WO2022242764A1 - 多通阀、热管理系统和汽车 - Google Patents

多通阀、热管理系统和汽车 Download PDF

Info

Publication number
WO2022242764A1
WO2022242764A1 PCT/CN2022/094229 CN2022094229W WO2022242764A1 WO 2022242764 A1 WO2022242764 A1 WO 2022242764A1 CN 2022094229 W CN2022094229 W CN 2022094229W WO 2022242764 A1 WO2022242764 A1 WO 2022242764A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
valve port
port
core
way
Prior art date
Application number
PCT/CN2022/094229
Other languages
English (en)
French (fr)
Inventor
叶文
赵波
张宇
李泉明
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2022242764A1 publication Critical patent/WO2022242764A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K11/00Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves
    • F16K11/10Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with two or more closure members not moving as a unit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K11/00Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves
    • F16K11/10Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with two or more closure members not moving as a unit
    • F16K11/12Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with two or more closure members not moving as a unit with one plug turning in another

Definitions

  • the present application relates to the technical field of electric vehicles, in particular to a multi-way valve, a heat management system and a vehicle.
  • thermal management systems With the popularity of new energy vehicles, the importance and complexity of thermal management systems in new energy vehicles has gradually increased, especially the complexity of waterways has increased significantly, and the miniaturization and integration of thermal management systems has become a trend in the industry .
  • the current system modes mainly include: heating of the passenger compartment and cooling of the battery pack; heating of the passenger compartment by a separate heat pump; simultaneous cooling of the passenger compartment and battery; simultaneous heating of the passenger compartment and battery pack; Cabin heat pump heating; passenger compartment heating and battery cooling.
  • Embodiments of the present application provide a multi-way valve, a thermal management system, and an automobile, which can increase the degree of integration of the valve and reduce the complexity of control and installation of the thermal management system.
  • the embodiment of the present application provides a multi-way valve, including a valve body and at least two valve cores, the valve body includes a housing chamber, and at least two valve cores are rotatably arranged in the housing chamber .
  • the valve body is provided with a plurality of flow passages, the plurality of flow passages are in communication with the accommodating chamber, and at least part of the flow passages are in communication with a plurality of external pipelines, and at least one of the valve cores is connected along its own
  • the rotation center rotates and communicates with multiple external pipelines and different flow channels.
  • the multi-way valve provided by the embodiment of the present application can communicate part of the multiple flow channels with multiple external pipelines by arranging multiple flow channels, by setting at least two spools, and connecting at least two spools
  • the rotation is set in the accommodating cavity, and the circulation and closure of all flow channels can be controlled by the rotation of at least two valve cores, so that different external pipelines and different flow channels can be connected respectively, so that a multi-way valve can adjust multiple
  • the purpose of an external pipeline improves the integration of the valve, and makes the control and installation of the thermal management system easier, reducing the control complexity and installation complexity of the thermal management system.
  • the flow channel includes an inner flow channel and an outer flow channel, both ends of the inner flow channel communicate with the accommodating cavity, and the first end of the outer flow channel It communicates with the accommodating cavity, and the second end of the outer flow channel communicates with the external pipeline.
  • At least one valve core rotates along its own rotation center and communicates with multiple external pipelines and different external flow channels.
  • the valve body includes a casing and a top cover, the top cover is closed on the casing, and the accommodating cavity includes a first accommodating cavity and a second accommodating cavity.
  • Two accommodating cavities, the first accommodating cavity is located in the housing; the top cover and the outer wall of the housing jointly enclose the second accommodating cavity.
  • the valve core includes a first valve core and a second valve core, the first valve core is located in the first accommodation chamber, and the second valve core is located in the second accommodation chamber.
  • the first accommodating cavity and the second accommodating cavity can be relatively independent and not directly communicated, and the first valve core and the second valve core are respectively arranged in the first accommodating cavity and the second accommodating cavity, so that the first accommodating cavity and the second accommodating cavity can be avoided.
  • the first spool and the second spool interfere with each other, and it is also convenient for the first spool and the second spool to respectively control the connection and closure of different flow channels.
  • the casing is provided with a plurality of valve ports, and the plurality of valve ports are respectively located at different positions of the casing.
  • valve ports Some of the valve ports communicate with the first accommodating cavity, and the rest of the valve ports communicate with the second accommodating cavity.
  • the first accommodating cavity or the second accommodating cavity can be communicated with different flow channels through the valve port, so that the fluid can flow through the valve body and reach the predetermined external pipeline.
  • the housing includes a cylinder and an extension provided at an end of the cylinder, the first accommodating cavity is located in the cylinder, and the top The cover is closed on the extension part, and the top cover and the extension part enclose the second accommodating cavity.
  • valve ports are arranged on the cylinder body and communicate with the first accommodating chamber; the rest of the valve ports are arranged on the extension part and communicate with the second accommodating chamber.
  • the extension part can have the function of separating the first accommodating chamber and the second accommodating chamber.
  • the valve port on the extension part can communicate with the first accommodating chamber and the second accommodating chamber.
  • the valve port on the barrel includes a first valve port and a second valve port, the first valve port is arranged close to the extension part, and the first valve port The second valve port is set away from the extension part.
  • the first valve port and the second valve port are arranged at intervals in the circumferential direction of the cylinder, and in the extending direction of the cylinder, the first valve port and the second valve port are one by one correspond.
  • valve ports on the cylinder can be relatively regular, which is convenient for processing and manufacturing on the one hand, and convenient for setting the outer flow channel and the inner flow channel on the other hand.
  • the first valve port in the circumferential direction of the barrel, includes: valve port D, valve port B, valve port 2, Port A, Port X, Port 8, Port C, Port 9, Port C, and Port E.
  • the second valve port includes: valve port d, valve port 3, valve port 10, valve port 4, valve port a, valve port 1, valve port b, valve port 7, valve port 5 and port e.
  • valve ports on the extension part include valve port 6 and valve port 11 .
  • the inner runner includes a first inner runner, a second inner runner, a third inner runner, a fourth inner runner, a fifth inner runner, a sixth inner runner and a seventh inner runner.
  • Two ends of the first inner channel are respectively connected to valve port A and valve port a.
  • Both ends of the second inner channel are respectively connected to valve port B and valve port b.
  • Both ends of the third inner channel are respectively connected to valve port C and valve port c.
  • Both ends of the fourth inner channel are respectively connected to valve port D and valve port d.
  • Both ends of the fifth inner channel are respectively connected to the valve port E and the valve port e.
  • the two ends of the sixth inner flow channel are respectively connected to the valve port X and the valve port 6, the two ends of the seventh inner flow channel are respectively connected to the valve port X and the valve port 11, and the sixth inner flow channel is connected to the valve port 6.
  • the seventh inner runner is connected.
  • valve port 1 the valve port 2
  • valve port 3 the valve port 4
  • valve port 5 the valve port 6
  • valve port 7 the valve port 8
  • valve port 9 the valve port 10 and the valve port 11 are in one-to-one communication through the plurality of external flow channels and the plurality of external pipelines.
  • the multi-way valve can switch between various communication modes, which can greatly improve the integration of the valve, make the control and installation of the thermal management system easier, and reduce the control complexity and installation complexity of the thermal management system.
  • the first valve ports are distributed at equal intervals, and the angle between the center lines of the valve port D and the valve port E is 90°.
  • the first valve core includes a plurality of cavities, and the multiple cavities are uniformly arranged along a circumferential direction of the first valve core.
  • the first valve core includes a plurality of first partitions and a plurality of second partitions, and the first partitions and the second partitions are respectively located in different cavities.
  • the first partition divides the cavity into two first sub-cavities; the second partition divides the cavity into two second sub-cavities; the first partition and the first sub-cavity
  • the two partitions are perpendicular to each other.
  • first sub-cavities or second sub-cavities can connect or close different outer flow channels or inner flow channels, thereby achieving the goal of controlling multiple flow channels.
  • the purpose is to improve the integration of the valve.
  • the extension part is provided with a first limit block and a second limit block, and the second valve core is located between the first limit block and the second limit block. Between the two limit blocks.
  • the second valve core can be rotated within a fixed angle range, so that part of the valve ports can be connected or closed.
  • the second valve core includes a connecting portion and a blocking portion, and the connecting portion is located between the first limiting block and the second limiting block,
  • the blocking part is provided with a through hole.
  • the second valve core rotates, the blocking portion blocks the valve port 6 , the connecting portion abuts against the first limiting block, and the through hole communicates with the valve port 11 .
  • the second valve core rotates, the blocking portion blocks the valve port 11 , the connecting portion abuts against the second limiting block, and the through hole communicates with the valve port 6 .
  • the first valve core is provided with a third limiting block, the first valve core rotates, and the third limiting block abuts against the connecting portion, And drive the second valve core to rotate.
  • the rotation centers of the first valve core and the second valve core are located on the same straight line.
  • the first valve core can drive the second valve core to rotate under certain circumstances, so as to close and communicate with different external flow channels (especially the external flow channels communicating with the second accommodating cavity).
  • the valve body is provided with a rotating shaft, the first valve core and the second valve core are coaxially connected to the rotating shaft, and the first The rotation centers of the first valve core and the second valve core are located on the rotation axis.
  • the multi-way valve further includes a driving member, the driving member is connected to the rotating shaft, and the driving member drives the first valve core to rotate around the rotating shaft. turn.
  • an embodiment of the present application provides a thermal management system
  • the thermal management system includes the above-mentioned multi-way valve and a plurality of external pipelines, and the multiple external flow channels of the multi-way valve are connected to the plurality of external pipelines respectively.
  • part of the multiple flow channels can communicate with multiple external pipelines, by setting at least two valve cores, and At least two spools are rotatably arranged in the accommodating cavity, and the flow and closure of all flow channels can be controlled by the rotation of at least two spools, so that different external pipelines and different flow channels can be connected respectively, so that a
  • the purpose of the multi-way valve to adjust multiple external pipelines improves the integration of the valve, and makes the control and installation of the thermal management system easier, reducing the control complexity and installation complexity of the thermal management system.
  • an embodiment of the present application provides a vehicle, which includes the above thermal management system.
  • part of the flow channels in the multiple flow channels can communicate with multiple external pipelines.
  • at least two valve cores And at least two spools are rotatably arranged in the accommodating cavity, and the flow and closure of all flow channels can be controlled by the rotation of at least two spools, so that different external pipelines and different flow channels can be connected respectively, so that It achieves the purpose of regulating multiple external pipelines with a multi-way valve, improves the integration of the valve, and makes the control and installation of the thermal management system easier, reduces the control complexity and installation complexity of the thermal management system, and facilitates the integration car arrangement.
  • FIG. 1 is a schematic diagram of a thermal management system of related technology 1 provided by the present application.
  • Fig. 2 is a schematic structural diagram of a multi-way valve provided by an embodiment of the present application.
  • Figure 3 is an exploded view of a multi-way valve provided by an embodiment of the present application.
  • Fig. 4 is a top view of a multi-way valve provided in an embodiment of the present application in a perspective state
  • Fig. 5 is a side view in a perspective state of a multi-way valve provided by an embodiment of the present application.
  • Fig. 6 is a structural schematic diagram of a housing of a multi-way valve provided by an embodiment of the present application.
  • Fig. 7 is a schematic diagram of the arrangement of the valve port of the housing of the multi-way valve provided by an embodiment of the present application.
  • Fig. 8 is a schematic structural view of the first valve core of the multi-way valve provided by an embodiment of the present application.
  • Fig. 9 is a structural schematic diagram of the first valve core, the second valve core and the housing of the multi-way valve provided by an embodiment of the present application;
  • Fig. 10 is a schematic structural view of the second valve core of the multi-way valve provided by an embodiment of the present application in the first case;
