WO2023143068A1 - 多通切换阀、热管理系统及车辆 - Google Patents

多通切换阀、热管理系统及车辆 Download PDF

Info

Publication number
WO2023143068A1
WO2023143068A1 PCT/CN2023/071649 CN2023071649W WO2023143068A1 WO 2023143068 A1 WO2023143068 A1 WO 2023143068A1 CN 2023071649 W CN2023071649 W CN 2023071649W WO 2023143068 A1 WO2023143068 A1 WO 2023143068A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
way switching
cores
switching valve
spool
Prior art date
Application number
PCT/CN2023/071649
Other languages
English (en)
French (fr)
Inventor
葛笑
Original Assignee
安徽威灵汽车部件有限公司
广东威灵汽车部件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 安徽威灵汽车部件有限公司, 广东威灵汽车部件有限公司 filed Critical 安徽威灵汽车部件有限公司
Publication of WO2023143068A1 publication Critical patent/WO2023143068A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K11/00Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves
    • F16K11/10Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with two or more closure members not moving as a unit
    • F16K11/20Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with two or more closure members not moving as a unit operated by separate actuating members
    • F16K11/22Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with two or more closure members not moving as a unit operated by separate actuating members with an actuating member for each valve, e.g. interconnected to form multiple-way valves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00507Details, e.g. mounting arrangements, desaeration devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K11/00Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves
    • F16K11/02Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit
    • F16K11/08Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only taps or cocks
    • F16K11/085Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only taps or cocks with cylindrical plug
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K27/00Construction of housing; Use of materials therefor
    • F16K27/06Construction of housing; Use of materials therefor of taps or cocks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K27/00Construction of housing; Use of materials therefor
    • F16K27/06Construction of housing; Use of materials therefor of taps or cocks
    • F16K27/065Construction of housing; Use of materials therefor of taps or cocks with cylindrical plugs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K5/00Plug valves; Taps or cocks comprising only cut-off apparatus having at least one of the sealing faces shaped as a more or less complete surface of a solid of revolution, the opening and closing movement being predominantly rotary
    • F16K5/04Plug valves; Taps or cocks comprising only cut-off apparatus having at least one of the sealing faces shaped as a more or less complete surface of a solid of revolution, the opening and closing movement being predominantly rotary with plugs having cylindrical surfaces; Packings therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K5/00Plug valves; Taps or cocks comprising only cut-off apparatus having at least one of the sealing faces shaped as a more or less complete surface of a solid of revolution, the opening and closing movement being predominantly rotary
    • F16K5/04Plug valves; Taps or cocks comprising only cut-off apparatus having at least one of the sealing faces shaped as a more or less complete surface of a solid of revolution, the opening and closing movement being predominantly rotary with plugs having cylindrical surfaces; Packings therefor
    • F16K5/0457Packings
    • F16K5/0471Packings between housing and plug
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves

