WO2023030286A1 - 流体控制组件和流体控制装置 - Google Patents

流体控制组件和流体控制装置 Download PDF

Info

Publication number
WO2023030286A1
WO2023030286A1 PCT/CN2022/115676 CN2022115676W WO2023030286A1 WO 2023030286 A1 WO2023030286 A1 WO 2023030286A1 CN 2022115676 W CN2022115676 W CN 2022115676W WO 2023030286 A1 WO2023030286 A1 WO 2023030286A1
Authority
WO
WIPO (PCT)
Prior art keywords
port
fluid control
control assembly
sub
cavity
Prior art date
Application number
PCT/CN2022/115676
Other languages
English (en)
French (fr)
Inventor
汪立新
池建华
王昀
林龙
祝海军
Original Assignee
浙江三花汽车零部件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江三花汽车零部件有限公司 filed Critical 浙江三花汽车零部件有限公司
Priority to EP22863421.8A priority Critical patent/EP4397893A1/en
Publication of WO2023030286A1 publication Critical patent/WO2023030286A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K11/00Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves
    • F16K11/02Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit
    • F16K11/08Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only taps or cocks
    • F16K11/085Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only taps or cocks with cylindrical plug
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K27/00Construction of housing; Use of materials therefor
    • F16K27/06Construction of housing; Use of materials therefor of taps or cocks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/02Actuating devices; Operating means; Releasing devices electric; magnetic
    • F16K31/04Actuating devices; Operating means; Releasing devices electric; magnetic using a motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K5/00Plug valves; Taps or cocks comprising only cut-off apparatus having at least one of the sealing faces shaped as a more or less complete surface of a solid of revolution, the opening and closing movement being predominantly rotary
    • F16K5/06Plug valves; Taps or cocks comprising only cut-off apparatus having at least one of the sealing faces shaped as a more or less complete surface of a solid of revolution, the opening and closing movement being predominantly rotary with plugs having spherical surfaces; Packings therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K5/00Plug valves; Taps or cocks comprising only cut-off apparatus having at least one of the sealing faces shaped as a more or less complete surface of a solid of revolution, the opening and closing movement being predominantly rotary
    • F16K5/08Details

