WO2024051038A1 - 热管理集成模块及电动汽车 - Google Patents

热管理集成模块及电动汽车 Download PDF

Info

Publication number
WO2024051038A1
WO2024051038A1 PCT/CN2022/142397 CN2022142397W WO2024051038A1 WO 2024051038 A1 WO2024051038 A1 WO 2024051038A1 CN 2022142397 W CN2022142397 W CN 2022142397W WO 2024051038 A1 WO2024051038 A1 WO 2024051038A1
Authority
WO
WIPO (PCT)
Prior art keywords
hole
heat exchange
water pump
groove
valve
Prior art date
Application number
PCT/CN2022/142397
Other languages
English (en)
French (fr)
Inventor
夏俊磊
张事业
袁世达
李琦
张力力
雷用广
Original Assignee
浙江凌昇动力科技有限公司
浙江零跑科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江凌昇动力科技有限公司, 浙江零跑科技股份有限公司 filed Critical 浙江凌昇动力科技有限公司
Publication of WO2024051038A1 publication Critical patent/WO2024051038A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00485Valves for air-conditioning devices, e.g. thermostatic valves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00271HVAC devices specially adapted for particular vehicle parts or components and being connected to the vehicle HVAC unit
    • B60H1/00278HVAC devices specially adapted for particular vehicle parts or components and being connected to the vehicle HVAC unit for the battery
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00321Heat exchangers for air-conditioning devices
    • B60H1/00342Heat exchangers for air-conditioning devices of the liquid-liquid type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00357Air-conditioning arrangements specially adapted for particular vehicles
    • B60H1/00385Air-conditioning arrangements specially adapted for particular vehicles for vehicles having an electrical drive, e.g. hybrid or fuel cell
    • B60H1/00392Air-conditioning arrangements specially adapted for particular vehicles for vehicles having an electrical drive, e.g. hybrid or fuel cell for electric vehicles having only electric drive means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00507Details, e.g. mounting arrangements, desaeration devices
    • B60H1/00557Details of ducts or cables
    • B60H1/00571Details of ducts or cables of liquid ducts, e.g. for coolant liquids or refrigerants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H1/3204Cooling devices using compression
    • B60H1/3229Cooling devices using compression characterised by constructional features, e.g. housings, mountings, conversion systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K11/00Arrangement in connection with cooling of propulsion units
    • B60K11/02Arrangement in connection with cooling of propulsion units with liquid cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00271HVAC devices specially adapted for particular vehicle parts or components and being connected to the vehicle HVAC unit
    • B60H2001/00307Component temperature regulation using a liquid flow

