WO2021203609A1 - 二氧化锡量子点材料及其制备方法,光电器件 - Google Patents

二氧化锡量子点材料及其制备方法,光电器件 Download PDF

Info

Publication number
WO2021203609A1
WO2021203609A1 PCT/CN2020/110027 CN2020110027W WO2021203609A1 WO 2021203609 A1 WO2021203609 A1 WO 2021203609A1 CN 2020110027 W CN2020110027 W CN 2020110027W WO 2021203609 A1 WO2021203609 A1 WO 2021203609A1
Authority
WO
WIPO (PCT)
Prior art keywords
quantum dot
tin dioxide
dot material
tin
dioxide quantum
Prior art date
Application number
PCT/CN2020/110027
Other languages
English (en)
French (fr)
Inventor
李刚
任志伟
Original Assignee
香港理工大学深圳研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 香港理工大学深圳研究院 filed Critical 香港理工大学深圳研究院
Publication of WO2021203609A1 publication Critical patent/WO2021203609A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G19/00Compounds of tin
    • C01G19/02Oxides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/66Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing germanium, tin or lead
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/66Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing germanium, tin or lead
    • C09K11/661Chalcogenides
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/115OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising active inorganic nanostructures, e.g. luminescent quantum dots
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/10Transparent electrodes, e.g. using graphene
    • H10K2102/101Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO]
    • H10K2102/102Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO] comprising tin oxides, e.g. fluorine-doped SnO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the invention belongs to the technical field of semiconductors, and in particular relates to a tin dioxide quantum dot material and a preparation method thereof, and a photoelectric device.
  • organic-inorganic hybrid perovskite materials are rich in materials, low in processing costs, carrier diffusion lengths up to micrometers, semiconductor band gaps are adjustable, high defect tolerance, excellent and bipolar carrier transport
  • the unique advantages such as characteristics and high light absorption coefficient have become the most promising candidates for various optoelectronic devices and have attracted much attention and research.
  • the mesoporous titania structure is still the most effective electron transport layer material for perovskite solar cells, but it still requires a higher titania crystal annealing temperature to ensure high carrier mobility and high-quality thin films. This not only makes the manufacturing process of perovskite solar cells more complicated and leads to a longer energy cost payback period, but also hinders the application in flexible and stretchable electronic devices.
  • planar perovskite solar cells based on the electron transport layer of titanium dioxide often suffer from more serious hysteresis and photocatalysis problems.
  • An ideal and reliable electron transport layer for high-efficiency perovskites should have good energy level matching, high mobility, good stability and high transmittance.
  • a tin dioxide-based electron transport layer that meets all the above standards has been widely used in high-performance perovskite solar cells, and it is considered to be the most promising candidate to replace titanium dioxide.
  • tin dioxide functional groups are modified or post-treated to reduce the recombination of interface charges and promote carrier extraction, achieving good chemical and physical interface contact.
  • the main optimization schemes are: metal ion doping, functional molecular coordination, semiconducting polymer coating, anchoring of fullerenes and fullerene derivatives.
  • the purpose of the present invention is to provide a method for preparing a tin dioxide quantum dot material, which aims to solve the complicated preparation process of the existing tin dioxide quantum dot material, and the prepared quantum dot material has a high interface charge with a functional layer such as perovskite. , Poor stability, and other technical problems.
  • Another object of the present invention is to provide a tin dioxide quantum dot material.
  • Another object of the present invention is to provide an optoelectronic device.
  • a preparation method of tin dioxide quantum dot material includes the following steps:
  • the tin source and the hydrophilic ligand are mixed and processed under an oxygen atmosphere at 0°C-60°C to obtain a tin dioxide quantum dot material with a hydrophilic ligand bound on the surface.
  • the tin source is selected from: at least one of stannous chloride dihydrate, tin chloride pentahydrate, tin tetraacetate, stannous acetate, stannous oxalate, and stannous 2-ethylhexanoate; and /or,
  • the hydrophilic ligand is selected from: 2-ethylisothiourea hydrobromide, (2,3-difluorophenyl)thiourea, (2,5-difluorophenyl)thiourea, 1, 3-Diisopropyl-2-thiourea, 3,5-dimethylphenylthiourea, 4-cyanophenylthiourea, 4-fluorophenylthiourea, 1-(3-carboxyphenyl)-2 -At least one of thiourea and 1-(2-furfuryl)-2-thiourea; and/or,
  • the solvent in the solution of the hydrophilic ligand is selected from at least one of water, ethanol, and isopropanol.
  • the molar ratio of the tin source to the hydrophilic ligand is (1-50):1; and/or,
  • the particle size of the tin dioxide quantum dot material is 2 to 3 nanometers.
  • the step of mixing the tin source and the hydrophilic ligand includes: adding the tin source to the solution of the hydrophilic ligand to form a mixed system, and then stirring.
  • a tin dioxide quantum dot material is produced by the above-mentioned method.
  • a photoelectric device includes the above-mentioned tin dioxide quantum dot material.
  • the optoelectronic device includes a tin dioxide quantum dot material layer composed of the tin dioxide quantum dot material.
  • the optoelectronic device includes a tin dioxide quantum dot material layer, a perovskite layer, a hole transport layer and an electrode layer which are sequentially stacked on a substrate.
  • the thickness of the tin dioxide quantum dot material layer is 30-50 nanometers; and/or,
  • the thickness of the perovskite layer is 300-1000 nanometers.
  • the optoelectronic device includes the tin dioxide quantum dot material layer, the rubidium-cesium-potassium co-doped perovskite system layer, 2,2,7,7-tetra [N,N-Bis(4-methoxyphenyl)amino]-9,9-spirobifluorene layer and gold electrode.
  • the tin source and the hydrophilic ligand are mixed and processed under an oxygen atmosphere at 0°C to 60°C to obtain a surface modified with hydrophilic type.
  • Ligand tin dioxide quantum dot material The preparation method provided by the invention has simple process, short time-consuming and mild conditions, and realizes the low-temperature in-situ solution synthesis of metal oxide quantum dots.
  • the prepared tin dioxide quantum dot material has a small particle size, and the small particle size quantum dot has a better filling effect in the microscopic surface gap, has a stronger surface coverage, and has more prominent film-forming characteristics.
  • the electron transport layer When used in optoelectronic devices, it can reduce the contact defects between the electron transport layer and the electrode in the device, and improve the stability and photoelectric performance of the device.
  • the surface of the tin dioxide quantum dot material prepared by the present invention is modified with hydrophilic ligands.
  • the electron transport layer of photovoltaic, LED and other optoelectronic devices it can be used for the light absorption layer or LED in photovoltaic devices such as perovskite.
  • the interface of the light-emitting layer in the light-emitting device is passivated to reduce the photovoltage loss, thereby improving the photoelectric performance of the device.
  • the tin dioxide quantum dot material provided by the present invention is prepared by the above-mentioned method for preparing the tin dioxide quantum dot material, and has a small particle size, which can reach 2 to 3 nanometers, and has outstanding high-quality film-forming characteristics.