Definitions

  • the present application relates to the field of fluid control, in particular to a fluid control assembly and a fluid control device.
  • fluid control components need to be used in thermal management systems to control the fluid of multiple flow paths, such as motor vehicles. control to facilitate a more compact thermal management system.
  • the purpose of this application is to provide a fluid control assembly and a fluid control device, which can realize fluid control on multiple flow paths, and make the thermal management system more compact.
  • the embodiment of the present application provides a fluid control assembly, which has a receiving cavity and a communication port
  • the fluid control assembly includes a connecting body and a valve core
  • the connecting body includes a side wall part
  • the side wall part forms the At least part of the peripheral wall of the accommodation chamber
  • the communication port is located on the side wall
  • at least part of the valve core is located in the accommodation chamber and can be driven to rotate
  • the communication port includes a first port, a second port, The third port, the fourth port and the fifth port, along the axial direction of the side wall, the orthographic projection of the first port, the orthographic projection of the second port, the orthographic projection of the third port, the The orthographic projections of the fourth port and the fifth port are arranged at intervals along the circumferential direction of the valve core, wherein the fluid control assembly has at least one of the following four modes:
  • the spool In the first working mode, the spool is in the first position, the spool communicates the first port with the fifth port, and communicates the second port with the third port, In the second working mode, the spool is in the second position, the spool communicates the first port with the fourth port, and communicates the second port with the third port, In the third working mode, the spool is in the third position, the spool connects the first port with the second port, and connects the third port with the fifth port, In the fourth working mode, the spool is in the fourth position, the first port is in communication with the second port, and the third port is in communication with the fourth port.
  • the embodiment of the present application also provides a fluid control device, including a fluid management assembly and at least one fluid control assembly described in any one of the above-mentioned embodiments, the fluid control assembly has a communicating flow channel and an installation interface, so A portion of the fluid management component is mounted on the mounting interface, and a port of the fluid management component communicates with the flow channel.
  • the fluid control assembly includes a connecting body and a valve core, the fluid control assembly has a communication port, and the communication port includes a first port, a second port, a third port, and a fourth port and the fifth port, by rotating the spool, the spool can be located in a plurality of different positions, so that the fluid control assembly has at least one of four modes, and in the four modes, different communication ports can be realized.
  • the conduction method enables one fluid control component to control multiple flow paths, and it will be more compact when applying a thermal management system.
  • Fig. 1 is a schematic diagram of an exploded structure of a fluid control assembly provided by an embodiment of the present application
  • Fig. 2 is a schematic perspective view of the fluid control assembly shown in Fig. 1;
  • FIG. 3 is a schematic diagram of a three-dimensional structure of a connector provided by an embodiment of the present application.
  • Fig. 4 is a partial front structural schematic view of the fluid control assembly shown in Fig. 2;
  • Fig. 5 is a schematic cross-sectional structure diagram along the A-A direction in Fig. 4;
  • Fig. 6 is a schematic cross-sectional structural view of the connecting body shown in Fig. 3 at one of its positions;
  • Fig. 7 is a schematic cross-sectional structure diagram along the B-B direction in Fig. 4;
  • Fig. 8 is a schematic cross-sectional structural view of the connecting body shown in Fig. 3 at another position;
  • Fig. 9 is a schematic structural diagram of a first sealing member provided by an embodiment of the present application.
  • Fig. 10 is a front structural schematic view of the first seal shown in Fig. 9;
  • Fig. 11 is a schematic structural view along the C-C direction in Fig. 10;
  • Fig. 12 is a schematic structural diagram along the D-D direction in Fig. 10;
  • Fig. 13 is an orthographic view of each channel of the first seal in Fig. 10 along the axial direction of the first seal;
  • Fig. 14 is a schematic diagram of a three-dimensional structure of a valve core provided by an embodiment of the present application.
  • Fig. 15 is a schematic front view of the valve core shown in Fig. 13;
  • Figure 16 is a schematic structural view along the E-E direction in Figure 15;
  • Fig. 17 is a schematic structural view along the F-F direction in Fig. 15;
  • Fig. 18 is a schematic cross-sectional structural view of the valve core shown in Fig. 14 at one of its positions;
  • Fig. 19 is a structural schematic diagram of the conduction mode of each communication port when the fluid control assembly shown in Fig. 2 is in the first working position;
  • Fig. 20 is a structural schematic diagram of the conduction mode of each communication port when the fluid control assembly shown in Fig. 2 is in the second working position;
  • Fig. 21 is a structural schematic diagram of the conduction mode of each communication port when the fluid control assembly shown in Fig. 2 is in the third working position;
  • Fig. 22 is a structural schematic diagram of the conduction mode of each communication port when the fluid control assembly shown in Fig. 2 is in the fourth working position;
  • Fig. 23 is a schematic diagram of an exploded structure of a fluid control assembly provided by another embodiment of the present application.
  • Fig. 24 is a schematic perspective view of the fluid control assembly shown in Fig. 23;
  • Fig. 25 is a partial cross-sectional structural schematic diagram of the fluid control assembly shown in Fig. 24;
  • Fig. 26 is a schematic structural diagram of a linker provided in another embodiment of the present application.
  • Fig. 27 is a schematic cross-sectional structure diagram of the connecting body shown in Fig. 26;
  • Fig. 28 is a schematic perspective view of a second sealing member provided by an embodiment of the present application.
  • Fig. 29 is a schematic cross-sectional structure diagram of the second sealing member shown in Fig. 28;
  • Fig. 30 is a schematic structural view of a valve core provided by another embodiment of the present application.
  • Fig. 31 is a schematic cross-sectional structure diagram of the valve core shown in Fig. 30;
  • Fig. 32 is a structural schematic diagram of the conduction mode of each communication port when the fluid control assembly shown in Fig. 24 is in the first working position;
  • Fig. 33 is a structural schematic diagram of the conduction mode of each communication port when the fluid control assembly shown in Fig. 24 is in the second working position;
  • Fig. 34 is a structural schematic diagram of the conduction mode of each communication port when the fluid control assembly shown in Fig. 24 is in the third working position;
  • Fig. 35 is a structural schematic diagram of the conduction mode of each communication port when the fluid control assembly shown in Fig. 24 is in the fourth working position;
  • Fig. 36 is a schematic structural view of a fluid control device provided by an embodiment of the present application.
  • Fig. 37 is a schematic structural diagram of a fluid control device provided by another embodiment of the present application.
  • An embodiment of the present application provides a fluid control assembly, which can be used in a vehicle thermal management system, specifically, a coolant circulation system, and can perform the functions of conducting and switching the flow path of the thermal management system.
  • the fluid control assembly 1 includes a connecting body 10 and a valve core 20.
  • the fluid control assembly 1 has a housing chamber 101 and a communication port 102.
  • the communication port 102 is adjacent to the housing chamber 101 and communicates with the housing chamber 101.
  • the body 10 includes a side wall portion 11, the side wall portion 11 forms at least part of the surrounding wall of the accommodating cavity 101, the communication port 102 is located at the side wall portion 11, the connecting body 10 may also include a top wall portion and a bottom cover 12, the side wall portion 11, the top The wall portion and the bottom cover 12 define an accommodating cavity 101, at least part of the side wall portion 11 is located between the top wall portion and the bottom cover 12, and one of the top wall portion and the bottom cover 12 can be integrally injection molded with the side wall portion 11 as An integral structure, and the other is in sealing connection with the side wall portion 11 , at least a part of the valve core 20 is located in the accommodating chamber 101 and the valve core 20 can be driven to rotate.
  • the fluid control assembly 1 further includes a driving assembly 50, the driving assembly 50 includes a driving member, and the driving member may include a motor or a combination of a motor and a transmission gear set, and the driving member is in transmission connection with the valve core 20, so that the driving member drives the valve The core 20 rotates.
  • the fluid control assembly 1 has a flow channel 43, and the flow channel 43 communicates with the corresponding communication port 102.
  • the fluid control assembly 1 also includes a first flow channel.
  • Plate 41, the first flow channel plate 41 forms a part of the wall portion of the flow channel 43, the first flow channel plate 41 extends from the outer surface of the side wall portion 11 in a direction away from the receiving cavity 101, the first flow channel plate 41 can be integrally injected with the connecting body 10 integrated structure.
  • the first flow channel plate 41 can have better sealing performance with the connecting body 10 , and it is convenient to reduce the number of parts of the fluid control assembly 1 and improve the assembly efficiency of the fluid control assembly 1 .
  • the fluid control assembly 1 may also include a second flow channel plate 42, which is sealed with the first flow channel plate 41 and forms the wall of the flow channel 43. At this time, the first flow channel plate 41 and the second flow channel plate The flow channel plate 42 encloses and forms a flow channel 43 .
  • the second flow channel plate 42 can be welded with the first flow channel plate 41.
  • the fluid control assembly 1 also has an installation interface 44 communicating with the flow channel 43. The installation interface 44 is located between the first flow channel plate 41 and the second flow channel. One of the plates 42, the mounting interface 44, is capable of communicating with a port of the fluid management assembly.
  • the fluid management component may be, but not limited to, one or a combination of a heat exchanger, a water pump, and a liquid reservoir.
  • the fluid management component is conveniently communicated with the fluid control component 1, and the fluid management component and fluid control components can be reduced. Piping between components 1.
