
湖南邦普循环科技有限公司
湖南邦普汽车循环有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东邦普循环科技有限公司, 湖南邦普循环科技有限公司, 湖南邦普汽车循环有限公司 filed Critical 广东邦普循环科技有限公司
Priority to GB2314799.4A priority Critical patent/GB2620048A/en
Publication of WO2023155539A1 publication Critical patent/WO2023155539A1/fr

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/54Reclaiming serviceable parts of waste accumulators
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/45Phosphates containing plural metal, or metal and ammonium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/054Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Definitions

  • the application belongs to the technical field of battery material recycling, and in particular relates to a preparation method and application of a sodium ferrovanadium phosphate material.
  • lithium iron phosphate battery is one of the important power batteries.
  • the amount of decommissioned batteries will also increase, especially after 4-6 years, a large number of lithium iron phosphate batteries will be decommissioned. If a large number of decommissioned power lithium iron phosphate batteries cannot be properly recycled and utilized, it will not only waste resources, but also cause environmental pollution and other problems. Therefore, how to better deal with decommissioned lithium iron phosphate batteries has become an urgent problem for the industry.
  • Lithium resources on the earth are very limited. With the increasing shortage of lithium resources, sodium, which is rich in reserves, has entered people's field of vision. Sodium and lithium belong to the same main group and have similar chemical properties, and the content of sodium in the earth's crust is much higher. So, Na-ion battery is a very promising secondary battery.
  • common cathode materials for sodium-ion batteries mainly include layered transition metal oxides, Prussian blue analogues, polyanionic compounds, and tunnel oxides.
  • This application proposes a method for preparing sodium vanadium iron phosphate material, which can use waste lithium iron phosphate batteries to prepare sodium vanadium iron phosphate materials, and use sodium vanadium iron phosphate materials as positive electrode materials for sodium ion batteries to prepare sodium ion batteries. excellent.
  • the first aspect of the present application provides a method for preparing sodium ferrovanadium phosphate material.
  • a preparation method of sodium ferrovanadium phosphate material comprising the following steps:
  • step (2) remove impurities in the leachate described in step (1), then add an oxidizing agent, and adjust the concentration of iron and phosphorus elements, and adjust the pH value to be less than 1.5 to obtain solution A;
  • step (3) The solution A obtained in step (2), the vanadium-containing solution and the lye are added into the acid solution in parallel to control the pH value of 1.8-2.2, then continue to add the lye, adjust the pH value to 2.0-2.5, and age Thin, solid-liquid separation, obtain precipitate and filtrate;
  • step (3) (4) calcining the precipitate obtained in step (3), then adding a sodium source, a phosphorus source and a carbon source, and mixing to obtain a mixture; then sintering the mixture to obtain the sodium ferrovanadium phosphate material.
  • ferrophosphorus solution is obtained by recycling waste lithium iron phosphate batteries, leaching with acid solution, and oxidizing. Then, the ferrophosphorus solution, the vanadium-containing solution and the sodium hydroxide solution are added into the acid solution in parallel to carry out the coprecipitation reaction.
  • the pH value of the reaction system is first made to be 1.8-2.2. Iron phosphate precipitation also produces iron vanadate precipitation; then further add lye to adjust the pH value to 2.0-2.5 to completely precipitate iron.
  • the step-by-step addition of alkali co-precipitation method not only makes the precipitation of vanadium and iron more thorough, no need to add vanadium source in the subsequent sintering, and avoids uneven mixing of vanadium and iron; moreover, co-precipitation forms iron phosphate/iron vanadate eutectic, iron and vanadium It can achieve atomic-level mixing and make the distribution of elements more uniform.
  • the ferric phosphate/iron vanadate eutectic formed by this co-precipitation is transformed into a more stable mixed crystal form of olivine structure and orthorhombic structure after calcination, which is conducive to the intercalation of sodium ions when sintered with a sodium source, and can improve the preparation of positive electrodes.
  • the specific capacity of the material is provided.
  • the acid solution is selected from at least one of sulfuric acid, hydrochloric acid or phosphoric acid.
  • the temperature of the reaction is 40-90°C, and the reaction time is 2-12 hours; more preferably, in step (1), the temperature of the reaction is 40-100°C , The reaction time is 2-8 hours.
  • the ratio of the volume of the acid solution to the mass of the battery powder is (1-8) mL:1g; further preferably, in step (1), the acid solution The ratio of the volume of the battery to the mass of the battery powder is (2-5)mL:1g.
  • the impurities are copper and aluminum.
  • the method for removing copper and aluminum is: adding iron to the leaching solution described in step (1), adjusting the pH to 4.0-4.7, and filtering to remove the filter residue.
  • the ratio of the molar amount of iron to the molar amount of copper ions in the leach solution is (1.0-3.0): 1; further preferably, the molar amount of iron to the molar amount of copper ions in the leach solution The ratio is (1.0-1.5):1.
  • the oxidant is selected from at least one of hydrogen peroxide, oxygen, chlorine, sodium chlorate or hypochlorous acid.
  • the amount of the oxidizing agent is not particularly required, as long as it can be sufficiently oxidized to obtain ferric ions.
  • the iron ion concentration in the solution A is 0.5-5.0mol/L, and the concentration of phosphorus element is 0.5-3.0mol/L; further preferably, in step (2), The iron ion concentration in the solution A is 1-3.0 mol/L, and the phosphorus element concentration is 0.5-2.0 mol/L.
  • the solution containing vanadium is a solution containing metavanadate or vanadate, such as ammonium metavanadate, sodium metavanadate, ammonium vanadate, sodium vanadate.
  • the concentration of the vanadium-containing solution is 0.1-3.0 mol/L.
  • the flow ratio of the solution A and the vanadium-containing solution is (0.5-3):1; further preferably, in the step (3), the solution A and the vanadium-containing solution The flow ratio of the vanadium-containing solution is (0.5-2):1.
  • the acid solution is selected from at least one of sulfuric acid, nitric acid or hydrochloric acid.
  • the lye is at least one of sodium hydroxide solution, potassium hydroxide solution or ammonia water.
  • the concentration of the sodium hydroxide solution is 0.1-2.0 mol/L.
  • the aging time is 1-5h; further preferably, in step (3), the aging time is 1-3h.
  • the filtrate is a lithium-containing solution
  • sodium carbonate can be added to prepare lithium carbonate to realize waste liquid recycling.
