WO2024050927A1 - 一种量子点叠层太阳能电池及其制备方法 - Google Patents

一种量子点叠层太阳能电池及其制备方法 Download PDF

Info

Publication number
WO2024050927A1
WO2024050927A1 PCT/CN2022/125940 CN2022125940W WO2024050927A1 WO 2024050927 A1 WO2024050927 A1 WO 2024050927A1 CN 2022125940 W CN2022125940 W CN 2022125940W WO 2024050927 A1 WO2024050927 A1 WO 2024050927A1
Authority
WO
WIPO (PCT)
Prior art keywords
quantum dot
intermediate layer
solar cell
transparent conductive
cell
Prior art date
Application number
PCT/CN2022/125940
Other languages
English (en)
French (fr)
Inventor
高益军
张惠民
张晓蕾
陈超
孙秀云
陈洁
王芳
李敏
Original Assignee
德州学院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 德州学院 filed Critical 德州学院
Publication of WO2024050927A1 publication Critical patent/WO2024050927A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035209Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures
    • H01L31/035218Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures the quantum structure being quantum dots
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • H01L31/0687Multiple junction or tandem solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof

Definitions

  • the present invention relates to the technical field of photovoltaic devices, and in particular to a quantum dot stacked solar cell and a preparation method thereof.
  • Photovoltaic devices are semiconductor devices that absorb sunlight and convert the absorbed solar energy into electrical energy.
  • the spectrum of sunlight is a mixed spectrum, and each specific semiconductor material can only absorb light greater than a specific wavelength.
  • unabsorbed sunlight will be lost in the form of transmitted light or heat energy and cannot be absorbed and utilized; and high-energy light will also cause heat loss due to band gaps after being absorbed. Due to the existence of low-energy light transmission loss and high-energy photothermal loss, the efficiency of a single cell will not exceed 33.4%, which is the Schottky limit.
  • the stacked battery combines two single cells with different band gaps, so that the large band gap battery acts as the front battery to absorb high-energy light, and the low band gap battery acts as the rear battery to absorb low-energy light, thereby reducing energy loss and improving light energy utilization. .
  • Quantum dots are semiconductor nanostructures that bind excitons in three spatial directions. They are generally spherical or quasi-spherical, with diameters often between 2-20 nm. They are an important low-dimensional semiconductor material and a common quantum dot. Points are composed of IV, II-VI, IV-VI or III-V elements. Quantum dots have the characteristics of wide and continuous excitation spectrum, narrow and symmetrical emission spectrum, adjustable color, high photochemical stability, and long fluorescence lifetime. Quantum dots have been widely used in various optoelectronic devices including tandem cells. application.
  • the present invention provides a quantum dot stacked solar cell, which includes a front cell, a transparent conductive intermediate layer, a rear cell and a counter electrode;
  • the front battery includes a conductive substrate, an oxide semiconductor film and a semiconductor quantum dot film;
  • the transparent conductive intermediate layer is an ITO film
  • the rear battery includes an oxide semiconductor film and a semiconductor quantum dot film.
  • the oxide semiconductor film is a ZnO nanoparticle film
  • the semiconductor quantum dot film is a quantum dot-lead halide composite film.
  • the quantum dot-lead halide composite film is a PbS quantum dot-lead halide composite film.
  • the counter electrode is a metal electrode; the conductive substrate is conductive glass.
  • the invention also provides a method for preparing a quantum dot stacked solar cell, including:
  • Step S1 Coat the oxide semiconductor material, quantum dots and lead halide on the upper surface of the conductive substrate in this order to obtain a front battery;