  • Fig. 11 is a schematic structural view of the second valve core of the multi-way valve provided by an embodiment of the present application in the second case;
  • Fig. 12 is a schematic structural view of the second valve core of the multi-way valve provided by an embodiment of the present application.
  • Fig. 13 is a logic diagram of the rotation mode of the spool of the multi-way valve provided by an embodiment of the present application.
  • Fig. 14 is a schematic diagram of a multi-way valve provided in an embodiment of the present application in the first mode
  • Fig. 15 is a schematic diagram of the multi-way valve provided by an embodiment of the present application in the second mode
  • Fig. 16 is a schematic diagram of a multi-way valve provided in an embodiment of the present application in the third mode
  • Fig. 17 is a schematic diagram of the multi-way valve provided by an embodiment of the present application in the fourth mode
  • Fig. 18 is a schematic diagram of a multi-way valve provided in an embodiment of the present application in the fifth mode
  • Fig. 19 is a schematic diagram of a multi-way valve provided in an embodiment of the present application in the sixth mode
  • Fig. 20 is a schematic diagram of the multi-way valve provided by an embodiment of the present application in the seventh mode
  • Fig. 21 is a schematic diagram of the eighth mode of the multi-way valve provided by an embodiment of the present application.
  • Fig. 22 is a schematic diagram of a thermal management system provided by an embodiment of the present application.
  • 3122-second limit block 32-top cover; 40-spool;
  • thermal management systems In the field of electric vehicles, with the popularization of new energy vehicles, the importance and complexity of thermal management systems in new energy vehicles have gradually increased, especially the complexity of waterways has increased significantly, and the miniaturization and integration of thermal management systems have become increasingly popular. become a trend in the industry. At the same time, more and more attention has been paid to the performance of vehicle energy consumption and cruising range, and heat pump systems are gradually becoming popular, with more and more system models.
  • the current system modes mainly include: heating of the passenger compartment and cooling of the battery pack; heating of the passenger compartment by a separate heat pump; simultaneous cooling of the passenger compartment and battery; simultaneous heating of the passenger compartment and battery pack; Cabin heat pump heating; passenger compartment heating and battery cooling.
  • the system pipeline of the thermal management system is connected with equipment such as battery pack 22, charger 23, driving device 24, condenser 25, radiator 26, etc.
  • equipment such as battery pack 22, charger 23, driving device 24, condenser 25, radiator 26, etc.
  • three three-way valves 21 are set in different positions of the system pipeline to control different pipelines, and each three-way valve 21 is independently controlled, but this method has the following Disadvantages: multiple three-way valves 21 are independently controlled, multiple motors are required, and longer control wiring harnesses are required, resulting in increased costs; the control complexity is relatively high, and the vehicle layout space requirements are high.
  • the thermal management system is connected with battery packs, driving devices, condensers, radiators, and refrigerators.
  • a The multi-way valve can realize four thermal management modes.
  • the water valve is integrated into a multi-way valve in this thermal management system, there are fewer modes that can be realized in this system.
  • the application provides a multi-way valve 100, a thermal management system and an automobile.
  • Part of the flow channel 60 in 60 communicates with a plurality of external pipelines.
  • the rotation of at least two spools 40 can To control the circulation and closure of all flow channels 60, so that different external pipelines and different flow channels 60 can be connected respectively, so that a multi-way valve can achieve the purpose of regulating multiple external pipelines, improve the integration of the valve, and It makes the control and installation of the thermal management system simpler and easier, and reduces the control complexity and installation complexity of the thermal management system.
  • the embodiment of the present application provides a multi-way valve, as shown in Figure 2, Figure 3 and Figure 4, the multi-way valve 100 includes a valve body 30 and two valve cores 40, the valve body 30 includes an accommodating chamber , the two spools 40 are both rotatably disposed in the accommodating cavity, that is, the two spools 40 can rotate in the accommodating cavity.
  • the valve body 30 is provided with a plurality of flow passages 60, and the plurality of flow passages 60 are all in communication with the accommodating cavity, and at least some of the flow passages 60 are in communication with a plurality of external pipelines, and at least one valve core 40 can rotate along its own rotation center , the connection and closure of the flow channel 60 can be controlled by rotation, so that different external pipelines and different flow channels 60 can be connected at different rotation angles.
  • the plurality of external pipelines refers to: each branch pipeline connected with the multi-way valve 100 in a general pipeline.
  • the embodiment of the present application takes the cylindrical multi-way valve 100 as an example for description, the multi-way valve 100 may also be spherical or other shapes, and the embodiment of the present application does not limit the shape of the multi-way valve 100, in addition
  • two spools 40 are taken as an example for illustration. On the premise that the motor torque is sufficient, more spools 40 can be expanded.
  • a plurality of flow passages 60 are arranged in this way, part of the flow passages 60 in the plurality of flow passages 60 (the other part of the flow passages 60 are not directly communicated with the external pipelines) can be communicated with a plurality of external pipelines, by setting two spools 40 , and the two spools 40 are rotated and installed in the accommodating chamber, the flow and closure of all flow channels 60 can be controlled by the rotation of the two spools 40, so that different external pipelines and different flow channels 60 can be connected respectively , so that a multi-way valve can achieve the purpose of regulating multiple external pipelines, improve the integration of the valve, and make the control and installation of the thermal management system easier, reducing the control complexity and installation complexity of the thermal management system .
  • the flow channel 60 may include an inner flow channel 61 and an outer flow channel 62, both ends of the inner flow channel 61 communicate with the accommodating cavity, and the first end of the outer flow channel 62 communicates with the accommodating cavity , the second end of the outer flow channel 62 communicates with the external pipeline, which specifically means that all the external flow channels 62 and all the external pipelines are respectively connected.
  • at least one valve core 40 rotates along its own rotation center, and communicates with multiple external pipelines and different external flow channels 62 .
  • Channel 62 by setting the external channel 62, on the one hand, the fluid in the external pipeline can flow into the valve body 30, and on the other hand, the fluid in the valve body 30 can flow out, so as to flow into a predetermined external pipeline.
  • first end and the second end are opposite ends of the outer flow channel 62 , and "communication" means that the two are directly connected.
  • the valve body 30 may include a housing 31 and a top cover 32.
  • the top cover 32 is covered on the housing 31, and the accommodating cavity includes a first accommodating cavity 50 and a second accommodating cavity.
  • Accommodating cavity (not shown), the first accommodating cavity 50 is located in the housing 31 , and the top cover 32 and the outer wall of the housing 31 together form a second accommodating cavity.
  • the spool 40 specifically includes a first spool 41 and a second spool 42 , the first spool 41 is located in the first accommodating cavity 50 , and the second spool 42 is located in the second accommodating cavity.
  • the first accommodating chamber 50 and the second accommodating chamber can be relatively independent and not communicated directly (in this embodiment, the first accommodating chamber 50 and the second accommodating chamber are indirectly connected), and the first valve core 41 and the second spool 42 are respectively arranged in the first accommodating chamber 50 and the second accommodating chamber, which can prevent the first spool 41 and the second spool 42 from interfering with each other, so that the first spool 41 and the second valve
  • the core 42 can work independently, and it is also convenient for the first valve core 41 and the second valve core 42 to control the connection and closure of different flow channels 60 respectively.
  • the casing 31 is provided with multiple valve ports, and the multiple valve ports are respectively located at different positions of the casing 31 . Some of the valve ports communicate with the first accommodating chamber 50 , and the rest of the valve ports communicate with the second accommodating chamber. In this way, the first accommodating cavity 50 or the second accommodating cavity can be communicated with different flow channels 60 through the valve port, so that the fluid can flow through the valve body 30 and reach a predetermined external pipeline.
  • the housing 31 may include a cylinder 311 and an extension 312 disposed at the end of the cylinder 311.
  • the first accommodating chamber 50 is located in the cylinder 311
  • the top cover 32 is closed on the extension part 312
  • the top cover 32 and the extension part 312 enclose a second accommodating cavity.
  • Part of the valve ports are arranged on the side wall of the cylinder body 311 and communicate with the first accommodating chamber 50
  • the rest of the valve ports are arranged on the extension part 312 and communicate with the second accommodating chamber.
  • the "cylindrical body” in the embodiment of the present application refers to a cylindrical structure with a closed bottom, so that by setting the extension part 312, the extension part 312 can have the function of separating the first accommodating chamber 50 and the second accommodating chamber. As a result, the valve port on the extension part 312 can communicate with the first accommodating cavity 50 and the second accommodating cavity.
  • the valve ports on the cylinder body 311 include a first valve port 71 and a second valve port 72, the first valve port 71 is set close to the extension part 312, and the second valve port The port 72 is located away from the extension 312 .
  • the first valve ports 71 and the second valve ports 72 are arranged at intervals in the circumferential direction of the cylinder 311 , and in the extending direction of the cylinder 311 , the first valve ports 71 and the second valve ports 72 correspond one-to-one. In this way, the arrangement of the valve ports on the barrel 311 is relatively regular, which is convenient for processing and manufacturing on the one hand, and facilitates the setting of the outer flow channel 62 and the inner flow channel 61 on the other hand.
  • the extension direction of the cylinder 311 refers to the vertical direction or the height direction of the cylinder 311.
  • a A row of valve ports is collectively referred to as the first valve port 71
  • a row of valve ports located at the same height and away from the extension portion 312 is collectively referred to as the second valve port 72 .
  • the first valve port 71 includes: valve port D, valve port B, valve port 2, valve port A, valve Port X, Port 8, Port C, Port 9, Port C, and Port E.
  • the second valve port 72 includes: valve port d, valve port 3, valve port 10, valve port 4, valve port a, valve port 1, valve port b, valve port 7, and valve port 5 arranged counterclockwise at intervals and valve port e.
  • the valve ports on the extension part 312 include the valve port 6 and the valve port 11 .
  • the layout of the valve port can be shown in Figure 7.
  • the center line in the figure indicates the position of the valve port in the circumferential direction of the cylinder 311, and a circle of numbers and letters close to the cylinder 311 represents the first valve port 71, and the circle away from the cylinder 311 represents the first valve port 71.
  • a circle of numbers and letters in 311 represents the second valve port 72 .
  • the arrangement of the inner runners 61 can refer to the following manner: the inner runners 61 include a first inner runner (not shown), a second inner runner Two inner runners (not shown), third inner runners (not shown), fourth inner runners (not shown), fifth inner runners (not shown), sixth inner runners (not shown) shown) and the seventh inner runner (not shown). Both ends of the first inner channel are respectively connected to valve port A and valve port a. Both ends of the second inner channel are respectively connected to valve port B and valve port b. Both ends of the third inner channel are respectively connected to the valve port C and the valve port c. Both ends of the fourth inner channel are respectively connected to valve port D and valve port d.
  • Both ends of the fifth inner channel are respectively connected to the valve port E and the valve port e.
  • Two ends of the sixth inner flow channel are respectively connected to valve port X and valve port 6
  • two ends of the seventh inner flow channel are respectively connected to valve port X and valve port 11
  • the sixth inner flow channel communicates with the seventh inner flow channel. It should be noted here that the sixth inner flow channel and the seventh inner flow channel may indirectly communicate with the first accommodating cavity 50 and the second accommodating cavity.
  • valve port 1, valve port 2, valve port 3, valve port 4, valve port 5, valve port 6, valve port 7, valve port 8, valve port 9, valve port 10 and valve port 11 pass through multiple
  • the outer flow channel 62 communicates with a plurality of external pipelines in one-to-one correspondence.
  • the above-mentioned setting method can make the multi-way valve 100 switch between a variety of different communication modes, thereby greatly improving the integration of the valve, making the control and installation of the thermal management system easier, and reducing the control complexity and installation complexity of the thermal management system. Spend.
  • the first valve ports 71 are distributed at equal intervals. Specifically, the included angle between adjacent valve ports in the first valve ports 71 is equal, which may be 30°. , after being arranged counterclockwise in this way, the angle between the centerlines of the valve port D and the valve port E is 90°.
  • first valve port 71 and the second valve port 72 are arranged in a one-to-one correspondence in the vertical direction of the cylinder body 311, and the angle of the adjacent valve ports in the second valve port 72 is the same as that in the first valve port 71.
  • the angles of the adjacent valve ports are the same, so only the arrangement of the first valve port 71 is emphasized here. In this way, on the one hand, it is beneficial to achieve the purpose of controlling multiple valve ports under the condition of limited torque of the motor, and on the other hand, it also reserves a setting space for adding more valve ports in the future.
  • the first valve core 41 may include a plurality of cavities 411 , and the multiple cavities 411 are uniformly arranged along the circumferential direction of the first valve core 41 .