Definitions

  • the application belongs to the technical field of vehicle parts, in particular to a multi-way switching valve, a heat management system and a vehicle.
  • thermal management system In order to ensure the cruising range of electric vehicles, enable electric vehicles to drive steadily, and reduce the performance degradation of the battery system, it is often necessary to equip a thermal management system to ensure that the various energy components of electric vehicles are at the optimal operating temperature.
  • the thermal management system of traditional new energy vehicles is equipped with water pumps to control the flow and delivery of heat exchange media, and electronic water valves are used to control the on-off, flow and switching of each heat exchange cycle system.
  • the purpose of the first aspect of this application is to propose a multi-way switching valve, which has a high degree of integration and many channel models, and solves the problem of the increasingly large heat exchange cycle system in the prior art.
  • the number of electronic water valves is increased to realize control, the technical problems of large installation space, low assembly efficiency and high cost are brought about.
  • the purpose of the second aspect of the present application is to provide a thermal management system with the above-mentioned multi-way switching valve.
  • the purpose of the third aspect of the present application is to propose a vehicle with the above thermal management system.
  • a multi-way switching valve comprising: a valve casing, on which a plurality of flow ports are arranged; a plurality of valve cores, a plurality of valve cores being rotatably arranged on the valve casing
  • Each of the valve cores has a first communication channel for connecting two of the flow ports; wherein at least two of the valve cores are provided with a second communication channel, and at least two adjacent valve cores are provided with a second communication channel.
  • the second communication passages in each of the spools communicate with at least one of the communication ports respectively; the plurality of spools rotate to make the first communication passage different from the first communication passage.
  • the flow port is switched and communicated and/or the second communication channel is switched and communicated with different flow ports; a plurality of driving mechanisms, each of which drives at least one valve core to rotate.
  • a partition is also included, and the valve casing is divided into a plurality of cavities by the partition, each of the cavities is provided with one of the valve cores, and two adjacent A port is provided on the partition between the two cavities, and the second communication passages of the two spools communicate through the port.
  • the rotation axes of the spools in the adjacent two cavities are coaxially arranged, and the two adjacent spools are connected to one of the driving mechanisms, and the two adjacent spools are connected to one of the driving mechanisms.
  • the driving mechanisms are respectively arranged on different sides of the valve housing.
  • one of the two adjacent valve cores is disposed in the axial direction of the other valve core, and the partition is disposed at one end of the valve core in the axial direction.
  • one of the two adjacent valve cores is overlaid on the outside of the other valve core, and the partition is arranged around the inner circumference of the valve core.
  • the rotation axes of the valve cores in two adjacent cavities are arranged in parallel, and the two adjacent valve cores are connected to one of the driving mechanisms, and the two adjacent The driving mechanisms are respectively arranged on the valve casings.
  • the two valve cores are arranged side by side in the valve housing, and the partition is arranged between the two valve cores.
  • the two valve cores are axially staggered and disposed in the valve housing, and the partition is disposed in the axial direction of the valve cores.
  • the valve casing is provided with at least two connection areas, and each connection area is provided with a plurality of the flow ports, and different connection areas correspond to different spool.
  • the first communication channel is separated from the second communication channel.
  • the multi-way switching valve further includes a sealing member, the sealing member is arranged between the valve housing and the valve core, and the sealing member is provided with corresponding reliefs corresponding to the plurality of communication ports. mouth.
  • a thermal management system comprising: a manifold, in which a plurality of channels for circulating heat exchange medium are arranged; the multi-way switching valve in each of the foregoing examples, the multi-way switching The valve is arranged on the manifold, and a plurality of the flow channels are respectively connected to a plurality of the flow ports, and at least one of the valve cores is rotated to control the switching of the flow channels so that the thermal management system switches modes .
  • the thermal management system of the embodiment of the present application by connecting the multi-way switching valve with the flow channel in the manifold, after the drive mechanism drives the valve core to rotate, the on-off of different flow channels and the flow of heat exchange medium in different flow channels can be changed.
  • Flow rate adjust the heat transfer capacity of different heat transfer cycle systems, high integration, less installation space, convenient mode switching, and simple overall control.
  • a vehicle according to an embodiment of the present application includes the multi-way switching valve described in the foregoing examples; or, includes the thermal management system described in the foregoing examples.
  • FIG. 1 is a schematic perspective view of the three-dimensional structure of a multi-way switching valve in some embodiments of the present application.
  • Fig. 2 is a perspective structural diagram of a sectioned partial structure of a multi-way switching valve according to some embodiments of the present application.
  • Fig. 3 is a schematic three-dimensional structure diagram of another perspective of the cut-away partial structure of the multi-way switching valve according to some embodiments of the present application.
  • Fig. 4 is a simplified schematic diagram of a multi-way switching valve in some embodiments of the first aspect of the present application.
  • Fig. 5 is a simplified schematic diagram of a multi-way switching valve in some embodiments of the second aspect of the present application.
  • Fig. 6 is a simplified schematic diagram of a multi-way switching valve in some embodiments of the third aspect of the present application.
  • Fig. 7 is a simplified schematic diagram of a multi-way switching valve in some embodiments of the fourth aspect of the present application.
  • Fig. 8 is a simplified schematic diagram of a multi-way switching valve in some embodiments of the fifth aspect of the present application.
  • Fig. 9 is a schematic diagram of the overall structure of a thermal management system according to some embodiments of the present application.
  • Valve housing 10 flow port 11, connection area 12, first cavity 101, second cavity 102,
  • the first communication channel 21, the second communication channel 22 is the first communication channel 21, the second communication channel 22
  • a manifold 200 an inlet connector 210 , a flow channel 220 , and an outlet connector 230 .
  • the multi-way switching valve 100 has high integration, small installation space, high installation efficiency, various channel switching modes, and convenient control.
  • a multi-way switching valve 100 includes a valve housing 10 , a plurality of valve cores 20 and a plurality of driving mechanisms 40 .
  • the valve housing 10 is provided with a plurality of circulation ports 11, and the heat exchange medium can enter the interior of the multi-way switching valve 100 from the circulation ports 11 or flow out from the interior of the multi-way switching valve 100 (as shown in FIG. 3 , the line with the arrow is the flow path of the heat exchange medium), when different flow ports 11 are connected, multiple modes can be realized.
  • the communication port 11 of the present application can be connected with an external pipeline, so as to discharge the heat exchange medium to the outside of the valve casing 10 or to suck the heat exchange medium into the valve casing 10 .
  • the heat exchange medium is water or other liquids with salt solution.
  • a plurality of spools 20 are rotatably disposed in the valve casing 10 , so at least one spool 20 can rotate relative to the valve casing 10 to change the state of the multi-way switching valve 100 .
  • the spool 20 has a first communication channel 21, and each first communication channel 21 can communicate with two flow ports 11, one of the two flow ports 11 can be used as the inlet of the heat exchange medium, and the other One is used as the discharge port of the heat exchange medium, so after each spool 20 rotates, the first communication channel 21 in it can communicate with different flow ports 11, and when the heat exchange medium passes through the rotating spool 20, the The flow path of the heat exchange medium can be changed to change the heat exchange effect of different heat exchange cycle systems.
  • At least two spools 20 are provided with second communication passages 22 , and the second communication passages 22 in at least two adjacent spools 20 communicate with each other.
  • the second communication passages in each spool 20 22 communicate with at least one flow port 11 respectively.
  • the heat exchange medium When the heat exchange medium flows into the flow port 11 of one of the spools 20, the heat exchange medium can be discharged from the flow port 11 corresponding to the other spool 20 through the second communication channel 22 of the two spools 20, so that The heat exchange medium can not only be discharged into and out of the flow port 11 corresponding to the same spool 20, but also can be used in conjunction with other spools 20 to realize more paths of heat exchange medium in and out, making the multi-way switching valve 100 has various and abundant channel switching modes, which can meet more demands.
  • the first communication channel 21 can be switched relative to different flow ports 11, and the second communication channels 22 of two adjacent spools 20 can also be switched to different flow ports 11. Switching is performed to realize switching communication of different flow ports 11 for liquid inlet and liquid discharge, and to form different flow path switching of heat exchange mediums.
  • each drive mechanism 40 drives at least one spool 20 to rotate respectively, that is to say, one drive mechanism 40 can simultaneously drive two or more spools 20 to form rotation, for example, in a specific example, the same
  • the output ends of a drive mechanism 40 are respectively connected to a plurality of spools 20; or the same drive mechanism 40 has multiple output ends to drive a plurality of spools 20; a drive mechanism 40 can also only drive one spool 20 to perform Rotate so that each spool 20 can be controlled individually and accurately.
  • the multi-way switching valve 100 of the embodiment of the present application under the drive of the driving mechanism 40, at least one valve core 20 can rotate relative to the valve housing 10, and at the same time, the corresponding valve core 20 of the rotation
  • the first communication channel 21 communicates with different circulation ports 11, effectively changing the flow path of the heat exchange medium, and forming the switching of the liquid in and out of different paths.
  • the first communication channels 21 in each spool 20 can be switched with different flow ports 11 to form more liquid inlet and outlet paths, so that The channel mode switching of the multi-way switching valve 100 is convenient and has various modes.
  • the first communication channel 21 is not completely aligned with the flow port 11, but is partially connected to each other, so that the flow of liquid in and out of the first communication channel 21 can be controlled in different sizes. , to control the flow rate, liquid outlet volume and liquid inlet volume of the heat exchange medium flowing through the first communication channel 21 of each valve core 20 .
  • the heat exchange medium can further enter from the flow port 11 corresponding to one of the spools 20, and flow into the other spool 20 for redistribution, and then flow from the other spool 20.
  • the flow port 11 corresponding to the spool 20 flows out, so that the heat exchange medium can flow between different spools 20, which further increases the circulation path mode of the entire multi-way switching valve 100 and improves the performance of the same multi-way switching valve. 100 switching and control effects for different heat exchange cycle systems.
  • the whole valve body of the multi-way switching valve 100 in the embodiment of the present application has a high degree of integration , occupying less installation volume, convenient installation and operation, various access modes and convenient switching control.