  • Step S2 Coat a transparent conductive intermediate layer material on the front battery obtained in step S1 to obtain a front battery covered with a transparent conductive intermediate layer;
  • Step S3 Coating the oxide semiconductor material, quantum dots and lead halide on the surface of the transparent conductive intermediate layer obtained in step S2 in the order of oxide semiconductor material, quantum dots and lead halide respectively. , obtain the front battery-transparent conductive intermediate layer-rear battery composite;
  • Step S4 Deposit a metal electrode on the rear cell surface of the front cell-transparent conductive intermediate layer-rear cell composite to obtain the quantum dot stacked solar cell.
  • the oxide semiconductor material is ZnO nanoparticles; the quantum dots are PbS quantum dots; the lead halide is lead iodide; and the transparent conductive intermediate layer material is ITO.
  • step S1 step S2 and step S3, the coating is spin coating, the rotation speed of the spin coating is 2000 rpm/min, and the spin coating time is 120 s.
  • the conditions for coating the transparent conductive intermediate layer material are: 1.5 mTorr air pressure and Ar gas environment.
  • step S4 the metal electrode deposition speed is 0.1 nm/s.
  • the metal electrode is a gold electrode with a thickness of 100 nm.
  • the invention provides a quantum dot stacked solar cell and a preparation method thereof.
  • the quantum dot stacked solar cell specifically includes a front cell, a transparent conductive intermediate layer, a rear cell and a counter electrode; the front cell is composed of a conductive substrate, an oxidized
  • the battery is composed of an oxide semiconductor film and a semiconductor quantum dot film;
  • the transparent conductive intermediate layer is an ITO film;
  • the rear battery is composed of an oxide semiconductor film and a semiconductor quantum dot film;
  • the counter electrode is a metal electrode.
  • the quantum dot stacked solar cell prepared by the present invention uses a highly transparent ITO intermediate layer, which greatly improves the light energy utilization rate of the solar cell and effectively improves the photoelectric conversion efficiency of the cell.
  • Figure 1 is the cell efficiency measurement result of the PbS quantum dot stacked solar cell prepared in Examples 1-5 of the present invention
  • Figure 2 is the cell efficiency measurement results of PbS quantum dot stacked solar cells prepared in Example 3 and Comparative Example 1 of the present invention
  • Figure 3 is a schematic structural diagram of a PbS quantum dot stacked solar cell of the present invention.
  • PbS quantum dots are semiconductor nanocrystals, generally with a diameter of less than 40nm. Since the Boer exciton radius of the PbS material itself is relatively large, it is easier to produce quantum confinement effects, resulting in energy level splitting and band gaps. Moreover, the size of the band gap can be adjusted by controlling the size of PbS nanocrystals: reducing the diameter of the nanocrystals will increase the band gap; increasing the diameter of the nanocrystals will reduce the band gap. This feature of quantum dots brings convenience to one of the steps of material selection for tandem batteries. This embodiment discloses a method for preparing a PbS quantum dot stacked solar cell, including:
  • Step S1 prepare the front battery:
  • S1-2 Use a spin coater to spin-coat ZnO nanoparticles on ITO glass, the spin-coating speed is 2000rpm/min, and the spin-coating time is 120s;
  • S1-3 Spin-coat PbS quantum dots with a band gap of 1.5eV on the ZnO film to obtain a ZnO film.
  • the spin-coating speed is 2000rpm/min and the spin-coating time is 120s.
  • the semi-finished battery sheet is soaked in PbI2.
  • the solution concentration is 4.6mg/ml; after soaking, it is washed with acetonitrile and then dried to make a front battery.
  • Step S2 Prepare a transparent conductive intermediate layer on the front battery:
  • Step 3 Prepare the front battery-transparent conductive intermediate layer-rear battery composite:
  • S3-1 Use a spin coater to spin-coat ZnO nanoparticles on the transparent conductive intermediate layer obtained in step S2 to obtain a ZnO film.
  • the spin-coating speed is 2000 rpm/min, and the spin-coating time is 120 s;
  • S3-2 Spin-coat PbS quantum dots with a band gap of 1.2eV on the ZnO film.
  • the spin-coating speed is 2000rpm/min and the spin-coating time is 120s.
  • the semi-finished battery sheet is soaked in the PbI2 DMF solution. , the solution concentration is 4.6mg/ml; after soaking, it is washed with acetonitrile and then dried to obtain the front battery-transparent conductive intermediate layer-rear battery composite.
  • Step S4 prepare the counter electrode on the front battery-transparent conductive intermediate layer-rear battery composite:
  • a layer of gold electrode with a thickness of 100nm was evaporated on the surface of the rear cell of the front cell-transparent conductive intermediate layer-rear cell composite to obtain a PbS quantum dot stacked solar cell.
  • This embodiment discloses a method for preparing a PbS quantum dot stacked solar cell.
  • the preparation method is the same as that of Example 1. The only difference is that in step S2, a layer of ITO thin film is magnetron sputtered on the front cell with a thickness of 80 nm.
  • This embodiment discloses a method for preparing a PbS quantum dot stacked solar cell.
  • the preparation method is the same as that of Example 1. The only difference is that in step S2, a layer of ITO thin film is magnetron sputtered on the front cell with a thickness of 100 nm.
  • This embodiment discloses a method for preparing a PbS quantum dot stacked solar cell.
  • the preparation method is the same as that of Example 1. The only difference is that in step S2, a layer of ITO thin film is magnetron sputtered on the front cell with a thickness of 140 nm.
  • This embodiment discloses a method for preparing a PbS quantum dot stacked solar cell.
  • the preparation method is the same as that of Example 1. The only difference is that in step S2, a layer of ITO thin film is magnetron sputtered on the front cell with a thickness of 200 nm.
  • This embodiment discloses a method for preparing a PbS quantum dot stacked solar cell.
  • the preparation method is the same as that of Example 3. The only difference is that in step S3-2, PbS quantum dots with a band gap of 1.5eV are spin-coated on the ZnO film. superior.
  • Figure 1 shows the battery IV curves of ITO interlayers with different thicknesses.
  • IV curve 1 is the battery efficiency corresponding to the ITO interlayer with a thickness of 20nm, and the battery efficiency is 4.2%
  • IV curve 2 is the battery efficiency corresponding to the ITO interlayer with a thickness of 80nm. Battery efficiency, the battery efficiency is 5.2%
  • IV curve 3 is the battery efficiency corresponding to the ITO middle layer with a thickness of 100nm, the battery efficiency is 6.2%
  • IV curve 4 is the battery efficiency corresponding to the ITO middle layer with a thickness of 1400nm, the battery efficiency is 4.3%
  • IV curve 5 is the cell efficiency corresponding to the ITO intermediate layer with a thickness of 200nm, and the cell efficiency is 3.4%. It can be seen from the curve in Figure 1 that the optimal ITO thickness is 100nm, and the battery produced with this thickness has the highest efficiency.
  • Figure 2 shows the battery efficiency measurement results of Example 3 and Comparative Example 1, specifically:
  • Figure 2 is a comparison of the IV curves of batteries with a single band gap and large and small band gaps, wherein Curve 1 is the battery with the same band gap in Comparative Example 1 ( The front and rear battery band gaps are both 1.5eV) IV curve, corresponding to an efficiency of 5.1%;
  • Curve 2 is the IV curve of the battery in Example 3 with a pair of large and small band gaps (the front battery band gap is 1.5eV, and the rear battery band gap is 1.2eV) , the corresponding efficiency is 6.2%.
  • Figure 3 is a schematic structural diagram of a PbS quantum dot stack solar cell.