Definitions

  • This application relates to the technical field of new energy vehicles, and in particular to a thermal management integrated module and an electric vehicle.
  • the thermal management system of electric vehicles is much more complex. Specifically, the thermal management system of electric vehicles must fully consider the heat dissipation of components such as batteries and motors. Moreover, the thermal management system of electric vehicles involves different working conditions such as motor cooling, motor insulation, battery cooling, battery heating, etc., as well as various of the above. The coupling of working conditions has also led to a significant increase in the types and quantities of parts in the electric vehicle thermal management system, which in turn has led to a more complex structure of the electric vehicle thermal management system.
  • the components of the thermal management system of electric vehicles are generally assembled together in a non-integrated or low-integrated manner, which makes it difficult to disassemble and assemble the pipelines of the thermal management system of electric vehicles.
  • a thermal management integrated module and an electric vehicle are provided.
  • the thermal management integrated module includes an integrated flow channel plate, a liquid storage component, a water pump component, a heat exchange component and a control valve.
  • the integrated flow channel plate is provided with multiple circulation channels, a liquid storage component, a water pump component, and a heat exchange component.
  • control valves can be detachably connected to the integrated flow channel plate and connected through multiple flow channels to form multiple groups of heat exchange cycle open circuits.
  • the heat exchange cycle open circuits are used to connect the heat exchange channels of the external heat exchange structure to communicate with the external heat exchange structure.
  • the heat exchange channel of the thermal structure forms a heat exchange cycle.
  • the control valve is used to control the coolant to enter different heat exchange cycle open circuits.
  • the liquid storage component is used to store the coolant.
  • the water pump component is used to drive the coolant to flow in the heat exchange cycle open circuit.
  • the heat exchange component is used to exchange heat between the coolant and the heat exchange medium passing through the heat exchange component.
  • the integrated flow channel plate includes a main plate and a cover plate.
  • One end of the main plate is provided with a plurality of grooves.
  • the cover plate covers the notch of the groove and cooperates with the inner wall of the groove to form a flow channel.
  • the liquid storage assembly includes a housing and a plurality of partitions.
  • the housing is provided with a receiving cavity, and the partitions are provided in the receiving cavity to separate the receiving cavity into a plurality of liquid storage chambers.
  • the plurality of liquid storage chambers are The cavities are connected to different heat exchange cycle open circuits.
  • the liquid storage assembly includes a plurality of first cannulas, each first cannula corresponding to a liquid storage chamber, and the integrated flow channel plate includes a plurality of second cannulas, each second cannula corresponding to A circulation channel is connected, and the first cannula and the second cannula are arranged in one-to-one correspondence, and the first cannula and the corresponding second cannula are nested with each other, so that the liquid storage component can be detachably connected to the integrated flow channel plate , and each liquid storage chamber can be connected to the corresponding circulation channel through the first cannula and the second cannula.
  • a first dividing strip is provided in the first cannula to divide the first cannula into a first liquid inlet channel and a first liquid outlet channel
  • a second dividing strip is provided in the second cannula to separate the second liquid inlet channel.
  • the intubation tube is divided into a second liquid inlet channel and a second liquid outlet channel.
  • the first liquid inlet channel is connected to the second liquid inlet channel
  • the first liquid outlet channel is connected to the second liquid outlet channel.
  • the liquid storage chamber includes a warm air chamber, a motor chamber and a battery chamber
  • the water pump assembly includes a warm air water pump, a motor water pump and a battery water pump
  • the heat exchange assembly includes a battery cooler and a liquid cooling condenser
  • the heat exchange cycle The open circuit includes the first cycle open circuit, the second cycle open circuit and the third cycle open circuit.
  • the battery chamber integrating the flow channel plate, the control valve, the liquid storage component, the battery water pump and the battery cooler are connected to form a first circulation open circuit, and the first circulation open circuit is used to connect the heat exchange channel of the power battery.
  • the warm air chamber integrating the flow channel plate, control valve, and liquid storage assembly is connected with the warm air water pump to form a second circulation open circuit.
  • the second circulation open circuit is used to connect the electric heater and the warm air core of the passenger compartment.
  • the motor cavity integrating the flow channel plate, the control valve, the liquid storage component, the motor water pump and the liquid-cooled condenser are connected to form a third cycle open circuit, and the third cycle open circuit is used to connect the heat exchange channel of the motor component.
  • the integrated flow channel plate is provided with a first insertion hole, a second insertion hole and a third insertion hole.
  • the battery water pump is provided with a first plug corresponding to the first jack. The battery water pump is inserted into the first jack through the first plug, and the battery water pump is detachably connected to the integrated flow channel plate through fasteners.
  • the warm air water pump is provided with a second plug corresponding to the second jack. The warm air water pump is inserted into the second jack through the second plug, and the warm air water pump is detachably connected to the integrated flow channel plate through fasteners.
  • the motor water pump is provided with a third plug corresponding to the third jack. The motor water pump is inserted into the third jack through the third plug, and the motor water pump is detachably connected to the integrated flow channel plate through fasteners.
  • the control valve includes a valve body and a valve core.
  • the valve body is provided with a valve cavity.
  • One side of the valve body is provided with a plurality of communication holes that penetrate the side wall of the valve body and communicate with the valve cavity.
  • the valve core is rotatable. It is located in the valve cavity, and has a plurality of connecting grooves on the circumferential side of the valve core. When the valve core rotates at different preset angles relative to the valve body, the multiple communication holes can communicate with each other through one or more connecting grooves.
  • One or more multi-purpose grooves are also provided on the peripheral side of the valve core.
  • the edge of the multi-purpose groove can sealingly cooperate with the opening of the corresponding communication hole close to the side of the valve core.
  • the slot of the multi-purpose slot can be misaligned with the opening of the adjacent communication hole to connect the adjacent communication holes.
  • the communication hole includes a first through hole, a second through hole, a third through hole, a fourth through hole, a fifth through hole, a sixth through hole and a seventh through hole
  • the control valve includes the following Five communication modes: Mode five: When the valve core is in the first preset position, the first through hole, the second through hole, the third through hole, the fourth through hole, the fifth through hole, the sixth through hole and the third through hole.
  • the seven through holes are connected to each other;
  • Mode 1 When the valve core rotates at a first preset angle relative to the first preset position, the first through hole is connected to the second through hole through the connecting groove or multi-purpose groove, and the third through hole is connected through the connecting groove Or the multi-purpose groove is connected to the fifth through hole, the sixth through hole is connected to the seventh through hole through the connecting groove or the multi-purpose groove, and the fourth through hole is sealingly matched with the multi-purpose groove and is in a closed state;
  • Mode 2 When the valve core is relative to the first preset When the position is rotated within the second preset angle range, the first through hole is connected to the second through hole and the seventh through hole respectively through the connecting groove or the multi-purpose groove, the third through hole is connected to the fifth through hole through the connecting groove or the multi-purpose groove, and the third through hole is connected to the fifth through hole through the connecting groove or the multi-purpose groove.
  • the six-through hole is connected to the seventh through-hole through the connecting groove or the multi-purpose groove, and the fourth through-hole is sealingly matched with the multi-purpose groove and is in a closed state;
  • Mode 3 When the valve core rotates at a third preset angle relative to the first preset position, The first through hole is connected to the second through hole and the seventh through hole respectively through the connecting groove or the multi-purpose groove. The third through hole is connected to the fifth through hole through the connecting groove or the multi-purpose groove.
  • the sixth through hole is sealingly matched with the multi-purpose groove and is closed.
  • Mode 4 When the valve core rotates at a fourth preset angle relative to the first preset position, the first through hole communicates with the fourth through the connecting groove or the multi-purpose groove.
  • the third through hole is connected to the second through hole through the connecting groove or the multi-purpose groove, the sixth through hole is connected to the seventh through hole through the connecting groove or the multi-purpose groove, and the fifth through hole is sealingly matched with the multi-purpose groove and is in a closed state.
  • an assembly boss is provided on one side of the valve body, and a mounting plane is provided on an end of the assembly boss away from the valve body.
  • the communication hole is provided on the installation plane and extends toward the valve cavity to communicate with the valve cavity.
  • This application also provides an electric vehicle, which includes the thermal management integrated module described in any of the above embodiments.
  • FIG. 1 is a schematic structural diagram of a thermal management integrated module according to an embodiment of the present application.
  • FIG. 2 is an exploded view of a thermal management integrated module according to an embodiment of the present application.
  • FIG. 3 is a schematic diagram of pipeline connections of a thermal management integrated module according to an embodiment of the present application.
  • Figure 4 is an exploded view of an integrated flow channel plate according to an embodiment of the present application.
  • Figure 5 is a cross-sectional view of a liquid storage component according to an embodiment of the present application.
  • Figure 6 is a cross-sectional view of the first cannula according to an embodiment of the present application.
  • Figure 7 is a cross-sectional view of a second cannula according to an embodiment of the present application.
  • Figure 8 is a schematic structural diagram of a control valve according to an embodiment of the present application.
  • Figure 9 is an exploded view of a control valve according to an embodiment of the present application.
  • Figure 10 is a schematic structural diagram of a valve body according to an embodiment of the present application.
  • Figure 11 is a plan view of the outside of the valve core according to an embodiment of the present application.
  • Figure 12 is a schematic structural diagram of a valve core according to an embodiment of the present application.
  • Figure 13 is a second structural schematic diagram of a valve core according to an embodiment of the present application.
  • Figure 14 is a structural schematic diagram three of a valve core according to an embodiment provided by this application.
  • Figure 15 is a schematic structural diagram 4 of a valve core according to an embodiment of the present application.
  • Figure 16 is a schematic structural diagram of a valve core according to an embodiment of the present application.
  • Figure 17 is a schematic connection diagram of a heat exchange circulation loop according to an embodiment of the present application.
  • Figure 18 is a schematic structural diagram of an electric vehicle according to an embodiment of the present application.
  • first and second are used for descriptive purposes only and cannot be understood as indicating or implying relative importance or implicitly indicating the quantity of indicated technical features. Therefore, features defined as “first” and “second” may explicitly or implicitly include at least one of these features.
  • “plurality” means at least two, such as two, three, etc., unless otherwise expressly and specifically limited.
  • connection In this application, unless otherwise clearly stated and limited, the terms “installation”, “connection”, “connection”, “fixing” and other terms should be understood in a broad sense. For example, it can be a fixed connection or a detachable connection. , or integrated into one; it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium; it can be an internal connection between two elements or an interactive relationship between two elements, unless otherwise specified restrictions. For those of ordinary skill in the art, the specific meanings of the above terms in this application can be understood according to specific circumstances.
  • a first feature being “on” or “below” a second feature may mean that the first and second features are in direct contact, or the first and second features are in indirect contact through an intermediary. touch.
  • the terms “above”, “above” and “above” the first feature is above the second feature may mean that the first feature is directly above or diagonally above the second feature, or simply means that the first feature is higher in level than the second feature.
  • "Below”, “below” and “beneath” the first feature to the second feature may mean that the first feature is directly below or diagonally below the second feature, or simply means that the first feature has a smaller horizontal height than the second feature.
  • the thermal management system of electric vehicles is much more complex. Specifically, the thermal management system of electric vehicles must fully consider the heat dissipation of components such as batteries and motors. Moreover, the thermal management system of electric vehicles involves different working conditions such as motor cooling, motor insulation, battery cooling, battery heating, etc., as well as various of the above. The coupling of working conditions has also led to a significant increase in the types and quantities of parts in the electric vehicle thermal management system, which in turn has led to a more complex structure of the electric vehicle thermal management system.
  • the components of the thermal management system of electric vehicles are generally assembled together in a non-integrated or low-integrated manner, which makes it difficult to disassemble and assemble the thermal management system of electric vehicles.
  • the thermal management integrated module 1 includes an integrated The flow channel plate 10, the liquid storage component 20, the water pump component 30, the heat exchange component 40 and the control valve 60.
  • the integrated flow channel plate 10 is provided with a plurality of flow channels 17, the liquid storage component 20, the water pump component 30, the heat exchange component 40