  • the driving mechanism 40 is a servo motor, a rotary motor, and the servo motor is precisely controlled.
  • a partition 50 is also included, and the valve casing 10 is divided into a plurality of cavities by the partition 50, and each cavity is provided with a valve core 20, located in each The spools 20 in the cavity have a relatively stable working environment, which facilitates the control of each spool 20 .
  • a through port 51 is provided on the partition 50 between two adjacent cavities, and the second communication channels 22 of the two valve cores 20 communicate through the through port 51 .
  • the heat exchange medium in the valve core 20 in the two cavities can flow between the two, so that the heat exchange medium can not only pass through the valve core 20 in each cavity
  • the first communication channel 21 and the corresponding flow port 11 form the liquid in and out; the heat exchange medium can also be formed between the valve cores 20 in two adjacent cavities through the second communication channel 22 and the corresponding flow port 11
  • Inlet and outlet liquid diversify the flow path of heat exchange medium.
  • the two adjacent cavities are respectively marked as the first cavity 101 and the second cavity 102, and the valve core 20 in the first cavity 101 is marked as The first spool 202, the spool 20 in the second cavity 102 is marked as the second spool 203, and the drive mechanism 40 that drives the first spool 202 is marked as the first drive mechanism 41, which drives the second spool 203
  • the driving mechanism 40 is denoted as the second driving mechanism 42 .
  • the rotation axis 201 of the first spool 202 in the first cavity 101 and the rotation axis 201 of the second spool 203 in the second cavity 102 are coaxial.
  • the rotation axis of the first spool 202 and the rotation axis of the second spool 203 are collinear.
  • first spool 202 and the second spool 203 are respectively arranged in the adjacent first cavity 101 and the second cavity 102; the first spool 202 is connected with the first driving mechanism 41, and the second spool 203 is connected with the second driving mechanism 42, and the first driving mechanism 41 and the second driving mechanism 42 are respectively arranged on different sides of the valve casing 10 to facilitate connection with the first valve core 202 and the second valve core 203.
  • first driving mechanism 41 and the second driving mechanism 42 are respectively arranged on the same side of the valve casing 10 if the rotation axes 201 of the two spools 20 are to be collinear, then the first driving mechanism 41 and the second driving mechanism The output ends of 42 are located at the same place, and the output ends of the two driving mechanisms 40 have to be designed to be nested, which will make the structure of the driving mechanism 40 too complicated, and it is also inconvenient to arrange the valve core 20 in the cavity. Therefore, in this application, if the first valve core 202 and the second valve core 203 are to rotate coaxially, the first driving mechanism 41 and the second driving mechanism 42 are respectively arranged on different sides of the valve housing 10 .
  • first driving mechanism 41 and the second driving mechanism 42 can be respectively arranged on opposite sides of the valve housing 10, such as the left side and the right side, or the front side and the rear side, or the upper side and the rear side. lower side.
  • the separator 50 is disposed at one axial end of the valve core 20 .
  • the first spool 202 is driven by the first drive mechanism 41 and can rotate in the first cavity 101
  • the second spool 203 is driven by the second drive mechanism 42 and can rotate in the second cavity 102
  • the port 51 on the partition 50 connects the second communication channel 22 in the first valve core 202 and the second communication channel 22 in the second valve core 203, at this time, the heat exchange medium can flow from the second
  • the spool 203 enters the first spool 202, and then is discharged from the flow port 11 corresponding to the first spool 202; or, the heat exchange medium can enter the second spool 203 from the first spool 202, and then It is discharged from the communication port 11 corresponding to the second valve core 203 .
  • the spacer 50 in these examples is located on the axial direction of the first valve core 202 and the second valve core 203, and the spacer 50 is arranged conveniently and has a simple structure; the spacer 50 can make the first valve core 202 and the second valve core 203
  • the rotations in the axial direction are separated from each other, and the two valve cores 20 can rotate independently without interfering with each other.
  • the opening 51 can be set at the middle or the edge of the partition 50, at this time, the second communication channel 22 provided in the first cavity 101 and the second cavity 102 also needs to correspond to the opening 51
  • the extension direction of itself is designed so that the second communication channel 22 can keep in communication with the through port 51 to ensure smooth flow of the heat exchange medium.
  • the opening 51 of the separator 50 is provided with a flange 52 , and the flange 52 Extend toward the channel wall of the second communication channel 22 of one of the spools 20, so that the flange 52 can fit closely with the channel wall to ensure that the heat exchange medium does not flow or leak when passing through the port 51 in the second communication channel 22. liquid.
  • the rotation shaft 201 of the core 202 and the rotation shaft 201 of the second valve core 203 are coaxially arranged.
  • One of the first spool 202 and the second spool 203 is sheathed on the outside of the other spool 20.
  • the second spool 203 is sheathed on the outside of the first spool 202.
  • 50 is arranged around the first valve core 202 so that the second valve core 203 and the first valve core 202 form an inner and outer nested arrangement structure.
  • the partition 50 is disposed on the outer periphery of the first valve core 202 and simultaneously disposed on the inner peripheral wall of the second valve core 203 so that the first valve core 202 and the second valve core 203 can rotate independently in their respective cavities.
  • the two spools 20 are nested inside and outside, the axial dimension required for arranging the two spools 20 can be greatly saved, so that the first spool 202 and the second spool 203 are arranged When the structure is compact.
  • the port 51 on the partition 50 is selected to be located on the side of the partition 50, and at least part of the second communication passage 22 communicated with the port 51 needs to be along the first valve core 202 and the second valve.
  • the radial extension of the core 203 realizes butt connection with the port 51 to ensure smooth flow of the heat exchange medium.
  • the partition 50 at the axial end of the second valve core 203 and the first valve core 202 may not have an opening 51, and the rotation shafts 201 of the two valve cores 20 form a reliable separation in the axial direction.
  • the spool 20 (which may be the first spool 202) in two adjacent cavities (which may be the first cavity 101 and the second cavity 102) and the rotation axis 201 of the second valve core 203 ), that is, the rotation axis of the first valve core 202 and the rotation axis of the second valve core 203 are parallel to each other.
  • first spool 202 and the second spool 203 are respectively arranged in the adjacent first cavity 101 and the second cavity 102; the first spool 202 is connected with the first driving mechanism 41, and the second spool 203 is connected with the second driving mechanism 42, the first driving mechanism 41 and the second driving mechanism 42 are respectively arranged on the valve casing 10, so that the valve casing 10 provides support for the installation of the first driving mechanism 41 and the second driving mechanism 42, Also, when the driving mechanism 40 drives the valve core 20 to rotate, the valve core 20 can rotate stably relative to the valve housing 10 without deviation.
  • the two driving mechanisms 40 can be arranged on the same side or different sides of the valve housing 10, which can be selected according to the actual installation space and environmental fittings.
  • the two valve cores 203 are arranged side by side in a row, and the separator 50 is arranged between the two valve cores 20 .
  • the first valve core 202 and the second valve core 203 are arranged side by side along the left-right direction, and the separator 50 at this time is disposed on the side facing each other.
  • the surface of the partition 50 can be parallel to the surface of the rotating shaft 201, so that two regular-shaped first cavities 101 and second cavities 102 are formed in the valve housing 10, which is convenient for the first valve core 202 and the second valve core 203.
  • the second communication passages 22 of the second communication passages communicate with the partition member 50 respectively, and it is also convenient to block the passage opening 51 when the second communication passage 22 is not in communication with the passage opening 51 .
  • the second drive mechanism 41 drives the first spool 202 to rotate counterclockwise
  • the second The driving mechanism 42 drives the second spool 203 to rotate clockwise, so that the second communication channel 22 in the two spools 20 can communicate with the port 51 faster.
  • the port 51 can be selected to be located in the middle or the edge area of the partition 50, meanwhile, the second communication channel 22 in the two valve cores 20 also needs to be changed corresponding to the position of the port 51 The direction of its extension ensures that the two valve cores 20 can communicate with the port 51 at the same time during the rotation process.
  • the first driving mechanism 41 and the second driving mechanism 42 can be arranged on the same side of the valve housing 10 at the same time, so that the other side of the valve housing 10 is conveniently reserved for the arrangement of the flow port 11, so that the flow port 11 can be More areas are arranged, which also makes the assembly and control of the first driving mechanism 41 and the second driving mechanism 42 more convenient.
  • the rotation axis 201 of the core 202 is parallel to the rotation axis 201 of the second valve core 203 , and the two rotation axes 201 are axially staggered and arranged in the valve housing 10 , and the partition 50 is arranged in the axial direction of the valve core 20 .
  • the arrangement of the two valve cores 20 is more flexible, and the valve casing 10 at this time can be set as an irregular valve casing accordingly, so as to adapt to more variable installation environments.
  • the port 51 is selected to be located at the edge area of the partition 50, so that the two rotating shafts 201 can be separated in physical space, and also the second communication passage 22 can be positioned along the axis of the valve core 20. To extend to form communication with the port 51 .
  • first driving mechanism 41 and the second driving mechanism 42 are respectively arranged on different sides of the valve casing 10, such as the left and right sides, so that the valve casing 10 can more easily use different valve cores 20, first
  • the drive mechanism 41 is structured and arranged as a unit.
  • the multi-way switching valve 100 of the present application is not limited to the arrangements in the above four examples.
  • the rotation axis of a spool 202 and the rotation axis of the second spool 203 are arranged at an angle, at this moment, at least part of the second communication channel 22 on one of the spools 20 can extend along the radial direction and be connected with the port 51, while The second communication channel 22 on the other spool 20 can extend along the axial direction and be connected to the port 51 , which is not specifically limited here.
  • the included angle between the rotation axes 201 of the two spools 20 can be 90 degrees, an acute angle or an obtuse angle, which can be selected according to actual conditions.
  • the partition 50 may be integrally connected with the valve housing 10 to stabilize the position of the partition 50 and not change its position under the impact of the heat exchange medium.
  • the spacer 50 is connected to the inner wall of the valve housing 10 by welding; or, the valve housing 10 is provided with a positioning groove and a support plate, and the spacer 50 is positioned in the positioning groove and supported on the support plate, so that the position relative to the valve housing 10 is stable. , Easy to assemble.
  • each connection area 12 can be connected with external devices.
  • the external device is an external pipeline, and the interface of the external pipeline is docked on the flow port 11 to realize communication with the first communication channel 21 or the second communication channel 22 in the internal valve core 20, so that the heat exchange medium can flow between the external pipeline and the internal Flow between spools 20.