Abstract

本发明涉及光伏器件技术领域,公开了一种量子点叠层太阳能电池及其制备方法,所述量子点叠层太阳能电池具体包括前电池、透明导电中间层、后电池和对电极;所述前电池包括导电衬底、氧化物半导体薄膜和半导体量子点薄膜;所述透明导电中间层为ITO薄膜;所述后电池包括氧化物半导体薄膜和半导体量子点薄膜;所述对电极为金属电极;本发明制备的量子点叠层太阳能电池利用高透明ITO中间层,使得太阳能电池的光能利用率大幅提升,有效提高了电池的光电转化效率。

Description

一种量子点叠层太阳能电池及其制备方法 技术领域
本发明涉及光伏器件技术领域,特别是涉及一种量子点叠层太阳能电池及其制备方法。
背景技术
光伏器件为吸收太阳光,并将吸收的太阳光能转换为电能的半导体器件。太阳光光谱为混合光谱,每一种特定的半导体材料只能吸收大于某一特定波长的光。在单节电池中,未被吸收的太阳光会以透射光或热能的形式散失掉而无法被吸收利用;而高能量的光被吸收后也会由于带隙原因产生热损失。由于低能光透射损失和高能光热损失的存在,单节电池的效率不会超过33.4%,即肖脱基极限。
叠层电池通过结合两个不同带隙的单节电池,使得大带隙的电池作为前电池吸收高能光,低带隙的电池作为后电池吸收低能光,从而降低能量损失,提高光能利用率。
量子点是在把激子在三个空间方向上束缚住的半导体纳米结构,一般为球形或类球形,直径常在2-20 nm之间,是一种重要的低维半导体材料,常见的量子点由IV、II-VI,IV-VI或III-V元素组成。量子点具有激发光谱宽且连续分布、发射光谱窄而对称、颜色可调、光化学稳定性高、荧光寿命长等特性,量子点在包括叠层电池在内的各种光电子器件上得到了广泛的应用。
但目前,虽然已有部分关于量子点叠层太阳能电池的报道,但现有的量子点叠层太阳能电池的光电转化效率依旧较低。因此,亟需发明一种光电转化效率高的量子点叠层太阳能电池。
发明内容
为了解决上述技术问题,本发明提供了一种量子点叠层太阳能电池,所述电池包括前电池、透明导电中间层、后电池和对电极;
所述前电池包括导电衬底、氧化物半导体薄膜和半导体量子点薄膜;
所述透明导电中间层为ITO薄膜;
所述后电池包括氧化物半导体薄膜和半导体量子点薄膜。
进一步的,所述氧化物半导体薄膜为ZnO纳米颗粒薄膜;所述半导体量子点薄膜为量子点-卤化铅复合薄膜。
进一步的,所述量子点-卤化铅复合薄膜为PbS量子点-卤化铅复合薄膜。
进一步的,所述对电极为金属电极;所述导电衬底为导电玻璃。
本发明还提供一种量子点叠层太阳能电池的制备方法,包括:
步骤S1、以氧化物半导体材料、量子点和卤化铅的顺序,在导电衬底的上表面分别涂覆氧化物半导体材料、量子点和卤化铅,获得前电池;
步骤S2、在步骤S1获得的所述前电池上涂覆透明导电中间层材料,获得覆盖有透明导电中间层的前电池;
步骤S3、以氧化物半导体材料、量子点和卤化铅的顺序,在步骤S2获得的所述透明导电中间层的表面上分别涂覆氧化物半导体材料、量子点和卤化铅涂覆氧化物半导体材料,获得前电池-透明导电中间层-后电池复合物;
步骤S4、在所述前电池-透明导电中间层-后电池复合物的后电池表面沉积金属电极,获得所述量子点叠层太阳能电池。
进一步的,所述氧化物半导体材料为ZnO纳米颗粒;所述量子点为PbS量子点;所述卤化铅为碘化铅;所述透明导电中间层材料为ITO。
进一步的,在所述步骤S1、步骤S2和步骤S3中,所述涂覆为旋涂,所述旋涂的转速为2000rpm/min,所述旋涂的时间为120s。
进一步的,在所述步骤S2中,涂覆所述透明导电中间层材料的条件为:1.5 mTorr气压和Ar气环境。
进一步的,在所述步骤S4中,所述金属电极沉积的速度为0.1nm/s。
进一步的,在所述步骤S4中,所述金属电极为厚度100nm的金电极。
与现有技术相比,其有益效果在于:
本发明提供一种量子点叠层太阳能电池及其制备方法,所述量子点叠层太阳能电池具体包括前电池、透明导电中间层、后电池和对电极;所述前电池由导电衬底、氧化物半导体薄膜和半导体量子点薄膜组成;所述透明导电中间层为ITO薄膜;所述后电池由氧化物半导体薄膜和半导体量子点薄膜组成;所述对电极为金属电极。本发明制备的量子点叠层太阳能电池利用高透明ITO中间层,使得太阳能电池的光能利用率大幅提升,有效提高了电池的光电转化效率。
附图说明
图1是本发明实施例1-5制备的PbS量子点叠层太阳能电池电池效率测定结果;
图2是本发明实施例3和对比例1制备的PbS量子点叠层太阳能电池电池效率测定结果;