  • the calcination temperature is 400-800°C, and the calcination time is 1-10h; further preferably, in step (4), the calcination temperature is 500-800°C. 600°C, the calcination time is 3-6h.
  • the sodium source is selected from at least one of sodium carbonate, sodium acetate or sodium oxalate.
  • the phosphorus source is at least one selected from phosphoric acid, ammonium monohydrogen phosphate, ammonium dihydrogen phosphate, sodium monohydrogen phosphate or sodium dihydrogen phosphate.
  • the carbon source is at least one selected from glucose, citric acid, oxalic acid, lactose or galactose.
  • the molar ratio of the carbon source to the phosphorus element in the mixture is (1-3): 1; further preferably, in the step (4), the carbon source and the The molar ratio of phosphorus in the mixture is (1-2):1.
  • the sintering process is kept at 500-750° C. for 3-12 hours under an inert atmosphere; further preferably, the sintering process is kept at 550-650° C. under an inert atmosphere °C for 6-10 hours.
  • the second aspect of the present application provides the application of the preparation method of the above-mentioned sodium ferrovanadium phosphate material in the preparation of battery positive electrode materials.
  • the battery is a sodium ion battery.
  • This application recycles waste lithium iron phosphate batteries, adopts acid solution leaching to obtain ferrophosphorus, and then removes impurities (removing copper and aluminum), and mixes the solution, and carries out co-precipitation reaction with vanadium-containing solution and alkali solution to form iron phosphate / ferric vanadate eutectic, so that iron and vanadium can be mixed at the atomic level, so that the distribution of elements is more uniform, and there is no need to add vanadium source in subsequent sintering to avoid uneven mixing of ferrovanadium; in addition, ferric phosphate/iron vanadate eutectic After high-temperature calcination to remove water, it transforms into a more stable mixed crystal form of olivine structure and orthorhombic structure, which is more conducive to the intercalation of sodium ions during subsequent sintering with sodium source, and improves the specific capacity of the prepared positive electrode material.
  • This application not only recycles the waste lithium iron phosphate battery, but also prepares the positive electrode material of the sodium ion battery, so that the resources in the battery can be reused, which is beneficial to environmental protection; and in the reaction process, the waste liquid can be recycled, Further purification is used to produce lithium salt to alleviate the shortage of lithium resources.
  • Fig. 1 is the process flow chart among the embodiment 1.
  • Fig. 2 is the SEM figure of the sodium ferrovanadium phosphate material that embodiment 2 makes.
  • the raw materials, reagents or devices used in the following examples can be obtained from conventional commercial channels, or can be obtained by existing known methods.
  • a preparation method of sodium ferrovanadium phosphate material comprises the following steps:
  • a preparation method of sodium ferrovanadium phosphate material comprising the following steps:
  • the battery powder is collected, and the collected battery powder is soaked in a sulfuric acid solution with a mass concentration of 25% according to a liquid-solid ratio of 3mL:1g, and the reaction temperature is set at 50°C for 6 hours. ; After the reaction is finished, filter and separate the solid and liquid to obtain the leaching solution and leaching residue;
  • a preparation method of sodium ferrovanadium phosphate material comprising the following steps:
  • the battery powder is collected, and the collected battery powder is soaked in a sulfuric acid solution with a mass concentration of 20% according to a liquid-solid ratio of 5mL:1g, and the reaction temperature is set at 90°C for 2 hours. ; After the reaction is finished, filter and separate the solid and liquid to obtain the leaching solution and leaching residue;
  • (3) preparation concentration is that the sodium hydroxide solution of 0.1mol/L and the concentration are 1.5mol/L ammonium vanadate solution;
  • sulfuric acid that pH is 1.8 as bottom liquid to overflow bottom stirring paddle, start stirring,
  • solution A, ammonium vanadate solution, and sodium hydroxide solution are added into the reactor concurrently, the flow ratio of solution A and ammonium vanadate solution is 1:1, and the pH in the control reactor is 1.8-2.2, and the temperature of the reaction is 75°C;
  • a preparation method of sodium ferrovanadium phosphate material comprising the following steps:
  • the battery powder is collected, and the collected battery powder is soaked in a phosphoric acid solution with a mass concentration of 30% according to a liquid-solid ratio of 3mL:1g, and the reaction temperature is set at 90°C for 2 hours. ; After the reaction is finished, filter and separate the solid and liquid to obtain the leaching solution and leaching residue;
  • (3) preparation concentration is that the sodium hydroxide solution of 0.1mol/L and the concentration are 1.5mol/L sodium vanadate solution;
  • adding the hydrochloric acid that pH is 1.8 is to overflowing bottom stirring paddle as bottom liquid, start stirring, Then solution A, sodium vanadate solution, and sodium hydroxide solution are added into the reactor concurrently, the flow ratio of solution A and sodium vanadate solution is 1:2, and the pH in the control reactor is 1.8-2.2, and the temperature of the reaction is 65°C;
  • Comparative examples 1-4 all adopt solid phase method to prepare sodium vanadium phosphate material, respectively correspond to embodiment 1-4 successively, according to the sodium, iron, vanadium, phosphorus and carbon of the obtained sodium vanadium phosphate material in embodiment 1-4 respectively According to the molar ratio of the sources, ferric nitrate, vanadium pentoxide and the same sodium source, phosphorus source and carbon source are mixed and then calcined under the same conditions to obtain the sodium ferrovanadium phosphate material with the same chemical formula.
  • the sodium ferrovanadium phosphate materials prepared in Examples 1-4 and Comparative Examples 1-4 were used as positive electrode materials for sodium ion batteries, and batteries were assembled respectively.
  • the specific process is as follows: using N-methylpyrrolidone as a solvent, mix the positive electrode active material with acetylene black and PVDF evenly according to the mass ratio of 8:1:1, coat it on aluminum foil, and dry it by blowing at 60-80°C for 8 hours Afterwards, vacuum-dry at 100-120°C for 12 hours.
  • the battery was assembled in an argon-protected glove box, and a metal sodium sheet was used as the counter electrode negative electrode, and 1mol/L NaPF6 was used as the electrolyte to assemble a CR2032 button battery.
  • the first charge and discharge gram capacity of the prepared battery is greater than or equal to 120mAh g-1, and the capacity retention rate of the battery after 100 cycles It is greater than 95%, and its effect is obviously better than that of the battery prepared in the comparative example.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