  • the first valve core 41 may include a plurality of first partitions 412 and a plurality of second partitions 413 , and the first partitions 412 and the second partitions 413 are respectively located in different cavities 411 .
  • the first partition 412 divides the cavity 411 into two first sub-cavities 4111;
  • the second partition 413 divides the cavity 411 into two second sub-cavities 4112.
  • the first partition 412 and the second partition 413 may be perpendicular to each other, for example, may be a vertical partition and a horizontal partition.
  • first valve core 41 rotates at different angles
  • different first sub-cavities 4111 or second sub-cavities 4112 can communicate or close different outer flow channels 62 or inner flow channels 61, thereby achieving control
  • the purpose of multiple flow channels 60 is to improve the integration degree of the valve.
  • the extension part 312 is provided with a first limit block 3121 and a second limit block 3122 , and the second valve core 42 is located between the first limit block 3121 and the second limit block. Between the two limit blocks 3122. In this way, the second valve core 42 can be rotated within a fixed angle range, so as to achieve the purpose of controlling the valve port 6 and the valve port 11 .
  • the second valve core 42 includes a connecting portion 421 and a blocking portion 422 , and the connecting portion 421 is located between the first limiting block 3121 and the second limiting block 3122 ,
  • the blocking portion 422 is provided with a through hole 423 , and the through hole 423 can communicate with the valve port 6 or the valve port 11 .
  • the second valve core 42 rotates, the blocking portion 422 blocks the valve port 6 , the connecting portion 421 abuts against the first limiting block 3121 , and the through hole 423 communicates with the valve port 11 .
  • the second valve core 42 rotates, the blocking portion 422 blocks the valve port 11 , the connecting portion 421 abuts against the second limiting block 3122 , and the through hole 423 communicates with the valve port 6 .
  • the other valve port is communicated, thereby controlling the closing and communication of different external flow channels 62 (specifically, the external flow channels 62 communicating with the second accommodating cavity).
  • a third stopper 414 is provided on the first spool 41, and the first spool 41 first rotates counterclockwise, when the third stopper After 414 touches the connecting part 421 of the second valve core 42, the first valve core 41 drives the second valve core 42 to rotate counterclockwise, and when the second valve core 42 touches the first limit block 3121, the valve port 11 communicates, The second spool 42 stops rotating. Then the first spool 41 can rotate clockwise. When the third stopper 414 touches the connecting portion 421 of the second spool 42, the first spool 41 drives the second spool 42 to rotate clockwise. When the second valve After the core 42 abuts against the second limiting block 3122, the valve port 6 is connected, and the second valve core 42 stops rotating.
  • the rotation centers of the first valve core 41 and the second valve core 42 are located on the same straight line.
  • the first spool 41 can drive the second spool 42 to rotate after the third stop block 414 abuts against the second spool 42, so as to realize the control of different external flow channels 62 (specifically, the outflow connected to the second accommodating chamber).
  • the valve body 30 is provided with a rotating shaft 80, and the first valve core 41 and the second valve core 42 are coaxially connected to the rotating shaft 80.
  • the first valve The rotation centers of the core 41 and the second valve core 42 are located on the rotation axis 80 . This can facilitate the rotation of the first valve core 41 and the second valve core 42 around the rotation axis 80 .
  • the multi-way valve 100 further includes a driving member (not shown), the driving member is connected to the rotating shaft 80 , and the driving member drives the first valve core 41 to rotate around the rotating shaft 80 .
  • the driving part can be a motor, so that the automatic and precise control of the multi-way valve 100 can be realized through the motor.
  • the driving member only drives the first valve core 41 to rotate, and the rotation of the second valve core 42 passes through the rotation of the first valve core. 41 pushes to achieve.
  • the embodiment of the present application also provides a rotation logic diagram of the multi-way valve 100. It can be seen from the figure that after the multi-way valve 100 starts to work, the system mode signal is first input, and the second valve core 42 can rotate 0°, 0° corresponds to the non-waste heat recovery mode. At this time, the valve port 11 is opened, and the valve port X is connected to the valve port 11. In this mode, the first valve core 41 rotates 0°, as shown in Figure 14.
  • Valve port 2 is connected to valve port 1, valve port 4 is connected to valve port 11, valve port 5 is connected to valve port 8, valve port 3 is connected to valve port 10, valve port 7 is connected to valve port 9;
  • a spool 41 rotates 120°, as shown in Figure 15, at this time, mode 2 can be realized: valve port 2 communicates with valve port 1, valve port 4 communicates with valve port 11, valve port 9 communicates with valve port 8, and valve port 3 communicates with valve port 10, and valve port 7 communicates with valve port 5; when the first spool 41 rotates 150°, as shown in Figure 16, mode 3 can be realized at this time: valve port 3 communicates with valve port 7, and valve port 11 communicates with valve port 2, valve port 9 communicates with valve port 5, valve port 10 communicates with valve port 4, valve port 1 communicates with valve port 8; when the first spool 41 rotates 180°, as shown in Figure 17, At this time, mode 4 can be realized: valve port 3 is connected to valve port 9, valve port 11 is connected to valve port 4, valve port 2 is connected to valve
  • valve port 6 is open, and the valve port X communicates with the valve port 6.
  • the first spool 41 rotates -150° , as shown in Figure 18, mode 5 can be realized at this time: valve port 3 communicates with valve port 5, valve port 2 communicates with valve port 10, valve port 4 communicates with valve port 1, valve port 8 communicates with valve port 6, Valve port 9 is connected to valve port 7; when the first spool 41 rotates -180°, as shown in Figure 19, mode 6 can be realized at this time: valve port 3 is connected to valve port 9, and valve port 2 is connected to valve port 10 , valve port 6 communicates with valve port 4, valve port 8 communicates with valve port 1, valve port 7 communicates with valve port 5; when the first valve core 41 rotates -240°, as shown in Figure 20, the mode can be realized at this time 7: Valve port 2 is connected to valve port 1, valve port 3 is connected to valve
  • multiple valves are integrated, so that the weight and volume ratio of the valves in the thermal management system are significantly reduced, which is convenient for vehicle layout.
  • the multi-way valve 100 is controlled by a single drive and only needs one signal control, which reduces hardware costs. , simplifies the control logic, improves the integration of the thermal management system, and provides the possibility for the subsequent evolution of the thermal management system to miniaturization, integration, and light weight.
  • multi-way valve 100 in the embodiment of the present application can be applied not only in a thermal management system, but also in any liquid cooling cycle that requires multiple modes.
  • the embodiment of the present application provides a thermal management system, which includes the above-mentioned multi-way valve 100 and a plurality of external pipelines. Multiple devices can be connected to the external pipeline.
  • Figure 22 is a specific thermal management system diagram.
  • an evaporator 19', battery pack 22', condenser 25', heat dissipation 26', heat exchanger 28' and powertrain 27', etc. wherein, the two ends of the evaporator 19' are respectively connected with the valve port 3 and the valve port 2 of the multi-way valve 100, and the two ends of the battery pack 22' are respectively It communicates with the valve port 8 and the valve port 9 of the multi-way valve 100, the two ends of the condenser 25' communicate with the valve port 4 and the valve port 5 of the multi-way valve 100 respectively, and the two ends of the radiator 26' respectively communicate with the multi-way valve Valve port 11 of 100 communicates with valve port 6, both ends of heat exchanger 28' communicate with valve port 10 and valve
  • the multi-way valve 100 can realize 8 different modes, and 8 modes can be realized in the corresponding thermal management system.
  • the piping in the thermal management system There are 8 ways to connect, for example:
  • Valve port 2 is connected to valve port 1
  • valve port 4 is connected to valve port 11
  • valve port 5 is connected to valve port 8
  • valve port 3 is connected to valve port 10
  • valve port 7 is connected to valve port 9
  • the battery pack 22', condenser 25', radiator 26' and powertrain 27' are connected in series
  • evaporator 19' and heat exchanger 28' are connected in series, and at this time it is in mode 1, which can be the passenger compartment in this thermal management system Heating and battery pack cooling;
  • Valve port 2 communicates with valve port 1, valve port 4 communicates with valve port 11, valve port 9 communicates with valve port 8, valve port 3 communicates with valve port 10, valve port 7 communicates with valve port 5, radiator 26', the power assembly 27' and the condenser 25' are connected in series, and the heat exchanger 28' is connected in series with the evaporator 19'. At this time, it is in mode 2, and mode 2 in this thermal management system can be heating by a separate heat pump for the passenger compartment;
  • Valve port 3 is connected to valve port 7, valve port 11 is connected to valve port 2, valve port 9 is connected to valve port 5, valve port 10 is connected to valve port 4, valve port 1 is connected to valve port 8, radiator 26', the powertrain 27' and the evaporator 19' are connected in series, and the battery pack 22', the condenser 25' and the heat exchanger 28' are connected in series. At this time, it is in mode 3, which can be the passenger compartment in this thermal management system Cooling and battery heating;
  • Valve port 3 is connected to valve port 9, valve port 11 is connected to valve port 4, valve port 2 is connected to valve port 10, valve port 8 is connected to valve port 1, valve port 7 is connected to valve port 5, radiator 26', the powertrain 27' and the condenser 25' are connected in series, and the battery pack 22', the heat exchanger 28' and the evaporator 19' are connected in series.
  • mode 4 can be the passenger compartment in this thermal management system Simultaneous heating with the battery pack;
  • Valve port 3 is connected to valve port 5
  • valve port 2 is connected to valve port 10
  • valve port 4 is connected to valve port 1
  • valve port 8 is connected to valve port 6
  • valve port 9 is connected to valve port 7
  • the power assembly 27' is connected in series with the battery pack 22', and the evaporator 19', condenser 25' and condenser 25' are connected in series.
  • mode 5 can be a motor heating the battery pack in the thermal management system
  • Valve port 3 is connected to valve port 9, valve port 2 is connected to valve port 10, valve port 6 is connected to valve port 4, valve port 8 is connected to valve port 1, valve port 7 is connected to valve port 5, and the power assembly 27' is connected in series with the condenser 25', and the battery pack 22', the evaporator 19' and the heat exchanger 28' are connected in series. At this time, it is in mode 6, and mode 6 can be the heating of the passenger compartment and the battery in the thermal management system;
  • Valve port 2 is connected to valve port 1
  • valve port 3 is connected to valve port 10
  • valve port 4 is connected to valve port 6
  • valve port 8 is connected to valve port 9
  • valve port 7 is connected to valve port 5
  • the power assembly 27' is connected in series with the condenser 25'
  • the heat exchanger 28' is connected in series with the evaporator 19'. At this time, it is in mode 7, and mode 7 can be heat pump heating for the passenger compartment in this thermal management system;
  • Valve port 2 is connected to valve port 1
  • valve port 3 is connected to valve port 10
  • valve port 4 is connected to valve port 6
  • valve port 8 is connected to valve port 5
  • valve port 9 is connected to valve port 7
  • the battery pack 22', the powertrain 27' and the condenser 25' are connected in series
  • the heat exchanger 28' is connected in series with the evaporator 19'.
  • mode 8 in this thermal management system can be passenger compartment heating and battery cooling .
  • This setting method can realize a multi-way valve 100 to control the entire thermal management system, and realize the control and switching of multiple modes. In addition, it also simplifies the control logic, improves the integration of the thermal management system, and provides the follow-up thermal management system to The evolution of miniaturization, integration, and lightweight provides the possibility.
  • thermal management system by setting multiple flow channels 60 on the multi-way valve 100, part of the flow channels 60 in the multiple flow channels 60 can be communicated with multiple external pipelines.
  • part of the flow channels 60 in the multiple flow channels 60 can be communicated with multiple external pipelines.
  • at least two spool 40, and at least two spools 40 are rotatably arranged in the accommodating cavity, and the flow and closure of all flow passages 60 can be controlled by the rotation of at least two spools 40, so that different external pipelines and Different flow channels 60, which can achieve the purpose of regulating multiple external pipelines with one multi-way valve, improve the integration of the valve, and make the control and installation of the thermal management system easier, reducing the complexity of the control of the thermal management system In addition, it simplifies the control logic, improves the integration of the thermal management system, and provides the possibility for the subsequent evolution of the thermal management system to miniaturization, integration, and light weight.
  • the embodiment of the present application provides a vehicle, which includes the above-mentioned thermal management system, wherein the vehicle can be a new energy truck, a new energy truck, or a new energy car, etc., and the embodiment of the present application does not make any limitation on the type of vehicle. limit.
  • part of the flow channels 60 in the multiple flow channels 60 can be communicated with multiple external pipelines.
  • the circulation and closure of all flow channels 60 can be controlled by the rotation of at least two spools 40, so that different external pipes can be connected respectively.
  • a multi-way valve can be used to regulate multiple external pipelines, which improves the integration of the valve, and makes the control and installation of the thermal management system easier, reducing the cost of the thermal management system. Control complexity and installation complexity, facilitate the layout of the whole vehicle.
  • connection should be understood in a broad sense, for example, it can be a fixed connection or an intermediate connection.
  • the media is indirectly connected, which can be the internal communication of two elements or the interaction relationship between two elements.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Multiple-Way Valves (AREA)