  • the figures show a fluid control assembly 1 provided by an embodiment of the present application.
  • the fluid control assembly 1 further includes a first seal 30 along the radial direction of the accommodating cavity 101 , at least part of the first sealing member 30 is located between the side wall portion 11 and the valve core 20 for sealing the fluid control assembly 1 .
  • the first sealing member 30 includes a channel 31 corresponding to the communication port 102.
  • the first sealing member 30 includes the same number of channels 31 as the communication port 102 and one-to-one communication, as shown in FIGS.
  • the orthographic projections of all the holes 31 of the first sealing member 30 are arranged at intervals along the circumferential direction of the valve core 20, the holes 31 include a first hole 32 and a second hole 33, the first The holes 32 and the second holes 33 are arranged at intervals along the axial direction of the first seal 30. Specifically, as shown in FIG.
  • the first seal 30 of the flow control device provided by the embodiment of the present application can facilitate the increase of the wall distance between the two holes 31 at the same height, so that the valve core 20 can rotate The wall portion of the first sealing member 30 is compressed during this time, which is convenient to improve the sealing performance of the fluid control assembly.
  • the first sealing member 30 includes a first matching portion 34
  • the connecting body includes a limiting portion 14, and the first matching portion 34 is limitedly connected with the limiting portion 14, for example, the first matching portion 34 It may be one of a hole structure and a protruding structure, and the limiting portion 14 may be the other of a hole structure and a protruding structure, and the protruding structure is embedded in the hole structure for limiting.
  • the communication port 102 includes a first communication port 1021 and a second communication port 1022, the first communication port 1021 and the second communication port 1022 are arranged at intervals along the axial direction of the side wall portion 11, the first communication port 1021 and the first communication port 1021
  • the holes 32 communicate correspondingly
  • the second communication port 1022 communicates with the second hole 33 correspondingly.
  • the communication port 102 may include three first communication ports 1021 and two second communication ports 1022, the three first communication ports 1021 may be located at the same height of the fluid control assembly 1, and the two second communication ports 1022 may be Located at the same height of the fluid control assembly, along the axial direction of the side wall portion 11 , the orthographic projections of the three first communication ports 1021 are adjacently arranged, and the orthographic projections of the two second communication ports 1022 are adjacently arranged.
  • the orthographic projection of each communicating port along the axial direction of the valve core 20 includes the area enclosed by the orthographic projection of the walls of each communicating port along the axial direction of the valve core 20, the axial direction of the side wall 11, the valve
  • the axial direction of the core 20 and the axial direction of the first sealing member 30 are parallel or coincident.
  • the channels 31 of the first sealing member 30 include at least one first channel 32 and at least two second channels 33 .
  • all the first channels 32 The orthographic projections of all the second channels 33 are set adjacent to each other.
  • the tunnel 31 of the first sealing member 30 includes three first tunnels 32 and two second tunnels 33, the three first tunnels 32 may be located at the same height of the first sealing member 30, and the two second tunnels
  • the holes 33 can be located at the same height of the first sealing member 30.
  • the orthographic projections of the three first holes 32 are arranged adjacently, and the orthographic projections of the two second holes 33 are arranged adjacently. In this way, the angle between two adjacent first channels 32 may be 90 degrees, and the angle between two adjacent second channels 33 may be 45 degrees.
  • three first channels 32 are defined as the first sub-channel 321, the second sub-channel 322 and the third sub-channel 323 respectively, and two second channels 33 are defined as the fourth sub-channel 331 and the third sub-channel 323 respectively.
  • the first sealing member 30 includes a first circumferential wall portion 35 and a second circumferential wall portion 36, along the axial direction of the first sealing member 30, the orthographic projection of the first circumferential wall portion 35 and the second circumferential wall
  • the orthographic projection of the portion 36 is arranged along the circumferential direction of the valve core 20, the first circumferential wall portion 35 is located between the first sub-hole 321 and the third sub-hole 323, and the first circumferential wall portion 35 and the second sub-hole 322 are separately arranged in the On both sides of the first sealing member 30 in the radial direction, the central angle a1 corresponding to the first circumferential wall part 35 is greater than 90 degrees and less than 180 degrees, and the second circumferential wall part 36 is located between the fourth sub-channel 331 and the fifth sub-channel 332 , the central angle a2 corresponding to the second circumferential wall portion 36 is greater than 180 degrees.
  • the fluid control assembly provided by the embodiment of the present application can increase the wall between the two holes 31 at the same height. The distance is convenient to improve the sealing performance of the fluid control components.
  • the spool 20 When the spool 20 is rotating, due to factors such as the control accuracy of the drive assembly 50 or the delay in signal transmission or the moment of inertia of the spool component 20, the spool 20 may stop before the set angle or exceed the set angle. Continue to rotate, it is easy to make the spool 20 produce a rotation tolerance, for example, the rotation tolerance angle of the spool part 20 can be ⁇ 5 degrees, that is, the spool 20 may turn to stop 5 degrees before the set angle or continue after exceeding the set angle Rotate 5 degrees and stop.
  • the first sealing member 30 in order to make the first sealing member 30 contact with the valve core member 20 in each stroke range of the valve core member 20 rotation, so that the first sealing member 30 has better sealing performance, in this implementation
  • the first holes 32 and the second holes 33 are arranged at intervals along the axial direction of the first sealing member 30, the distance between the walls between the two holes 31 at the same height position can be increased, so that the valve The core 20 is in contact with the wall of the first sealing member 30 within the stroke range, so as to improve the sealing performance of the first sealing member 30 .
  • the valve core 20 includes a first chamber group 21 , a partition plate 23 and a second chamber group 22 .
  • the partition plate 23 is located at the Between the first chamber group 21 and the second chamber group 22, the first chamber group 21 has at least two mutually isolated first conduction chambers 211, and the second chamber group 22 has at least two mutually isolated second conduction chambers 221 , the partition plate 23 has a through hole 231, a part of the number of the first conduction cavity 211 and a part of the number of the second conduction cavity 221 communicate through the through hole 231 correspondingly, the rotary valve core 20 can pass through the first conduction cavity 211, through the through hole 231 The hole 231 and the second conduction cavity 221 make the corresponding communication ports 102 of the first channel 32 and the second channel 33 conduct.
  • the communication port 102 of the fluid control assembly includes the first port P1, the second port P2, the third port P3, the fourth port P4 and the fifth port P5, the orthographic projection of the first port P1,
  • the orthographic projection of the second port P2, the orthographic projection of the third port P3, the orthographic projection of the fourth port P4 and the orthographic projection of the fifth port P5 are arranged at intervals along the circumferential direction of the valve core 20 and are arranged sequentially.
  • the orthographic projections of the five ports are arranged counterclockwise along the circumferential direction of the valve core 20 as an example for illustration.
  • the orthographic projections of the first port P1, the orthographic projections of the second port P2, and the orthographic projections of the third port P3 , the orthographic projection of the fourth port P4 and the orthographic projection of the fifth port P5 are arranged clockwise along the circumferential direction of the valve core 20 .
  • the first port P1, the second port P2 and the third port P3 are located at one level of the fluid control assembly 1
  • the fourth port P4 and the fifth port P5 are located at the other level of the fluid control assembly 1.
  • the first port P1 is connected to the first sub-channel 321
  • the second port P2 is connected to the second sub-channel 322
  • the third port is connected to the third sub-channel 323, the first port P1 and the third port
  • One of the P3 and the second port P2 can be connected through the first conduction chamber 211
  • one of the fourth port P4 and the fifth port P5 can be connected with the first port P1 through the first conduction chamber 211 and the through hole.
  • the second conduction cavity 221, the corresponding first channel 32 and the corresponding second channel 33 are in conduction
  • one of the fourth port P4 and the fifth port P5 and the third port P3 can pass through the first conduction cavity 211 , the through hole 231 , the second conducting cavity 221 , the corresponding first channel 32 and the corresponding second channel 33 are in communication.
  • the number of communication ports 102 of the fluid control assembly may be three, four, five, six or more, which is not limited in this application.
  • the first conduction chamber 211 of the valve core 20 includes an isolated first chamber CA1 and a second chamber CA2, and the second conduction chamber 221 includes an isolated third chamber.
  • CA3 and the fourth chamber CA4 along the axial direction of the spool 20, the orthographic projections of the third chamber CA3 and the fourth chamber CA4 are located inside the orthographic projection of the first chamber CA1, the through hole 231 of the partition plate 23 It includes a first through hole 2311 and a second through hole 2312 , the third cavity CA3 communicates with the first cavity CA1 through the first through hole 2311 , and the fourth cavity CA4 communicates with the first cavity CA1 through the second through hole 2312 .
  • the second cavity CA2 can make one of the first port P1 and the third port P3 conduct with the second port P2, the first cavity CA1, the first through hole 2311, the third cavity CA3 , the second through hole 2312 and the fourth cavity CA4 can make one of the first port P1 and the third port P3 conduct with one of the fourth port P4 and the fifth port P5 .
  • the fluid control assembly has the following four working modes At least one of the various working modes can be switched by rotating the spool 20:
  • the fluid control assembly is in the first working mode, the spool 20 is in the first position, the spool 20 connects the first port P1 and the fifth port P5, and the spool 20 connects the second port P2 and the fifth port