  • the external device can be an integrated notch, and multiple notches are connected to the flow ports 11 respectively, so that multiple flow ports 11 on the same connection area 12 can communicate with the external device at the same time, which is convenient for arrangement and high in integration .
  • connection area 12 when the surface of the valve housing 10 is curved, the connection area 12 is also formed as a curved surface; when the surface of the valve housing 10 is flat, the connection area 12 is also formed as a plane, which can be reasonably selected according to actual conditions.
  • the flow ports 11 arranged on the connection area 12 can be arranged in an array or arranged in multiple rows and columns, or can be arranged at random intervals, and can be arranged according to the installation environment of the external device, the valve
  • the structure of the first communication channel 21 and/or the second communication channel 22 provided inside the core 20 is optimized.
  • the cross-sectional profile of the flow opening 11 can be circular, square or irregular polygonal, which can be selected according to actual conditions.
  • the first communication channel 21 is separated from the second communication channel 22 , that is, the heat exchange medium in the first communication channel 21 will not flow into into the second communication channel 22, the heat exchange medium located in the second communication channel 22 will not flow into the first communication channel 21, so that the flow path design of the heat exchange medium in the valve core 20 is more reasonable and prevents different
  • the heat exchange medium in the communication channel flows in series to ensure that each communication channel can form an exact passage pattern after switching, which facilitates precise control of the multi-way switching valve 100 and improves the stability of the mode switching control of the multi-way switching valve 100 .
  • the first communication channel 21 extends along the outer peripheral wall of the valve core 20, for example, it may extend along the outer peripheral wall parallel to the axial direction of the valve core 20, or extend along the outer peripheral wall parallel to the radial direction of the valve core 20, Or extend at an angle to the axial or radial direction of the valve core 20 along the outer peripheral wall.
  • the first communication passage 21 can communicate with two adjacent communication ports 11 , for example, it can be the communication ports 11 provided adjacently on the valve housing 10 .
  • the first communication channel 21 may communicate with two communication ports 11 located farther away, for example, the communication ports 11 on the diagonal line of the connection area 12 .
  • the first communication passage 21 includes an inner flow channel and two through ports, the two through ports communicate through the inner flow channel, the inner flow channel is set inside the valve core 20, and the two through ports are located on the valve core 20
  • the structure of the spool 20 is fully utilized to open enough first communication passages 21 on the outer peripheral wall of the spool 20, and the optional mode of the overflow passage of the spool 20 is raised.
  • the second communication channel 22 can be flexibly configured according to the position of the opening 51 on the partition 50 and the communication port 11 on the valve housing 10.
  • part of the second communication channel 22 can be along the valve core. 20 extends axially, part of the second communication channel 22 can extend radially along the spool 20, part of the second communication channel 22 can extend along the circumference of the spool 20, and can also be connected to the rotation axis of the spool 20 201 extends at an angle, and there is no specific limitation here, and it is subject to the convenience of connecting the flow port 11 and the port 51 .
  • the multi-way switching valve 100 further includes a seal 30, the seal 30 is arranged between the valve housing 10 and the valve core 20, and the seal 30 corresponds to a plurality of The circulation port 11 is provided with a corresponding avoidance port.
  • the sealing member 30 can seal the space between the valve housing 10 and the valve core 20 to fill the gap between the valve housing 10 and the valve core 20, avoiding the cross-flow between different first communication passages 21, and also preventing the first The first communication channel 21 and the second communication channel 22 communicate with each other.
  • the seal 30 is connected to the valve core 20 and rotates synchronously with the valve core 20. At this time, the seal 30 and the valve core 20 are relatively stationary, and both the valve core 20 and the seal 30 are relative to the valve casing 10 turn.
  • the sealing member 30 and the valve core 20 are integrally designed to reduce the number of components and facilitate installation.
  • the number of escape openings on the sealing member 30 is consistent with the number of circulation ports 11, so that the heat exchange medium in the first communication channel 21 or the second communication channel 22 can pass through the escape openings of the sealing member 30 and pass through the circulation openings 11. in or out.
  • the sealing member 30 is connected to the valve housing 10, the relative position between the sealing member 30 and the valve housing 10 remains unchanged, and the valve core 20 can rotate relative to the sealing member 30 and the valve housing 10 to facilitate the installation of the sealing member 30.
  • the avoidance port of the sealing member 30 and the flow port 11 can always be set correspondingly without offset, and the driving force required by the driving mechanism 40 to drive the valve core 20 is reduced.
  • the material of the sealing member 30 is a material with certain elasticity such as sponge, rubber, etc., so that there is a certain pressure and elastic deformation strain force between the sealing member 30, the valve housing 10, and the valve core 20, so as to improve the sealing performance and use. life.
  • the thermal management system 1000 is mainly used in the scene of fluid distribution or changing the flow direction of the liquid, for example, it can be used in the hydraulic system, air conditioning system and water circulation system, and the heat management cooling circulation system of the car to distribute and control the flow direction of the heat exchange medium.
  • Used in vehicles it mainly refers to the energy management system that distributes heat exchange energy between batteries, motors, power devices, and passenger compartments.
  • a heat management system 1000 includes: a manifold 200 and the multi-way switching valve 100 of the foregoing embodiments, and the structure of the multi-port switching valve 100 has been described in detail in the foregoing examples. description and will not be repeated here.
  • the manifold 200 is provided with a plurality of flow channels 220 for circulating the heat exchange medium, where the heat exchange medium can be a heat exchange medium with a relatively high temperature, which is used to raise the temperature of the components to be adjusted to keep warm; It can be a heat exchange medium with a lower temperature, which is used to cool down and dissipate heat from the parts to be adjusted.
  • the heat exchange medium can be a heat exchange medium with a relatively high temperature, which is used to raise the temperature of the components to be adjusted to keep warm; It can be a heat exchange medium with a lower temperature, which is used to cool down and dissipate heat from the parts to be adjusted.
  • the manifold 200 is a plate body with various flow channels 220 inside, as a part for confluence, diversion and transition in the middle; it can save the length of the pipeline of the heat exchange cycle system that needs to be arranged, and The pipes of multiple heat exchange circulation systems can be integrated in the manifold 200 in the form of flow channels 220 . It should also be noted here that the manifold 200 is a plate body with various flow channels 220 inside, as a part for confluence, diversion and transition in the middle; it can save the length of the pipeline of the heat exchange cycle system that needs to be arranged, and The pipes of multiple heat exchange circulation systems can be integrated in the manifold 200 in the form of flow channels 220 .
  • a plurality of flow channels 220 are disposed in the manifold 200 and a plurality of joints are disposed on the manifold 200 .
  • the flow channels 220 can be single-layer or multi-layer, and the manifold 200 can be stacked in multiple layers.
  • the manifold 200 can integrate the pipes and joints in the thermal management system 1000 into one board.
  • the multi-way switching valve 100 is arranged on the manifold 200, and the multiple flow channels 220 are respectively connected to the multiple flow ports 11, and at least one valve core 20 is rotated to control the switching and communication of the flow channels 220, so that the thermal management system 1000 switches model.
  • the flow channels 220 provided in the manifold 200 can replace part of the pipelines in the heat exchange cycle system, by connecting the multi-way switching valve 100 and the flow in the manifold 200 The channel 220 is connected.
  • the driving mechanism 40 drives the spool 20 to rotate, the on-off of different flow channels 220 and the flow rate of the heat exchange medium in different flow channels 220 can be changed, and the heat exchange capacity of different heat exchange cycle systems can be adjusted, reducing the layout.
  • the manifold 200 is provided with an inlet joint 210 and an outlet joint 230, wherein the flow channel 220 can communicate with the inlet joint 210 and the outlet joint 230, and the inlet joint 210 is conveniently connected with Pipelines are arranged between the water tanks, and the outflow joint 230 is convenient to connect with the pipelines of the heat exchange circulation system, so that the assembly of each pipeline and the manifold 200 is quick and easy to operate.
  • the thermal management system 1000 also includes a circulation pump (not shown in the figure), which is also integrated on the manifold 200 and connected between the water tank and the multi-way switching valve 100.
  • the thermal circulation system pumps the heat exchange medium and controls the flow direction of the heat exchange medium, so that the thermal management system 1000 has a higher degree of integration.
  • a vehicle according to an embodiment of the present application includes the multi-way switching valve 100 of the aforementioned embodiments.
  • the structure of the multi-way switching valve 100 has been described in detail in the aforementioned examples and will not be repeated here.
  • it includes the thermal management system 1000 of the foregoing embodiments, and the structure of the thermal management system 1000 has been described in detail in the foregoing examples, and will not be repeated here.
  • the vehicle according to the embodiment of the present application is equipped with the aforementioned multi-way switching valve 100 , which has rich flow path switching modes, simple structure, and a high degree of integration among various components.
  • the aforementioned thermal management system 1000 By setting the aforementioned thermal management system 1000, the overall integration is high, the installation and arrangement are convenient, and centralized control is possible, which is beneficial to the lightweight, integrated and intelligent control of the entire vehicle.
  • the vehicle is mainly a new energy vehicle
  • the new energy vehicle includes a pure electric vehicle, an extended-range electric vehicle, a hybrid vehicle, and a fuel cell electric vehicle.
  • connection should be understood in a broad sense, for example, it can be a fixed connection or a detachable connection. Connected, or integrally connected; it can be mechanically connected or electrically connected; it can be directly connected or indirectly connected through an intermediary, and it can be the internal communication of two components. Those of ordinary skill in the art can understand the specific meanings of the above terms in this application in specific situations.
  • Fig. 1 two spools 20 and two driving mechanisms 40 are shown for the purpose of illustration, but after reading the technical solution above, those of ordinary skill can obviously understand that the solution is applied to other numbers of spools 20, In the technical solution of the driving mechanism 40, this also falls within the protection scope of the present application.
  • the multi-way switching valve 100, the thermal management system 1000 and the cooling and heat dissipation of various components of the heat exchange cycle system in the vehicle, the filled heat exchange medium, the components to be heat exchanged, and the multi-way switching valve 100 The principle of driving the valve core 20 by the driving mechanism 40 is known to those skilled in the art, and will not be described in detail here.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Multiple-Way Valves (AREA)