Abstract

本发明提供一种热管理系统,通过在多通阀(100)上设置多个流道(60),可以使多个流道(60)中的部分流道60与多个外部管路连通,通过设置至少两个阀芯(40),并且将至少两个阀芯(40)转动设置在容置腔内,可以通过至少两个阀芯(40)的转动来控制全部流道(60)的流通与关闭,从而能够分别连通不同外部管路和不同的流道(60),实现了一个多通阀调节多个外部管路的目的,提高了阀门的集成度,并且使热管理系统控制更简单,安装更简便,降低了热管理系统的控制复杂度和安装复杂度,简化了控制逻辑,提高了热管理系统的集成性,给后续热管理系统向小型化、集成化、轻量化的演进提供了可能。

Description

多通阀、热管理系统和汽车
本申请要求于2021年05月21日提交中国专利局、申请号为202121104136.9、申请名称为“多通阀、热管理系统和汽车”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及电动汽车技术领域,尤其涉及一种多通阀、热管理系统和汽车。
背景技术
随着新能源车型的普及,热管理系统在新能源汽车上的重要性和复杂度逐步提升,尤其是水路的复杂度上升较为明显,热管理系统的小型化、集成化已成为行业内的趋势。
与此同时,整车能耗、续航里程的表现也越来越受到重视,热泵系统也在逐渐普及,系统模式越来越多。目前的系统模式主要有:乘员舱制热和电池包冷却;乘员舱单独热泵加热;乘员舱和电池同时制冷;乘员舱和电池包同时制热;电机加热电池包;乘员舱和电池加热;乘员舱热泵加热;乘员舱制热和电池冷却。现有的热管理系统在实现上述功能时,每增加一个功能需要增加一个流道,相应增加一个控制该流道的阀门,所以热管理系统中通常设置有多个阀门。
然而,目前的阀门集成度较低,导致热管理系统控制复杂度和安装复杂度较高。
发明内容
本申请实施例提供一种多通阀、热管理系统和汽车,能够提高阀门集成度,降低热管理系统的控制复杂度和安装复杂度。
第一方面,本申请实施例提供一种多通阀,包括阀体和至少两个阀芯,所述阀体包括容置腔,至少两个所述阀芯转动设置在所述容置腔内。
所述阀体上设置有多个流道,多个所述流道与所述容置腔连通,且至少部分所述流道与多个外部管路连通,至少一个所述阀芯沿自身的转动中心转动,并连通多个所述外部管路和不同的所述流道。
本申请实施例提供的多通阀,通过设置多个流道,可以使多个流道中的部分流道与多个外部管路连通,通过设置至少两个阀芯,并且将至少两个阀芯转动设置在容置腔内,可以通过至少两个阀芯的转动来控制全部流道的流通与关闭,从而能够分别连通不同外部管路和不同的流道,这样可以达到一个多通阀调节多个外部管路的目的,提高了阀门的集成度,并且使热管理系统控制更简单,安装更简便,降低了热管理系统的控制复杂度和安装复杂度。
在第一方面的一种可能的实施方式中,所述流道包括内流道和外流道,所述内流道的两端均与所述容置腔连通,所述外流道的第一端与所述容置腔连通,所述外流道的第二端与所述外部管路连通。
至少一个所述阀芯沿自身的转动中心转动,并连通多个所述外部管路和不同的所述外流道。
这样通过设置内流道,可以使阀体内的不同腔体连通,从而使流体可以在不同腔体流过并且达到预定外流道,通过设置外流道,一方面可以使外部管路的流体流入阀体,另一方面可以使阀体内的流体流入预定外部管路。
在第一方面的一种可能的实施方式中,所述阀体包括壳体和顶盖,所述顶盖盖合在所述壳体上,所述容置腔包括第一容置腔和第二容置腔,所述第一容置腔位于所述壳体内;所述顶盖和所述壳体的外壁共同围成所述第二容置腔。
所述阀芯包括第一阀芯和第二阀芯,所述第一阀芯位于所述第一容置腔内,所述第二阀芯位于所述第二容置腔内。
这样可以使第一容置腔和第二容置腔相对独立,不直接连通,将第一阀芯和第二阀芯分别设置在第一容置腔和第二容置腔内,可以避免第一阀芯和第二阀芯相互干扰,也便于第一阀芯和第二阀芯分别控制不同流道的连通和关闭。
在第一方面的一种可能的实施方式中,所述壳体上设置有多个阀口,多个所述阀口分别位于所述壳体的不同位置。
部分所述阀口和所述第一容置腔连通,其余所述阀口和所述第二容置腔连通。
这样可以通过阀口将第一容置腔或第二容置腔和不同流道连通,便于流体从阀体中流过且到达预定外部管路中。
在第一方面的一种可能的实施方式中,所述壳体包括筒体和设置在所述筒体的端部的延伸部,所述第一容置腔位于所述筒体内,所述顶盖盖合在所述延伸部上,所述顶盖和所述延伸部围成所述第二容置腔。
部分所述阀口设置在所述筒体上,并与所述第一容置腔连通;其余所述阀口设置在所述延伸部上,并与所述第二容置腔连通。
这样通过设置延伸部,可以使延伸部具有分隔第一容置腔和第二容置腔的作用,此外,延伸部上的阀口可以连通第一容置腔和第二容置腔。
在第一方面的一种可能的实施方式中,所述筒体上的所述阀口包括第一阀口和第二阀口,所述第一阀口靠近所述延伸部设置,所述第二阀口远离所述延伸部设置。
所述第一阀口和所述第二阀口在所述筒体的周向上间隔设置,且在所述筒体的延伸方向上,所述第一阀口和所述第二阀口一一对应。
这样可以使筒体上的阀口排列比较规整,一方面便于加工制造,另一方面便于设置外流道和内流道。
在第一方面的一种可能的实施方式中,在所述筒体的周向上,所述第一阀口包括:沿逆时针依次间隔排布的阀口D、阀口B、阀口2、阀口A、阀口X、阀口8、阀口C、阀口9、阀口c和阀口E。
所述第二阀口包括:沿逆时针依次间隔排布的阀口d、阀口3、阀口10、阀口4、阀口a、阀口1、阀口b、阀口7、阀口5和阀口e。
所述延伸部上的所述阀口包括阀口6和阀口11。
所述内流道包括第一内流道、第二内流道、第三内流道、第四内流道、第五内流道、第六内流道和第七内流道。
所述第一内流道的两端分别连接阀口A和阀口a。
所述第二内流道的两端分别连接阀口B和阀口b。
所述第三内流道的两端分别连接阀口C和阀口c。
所述第四内流道的两端分别连接阀口D和阀口d。
所述第五内流道的两端分别连接阀口E和阀口e。
所述第六内流道的两端分别连接阀口X和阀口6,所述第七内流道的两端分别连接阀口X和阀口11,所述第六内流道和所述第七内流道连通。
所述阀口1、所述阀口2、所述阀口3、所述阀口4、所述阀口5、所述阀口6、所述阀口7、所述阀口8、所述阀口9、所述阀口10和所述阀口11分别通过多个所述外流道和多个所述外部管路一一对应连通。
这样使多通阀可以切换多种不同的连通模式,从而可以大大提高阀门的集成度,使热管理系统控制更简单,安装更简便,降低了热管理系统的控制复杂度和安装复杂度。
在第一方面的一种可能的实施方式中,所述第一阀口等间隔分布,所述阀口D和所述阀口E的中心线夹角为90°。
这样,一方面有利于在电机的转矩有限的情况下,可以实现控制多个阀口的目的,另一方面也为未来增加更多阀口预留了设置空间。
在第一方面的一种可能的实施方式中,所述第一阀芯包括多个腔体,多个所述腔体沿所述第一阀芯的周向均匀排布。
所述第一阀芯包括多个第一隔板和多个第二隔板,所述第一隔板和所述第二隔板分别位于不同的所述腔体内。
所述第一隔板分隔所述腔体为两个第一子腔体;所述第二隔板分隔所述腔体为两个第二子腔体;所述第一隔板和所述第二隔板相互垂直。
这样使第一阀芯在转动不同角度的情况下,可以使不同的第一子腔体或第二子腔体将不同的外流道或内流道连通或关闭,从而达到控制多个流道的目的,提高了阀门的集成度。
在第一方面的一种可能的实施方式中,所述延伸部上设置有第一限位块和第二限位块,所述第二阀芯位于所述第一限位块和所述第二限位块之间。
这样可以使第二阀芯在固定角度范围内旋转,从而可以连通或关闭部分阀口。
在第一方面的一种可能的实施方式中,所述第二阀芯包括连接部和封挡部,所述连接部位于所述第一限位块和所述第二限位块之间,所述封挡部上设置有通孔。
所述第二阀芯转动,所述封挡部封挡所述阀口6,所述连接部抵接所述第一限位块,所述通孔与所述阀口11连通。
所述第二阀芯转动,所述封挡部封挡所述阀口11,所述连接部抵接所述第二限位块,所述通孔与所述阀口6连通。
这样可以在封挡其中一个阀口时,使另一个阀口连通,从而对不同外流道(特指与第二容置腔连通的外流道)进行关闭与连通。
在第一方面的一种可能的实施方式中,所述第一阀芯上设置有第三限位块,所述第一阀芯转动,所述第三限位块抵接所述连接部,并带动所述第二阀芯转动。
所述第一阀芯和所述第二阀芯的转动中心位于同一条直线上。
这样可以使第一阀芯在某种情况下带动第二阀芯转动,从而达到对不同外流道(特指与第二容置腔连通的外流道)进行关闭与连通。
在第一方面的一种可能的实施方式中,所述阀体上设置有转动轴,所述第一阀芯和所述第二阀芯均同轴连接在所述转动轴上,所述第一阀芯和所述第二阀芯的转动中心均位于所述转动轴上。
这样可以便于第一阀芯和第二阀芯绕转动轴转动。
在第一方面的一种可能的实施方式中,所述多通阀还包括驱动件,所述驱动件与所述转 动轴连接,所述驱动件带动所述第一阀芯绕所述转动轴转动。
这样可以使多通阀实现自动控制和精确控制。
第二方面,本申请实施例提供一种热管理系统,该热管理系统包括上述的多通阀和多个外部管路,所述多通阀的多个外流道分别和多个所述外部管路连通。
本申请实施例提供的热管理系统,通过在多通阀上设置多个流道,可以使多个流道中的部分流道与多个外部管路连通,通过设置至少两个阀芯,并且将至少两个阀芯转动设置在容置腔内,可以通过至少两个阀芯的转动来控制全部流道的流通与关闭,从而能够分别连通不同外部管路和不同的流道,这样可以达到一个多通阀调节多个外部管路的目的,提高了阀门的集成度,并且使热管理系统控制更简单,安装更简便,降低了热管理系统的控制复杂度和安装复杂度。
第三方面,本申请实施例提供一种车辆,该车辆包括上述的热管理系统。
本申请实施例提供的车辆,通过在热管理系统的多通阀上设置多个流道,可以使多个流道中的部分流道与多个外部管路连通,通过设置至少两个阀芯,并且将至少两个阀芯转动设置在容置腔内,可以通过至少两个阀芯的转动来控制全部流道的流通与关闭,从而能够分别连通不同外部管路和不同的流道,这样可以达到一个多通阀调节多个外部管路的目的,提高了阀门的集成度,并且使热管理系统控制更简单,安装更简便,降低了热管理系统的控制复杂度和安装复杂度,便于整车的布置。
附图说明
图1是本申请提供的相关技术一的热管理系统示意图;
图2为本申请一实施例提供的多通阀的结构示意图;
图3为本申请一实施例提供的多通阀的爆炸图;
图4为本申请一实施例提供的多通阀在透视状态下的俯视图;
图5为本申请一实施例提供的多通阀在透视状态下的侧视图;
图6为本申请一实施例提供的多通阀的壳体的结构示意图;
图7为本申请一实施例提供的多通阀的壳体的阀口布置示意图;
图8为本申请一实施例提供的多通阀的第一阀芯的结构示意图;
图9为本申请一实施例提供的多通阀的第一阀芯、第二阀芯和壳体的结构示意图;
图10为本申请一实施例提供的多通阀的第二阀芯在第一种情况下的结构示意图;
图11为本申请一实施例提供的多通阀的第二阀芯在第二种情况下的结构示意图;
图12为本申请一实施例提供的多通阀的第二阀芯的结构示意图;
图13为本申请一实施例提供的多通阀的阀芯的旋转模式的逻辑图;
图14为本申请一实施例提供的多通阀在第一种模式下的示意图;
图15为本申请一实施例提供的多通阀在第二种模式下的示意图;
图16为本申请一实施例提供的多通阀在第三种模式下的示意图;
图17为本申请一实施例提供的多通阀在第四种模式下的示意图;