  • the three ports P3 are turned on. Specifically, the first port P1 and the fifth port P5 communicate through the first sub-hole 321, the first cavity CA1, the first through hole 2311, the third cavity CA3 and the fifth channel 332, the fourth port P4 is in a closed state, and the fourth port P4 is in a closed state.
  • the second port P2 and the third port P3 communicate through the second sub-port 322 , the second cavity CA2 and the third sub-port 323 .
  • the position of the valve core 20 refers to the position of the valve core 20 relative to the connecting body 10 .
  • the fluid control assembly is in the second working mode, the spool 20 is in the second position, the spool 20 makes the first port P1 and the fourth port P4 conduct, and the spool 20 makes the second port P2 and the fourth port
  • the three ports P3 are connected, specifically, the first port P1 and the fourth port P4 are connected through the first sub-hole 321, the first cavity CA1, the first through hole 2311, the third cavity CA3 and the fourth sub-hole 331, and the fifth
  • the port P5 is in a closed state, and the second port P2 and the third port P3 communicate through the second sub-port 322 , the second cavity CA2 and the third sub-port 323 .
  • the fluid control assembly is in the third working mode, the spool 20 is in the third position, the spool 20 makes the third port P3 and the fifth port P5 conduct, and the spool 20 makes the first port P1 and the fifth port P5 connect.
  • the second port P2 is connected, specifically, the third port P3 and the fifth port P5 are connected through the third sub-hole 323, the first cavity CA1, the second through hole 2312, the fourth cavity CA4 and the fifth channel 332, and the fourth port P4 is in a closed state, and the first port P1 and the second port P2 communicate through the first sub-channel 321 , the second cavity CA2 and the second sub-channel 322 .
  • the fluid control assembly is in the fourth working mode, the spool 20 is in the fourth position, the spool 20 makes the third port P3 and the fourth port P4 conduct, and the spool 20 makes the first port P1 and the
  • the second port P2 is connected, specifically, the third port P3 and the fourth port P4 are connected through the third sub-hole 323, the first cavity CA1, the second through hole 2312, the fourth cavity CA4 and the fourth sub-hole 331, and the fifth
  • the port P5 is in a closed state, and the first port P1 and the second port P2 communicate through the first sub-channel 321 , the second cavity CA2 and the second sub-channel 322 .
  • the fluid control assembly can be provided with two layers of communication ports along the axial direction of the side wall portion 11, which are respectively the first communication port and the second communication port, and the first sealing member 30 is provided with two layers of channels, which are respectively the first channel and the second channel, the valve core 20 is provided with two layers of conducting chambers to realize multiple communication modes of the communication ports.
  • the fluid control assembly can also be provided with three layers of communication ports along the axial direction of the side wall portion 11, the first sealing member 30 is provided with three layers of holes, and the valve core 20 is provided with three layers of conduction chambers, so as to realize the connection of the communication ports.
  • the fluid control assembly provided by another embodiment of the present application is different from the fluid control assembly of any of the above-mentioned embodiments in that the first port P1, the second port P2, the second port The three ports P3, the fourth port P4 and the fifth port P5 are all located at the same height of the fluid control assembly 1, and the valve core 20 includes the fifth chamber CA5, the sixth chamber CA6 and the seventh chamber CA7 which are isolated from each other, along the valve core 20 In the radial direction, the sixth cavity CA6 is located between the fifth cavity CA5 and the seventh cavity CA7, and any one of the fifth cavity CA5 and the seventh cavity CA7 can make two adjacent communication ports 102 in the circumferential direction conduct, and the sixth The cavity CA6 can conduct the first port P1 and the fourth port P4, or the sixth cavity CA6 can conduct the third port P3 and the fifth port P5.
  • the fluid control assembly 1 further includes a second seal 70
  • the second seal 70 includes passages 71 that are the same in number as the communicating ports 102 and communicated correspondingly, and the passages 71 are along the valve
  • the cores 20 are evenly arranged in the circumferential direction, and the channels 71 are located at the same height of the second sealing member 70 .
  • the second sealing member may include a second matching portion 72
  • the connecting body 10 includes a limiting portion 14, and the second matching portion 72 and the limiting portion 14 cooperate with each other to secure the second sealing member 70.
  • the position of the second matching portion 72 may be similar to the structure of the first matching portion 34 shown in FIG.
  • the channel 71 of the second sealing member 70 includes a first sub-channel 711, a second sub-channel 712, a third sub-channel 713, a fourth sub-channel 714, a fifth sub-channel 715, the first sub-channel 711 and
  • the first port P1 communicates
  • the second sub-channel 712 communicates with the second port P2
  • the third sub-channel 713 communicates with the third port P3
  • the fourth sub-channel 714 communicates with the fourth port P4
  • the fifth sub-channel 715 communicates with the fifth port.
  • Port P5 is connected.
  • the spool 20 in the first working mode, the spool 20 is in the first position, the spool 20 connects the first port P1 to the fifth port P5, and the spool 20 connects the second port P2 to the third port P3 conduction.
  • the first port P1 and the fifth port P5 are connected through the fifth cavity CA5
  • the second port P2 and the third port P3 are connected through the seventh The cavity CA7, the second sub-channel 712 and the third sub-channel 713 are conducted.
  • the spool 20 in the second working mode, the spool 20 is in the second position, the spool 20 connects the first port P1 and the fourth port P4, and the spool 20 connects the second port P2 to the third port P3 conduction.
  • the first port P1 and the fourth port P4 are connected through the sixth cavity CA6, the first sub-channel 711 and the fourth sub-channel 714, the second port P2 and the third port P3 are connected through the seventh cavity CA7, the second sub-channel The channel 712 and the third sub-channel 713 are turned on.
  • the spool 20 in the third working mode, the spool 20 is in the third position, the spool 20 connects the first port P1 and the second port P2, and the spool 20 connects the third port P3 to the fifth port P5. conduction.
  • the first port P1 and the second port P2 are connected through the seventh cavity CA7
  • the third port P3 and the fifth port P5 are connected through the sixth cavity CA6, the third sub-channel Channel 713 and fifth sub-channel 715 conduct.
  • the spool 20 in the fourth working mode, the spool 20 is in the fourth position, the spool 20 connects the first port P1 and the second port P2, and the spool 20 connects the third port P3 and the fourth port P4 conduction.
  • the first port P1 and the second port P2 are connected through the seventh cavity CA7
  • the third port P3 and the fourth port P4 are connected through the fifth cavity CA5, the third sub-channel Channel 713 and fifth sub-channel 715 conduct.
  • the fluid control assembly 1 provided according to the embodiment of the present application includes a connecting body 10 and a valve core 20.
  • the fluid control assembly 1 has a communication port 102, and the communication port 102 includes a first port P1, a second port P2, and a third port. P3, the fourth port P4 and the fifth port P5, by rotating the spool 20, the spool 20 can be located in multiple different positions, so that the fluid control assembly 1 has at least one of four modes, among the four modes Different conduction modes between multiple communication ports 102 can be realized, so that one fluid control assembly 1 can control multiple flow paths, which is more convenient and compact during use, and is convenient for popularization and application.
  • the embodiment of the present application also provides a fluid control device 1000
  • the fluid control device 1000 includes a fluid management assembly 61 and at least one fluid control assembly provided in any of the above-mentioned embodiments 1, wherein the fluid control device 1000 has a flow channel 43, and the fluid management component 61 may include but not limited to one or a combination of a heat exchanger, an electric pump, and a liquid reservoir.
  • the fluid control assembly 1 includes a first flow channel plate 41 and a second flow channel plate 42, the second flow channel plate 42 is sealed with the first flow channel plate 41 and forms the wall of the flow channel 43, the first flow channel plate 41 can be connected with the connecting body 10 Integral injection molding structure, the second flow channel plate 42 can be welded with the first flow channel plate 41, the fluid control assembly also has an installation interface 44 communicating with the flow channel, the installation interface 44 is located between the first flow channel plate 41 and the second flow channel plate 41 One of the flow channel plates 42 , the mounting interface 44 can communicate with a port of the fluid management assembly 16 .
  • the fluid control assembly 1 may also include a second flow channel plate 42, which is sealed with the first flow channel plate 41 and forms the wall of the flow channel 43. At this time, the first flow channel plate 41 and the second flow channel plate The flow channel plate 42 encloses and forms a flow channel 43 .
  • the second flow channel plate 42 can be welded with the first flow channel plate 41, and the fluid control assembly 1 also has an installation interface 44 communicating with the flow channel.
  • the installation interface 44 is located between the first flow channel plate 41 and the second flow channel plate. At least one of 42 , at least part of the fluid management component 61 is mounted on the installation interface 44 , and the port of the fluid management component 61 and the channel in the fluid management component 61 communicate with the flow channel 43 .
  • the fluid management component can be easily communicated with the fluid control component 1 , and the pipeline between the fluid management component and the fluid control component 1 can be reduced.
  • the fluid control device provided in the embodiment of the present application has the same beneficial effect as that of the fluid control assembly 1 provided in any of the above-mentioned embodiments, which will not be repeated here.
  • the fluid control device 1000 may also include structures such as a connecting pipe 62 and a temperature sensor.
  • the connecting pipe 62 and the temperature sensor can be connected to at least one of the first flow channel plate 41 and the second flow channel plate 42 and sealed, so that the channels in the fluid management assembly 61, the channels in the connecting pipe 62 and the channels in the fluid control assembly 1 43 to facilitate the reduction of pipeline connections among the fluid control assembly 1 , the fluid management assembly 61 and each connecting pipe 62 , which can improve the integration degree of the fluid control device 1000 .