  • the control valve 60 and the control valve 60 are detachably connected to the integrated flow channel plate 10 and are connected through a plurality of flow channels 17 to form multiple sets of heat exchange circulation open circuits 50 .
  • the heat exchange cycle open circuit 50 is used to connect the heat exchange channel 801 of the external heat exchange structure 800 to form a heat exchange cycle with the heat exchange channel 801 of the external heat exchange structure 800.
  • the control valve 60 is used to control the cooling liquid to enter different The heat exchange cycle open circuit 50, the liquid storage assembly 20 is used to store cooling liquid, the water pump assembly 30 is used to drive the cooling liquid to flow in the heat exchange cycle open circuit 50, and the heat exchange assembly 40 is used to make the cooling liquid passing through the heat exchange assembly 40 and the exchanger Thermal medium performs heat exchange.
  • the heat exchange medium includes but is not limited to heat carriers such as refrigerant and air.
  • the heat exchange channel 801 of the external heat exchange structure 800 includes but is not limited to: the heat exchange channel 802 of the power battery, the electric heater 803, the warm air core 804 of the passenger compartment, and the heat exchanger of the motor assembly. Hot Aisle 805.
  • the liquid storage component 20 , the water pump component 30 , the heat exchange component 40 and the control valve 60 are all connected to the integrated flow channel plate 10 , during the assembly process of the thermal management integrated module 1 , only the liquid storage component 20 and the water pump component 30 need to be assembled. , the heat exchange component 40 and the control valve 60 are installed one by one on the integrated flow channel plate 10, thereby realizing the installation of the entire thermal management integrated module 1. And because the liquid storage component 20, the water pump component 30, the heat exchange component 40 and the control valve 60 are all detachably connected on the integrated flow channel plate 10, the corresponding parts can be removed at specific positions of the integrated flow channel plate 10.
  • the integrated flow channel plate 10 is provided with a plurality of circulation channels 17, and the liquid storage component 20, the water pump component 30, the heat exchange component 40 and the control valve 60 form multiple sets of heat exchange circulation open circuits 50 through the multiple circulation channels 17, It can be understood that the circulation channels 17 in the thermal management integrated module 1 are all pre-processed. Therefore, such arrangement greatly reduces the difficulty of the connection layout of the liquid storage component 20, the water pump component 30, the heat exchange component 40 and the control valve 60. and assembly difficulty.
  • the thermal management integrated module 1 provided by the present application effectively solves the problem in the related art that the low integration level of the electric vehicle thermal management system results in difficulty in disassembly and assembly.
  • the integrated flow channel plate 10 includes a main plate 11 and a cover plate 12.
  • One end of the main plate 11 is provided with a plurality of grooves 11a, and the cover plate 12 covers the notches of the grooves 11a. And cooperate with the inner wall of the groove 11a to form a flow channel 17.
  • a plurality of grooves 11 a can be processed on the main board 11 by stamping, but is not limited to this.
  • the plurality of grooves 11 a can also be processed by integral injection molding or 3D printing.
  • the main plate 11 and the cover plate 12 are detachably connected to form the integrated flow channel plate 10.
  • the main plate 11 and the cover plate 12 can be screwed together with fasteners or snap-fastened.
  • main board 11 and the cover plate 12 may also be welded.
  • the liquid storage assembly 20 includes a housing 21 and a plurality of partitions 22.
  • the housing 21 is provided with a receiving cavity 21a, and the partitions 22 are disposed in the receiving cavity 21a.
  • the accommodation chamber 21a is divided into a plurality of liquid storage chambers 21b, and the plurality of liquid storage chambers 21b are respectively connected to different heat exchange circulation open circuits 50.
  • the housing 21 and the plurality of partitions 22 are an integrally formed structure.
  • the housing 21 and the partition 22 are injection molded structures, but are not limited to this.
  • the housing 21 and the partition 22 can also be a 3D printed structure, or integrated. Stamped and formed construction.
  • the liquid storage assembly 20 includes a plurality of first cannula 23 , each first cannula 23 is connected to a corresponding liquid storage chamber 21 b , and the integrated flow channel plate 10 includes a plurality of first cannula 23 .
  • Each second cannula 13 is connected to a circulation channel 17, and the first cannula 23 and the second cannula 13 are arranged in one-to-one correspondence.
  • the first cannula 23 and the corresponding second cannula are The tubes 13 are nested with each other so that the liquid storage assembly 20 can be detachably connected to the integrated flow channel plate 10 and each liquid storage chamber 21 b can communicate with the corresponding flow channel 17 through the first cannula 23 and the second cannula 13 .
  • a first dividing strip 231 is provided in the first intubation tube 23 to separate the first intubation tube 23 into a first liquid inlet channel 232 and a first liquid outlet channel 233.
  • a second dividing strip 131 is provided inside the cannula 13 to separate the second cannula 13 into a second liquid inlet channel 132 and a second liquid outlet channel 133.
  • the first liquid inlet channel 232 is correspondingly connected to the second liquid inlet channel 132.
  • the first liquid outlet channel 233 is correspondingly connected to the second liquid outlet channel 133 .
  • liquid storage assembly 20 can also be screwed to the integrated flow channel plate 10 through fasteners.
  • the liquid storage chamber 21b includes a warm air chamber 21c, a motor chamber 21d and a battery chamber 21e
  • the water pump assembly 30 includes a warm air water pump 31, a motor water pump 32 and a battery.
  • the water pump 33 , the heat exchange assembly 40 includes a battery cooler 41 and a liquid-cooled condenser 42
  • the heat exchange cycle open circuit 50 includes a first cycle open circuit 51 , a second cycle open circuit 52 and a third cycle open circuit 53 .
  • the integrated flow channel plate 10, the control valve 60, the battery chamber 21e of the liquid storage assembly 20, the battery water pump 33 and the battery cooler 41 are connected to form a first circulation open circuit 51.
  • the first circulation open circuit 51 is used for communication.
  • the thermal management integrated module 1 is provided with a first interface 71 and a second interface 72.
  • the coolant enters the control valve 60 through the first interface 71 of the thermal management integrated module 1.
  • the communication mode of the control valve 60 is adjusted so that The coolant enters the battery chamber 21e through the control valve 60, and then the coolant enters the battery water pump 33 from the battery chamber 21e, and is driven by the battery water pump 33 to enter the battery cooler 41 and exchange heat with the battery cooler 41 (usually It is the coolant that transfers heat to the refrigerant in the battery cooler 41).
  • the coolant flows out from the battery cooler 41 and enters the heat exchange channel 802 of the power battery through the second interface 72 of the thermal management integrated module 1, and interacts with the power
  • the battery completes heat exchange (usually the coolant absorbs the heat on the power battery), and finally, the coolant returns to the first interface 71 of the thermal management integrated module 1 .
  • the integrated flow channel plate 10, the control valve 60, the warm air cavity 21c of the liquid storage assembly 20 and the warm air water pump 31 are connected to form a second circulation open circuit 52.
  • the second circulation open circuit 52 is used to connect the electric heater 803 and the heating system of the passenger compartment. Wind core body 804.
  • the thermal management integrated module 1 is also provided with a third interface 73 and a fourth interface 74.
  • the coolant enters the control valve 60 through the third interface 73 of the thermal management integrated module 1.
  • the communication mode of the control valve 60 is adjusted to The coolant enters the warm air chamber 21c through the control valve 60, and then the coolant enters the warm air water pump 31 from the warm air chamber 21c, and passes through the fourth interface 74 of the thermal management integrated module 1 under the driving action of the warm air water pump 31.
  • the coolant enters the electric heater 803 and exchanges heat with the electric heater 803 (usually the coolant absorbs heat in the electric heater 803).
  • the coolant flows out of the electric heater 803 and enters the occupants.
  • the warm air core 804 of the cabin completes heat exchange between the coolant and the warm air core 804 of the passenger cabin (usually the warm air core takes away the heat of the coolant).
  • the coolant returns to the thermal management integrated module 1.
  • the integrated flow channel plate 10, the control valve 60, the motor cavity 21d of the liquid storage component 20, the motor water pump 32 and the liquid-cooled condenser 42 are connected to form a third circulation open circuit 53.
  • the third circulation open circuit 53 is used to connect the heat exchange of the motor components. Channel 805.
  • the thermal management integrated module 1 is also provided with a fifth interface 75 and a sixth interface 76.
  • the coolant enters the motor cavity 21d of the liquid storage assembly 20 through the fifth interface 75 of the thermal management integrated module 1. After that, the coolant flows from the motor to The cavity 21d enters the motor water pump 32 and enters the control valve 60 under the driving action of the motor water pump 32.
  • the communication mode of the control valve 60 is adjusted so that the cooling liquid enters the liquid cooling condenser 42 through the control valve 60 and interacts with the liquid cooling
  • the condenser 42 performs heat exchange (usually the coolant transfers heat to the refrigerant in the liquid-cooled condenser 42), and then the coolant enters the motor assembly from the liquid-cooled condenser 42 through the sixth interface 76 of the thermal management integrated module 1
  • the heat exchange channel 805 completes heat exchange with the motor component (usually the coolant absorbs the heat on the motor component), and finally, the coolant returns to the fifth interface 75 of the thermal management integrated module 1 .
  • the thermal management integrated module 1 is also provided with a seventh interface 77 and an eighth interface 78. After the coolant leaves the liquid-cooled condenser 42, it first enters the low-temperature radiator through the sixth interface 76, and then, The coolant enters the motor assembly through the seventh interface 77 and the eighth interface 78 in sequence.
  • the integrated flow channel plate 10 is provided with a first insertion hole 14 , a second insertion hole 15 and a third insertion hole 16 .
  • the battery water pump 33 is provided with a first plug 33a corresponding to the first jack 14. The battery water pump 33 is inserted into the first jack 14 through the first plug 33a, and the battery water pump 33 is detachably connected to the integrated flow channel through the fastener 34. Plate 10.
  • the warm air water pump 31 is provided with a second plug 31a corresponding to the second jack 15. The warm air water pump 31 is inserted into the second jack 15 through the second plug 31a, and the warm air water pump 31 is detachably connected to the second jack 15 through the fastener 34.
  • the motor water pump 32 is provided with a third plug 32a corresponding to the third jack 16.
  • the motor water pump 32 is inserted into the third jack 16 through the third plug 32a, and the motor water pump 32 is detachably connected to the integrated flow channel through the fastener 34.
  • Plate 10 is
  • control valve 60 is screwed to the integrated flow channel plate 10 through fasteners 34 .
  • the control valve 60 includes a valve body 100 and a valve core 200 .
  • the valve body 100 is provided with a valve cavity 110 , and a plurality of penetrating valve bodies 100 are provided on one side of the valve body 100 .
  • the side wall is connected to the communication hole 120 of the valve cavity 110.
  • the valve core 200 is rotatably disposed in the valve cavity 110, and a plurality of connecting grooves 210 are provided on the circumference of the valve core 200. When the valve core 200 rotates at different preset angles relative to the valve body 100, the plurality of communication holes 120 can communicate with each other through one or more connection grooves 210.
  • one or more multi-purpose grooves 220 are also provided on the peripheral side of the valve core 200.
  • the edge of the multi-purpose groove 220 can be close to the corresponding communication hole 120.
  • the opening on one side of the valve core 200 is sealingly matched to close the corresponding communication hole 120 , or the slot of the multi-purpose groove 220 can be misaligned with the opening of the adjacent communication hole 120 to communicate with the adjacent communication hole 120 .
  • misalignment means that a part of the multi-purpose groove 220 is connected to one of the communication holes 120, and another part of the multi-purpose groove 220 is connected to the adjacent communication hole 120.
  • the multi-purpose groove 220 can The communication between adjacent communication holes 120 is realized.
  • the slot edge of the multi-purpose groove 220 can sealingly cooperate with the opening on the side of the corresponding communication hole 120 close to the valve core 200 to close the corresponding communication hole 120, therefore, the multi-purpose groove 220 can achieve the closing of the corresponding communication hole 120, and also That is, the multi-purpose groove 220 can cooperate with the corresponding communication hole 120 so that the corresponding communication hole 120 is in a disconnected state.
  • the multi-purpose groove 220 can be used to close the communication hole 120 and can also be used to connect adjacent communication holes 120 . That is to say, the multi-purpose groove 220 can not only ensure that part of the communication holes 120 can be in a closed state under a specific communication mode, but also function as the connecting groove 210, which is equivalent to increasing the number of connecting grooves 210 on the peripheral side of the valve core 200. That is, the communication mode of the control valve 60 is increased.
  • the communication hole 120 includes a first through hole 121 , a second through hole 122 , a third through hole 123 , a fourth through hole 124 , and a fifth through hole. 125.
  • the first through hole 121 is connected to the first interface 71
  • the second through hole 122 is connected to the battery cavity 21e
  • the third through hole 123 is connected to the motor water pump 32
  • the fourth through hole 124 is connected to the third through hole 124.
  • the seventh interface 77 and the eighth interface 78, the fifth through hole 125 is connected to the liquid-cooled condenser 42
  • the sixth through hole 126 is connected to the third interface 73
  • the seventh through hole 127 is connected to the warm air chamber 21c.
  • the control valve 60 provided by this application includes the following five communication modes:
  • Mode 5 When the valve core 200 is in the first preset position, the first through hole 121 , the second through hole 122 , the third through hole 123 , the fourth through hole 124 , the fifth through hole 125 , and the sixth through hole 126 and the seventh through hole 127 are connected with each other.