图18为本申请一实施例提供的多通阀在第五种模式下的示意图;
图19为本申请一实施例提供的多通阀在第六种模式下的示意图;
图20为本申请一实施例提供的多通阀在第七种模式下的示意图;
图21为本申请一实施例提供的多通阀在第八种模式下的示意图;
图22为本申请一实施例提供的热管理系统的示意图。
附图标记说明:
100-多通阀;           19’-蒸发器;         21-三通阀;
22,22’-电池包;      23-充电器;           24-驱动装置;
25,25’-冷凝器;      26,26’-散热器;     27’-动力总成;
28’-热交换器;        30-阀体;             31-壳体;
311-筒体;             312-延伸部;          3121-第一限位块;
3122-第二限位块;      32-顶盖;             40-阀芯;
41-第一阀芯;          411-腔体;            4111-第一子腔体;
4112-第二子腔体;      412-第一隔板;        413-第二隔板;
414-第三限位块;       42-第二阀芯;         421-连接部;
422-封挡部;           423-通孔;            50-第一容置腔;
60-流道;              61-内流道;           62-外流道;
71-第一阀口;          72-第二阀口;         80-转动轴。
具体实施方式
在电动汽车领域,随着新能源车型的普及,热管理系统在新能源汽车上的重要性和复杂度逐步提升,尤其是水路的复杂度上升较为明显,热管理系统的小型化、集成化已成为行业内的趋势。与此同时,整车能耗、续航里程的表现也越来越受到重视,热泵系统也在逐渐普及,系统模式越来越多。目前的系统模式主要有:乘员舱制热和电池包冷却;乘员舱单独热泵加热;乘员舱和电池同时制冷;乘员舱和电池包同时制热;电机加热电池包;乘员舱和电池加热;乘员舱热泵加热;乘员舱制热和电池冷却。现有的热管理系统在实现上述功能时,每增加一个功能需要增加一个流道,相应增加一个控制该流道的阀门,所以热管理系统中通常设置有多个阀门。
如图1所示,在相关技术一中,该热管理系统的系统管路连接了电池包22、充电器23、驱动装置24、冷凝器25、散热器26等设备,为了将上述多种设备连接并实现对多种模式的切换,在系统管路的不同位置设置了3个三通阀21来控制不同的管路,并且每个三通阀21均为独立控制,然而这种方式存在以下缺点:多个三通阀21独立控制,需具备多个电机,且需更长的控制线束,造成成本上升;控制复杂度相对较高,整车布置空间要求高。
在相关技术二中,热管理系统中连接了电池包、驱动装置、冷凝器、散热器和冷冻机,为了将上述多种设备连接并实现对多种模式的切换,在系统管路中设置了多通阀,可以实现四种热管理模式。虽然该热管理系统中将水阀集成为1个多通阀,但是在该系统中可以实现的模式较少。
为此,为了解决上述问题中的至少一个技术问题,本申请提供一种多通阀100、热管理系统和汽车,通过在多通阀100上设置多个流道60,可以使多个流道60中的部分流道60与多个外部管路连通,通过设置至少两个阀芯40,并且将至少两个阀芯40转动设置在容置腔内,可以通过至少两个阀芯40的转动来控制全部流道60的流通与关闭,从而能够分别连通不同外部管路和不同的流道60,这样可以达到一个多通阀调节多个外部管路的目的,提高了阀门的集成度,并且使热管理系统控制更简单,安装更简便,降低了热管理系统的控制复杂度和安装复杂度。
第一方面,本申请实施例提供一种多通阀,如图2、图3和图4所示,该多通阀100包括阀体30和两个阀芯40,阀体30包括容置腔,两个阀芯40均转动设置在容置腔内,即两个阀芯40可以在容置腔内转动。阀体30上设置有多个流道60,多个流道60均与容置腔连通,且至少部分流道60与多个外部管路连通,至少一个阀芯40可以沿自身的转动中心转动,通过转动可以控制流道60的连通与关闭,从而可以在不同的转动角度下连通不同的外部管路和不同的流道60。需要说明的是多个外部管路指的是:在一个总的管路中和多通阀100连接的各分支管路。
需要说明的是,本申请实施例以圆柱形的多通阀100为例进行的说明,多通阀100也可以是球形或者其他形状,本申请实施例对多通阀100的形状不作限制,此外,本申请实施例以两个阀芯40为例进行的说明,在电机扭矩足够的前提下,可以扩展更多级的阀芯40。
这样设置多个流道60,可以使多个流道60中的部分流道60(另一部分流道60不与外部管路直接连通)与多个外部管路连通,通过设置两个阀芯40,并且将两个阀芯40转动设置在容置腔内,可以通过两个阀芯40的转动来控制全部流道60的流通与关闭,从而能够分别连通不同外部管路和不同的流道60,这样可以达到一个多通阀调节多个外部管路的目的,提高了阀门的集成度,并且使热管理系统控制更简单,安装更简便,降低了热管理系统的控制复杂度和安装复杂度。
在一种可以实现的实施方式中,流道60可以包括内流道61和外流道62,内流道61的两端均与容置腔连通,外流道62的第一端与容置腔连通,外流道62的第二端与外部管路连通,这里具体指所有的外流道62和所有的外部管路均分别连通。具体的,至少一个阀芯40沿自身的转动中心转动,并连通多个外部管路和不同的外流道62。
这样通过设置内流道61,可以使阀体30内的不同腔体411之间连通,在阀体30内部对流体的流向进行调节,从而使流体可以在不同腔体411流过并且达到预定外流道62,通过设置外流道62,一方面可以使外部管路的流体流入阀体30,另一方面可以使阀体30内的流体流出,从而流入预定外部管路。
需要说明的是,这里的第一端和第二端为外流道62的相对两端,并且“连通”指二者直接连通。
在一种可以实现的实施方式中,阀体30可以包括壳体31和顶盖32,具体的,顶盖32盖合在壳体31上,容置腔包括第一容置腔50和第二容置腔(未示出),第一容置腔50位于壳体31内,顶盖32和壳体31的外壁共同围成第二容置腔。阀芯40具体包括第一阀芯41和第二阀芯42,第一阀芯41位于第一容置腔50内,第二阀芯42位于第二容置腔内。
这样可以使第一容置腔50和第二容置腔相对独立,不直接连通(在本实施例中,第一容置腔50和第二容置腔为间接连通),将第一阀芯41和第二阀芯42分别设置在第一容置腔50和第二容置腔内,可以避免第一阀芯41和第二阀芯42相互干扰,使第一阀芯41和第二阀芯42可以独立工作,也便于第一阀芯41和第二阀芯42分别控制不同流道60的连通和关闭。
在一种可以实现的实施方式中,壳体31上设置有多个阀口,多个阀口分别位于壳体31的不同位置。部分阀口和第一容置腔50连通,其余阀口和第二容置腔连通。这样可以通过阀口将第一容置腔50或第二容置腔和不同流道60连通,便于流体从阀体30中流过且到达预定外部管路中。
在一种可以实现的实施方式中,如图6所示,壳体31可以包括筒体311和设置在筒体311的端部的延伸部312,具体的,第一容置腔50位于筒体311内,顶盖32盖合在延伸部312上,顶盖32和延伸部312围成第二容置腔。部分阀口设置在筒体311的侧壁上,并与第一容置腔50连通,其余阀口设置在延伸部312上,并与第二容置腔连通。
需要说明的是,本申请实施例中的“筒体”指底部封闭的筒状结构,这样通过设置延伸部312,可以使延伸部312具有分隔第一容置腔50和第二容置腔的作用,延伸部312上的阀口可以连通第一容置腔50和第二容置腔。
在一种可以实现的实施方式中,如图6所示,筒体311上的阀口包括第一阀口71和第二阀口72,第一阀口71靠近延伸部312设置,第二阀口72远离延伸部312设置。第一阀口71和第二阀口72在筒体311的周向上间隔设置,且在筒体311的延伸方向上,第一阀口71和第二阀口72一一对应。这样可以使筒体311上的阀口排列比较规整,一方面便于加工制造,另一方面便于设置外流道62和内流道61。
需要说明的是,筒体311的延伸方向指竖直方向或筒体311的高度方向,在本申请实施例中,在筒体311的高度方向上,将位于同一高度且靠近延伸部312的一排阀口统称为第一阀口71,将位于同一高度且远离延伸部312的一排阀口统称为第二阀口72。
在一种可以实现的实施方式中,在筒体311的周向上,第一阀口71包括:沿逆时针依次间隔排布的阀口D、阀口B、阀口2、阀口A、阀口X、阀口8、阀口C、阀口9、阀口c和阀口E。第二阀口72包括:沿逆时针依次间隔排布的阀口d、阀口3、阀口10、阀口4、阀口a、阀口1、阀口b、阀口7、阀口5和阀口e。延伸部312上的阀口包括阀口6和阀口11。阀口的布置方式可以参照图7所示,图中的中心线表示阀口在筒体311周向的设置位置,靠近筒体311的一圈数字和字母代表第一阀口71,远离筒体311的一圈数字和字母代表第二阀口72。
需要说明的是,在附图中并未将所有的内流道61画出,内流道61的设置方式可以参照如下方式:内流道61包括第一内流道(未示出)、第二内流道(未示出)、第三内流道(未示出)、第四内流道(未示出)、第五内流道(未示出)、第六内流道(未示出)和第七内流道(未示出)。第一内流道的两端分别连接阀口A和阀口a。第二内流道的两端分别连接阀口B和阀口b。第三内流道的两端分别连接阀口C和阀口c。第四内流道的两端分别连接阀口D和阀口d。第五内流道的两端分别连接阀口E和阀口e。第六内流道的两端分别连接阀口X和阀口6,第七内流道的两端分别连接阀口X和阀口11,第六内流道和第七内流道连通。这里需要说明的是,第六内流道和第七内流道可以将第一容置腔50和第二容置腔间接连通。
具体的,阀口1、阀口2、阀口3、阀口4、阀口5、阀口6、阀口7、阀口8、阀口9、阀口10和阀口11分别通过多个外流道62和多个外部管路一一对应连通。
上述设置方式可以使多通阀100切换多种不同的连通模式,从而可以大大提高阀门的集成度,使热管理系统控制更简单,安装更简便,降低了热管理系统的控制复杂度和安装复杂度。
在一种可以实现的实施方式中,如图7所示,第一阀口71等间隔分布,具体的,第一阀口71中的相邻阀口之间的夹角相等,可以为30°,这样沿逆时针排布后,阀口D和阀口E的中心线夹角为90°。
需要说明的是,第一阀口71和第二阀口72在筒体311的竖直方向上一一对应设置,第二阀口72中的相邻阀口的角度与第一阀口71中的相邻阀口的角度相同,因此这里只强调了第一阀口71的设置方式。这样,一方面有利于在电机的扭矩有限的情况下,可以实现控制多个阀口的目的,另一方面也为未来增加更多阀口预留了设置空间。
在一种可以实现的实施方式中,如图8所示,第一阀芯41可以包括多个腔体411,多个腔体411沿第一阀芯41的周向均匀排布。第一阀芯41可以包括多个第一隔板412和多个第二隔板413,第一隔板412和第二隔板413分别位于不同的腔体411内。具体的,第一隔板 412分隔腔体411为两个第一子腔体4111;第二隔板413分隔腔体411为两个第二子腔体4112。第一隔板412和第二隔板413可以相互垂直,例如可以是竖直隔板和水平隔板。
这样使第一阀芯41在转动不同角度的情况下,可以使不同的第一子腔体4111或第二子腔体4112将不同的外流道62或内流道61连通或关闭,从而达到控制多个流道60的目的,提高了阀门的集成度。