  • quantum dots with small particle diameters When applied to the electron transport layer of optoelectronic devices, on the one hand, quantum dots with small particle diameters have a better filling effect in the microscopic surface gaps and have stronger surface coverage.
  • quantum dots with small particle diameters When used in the electron transport layer of optoelectronic devices, It can reduce the contact defects between the electron transport layer and the electrode in the device, and improve the stability and photoelectric performance of the device.
  • the surface of tin dioxide quantum dot materials is modified with hydrophilic ligands.
  • the interface of the middle light-emitting layer is passivated to reduce the photovoltage loss, thereby improving the photoelectric performance of the device.
  • the optoelectronic device provided by the present invention contains the above-mentioned small particle size (up to 2 ⁇ 3 nanometers), good micro-surface gap filling performance, and outstanding high-quality film-forming characteristics on the surface modified with hydrophilic ligand dioxide
  • the tin quantum dot material not only has a better filling effect in the micro-surface gap of the substrate, it can more effectively reduce the physical defect state of the interface, eliminate the contact defect between the electron transport layer and the electrode, and improve the stability of the device and the photoelectricity.
  • Performance; and surface-modified hydrophilic ligands can passivate the interface of light-absorbing/luminescent layers such as perovskite, reduce photovoltage loss, and improve the photoelectric performance of the device.
  • FIG. 1 is a transmission electron microscope image and a selected area electron diffraction and electron energy loss spectrum of a tin dioxide quantum dot material provided in Example 1 of the present invention.
  • Figure 2 shows the modified tin dioxide quantum dots (SnO 2 QDs), commercialized tin dioxide colloidal dispersions (SnO 2 NPs) and alcohol-based tin dioxide (c-SnO 2 ) modified in Example 1 of the present invention, respectively, and FTO transparent Surface topography after bonding of conductive glass substrates.
  • SnO 2 QDs modified tin dioxide quantum dots
  • SnO 2 NPs commercialized tin dioxide colloidal dispersions
  • c-SnO 2 alcohol-based tin dioxide
  • Figure 3 shows the modified tin dioxide quantum dots (SnO 2 QDs), commercialized tin dioxide colloidal dispersions (SnO 2 NPs) and alcohol-based tin dioxide (c-SnO 2 ) modified in Example 1 of the present invention, respectively, and FTO transparent Cross-sectional topography of the combined conductive glass substrates.
  • SnO 2 QDs modified tin dioxide quantum dots
  • SnO 2 NPs commercialized tin dioxide colloidal dispersions
  • c-SnO 2 alcohol-based tin dioxide
  • Figure 4 shows the X-ray photoelectrons of tin dioxide quantum dots (SnO 2 QDs), commercial tin dioxide colloidal dispersions (SnO 2 NPs) and alcohol-based tin dioxide (c-SnO 2 ) modified in Example 1 of the present invention Energy spectrum.
  • SnO 2 QDs tin dioxide quantum dots
  • SnO 2 NPs commercial tin dioxide colloidal dispersions
  • c-SnO 2 alcohol-based tin dioxide
  • Figure 5 shows the modified tin dioxide quantum dots (SnO 2 QDs), commercialized tin dioxide colloidal dispersions (SnO 2 NPs), and alcohol-based tin dioxide (c-SnO 2 ) in deionized water in Example 1 of the present invention Test chart of surface contact angle, grazing incidence X-ray wide-angle scattering, the relationship between the corresponding diffraction characteristic peak and the q value, and the corresponding correlation length.
  • SnO 2 QDs modified tin dioxide quantum dots
  • SnO 2 NPs commercialized tin dioxide colloidal dispersions
  • c-SnO 2 alcohol-based tin dioxide
  • Figure 7 is a diagram of the present invention respectively deposited with tin dioxide quantum dots modified in Example 1 (SnO 2 QDs), commercialized tin dioxide colloidal dispersions (SnO 2 NPs) and alcohol-based tin dioxide (c-SnO 2 ) Atomic force microscope test image of FTO transparent conductive glass substrate of quantum dots.
  • SnO 2 QDs tin dioxide quantum dots modified in Example 1
  • SnO 2 NPs commercialized tin dioxide colloidal dispersions
  • c-SnO 2 alcohol-based tin dioxide Atomic force microscope test image of FTO transparent conductive glass substrate of quantum dots.
  • Fig. 8 is a graph showing the optimal current density-voltage curves of the perovskite battery prepared by tin dioxide modified in Example 5 of the present invention and the perovskite battery prepared by c-SnO 2 and SnO 2 NPs.
  • Example 9 is a graph showing the optimal current density-voltage curve of the perovskite solar cell in which the tin dioxide quantum dot material of Example 1 of the present invention is made into an electron transport layer at different processing temperatures.
  • Fig. 10 is a static statistical distribution diagram of the photovoltaic parameters of the perovskite solar cell in which the tin dioxide quantum dot material is made into an electron transport layer at different processing temperatures in Example 1 of the present invention.
  • FIG. 11 is a static statistical distribution diagram of photovoltaic parameters of a perovskite solar cell with an electron transport layer made of tin dioxide quantum dot materials with different modified concentrations in an embodiment of the present invention.
  • Fig. 12 is an optimal current density-voltage curve diagram of the perovskite battery device of Example 5 of the present invention.
  • Fig. 13 is a photoluminescence effect diagram of a perovskite battery device of Example 5 of the present invention under different bias voltages.
  • first and second are only used for description purposes, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of indicated technical features. Therefore, the features defined with “first” and “second” may explicitly or implicitly include one or more of these features.
  • “plurality” means two or more than two, unless otherwise specifically defined.
  • the weight of the relevant components mentioned in the description of the embodiments of the present invention can not only refer to the specific content of each component, but also can indicate the proportion of weight between the components. Therefore, as long as the relevant group is in accordance with the description of the embodiment of the present invention Enlargement or reduction in proportion to the content of the fennel is within the scope disclosed in the specification of the embodiments of the present invention.
  • the weight described in the specification of the embodiment of the present invention may be a mass unit well-known in the chemical industry, such as ⁇ g, mg, g, and kg.
  • the embodiment of the present invention provides a method for preparing a tin dioxide quantum dot material, which includes the following steps:
  • the tin source and the hydrophilic ligand are mixed and processed in an oxygen atmosphere at 0°C to 60°C to obtain a surface-modified affinity Tin dioxide quantum dot material with water-based ligand.
  • the preparation method provided by the embodiment of the present invention has simple process, short time-consuming and mild conditions, and realizes the low-temperature in-situ solution synthesis of metal oxide quantum dots.
  • the prepared tin dioxide quantum dot material has a small particle size, and the small particle size quantum dot has a better filling effect in the microscopic surface gap, has a stronger surface coverage, and has more prominent film-forming characteristics.
  • the electron transport layer When used in optoelectronic devices, it can reduce the contact defects between the electron transport layer and the electrode in the device, and improve the stability and photoelectric performance of the device.
  • the surface of the tin dioxide quantum dot material prepared in the embodiment of the present invention is modified with hydrophilic ligands.
  • it When used in the electron transport layer of photovoltaic, LED and other optoelectronic devices, it can affect the light absorption layer or The interface of the light-emitting layer in light-emitting devices such as LEDs is passivated to reduce the photovoltage loss, thereby improving the photoelectric performance of the device.