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Multiple-Way Valves (AREA)

Abstract

一种流体控制组件和流体控制装置被公开。该流体控制组件包括连接体(10)、阀芯(20)和连通口(102),连通口至少包括第一口(P1)、第二口(P2)、第三口(P3)、第四口(P4)和第五口(P5),流体控制组件具有以下四个工作模式的至少其中之一:在第一工作模式,阀芯位于第一位置,阀芯使第一口与第五口导通、以及使第二口与第三口导通,在第二工作模式,阀芯位于第二位置,阀芯使第一口与第四口导通、以及使第二口与第三口导通,在第三工作模式,阀芯位于第三位置,阀芯使第一口与第二口导通,以及使第三口和第五口导通,在第四工作模式,阀芯位于第四位置,第一口与第二口导通,以及使第三口和第四口导通;这样能够实现对多个流路的流体控制。

Description

流体控制组件和流体控制装置
本申请要求于2021年08月30日提交中国专利局、申请号为202111005737.9、发明名称为“流体控制组件和流体控制装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及流体控制领域,具体涉及一种流体控制组件和流体控制装置。
背景技术
通常,热管理系统中需要使用流体控制组件对多个流路的流体控制,如机动车,目前一般可能会用多个流体控制组件进行控制,提供一个流体控制组件对多个流路的流体进行控制,以有利于热管理系统更加紧凑。
发明内容
本申请的目的是提供一种流体控制组件和流体控制装置,能够实现对多个流路的流体控制,热管理系统更加紧凑。
一方面,本申请实施例提供一种流体控制组件,具有容纳腔和连通口,所述流体控制组件包括连接体和阀芯,所述连接体包括侧壁部,所述侧壁部形成所述容纳腔的至少部分周壁,所述连通口位于所述侧壁部,所述阀芯的至少部分位于所述容纳腔且能够在带动下转动,所述连通口包括第一口、第二口、第三口、第四口和第五口,沿所述侧壁部的轴向,所述第一口的正投影、所述第二口的正投影、所述第三口的正投影、所述第四口的正投影以及所述第五口的正投影沿所述阀芯的圆周方向间隔排布,其中,所述流体控制组件具有以下四个模式的至少其中之一:
在第一工作模式,所述阀芯位于第一位置,所述阀芯使所述第一口与所述第五口导通、以及使所述第二口与所述第三口导通,在第二工作模式,所述阀芯位于第二位置,所述阀芯使所述第一口与所述第四口导通、以及 使所述第二口与所述第三口导通,在第三工作模式,所述阀芯位于第三位置,所述阀芯使所述第一口与所述第二口导通,以及使所述第三口和所述第五口导通,在第四工作模式,所述阀芯位于第四位置,所述第一口与所述第二口导通,以及使所述第三口和所述第四口导通。
另一方面,本申请实施例还提供一种流体控制装置,包括流体管理组件以及至少一个上述任一实施方式所述的流体控制组件,所述流体控制组件具有连通的流道和安装接口,所述流体管理组件的部分安装于所述安装接口,且所述流体管理组件的端口与所述流道连通。
根据本申请实施例提供的流体控制组件和流体控制装置,流体控制组件包括连接体和阀芯,流体控制组件具有连通口,连通口包括第一口、第二口、第三口、第四口和第五口,通过旋转阀芯能够使阀芯位于多个不同的位置,从而使得流体控制组件具有四个模式的至少其中之一,在四个模式中能够实现多个连通口之间的不同的导通方式,使得一个流体控制组件可对多个的流路进行控制,在应用热管理系统时会更加紧凑。
附图说明
图1是本申请一个实施例提供的流体控制组件的分解结构示意图;
图2是图1中示出的流体控制组件的立体结构示意图;
图3是本申请一个实施例提供的连接体的立体结构示意图;
图4是图2中示出的流体控制组件的局部正视结构示意图;
图5是图4中沿A-A方向的截面结构示意图;
图6是图3中示出的连接体在其中一个位置处的截面结构示意图;
图7是图4中沿B-B方向的截面结构示意图;
图8是图3中示出的连接体在另一个位置处的截面结构示意图;
图9是本申请一个实施例提供的第一密封件的结构示意图;
图10是图9中示出的第一密封件的正视结构示意图;
图11是图10中沿C-C方向的结构示意图;
图12是图10中沿D-D方向的结构示意图;
图13是图10中的第一密封件的各孔道沿第一密封件轴向的正投影视 图;
图14是本申请一个实施例提供的阀芯的立体结构示意图;
图15是图13中示出的阀芯的正视结构示意图;
图16是图15中沿E-E方向的结构示意图;
图17是图15中沿F-F方向的结构示意图;
图18是图14中示出的阀芯在其中一个位置处的截面结构示意图;
图19是图2中示出的流体控制组件在第一工作位置时各连通口导通方式的结构示意图;
图20是图2中示出的流体控制组件在第二工作位置时各连通口导通方式的结构示意图;
图21是图2中示出的流体控制组件在第三工作位置时各连通口导通方式的结构示意图;
图22是图2中示出的流体控制组件在第四工作位置时各连通口导通方式的结构示意图;
图23是本申请另一个实施例提供的流体控制组件的分解结构示意图;
图24是图23中示出的流体控制组件的立体结构示意图;
图25是图24中示出的流体控制组件的局部剖视结构示意图;
图26是本申请另一个实施例提供的连接体的结构示意图;
图27是图26中示出的连接体的截面结构示意图;
图28是本申请一个实施例提供的第二密封件的立体结构示意图;
图29是图28中示出的第二密封件的截面结构示意图;
图30是本申请另一个实施例提供的阀芯的结构示意图;
图31是图30中示出的阀芯的截面结构示意图;
图32是图24中示出的流体控制组件在第一工作位置时各连通口导通方式的结构示意图;
图33是图24中示出的流体控制组件在第二工作位置时各连通口导通方式的结构示意图;
图34是图24中示出的流体控制组件在第三工作位置时各连通口导通方式的结构示意图;
图35是图24中示出的流体控制组件在第四工作位置时各连通口导通方式的结构示意图;
图36是本申请一个实施例提供的流体控制装置的结构示意图;
图37是本申请另一个实施例提供的流体控制装置的结构示意图。
具体实施方式
下面使详细描述本申请的各个方面的特征和示例性实施例,为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及具体实施例,对本申请进行进一步描述。本文中,诸如“第一”和“第二”等之类的关系术语仅仅用来将一个与另一个具有相同名称的部件区分开来,而不一定要求或者暗示这些部件之间存在任何这种实际的关系或者顺序。
本申请实施例提供一种流体控制组件,能够用于车辆热管理系统,具体可以用于冷却液循环系统,能够起到对热管理系统的流路导通以及切换功能。
如图1至图35所示,流体控制组件1包括连接体10和阀芯20,流体控制组件1具有容纳腔101和连通口102,连通口102邻近容纳腔101且与容纳腔101连通,连接体10包括侧壁部11,侧壁部11形成容纳腔101的至少部分周壁,连通口102位于侧壁部11,连接体10还可以包括顶壁部以及底盖12,侧壁部11、顶壁部以及底盖12限定容纳腔101,侧壁部11的至少部分位于顶壁部以及底盖12之间,顶壁部以及底盖12的其中一者可以与侧壁部11一体注塑成型为一体结构,另一者与侧壁部11密封连接,阀芯20的至少部分位于容纳腔101且阀芯20能够在带动下转动。可选地,流体控制组件1还包括驱动组件50,驱动组件50包括驱动件,驱动件可以包括电机或者电机与传动齿轮组的组合,驱动件与阀芯20传动连接,以使驱动件带动阀芯20转动。
请进一步参阅图1至图8、图23至图26,在一些实施例中,流体控制组件1具有流道43,流道43与对应的连通口102连通,流体控制组件1还包括第一流道板41,第一流道板41形成流道43的一部分壁部,第一流道板41自侧壁部11的外表面向远离容纳腔101的方向延伸,第一流道板 41可以与连接体10一体注塑为一体结构。通过上述设置,能够使第一流道板41可以与连接体10之间具有较好的密封性,且便于减少流体控制组件1的零件数量,提高流体控制组件1的装配效率。