在一种可以实现的实施方式中,如图9所示,延伸部312上设置有第一限位块3121和第二限位块3122,第二阀芯42位于第一限位块3121和第二限位块3122之间。这样可以使第二阀芯42在固定角度范围内旋转,从而达到控制阀口6和阀口11的目的。
在一种可以实现的实施方式中,如图12所示,第二阀芯42包括连接部421和封挡部422,连接部421位于第一限位块3121和第二限位块3122之间,封挡部422上设置有通孔423,通孔423可以和阀口6或阀口11连通。
具体的,如图10所示,第二阀芯42转动,封挡部422封挡阀口6,连接部421抵接第一限位块3121,通孔423与阀口11连通。如图11所示,第二阀芯42转动,封挡部422封挡阀口11,连接部421抵接第二限位块3122,通孔423与阀口6连通。这样可以在封挡其中一个阀口时,使另一个阀口连通,从而对不同外流道62(特指与第二容置腔连通的外流道62)进行关闭与连通控制。
在一种可以实现的实施方式中,如图10和图11所示,第一阀芯41上设置有第三限位块414,第一阀芯41首先逆时针转动,当第三限位块414抵接第二阀芯42的连接部421后,第一阀芯41带动第二阀芯42逆时针转动,当第二阀芯42抵接第一限位块3121后,阀口11连通,第二阀芯42停止转动。然后第一阀芯41可以顺时针转动,当第三限位块414抵接第二阀芯42的连接部421后,第一阀芯41带动第二阀芯42顺时针转动,当第二阀芯42抵接第二限位块3122后,阀口6连通,第二阀芯42停止转动。
在上述的转动过程中,第一阀芯41和第二阀芯42的转动中心位于同一条直线上。这样可以使第一阀芯41在第三限位块414抵接第二阀芯42后带动第二阀芯42转动,从而达到对不同外流道62(特指与第二容置腔连通的外流道62)进行关闭与连通控制。
在一种可以实现的实施方式中,如图5所示,阀体30上设置有转动轴80,第一阀芯41和第二阀芯42均同轴连接在转动轴80上,第一阀芯41和第二阀芯42的转动中心均位于转动轴80上。这样可以便于第一阀芯41和第二阀芯42绕转动轴80转动。
在一种可以实现的实施方式中,多通阀100还包括驱动件(未示出),驱动件与转动轴80连接,驱动件带动第一阀芯41绕转动轴80转动。驱动件可以为电机,这样可以通过电机对多通阀100实现自动控制和精确控制。
需要说明的是,在本申请实施例中,虽然第二阀芯42也连接在转动轴80上,但是驱动件只带动第一阀芯41转动,第二阀芯42的转动通过第一阀芯41的推动来实现。
如图13所示,本申请实施例还提供了该多通阀100的旋转逻辑图,从图中可知,多通阀100开始工作后,首先进行系统模式信号输入,第二阀芯42可以旋转0°,0°对应非余热回收模式,此时阀口11打开,阀口X与阀口11连通,在该模式下第一阀芯41旋转0°,如图14所示,此时可以实现模式1:阀口2和阀口1连通,阀口4和阀口11连通,阀口5和阀口8连通,阀口3和阀口10连通,阀口7和阀口9连通;当第一阀芯41旋转120°,如图15所示,此时可以实现模式2:阀口2和阀口1连通,阀口4和阀口11连通,阀口9和阀口8连通,阀口3和阀口10连通,阀口7和阀口5连通;当第一阀芯41旋转150°,如图16所示,此时可以实现模式3:阀口3和阀口7连通,阀口11和阀口2连通,阀口9和阀口5连通,阀口10和阀口4连通,阀口1和阀口8连通; 当第一阀芯41旋转180°,如图17所示,此时可以实现模式4:阀口3和阀口9连通,阀口11和阀口4连通,阀口2和阀口10连通,阀口8和阀口1连通,阀口7和阀口5连通。
此外,第二阀芯42可以旋转-45°,-45°对应余热回收模式,此时阀口6打开,阀口X与阀口6连通,在该模式下第一阀芯41旋转-150°,如图18所示,此时可以实现模式5:阀口3和阀口5连通,阀口2和阀口10连通,阀口4和阀口1连通,阀口8和阀口6连通,阀口9和阀口7连通;当第一阀芯41旋转-180°,如图19所示,此时可以实现模式6:阀口3和阀口9连通,阀口2和阀口10连通,阀口6和阀口4连通,阀口8和阀口1连通,阀口7和阀口5连通;当第一阀芯41旋转-240°,如图20所示,此时可以实现模式7:阀口2和阀口1连通,阀口3和阀口10连通,阀口4和阀口6连通,阀口8和阀口9连通,阀口7和阀口5连通;当第一阀芯41旋转-360°,如图21所示,此时可以实现模式8:阀口2和阀口1连通,阀口3和阀口10连通,阀口4和阀口6连通,阀口8和阀口5连通,阀口9和阀口7连通。图中N和S分别表示不同旋转方向,其中N旋转方向的角度为正,S旋转方向的角度为负。
本申请实施例将多个阀门集成,使热管理系统中阀门的重量和体积占比显著减少,便于整车布置,该多通阀100为单驱动控制,仅需一路信号控制,降低了硬件成本,简化了控制逻辑,提高了热管理系统的集成性,给后续热管理系统向小型化、集成化、轻量化的演进提供了可能。
需要说明的是,本申请实施例中的多通阀100不仅可以应用于热管理系统中,也可以应用于任何需要多模式的液冷循环回路中。
第二方面,本申请实施例提供了一种热管理系统,该热管理系统包括上述的多通阀100和多个外部管路,多通阀100的多个外流道62分别和多个外部管路连通,外部管路上可以连接多个设备,图22为具体的热管理系统图,在该热管理系统中,外部管路上可以设置蒸发器19’、电池包22’、冷凝器25’、散热器26’、热交换器28’和动力总成27’等,其中,蒸发器19’的两端分别和多通阀100的阀口3和阀口2连通,电池包22’的两端分别和多通阀100的阀口8和阀口9连通,冷凝器25’的两端分别和多通阀100的阀口4和阀口5连通,散热器26’的两端分别和多通阀100的阀口11和阀口6连通,热交换器28’的两端分别和多通阀100的阀口10和阀口1连通,动力总成27’的两端分别和多通阀100的阀口6和阀口7连通。
具体的,按照上述的多通阀100调节逻辑,多通阀100可以实现8种不同的模式,在对应的热管理系统中可以实现8种模式,参照图22,该热管理系统中的管路连通可以有以下8种方式,例如:
模式1:阀口2和阀口1连通,阀口4和阀口11连通,阀口5和阀口8连通,阀口3和阀口10连通,阀口7和阀口9连通,电池包22’、冷凝器25’、散热器26’和动力总成27’串联,蒸发器19’和热交换器28’串联,此时处于模式1,模式1在该热管理系统中可以是乘员舱制热和电池包冷却;
模式2:阀口2和阀口1连通,阀口4和阀口11连通,阀口9和阀口8连通,阀口3和阀口10连通,阀口7和阀口5连通,散热器26’、动力总成27’和冷凝器25’串联,热交换器28’和蒸发器19’串联,此时处于模式2,模式2在该热管理系统中可以是乘员舱单独热泵加热;
模式3:阀口3和阀口7连通,阀口11和阀口2连通,阀口9和阀口5连通,阀口10和阀口4连通,阀口1和阀口8连通,散热器26’、动力总成27’和蒸发器19’串联,电池包22’、冷凝器25’和热交换器28’串联,此时处于模式3,模式3在该热管理系统中可以是乘员舱制冷和电池制热;
模式4:阀口3和阀口9连通,阀口11和阀口4连通,阀口2和阀口10连通,阀口8和阀口1 连通,阀口7和阀口5连通,散热器26’、动力总成27’和冷凝器25’串联,电池包22’、热交换器28’和蒸发器19’串联,此时处于模式4,模式4在该热管理系统中可以是乘员舱与电池包同时制热;
模式5:阀口3和阀口5连通,阀口2和阀口10连通,阀口4和阀口1连通,阀口8和阀口6连通,阀口9和阀口7连通,动力总成27’和电池包22’串联,蒸发器19’、冷凝器25’和冷凝器25’串联,此时处于模式5,模式5在该热管理系统中可以是电机加热电池包;
模式6:阀口3和阀口9连通,阀口2和阀口10连通,阀口6和阀口4连通,阀口8和阀口1连通,阀口7和阀口5连通,动力总成27’和冷凝器25’串联,电池包22’、蒸发器19’和热交换器28’串联,此时处于模式6,模式6在该热管理系统中可以是乘员舱与电池加热;
模式7:阀口2和阀口1连通,阀口3和阀口10连通,阀口4和阀口6连通,阀口8和阀口9连通,阀口7和阀口5连通,动力总成27’和冷凝器25’串联,热交换器28’和蒸发器19’串联,此时处于模式7,模式7在该热管理系统中可以是乘员舱热泵加热;
模式8:阀口2和阀口1连通,阀口3和阀口10连通,阀口4和阀口6连通,阀口8和阀口5连通,阀口9和阀口7连通,电池包22’、动力总成27’和冷凝器25’串联,热交换器28’和蒸发器19’串联,此时处于模式8,模式8在该热管理系统中可以是乘员舱制热和电池冷却。
这种设置方式可以实现一个多通阀100控制整个热管理系统,并且实现对多种模式的控制和切换,此外还简化了控制逻辑,提高了热管理系统的集成性,给后续热管理系统向小型化、集成化、轻量化的演进提供了可能。
本申请实施例提供的热管理系统,通过在多通阀100上设置多个流道60,可以使多个流道60中的部分流道60与多个外部管路连通,通过设置至少两个阀芯40,并且将至少两个阀芯40转动设置在容置腔内,可以通过至少两个阀芯40的转动来控制全部流道60的流通与关闭,从而能够分别连通不同外部管路和不同的流道60,这样可以达到一个多通阀调节多个外部管路的目的,提高了阀门的集成度,并且使热管理系统控制更简单,安装更简便,降低了热管理系统的控制复杂度和安装复杂度,此外还简化了控制逻辑,提高了热管理系统的集成性,给后续热管理系统向小型化、集成化、轻量化的演进提供了可能。
第三方面,本申请实施例提供了一种车辆,该车辆包括上述的热管理系统,其中,车辆可以是新能源卡车、新能源货车或新能源轿车等,本申请实施例对车辆的种类不作限制。
本申请实施例提供的车辆,通过在热管理系统的多通阀100上设置多个流道60,可以使多个流道60中的部分流道60与多个外部管路连通,通过设置至少两个阀芯40,并且将至少两个阀芯40转动设置在容置腔内,可以通过至少两个阀芯40的转动来控制全部流道60的流通与关闭,从而能够分别连通不同外部管路和不同的流道60,这样可以达到一个多通阀调节多个外部管路的目的,提高了阀门的集成度,并且使热管理系统控制更简单,安装更简便,降低了热管理系统的控制复杂度和安装复杂度,便于整车的布置。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应作广义理解,例如,可以是固定连接,也可以是通过中间媒介间接相连,可以是两个元件内部的连通或者两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
在本申请或者暗示所指的装置或者元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。在本申请的描述中,“多个”的含义是两个或两个以上,除非是另有精确具体地规定。
本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”、“第三”、“第 四”等(如果存在)是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请的实施例例如能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
最后应说明的是:以上各实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述各实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (16)