  • Mode 1 When the valve core 200 rotates at a first preset angle relative to the first preset position, the first through hole 121 communicates with the second through hole 122 through the connecting groove 210 or the multi-purpose groove 220, and the third through hole 123 passes through the connecting groove. 210 or the multi-purpose groove 220 communicates with the fifth through hole 125, the sixth through hole 126 communicates with the seventh through hole 127 through the connecting groove 210 or the multi-purpose groove 220, and the fourth through hole 124 seals with the multi-purpose groove 220 and is in a closed state.
  • the cooling liquid in the first circulation open circuit 51 enters the control valve 60 from the first through hole 121 and leaves the control valve 60 through the second through hole 122.
  • the cooling liquid in the second circulation open circuit 52 The liquid enters the control valve 60 from the sixth through hole 126 and leaves the control valve 60 from the seventh through hole 127.
  • the coolant in the third circulation open circuit 53 enters the control valve 60 from the third through hole 123 and exits from the fifth through hole 123. 125 exits control valve 60.
  • Mode 2 When the valve core 200 rotates within the second preset angle range relative to the first preset position, the first through hole 121 is connected to the second through hole 122 and the seventh through hole 127 respectively through the connecting groove 210 or the multi-purpose groove 220.
  • the third through hole 123 is connected to the fifth through hole 125 through the connecting groove 210 or the multi-purpose groove 220.
  • the sixth through hole 126 is connected to the seventh through hole 127 through the connecting groove 210 or the multi-purpose groove 220.
  • the fourth through hole 124 is sealed with the multi-purpose groove 220. Fitted and closed.
  • Mode 3 When the valve core 200 rotates at a third preset angle relative to the first preset position, the first through hole 121 is connected to the second through hole 122 and the seventh through hole 127 respectively through the connecting groove 210 or the multi-purpose groove 220.
  • the three-through hole 123 is connected to the fifth through-hole 125 through the connecting groove 210 or the multi-purpose groove 220.
  • the sixth through-hole 126 is in a sealing fit with the multi-purpose slot 220 and is in a closed state.
  • the fourth through hole 124 is in a sealing fit with the multi-purpose slot 220 and is in a closed state. .
  • Mode 4 When the valve core 200 rotates at a fourth preset angle relative to the first preset position, the first through hole 121 communicates with the fourth through hole 124 through the connecting groove 210 or the multi-purpose groove 220, and the third through hole 123 passes through the connecting groove. 210 or the multi-purpose groove 220 communicates with the second through hole 122, the sixth through hole 126 communicates with the seventh through hole 127 through the connecting groove 210 or the multi-purpose groove 220, and the fifth through hole 125 seals with the multi-purpose groove 220 and is in a closed state.
  • the first preset angle is 67.5°
  • the second preset angle range is 75°-105°
  • the third preset angle is 112.5°
  • the fourth preset angle is 22.5°.
  • an assembly boss 300 is provided on one side of the valve body 100, a mounting plane 310 is provided on one end of the assembly boss 300 away from the valve body 100, and the communication hole 120 is provided on the installation plane 310. And extends toward the valve chamber 110 to communicate with the valve chamber 110 .
  • control valve 60 it is beneficial to connect the control valve 60 with multiple pipelines in the thermal management integrated module 1 .
  • the assembly boss 300 is provided with a cavity 320 , and a separation rib 330 is provided in the cavity 320 , and a plurality of separation ribs 330 surround the communication hole 120 .
  • the assembly boss 300 and the valve body 100 are integrally formed.
  • the assembly boss 300 and the valve body 100 can be integrally injection molded, integrally turned, or 3D printed. Here, Not listed one by one.
  • the communication hole 120 can also be directly provided on the side wall of the valve body 100 .
  • the mounting plane 310 has a first direction 710 that is the same as the axial direction of the valve body 100 and a second direction 720 that is perpendicular to the first direction 710 .
  • the fifth through hole 125 and the fourth through hole 124 are arranged sequentially along the second direction 720 of the mounting plane 310 , and are located at one end of the first direction 710 of the mounting plane 310 .
  • the sixth through hole 126 and the seventh through hole 127 , the first through hole 121 and the second through hole 122 are arranged sequentially along the second direction 720 of the mounting plane 310 , and are located at the other end of the first direction 710 of the mounting plane 310 .
  • the third through hole 123 , the fifth through hole 125 , the fourth through hole 124 , the sixth through hole 126 , the seventh through hole 127 and the second through hole 122 respectively extend along the lateral direction of the assembly boss 300 .
  • the lengths are equal, and the length of the first through hole 121 extending along the lateral direction of the mounting boss 300 is greater than the length of the other communication holes 120 extending along the lateral direction of the mounting boss 300 .
  • the transverse direction may be the second direction 720.
  • the first through hole 121 , the second through hole 122 , the third through hole 123 , the fourth through hole 124 , the fifth through hole 125 , the sixth through hole 126 and the seventh through hole 125 are provided.
  • the through holes 127 are all square holes.
  • the hole 127 may also be a circular hole, an annular hole or a through hole in other shapes, which are not listed here.
  • the valve core 200 has a columnar structure, and the valve core 200 is divided into a first segment 230 and a second segment 240 that are connected in sequence along the axial direction.
  • the connecting groove 210 includes The first connecting groove 211, the second connecting groove 212, the third connecting groove 213, the fourth connecting groove 214 and the fifth connecting groove 215 are separately arranged.
  • the multi-purpose slot 220 includes the first multiple slots 221 and the second multiple slots which are separately arranged. 222 and the third multi-slot 223.
  • the first multiple grooves 221 , the first connecting grooves 211 , the third connecting grooves 213 and the second multiple grooves 222 are distributed in the first segment 230 along the circumferential direction of the valve core 200
  • the second connecting grooves 212 and the fourth connecting grooves 214 , the third multiple grooves 223 and the fifth connecting grooves 215 are distributed in the second segment 240 along the circumferential direction of the valve core 200
  • the first connecting groove 211 and the second connecting groove 212 are connected with each other along the axial direction of the valve core 200
  • the third connecting groove 213 and the fourth connecting groove 214 are connected with each other along the axial direction of the valve core 200 .
  • the lengths of the first section 230 and the second section 240 along the axial direction of the valve core 200 are equal.
  • the lengths of the first segment 230 and the second segment 240 along the axial direction of the valve core 200 may also be unequal, which are not specifically limited here.
  • control valve 60 Specifically, the five communication modes of the control valve 60 are as follows:
  • Mode 5 When the valve core 200 is in the first preset position, the first through hole 121 is connected to the seventh through hole 127 through the second connecting groove 212, and the seventh through hole 127 is connected to the sixth through hole through the fifth connecting groove 215.
  • hole 126 the first through hole 121 is connected to the fourth through hole 124 through the second connecting groove 212 and the first connecting groove 211 in sequence, the first through hole 121 is connected to the second through hole 122 through the fourth connecting groove 214, the first through hole 121 communicates with the third through hole 123 through the fourth connecting groove 214 and the third connecting groove 213 in sequence, and the third through hole 123 communicates with the fifth through hole 125 through the second multi-slot 222 .
  • Mode 1 When the valve core 200 rotates at a first preset angle relative to the first preset position, the first through hole 121 communicates with the second through hole 122 through the second connecting groove 212, and the third through hole 123 passes through the third connecting groove. 213 communicates with the fifth through hole 125, the sixth through hole 126 communicates with the seventh through hole 127 through the fifth connecting groove 215, and the fourth through hole 124 seals with the first multi-slot 221 and is in a closed state.
  • Mode 2 When the valve core 200 rotates within the second preset angle range relative to the first preset position, the first through hole 121 communicates with the second through hole 122 through the second connecting groove 212, and the first through hole 121 passes through the fifth through hole.
  • the connecting groove 215 communicates with the seventh through hole 127.
  • the third through hole 123 communicates with the fifth through hole 125 through the third connecting groove 213.
  • the sixth through hole 126 communicates with the seventh through hole 127 through the fifth connecting groove 215.
  • the fourth through hole 124 is sealingly matched with the first multi-slot 221 or the second multi-slot 222 and is in a closed state;
  • Mode 3 When the valve core 200 rotates at a third preset angle relative to the first preset position, the first through hole 121 communicates with the second through hole 122 through the second connecting groove 212, and the first through hole 121 passes through the fifth connecting groove 212.
  • the groove 215 communicates with the seventh through hole 127, the third through hole 123 communicates with the fifth through hole 125 through the third connecting groove 213, the sixth through hole 126 seals with the third multi-slot 223 and is in a closed state, the fourth through hole 124 Sealingly cooperates with the second multi-slot 222 and is in a closed state;
  • Mode 4 When the valve core 200 rotates at a fourth preset angle relative to the first preset position, the first through hole 121 communicates with the fourth through hole 124 through the second connecting groove 212 and the first connecting groove 211 in sequence, and the third through hole 124 The hole 123 is connected to the second through hole 122 through the third connecting groove 213 and the fourth connecting groove 214 in sequence, the sixth through hole 126 is connected to the seventh through hole 127 through the fifth connecting groove 215, and the fifth through hole 125 is connected to the second multi-slot. 222 sealing fit and in closed position.
  • both the first through hole 121 and the sixth through hole 126 can communicate with the seventh through hole 127 through the fifth connecting groove 215.
  • the sixth through hole 126, The end of the seventh through hole 127 and the first through hole 121 close to the valve core 200 are sequentially distributed along the circumferential direction of the valve core 200, and the sixth through hole 126, the seventh through hole 127 and the first through hole 121 are along the valve core.
  • the total distribution length a in the circumferential direction of the valve core 200, the spacing b between the sixth through hole 126 and the first through hole 121 along the circumferential direction of the valve core 200, and the opening of the fifth connecting groove 215 on the circumferential side of the valve core 200 are along the circumference of the valve core 200.
  • the length c in the direction satisfies, b ⁇ c ⁇ a.
  • the total distribution length a of the sixth through hole 126 , the seventh through hole 127 and the first through hole 121 along the circumferential direction of the valve core 200 is The distribution length of the holes 121 along the circumferential direction of the valve core 200, plus the distribution length of the interval between the sixth through hole 126 and the seventh through hole 127 along the circumferential direction of the valve core 200, plus the seventh through hole 127 and The intervals between the first through holes 121 are along the circumferential distribution length of the valve core 200 .
  • the control valve 60 further includes a sealing gasket 400 , the sealing gasket 400 is disposed between the valve core 200 and the valve body 100 , and the sealing gasket 400 is provided with a corresponding communication hole 120 There are a plurality of cuts 410 , one end of the sealing gasket 400 along the thickness direction contacts and sealingly fits with the outer wall of the valve core 200 , and the other end of the sealing gasket 400 along the thickness direction is sealingly connected to the inner wall of the valve body 100 .
  • valve 60 when fluid (including but not limited to coolant) circulates between the valve body 100 and the valve core 200, it must pass through the cutout 410 on the sealing gasket 400, because one end of the sealing gasket 400 along the thickness direction is in contact with the valve core.
  • the surface of the valve body 200 is in contact and sealing fit, and the other end of the sealing gasket 400 along the thickness direction is sealingly connected to the inner wall of the valve body 100. Therefore, internal leakage of fluid in the connecting groove 210 or the multi-purpose groove 220 is avoided, thereby facilitating control.
  • Use of valve 60 when fluid (including but not limited to coolant) circulates between the valve body 100 and the valve core 200, it must pass through the cutout 410 on the sealing gasket 400, because one end of the sealing gasket 400 along the thickness direction is in contact with the valve core.
  • the surface of the valve body 200 is in contact and sealing fit, and the other end of the sealing gasket 400 along the thickness direction is sealingly connected to the inner wall of the valve body 100. Therefore, internal leakage of
  • the sealing gasket 400 is in a sheet shape, and the surface of the side of the sealing gasket 400 close to the valve core 200 is relatively smooth, which facilitates the rotation of the valve core 200 relative to the sealing gasket 400 .
  • the material of the sealing gasket 400 is usually rubber or silicone, and the entire sealing gasket 400 is formed in one piece.
  • the sealing gasket 400 is attached to the inner wall of the valve body 100 along the circumferential direction of the valve body 100. This helps to improve the assembly strength of the sealing gasket 400.
  • the shape of the cutout 410 is the same as the shape of the corresponding communicating hole 120 .
  • the control valve 60 further includes an actuator 500 .
  • the actuator 500 is provided at one end of the valve body 100 along the axial direction of the valve body 100 and is connected to the rotating shaft of the valve core 200 . , to drive the valve core 200 to rotate relative to the valve body 100 .
  • the actuator 500 is meshed with the rotating shaft of the valve core 200 through a gear structure.
  • one end of the valve body 100 close to the actuator 500 is provided with an assembly port 111 connected to the valve chamber 110, and the valve core 200 is installed in the valve chamber 110 through the assembly port 111.
  • the control valve 60 also includes an end cover 600, and the end cover 600 covers the assembly port 111.
  • the end of the valve core 200 away from the driver is provided with an anti-rotation block 250.
  • the valve body 100 is provided with an anti-rotation groove corresponding to the anti-rotation block 250.
  • the anti-rotation block 250 movablely cooperates with the anti-rotation groove. , to limit the rotation angle of the valve core 200 relative to the valve body 100 and prevent the valve core 200 from excessive rotation.
  • this application also provides an electric vehicle 2, which includes the thermal management integrated module 1 described in any of the above embodiments.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