La présente demande se rapporte au domaine technique de la récupération de matériau de batterie, et divulgue un procédé de préparation d'un matériau de phosphate de ferrovanadium sodique et une application de celui-ci. Le procédé de préparation comprend les étapes consistant à : broyer une batterie au lithium-fer-phosphate, ajouter une solution acide, la mettre en réaction et effectuer une séparation solide-liquide pour obtenir une solution de lixiviation et un résidu de lixiviation ; éliminer les impuretés de la solution de lixiviation, ajouter un agent oxydant, ajuster les concentrations de fer et d'éléments phosphorés et ajuster la valeur de pH pour qu'elle soit inférieure à 1,5 pour obtenir une solution A ; ajouter la solution A et une solution contenant du vanadium à la solution acide, réguler la valeur de pH pour qu'elle soit de 1,8 à 2,0, laisser reposer, puis ajouter une solution alcaline, ajuster de la valeur de pH pour qu'elle soit de 2,0 à 2,5, laisser reposer et effectuer une séparation solide-liquide pour obtenir un précipité et un filtrat ; calciner le précipité, puis ajouter une source de sodium, une source de phosphore et une source de carbone, mélanger et fritter pour obtenir un produit. Selon la présente demande, une batterie au lithium-fer-phosphate usagée est recyclée, et un matériau d'électrode positive de batterie au sodium-ion est préparé, ce qui permet de recycler des ressources dans une batterie, ce qui est avantageux pour la préservation de l'environnement.
PCT/CN2022/135815 2022-02-15 2022-12-01 Procédé de préparation d'un matériau de phosphate de ferrovanadium sodique et son application WO2023155539A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
GB2314799.4A GB2620048A (en) 2022-02-15 2022-12-01 Preparation method for sodium ferrovanadium phosphate material and application thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210139919.3 2022-02-15
CN202210139919.3A CN114597399A (zh) 2022-02-15 2022-02-15 一种磷酸钒铁钠材料的制备方法及其应用