Abstract

公开了一种多通切换阀(100),包括:阀壳(10),阀壳(10)设有多个流通口(11);多个阀芯(20),阀芯(20)可转动地设在阀壳(10)内,阀芯(20)均具有用于连通其中两个流通口(11)的第一连通通道(21),其中至少两个阀芯(20)中设有第二连通通道(22),至少相邻两个阀芯(20)中的第二连通通道(22)相连通,每个阀芯(20)中的第二连通通道(22)分别连通一个流通口(11),多个阀芯(20)转动使第一连通通道(21)与不同的流通口(11)切换连通和/或第二连通通道(22)与不同的流通口(11)切换连通;多个驱动机构(40),每个驱动机构(40)分别驱动一个阀芯(20)转动;还公开了包括该多通切换阀的热管理系统、车辆。

Description

多通切换阀、热管理系统及车辆
相关申请的交叉引用
本申请基于申请号为202210103024.4,申请日为2022年01月27日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请属于车辆零部件技术领域,具体是一种多通切换阀、热管理系统及车辆。
背景技术
随着环保、低碳化、可持续发展的需求不断深化,新能源汽车中尤其是电动汽车因其低噪音、加速机动性能好、接近零碳排放、使用成本相对较低的特性,广受消费者青睐。
为了保证电动汽车的续航里程,使电动汽车能够稳步驱动、减少电池系统的性能衰减,常常需要配备热管理系统保证电动汽车的各个能源部件处于最佳工作温度。传统新能源汽车的热管理系统中均设有水泵来控制换热介质的流动和输送量,并通过电子水阀来控制各个换热循环系统的通断、流量和切换。
发明内容
本申请旨在至少解决现有技术中存在的技术问题之一。为此,本申请第一方面的目的旨在提出一种多通切换阀,所述多通切换阀集成度高、通路模型多,解决了现有技术中对于日益庞大的换热循环系统仅通过增加电子水阀的个数来实现控制时,所带来的安装空间大、装配效率低、成本高的技术问题。
本申请第二方面的目的旨在提出一种具有上述多通切换阀的热管理系统。
本申请第三方面的目的旨在提出一种具有上述热管理系统的车辆。
根据本申请实施例的一种多通切换阀,包括:阀壳,所述阀壳上设有多个流通口;多个阀芯,多个所述阀芯可转动地设在所述阀壳内,所述阀芯均具有用于连通其中两个所述流通口的第一连通通道;其中至少两个所述阀芯中设有第二连通通道,至少相邻两个所述阀芯中的所述第二连通通道相连通,每个所述阀芯中的所述第二连通通道分别连通至少一个所述流通口;多个所述阀芯转动以使所述第一连通通道与不同的所述流通口切换连通和/或所述第二连通通道与不同的所述流通口切换连通;多个驱动机构,每个所述驱动机构分别驱动至少一个所述阀芯转动。
根据本申请一些进一步的实施例,还包括分隔件,所述阀壳通过所述分隔件分隔为多个腔体,每个所述腔体中均设有一个所述阀芯,相邻的两个所述腔体之间的所述分隔件上设有通口,两个所述阀芯的第二连通通道通过所述通口连通。
在一些实施例中,相邻的两个所述腔体中的所述阀芯的转动轴共轴线设置,相邻的两个所述阀芯均与一个所述驱动机构相连,两个所述驱动机构分别设在所述阀壳的不同侧。
在一些实施例中,相邻的两个所述阀芯中其中一个所述阀芯设在另一个所述阀芯的轴向上,所述分隔件设在所述阀芯的轴向一端。
在一些实施例中,相邻的两个所述阀芯中其中一个所述阀芯外套在另一个所述阀芯的外侧,所述分隔件围设在内部的所述阀芯周侧。
根据本申请一些进一步的实施例,相邻的两个所述腔体中的所述阀芯的转动轴平行设置,相邻的两个所述阀芯均与一个所述驱动机构相连,两个所述驱动机构分别设在所述阀壳上。
在一些实施例中,两个所述阀芯在所述阀壳中并排布置,所述分隔件设在两个所述阀芯之间。
在一些实施例中,两个所述阀芯在轴向上错开设置在所述阀壳中,所述分隔件设在所述阀芯的轴向。
根据本申请一些实施例的多通切换阀,所述阀壳设有至少两个连接区域,每个连接区域上均设有多个所述流通口,不同的所述连接区域对应不同的所述阀芯。
根据本申请一些实施例的多通切换阀,所述第一连通通道与所述第二连通通道相分隔。
根据本申请一些实施例的多通切换阀,还包括密封件,所述密封件设在所述阀壳和所述阀芯之间,所述密封件对应多个所述流通口设置相应的避让口。
根据本申请实施例的一种热管理系统,包括:汇流板,所述汇流板内设有用于流通换热介质的多个流道;前述各个示例中的多通切换阀,所述多通切换阀设在所述汇流板上,多个所述流道分别与多个所述流通口相连,至少一个所述阀芯转动以控制所述流道切换连通,以使所述热管理系统切换模式。
根据本申请实施例的热管理系统,通过将多通切换阀与汇流板内的流道连通,在驱动机构驱动阀芯转动后,可改变不同流道的通断以及不同流道中换热介质的流量,调节不同换热循环系统的换热量,集成度高且占用安装空间少、模式切换方便、整体控制简单。
根据本申请实施例的一种车辆,包括前述各个示例中所述的多通切换阀;或者,包括前述示例中所述的热管理系统。
本申请的附加方面和优点将在下面的描述中变得明显,或通过本申请的实践了解到。
附图说明
本申请的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1为本申请一些实施例的多通切换阀的立体结构示意图。
图2为本申请一些实施例的多通切换阀剖切后部分结构的立体结构示意图。
图3为本申请一些实施例的多通切换阀剖切后部分结构的另一个角度的立体结构示意图。
图4为本申请第一方面一些实施例的多通切换阀的简易示意图。
图5为本申请第二方面一些实施例的多通切换阀的简易示意图。
图6为本申请第三方面一些实施例的多通切换阀的简易示意图。
图7为本申请第四方面一些实施例的多通切换阀的简易示意图。
图8为本申请第五方面一些实施例的多通切换阀的简易示意图。
图9为本申请一些实施例的热管理系统的总体结构示意图。
附图标记:
热管理系统1000,
多通切换阀100,
阀壳10,流通口11,连接区域12,第一腔体101,第二腔体102,
阀芯20,转动轴201,第一阀芯202,第二阀芯203,
第一连通通道21,第二连通通道22,
密封件30,
驱动机构40,第一驱动机构41,第二驱动机构42,
分隔件50,通口51,翻边52,
汇流板200,进流接头210,流道220,出流接头230。
具体实施方式
下面详细描述本申请的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本申请,而不能理解为对本申请的限制。
在本申请的描述中,需要理解的是,术语“上”、“下”、“前”、“后”、“左”、“右”、“底”、“内”、“外”、“轴向”、“周向”、“顺时针”、“逆时针”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
下面参考说明书附图描述本申请实施例的多通切换阀100,多通切换阀100集成度高、所需安装空间小、安装效率高、通路切换模式多样、控制方便。
根据本申请实施例的一种多通切换阀100,如图1所示,包括阀壳10、多个阀芯20和多个驱动机构40。
其中,如图1所示,阀壳10上设有多个流通口11,换热介质可以从流通口11进入多通切换阀100内部或从多通切换阀100内部流出(如图3所示,带有箭头的线条为换热介质的流动路径),在不同流通口11连通时可以实现多种模式。本申请的流通口11可以连接外部管道,以实现向阀壳10外部排放换热介质或向阀壳10中吸入换热介质。这里还需要说明的是,换热介质为水或其他带有盐溶液的液体。
如图2所示,多个阀芯20可转动地设在阀壳10内,那么至少一个阀芯20可相对于阀壳10转动,从而改变多通切换阀100的状态。
如图3所示,阀芯20均具有第一连通通道21,每条第一连通通道21均可连通两个流通口11,两个流通口11中的一个可作为换热介质的入口,另一个则作为换热介质的排出口,因此每个阀芯20转动后,其内的第一连通通道21均可与不同的流通口11相连通,改变经过该转动阀芯20时,换热介质的流动路径,改变换热介质的流动方向,实现改变不同的换热循环系统的换热效果。
如图3所示,至少两个阀芯20中设有第二连通通道22,至少相邻两个阀芯20中的第二连通通道22相连通,每个阀芯20中的第二连通通道22分别连通至少一个流通口11。当其中一个阀芯20的流通口11中流入换热介质时,换热介质经过两个阀芯20的第二连通通道22则可从另一个阀芯20对应的流通口11向外排出,使换热介质不仅可以在同一个阀芯20对应的流通口11中排入排出,还可以与其他阀芯20联用,而实现更多路径的换热介质的排入排出,使多通切换阀100的通路切换模式多样、丰富,能适应更多的需求。
当多个阀芯20转动时,可使第一连通通道21相对于不同的流通口11进行切换,也可以使相邻的两个阀芯20的第二连通通道22相对于不同的流通口11进行切换,实现不同的进液、排液的流通口11的切换连通,并形成不同的换热介质流动路径切换。
如图1所示,每个驱动机构40分别驱动至少一个阀芯20转动,也就是说,一个驱动机构40可同时驱动两个或更多个阀芯20形成转动,例如在具体示例中,同一个驱动机构40的输出端分别连接多个阀芯20;或者同一个驱动机构40具有多个输出端,实现对多个阀芯20的驱动;一个驱动机构40也可以仅驱动一个阀芯20进行转动,使每个阀芯20均能被单独控制、精准控制。
在本申请的描述中,除非另有说明,“多个”的含义是两个或两个以上。
由上述结构可知,本申请实施例的多通切换阀100,在驱动机构40的驱动下,至少有一个阀芯20可相对于阀壳10转动,与此同时,该转动的阀芯20所对应的第一连通通道21与不同的流通口11相连通,有效改变换热介质的流动路径,形成不同路径的进出液切换。
当多个驱动机构40同时驱动不同的阀芯20转动时,则可使各个阀芯20内的第一连通通道21均与不同的流通口11进行切换,可形成更多的进出液路径,使多通切换阀100的通路模式切换方便、模式多样。