  • a tin source and a hydrophilic ligand are obtained.
  • the tin source is selected from: at least one of stannous chloride dihydrate, stannous chloride pentahydrate, tin tetraacetate, stannous acetate, stannous oxalate, and stannous 2-ethylhexanoate kind.
  • the tin sources used in the embodiments of the present invention are easily soluble in water-based solvents, and their anions are easier to escape during the heating and oxidation process, and the residues are small to facilitate the formation of high-quality SnO 2.
  • the hydrophilic ligand is selected from: 2-ethylisothiourea hydrobromide, (2,3-difluorophenyl)thiourea, (2,5-difluorophenyl) )Thiourea, 1,3-diisopropyl-2-thiourea, 3,5-dimethylphenylthiourea, 4-cyanophenylthiourea, 4-fluorophenylthiourea, 1-(3- At least one of carboxyphenyl)-2-thiourea and 1-(2-furfuryl)-2-thiourea.
  • hydrophilic ligands used in the embodiments of the present invention contain active functional groups such as amino, cyano, halogen, sulfhydryl, etc., which not only make these multifunctional ligands water-soluble, but also the active functional groups in these multifunctional ligands are easily compatible with Sn 2+ and Sn 4+ are coordinated to modify the surface of tin dioxide quantum dots.
  • the tin source and the hydrophilic ligand are mixed and processed under an oxygen atmosphere at 0° C. to 60° C. to obtain a tin dioxide quantum dot material.
  • the embodiment of the present invention is carried out under a room temperature oxygen atmosphere of 0°C to 60°C.
  • the tin source is first hydrolyzed to form tin hydroxide, such as SnCl 2 + 2H 2 O à Sn (OH) 2 + 2HCl, and then The tin hydroxide is dehydrated and oxidized under the action of oxygen to produce tin dioxide, Sn (OH) 2 + O 2 à SnO 2 + H 2 O, and at the same time, the hydrophilic ligand binds to tin ions to obtain the modified ligand Tin dioxide quantum dot material.
  • the oxygen atmosphere can not only react with tin hydroxide to generate tin dioxide, but also accelerate the surface modification of tin dioxide quantum dots by the multifunctional ligand.
  • the step of mixing the tin source and the hydrophilic ligand includes: adding the tin source to the solution of the hydrophilic ligand to form a mixed system, and then stirring. In some specific embodiments, it is stirred until the mixed system changes from a milky state to a transparent and clear state.
  • the hydrophilic ligand is first dissolved in the solvent, and then the tin source is added for stirring and mixing. This addition sequence ensures that the hydrophilic ligand is evenly distributed in the solution, and the tin source added later can be effective, The coordination reaction occurs quickly and fully.
  • the local reaction will be uneven, and it will easily lead to the excessive hydrolysis of the tin source into tin hydroxide. Without the assistance of the ligand, the subsequent dehydration and oxidation process will be slower, greatly slowing down The synthetic process of the reaction.
  • the molar ratio of the tin source to the hydrophilic ligand is (1-50):1, and the molar ratio of the tin source to the hydrophilic ligand is beneficial to the quantum of tin dioxide
  • the hydrophilic ligand is too low, the surface modification of the tin dioxide quantum dots will be insufficient, thereby reducing the overall performance of the tin dioxide quantum dot material; if the molar ratio of the hydrophilic ligand is too high, it will be too high.
  • hydrophilic ligands especially those containing long carbon chains and terminal functional groups, are free in the solution due to mutual attraction and mutual influence, which not only inhibits the nucleation and growth of tin dioxide, but also because of the affinity Water-type ligands have insulating properties, and excessive hydrophilic ligands will reduce the electron transport performance of tin dioxide quantum dots.
  • the solvent in the solution of the hydrophilic ligand is selected from at least one of water, ethanol, and isopropanol.
  • the solvent of the reaction system in the embodiment of the present invention can be water, ethanol, isopropanol, and other alcoholic solvents. These solvents can provide sufficient hydroxide ions for the reaction, which is not only conducive to the dissolution of tin source and multifunctional ligands, but also It is conducive to the modification and combination of tin dioxide quantum dots with multifunctional ligands.
  • the particle size of the tin dioxide quantum dot material is 2 to 3 nanometers.
  • the tin dioxide quantum dot material prepared in the embodiment of the present invention has a particle size of 2 to 3 nanometers, and the quantum dot material with a smaller particle size has better film-forming performance. When applied to optoelectronic devices, it is in the micro-surface gap It has a better filling effect, which can more effectively reduce the physical defect state of the interface, and improve the stability and photoelectric performance of the device.
  • an embodiment of the present invention also provides a tin dioxide quantum dot material, which is prepared by the above-mentioned method.
  • the tin dioxide quantum dot material provided by the embodiment of the present invention is prepared by the above-mentioned method for preparing the tin dioxide quantum dot material, and has a small particle size, which can reach 2 to 3 nanometers, and has outstanding high-quality film-forming characteristics.
  • quantum dots with small particle diameters have better filling effects in the micro-surface gaps and stronger surface coverage.
  • the electron transport layer of optoelectronic devices it can reduce the device The contact defect between the electron transport layer and the electrode improves the stability and photoelectric performance of the device.
  • the surface of tin dioxide quantum dot materials is modified with hydrophilic ligands.
  • the interface is passivated to reduce the photovoltage loss, thereby improving the photoelectric performance of the device.
  • an embodiment of the present invention also provides an optoelectronic device including the above-mentioned tin dioxide quantum dot material.
  • the optoelectronic device provided by the embodiment of the present invention contains the above-mentioned small particle size (up to 2 ⁇ 3 nanometers), good micro-surface gap filling performance, and outstanding high-quality film-forming characteristics on the surface modified with hydrophilic ligands.
  • the tin dioxide quantum dot material not only has a better filling effect in the micro-surface gap of the substrate, it can more effectively reduce the physical defect state of the interface, eliminate the contact defect between the electron transport layer and the electrode, and improve the stability of the device And photoelectric properties; and the surface-modified hydrophilic ligands can passivate the interface of the light-absorbing layer in photovoltaic devices such as perovskite or the light-emitting layer in light-emitting devices such as LEDs, reduce the photovoltage loss, and improve the photoelectricity of the device. performance.
  • the application of the tin dioxide quantum dot material in the embodiment of the present invention in the optoelectronic device can be mixed with current commercial electron transport layer materials, or used as an electron transport layer alone or mixed with other electron transport layers.
  • the optoelectronic device includes a tin dioxide quantum dot material layer composed of the tin dioxide quantum dot material.
  • the tin dioxide quantum dot material of the embodiment of the present invention is applied in the form of a separate functional layer in an optoelectronic device, and has the properties of small particle size and good film formation, so it can reduce contact defects with adjacent functional layers, thereby improving the stability of the device Sex and photoelectric performance.
  • the embodiments of the present invention provide optoelectronic devices including, but not limited to, photovoltaic devices such as perovskites, and light-emitting devices such as LEDs.