Publications (1)

Publication Number Publication Date
WO2023155539A1 true WO2023155539A1 (fr) 2023-08-24

Family

ID=81804527

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/135815 WO2023155539A1 (fr) 2022-02-15 2022-12-01 Procédé de préparation d'un matériau de phosphate de ferrovanadium sodique et son application

Country Status (3)

Country Link
CN (1) CN114597399A (fr)
GB (1) GB2620048A (fr)
WO (1) WO2023155539A1 (fr)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114597399A (zh) * 2022-02-15 2022-06-07 广东邦普循环科技有限公司 一种磷酸钒铁钠材料的制备方法及其应用
CN115466848B (zh) * 2022-09-19 2024-02-20 西安建筑科技大学 一种富钒炉渣中多种元素提取方法及应用
CN115818613B (zh) * 2022-12-13 2023-10-03 湖北万润新能源科技股份有限公司 以废弃磷酸铁锂制备碳包覆的氟磷酸铁钠的方法及其应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140264185A1 (en) * 2013-03-14 2014-09-18 Korea Institute Of Science And Technology Recycling method of olivine-based cathode material for lithium secondary battery, cathode material fabricated therefrom, and cathode and lithium secondary battery including the same
CN113044821A (zh) * 2021-02-04 2021-06-29 湖南邦普循环科技有限公司 一种镍铁合金资源化回收的方法和应用
CN113443640A (zh) * 2020-03-25 2021-09-28 长沙矿冶研究院有限责任公司 一种利用磷酸铁锂电池正负极废粉制备电池级碳酸锂和电池级磷酸铁的方法
CN113735087A (zh) * 2021-08-25 2021-12-03 金川集团股份有限公司 一种废旧磷酸铁锂电池正极物料回收的方法
CN113942987A (zh) * 2021-10-25 2022-01-18 骆驼集团资源循环襄阳有限公司 一种制备磷酸铁前驱体及磷酸铁锂正极材料的方法
CN114597399A (zh) * 2022-02-15 2022-06-07 广东邦普循环科技有限公司 一种磷酸钒铁钠材料的制备方法及其应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140264185A1 (en) * 2013-03-14 2014-09-18 Korea Institute Of Science And Technology Recycling method of olivine-based cathode material for lithium secondary battery, cathode material fabricated therefrom, and cathode and lithium secondary battery including the same
CN113443640A (zh) * 2020-03-25 2021-09-28 长沙矿冶研究院有限责任公司 一种利用磷酸铁锂电池正负极废粉制备电池级碳酸锂和电池级磷酸铁的方法
CN113044821A (zh) * 2021-02-04 2021-06-29 湖南邦普循环科技有限公司 一种镍铁合金资源化回收的方法和应用
CN113735087A (zh) * 2021-08-25 2021-12-03 金川集团股份有限公司 一种废旧磷酸铁锂电池正极物料回收的方法
CN113942987A (zh) * 2021-10-25 2022-01-18 骆驼集团资源循环襄阳有限公司 一种制备磷酸铁前驱体及磷酸铁锂正极材料的方法
CN114597399A (zh) * 2022-02-15 2022-06-07 广东邦普循环科技有限公司 一种磷酸钒铁钠材料的制备方法及其应用