图3是本发明PbS量子点叠层太阳能电池的结构示意图。
具体实施方式
下面将对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
PbS量子点是一种半导体纳米晶,一般直径在40nm以下。由于PbS材料自身的波尔激子半径比较大,较容易产生量子局限效应,产生能级分裂,产生带隙。并且,通过控制PbS纳米晶的尺寸可以调控其带隙的大小:缩小纳米晶直径,其带隙会变大;增大纳米晶直径,其带隙会缩小。量子点的这一特点为叠层电池在选择材料之一步骤带来了方便。本实施例公开一种PbS量子点叠层太阳能电池的制备方法,包括:
步骤S1、制备前电池:
S1-1:将导线衬底ITO玻璃分别依次经洗涤剂、水、乙醇和丙酮超声清洗,分别清洗30min;
S1-2:使用旋涂机在ITO玻璃上旋涂ZnO纳米颗粒,旋涂速度为2000rpm/min,旋涂时长为120s;
S1-3:将带隙为1.5eV的PbS量子点旋涂在ZnO膜上获得ZnO膜,旋涂转速为2000rpm/min,旋涂时长为120s;旋涂后随即将电池片半成品浸泡于PbI2的DMF溶液中,溶液浓度为4.6mg/ml;浸泡后使用乙腈清洗,后晾干,制成前电池。
步骤S2、在前电池上制备透明导电中间层:
在Ar气环境下,在1.5 mTorr气压下,在步骤1获得的前电池上磁控溅射一层ITO薄膜,厚度在20nm,完成透明导电中间层的制备。
步骤3、制备前电池-透明导电中间层-后电池复合物:
S3-1:使用旋涂机,在步骤S2获得的透明导电中间层上旋涂ZnO纳米颗粒获得ZnO膜,旋涂速度为2000rpm/min,旋涂时长为120s;
S3-2:将带隙为1.2eV的PbS量子点旋涂在ZnO膜上,旋涂转速为2000rpm/min,旋涂时长为120s;旋涂后随即将电池片半成品浸泡于PbI2的DMF溶液中,溶液浓度为4.6mg/ml;浸泡后使用乙腈清洗,后晾干,获得前电池-透明导电中间层-后电池复合物。
步骤S4、在前电池-透明导电中间层-后电池复合物上制备对电极:
以0.1nm/s的速度,在前电池-透明导电中间层-后电池复合物的后电池表面蒸镀一层100nm厚度的金电极,获得PbS量子点叠层太阳能电池。
实施例2
本实施例公开一种PbS量子点叠层太阳能电池的制备方法,制备方法同实施例1,唯一不同之处在于步骤S2中,前电池上磁控溅射一层ITO薄膜,厚度在80nm。
实施例3
本实施例公开一种PbS量子点叠层太阳能电池的制备方法,制备方法同实施例1,唯一不同之处在于步骤S2中,前电池上磁控溅射一层ITO薄膜,厚度在100nm。
实施例4
本实施例公开一种PbS量子点叠层太阳能电池的制备方法,制备方法同实施例1,唯一不同之处在于步骤S2中,前电池上磁控溅射一层ITO薄膜,厚度在140nm。
实施例5
本实施例公开一种PbS量子点叠层太阳能电池的制备方法,制备方法同实施例1,唯一不同之处在于步骤S2中,前电池上磁控溅射一层ITO薄膜,厚度在200nm。
对比例1
本实施例公开一种PbS量子点叠层太阳能电池的制备方法,制备方法同实施例3,唯一不同之处在于步骤S3-2中,将带隙为1.5eV的PbS量子点旋涂在ZnO膜上。
试验例1
对实施例1-5和对比例1制备的PbS量子点叠层太阳能电池电池效率进行测定。
图1为不同厚度ITO中间层的电池IV曲线,其中,IV曲线1为厚度为20nm的ITO中间层对应的电池效率,电池效率为4.2%;IV曲线2为厚度为80nm的ITO中间层对应的电池效率,电池效率为5.2%;IV曲线3为厚度为100nm的ITO中间层对应的电池效率,电池效率为6.2%;IV曲线4为厚度为1400nm的ITO中间层对应的电池效率,电池效率为4.3%;IV曲线5为厚度为200nm的ITO中间层对应的电池效率,电池效率为3.4%。由图1曲线可知,最优ITO厚度为100nm,此厚度生产出的电池效率最高。
图2为实施例3和对比例1对电池效率测定结果,具体为:图2为单一带隙与大小带隙配合的电池的IV曲线对比,其中,曲线1为对比例1同带隙电池(前后电池带隙均为1.5eV)IV曲线,对应效率为5.1%;曲线2为实施例3对大小带隙配合(前电池带隙1.5eV,后电池带隙为1.2eV)的电池的IV曲线,对应效率为6.2%。
图3为PbS量子点叠层太阳能电池的结构示意图。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明技术原理的前提下,还可以做出若干改进和替换,这些改进和替换也应视为本发明的保护范围。