  • the optoelectronic device includes a tin dioxide quantum dot material layer, a perovskite layer, a hole transport layer, and an electrode layer that are sequentially stacked on a substrate.
  • the tin dioxide quantum dot material layer of the embodiment of the present invention is used as an electron transport layer in an optoelectronic device, which not only has a better filling effect in the micro-surface gap of the substrate, and reduces the physical defect state of the interface; and the surface modification is hydrophilic
  • the type ligand can passivate the interface of the light-absorbing layer in the perovskite photovoltaic device or the light-emitting layer in the light-emitting device such as LED, reduce the photovoltage loss, and improve the photoelectric performance of the device.
  • the thickness of the tin dioxide quantum dot material layer is 30-50 nanometers.
  • the tin quantum dot material layer not only avoids increasing the physical defects of the functional layer, but also ensures the electronic transmission capability of the device.
  • the thickness of the perovskite layer is 300-1000 nanometers. If the perovskite film is too thin, the device current will decrease, and too thick will generally affect the film quality and increase body defects.
  • the perovskite layer in the photoelectric device of the embodiment of the present invention can be any material with perovskite characteristics, and the hole transport layer can also be any hole material that meets the energy level matching of the perovskite layer, such as small molecule materials, PTAA , P3HT, etc.
  • the optoelectronic device includes the tin dioxide quantum dot material layer, the rubidium-cesium-potassium co-doped perovskite system layer, 2,2,7, 7-Tetra[N,N-bis(4-methoxyphenyl)amino]-9,9-spirobifluorene layer and gold electrode.
  • the difluorene layer acts as a hole transport layer, which makes the overall performance of the device more stable and excellent.
  • the electrode layer includes but is not limited to gold, molybdenum oxide/metal, ITO, and the like.
  • the optoelectronic device includes a layer of tin dioxide quantum dot material with a thickness of 30-50 nanometers and a rubidium-cesium-potassium with a thickness of 300-1000 nanometers, which are sequentially stacked on a transparent conductive substrate.
  • tin dioxide quantum dot material with a thickness of 30-50 nanometers and a rubidium-cesium-potassium with a thickness of 300-1000 nanometers, which are sequentially stacked on a transparent conductive substrate.
  • a tin dioxide quantum dot material includes the following preparation steps:
  • a kind of tin dioxide quantum dot material its preparation method is different from Example 1 in that in Examples 2 to 4, stannous chloride dihydrate and dihydrobromic acid-2-(2-aminoethyl) isoform
  • the molar ratios of thiourea are 9:1, 5.25:1 and 4:1, and other preparation steps and conditions are the same.
  • a perovskite battery device includes the following steps:
  • the tin dioxide quantum dot material prepared in Example 1 was deposited on the FTO transparent glass substrate to form a tin dioxide quantum dot material layer; then the cesium rubidium potassium doped perovskite solution was spin-coated on the FTO transparent glass substrate using the chlorobenzene anti-solvent method A perovskite layer is formed on the tin dioxide quantum dot material layer, and then heated at 120°C for 1 hour in an atmosphere with a relative humidity of 20%-30%.
  • the examples of the present invention use alcohol-based tin dioxide (c-SnO 2 ) and commercial tin dioxide dispersions (SnO 2 NPs) as comparative examples of tin dioxide quantum dot materials.
  • the test example of the present invention observes the tin dioxide quantum dot material prepared in Example 1, as shown in Figure 1, where Figure 1 (a) is a transmission electron microscope image of the tin dioxide quantum dot material, the illustration shows The particle size distribution of the quantum dots; from the high-resolution transmission electron microscope image on the upper right, it can be clearly observed that the 110 crystal plane spacing is 0.33 nanometers. From the electron diffraction of the selected area on the lower right, the electron diffraction rings from the (110), (101), (211), and (310) crystal planes of the quantum dots can be clearly observed.
  • Figure 1 (b) is the scanning transmission electron microscopy image of the tin dioxide quantum dot material and the high-angle circular dark field scanning transmission electron microscopy image of the selected area and the corresponding tin element and oxygen element in the quantum dot Electron energy loss spectrum.
  • the tin dioxide quantum dot material prepared in Example 1 of the present invention has a particle size of 2 to 3 nanometers, with a small particle size and good uniformity. Good filling effect and better film forming performance.
  • the characteristic tin element and the characteristic oxygen element in the obtained product are uniformly distributed.
  • Figure 2(a) is the FTO transparent conductive substrate
  • Figure 2(b) is FTO coated with alcohol-based tin dioxide (c-SnO 2 )
  • Figure 2(c) is FTO coated with commercial tin dioxide dispersion (SnO 2 NPs)
  • Figure 2(d) is coated with Example 1 FTO of modified tin dioxide quantum dots (SnO 2 QDs).
  • Figure 3 is the cross-sectional morphology of the FTO transparent conductive glass substrate deposited with quantum dots modified in Example 1.
  • Figure 3(b) is the cross-sectional morphology of the FTO transmission electron microscope coated with alcohol-based tin dioxide and the corresponding high-angle circular dark-field scanning transmission electron microscope image of the selected area, and its corresponding fluorine element, The electron energy loss spectra of tin and oxygen are shown in Figure 3(c).
  • Figure 3 (d) is the cross-sectional morphology of the FTO transmission electron microscope coated with tin dioxide quantum dots modified in Example 1 and the corresponding high-angle circular dark-field scanning transmission electron microscope image of the selected area, and its The corresponding electron energy loss spectra of fluorine, tin and oxygen are shown in Figure 3(e).
  • the specific distribution of the characteristic tin element, the characteristic oxygen element and the characteristic fluorine element can be used to analyze the microscopic morphology of the cross-section of tin dioxide on the transparent conductive glass.
  • the test example of the present invention compares the modified tin dioxide quantum dots (SnO 2 QDs), commercialized tin dioxide colloidal dispersions (SnO 2 NPs) and alcohol-based tin dioxide (c-SnO 2 ) in deionized water of Example 1 modified tin dioxide quantum dots (SnO 2 QDs)
  • the surface contact angle, grazing incidence X-ray wide-angle scattering, the relationship between the corresponding diffraction peaks and the q value, and the corresponding correlation length were tested respectively, as shown in Figure 5, where Figure 5 (a) from left to On the right are: FTO coated with alcohol-based tin dioxide (c-SnO 2 ), FTO (SnO 2 NPs) coated with commercial tin dioxide dispersion, and coated with tin dioxide modified in Example 1 The deionized water surface contact angle of quantum dots FTO (SnO 2 QDs).
  • Figure 5 (b) From left to right: FTO coated with alcohol-based tin dioxide (c-SnO 2 ), FTO coated with commercial tin dioxide dispersion (SnO 2 NPs), coated with The grazing incidence X-ray wide-angle scattering of FTO of the modified tin dioxide quantum dots (SnO 2 QDs) in Example 1.
  • Figure 5(c) shows the relationship between the corresponding diffraction peaks and the q value (the abscissa is the q value, and the ordinate is the intensity).
  • Figure 5(d) corresponds to the associated length (the ordinate is the associated length).
  • the tin dioxide surface modified by the multifunctional ligand has the smallest contact angle, which is beneficial to the subsequent better perovskite crystal growth, so that the crystal quality is significantly improved.