进一步地,流体控制组件1还可以包括第二流道板42,第二流道板42与第一流道板41密封设置且形成流道43的壁部,此时第一流道板41和第二流道板42围合形成流道43。可选地,第二流道板42可以与第一流道板41焊接设置,流体控制组件1还具有与流道43连通的安装接口44,安装接口44位于第一流道板41和第二流道板42的其中一者,安装接口44能够与流体管理组件的端口连通。其中,流体管理组件可以但不限于为换热器、水泵、储液器的其中一者或组合,通过上述设置,使得流体管理组件便于与流体控制组件1连通,能够减少流体管理组件和流体控制组件1之间的管路。
进一步参阅图1至图22,图中示出本申请一种实施例提供的流体控制组件1,在本实施例中,流体控制组件1还包括第一密封件30,沿容纳腔101的径向,第一密封件30的至少部分位于侧壁部11和阀芯20之间,用于对流体控制组件1实现密封。第一密封件30包括与连通口102对应连通的孔道31,可选地,第一密封件30包括与连通口102数量相同且一一对应连通的孔道31,如图9至图12所示,沿第一密封件30的轴向,第一密封件30的全部数量的孔道31的正投影沿阀芯20的圆周方向间隔排布,孔道31包括第一孔道32和第二孔道33,第一孔道32和第二孔道33沿第一密封件30的轴向间隔排布,具体地如图10所示,第一孔道32位于第一密封件30的其中一高度,第二孔道33位于第一密封件30的另一高度,沿第一密封件30的轴向,第一孔道32的正投影和第二孔道33的正投影沿阀芯20的圆周方向间隔排布,此时,沿阀芯20的圆周方向间隔排布的第一孔道32和第二孔道33分别位于第一密封件30的不同高度,相较于将所有孔道沿阀芯的圆周方向间隔排布且将所有孔道设置于密封件的同一高度而言,本申请实施例提供的流通控制装置的第一密封件30能够便于增加位于同一高度位置处的两个孔道31之间的壁部的距离,便于使阀芯20在旋转时压紧第一密封件30的壁部,这样便于提高流体控制组件的密封性能。
为防止第一密封件30转动,第一密封件30包括第一配合部34,连接体包括限位部14,第一配合部34与限位部14限位连接,例如,第一配合部34可以为孔结构和凸起结构的其中一者,限位部14可以为孔结构和凸起结构的另一者,凸起结构嵌入孔结构内进行限位。
为实现连通口102和孔道31的对应连通,如图3至图8所示,在一些实施例中,沿侧壁部11的轴向,连通口102的正投影沿阀芯20的圆周方向间隔排布,连通口102包括第一连通口1021和第二连通口1022,第一连通口1021和第二连通口1022沿侧壁部11的轴向间隔排布,第一连通口1021与第一孔道32对应连通,第二连通口1022与第二孔道33对应连通。可选地,连通口102可以包括三个第一连通口1021和两个第二连通口1022,三个第一连通口1021可以位于流体控制组件1的同一高度,两个第二连通口1022可以位于流体控制组件的同一高度,沿侧壁部11的轴向,三个第一连通口1021的正投影邻近设置,两个第二连通口1022的正投影邻近设置。其中,本文中各连通口的沿阀芯20的轴向的正投影包括各连通口的壁部沿阀芯20轴向的正投影所围合限定的区域,侧壁部11的轴向、阀芯20的轴向以及第一密封件30的轴向平行或重合。
如图9至图12所示,第一密封件30的孔道31包括至少一个第一孔道32和至少两个第二孔道33,沿第一密封件30的轴向,全部数量的第一孔道32的正投影邻近设置,全部数量的第二孔道33的正投影邻近设置。在具体实施时,第一密封件30的孔道31包括至三个第一孔道32和两个第二孔道33,三个第一孔道32可以位于第一密封件30的同一高度,两个第二孔道33可以位于第一密封件30的同一高度,沿第一密封件30的轴向,三个第一孔道32的正投影邻近设置,两个第二孔道33的正投影邻近设置,在本实施方式,相邻两个第一孔道32之间的角度可以为90度,相邻两个第二孔道33之间的角度可以为45度。
进一步参阅图9至图12,定义三个第一孔道32分别为第一子孔道321、第二子孔道322和第三子孔道323,定义两个第二孔道33分别为第四子孔道331和第五子孔道332,第一密封件30包括第一圆周壁部35和第二圆周壁部36,沿第一密封件30的轴向,第一圆周壁部35的正投影和第二圆 周壁部36的正投影沿阀芯20的圆周方向排布,第一圆周壁部35位于第一子孔道321和第三子孔道323之间,第一圆周壁部35与第二子孔道322分设于第一密封件30径向的两侧,第一圆周壁部35对应的圆心角a1大于90度且小于180度,第二圆周壁部36位于第四子孔道331和第五子孔道332之间,第二圆周壁部36对应的圆心角a2大于180度。此时,在第一密封件30的第一孔道32所在的高度,有几乎一半的壁部没有设置孔道,在第一密封件30的第二孔道33所在的高度,有几乎大于一半的壁部没有设置孔道,相较于将全部数量的孔道圆周排布于密封件的同一高度而言,本申请实施例提供的流体控制组件能够增加位于同一高度位置处的两个孔道31之间的壁部的距离,便于提高流体控制组件的密封性能。
当阀芯20在转动时,由于驱动组件50的控制精度或者信号传递延时或者阀芯部件20的转动惯量等因素影响,阀芯20可能会转动至设定角度之前停止或者超过设定角度后继续旋转,易使阀芯20产生转动公差,例如,阀芯部件20的转动公差角度可以为±5度,即阀芯20可能会转动至设定角度之前5度停止或者超过设定角度后继续旋转5度停止,因此,为了使第一密封件30能够在阀芯部件20转动的各个行程范围内均与阀芯部件20接触,使第一密封件30具有较好的密封性能,在本实施例中,通过设置第一孔道32和第二孔道33沿第一密封件30的轴向间隔排布,能够增加位于同一高度位置处的两个孔道31之间的壁部的距离,便于使阀芯20在行程范围内均与第一密封件30的壁部接触,便于提高第一密封件30的密封性能。
如图14至图18所示,在一些实施例中,阀芯20包括第一腔组21、分隔板23以及第二腔组22,沿阀芯20的轴向,分隔板23位于第一腔组21和第二腔组22之间,第一腔组21具有至少两个相互隔离的第一导通腔211,第二腔组22具有至少两个相互隔离的第二导通腔221,分隔板23具有通孔231,部分数量的第一导通腔211和部分数量的第二导通腔221通过通孔231对应连通,旋转阀芯20能够通过第一导通腔211、通孔231以及第二导通腔221使第一孔道32和第二孔道33对应的连通口102导通。通过上述设置,能够实现流体控制组件对流体的控制功能。
结合图3至图22所示,流体控制组件的连通口102包括第一口P1、第二口P2、第三口P3、第四口P4和第五口P5,第一口P1的正投影、第二口P2的正投影、第三口P3的正投影、第四口P4的正投影和第五口P5的正投影沿阀芯20的圆周方向间隔且顺次排布,附图中以上述五个口的正投影沿沿阀芯20的圆周方向逆时针排布为例进行说明,可选地,第一口P1的正投影、第二口P2的正投影、第三口P3的正投影、第四口P4的正投影和第五口P5的正投影沿阀芯20的圆周方向顺时针排布。沿侧壁部11的轴向,第一口P1、第二口P2和第三口P3位于流体控制组件1的其中一高度,第四口P4和第五口P5位于流体控制组件1的另一高度,其中,第一口P1与第一子孔道321导通,第二口P2与第二子孔道322导通,第三口与第三子孔道323导通,第一口P1和第三口P3的其中一者与第二口P2能够通过第一导通腔211导通,第四口P4和第五口P5的其中一者与第一口P1能够通过第一导通腔211、通孔231、第二导通腔221、对应的第一孔道32和对应的第二孔道33导通,第四口P4和第五口P5的其中一者与第三口P3能够通过第一导通腔211、通孔231、第二导通腔221、对应的第一孔道32和对应的第二孔道33导通。通过上述设置,能够实现流体控制组件的多种流通方式。在具体实施时,流体控制组件的连通口102的数量可以为三个、四个、五个、六个或者更多数量,本申请对此不进行限定。
请进一步参阅图14至图22,在一些实施例中,阀芯20的第一导通腔211包括隔离的第一腔CA1和第二腔CA2,第二导通腔221包括隔离的第三腔CA3和第四腔CA4,沿阀芯20的轴向,第三腔CA3的正投影和第四腔CA4的正投影均位于第一腔CA1的正投影的内部,分隔板23的通孔231包括第一通孔2311和第二通孔2312,第三腔CA3通过第一通孔2311与第一腔CA1连通,第四腔CA4通过第二通孔2312与第一腔CA1连通。如图18至图21所示,第二腔CA2能够使第一口P1和第三口P3的其中一者与第二口P2导通,第一腔CA1、第一通孔2311、第三腔CA3、第二通孔2312和第四腔CA4能够使第一口P1和第三口P3的其中一者与第四口P4和第五口P5的其中一者导通。