  1. 一种多通阀,其特征在于,包括阀体和至少两个阀芯,所述阀体包括容置腔,至少两个所述阀芯转动设置在所述容置腔内;
    所述阀体上设置有多个流道,多个所述流道与所述容置腔连通,且至少部分所述流道与多个外部管路连通,至少一个所述阀芯沿自身的转动中心转动,并连通多个所述外部管路和不同的所述流道。
  2. 根据权利要求1所述的多通阀,其特征在于,所述流道包括内流道和外流道,所述内流道的两端均与所述容置腔连通,所述外流道的第一端与所述容置腔连通,所述外流道的第二端与所述外部管路连通;
    至少一个所述阀芯沿自身的转动中心转动,并连通多个所述外部管路和不同的所述外流道。
  3. 根据权利要求2所述的多通阀,其特征在于,所述阀体包括壳体和顶盖,所述顶盖盖合在所述壳体上,所述容置腔包括第一容置腔和第二容置腔,所述第一容置腔位于所述壳体内;所述顶盖和所述壳体的外壁共同围成所述第二容置腔;
    所述阀芯包括第一阀芯和第二阀芯,所述第一阀芯位于所述第一容置腔内,所述第二阀芯位于所述第二容置腔内。
  4. 根据权利要求3所述的多通阀,其特征在于,所述壳体上设置有多个阀口,多个所述阀口分别位于所述壳体的不同位置;
    部分所述阀口和所述第一容置腔连通,其余所述阀口和所述第二容置腔连通。
  5. 根据权利要求4所述的多通阀,其特征在于,所述壳体包括筒体和设置在所述筒体的端部的延伸部,所述第一容置腔位于所述筒体内,所述顶盖盖合在所述延伸部上,所述顶盖和所述延伸部围成所述第二容置腔;
    部分所述阀口设置在所述筒体上,并与所述第一容置腔连通;其余所述阀口设置在所述延伸部上,并与所述第二容置腔连通。
  6. 根据权利要求5所述的多通阀,其特征在于,所述筒体上的所述阀口包括第一阀口和第二阀口,所述第一阀口靠近所述延伸部设置,所述第二阀口远离所述延伸部设置;
    所述第一阀口和所述第二阀口在所述筒体的周向上间隔设置,且在所述筒体的延伸方向上,所述第一阀口和所述第二阀口一一对应。
  7. 根据权利要求6所述的多通阀,其特征在于,在所述筒体的周向上,所述第一阀口包括:沿逆时针依次间隔排布的阀口D、阀口B、阀口2、阀口A、阀口X、阀口8、阀口C、阀口9、阀口c和阀口E;
    所述第二阀口包括:沿逆时针依次间隔排布的阀口d、阀口3、阀口10、阀口4、阀口a、阀口1、阀口b、阀口7、阀口5和阀口e;
    所述延伸部上的所述阀口包括阀口6和阀口11;
    所述内流道包括第一内流道、第二内流道、第三内流道、第四内流道、第五内流道、第六内流道和第七内流道;
    所述第一内流道的两端分别连接阀口A和阀口a;
    所述第二内流道的两端分别连接阀口B和阀口b;
    所述第三内流道的两端分别连接阀口C和阀口c;
    所述第四内流道的两端分别连接阀口D和阀口d;
    所述第五内流道的两端分别连接阀口E和阀口e;
    所述第六内流道的两端分别连接阀口X和阀口6,所述第七内流道的两端分别连接阀口X和阀口11,所述第六内流道和所述第七内流道连通;
    所述阀口1、所述阀口2、所述阀口3、所述阀口4、所述阀口5、所述阀口6、所述阀口7、所述阀口8、所述阀口9、所述阀口10和所述阀口11分别通过多个所述外流道和多个所述外部管路一一对应连通。
  8. 根据权利要求7所述的多通阀,其特征在于,所述第一阀口等间隔分布,所述阀口D和所述阀口E的中心线夹角为90°。
  9. 根据权利要求3-8中任一项所述的多通阀,其特征在于,所述第一阀芯包括多个腔体,多个所述腔体沿所述第一阀芯的周向均匀排布;
    所述第一阀芯包括多个第一隔板和多个第二隔板,所述第一隔板和所述第二隔板分别位于不同的所述腔体内;
    所述第一隔板分隔所述腔体为两个第一子腔体;所述第二隔板分隔所述腔体为两个第二子腔体;所述第一隔板和所述第二隔板相互垂直。
  10. 根据权利要求7或8所述的多通阀,其特征在于,所述延伸部上设置有第一限位块和第二限位块,所述第二阀芯位于所述第一限位块和所述第二限位块之间。
  11. 根据权利要求10所述的多通阀,其特征在于,所述第二阀芯包括连接部和封挡部,所述连接部位于所述第一限位块和所述第二限位块之间,所述封挡部上设置有通孔;
    所述第二阀芯转动,所述封挡部封挡所述阀口6,所述连接部抵接所述第一限位块,所述通孔与所述阀口11连通;
    所述第二阀芯转动,所述封挡部封挡所述阀口11,所述连接部抵接所述第二限位块,所述通孔与所述阀口6连通。
  12. 根据权利要求11所述的多通阀,其特征在于,所述第一阀芯上设置有第三限位块,所述第一阀芯转动,所述第三限位块抵接所述连接部,并带动所述第二阀芯转动;
    所述第一阀芯和所述第二阀芯的转动中心位于同一条直线上。
  13. 根据权利要求12所述的多通阀,其特征在于,所述阀体上设置有转动轴,所述第一阀芯和所述第二阀芯均同轴连接在所述转动轴上,所述第一阀芯和所述第二阀芯的转动中心均位于所述转动轴上。
  14. 根据权利要求13所述的多通阀,其特征在于,所述多通阀还包括驱动件,所述驱动件与所述转动轴连接,所述驱动件带动所述第一阀芯绕所述转动轴转动。
  15. 一种热管理系统,其特征在于,包括如权利要求1-14中任一项所述的多通阀和多个外部管路,所述多通阀的多个外流道分别和多个所述外部管路连通。
  16. 一种车辆,其特征在于,包括如权利要求15所述的热管理系统。
PCT/CN2022/094229 2021-05-21 2022-05-20 多通阀、热管理系统和汽车 WO2022242764A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202121104136.9 2021-05-21
CN202121104136.9U CN216131420U (zh) 2021-05-21 2021-05-21 多通阀、热管理系统和汽车