Also Published As

Publication number Publication date
GB202314799D0 (en) 2023-11-08
CN114597399A (zh) 2022-06-07
GB2620048A (en) 2023-12-27

Similar Documents

Publication Publication Date Title
WO2023155539A1 (fr) Procédé de préparation d'un matériau de phosphate de ferrovanadium sodique et son application
CN102311110B (zh) 一种以锂矿为锂源生产磷酸亚铁锂的成套循环制备方法
CN109837392A (zh) 锂离子电池正极材料废料的回收及再生方法
US20220242746A1 (en) Processes for preparing hydroxides and oxides of various metals and derivatives thereof
CN108923090A (zh) 一种从废旧磷酸铁锂电池回收制备碳包覆的磷酸锰铁锂正极材料的方法
WO2023155544A1 (fr) Procédé de préparation de matériau d'électrode positive polyanionique
CN109897964A (zh) 一种含锰材料回收及再生方法
CN102332581B (zh) 以锂矿为锂源生产磷酸亚铁锂的方法
CN105185993B (zh) 一种高纯磷酸铁及其掺杂金属元素的合成方法
WO2024055519A1 (fr) Méthode de préparation et utilisation de phosphate de fer-manganèse-lithium
CN114162877A (zh) 一种利用钴酸锂正极材料制备四氧化三钴的方法
CN109904548A (zh) 一种从废旧锂离子电池中合成富锂材料的方法
CN112342383B (zh) 三元废料中镍钴锰与锂的分离回收方法
WO2023236595A1 (fr) Méthode de préparation d'un matériau d'électrode positive à partir d'une batterie livopo4 usagée
WO2023207247A1 (fr) Particule d'oxyde de cobalt sphérique poreuse et procédé pour la préparer
CN116581270A (zh) 一种锰、钛原位掺杂含碳磷酸铁锂复合材料及其制备方法和应用
WO2024021233A1 (fr) Méthode de préparation de lithium-fer-phosphate au moyen d'une récupération complète d'eaux usées contenant du lithium et son utilisation
WO2023071412A1 (fr) Matériau d'électrode positive de batterie au sodium-ion, son procédé de préparation et son utilisation
CN115020698B (zh) 一种改性钴酸锂正极材料及其制备方法与锂离子电池
CN115784188A (zh) 回收制备电池级磷酸铁的方法
WO2023060992A1 (fr) Procédé de synthèse d'un matériau d'électrode positive de haute sécurité par recyclage de matériaux d'électrode positive à électrode positive, et application
CN115472948A (zh) 一种利用废旧锰酸锂再生钠电正极材料的方法
CN113381089B (zh) 一种回收磷酸亚铁制备纳米磷酸铁锂材料的方法
CN108773847A (zh) 一种回收废旧磷酸钒锂的方法
CN105098182B (zh) 一种用软锰矿氧化石煤钒矿制备锂电池复合前驱体的方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 202314799

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20221201

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22926843

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: P202390256

Country of ref document: ES