  • the surface morphology of the FTO transparent conductive glass substrate deposited with quantum dots was tested by a scanning electron microscope, as shown in FIG. 6, where (a), (b), and (c) are respectively : Perovskite film/alcohol-based tin dioxide (c-SnO 2 )/FTO transparent conductive glass, perovskite film/commercialized tin dioxide dispersion (SnO 2 NPs)/FTO transparent conductive glass and perovskite film / Scanning electron microscope cross-sectional topography of tin dioxide quantum dots (SnO 2 QDs)/FTO transparent conductive glass modified in Example 1.
  • c-SnO 2 Perovskite film/alcohol-based tin dioxide
  • SnO 2 NPs perovskite film/commercialized tin dioxide dispersion
  • SnO 2 QDs perovskite film / Scanning electron microscope cross-sectional topography of tin dioxide quantum dots
  • (D), (e), (f) are: perovskite film/alcohol-based tin dioxide (c-SnO 2 )/FTO transparent conductive glass, perovskite film/commercial tin dioxide dispersion (SnO 2 NPs)/FTO transparent conductive glass and perovskite film/SnO 2 QDs modified in Example 1/SnO 2 QDs/FTO transparent conductive glass surface topography of scanning electron microscope.
  • c-SnO 2 perovskite film/alcohol-based tin dioxide
  • SnO 2 NPs perovskite film/commercial tin dioxide dispersion
  • SnO 2 QDs perovskite film/SnO 2 QDs modified in Example 1/SnO 2 QDs/FTO transparent conductive glass surface topography of scanning electron microscope.
  • (D), (e), (f) are: perovskite film/alcohol-based tin dioxide (c-SnO 2 )/FTO transparent conductive glass, perovskite film/commercial tin dioxide dispersion (SnO 2 Atomic force microscope three-dimensional surface morphology of NPs)/FTO transparent conductive glass and perovskite film/SnO 2 QDs modified in Example 1/FTO transparent conductive glass.
  • the surface roughness of the perovskite film on the surface of alcohol-based tin dioxide (c-SnO 2 )/FTO transparent conductive glass is the largest, but in the commercial tin dioxide dispersion (SnO 2 NPs)/
  • the surface roughness of the perovskite film on the surface of FTO transparent conductive glass and modified tin dioxide quantum dots (SnO 2 QDs)/FTO transparent conductive glass is basically the same.
  • the present invention tested the optimal current density-voltage relationship of the perovskite battery prepared with tin dioxide modified in Example 5 and the perovskite battery prepared with c-SnO 2 and SnO 2 NPs, as shown in Figure 8 ( The abscissa is the voltage and the ordinate is the current density), where (a) is the alcohol-based tin dioxide (c-SnO 2 ) perovskite battery, (b) is the commercial tin dioxide dispersion (SnO 2 NPs) Perovskite battery, (c) is a perovskite battery of tin dioxide quantum dots (SnO 2 QDs) modified in Example 5.
  • the perovskite battery with modified tin dioxide quantum dots (SnO 2 QDs) has a better conversion efficiency than the other two types of perovskite batteries with electron transport layers.
  • the present invention tests the optimal current density-voltage curve relationship of the perovskite solar cell in which the tin dioxide quantum dot material is made into an electron transport layer at different processing temperatures in Example 1 of the present invention, as shown in Figure 9 (the abscissa is the voltage, The ordinate is the current density, reverse Scan is reverse scan, forward scan is forward scan), where (a) 100°C, (b) 150°C, (c) 180°C, and (d) 200°C.
  • the photovoltaic parameters of the perovskite solar cell in which the tin dioxide quantum dot material is made into an electron transport layer at different processing temperatures and its static statistical distribution diagram is shown in Figure 10 (the abscissas are respectively 100°C , The temperature of 150°C, 180°C and 200°C, the ordinates are open circuit voltage, short circuit current density, fill factor and conversion efficiency respectively), where (a) open circuit voltage, (b) short circuit current density, (c) fill factor, (D) Conversion efficiency.
  • the photovoltaic parameters of the perovskite solar cell in which the tin dioxide quantum dot material is made into the electron transport layer at different concentrations and the static statistical distribution diagram is shown in Figure 11 (abscissa 0.1M, 0.13M, 0.16M and 0.20M respectively correspond to the tin dioxide quantum dot materials with different modified concentrations prepared in Examples 2, 1, 3 and 4), where (a) open circuit voltage, (b) short-circuit current density, (c) fill factor, (D) Conversion efficiency.
  • the test of the present invention is based on the optimal current density-voltage curve relationship of the perovskite battery device of Example 5, as shown in Figure 12(a) (the abscissa is voltage, and the ordinate is current density). And under 900 bending cycles and different bending radii, the normalized efficiency change graph based on different types of perovskite pool devices is shown in Figure 12(b) (the abscissa is the bending cycle period, and the ordinate is the return One efficiency).
  • the flexible solar cell with modified tin dioxide electron transport layer has the performance of bending resistance and reliability under different bending radii.
  • the present invention tests the photoluminescence effect of the perovskite battery device of Example 5 under different bias voltages, as shown in Figure 13(a) (the abscissa is the wavelength and the ordinate is the fluorescence intensity), in which the inset shows the embodiment 5
  • the perovskite battery device emits red light.
  • Figure 13(b) (the abscissa is the current density, the ordinate is the fluorescence efficiency) is a diagram of the relationship between the photoluminescence external quantum efficiency and the current density of the perovskite battery device in Example 5.
  • the modified tin dioxide electron transport layer is applied to the light-emitting diode device with good light-emitting performance.