Claims (10)

  1. 一种量子点叠层太阳能电池,其特征在于,所述电池包括前电池、透明导电中间层、后电池和对电极;
    所述前电池包括导电衬底、氧化物半导体薄膜和半导体量子点薄膜;
    所述透明导电中间层为ITO薄膜;
    所述后电池包括氧化物半导体薄膜和半导体量子点薄膜。
  2. 根据权利要求1所述的量子点叠层太阳能电池,其特征在于,所述氧化物半导体薄膜为ZnO纳米颗粒薄膜;所述半导体量子点薄膜为量子点-卤化铅复合薄膜。
  3. 根据权利要求2所述的量子点叠层太阳能电池,其特征在于,所述量子点-卤化铅复合薄膜为PbS量子点-卤化铅复合薄膜。
  4. 根据权利要求1所述的量子点叠层太阳能电池,其特征在于,所述对电极为金属电极;所述导电衬底为导电玻璃。
  5. 一种量子点叠层太阳能电池的制备方法,其特征在于,包括:
    步骤S1、以氧化物半导体材料、量子点和卤化铅的顺序,在导电衬底的上表面分别涂覆氧化物半导体材料、量子点和卤化铅,获得前电池;
    步骤S2、在步骤S1获得的所述前电池上涂覆透明导电中间层材料,获得覆盖有透明导电中间层的前电池;
    步骤S3、以氧化物半导体材料、量子点和卤化铅的顺序,在步骤S2获得的所述透明导电中间层的表面上分别涂覆氧化物半导体材料、量子点和卤化铅涂覆氧化物半导体材料,获得前电池-透明导电中间层-后电池复合物;
    步骤S4、在所述前电池-透明导电中间层-后电池复合物的后电池表面沉积金属电极,获得所述量子点叠层太阳能电池。
  6. 根据权利要求5所述的制备方法,其特征在于,所述氧化物半导体材料为ZnO纳米颗粒;所述量子点为PbS量子点;所述卤化铅为碘化铅;所述透明导电中间层材料为ITO。
  7. 根据权利要求5所述的制备方法,其特征在于,在所述步骤S1、步骤S2和步骤S3中,所述涂覆为旋涂,所述旋涂的转速为2000rpm/min,所述旋涂的时间为120s。
  8. 根据权利要求5所述的制备方法,其特征在于,在所述步骤S2中,涂覆所述透明导电中间层材料的条件为:1.5 mTorr气压和Ar气环境。
  9. 根据权利要求5所述的制备方法,其特征在于,在所述步骤S4中,所述金属电极沉积的速度为0.1nm/s。
  10. 根据权利要求5或9所述的制备方法,其特征在于,在所述步骤S4中,所述金属电极为厚度100nm的金电极。
PCT/CN2022/125940 2022-09-07 2022-10-18 一种量子点叠层太阳能电池及其制备方法 WO2024050927A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211098827.1 2022-09-07
CN202211098827.1A CN116130531A (zh) 2022-09-07 2022-09-07 一种量子点叠层太阳能电池及其制备方法