热管理集成模块(1)及电动汽车(2)。热管理集成模块(1)包括集成流道板(10)、储液组件(20)、水泵组件(30)、换热组件(40)和控制阀(60),集成流道板(10)内设有多个流通通道(17),储液组件(20)、水泵组件(30)、换热组件(40)和控制阀(60)均可拆卸连接于集成流道板(10)并通过多个流通通道(17)连通以形成多组换热循环开路(50),换热循环开路(50)用于连通外部待换热结构(800)的换热通道(801)。

Description

热管理集成模块及电动汽车
相关申请
本申请要求2022年9月5日申请的,申请号为202211079024.1,发明名称为“热管理集成模块及电动汽车”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及新能源汽车技术领域,特别是涉及一种热管理集成模块及电动汽车。
背景技术
随着新能源电动汽车的应用越来越普遍,电动汽车热管理系统的研究越发受到重视。并且,相比于传统的燃油车的热管理系统,电动汽车的热管理系统要复杂的多。具体地,电动汽车的热管理系统要充分考虑电池和电机等零部件的散热,并且,电动汽车的热管理系统涉及电机散热、电机保温、电池散热、电池加热等不同的工况以及上述多种工况相耦合的情况,如此,也导致了电动汽车热管理系统的零件种类及数量大大增加,进而导致电动汽车热管理系统的结构更加复杂。
在相关技术中,电动汽车热管理系统的零部件一般采用非集成或者低集成的方式装配在一起,如此,会导致电动汽车热管理系统的管路拆装困难。
发明内容
根据本申请的各种实施例,提供一种热管理集成模块及电动汽车。
本申请提供的热管理集成模块包括集成流道板、储液组件、水泵组件、换热组件和控制阀,集成流道板内设有多个流通通道,储液组件、水泵组件、换热组件和控制阀均可拆卸连接于集成流道板并通过多个流通通道连通以形成多组换热循环开路,换热循环开路用于连通外部待换热结构的换热通道,以与外部待换热结构的换热通道构成换热循环回路,控制阀用于控制冷却液进入不同的换热循环开路,储液组件用于存储冷却液,水泵组件用于驱动冷却液在换热循环开路内流动,换热组件用于使经过换热组件的冷却液和换热介质进行热交换。
在其中一个实施例中,集成流道板包括主板和盖板,主板的一端设有多个凹槽,盖板盖设于凹槽的槽口处并与凹槽的内壁配合形成流通通道。
在其中一个实施例中,储液组件包括壳体和多个隔板,壳体设有容纳腔,隔板设于容纳腔内,以将容纳腔分隔成多个储液腔,多个储液腔分别连通不同的换热循环开路。
在其中一个实施例中,储液组件包括多个第一插管,每一第一插管对应连通一个储液腔,集成流道板包括多个第二插管,每个第二插管对应连通一个流通通道,并且,第一插管和第二插管一一对应设置,且第一插管和对应的第二插管相互套设,以使储液组件可拆卸连接于集成流道板,且使得每个储液腔能够通过第一插管和第二插管连通对应的流通通道。并且,第一插管内设有第一分隔条,以将第一插管分隔成第一进液通道和第一出液通道,第二插管内设有第二分隔条,以将第二插管分隔成第二进液通道和第二出液通道,第一进液通道对应连通第二进液通道,第一出液通道对应连通第二出液通道。
在其中一个实施例中,储液腔包括暖风腔、电机腔和电池腔,水泵组件包括暖风水泵、电机水泵和电池水泵,换热组件包括电池冷却器和液冷冷凝器,换热循环开路包括第一循环开路、第二循环开路和第三循环开路。集成流道板、控制阀、储液组件的电池腔、电池水泵和电池冷却器连通以形成第一循环开路,第一循环开路用于连通动力电池的换热通道。集成流道板、控制阀、储液组件的暖风腔和暖风水泵连通以形成第二循环开路,第二循环开路用于连通电加热器和乘员舱的暖风芯体。集成流道板、控制阀、储液组件的电机腔、电机水泵和液冷冷凝器连通以形成第三循环开路,第三循环开路用于连通电机组件的换热通道。
在其中一个实施例中,集成流道板设有第一插孔、第二插孔和第三插孔。电池水泵对应第一插孔设有第一插头,电池水泵通过第一插头插置于第一插孔内,且电池水泵通过紧固件可拆卸连接于集成流道板。暖风水泵对应第二插孔设有第二插头,暖风水泵通过第二插头插置于第二插孔内,且暖风水泵通过紧固件可拆卸连接于集成流道板。电机水泵对应第三插孔设有第三插头,电机水泵通过第三插头插置于 第三插孔内,且电机水泵通过紧固件可拆卸连接于集成流道板。
在其中一个实施例中,控制阀包括阀体和阀芯,阀体设有阀腔,阀体的一侧设有多个贯穿阀体侧壁并连通阀腔的连通孔,阀芯可转动地设于阀腔内,且阀芯的周侧设有多个连接槽,当阀芯相对阀体转动不同的预设角度时,多个连通孔能够通过一个或多个连接槽相互连通。阀芯的周侧还设有一个或多个多用槽,当阀芯相对阀体转动不同的预设角度时,多用槽的槽口边缘能够与对应的连通孔靠近阀芯一侧的开口密封配合,以关闭对应的连通孔,或者,多用槽的槽口能够与相邻连通孔的开口错位配合,以连通相邻的连通孔。
在其中一个实施例中,连通孔包括第一通孔、第二通孔、第三通孔、第四通孔、第五通孔、第六通孔和第七通孔,且控制阀包括以下五种连通模式:模式五:当阀芯处于第一预设位置时,第一通孔、第二通孔、第三通孔、第四通孔、第五通孔、第六通孔和第七通孔相互连通;模式一:当阀芯相对于第一预设位置旋转第一预设角度时,第一通孔通过连接槽或者多用槽连通第二通孔,第三通孔通过连接槽或者多用槽连通第五通孔,第六通孔通过连接槽或者多用槽连通第七通孔,第四通孔与多用槽密封配合并处于关闭状态;模式二:当阀芯相对于第一预设位置旋转第二预设角度范围时,第一通孔通过连接槽或者多用槽分别连通第二通孔和第七通孔,第三通孔通过连接槽或者多用槽连通第五通孔,第六通孔通过连接槽或者多用槽连通第七通孔,第四通孔与多用槽密封配合并处于关闭状态;模式三:当阀芯相对于第一预设位置旋转第三预设角度时,第一通孔通过连接槽或者多用槽分别连通第二通孔和第七通孔,第三通孔通过连接槽或者多用槽连通第五通孔,第六通孔与多用槽密封配合并处于关闭状态,第四通孔与多用槽密封配合并处于关闭状态;模式四:当阀芯相对于第一预设位置旋转第四预设角度时,第一通孔通过连接槽或者多用槽连通第四通孔,第三通孔通过连接槽或者多用槽连通第二通孔,第六通孔通过连接槽或者多用槽连通第七通孔,第五通孔与多用槽密封配合并处于关闭状态。
在其中一个实施例中,阀体的一侧设有装配凸台,装配凸台背离阀体的一端设有安装平面,连通孔设于安装平面,且朝向阀腔延伸至与阀腔连通。
本申请还提供一种电动汽车,该电动汽车包括以上任意一个实施例所述的热管理集成模块。
本申请的一个或多个实施例的细节在下面的附图和描述中提出。本申请的其它特征、目的和优点将从说明书、附图以及权利要求书变得明显。
附图说明
为了更好地描述和说明这里公开的那些发明的实施例和/或示例,可以参考一幅或多幅附图。用于描述附图的附加细节或示例不应当被认为是对所公开的发明、目前描述的实施例和/或示例以及目前理解的这些发明的最佳模式中的任何一者的范围的限制。
图1为本申请提供的一实施例的热管理集成模块的结构示意图。
图2为本申请提供的一实施例的热管理集成模块的分解图。
图3为本申请提供的一实施例的热管理集成模块的管路连接示意图。
图4为本申请提供的一实施例的集成流道板的分解图。
图5为本申请提供的一实施例的储液组件的剖视图。
图6为本申请提供的一实施例的第一插管的剖视图。
图7为本申请提供的一实施例的第二插管的剖视图。
图8为本申请提供的一实施例的控制阀的结构示意图。
图9为本申请提供的一实施例的控制阀的分解图。
图10为本申请提供的一实施例的阀体的结构示意图。
图11为本申请提供的一实施例的阀芯外侧的平面展开图。
图12为本申请提供的一实施例的阀芯的结构示意图一。
图13为本申请提供的一实施例的阀芯的结构示意图二。
图14为本申请提供的一实施例的阀芯的结构示意图三。
图15为本申请提供的一实施例的阀芯的结构示意图四。
图16为本申请提供的一实施例的阀芯的结构示意图五。
图17为本申请提供的一实施例的换热循环回路的连接示意图。
图18为本申请提供的一实施例的电动汽车的结构示意图。
附图标记:1、热管理集成模块;10、集成流道板;11、主板;11a、凹槽;12、盖板;13、第二插管;131、第二分隔条;132、第二进液通道;133、第二出液通道;14、第一插孔;15、第二插孔;16、第三插孔;17、流通通道;20、储液组件;21、壳体;21a、容纳腔;21b、储液腔;21c、暖风腔;21d、电机腔;21e、电池腔;22、隔板;23、第一插管;231、第一分隔条;232、第一进液通道;233、第一出液通道;30、水泵组件;31、暖风水泵;31a、第二插头;32、电机水泵;32a、第三插头;33、电池水泵;33a、第一插头;34、紧固件;40、换热组件;41、电池冷却器;42、液冷冷凝器;50、换热循环开路;51、第一循环开路;52、第二循环开路;53、第三循环开路;60、控制阀;71、第一接口;72、第二接口;73、第三接口;74、第四接口;75、第五接口;76、第六接口;77、第七接口;78、第八接口;100、阀体;110、阀腔;111、装配口;120、连通孔;121、第一通孔;122、第二通孔;123、第三通孔;124、第四通孔;125、第五通孔;126、第六通孔;127、第七通孔;200、阀芯;210、连接槽;211、第一连槽;212、第二连槽;213、第三连槽;214、第四连槽;215、第五连槽;220、多用槽;221、第一多槽;222、第二多槽;223、第三多槽;230、第一分段;240、第二分段;250、阻转块;300、装配凸台;310、安装平面;320、空腔;330、分隔筋条;400、密封垫片;410、切口;500、执行器;600、端盖;710、第一方向;720、第二方向;2、电动汽车;800、外部待换热结构;801、换热通道;802、动力电池的换热通道;803、电加热器;804、乘员舱的暖风芯体;805、电机组件的换热通道。
具体实施方式
在本申请的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本申请的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本申请中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
在本申请中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
需要说明的是,当元件被称为“固定于”或“设置于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。本申请所使用的术语“垂直的”、“水平的”、“上”、“下”、“左”、“右”以及类似的表述只是为了说明的目的,并不表示是唯一的实施方式。
除非另有定义,本申请所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。在本申请的说明书中所使用的术语只是为了描述具体的实施方式的目的,不是旨在于限制本申请。本申请所使用的术语“及/或”包括一个或多个相关的所列项目的任意的和所有的组合。