Abstract

提供一种二氧化锡量子点材料的制备方法,包括:获取锡源和亲水型配体;在0℃~60℃的氧气氛围下,将锡源和亲水型配体混合处理,得到表面结合有亲水型配体的二氧化锡量子点材料。还提供由该方法获得的二氧化锡量子点材料,以及包括该二氧化锡量子点材料的光电器件。该方法,工艺简单,耗时短,条件温和,实现了低温原位溶液合成金属氧化物量子点。制备的二氧化锡量子点材料粒径小,具有突出的高质量成膜特性,通过表面修饰的亲水型配体,具有更强的表面覆盖能力,当运用在光电器件电子传输层时,不但能消除器件中电子传输层与电极之间的接触缺陷,而且能对钙钛矿等光伏器件中吸光层或者LED等发光器件中发光层的界面进行钝化,减小器件光电压损失,提高器件的光电性能。

Description

二氧化锡量子点材料及其制备方法,光电器件 技术领域
本发明属于半导体技术领域,尤其涉及一种二氧化锡量子点材料及其制备方法,一种光电器件。
背景技术
目前,有机无机杂化钙钛矿材料,因具有材料丰富、加工成本低、载流子扩散长度长至微米级、半导体带隙可调、高缺陷容忍性、出色且双极性载流子传输特性和高的光吸收系数等独特优点,成为各种光电子器件最有前途的候选者,备受关注研究。目前,介孔二氧化钛结构仍然是用于钙钛矿太阳能电池的最有效的电子传输层材料,但是其仍需要较高的二氧化钛结晶退火温度以确保高载流子迁移率和高质量薄膜。这不仅使得钙钛矿太阳能电池的制造过程更加复杂化,并导致更长的能源成本回收期,而且阻碍了在柔性和可拉伸电子器件中的应用。此外,基于二氧化钛电子传输层的平面钙钛矿太阳能电池往往遭受更严重的滞后现象和光催化问题。理想型且可靠的用于高效钙钛矿的电子传输层,应该具有良好的能级匹配,高迁移率,良好的稳定性和高透过率。最近,满足上述所有标准的基于二氧化锡电子传输层已被广泛用于高效能的钙钛矿太阳能电池,并且它被认为是替代二氧化钛的最有希望的候选者。
尽管在那些基于二氧化锡的钙钛矿太阳能电池已经证实了有潜力积极的进展,但是二氧化锡的电子和结构特性仍然高度依赖制造方法和条件。目前,为了更好地调控电子传输层的特性,通过对二氧化锡的功能性官能团修饰或后处理以减轻界面电荷的重组并促进载流子提取,实现了良好的化学和物理界面接触。主要优化方案有:金属离子掺杂,功能分子配位,半导体聚合物涂层,富勒烯和富勒烯衍生物锚定。然而,这些报道的可行性方案中的大多数都是后续处理增加一层修饰层,这不可避免地增加了钙钛矿太阳能电池的规模化制造过程中的不确定性,例如:加工复杂性,高成本和技术不可靠性。此外,这些额外的修饰层与电子传输层之间的相互作用较弱,因此它们可能引起界面电子接触和器件稳定性问题。
技术问题
本发明的目的在于提供一种二氧化锡量子点材料的制备方法,旨在解决现有二氧化锡量子点材料制备工艺复杂,且制备的量子点材料与钙钛矿等功能层界面接触电荷高,稳定性差,等技术问题。
技术解决方案
本发明的另一目的在于提供一种二氧化锡量子点材料。
本发明的另一目的在于提供一种光电器件。
为了实现上述发明目的,本发明采用的技术方案如下:
一种二氧化锡量子点材料的制备方法,包括以下步骤:
获取锡源和亲水型配体;
在0℃~60℃的氧气氛围下,将所述锡源和所述亲水型配体混合处理,得到表面结合有亲水型配体的二氧化锡量子点材料。
优选地,所述锡源选自:二水合氯化亚锡、五水合氯化锡、四乙酸锡、乙酸亚锡、草酸亚锡、2-乙基己酸亚锡中的至少一种;和/或,
所述亲水型配体选自:2-乙基异硫脲氢溴酸盐、(2,3-二氟苯基)硫脲、(2,5-二氟苯基)硫脲、1,3-二异丙基-2-硫脲、3,5-二甲基苯基硫脲、4-氰基苯硫脲、4-氟苯硫脲、1-(3-羧苯基)-2-硫脲、1-(2-糠基)-2-硫脲中的至少一种;和/或,
所述亲水型配体的溶液中溶剂选自:水、乙醇、异丙醇中的至少一种。
优选地,所述锡源与所述亲水型配体的摩尔比为(1~50):1;和/或,
所述二氧化锡量子点材料的粒径为2~3纳米。
优选地,将所述锡源和所述亲水型配体混合处理的步骤包括:将所述锡源添加到所述亲水型配体的溶液中形成混合体系后,搅拌处理。
相应地,一种二氧化锡量子点材料,所述二氧化锡量子点材料由上述的方法制得。
相应地,一种光电器件,包含有上述的二氧化锡量子点材料。
优选地,所述光电器件包括由所述二氧化锡量子点材料构成的二氧化锡量子点材料层。
优选地,所述光电器件包括依次叠层设置在衬底上的二氧化锡量子点材料层、钙钛矿层、空穴传输层和电极层。
优选地,所述二氧化锡量子点材料层的厚度为30~50纳米;和/或,
所述钙钛矿层的厚度为300~1000纳米。
优选地,所述光电器件包括依次叠层设置在透明导电衬底上的所述二氧化锡量子点材料层、铷铯钾共掺杂钙钛矿体系层、2,2,7,7-四[N,N-二(4-甲氧基苯基)氨基]-9,9-螺二芴层和金电极。
本发明提供的二氧化锡量子点材料的制备方法,在0℃~60℃的氧气氛围下,将所述锡源和所述亲水型配体混合处理,即可得到表面修饰有亲水型配体的二氧化锡量子点材料。本发明提供的制备方法,工艺简单,耗时短,条件温和,实现了低温原位溶液合成金属氧化物量子点。并且制备的二氧化锡量子点材料粒径小,小粒径的量子点微观表面间隙中有更好的填充效果,具有更强的表面覆盖能力,更突出的成膜特性,当运用在光电器件的电子传输层时,能降低器件中电子传输层与电极之间的接触缺陷,提高器件稳定性和光电性能。另外,本发明制备的二氧化锡量子点材料表面修饰有亲水型配体,当运用在光伏、LED等光电器件的电子传输层时,能对钙钛矿等光伏器件中吸光层或者LED等发光器件中发光层的界面进行钝化,减小光电压损失,从而提高器件的光电性能。
本发明提供的二氧化锡量子点材料,通过上述二氧化锡量子点材料的制备方法制得,粒径小,可达到2~3纳米,具有突出的高质量成膜特性。当应用于光电器件的电子传输层时,一方面,小粒径的量子点微观表面间隙中有更好的填充效果,具有更强的表面覆盖能力,当运用在光电器件的电子传输层时,能降低器件中电子传输层与电极之间的接触缺陷,提高器件稳定性和光电性能。另一方面,二氧化锡量子点材料表面修饰有亲水型配体,当运用在光伏、LED等光电器件的电子传输层时,能对钙钛矿等光伏器件中吸光层或者LED等发光器件中发光层的界面进行钝化,减小光电压损失,从而提高器件的光电性能。
有益效果
本发明提供的光电器件,由于包含有上述粒径小(可达到2~3纳米),微观表面间隙填充性能好,具有突出的高质量成膜特性的表面修饰有亲水型配体的二氧化锡量子点材料,不但在衬底微观表面间隙中有更好的填充效果,从而能更有效的降低界面的物理缺陷态,消除电子传输层与电极之间的接触缺陷,提高器件稳定性和光电性能;而且表面修饰的亲水型配体,能对钙钛矿等吸光/发光层的界面进行钝化,减小光电压损失,从而提高器件的光电性能。