对于阀芯20相对于阀壳10转动的过程中,第一连通通道21未与流通口11完全对中,而是部分相连的情况,可实现第一连通通道21不同大小的进出液流量的控制,控制流经各个阀芯20的第一连通通道21的换热介质的流动速率、出液量和进液量。
当两个阀芯20中的第二连通通道22连通后,换热介质可进一步从其中一个阀芯20对应的流通口11进入,并流入另一个阀芯20中进行再分配,之后从另一个阀芯20对应的流通口11向外流出,使换热介质可以在不同的阀芯20之间进行流动,进一步增加了整个多通切换阀100的流通通路模式,提升了同一个多通切换阀100对于不同的换热循环系统的切换和控制效果。
相关技术中,为了适应更多数量的换热循环系统的控制,通常增加电子水阀的个数来实现多循环回路的需求。不同的电子水阀需要占用较多的安装空间,并需要分别进行装配操作,单独布置控制线路,操作复杂、集成化程度低。
可以理解的是,相比于现有技术中对于控制较多数量的换热循环系统时采用增加电子水阀的个数的方案,本申请实施例的多通切换阀100整个阀体集成度高,占用安装体积少、安装操作方便、通路模式多样且切换控制方便。
本申请的描述中,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征,用于区别描述特征,无顺序之分,无轻重之分。
在一些实施例中,驱动机构40为伺服电机、旋转电机,伺服电机控制精确。
在本申请的一些实施例中,如图2所示,还包括分隔件50,阀壳10通过分隔件50分隔为多个腔体,每个腔体中均设有一个阀芯20,位于各个腔体中的阀芯20具有相对稳定的工作环境,方便对各个阀芯20进行控制。
进一步地,如图2和图3所示,相邻的两个腔体之间的分隔件50上设有通口51,两个阀芯20的第二连通通道22通过通口51连通,在这些示例中,通过设置通口51可使位于两个腔体中的阀芯20内的换热介质在两者之间流动,使换热介质不仅能在各个腔体中的阀芯20内通过第一连通通道21和相对应的流通口11形成进出液;还能使换热介质在相邻的两个腔体内的阀芯20之间通过第二连通通道22和相对应的流通口11形成进出液,使换热介质的流动路径多样化。
为了方便描述,如图4至图7所示,将相邻的两个腔体分别记为第一腔体101和第二腔体102,并将第一腔体101中的阀芯20记为第一阀芯202,第二腔体102中的阀芯20记为第二阀芯203,且将驱动第一阀芯202的驱动机构40记为第一驱动机构41,驱动第二阀芯203的驱动机构40记为第二驱动机构42。
在一些实施例中,如图4和图5所示,第一腔体101中的第一阀芯202的转动轴201和第二腔体102中的第二阀芯203的转动轴201共轴线设置,也就是说,第一阀芯202的转动轴线与第二阀芯203的转动轴线共线。
进一步地,第一阀芯202和第二阀芯203分别设在相邻的第一腔体101和第二腔体102中;第一阀芯202与第一驱动机构41相连,第二阀芯203与第二驱动机构42相连,第一驱动机构41和第二驱动机构42分别设在阀壳10的不同侧,方便与第一阀芯202和第二阀芯203进行连接,可以理解的是,若将第一驱动机构41和第二驱动机构42分别设在阀壳10的同一侧,要想使两个阀芯20的转动轴201共线,那么第一驱动机构41和第二驱动机构42的输出端位于同一处,两个驱动机构40的输出端得设计为嵌套形式才能实现,这将使驱动机构40的结构过于复杂,也不方便腔体中阀芯20的布置。因此,本申请中要想使第一阀芯202和第二阀芯203共轴线转动,则选择将第一驱动机构41和第二驱动机构42分别设在阀壳10的不同侧。
在具体示例中,第一驱动机构41和第二驱动机构42可分别设在阀壳10的相对两侧,如左侧面和右侧面,或者前侧面和后侧面,亦或为上侧面和下侧面。
在如图4所示出的多通切换阀100第一方面的示例中,第一阀芯202和第二阀芯203相邻设置在两个腔体中,第二阀芯203设在第一阀芯202的轴向上,分隔件50设在阀芯20的轴向一端。那么,在这些示例中,第一阀芯202由第一驱动机构41驱动并可在第一腔体101中转动,第二阀芯203由第二驱动机构42驱动并可在第二腔体102中转动,分隔件50上的通口51使第一阀芯202中的第二连通通道22、第二阀芯203中的第二连通通道22相连,此时,换热介质则可从第二阀芯203中进入第一阀芯202中,再从第一阀芯202对应的流通口11向外排出;或者,换热介质可从第一阀芯202中进入第二阀芯203中,再从第二阀芯203对应的流通口11向外排出。这些示例中的分隔件50位于第一阀芯202和第二阀芯203的轴向上,分隔件50布置方便、结构简单;分隔件50可使第一阀芯202和第二阀芯203在轴向上的转动彼此分隔,两个阀芯20可各自独立转动、互不干扰。
在第一方面的示例中,通口51可以设在分隔件50的中部或者边缘,此时设在第一腔体101和第二腔体102中的第二连通通道22也需要对应通口51设计自身的延伸方向,使第二连通通道22能够与通口51保持连通,确保换热介质流动顺畅。
有利地,如图3所示,为了提升分隔件50的通口51与第二连通通道22连通时两者之间连接紧密,将分隔件50的通口51处设置翻边52,翻边52向着其中一个阀芯20的第二连通通道22的通道壁延伸,使翻边52能与通道壁配合紧密,确保换热介质在第二连通通道22中通过通口51时不发生串流或漏液。
在如图5所示的第二方面多通切换阀100的示例中,第一阀芯202和第二阀芯203相邻设置在第一腔体101和第二腔体102中,第一阀芯202的转动轴201和第二阀芯203的转动轴201共轴线设置。第一阀芯202和第二阀芯203中其中一个阀芯20外套在另一个阀芯20的外侧,例如在图5中为第二阀芯203外套在第一阀芯202的外侧,分隔件50围设在第一阀芯202周侧,使第二阀芯203和第一阀芯202形成为内外嵌套型的布置结构形式。分隔件50设在第一阀芯202的外周,而同时设在第二阀芯203的内周壁,使第一阀芯202和第二阀芯203均可在各自的腔体中独立转动。在这些示例中,由于两个阀芯20呈内外嵌套设置,因此,可极大地节约布置两个阀芯20所需的轴向的尺寸,使第一阀芯202和第二阀芯203布置时结构紧凑。
在第二方面的示例中,分隔件50上的通口51选择设在分隔件50的侧面,与通口51连通的第二连通通道22的至少部分需要沿第一阀芯202以及第二阀芯203的径向延伸,实现与通口51进行对接连通,确保换热介质流动顺畅。此时第二阀芯203和第一阀芯202的轴向一端的分隔件50上可不开设通口51,两个阀芯20的转动轴201在轴向上形成可靠的分隔。当第一阀芯202旋转后其内的第二连通通道22对准通口51,且第二阀芯203旋转后其内的第二连通通道22也同时对准通口51时,两者之间的换热介质可连通,并形成不同阀芯20之间的流通路径。
在一些实施例中,如图6和图7所示,相邻的两个腔体(可以为第一腔体101和第二腔体102)中的阀芯20(可以为第一阀芯202和第二阀芯203)的转动轴201平行设置,也就是说,第一阀芯202的转动轴线和第二阀芯203的转动轴线彼此平行。
进一步地,第一阀芯202和第二阀芯203分别设在相邻的第一腔体101和第二腔体102中;第一阀芯202与第一驱动机构41相连,第二阀芯203与第二驱动机构42相连,第一驱动机构41和第二驱动机构42分别设在阀壳10上,使阀壳10为第一驱动机构41和第二驱动机构42的安装提供了支撑,也使驱动机构40在带动阀芯20转动时,阀芯20可相对于阀壳10稳定旋转,不偏移。两个驱动机构40可设在阀壳10的同侧或不同侧,可根据实际的安装空间以及环境配合件来选择。
在如图6所示出的多通切换阀100第三方面的示例中,第一阀芯202和第二阀芯203相邻设置在两个腔体中,同时,第一阀芯202和第二阀芯203成行并排布置,分隔件50设在两个阀芯20之间。例如在具体示例中,第一阀芯202和第二阀芯203沿左右方向并排布置,此时的分隔件50则设在两者朝向彼此的一侧。分隔件50所在面可平行于转动轴201所在面,使阀壳10中形成两个形状规则的第一腔体101和第二腔体102,方便第一阀芯202和第二阀芯203中的第二连通通道22分别与分隔件50之间进行连通,也方便在第二连通通道22未与通口51连通时封堵通口51。
在这些示例中,为了方便第一阀芯202和第二阀芯203中的第二连通通道22同时与通口51连通,第一驱动机构41驱动第一阀芯202逆时针旋转时,第二驱动机构42则驱动第二阀芯203顺时针旋转,使两个阀芯20中的第二连通通道22能更快地与通口51形成连通。
在第三方面的示例中,通口51可选择设在分隔件50的中部或边缘区域,与此同时,两个阀芯20中的第二连通通道22也需要对应通口51的位置而改变其延伸方向,确保两个阀芯20在转动的过程中,能同时与通口51形成连通。
在第三方面的示例中,第一驱动机构41和第二驱动机构42可同时布置在阀壳10的同一侧,方便将阀壳10的其他侧留出来布置流通口11,使流通口11可布置的区域更多,也使第一驱动机构41和第二驱动机构42的装配和控制更加方便。
在如图7所示的第四方面多通切换阀100的示例中,第一阀芯202和第二阀芯203相邻设置在第一腔体101和第二腔体102中,第一阀芯202的转动轴201和第二阀芯203的转动轴201相平行,且两个转动轴201在轴向上错开设置在阀壳10中,分隔件50设在阀芯20的轴向。那么在这些示例中,两个阀芯20的布置形式更加灵活,此时的阀壳10可相应地设置为不规则阀壳,以适应更加多变的安装环境。
在第四方面的示例中,通口51选择设在分隔件50的边缘区域,使两个转动轴201能够在物理空间上相分隔,也使第二连通通道22能够沿着阀芯20的轴向延伸与通口51形成连通。