随着新能源电动汽车的应用越来越普遍,电动汽车热管理系统的研究越发受到重视。并且,相比于传统的燃油车的热管理系统,电动汽车的热管理系统要复杂的多。具体地,电动汽车的热管理系统要充 分考虑电池和电机等零部件的散热,并且,电动汽车的热管理系统涉及电机散热、电机保温、电池散热、电池加热等不同的工况以及上述多种工况相耦合的情况,如此,也导致了电动汽车热管理系统的零件种类及数量大大增加,进而导致电动汽车热管理系统的结构更加复杂。
在相关技术中,电动汽车热管理系统的零部件一般采用非集成或者低集成的方式装配在一起,如此,会导致电动汽车热管理系统拆装困难。
请参阅图1-图4,为了解决相关技术中的电动汽车热管理系统的集成度较低导致拆装困难的问题,本申请提供一种热管理集成模块1,该热管理集成模块1包括集成流道板10、储液组件20、水泵组件30、换热组件40和控制阀60,集成流道板10内设有多个流通通道17,储液组件20、水泵组件30、换热组件40和控制阀60均可拆卸连接于集成流道板10并通过多个流通通道17连通以形成多组换热循环开路50。换热循环开路50用于连通外部待换热结构800的换热通道801,以与外部待换热结构800的换热通道801构成换热循环回路,控制阀60用于控制冷却液进入不同的换热循环开路50,储液组件20用于存储冷却液,水泵组件30用于驱动冷却液在换热循环开路50内流动,换热组件40用于使经过换热组件40的冷却液和换热介质进行热交换。
需要说明的是,换热介质包括但不限于冷媒和空气等热量载体。
进一步地,需要说明的是,外部待换热结构800的换热通道801包括但不限于:动力电池的换热通道802、电加热器803和乘员舱的暖风芯体804以及电机组件的换热通道805。
由于储液组件20、水泵组件30、换热组件40和控制阀60均连接于集成流道板10,因此,热管理集成模块1在装配过程中,只需将储液组件20、水泵组件30、换热组件40和控制阀60一一安装于集成流道板10,便实现整个热管理集成模块1的安装。又因为储液组件20、水泵组件30、换热组件40和控制阀60在集成流道板10上均为可拆卸连接,因此,可在集成流道板10的特定位置拆下对应的零部件(包括储液组件20、水泵组件30、换热组件40和控制阀60),进而大大方便了热管理集成模块1的拆卸。进一步地,集成流道板10内设有多个流通通道17,且储液组件20、水泵组件30、换热组件40和控制阀60通过多个流通通道17形成多组换热循环开路50,可以理解的是,热管理集成模块1内的流通通道17均为预先加工完成,因此,如此设置,大大降低了储液组件20、水泵组件30、换热组件40和控制阀60的连接布局难度和装配难度。
综上可知,本申请提供的热管理集成模块1有效解决了相关技术中的电动汽车热管理系统的集成度较低导致拆装困难的问题。
在一实施例中,如图4所示,集成流道板10包括主板11和盖板12,主板11的一端设有多个凹槽11a,盖板12盖设于凹槽11a的槽口处并与凹槽11a的内壁配合形成流通通道17。
如此,可先在主板11的一端加工出多个凹槽11a,再将盖板12盖设于凹槽11a的槽口处,以装配形成集成流道板10。因此,如此设置,大大降低了流通通道17的成型难度,进而降低了集成流道板10的加工难度。
进一步地,可通过冲压成型的方式在主板11上加工出多个凹槽11a,但不限于此,还可以通过一体注塑成型或者3D打印成型的方式加工出多个凹槽11a。
在一实施例中,主板11和盖板12可拆卸连接形成集成流道板10,具体,主板11和盖板12可通过紧固件螺接,还可以通过卡扣卡接。
但不限于此,在其他实施例中,主板11和盖板12还可以是焊接。
在一实施例中,如图3和图5所示,储液组件20包括壳体21和多个隔板22,壳体21设有容纳腔21a,隔板22设于容纳腔21a内,以将容纳腔21a分隔成多个储液腔21b,多个储液腔21b分别连通不同的换热循环开路50。
如此,能够防止多个换热循环开路50内的冷却液发生串热,大大提高了热管理集成模块1的换热效率。
进一步地,在一实施例中,壳体21和多个隔板22为一体成型结构。
具体地,在一实施例中,壳体21和隔板22为注塑成型结构,但不限于此,在其他实施例中,壳体21和隔板22还可以是3D打印成型结构,或者是一体冲压成型结构。
进一步地,在一实施例中,如图2所示,储液组件20包括多个第一插管23,每一第一插管23对 应连通一个储液腔21b,集成流道板10包括多个第二插管13,每个第二插管13对应连通一个流通通道17,并且,第一插管23和第二插管13一一对应设置,第一插管23和对应的第二插管13相互套设,以使储液组件20可拆卸连接于集成流道板10,且使得每个储液腔21b能够通过第一插管23和第二插管13连通对应的流通通道17。
并且,如图6和图7所示,第一插管23内设有第一分隔条231,以将第一插管23分隔成第一进液通道232和第一出液通道233,第二插管13内设有第二分隔条131,以将第二插管13分隔成第二进液通道132和第二出液通道133,第一进液通道232对应连通第二进液通道132,第一出液通道233对应连通第二出液通道133。
如此,进一步提高了热管理集成模块1的结构紧凑程度。
但不限于此,在其他实施例中,储液组件20还可以与集成流道板10通过紧固件螺接。
进一步地,在一实施例中,如图2和图3所示,储液腔21b包括暖风腔21c、电机腔21d和电池腔21e,水泵组件30包括暖风水泵31、电机水泵32和电池水泵33,换热组件40包括电池冷却器41和液冷冷凝器42,换热循环开路50包括第一循环开路51、第二循环开路52和第三循环开路53。
需要说明的是,在图3中,相邻元件之间的箭头用于标识连通通道,而带有附图标记的箭头用于标识元件对应的附图标记。
如图17所示,集成流道板10、控制阀60、储液组件20的电池腔21e、电池水泵33和电池冷却器41连通以形成第一循环开路51,第一循环开路51用于连通动力电池的换热通道802。
具体地,热管理集成模块1设有第一接口71和第二接口72,冷却液通过热管理集成模块1的第一接口71进入控制阀60,之后,调节控制阀60的连通模式,以使冷却液通过控制阀60进入电池腔21e,再之后,冷却液从电池腔21e进入电池水泵33,并在电池水泵33的驱动作用下进入电池冷却器41并与电池冷却器41进行换热(通常是冷却液在电池冷却器41内将热量传递给冷媒),然后,冷却液从电池冷却器41流出并通过热管理集成模块1的第二接口72进入动力电池的换热通道802,并与动力电池完成热交换(通常是冷却液吸收动力电池上的热量),最后,冷却液回流至热管理集成模块1的第一接口71。集成流道板10、控制阀60、储液组件20的暖风腔21c和暖风水泵31连通以形成第二循环开路52,第二循环开路52用于连通电加热器803和乘员舱的暖风芯体804。
具体地,热管理集成模块1还设有第三接口73和第四接口74,冷却液通过热管理集成模块1的第三接口73进入控制阀60,之后,调节控制阀60的连通模式,以使冷却液通过控制阀60进入暖风腔21c,再之后,冷却液从暖风腔21c进入暖风水泵31,并在暖风水泵31的驱动作用下通过热管理集成模块1的第四接口74进入电加热器803,冷却液进入电加热器803并与电加热器803进行换热(通常是冷却液在电加热器803内吸收热量),然后,冷却液从电加热器803流出并进入乘员舱的暖风芯体804,冷却液与乘员舱的暖风芯体804完成热交换(通常是暖风芯体带走冷却液的热量),最后,冷却液回流至热管理集成模块1的第三接口73。
集成流道板10、控制阀60、储液组件20的电机腔21d、电机水泵32和液冷冷凝器42连通以形成第三循环开路53,第三循环开路53用于连通电机组件的换热通道805。
具体地,热管理集成模块1还设有第五接口75和第六接口76,冷却液通过热管理集成模块1的第五接口75进入储液组件20的电机腔21d,之后,冷却液从电机腔21d进入电机水泵32,并在电机水泵32的驱动作用下进入控制阀60,之后,调节控制阀60的连通模式,以使冷却液通过控制阀60进入液冷冷凝器42,并与液冷冷凝器42进行热交换(通常是冷却液在液冷冷凝器42内将热量传递给冷媒),再之后冷却液从液冷冷凝器42通过热管理集成模块1的第六接口76进入电机组件的换热通道805,并与电机组件完成热交换(通常是冷却液吸收电机组件上的热量),最后,冷却液回流至热管理集成模块1的第五接口75。
进一步地,在一实施例中,热管理集成模块1还设有第七接口77和第八接口78,冷却液离开液冷冷凝器42之后,先通过第六接口76进入低温散热器,然后,冷却液依次通过第七接口77和第八接口78进入电机组件。
在一实施例中,如图2所示,集成流道板10设有第一插孔14、第二插孔15和第三插孔16。电池水泵33对应第一插孔14设有第一插头33a,电池水泵33通过第一插头33a插置于第一插孔14内,且 电池水泵33通过紧固件34可拆卸连接于集成流道板10。暖风水泵31对应第二插孔15设有第二插头31a,暖风水泵31通过第二插头31a插置于第二插孔15内,且暖风水泵31通过紧固件34可拆卸连接于集成流道板10。电机水泵32对应第三插孔16设有第三插头32a,电机水泵32通过第三插头32a插置于第三插孔16内,且电机水泵32通过紧固件34可拆卸连接于集成流道板10。
与之对应地,控制阀60通过紧固件34螺接于集成流道板10。
在一实施例中,如图8-图16所示,控制阀60包括阀体100和阀芯200,阀体100设有阀腔110,阀体100的一侧设有多个贯穿阀体100侧壁并连通阀腔110的连通孔120,阀芯200可转动地设于阀腔110内,且阀芯200的周侧设有多个连接槽210。当阀芯200相对阀体100转动不同的预设角度时,多个连通孔120能够通过一个或多个连接槽210相互连通。并且,阀芯200的周侧还设有一个或多个多用槽220,当阀芯200相对阀体100转动不同的预设角度时,多用槽220的槽口边缘能够与对应的连通孔120靠近阀芯200一侧的开口密封配合,以关闭对应的连通孔120,或者,多用槽220的槽口能够与相邻连通孔120的开口错位配合,以连通相邻的连通孔120。
需要说明的是,错位配合指的是,多用槽220的一部分槽口与其中一个连通孔120连通,多用槽220的另一部分槽口与相邻的连通孔120连通,如此,多用槽220便可实现相邻连通孔120的连通。又因为多用槽220的槽口边缘能够与对应的连通孔120靠近阀芯200一侧的开口密封配合,以关闭对应的连通孔120,因此,多用槽220能够实现对应连通孔120的关闭,也即,多用槽220能够与对应连通孔120配合,使对应的连通孔120处于不连通的状态。综上可知,多用槽220既可用于连通孔120的关闭,也可用于相邻连通孔120的连通。也即,多用槽220既能保证特定连通模式下,部分连通孔120能够处于关闭状态,多用槽220还能充当连接槽210的作用,相当于增加了阀芯200周侧连接槽210的数量,也即,增加了控制阀60的连通模式。
具体地,在一实施例中,如图9-图16所示,连通孔120包括第一通孔121、第二通孔122、第三通孔123、第四通孔124、第五通孔125、第六通孔126和第七通孔127。
在本申请提供的热管理集成模块1中,第一通孔121连通第一接口71,第二通孔122连通电池腔21e,第三通孔123连通电机水泵32,第四通孔124连通第七接口77和第八接口78,第五通孔125连通液冷冷凝器42,第六通孔126连通第三接口73,第七通孔127连通暖风腔21c。
本申请提供的控制阀60包括以下五种连通模式:
模式五:当阀芯200处于第一预设位置时,第一通孔121、第二通孔122、第三通孔123、第四通孔124、第五通孔125、第六通孔126和第七通孔127相互连通。
模式一:当阀芯200相对于第一预设位置旋转第一预设角度时,第一通孔121通过连接槽210或者多用槽220连通第二通孔122,第三通孔123通过连接槽210或者多用槽220连通第五通孔125,第六通孔126通过连接槽210或者多用槽220连通第七通孔127,第四通孔124与多用槽220密封配合并处于关闭状态。
进一步地,在模式一的状态下,第一循环开路51内的冷却液从第一通孔121进入控制阀60,并从第二通孔122离开控制阀60,第二循环开路52内的冷却液从第六通孔126进入控制阀60,并从第七通孔127离开控制阀60,第三循环开路53内的冷却液从第三通孔123进入控制阀60,并从第五通孔125离开控制阀60。
模式二:当阀芯200相对于第一预设位置旋转第二预设角度范围时,第一通孔121通过连接槽210或者多用槽220分别连通第二通孔122和第七通孔127,第三通孔123通过连接槽210或者多用槽220连通第五通孔125,第六通孔126通过连接槽210或者多用槽220连通第七通孔127,第四通孔124与多用槽220密封配合并处于关闭状态。
模式三:当阀芯200相对于第一预设位置旋转第三预设角度时,第一通孔121通过连接槽210或者多用槽220分别连通第二通孔122和第七通孔127,第三通孔123通过连接槽210或者多用槽220连通第五通孔125,第六通孔126与多用槽220密封配合并处于关闭状态,第四通孔124与多用槽220密封配合并处于关闭状态。
模式四:当阀芯200相对于第一预设位置旋转第四预设角度时,第一通孔121通过连接槽210或者多用槽220连通第四通孔124,第三通孔123通过连接槽210或者多用槽220连通第二通孔122,第六 通孔126通过连接槽210或者多用槽220连通第七通孔127,第五通孔125与多用槽220密封配合并处于关闭状态。
更具体地,在一实施例中,第一预设角度为67.5°,第二预设角度范围为75°-105°,第三预设角度为112.5°,第四预设角度为22.5°。
在一实施例中,如图9所示,阀体100的一侧设有装配凸台300,装配凸台300背离阀体100的一端设有安装平面310,连通孔120设于安装平面310,且朝向阀腔110延伸至与阀腔110连通。
如此,有利于控制阀60和热管理集成模块1内的多个管路进行连接。
进一步地,在一实施例中,如图9所示,装配凸台300设有空腔320,空腔320内设有分隔筋条330,多个分隔筋条330围设形成连通孔120。
在一实施例中,装配凸台300和阀体100一体成型,具体地,装配凸台300和阀体100可以是一体注塑成型,也可以是一体车削成形,还可以是3D打印成型,在此不一一列举。
但不限于此,在其他实施例中,连通孔120还可直接设于阀体100的侧壁。
进一步地,在一实施例中,如图9所示,安装平面310具有与阀体100的轴向同向的第一方向710以及垂直于第一方向710的第二方向720,第三通孔123、第五通孔125和第四通孔124沿安装平面310的第二方向720依次布置,且均位于安装平面310的第一方向710的一端,第六通孔126、第七通孔127、第一通孔121和第二通孔122沿安装平面310的第二方向720依次布置,且均位于安装平面310的第一方向710的另一端。
更具体地,第三通孔123、第五通孔125、第四通孔124、第六通孔126、第七通孔127和第二通孔122分别沿着装配凸台300的横向延伸的长度相等,第一通孔121沿着装配凸台300的横向延伸的长度大于其他连通孔120沿着装配凸台300的横向延伸的长度。在本实施例中,横向可以是第二方向720。
在一实施例中,如图9所示,第一通孔121、第二通孔122、第三通孔123、第四通孔124、第五通孔125、第六通孔126和第七通孔127均为方形孔。
但不限于此,在其他实施例中,第一通孔121、第二通孔122、第三通孔123、第四通孔124、第五通孔125、第六通孔126和第七通孔127还可以是圆形孔、环形孔或者其他形状的通孔,在此不一一列举。
在一实施例中,如图9-图16所示,阀芯200为柱状结构,阀芯200沿着轴向分为依次相连的第一分段230和第二分段240,连接槽210包括分隔设置的第一连槽211、第二连槽212、第三连槽213、第四连槽214和第五连槽215,多用槽220包括分隔设置的第一多槽221、第二多槽222和第三多槽223。第一多槽221、第一连槽211、第三连槽213和第二多槽222沿着阀芯200的周向分布于第一分段230,第二连槽212、第四连槽214、第三多槽223和第五连槽215沿着阀芯200的周向分布于第二分段240。其中,第一连槽211和第二连槽212沿着阀芯200的轴向相互连通,第三连槽213和第四连槽214沿着阀芯200的轴向相互连通。
进一步地,在一实施例中,第一分段230和第二分段240沿着阀芯200轴向的长度相等。
但不限于此,在其他实施例中,第一分段230和第二分段240沿着阀芯200轴向的长度还可以是不相等的,在此不作具体限定。
具体地,控制阀60的五种连通模式如下:
模式五:当阀芯200处于第一预设位置时,第一通孔121依次通过第二连槽212连通第七通孔127,且第七通孔127通过第五连槽215连通第六通孔126,第一通孔121依次通过第二连槽212和第一连槽211连通第四通孔124,第一通孔121通过第四连槽214连通第二通孔122,第一通孔121依次通过第四连槽214和第三连槽213连通第三通孔123,且第三通孔123通过第二多槽222连通第五通孔125。
模式一:当阀芯200相对于第一预设位置旋转第一预设角度时,第一通孔121通过第二连槽212连通第二通孔122,第三通孔123通过第三连槽213连通第五通孔125,第六通孔126通过第五连槽215连通第七通孔127,第四通孔124与第一多槽221密封配合并处于关闭状态。
模式二:当阀芯200相对于第一预设位置旋转第二预设角度范围时,第一通孔121通过第二连槽212连通第二通孔122,且第一通孔121通过第五连槽215连通第七通孔127,第三通孔123通过第三连槽213连通第五通孔125,第六通孔126通过第五连槽215连通第七通孔127,第四通孔124与第一 多槽221或者第二多槽222密封配合并处于关闭状态;
模式三:当阀芯200相对于第一预设位置旋转第三预设角度时,第一通孔121通过第二连槽212连通第二通孔122,且第一通孔121通过第五连槽215连通第七通孔127,第三通孔123通过第三连槽213连通第五通孔125,第六通孔126与第三多槽223密封配合并处于关闭状态,第四通孔124与第二多槽222密封配合并处于关闭状态;
模式四:当阀芯200相对于第一预设位置旋转第四预设角度时,第一通孔121依次通过第二连槽212和第一连槽211连通第四通孔124,第三通孔123依次通过第三连槽213和第四连槽214连通第二通孔122,第六通孔126通过第五连槽215连通第七通孔127,第五通孔125与第二多槽222密封配合并处于关闭状态。
需要注意的是,在模式二的条件下,第一通孔121和第六通孔126均能够通过第五连槽215连通第七通孔127,在一实施例中,第六通孔126、第七通孔127和第一通孔121靠近阀芯200的一端沿着阀芯200的周向依次分布,且第六通孔126、第七通孔127和第一通孔121沿着阀芯200周向的总分布长度a、第六通孔126和第一通孔121沿着阀芯200周向的间距b以及第五连槽215在阀芯200周侧的开口沿着阀芯200周向的长度c满足,b<c<a。
需要说明的是,第六通孔126、第七通孔127和第一通孔121沿着阀芯200周向的总分布长度a为第六通孔126、第七通孔127和第一通孔121沿着阀芯200周向的分布长度,加上第六通孔126和第七通孔127之间的间隔沿着阀芯200周向的分布长度,再加上第七通孔127和第一通孔121之间的间隔沿着阀芯200周向的分布长度。
如此设置,在阀芯200相对于第一预设位置旋转第二预设角度范围的情况下,当c>b时,能够保证第五连槽215能够同时连通第六通孔126、第七通孔127和第一通孔121,当c<a时,能够保证阀芯200在转动过程中,第五连槽215能够同步调节第六通孔126和第七通孔127之间的开度以及同步调节第一通孔121和第七通孔127之间的开度。也就是说,当第五连槽215朝向第六通孔126移动时,第六通孔126和第七通孔127之间的开度变大,而第一通孔121和第七通孔127之间的开度变小,反之,当第五连槽215朝向第一通孔121移动时,第六通孔126和第七通孔127之间的开度变小,而第一通孔121和第七通孔127之间的开度变大。综上可知,如此设置,能够实现第六通孔126、第七通孔127和第一通孔121之间的比例调节。
在一实施例中,如图9所示,控制阀60还包括密封垫片400,密封垫片400设于阀芯200和阀体100之间,且密封垫片400设有连通对应连通孔120的多个切口410,密封垫片400沿着厚度方向的一端与阀芯200的外壁接触并密封配合,密封垫片400沿着厚度方向的另一端密封连接于阀体100的内壁。
如此,流体(包括但不限于冷却液)在阀体100和阀芯200之间流通时,都要经过密封垫片400上的切口410,由于密封垫片400沿着厚度方向的一端与阀芯200的表面接触并密封配合,且密封垫片400沿着厚度方向的另一端密封连接于阀体100的内壁,因此,避免流体在连接槽210或者多用槽220内发生内漏,从而有利于控制阀60的使用。
具体地,密封垫片400呈片状,且密封垫片400靠近阀芯200的一侧表面较为光滑,如此,有利于阀芯200相对密封垫片400转动。密封垫片400的材质通常为橡胶或者硅胶,且整个密封垫片400一体成型。
在一实施例中,密封垫片400沿着阀体100的圆周方向贴设于阀体100的内壁,如此,有利于提高密封垫片400的装配强度。
进一步地,在一实施例中,切口410的形状和对应连通的连通孔120的形状相同。
在一实施例中,如图8和图9所示,控制阀60还包括执行器500,执行器500沿着阀体100的轴向设于阀体100的一端且连接于阀芯200的转轴,以驱动阀芯200相对阀体100转动。
具体地,在一实施例中,执行器500通过齿轮结构啮合连接阀芯200的转轴。
进一步地,在一实施例中,如图9所示,阀体100靠近执行器500的一端设有连通阀腔110的装配口111,阀芯200通过装配口111装设于阀腔110内,且控制阀60还包括端盖600,端盖600盖设于装配口111。
如此,降低了控制阀60的装配难度,提高了控制阀60的装配效率。
在一实施例中,如图16所示,阀芯200远离驱动器的一端设有阻转块250,阀体100对应阻转块250设有阻转槽,阻转块250与阻转槽活动配合,以限制阀芯200相对阀体100的转动角度,防止阀芯200转动过度。
如图18所示,本申请还提供一种电动汽车2,该电动汽车2包括以上任意一个实施例所述的热管理集成模块1。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对申请专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请的专利保护范围应以所附权利要求为准。