附图说明
图1是本发明实施例1提供的二氧化锡量子点材料的透射电子显微镜图及选区电子衍射和电子能量损失谱。
图2是本发明实施例1修饰的二氧化锡量子点(SnO 2 QDs)、商业化二氧化锡胶体分散液(SnO 2 NPs)以及醇基二氧化锡(c-SnO 2)分别与FTO透明导电玻璃衬底结合后的表面形貌图。
图3是本发明实施例1修饰的二氧化锡量子点(SnO 2 QDs)、商业化二氧化锡胶体分散液(SnO 2 NPs)以及醇基二氧化锡(c-SnO 2)分别与FTO透明导电玻璃衬底结合后的横截面形貌图。
图4是本发明实施例1修饰的二氧化锡量子点(SnO 2 QDs)、商业化二氧化锡胶体分散液(SnO 2 NPs)以及醇基二氧化锡(c-SnO 2)的X射线光电子能谱图。
图5是本发明实施例1修饰的二氧化锡量子点(SnO 2 QDs)、商业化二氧化锡胶体分散液(SnO 2 NPs)以及醇基二氧化锡(c-SnO 2)的去离子水表面接触角、掠入射X射线广角散射、相对应的衍射特征峰与q值的关系以及相对应的关联长度的测试图。
图6是本发明分别沉积有实施例1修饰的二氧化锡量子点(SnO 2 QDs)、商业化二氧化锡胶体分散液(SnO 2 NPs)以及醇基二氧化锡(c-SnO 2)的量子点的FTO透明导电玻璃衬底的扫描电子显微镜表面形貌图。
图7是本发明分别沉积有实施例1修饰的二氧化锡量子点(SnO 2 QDs)、商业化二氧化锡胶体分散液(SnO 2 NPs)以及醇基二氧化锡(c-SnO 2)的量子点的FTO透明导电玻璃衬底的原子力显微镜测试图。
图8是本发明实施例5修饰的二氧化锡制备的钙钛矿电池、以及c-SnO 2和SnO 2 NPs制备的钙钛矿电池的最优电流密度-电压曲线图。
图9是本发明实施例1二氧化锡量子点材料在不同处理温度下制成电子传输层的钙钛矿太阳能电池的最优电流密度-电压曲线图。
图10是本发明实施例1二氧化锡量子点材料在不同处理温度下制成电子传输层的钙钛矿太阳能电池的光伏参数的静态统计分布图。
图11是本发明实施例不同修饰浓度的二氧化锡量子点材料制成电子传输层的钙钛矿太阳能电池的光伏参数的静态统计分布图。
图12是本发明实施例5钙钛矿电池器件的最优电流密度-电压曲线图。
图13是本发明实施例5钙钛矿电池器件在不同偏压下的光致发光效果图。
本发明的实施方式
为使本发明实施例的目的、技术方案和技术效果更加清楚,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。结合本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
在本发明的描述中,需要理解的是,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者多个该特征。在本发明的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
本发明实施例说明书中所提到的相关成分的重量不仅仅可以指代各组分的具体含量,也可以表示各组分间重量的比例关系,因此,只要是按照本发明实施例说明书相关组分的含量按比例放大或缩小均在本发明实施例说明书公开的范围之内。具体地,本发明实施例说明书中所述的重量可以是µg、mg、g、kg等化工领域公知的质量单位。
本发明实施例提供了一种二氧化锡量子点材料的制备方法,包括以下步骤:
S10. 获取锡源和亲水型配体;
S20. 在0℃~60℃的氧气氛围下,将所述锡源和所述亲水型配体混合处理,得到表面结合有亲水型配体的二氧化锡量子点材料。
本发明实施例提供的二氧化锡量子点材料的制备方法,在0℃~60℃的氧气氛围下,将所述锡源和所述亲水型配体混合处理,即可得到表面修饰有亲水型配体的二氧化锡量子点材料。本发明实施例提供的制备方法,工艺简单,耗时短,条件温和,实现了低温原位溶液合成金属氧化物量子点。并且制备的二氧化锡量子点材料粒径小,小粒径的量子点微观表面间隙中有更好的填充效果,具有更强的表面覆盖能力,更突出的成膜特性,当运用在光电器件的电子传输层时,能降低器件中电子传输层与电极之间的接触缺陷,提高器件稳定性和光电性能。另外,本发明实施例制备的二氧化锡量子点材料表面修饰有亲水型配体,当运用在光伏、LED等光电器件的电子传输层时,能对钙钛矿等光伏器件中吸光层或者LED等发光器件中发光层的界面进行钝化,减小光电压损失,从而提高器件的光电性能。
具体地,上述步骤S10中,获取锡源和亲水型配体。
在一些实施例中,所述锡源选自:二水合氯化亚锡、五水合氯化锡、四乙酸锡、乙酸亚锡、草酸亚锡、2-乙基己酸亚锡中的至少一种。本发明实施例采用的这些锡源易溶于水系溶剂,且其阴离子在加热氧化过程中较容易逸出,残留少以便于高质量的SnO 2的形成。
在一些实施例中,所述亲水型配体选自:2-乙基异硫脲氢溴酸盐、(2,3-二氟苯基)硫脲、(2,5-二氟苯基)硫脲、1,3-二异丙基-2-硫脲、3,5-二甲基苯基硫脲、4-氰基苯硫脲、4-氟苯硫脲、1-(3-羧苯基)-2-硫脲、1-(2-糠基)-2-硫脲中的至少一种。本发明实施例采用的这些亲水型配体中含有氨基,氰基,卤素,巯基等活性官能团,不但使这些多功能配体水溶性好,而且这些多功能配体中的活性官能团易于跟Sn 2+和Sn 4+进行配位修饰,从而实现对二氧化锡量子点的表面修饰。
具体地,上述步骤S20中,在0℃~60℃的氧气氛围下,将所述锡源和所述亲水型配体混合处理,得到二氧化锡量子点材料。本发明实施例在0℃~60℃的室温氧气氛围下进行,在反应过程中,锡源首先被水解形成氢氧化锡,如:SnCl 2 + 2H 2O à Sn (OH) 2 +2HCl,然后氢氧化锡在氧气的作用下进行脱水和氧化生成二氧化锡,Sn (OH) 2 +O 2à SnO 2 + H 2O,同时亲水型配体键合锡离子,得到配体修饰后的二氧化锡量子点材料。其中氧气氛围不但能够与氢氧化锡反应生成二氧化锡,而且能够加速多功能配体对二氧化锡量子点的表面修饰。
在一些实施例中,将所述锡源和所述亲水型配体混合处理的步骤包括:将所述锡源添加到所述亲水型配体的溶液中形成混合体系后,搅拌处理。在一些具体实施例中,搅拌至所述混合体系由乳浊态变成透明澄清态。本发明实施例先将亲水型配体溶解于溶剂中,然后添加锡源搅拌混合处理,这个添加顺序,保证了亲水配体均匀的分布在溶液中,跟后添加的锡源能有效、快速且充分地发生配位反应。如果锡源和亲水型配体同时加会造成局部反应不均匀,并且易导致锡源过度水解成氢氧化锡,在没有配体辅助的情况下,后续脱水和氧化过程变慢,大大的迟缓了的反应的合成过程。在一些具体实施例中,搅拌至使混合溶液从乳浊态变为透明澄清态既可判断反应完全,判断标准直接明了,反应条件温和,操作简易,耗时短。