在第四方面的示例中,第一驱动机构41和第二驱动机构42分别设在阀壳10的不同侧,例如为左右两侧面,使阀壳10更容易以不同的阀芯20、第一驱动机构41为单元而设计结构、进行布置。
当然,本申请的多通切换阀100也不局限于上述四种示例中的布置形式,例如,在本申请第五方面多通切换阀100的示例中,如图8所示,还可以为第一阀芯202的转动轴线和第二阀芯203的转动轴线成角度布置,此时其中一个阀芯20上的第二连通通道22至少部分可沿着径向延伸并与通口51相连,而另一个阀芯20上的第二连通通道22则可沿着轴向延伸并与通口51相连,这里不做具体限制。
这里,两个阀芯20的转动轴201之间的夹角可以为90度、锐角或钝角,可根据实际情况进行选择。
在一些实施例中,上述分隔件50可以与阀壳10一体成型连接,使分隔件50的位置稳定,在换热介质的冲击下不会改变位置。
或者分隔件50与阀壳10的内壁焊接相连;或者,阀壳10上设置定位槽和支撑板,分隔件50定位在定位槽中,并支撑在支撑板上,相对于阀壳10的位置稳定、便于装配。
在本申请的一些实施例中,如图2和图3所示,阀壳10设有至少两个连接区域12,每个连接区域12上均设有多个流通口11,不同的连接区域12对应不同的阀芯20,每个连接区域12均可与外部装置相连接。例如,外部装置为外部管道,外部管道的接口对接在流通口11上,实现与内部阀芯20中的第一连通通道21或第二连通通道22相连通,实现换热介质在外部管道和内部阀芯20之间的流动。又例如,外部装置可以为集成式槽口,多个槽口分别与流通口11相接合,能同时实现同一个连接区域12上的多个流通口11与外部装置连通,布置方便、集成度高。
在一些实施例中,当阀壳10的表面为曲面时,连接区域12也形成为曲面;当阀壳10的表面为平面时,连接区域12也形成为平面,可根据实际情况合理选择。
在一些实施例中,如图1所示,布置在连接区域12上的流通口11可成阵列布置或成多行多列布置,也可以为随机间隔布置,可根据外部装置的安装环境、阀芯20内部所设置的第一连通通道21和/或第二连通通道22的结构进行优化。
在一些实施例中,流通口11的截面轮廓可以为圆形、方形或不规则多边形,可根据实际情况进行选择。
在本申请的一些实施例中,如图2和图3所示,第一连通通道21与第二连通通道22相分隔,也就是说,位于第一连通通道21中的换热介质不会流入到第二连通通道22中,位于第二连通通道22中的换热介质也不会流入到第一连通通道21中,使阀芯20中的换热介质的流路设计更加合理,防止不同的连通通道中的换热介质发生串流,确保各个连通通道在切换后能形成确切的通路模式,便于对多通切换阀100进行精确控制,提升多通切换阀100模式切换控制的稳定性。
在一些实施例中,第一连通通道21沿阀芯20的外周壁延伸,例如可以为沿外周壁平行于阀芯20的轴向延伸,或沿外周壁平行于阀芯20的径向延伸,或沿外周壁的与阀芯20的轴向或径向成角度延伸。进一步地,第一连通通道21可连通两个位置相近的流通口11,例如可以为相邻开设在阀壳10上的流通口11。或者,第一连通通道21可以连通两个位置较远的流通口11,例如为连接区域12对角线上的流通口11。
在一些实施例中,第一连通通道21包括内部流道和两个过口,两个过口通过内部流道连通,内部流道设在阀芯20的内部,两个过口位于阀芯20的外周壁上,充分利用阀芯20的结构开设足够多的第一连通通道21,并提升阀芯20的过流通路可选模式。
在一些实施例中,第二连通通道22根据分隔件50上的通口51以及阀壳10上的流通口11的位置而灵活设置结构,例如第二连通通道22的部分通道可以为沿阀芯20轴向延伸,第二连通通道22的部分通道可以沿阀芯20的径向延伸,第二连通通道22的部分通道可沿阀芯20的周向延伸,还可与阀芯20的转动轴201成角度延伸,这里不做具体限制,以方便连接流通口11和通口51为准。
在本申请的一些实施例中,如图2和图3所示,多通切换阀100还包括密封件30,密封件30设在阀壳10和阀芯20之间,密封件30对应多个流通口11设置相应的避让口。密封件30可对阀壳10与阀芯20之间的空间进行密封,以填充阀壳10和阀芯20之间的间隙,避免不同的第一连通通道21之间相互串流,也避免第一连通通道21和第二连通通道22发生串通。
在一些实施例中,密封件30与阀芯20相连并随阀芯20同步转动,此时的密封件30与阀芯20之间相对静止,阀芯20和密封件30均相对于阀壳10转动。例如在具体示例中,密封件30与阀芯20一体设计,减少零部件数量,方便安装。
进一步地,密封件30上的避让口与流通口11的数量一致,使第一连通通道21或第二连通通道22中的换热介质能穿过密封件30的避让口并从流通口11通入或通出。
在其他示例中,密封件30连接在阀壳10上,密封件30和阀壳10之间相对位置不变,阀芯20则可相对密封件30和阀壳10转动,方便安装密封件30,也使密封件30的避让口与流通口11能始终对应设置,不发生偏移,减少驱动机构40对阀芯20驱动所需的驱动力。
在一些实施例中,密封件30的材料为海绵、橡胶等具有一定弹性的材料,使密封件30与阀壳10、阀芯20之间具有一定压力和弹性变形应变力,提高密封性和使用寿命。
下面参考说明书附图描述本申请实施例的热管理系统1000,集成度高、安装方便且结构紧凑、便于控制。热管理系统1000主要用于进行流体分配或改变液体流向的场景中,例如可用于液压系统、空调系统和水循环系统、汽车的热管理冷却循环系统中对换热介质进行分配和流向控制。用于车辆中,主要指为电池、电机、功率器件、乘员舱之间进行换热能量分配的能量管理系统。
根据本申请实施例的一种热管理系统1000,如图9所示,包括:汇流板200和前述各个实施例的多通切换阀100,多通切换阀100的结构已经在前述各个示例中详细描述,在此不做赘述。
如图9所示,汇流板200内设有用于流通换热介质的多个流道220,这里的换热介质可以为温度较高的换热介质,用于为待调温部件升温保暖;也可以为温度较低的换热介质,用于为待调温部件降温散热。
这里还需要说明的是,汇流板200为内部开设有多种流道220的板体,作为中间汇流、分流与过渡的部件;可节约所需布置的换热循环系统的管路的长度,并使多个换热循环系统的管路的部分能在汇流板200内通过流道220的形式进行集成布置。这里还需要说明的是,汇流板200为内部开设有多种流道220的板体,作为中间汇流、分流与过渡的部件;可节约所需布置的换热循环系统的管路的长度,并使多个换热循环系统的管路的部分能在汇流板200内通过流道220的形式进行集成布置。汇流板200内设有多个流道220且汇流板200上设有多个接头。流道220可以是单层的也可以是多层的,汇流板200可以多层叠加。汇流板200可实现热管理系统1000里面的管道和接头集成到一个板体上。
进一步地,多通切换阀100设在汇流板200上,多个流道220分别与多个流通口11相连,至少一个阀芯20转动以控制流道220切换连通,以使热管理系统1000切换模式。
由上述结构可知,本申请实施例的热管理系统1000,汇流板200中设置的流道220可代替部分换热循环系统中的管路,通过将多通切换阀100与汇流板200内的流道220连通,在驱动机构40驱动阀芯20转动后,可改变不同流道220的通断以及不同流道220中换热介质的流量,调节不同换热循环系统的换热量,减少了布置管路所需的长度、集成度高且占用安装空间少、模式切换方便、整体控制简单。
在一些实施例中,如图9所示,汇流板200上设有进流接头210和出流接头230,其中流道220可连通进流接头210和出流接头230,进流接头210方便与水箱之间布置管路,出流接头230方便与换热循环系统的管路进行连接,使各管路与汇流板200装配快捷、操作方便。
在一些实施例中,热管理系统1000还包括循环泵(图未示出),循环泵也集成设在汇流板200上,并连接在水箱和多通切换阀100之间,循环泵可为换热循环系统泵送换热介质,并控制换热介质的流动方向,使热管理系统1000的集成度更高。
下面参考说明书附图描述本申请实施例的车辆。
根据本申请实施例的一种车辆,包括前述各个实施例的多通切换阀100,多通切换阀100的结构已经在前述各示例中进行详细描述,这里不做赘述。或者,包括前述各个实施例的热管理系统1000,热管理系统1000的结构已经在前述示例中进行详细描述,这里不做赘述。
由上述结构可知,本申请实施例的车辆,通过设置前述的多通切换阀100,流路切换模式丰富、结构简单、各部件之间集成化程度高。通过设置前述热管理系统1000,整体集成度高、安装布置方便、可集中控制,有利于整车的轻量化、集成化和智能化控制。
在一些实施例中,车辆主要为新能源车,新能源汽车包括纯电动汽车、增程式电动汽车、混合动力汽车、燃料电池电动车。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本申请中的具体含义。
图1中显示了两个阀芯20、两个驱动机构40用于示例说明的目的,但是普通技术人员在阅读了上面的技术方案之后、显然可以理解将该方案应用到其他数量阀芯20、驱动机构40的技术方案中,这也落入本申请的保护范围之内。
根据本申请实施例的多通切换阀100、热管理系统1000及车辆中换热循环系统的各个部件的冷却和散热、所填充的换热介质、待换热的部件,多通切换阀100的驱动机构40对阀芯20的驱动原理,对于本领域普通技术人员而言都是已知的,这里不再详细描述。
在本说明书的描述中,参考术语“实施例”、“示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
尽管已经示出和描述了本申请的实施例,本领域的普通技术人员可以理解:在不脱离本申请的原理和宗旨的情况下可以对这些实施例进行多种变化、修改、替换和变型,本申请的范围由权利要求及其等同物限定。