Publications (1)

Publication Number Publication Date
WO2024050927A1 true WO2024050927A1 (zh) 2024-03-14

Family

ID=86297906

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/125940 WO2024050927A1 (zh) 2022-09-07 2022-10-18 一种量子点叠层太阳能电池及其制备方法

Country Status (2)

Country Link
CN (1) CN116130531A (zh)
WO (1) WO2024050927A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102097509A (zh) * 2010-11-24 2011-06-15 北京航空航天大学 一种叠层薄膜非微晶硅太阳能电池五层结构的设计
CN103346176A (zh) * 2013-06-18 2013-10-09 天津理工大学 基于不同粒径PbS量子点的叠层太阳能电池及制备方法
CN108281501A (zh) * 2018-01-29 2018-07-13 华中科技大学 基于Sb2S3顶电池的叠层薄膜太阳能电池及其制备方法
JP2021118209A (ja) * 2020-01-22 2021-08-10 国立研究開発法人物質・材料研究機構 太陽電池

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102097509A (zh) * 2010-11-24 2011-06-15 北京航空航天大学 一种叠层薄膜非微晶硅太阳能电池五层结构的设计
CN103346176A (zh) * 2013-06-18 2013-10-09 天津理工大学 基于不同粒径PbS量子点的叠层太阳能电池及制备方法
CN108281501A (zh) * 2018-01-29 2018-07-13 华中科技大学 基于Sb2S3顶电池的叠层薄膜太阳能电池及其制备方法
JP2021118209A (ja) * 2020-01-22 2021-08-10 国立研究開発法人物質・材料研究機構 太陽電池

Also Published As

Publication number Publication date
CN116130531A (zh) 2023-05-16

Similar Documents

Publication Publication Date Title
US9647163B2 (en) Solar cell having a double-sided structure, and method for manufacturing same
US20090194165A1 (en) Ultra-high current density cadmium telluride photovoltaic modules
CN105514277B (zh) 一种宽范围光谱吸收的钙钛矿光伏材料及其制备方法
JP2002057359A (ja) 積層型太陽電池
JP2005347245A (ja) 太陽電池及びその製造方法
CN110970562A (zh) 一种钙钛矿/晶硅叠层太阳能电池及其制备方法
CN102097497A (zh) 一种高转换效率的太阳能电池
CN108878570B (zh) 空穴选择型MoOx/SiOx(Mo)/n-Si异质结、太阳电池器件及其制备方法
JPH11233800A (ja) 太陽電池用基板、その製造方法及び半導体素子
CN110611030A (zh) 具有阵列结构电子传输层的钙钛矿太阳能电池及其制备方法
CN201156545Y (zh) 一种锑化铝透明薄膜太阳电池
KR102372238B1 (ko) 일체형 탠덤 태양전지 및 그 제조방법
WO2024040920A1 (zh) 一种空穴传输层及其应用
CN109935652B (zh) 一种CdTe纳米晶太阳电池及其制备方法
WO2024050927A1 (zh) 一种量子点叠层太阳能电池及其制备方法
CN107706248A (zh) 一种硅纳米结构异质结太阳电池及其制备方法
Zhang et al. Modifying the photoelectric performance of SnO2 via D-arginine monohydrochloride for high-performance perovskite solar cells
Wang et al. Recent advances in the functionalization of perovskite solar cells/photodetectors
CN211238273U (zh) 全无机钙钛矿器件
CN110120303B (zh) 多层结构的量子点敏化太阳能电池光阳极的制备方法
KR20070104021A (ko) 전기화학증착법을 이용한 태양전지 제조방법
CN107978681A (zh) 一种基于超薄金属的太阳能电池的制备方法
CN210429835U (zh) 一种InP-石墨烯太阳电池
CN114420853A (zh) 一种碱金属醋酸盐修饰自组装空穴传输层的方法
WO2021203609A1 (zh) 二氧化锡量子点材料及其制备方法,光电器件