进一步地,如图9至图13、图19至图22所示,图中黑色加粗曲线示 意性汇出各连通口的连通关系,在一些实施例中,流体控制组件具有以下四个工作模式的至少之一,通过旋转阀芯20能够实现多种工作模式的切换:
如图19所示,流体控制组件在第一工作模式,阀芯20位于第一位置,阀芯20使第一口P1和第五口P5导通,且阀芯20使第二口P2和第三口P3导通。具体地,第一口P1和第五口P5通过第一子孔道321、第一腔CA1、第一通孔2311、第三腔CA3和第五通道332连通,第四口P4处于关闭状态,第二口P2和第三口P3通过第二子孔道322、第二腔CA2和第三子孔道323连通。本文中阀芯20位于的位置是指阀芯20相对于连接体10的位置。
如图20所示,流体控制组件在第二工作模式,阀芯20位于第二位置,阀芯20使第一口P1和第四口P4导通,以及阀芯20使第二口P2和第三口P3导通,具体地,第一口P1和第四口P4通过第一子孔道321、第一腔CA1、第一通孔2311、第三腔CA3和第四子孔道331连通,第五口P5处于关闭状态,第二口P2和第三口P3通过第二子孔道322、第二腔CA2和第三子孔道323连通。
如图21所示,流体控制组件在第三工作模式,阀芯20位于第三位置,阀芯20使第三口P3和第五口P5导通,以及阀芯20使第一口P1和第二口P2导通,具体地,第三口P3和第五口P5通过第三子孔道323、第一腔CA1、第二通孔2312、第四腔CA4和第五通道332连通,第四口P4处于关闭状态,第一口P1和第二口P2通过第一子孔道321、第二腔CA2和第二子孔道322连通。
如图22所示,流体控制组件在第四工作模式,阀芯20位于第四位置,阀芯20使第三口P3和第四口P4导通,以及阀芯20使第一口P1和第二口P2导通,具体地,第三口P3和第四口P4通过第三子孔道323、第一腔CA1、第二通孔2312、第四腔CA4和第四子孔道331连通,第五口P5处于关闭状态,第一口P1和第二口P2通过第一子孔道321、第二腔CA2和第二子孔道322连通。
通过上述设置,能够使流体控制组件沿侧壁部11的轴向设置两层连通 口,分别为第一连通口和第二连通口,第一密封件30设置两层孔道,分别为第一孔道和第二孔道,阀芯20设置两层导通腔,以实现连通口的多种连通方式。可以理解的是,还可以使流体控制组件沿侧壁部11的轴向设置三层连通口,第一密封件30设置三层孔道,阀芯20设置三层导通腔,以实现连通口的多种连通方式,本申请对此不进行限定。
如图23至图35所示,为本申请另一种实施例提供的流体控制组件,与上述任一实施方式的流体控制组件的不同之处在于,第一口P1、第二口P2、第三口P3、第四口P4和第五口P5均位于流体控制组件1的同一高度,阀芯20包括相互隔离的第五腔CA5、第六腔CA6和第七腔CA7,沿阀芯20的径向,第六腔CA6位于第五腔CA5和第七腔CA7之间,第五腔CA5和第七腔CA7的任一均能够使沿圆周方向相邻两个连通口102导通,第六腔CA6能够使第一口P1和第四口P4导通,或者第六腔CA6能够使第三口P3和第五口P5导通。
如图28和图29所示,在一些实施例中,流体控制组件1还包括第二密封件70,第二密封件70包括与连通口102数量相同且对应连通的通道71,通道71沿阀芯20的圆周方向均匀排布,各通道71位于第二密封件70的同一高度。为限制第二密封件70的转动,第二密封件可以包括第二配合部72,连接体10包括限位部14,第二配合部72与限位部14相互配合以对第二密封件70的位置进行限位,第二配合部72可以与图11中示出的第一配合部34的结构相似,不再赘述。在具体实施时,第二密封件70的通道71包括第一子通道711、第二子通道712、第三子通道713、第四子通道714、第五子通道715,第一子通道711与第一口P1连通,第二子通道712与第二口P2连通,第三子通道713与第三口P3连通,第四子通道714与第四口P4连通,第五子通道715与第五口P5连通。
基于此,如图32至图35所示,图中黑色加粗曲线示意性汇出各连通口的连通关系,流体控制组件具有以下四种工作模式中的至少之一:
如图32所示,在第一工作模式,阀芯20位于第一位置,阀芯20使第一口P1与第五口P5导通,以及阀芯20使第二口P2与第三口P3导通。具体地,在第一工作模式,第一口P1与第五口P5通过第五腔CA5、第一子 通道711和第五子通道715导通,第二口P2与第三口P3通过第七腔CA7、第二子通道712和第三子通道713导通。
如图33所示,在第二工作模式,阀芯20位于第二位置,阀芯20使第一口P1与第四口P4导通,以及阀芯20使第二口P2与第三口P3导通。具体地,第一口P1与第四口P4通过第六腔CA6、第一子通道711和第四子通道714导通,第二口P2与第三口P3通过第七腔CA7、第二子通道712和第三子通道713导通。
如图34所示,在第三工作模式,阀芯20位于第三位置,阀芯20使第一口P1与第二口P2导通,以及阀芯20使第三口P3与第五口P5导通。具体地,第一口P1与第二口P2通过第七腔CA7、第一子通道711和第二子通道712导通,第三口P3和第五口P5通过第六腔CA6、第三子通道713和第五子通道715导通。
如图35所示,在第四工作模式,阀芯20位于第四位置,阀芯20使第一口P1与第二口P2导通,以及阀芯20使第三口P3与第四口P4导通。具体地,第一口P1与第二口P2通过第七腔CA7、第一子通道711和第二子通道712导通,第三口P3和第四口P4通过第五腔CA5、第三子通道713和第五子通道715导通。
综上,根据本申请实施例提供的流体控制组件1,包括连接体10和阀芯20,流体控制组件1具有连通口102,连通口102包括第一口P1、第二口P2、第三口P3、第四口P4和第五口P5,通过旋转阀芯20能够使阀芯20位于多个不同的位置,从而使得流体控制组件1具有四个模式的至少其中之一,在四个模式中能够实现多个连通口102之间的不同的导通方式,使得一个流体控制组件1可对多个的流路进行控制,在使用时会更加方便紧凑,便于推广应用。
如图1和图2、图36和图37所示,本申请实施例还提供一种流体控制装置1000,流体控制装置1000包括流体管理组件61和至少一个上述任一实施方式提供的流体控制组件1,其中,流体控制装置1000具有流道43,流体管理组件61可以包括但不限于换热器、电动泵、储液器的其中一者或组合。流体控制组件1包括第一流道板41和第二流道板42,第二流道板 42与第一流道板41密封设置且形成流道43的壁部,第一流道板41可以与连接体10一体注塑为一体结构,第二流道板42可以与第一流道板41可以焊接设置,流体控制组件还具有与流道连通的安装接口44,安装接口44位于第一流道板41和第二流道板42的其中一者,安装接口44能够与流体管理组件16的端口连通。
进一步地,流体控制组件1还可以包括第二流道板42,第二流道板42与第一流道板41密封设置且形成流道43的壁部,此时第一流道板41和第二流道板42围合形成流道43。可选地,第二流道板42可以与第一流道板41焊接设置,流体控制组件1还具有与流道连通的安装接口44,安装接口44位于第一流道板41和第二流道板42的至少其中一者,流体管理组件61的至少部分安装于安装接口44,流体管理组件61的端口以及流体管理组件61中的通道与流道43连通。通过上述设置,使得流体管理组件便于与流体控制组件1连通,能够减少流体管理组件和流体控制组件1之间的管路。本申请实施例提供的流体控制装置具有与上述任一实施方式提供的流体控制组件1相同的有益效果,不再赘述。
可选地,流体控制装置1000还可以包括接管62以及温度传感器等结构。接管62和温度传感器可以与第一流道板41和第二流道板42的至少一者连接且密封设置,使得流体管理组件61中的通道、接管62内的通道与流体控制组件1内的通道43连通,便于减少流体控制组件1、流体管理组件61以及各接管62之间管路的连接,能够提高流体控制装置1000的集成化程度。
需要说明的是:以上实施方式仅用于说明本申请而并非限制本申请所描述的技术方案,例如对“前”、“后”、“左”、“右”、“上”、“下”等方向性的界定,尽管本说明书参照上述的实施方式对本申请已进行了详细的说明,但是,本领域的普通技术人员应当理解,所属技术领域的技术人员仍然可以对本申请进行修改、结合或者等同替换,而一切不脱离本申请的精神和范围的技术方案及其改进,均应涵盖在本申请的权利要求范围内。