Publications (1)

Publication Number Publication Date
WO2022242764A1 true WO2022242764A1 (zh) 2022-11-24

Family

ID=80766119

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/094229 WO2022242764A1 (zh) 2021-05-21 2022-05-20 多通阀、热管理系统和汽车

Country Status (2)

Country Link
CN (1) CN216131420U (zh)
WO (1) WO2022242764A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN216131420U (zh) * 2021-05-21 2022-03-25 华为技术有限公司 多通阀、热管理系统和汽车
CN114673806B (zh) * 2022-04-22 2023-03-28 海力达汽车科技有限公司 多通阀及热管理模块
CN114738511A (zh) * 2022-05-06 2022-07-12 浙江吉利控股集团有限公司 一种集成式阀芯及其多通阀和车身热管理系统

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN86105734A (zh) * 1985-07-26 1987-01-28 皮奇尼铝业公司 装有可轴向移动的锥形芯的旋转转换装置
GB2273336A (en) * 1992-12-09 1994-06-15 William Ernest Burroughs Multiway valve
DE10034935A1 (de) * 2000-07-11 2002-02-07 Rexroth Mecman Stockholm Ab Mehrwegeventil
DE10109206A1 (de) * 2001-02-26 2002-09-19 Rexroth Mecman Gmbh Mehrwegeventil zum Schalten eines Druckmittelflusses mit paralleverlaufenden Ventilbohrungen
JP2006105356A (ja) * 2004-10-08 2006-04-20 Aisin Aw Co Ltd 自動変速機の油圧制御装置
CN107355570A (zh) * 2016-05-10 2017-11-17 比亚迪股份有限公司 膨胀开关阀
CN110005841A (zh) * 2019-05-23 2019-07-12 成都富临精工电子电器科技有限公司 一种旋转式三通阀结构
CN110529628A (zh) * 2019-07-23 2019-12-03 上海蔚来汽车有限公司 一种多通阀、热管理系统及电动汽车
CN110966434A (zh) * 2018-09-29 2020-04-07 浙江三花汽车零部件有限公司 球阀
CN210290845U (zh) * 2019-08-15 2020-04-10 成都市笑脸科技有限公司 一种多通阀及电动多通阀
CN210920211U (zh) * 2019-07-25 2020-07-03 安徽江淮松芝空调有限公司 一种五通水阀及电动车温控系统
CN112555462A (zh) * 2020-12-04 2021-03-26 浙江银轮机械股份有限公司 多通阀
CN112682541A (zh) * 2020-12-31 2021-04-20 绵阳富临精工股份有限公司 车用热管理集成水阀及流道控制方法
CN112780805A (zh) * 2021-01-14 2021-05-11 浙江银轮机械股份有限公司 多通道控制阀的阀座及其控制阀
CN216131420U (zh) * 2021-05-21 2022-03-25 华为技术有限公司 多通阀、热管理系统和汽车

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN86105734A (zh) * 1985-07-26 1987-01-28 皮奇尼铝业公司 装有可轴向移动的锥形芯的旋转转换装置
GB2273336A (en) * 1992-12-09 1994-06-15 William Ernest Burroughs Multiway valve
DE10034935A1 (de) * 2000-07-11 2002-02-07 Rexroth Mecman Stockholm Ab Mehrwegeventil
DE10109206A1 (de) * 2001-02-26 2002-09-19 Rexroth Mecman Gmbh Mehrwegeventil zum Schalten eines Druckmittelflusses mit paralleverlaufenden Ventilbohrungen
JP2006105356A (ja) * 2004-10-08 2006-04-20 Aisin Aw Co Ltd 自動変速機の油圧制御装置
CN107355570A (zh) * 2016-05-10 2017-11-17 比亚迪股份有限公司 膨胀开关阀
CN110966434A (zh) * 2018-09-29 2020-04-07 浙江三花汽车零部件有限公司 球阀
CN110005841A (zh) * 2019-05-23 2019-07-12 成都富临精工电子电器科技有限公司 一种旋转式三通阀结构
CN110529628A (zh) * 2019-07-23 2019-12-03 上海蔚来汽车有限公司 一种多通阀、热管理系统及电动汽车
CN210920211U (zh) * 2019-07-25 2020-07-03 安徽江淮松芝空调有限公司 一种五通水阀及电动车温控系统
CN210290845U (zh) * 2019-08-15 2020-04-10 成都市笑脸科技有限公司 一种多通阀及电动多通阀
CN112555462A (zh) * 2020-12-04 2021-03-26 浙江银轮机械股份有限公司 多通阀
CN112682541A (zh) * 2020-12-31 2021-04-20 绵阳富临精工股份有限公司 车用热管理集成水阀及流道控制方法
CN112780805A (zh) * 2021-01-14 2021-05-11 浙江银轮机械股份有限公司 多通道控制阀的阀座及其控制阀
CN216131420U (zh) * 2021-05-21 2022-03-25 华为技术有限公司 多通阀、热管理系统和汽车

Also Published As

Publication number Publication date
CN216131420U (zh) 2022-03-25

Similar Documents

Publication Publication Date Title
WO2022242764A1 (zh) 多通阀、热管理系统和汽车
CN214222094U (zh) 多通阀及电动车热管理系统
CN110529628B (zh) 一种多通阀、热管理系统及电动汽车
KR102276255B1 (ko) 차량 통합 열관리 멀티포트 밸브
KR102299299B1 (ko) 차량 통합 열관리 멀티포트 밸브
US20240084903A1 (en) Multi-way valve
WO2024051040A1 (zh) 热管理集成系统及电动汽车
CN113623430A (zh) 一种汽车热管理模块集成多通阀及流体回路
US20240117883A1 (en) Multi-way valve
US20240149639A1 (en) Thermal management system, vehicle, and thermal management method
CN216200823U (zh) 一种汽车热管理模块集成多通阀及流体回路
KR20210061520A (ko) 차량 통합 열관리 멀티포트 밸브
CN114043844A (zh) 车辆热管理系统
WO2023143068A1 (zh) 多通切换阀、热管理系统及车辆
CN117052951A (zh) 一种多通阀、热管理装置、储能设备和车辆
WO2023060852A1 (zh) 冷媒换热装置及间接式热泵系统
WO2022268193A1 (zh) 驱动器及控制阀
CN114413031A (zh) 一种集成可比例调节的多通阀
CN111173963A (zh) 温度调节系统和多通道阀
CN216618646U (zh) 用于汽车冷却系统的四通阀及汽车冷却系统
CN114593235A (zh) 一种集成多通阀及控制方法
CN210034529U (zh) 温度调节系统
CN217463314U (zh) 一种四通阀及其冷却系统
CN217381742U (zh) 一种可比例调节的集成阀
WO2024012165A1 (zh) 多路阀、热管理系统以及电动汽车

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22804083

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22804083

Country of ref document: EP

Kind code of ref document: A1