Claims (10)

  1. 一种热管理集成模块,其特征在于,包括集成流道板、储液组件、水泵组件、换热组件和控制阀,所述集成流道板内设有多个流通通道,所述储液组件、所述水泵组件、所述换热组件和所述控制阀均可拆卸连接于所述集成流道板并通过多个所述流通通道连通以形成多组换热循环开路,所述换热循环开路用于连通外部待换热结构的换热通道,以与外部待换热结构的换热通道构成换热循环回路,所述控制阀用于控制冷却液进入不同的所述换热循环开路,所述储液组件用于存储冷却液,所述水泵组件用于驱动冷却液在所述换热循环开路内流动,所述换热组件用于使经过所述换热组件的冷却液和换热介质进行热交换。
  2. 根据权利要求1所述的热管理集成模块,其中,所述集成流道板包括主板和盖板,所述主板的一端设有多个凹槽,所述盖板盖设于所述凹槽的槽口处并与所述凹槽的内壁配合形成所述流通通道。
  3. 根据权利要求1所述的热管理集成模块,其中,所述储液组件包括壳体和多个隔板,所述壳体设有容纳腔,所述隔板设于所述容纳腔内,以将所述容纳腔分隔成多个储液腔,多个所述储液腔分别连通不同的所述换热循环开路。
  4. 根据权利要求3所述的热管理集成模块,其中,所述储液组件包括多个第一插管,每一所述第一插管对应连通一个所述储液腔,所述集成流道板包括多个第二插管,每个所述第二插管对应连通一个所述流通通道,并且,所述第一插管和所述第二插管一一对应设置,且所述第一插管和对应的所述第二插管相互套设,以使所述储液组件可拆卸连接于所述集成流道板,且使得每个所述储液腔能够通过所述第一插管和所述第二插管连通对应的所述流通通道,并且,所述第一插管内设有第一分隔条,以将所述第一插管分隔成第一进液通道和第一出液通道,所述第二插管内设有第二分隔条,以将所述第二插管分隔成第二进液通道和第二出液通道,所述第一进液通道对应连通第二进液通道,第一出液通道对应连通第二出液通道。
  5. 根据权利要求3所述的热管理集成模块,其中,所述储液腔包括暖风腔、电机腔和电池腔,所述水泵组件包括暖风水泵、电机水泵和电池水泵,所述换热组件包括电池冷却器和液冷冷凝器,所述换热循环开路包括第一循环开路、第二循环开路和第三循环开路;
    所述集成流道板、所述控制阀、所述储液组件的电池腔、所述电池水泵和所述电池冷却器连通以形成所述第一循环开路,所述第一循环开路用于连通动力电池的换热通道;
    所述集成流道板、所述控制阀、所述储液组件的暖风腔和所述暖风水泵连通以形成所述第二循环开路,所述第二循环开路用于连通电加热器和乘员舱的暖风芯体;
    所述集成流道板、所述控制阀、所述储液组件的电机腔、所述电机水泵和所述液冷冷凝器连通以形成所述第三循环开路,所述第三循环开路用于连通电机组件的换热通道。
  6. 根据权利要求5所述的热管理集成模块,其中,所述集成流道板设有第一插孔、第二插孔和第三插孔,
    所述电池水泵对应所述第一插孔设有第一插头,所述电池水泵通过所述第一插头插置于所述第一插孔,且所述电池水泵通过紧固件可拆卸连接于所述集成流道板;
    所述暖风水泵对应所述第二插孔设有第二插头,所述暖风水泵通过所述第二插头插置于所述第二插孔,且所述暖风水泵通过紧固件可拆卸连接于所述集成流道板;
    所述电机水泵对应所述第三插孔设有第三插头,所述电机水泵通过所述第三插头插置于所述第三插孔,且所述电机水泵通过紧固件可拆卸连接于所述集成流道板。
  7. 根据权利要求1所述的热管理集成模块,其中,控制阀包括阀体和阀芯,所述阀体设有阀腔,所述阀体的一侧设有多个贯穿所述阀体侧壁并连通所述阀腔的连通孔,所述阀芯可转动地设于所述阀腔内,且所述阀芯的周侧设有多个连接槽,当所述阀芯相对所述阀体转动不同的预设角度时,多个所述连通孔能够通过一个或多个所述连接槽相互连通,
    所述阀芯的周侧还设有一个或多个多用槽,当所述阀芯相对所述阀体转动不同的预设角度时,所述多用槽的槽口边缘能够与对应的所述连通孔靠近所述阀芯一侧的开口密封配合,以关闭对应的所述连通孔,或者,所述多用槽的槽口能够与相邻所述连通孔的开口错位配合,以连通相邻的所述连通孔。
  8. 根据权利要求7所述的热管理集成模块,其中,所述连通孔包括第一通孔、第二通孔、第三通孔、 第四通孔、第五通孔、第六通孔和第七通孔,且控制阀包括以下五种连通模式:
    模式五:当所述阀芯处于第一预设位置时,所述第一通孔、所述第二通孔、所述第三通孔、所述第四通孔、所述第五通孔、所述第六通孔和所述第七通孔相互连通;
    模式一:当所述阀芯相对于第一预设位置旋转第一预设角度时,所述第一通孔通过所述连接槽或者所述多用槽连通所述第二通孔,所述第三通孔通过所述连接槽或者所述多用槽连通所述第五通孔,所述第六通孔通过所述连接槽或者所述多用槽连通所述第七通孔,所述第四通孔与所述多用槽密封配合并处于关闭状态;
    模式二:当所述阀芯相对于第一预设位置旋转第二预设角度范围时,所述第一通孔通过所述连接槽或者所述多用槽分别连通所述第二通孔和所述第七通孔,所述第三通孔通过所述连接槽或者所述多用槽连通所述第五通孔,所述第六通孔通过所述连接槽或者所述多用槽连通所述第七通孔,所述第四通孔与所述多用槽密封配合并处于关闭状态;
    模式三:当所述阀芯相对于第一预设位置旋转第三预设角度时,所述第一通孔通过所述连接槽或者所述多用槽分别连通所述第二通孔和所述第七通孔,所述第三通孔通过所述连接槽或者所述多用槽连通所述第五通孔,所述第六通孔与所述多用槽密封配合并处于关闭状态,所述第四通孔与所述多用槽密封配合并处于关闭状态;
    模式四:当所述阀芯相对于第一预设位置旋转第四预设角度时,所述第一通孔通过所述连接槽或者所述多用槽连通所述第四通孔,所述第三通孔通过所述连接槽或者所述多用槽连通所述第二通孔,所述第六通孔通过所述连接槽或者所述多用槽连通所述第七通孔,所述第五通孔与所述多用槽密封配合并处于关闭状态。
  9. 根据权利要求8所述的热管理集成模块,其中,所述阀体的一侧设有装配凸台,所述装配凸台背离所述阀体的一端设有安装平面,所述连通孔设于所述安装平面,且朝向所述阀腔延伸至与所述阀腔连通。
  10. 一种电动汽车,其特征在于,包括如权利要求1-权利要求9任意一项所述的热管理集成模块。
PCT/CN2022/142397 2022-09-05 2022-12-27 热管理集成模块及电动汽车 WO2024051038A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211079024.1A CN115139750B (zh) 2022-09-05 2022-09-05 热管理集成模块及电动汽车
CN202211079024.1 2022-09-05

Publications (1)

Publication Number Publication Date
WO2024051038A1 true WO2024051038A1 (zh) 2024-03-14

Family

ID=83416516

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/142397 WO2024051038A1 (zh) 2022-09-05 2022-12-27 热管理集成模块及电动汽车

Country Status (2)

Country Link
CN (1) CN115139750B (zh)
WO (1) WO2024051038A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115139750B (zh) * 2022-09-05 2023-01-10 浙江凌昇动力科技有限公司 热管理集成模块及电动汽车
WO2024078736A1 (de) * 2022-10-10 2024-04-18 Voss Automotive Gmbh Fluidleitendes strukturbauteil, verfahren zum entformen eines im spitzgussverfahren hergestellten fluidleitenden strukturbauteils, thermomanagementmodul mit einer solchen und fahrzeug mit einem solchen
WO2024078735A1 (de) * 2022-10-10 2024-04-18 Voss Automotive Gmbh Thermomanagementmodul und fahrzeug mit zumindest einem solchen

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210008673A (ko) * 2019-07-15 2021-01-25 현대위아 주식회사 차량의 통합 열관리 모듈
CN113199923A (zh) * 2021-06-16 2021-08-03 广州小鹏汽车科技有限公司 热管理系统、控制方法和车辆
CN113276628A (zh) * 2021-06-16 2021-08-20 广州小鹏新能源汽车有限公司 热管理集成单元、热管理系统和车辆
CN113733842A (zh) * 2020-05-29 2021-12-03 比亚迪股份有限公司 集成式水壶组件及热管理系统
CN114043844A (zh) * 2021-12-15 2022-02-15 常州德尔汽车零部件有限公司 车辆热管理系统
CN115139750A (zh) * 2022-09-05 2022-10-04 浙江凌昇动力科技有限公司 热管理集成模块及电动汽车

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN209016224U (zh) * 2018-09-11 2019-06-21 蔚来汽车有限公司 电动汽车及其温控系统
KR20210022220A (ko) * 2019-08-19 2021-03-03 현대자동차주식회사 차량의 통합 열관리 모듈
CN111319514B (zh) * 2020-02-28 2022-05-24 华为数字能源技术有限公司 一种热管理系统和新能源汽车
CN113246688B (zh) * 2021-06-16 2022-05-10 广州小鹏汽车科技有限公司 热管理系统、控制方法和车辆
CN114571953B (zh) * 2022-03-30 2023-11-03 美的集团(上海)有限公司 汽车的热管理系统及汽车

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210008673A (ko) * 2019-07-15 2021-01-25 현대위아 주식회사 차량의 통합 열관리 모듈
CN113733842A (zh) * 2020-05-29 2021-12-03 比亚迪股份有限公司 集成式水壶组件及热管理系统
CN113199923A (zh) * 2021-06-16 2021-08-03 广州小鹏汽车科技有限公司 热管理系统、控制方法和车辆
CN113276628A (zh) * 2021-06-16 2021-08-20 广州小鹏新能源汽车有限公司 热管理集成单元、热管理系统和车辆
CN114043844A (zh) * 2021-12-15 2022-02-15 常州德尔汽车零部件有限公司 车辆热管理系统
CN115139750A (zh) * 2022-09-05 2022-10-04 浙江凌昇动力科技有限公司 热管理集成模块及电动汽车

Also Published As

Publication number Publication date
CN115139750B (zh) 2023-01-10
CN115139750A (zh) 2022-10-04

Similar Documents

Publication Publication Date Title
WO2024051038A1 (zh) 热管理集成模块及电动汽车
WO2021042624A1 (zh) 用于电动汽车的集成式膨胀水壶以及电动汽车
WO2024051040A1 (zh) 热管理集成系统及电动汽车
WO2021122949A1 (en) Multipass cooling valve and cooling system of electric vehicle
WO2022105352A1 (zh) 多负载热泵系统的冷却液冷热源切换装置
CN111256495B (zh) 换热器、车辆的热管理系统和车辆
WO2023045358A1 (zh) 电动车辆及其热管理器
CN114750569A (zh) 冷媒流路集成座、热管理系统及车辆
CN114290874A (zh) 一种集成式膨胀水壶、热管理系统及电动汽车
CN113883747B (zh) 冷媒换热装置及间接式热泵系统
WO2023143068A1 (zh) 多通切换阀、热管理系统及车辆
CN217532612U (zh) 冷却液集成模块和车辆
CN113071285B (zh) 副水箱总成和热管理系统
CN112018941B (zh) 一种汽车电机的散热装置
CN115257285A (zh) 一种水路流道板结构及车辆
CN114834209A (zh) 冷却液路集成座、热管理系统及车辆
CN217863698U (zh) 热管理集成模块及电动汽车
CN111828158A (zh) 用于车辆的冷却系统和车辆
CN220053441U (zh) 热管理模块的水侧组件、热管理模块和车辆
CN217994060U (zh) 水路集成模块、热管理系统以及车辆
CN219618874U (zh) 车辆热管理系统及车辆
CN220053502U (zh) 水侧组件、热管理模块和车辆
CN209795169U (zh) 水箱和具有其的车辆
CN218948877U (zh) 热管理系统及车辆
CN217994061U (zh) 水路集成模块、热管理系统以及车辆

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22957994

Country of ref document: EP

Kind code of ref document: A1