Claims (14)

  1. 一种流体控制组件,其特征在于,具有容纳腔和连通口,所述流体控制组件包括连接体和阀芯,所述连接体包括侧壁部,所述侧壁部形成所述容纳腔的至少部分周壁,所述连通口位于所述侧壁部,所述阀芯的至少部分位于所述容纳腔且能够转动,所述连通口包括第一口、第二口、第三口、第四口和第五口,沿所述侧壁部的轴向,所述第一口的正投影、所述第二口的正投影、所述第三口的正投影、所述第四口的正投影以及所述第五口的正投影沿所述阀芯的圆周方向间隔排布,其中,所述流体控制组件具有以下四个工作模式的至少其中之一:
    在第一工作模式,所述阀芯位于第一位置,所述阀芯使所述第一口与所述第五口导通、以及使所述第二口与所述第三口导通,在第二工作模式,所述阀芯位于第二位置,所述阀芯使所述第一口与所述第四口导通、以及使所述第二口与所述第三口导通,在第三工作模式,所述阀芯位于第三位置,所述阀芯使所述第一口与所述第二口导通,以及使所述第三口和所述第五口导通,在第四工作模式,所述阀芯位于第四位置,所述第一口与所述第二口导通,以及使所述第三口和所述第四口导通。
  2. 根据权利要求1所述的流体控制组件,其特征在于,所述流体控制组件还具有流道,所述流道与对应的所述连通口连通,所述流体控制组件还包括第一流道板,所述第一流道板形成所述流道的部分壁部,所述第一流道板自所述连接体向远离所述容纳腔的方向延伸,所述第一流道板与所述连接体注塑为一体结构。
  3. 根据权利要求2所述的流体控制组件,其特征在于,所述流体控制组件还包括第二流道板,所述第二流道板形成所述流道的另一部分壁部,所述第二流道板与所述第一流道板密封设置,所述流体控制组件还具有与所述流道连通的安装接口,所述安装接口位于所述第一流道板和所述第二流道板的至少其中一者。
  4. 根据权利要求1至3任意一项所述的流体控制组件,其特征在于,所述第一口、所述第二口和所述第三口位于所述流体控制组件的其中一高度,所述第四口和所述第五口位于所述流体控制组件的另一高度;
    所述阀芯包括第一腔组、分隔板以及第二腔组,沿所述阀芯的轴向,所述分隔板位于所述第一腔组和所述第二腔组之间,所述第一腔组具有至少两个相互隔离的第一导通腔,所述第二腔组具有至少两个相互隔离的第二导通腔,所述分隔板具有通孔,部分数量的所述第一导通腔和部分数量的所述第二导通腔通过所述通孔连通。
  5. 根据权利要求4所述的流体控制组件,其特征在于,所述第一腔组具有第一腔和第二腔,所述分隔板具有第一通孔和第二通孔,所述第二腔组具有第三腔和第四腔,所述第三腔通过所述第一通孔与所述第一腔连通,所述第四腔通过所述第二通孔与所述第一腔连通。
  6. 根据权利要求5所述的流体控制组件,其特征在于,在第一工作模式,所述第一腔、所述第一通孔和所述第三腔使所述第一口与所述第五口导通,所述第二腔使所述第二口与所述第三口导通,在第二工作模式,所述第一腔、所述第一通孔和所述第三腔使所述第一口与所述第四口导通,所述第二腔使所述第二口与所述第三口导通,在第三工作模式,所述第二腔使所述第一口与所述第二口导通,所述第一腔、所述第二通孔和所述第四腔使所述第三口和所述第五口导通,在第四工作模式,所述第二腔使所述第一口与所述第二口导通,所述第一腔、所述第二通孔和所述第四腔使所述第三口和所述第四口导通。
  7. 根据权利要求4所述的流体控制组件,其特征在于,所述流体控制组件还包括第一密封件,沿所述容纳腔的径向,所述第一密封件的至少部分压紧于所述侧壁部和所述阀芯之间,所述第一密封件具有第一子孔道、第二子孔道、第三子孔道、第四子孔道和第五子孔道,所述第一子孔道与所述第一口连通,所述第二子孔道与所述第二口连通,所述第三子孔道与所述第三口连通,所述第四子孔道与所述第四口连通,所述第五子孔道与所述第五口连通;
    其中,所述第一子孔道、所述第二子孔道和所述第三子孔道位于所述第一密封件的其中一高度,所述第四子孔道和所述第五子孔道位于所述第一密封件的另一高度,沿所述第一密封件的轴向,所述第一子孔道的正投影、所述第二子孔道的正投影、所述第三子孔道的正投影、所述第四子孔 道的正投影以及所述第五子孔道的正投影沿所述阀芯的圆周方向间隔排布。
  8. 根据权利要求7所述的流体控制组件,其特征在于,所述第一密封件包括第一圆周壁部和第二圆周壁部,沿所述第一密封件的轴向,所述第一圆周壁部的正投影和所述第二圆周壁部的正投影沿所述阀芯的圆周方向排布,所述第一圆周壁部位于所述第一子孔道和所述第三子孔道之间,所述第一圆周壁部与所述第二子孔道分设于所述第一密封件径向的两侧,所述第一圆周壁部对应的圆心角大于90度且小于180度,所述第二圆周壁部位于所述第四子孔道和所述第五子孔道之间,所述第二圆周壁部对应的圆心角大于180度。
  9. 根据权利要求1至3任意一项所述的流体控制组件,其特征在于,所述第一口、所述第二口、所述第三口、所述第四口和所述第五口均位于所述流体控制组件的同一高度,所述阀芯包括相互隔离的第五腔、第六腔和第七腔,沿所述阀芯的径向,所述第六腔位于所述第五腔和所述第七腔之间。
  10. 根据权利要求9所述的流体控制组件,其特征在于,在第一工作模式,所述第五腔使所述第一口与所述第五口导通,所述第七腔使所述第二口与所述第三口导通,在第二工作模式,所述第六腔使所述第一口与所述第四口导通,所述第七腔使所述第二口与所述第三口导通,在第三工作模式,所述第七腔使所述第一口与所述第二口导通,所述第六腔使所述第三口和所述第五口导通,在第四工作模式,所述第七腔使所述第一口与所述第二口导通,所述第五腔使所述第三口和所述第四口导通。
  11. 根据权利要求9所述的流体控制组件,其特征在于,所述流体控制组件还包括第二密封件,沿所述容纳腔的径向,所述第二密封件的至少部分压紧于所述侧壁部和所述阀芯之间,所述第二密封件包括与所述连通口数量相同且对应连通的通道,所述通道沿所述阀芯的圆周方向均匀排布。
  12. 一种流体控制装置,其特征在于,包括流体管理组件以及至少一个权利要求1至11任一项所述的流体控制组件,所述流体控制组件具有连通的流道和安装接口,所述流体管理组件的至少部分安装于所述安装接口, 且所述流体管理组件的端口与所述流道连通。
  13. 根据权利要求12所述的流体控制装置,其特征在于,所述流体管理组件包括换热器、电动泵、储液器的其中一者或组合。
  14. 根据权利要求12所述的流体控制装置,其特征在于,所述流体控制组件包括第一流道板和第二流道板,所述第一流道板和所述第二流道板密封设置且形成所述流道的至少部分壁部,所述安装接口位于所述第一流道板和所述第二流道板的其中一者。
PCT/CN2022/115676 2021-08-30 2022-08-30 流体控制组件和流体控制装置 WO2023030286A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP22863421.8A EP4397893A1 (en) 2021-08-30 2022-08-30 Fluid control assembly and fluid control apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111005737.9A CN115727166A (zh) 2021-08-30 2021-08-30 流体控制组件和流体控制装置
CN202111005737.9 2021-08-30

Publications (1)

Publication Number Publication Date
WO2023030286A1 true WO2023030286A1 (zh) 2023-03-09

Family

ID=85290895

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/115676 WO2023030286A1 (zh) 2021-08-30 2022-08-30 流体控制组件和流体控制装置

Country Status (3)

Country Link
EP (1) EP4397893A1 (zh)
CN (1) CN115727166A (zh)
WO (1) WO2023030286A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120000550A1 (en) * 2008-12-06 2012-01-05 Microstaq, Inc. Fluid Flow Control Assembly
WO2018086553A1 (zh) * 2016-11-09 2018-05-17 杭州三花研究院有限公司 流体换热组件及车辆热管理系统
CN108068572A (zh) * 2016-11-09 2018-05-25 杭州三花研究院有限公司 流体换热组件及车辆热管理系统
CN209147788U (zh) * 2017-05-26 2019-07-23 杭州三花研究院有限公司 流体换热组件
CN112128410A (zh) * 2019-06-24 2020-12-25 杭州三花研究院有限公司 流体管理组件
CN112428773A (zh) * 2020-11-06 2021-03-02 三花控股集团有限公司 流体控制组件及热管理系统
CN113175768A (zh) * 2021-02-09 2021-07-27 三花控股集团有限公司 流体控制组件

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120000550A1 (en) * 2008-12-06 2012-01-05 Microstaq, Inc. Fluid Flow Control Assembly
WO2018086553A1 (zh) * 2016-11-09 2018-05-17 杭州三花研究院有限公司 流体换热组件及车辆热管理系统
CN108068572A (zh) * 2016-11-09 2018-05-25 杭州三花研究院有限公司 流体换热组件及车辆热管理系统
CN209147788U (zh) * 2017-05-26 2019-07-23 杭州三花研究院有限公司 流体换热组件
CN112128410A (zh) * 2019-06-24 2020-12-25 杭州三花研究院有限公司 流体管理组件
CN112428773A (zh) * 2020-11-06 2021-03-02 三花控股集团有限公司 流体控制组件及热管理系统
CN113175768A (zh) * 2021-02-09 2021-07-27 三花控股集团有限公司 流体控制组件

Also Published As

Publication number Publication date
CN115727166A (zh) 2023-03-03
EP4397893A1 (en) 2024-07-10

Similar Documents

Publication Publication Date Title
WO2022135510A1 (zh) 流体管理装置及热管理系统
KR102179242B1 (ko) 하우징 일체형 냉각수 제어밸브 조립체
WO2023030286A1 (zh) 流体控制组件和流体控制装置
EP4357650A1 (en) Multi-port valve and thermal management system having multi-port valve
WO2023030285A1 (zh) 流体控制组件和流体控制装置
WO2023143068A1 (zh) 多通切换阀、热管理系统及车辆
US20240200673A1 (en) Control valve
WO2022143866A1 (zh) 一种流体控制阀
CN115143306A (zh) 十二通阀、热管理系统及车辆
CN114658887A (zh) 流体管理装置及热管理系统
WO2023041001A1 (zh) 流体控制组件
CN114658885A (zh) 流体管理装置及电动阀
CN211259730U (zh) 一种新能源汽车用电子三通阀
CN116697100A (zh) 控制阀
CN219076948U (zh) 一种热管理模块及车辆
CN221162090U (zh) 流道板、泵主体、热管理集成模块、热管理系统及车辆
CN219639532U (zh) 四通阀、管路连接装置和热管理总成
WO2024098934A1 (zh) 多通道阀、热管理集成模块和车辆
CN219493139U (zh) 控制阀及热管理系统
CN216904584U (zh) 电机设备及车辆
CN218954104U (zh) 集成式冷却液路切换阀及具有该切换阀的热管理系统
CN221292968U (zh) 热管理集成系统和车辆
JP7374194B2 (ja) 単電池及び電池パック
CN116198284B (zh) 一种热管理集成模块
WO2024002153A1 (zh) 流体组件和流体控制装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22863421

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2024513515

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2022863421

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022863421

Country of ref document: EP

Effective date: 20240402