Claims (13)

  1. 一种多通切换阀,其中,包括:
    阀壳,所述阀壳上设有多个流通口;
    多个阀芯,多个所述阀芯可转动地设在所述阀壳内,所述阀芯均具有用于连通其中两个所述流通口的第一连通通道;其中至少两个所述阀芯中设有第二连通通道,至少相邻两个所述阀芯中的所述第二连通通道相连通,每个所述阀芯中的所述第二连通通道分别连通至少一个所述流通口;多个所述阀芯转动以使所述第一连通通道与不同的所述流通口切换连通和/或所述第二连通通道与不同的所述流通口切换连通;
    多个驱动机构,每个所述驱动机构分别驱动至少一个所述阀芯转动。
  2. 根据权利要求1所述的多通切换阀,其中,还包括分隔件,所述阀壳通过所述分隔件分隔为多个腔体,每个所述腔体中均设有一个所述阀芯,相邻的两个所述腔体之间的所述分隔件上设有通口,两个所述阀芯的第二连通通道通过所述通口连通。
  3. 根据权利要求2所述的多通切换阀,其中,相邻的两个所述腔体中的所述阀芯的转动轴共轴线设置,相邻的两个所述阀芯均与一个所述驱动机构相连,两个所述驱动机构分别设在所述阀壳的不同侧。
  4. 根据权利要求3所述的多通切换阀,其中,相邻的两个所述阀芯中其中一个所述阀芯设在另一个所述阀芯的轴向上,所述分隔件设在所述阀芯的轴向一端。
  5. 根据权利要求3所述的多通切换阀,其中,相邻的两个所述阀芯中其中一个所述阀芯外套在另一个所述阀芯的外侧,所述分隔件围设在内部的所述阀芯周侧。
  6. 根据权利要求2-5中任一项所述的多通切换阀,其中,相邻的两个所述腔体中的所述阀芯的转动轴平行设置,相邻的两个所述阀芯均与一个所述驱动机构相连,两个所述驱动机构分别设在所述阀壳上。
  7. 根据权利要求6所述的多通切换阀,其中,两个所述阀芯在所述阀壳中并排布置,所述分隔件设在两个所述阀芯之间。
  8. 根据权利要求6或7所述的多通切换阀,其中,两个所述阀芯在轴向上错开设置在所述阀壳中,所述分隔件设在所述阀芯的轴向。
  9. 根据权利要求1-8中任一项所述的多通切换阀,其中,所述阀壳设有至少两个连接区域,每个连接区域上均设有多个所述流通口,不同的所述连接区域对应不同的所述阀芯。
  10. 根据权利要求1-9中任一项所述的多通切换阀,其中,所述第一连通通道与所述第二连通通道相分隔。
  11. 根据权利要求1-10中任一项所述的多通切换阀,其中,还包括密封件,所述密封件设在所述阀壳和所述阀芯之间,所述密封件对应多个所述流通口设置相应的避让口。
  12. 一种热管理系统,其中,包括:
    汇流板,所述汇流板内设有用于流通换热介质的多个流道;
    根据权利要求1-11中任一项所述的多通切换阀,所述多通切换阀设在所述汇流板上,多个所述流道分别与多个所述流通口相连,至少一个所述阀芯转动以控制所述流道切换连通,以使所述热管理系统切换模式。
  13. 一种车辆,其中,包括根据权利要求1-11中任一项所述的多通切换阀;或者,包括根据权利要求12所述的热管理系统。
PCT/CN2023/071649 2022-01-27 2023-01-10 多通切换阀、热管理系统及车辆 WO2023143068A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210103024.4 2022-01-27
CN202210103024.4A CN116557591A (zh) 2022-01-27 2022-01-27 多通切换阀、热管理系统及车辆

Publications (1)

Publication Number Publication Date
WO2023143068A1 true WO2023143068A1 (zh) 2023-08-03

Family

ID=87470448

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/071649 WO2023143068A1 (zh) 2022-01-27 2023-01-10 多通切换阀、热管理系统及车辆

Country Status (2)

Country Link
CN (1) CN116557591A (zh)
WO (1) WO2023143068A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117146010A (zh) * 2023-10-31 2023-12-01 海力达汽车科技有限公司 多通阀

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005207632A (ja) * 2004-01-21 2005-08-04 Air Water Inc ロータリーバルブおよびそれを用いた冷凍機
JP2007321890A (ja) * 2006-06-01 2007-12-13 Yuken Kogyo Co Ltd ロータリーサーボバルブ
CN102207207A (zh) * 2010-03-17 2011-10-05 株式会社不二工机 流道切换阀和使用该流道切换阀的热泵装置
CN203532863U (zh) * 2013-09-04 2014-04-09 宋久林 一种旋转高低压切换阀
CN108591537A (zh) * 2018-06-19 2018-09-28 广东美芝精密制造有限公司 流体压力切换阀、变容旋转式压缩机和制冷循环装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005207632A (ja) * 2004-01-21 2005-08-04 Air Water Inc ロータリーバルブおよびそれを用いた冷凍機
JP2007321890A (ja) * 2006-06-01 2007-12-13 Yuken Kogyo Co Ltd ロータリーサーボバルブ
CN102207207A (zh) * 2010-03-17 2011-10-05 株式会社不二工机 流道切换阀和使用该流道切换阀的热泵装置
CN203532863U (zh) * 2013-09-04 2014-04-09 宋久林 一种旋转高低压切换阀
CN108591537A (zh) * 2018-06-19 2018-09-28 广东美芝精密制造有限公司 流体压力切换阀、变容旋转式压缩机和制冷循环装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117146010A (zh) * 2023-10-31 2023-12-01 海力达汽车科技有限公司 多通阀
CN117146010B (zh) * 2023-10-31 2024-01-30 海力达汽车科技有限公司 多通阀

Also Published As

Publication number Publication date
CN116557591A (zh) 2023-08-08

Similar Documents

Publication Publication Date Title
CN214222094U (zh) 多通阀及电动车热管理系统
WO2024060813A1 (zh) 一种集成式阀芯及其多通阀、阀泵装置和车身热管理系统
WO2024051038A1 (zh) 热管理集成模块及电动汽车
WO2023143068A1 (zh) 多通切换阀、热管理系统及车辆
WO2024051040A1 (zh) 热管理集成系统及电动汽车
WO2022242764A1 (zh) 多通阀、热管理系统和汽车
CN114043844A (zh) 车辆热管理系统
CN216200823U (zh) 一种汽车热管理模块集成多通阀及流体回路
WO2020143425A1 (zh) 电子阀、阀体结构、阀门、阀芯及电子阀的一体式阀芯结构
CN113883747B (zh) 冷媒换热装置及间接式热泵系统
CN114413031A (zh) 一种集成可比例调节的多通阀
CN114834209A (zh) 冷却液路集成座、热管理系统及车辆
WO2023030285A1 (zh) 流体控制组件和流体控制装置
WO2023030286A1 (zh) 流体控制组件和流体控制装置
CN218954104U (zh) 集成式冷却液路切换阀及具有该切换阀的热管理系统
CN219769588U (zh) 具有多通阀功能的集成热管理模块
CN216692265U (zh) 一种集成可比例调节的多通阀
WO2023143165A1 (zh) 热管理系统及具有其的车辆
CN115143306A (zh) 十二通阀、热管理系统及车辆
WO2023143211A1 (zh) 多通阀、热管理系统及车辆
CN217355662U (zh) 可切换多个通道流通状态的控制阀
CN220134683U (zh) 一种水阀
KR20240016710A (ko) 멀티웨이밸브
CN218031576U (zh) 多通阀及车辆
CN217355670U (zh) 五通阀、热管理系统和车辆

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23745951

Country of ref document: EP

Kind code of ref document: A1