在一些实施例中,所述锡源与所述亲水型配体的摩尔比为(1~50):1,该摩尔配比的锡源与亲水型配体,有利于二氧化锡量子点的生成,同时使亲水型配体对二氧化锡量子点有最佳的修饰效果。若亲水型配体摩尔比过低,则对二氧化锡量子点表面的修饰不充分,从而降低了二氧化锡量子点材料的整体性能;若亲水型配体摩尔比过高,则过多的亲水型配体尤其是含有长碳链及末梢官能团的亲水型配体,游离在溶液中由于电荷性作用相互吸引相互影响,不但抑制了二氧化锡形核长大,而且由于亲水型配体具有绝缘性,过量的亲水型配体会降低二氧化锡量子点的电子传输性能。
在一些实施例中,所述亲水型配体的溶液中溶剂选自:水、乙醇、异丙醇中的至少一种。本发明实施例反应体系的溶剂可采用水或者乙醇、异丙醇等醇类溶剂,这些溶剂能够为反应提供充足的氢氧根离子,不但有利于锡源、多功能配体的溶解,而且有利于多功能配体对二氧化锡量子点的修饰结合。
在一些实施例中,所述二氧化锡量子点材料的粒径为2~3纳米。本发明实施例制备的二氧化锡量子点材料的粒径为2~3纳米,更小粒径的量子点材料成膜性能更好,当应用于光电器件中时,在衬底微观表面间隙中有更好的填充效果,从而能更有效的降低界面的物理缺陷态,提高器件稳定性和光电性能。
相应地,本发明实施例还提供了一种二氧化锡量子点材料,所述二氧化锡量子点材料由上述的方法制得。
本发明实施例提供的二氧化锡量子点材料,通过上述二氧化锡量子点材料的制备方法制得,粒径小,可达到2~3纳米,具有突出的高质量成膜特性。当应用于光电器件中时,一方面,小粒径的量子点微观表面间隙中有更好的填充效果,具有更强的表面覆盖能力,当运用在光电器件的电子传输层时,能降低器件中电子传输层与电极之间的接触缺陷,提高器件稳定性和光电性能。另一方面,二氧化锡量子点材料表面修饰有亲水型配体,当运用在光电器件的电子传输层时,能对钙钛矿等光伏器件中吸光层或者LED等发光器件中发光层的界面进行钝化,减小光电压损失,从而提高器件的光电性能。
相应地,本发明实施例还提供了一种光电器件,包含有上述的二氧化锡量子点材料。
本发明实施例提供的光电器件,由于包含有上述粒径小(可达到2~3纳米),微观表面间隙填充性能好,具有突出的高质量成膜特性的表面修饰有亲水型配体的二氧化锡量子点材料,不但在衬底微观表面间隙中有更好的填充效果,从而能更有效的降低界面的物理缺陷态,消除电子传输层与电极之间的接触缺陷,提高器件稳定性和光电性能;而且表面修饰的亲水型配体,能对钙钛矿等光伏器件中吸光层或者LED等发光器件中发光层的界面进行钝化,减小光电压损失,从而提高器件的光电性能。
本发明实施例二氧化锡量子点材料在光电器件中的应用可以是与目前商业的电子传输层材料混合使用,也可以作为电子传输层单独使用或与其他电子传输层混合使用。在一些实施例中,所述光电器件包括由所述二氧化锡量子点材料构成的二氧化锡量子点材料层。本发明实施例二氧化锡量子点材料在光电器件中以单独功能层的形式应用,具有粒径小成膜性好等性能,因而可以降低与相邻功能层的接触缺陷,从而提高器件的稳定性和光电性能。
本发明实施例提供光电器件包括但不限于钙钛矿等光伏器件、LED等发光器件。在一些实施例中,所述光电器件包括依次叠层设置在衬底上的二氧化锡量子点材料层、钙钛矿层、空穴传输层和电极层。本发明实施例二氧化锡量子点材料层在光电器件中作为电子传输层应用,不但在衬底的微观表面间隙中有更好的填充效果,降低界面的物理缺陷态;而且表面修饰的亲水型配体,能对钙钛矿光伏器件中吸光层或者LED等发光器件中发光层的界面进行钝化,减小光电压损失,从而提高器件的光电性能。
在一些具体实施例中,所述二氧化锡量子点材料层的厚度为30~50纳米。电子传输层越厚,会造成电子传输能力下降,从而影响器件的填充因子,而太薄了会造成薄膜部分孔洞,增加物理缺陷的机会,因而本发明实施例厚度为30~50纳米的二氧化锡量子点材料层既避免增加功能层的物理缺陷,又确保了器件的电子传输能力。在一些具体实施例中,所述钙钛矿层的厚度为300~1000纳米,若钙钛矿薄膜太薄,会使器件电流下降,太厚一般会影响薄膜质量,体缺陷增加。
本发明实施例光电器件中钙钛矿层可以采用任一具有钙钛矿特性的材料,空穴传输层也可以采用任一满足与钙钛矿层能级匹配的空穴材料,如小分子材料、PTAA、P3HT等。在一些实施例中,所述光电器件包括依次叠层设置在透明导电衬底上的所述二氧化锡量子点材料层、铷铯钾共掺杂钙钛矿体系层、2,2,7,7-四[N,N-二(4-甲氧基苯基)氨基]-9,9-螺二芴层和金电极。本发明实施例铷铯钾共掺杂钙钛矿体系作为功能层,2,2,7,7-四[N,N-二(4-甲氧基苯基)氨基]-9,9-螺二芴层作为空穴传输层,使器件整体性能更加稳定且优异。在一些实施例中,电极层包括但不限于金、氧化钼/金属、ITO等。
在一些具体实施例中,所述光电器件包括依次叠层设置在透明导电衬底上的厚度为30~50纳米的所述二氧化锡量子点材料层、厚度为300~1000纳米的铷铯钾共掺杂钙钛矿体系层、2,2,7,7-四[N,N-二(4-甲氧基苯基)氨基]-9,9-螺二芴层和金电极。
为使本发明上述实施细节和操作能清楚地被本领域技术人员理解,以及本发明实施例二氧化锡量子点材料及其制备方法、光电器件的进步性能显著的体现,以下通过多个实施例来举例说明上述技术方案。
实施例1
一种二氧化锡量子点材料,包括以下制备步骤:
①将称量摩尔比为6.5:1的二水合氯化亚锡和二氢溴酸-2-(2-氨基乙基)异硫脲。
②首先将二氢溴酸-2-(2-氨基乙基)异硫脲加入去离子水中,待到溶液澄清后再加入二水合氯化亚锡和磁子剧烈搅拌,此时溶液呈淡乳白色,同时溶液中通入一定流量氧气(99.995%),至透明黄色溶液即得到二氧化锡量子点材料。其中,反应体系在冷凝管回流的条件下反应,避免在氧气的介入下溶液中水分的流失从而影响最终合成的溶液浓度。
实施例2~4
一种二氧化锡量子点材料,其制备方法与实施例1的不同之处在于,实施例2~4中二水合氯化亚锡和二氢溴酸-2-(2-氨基乙基)异硫脲的摩尔比分别为:9:1、5.25:1和4:1,其他制备步骤和条件均相同。
实施例5
一种钙钛矿电池器件,包括以下步骤:
①铯铷钾掺杂钙钛矿溶液的配制:首先分别配制1.5M的碘化铯,碘化铷,碘化钾在二甲基亚砜中,然后在将甲脒氢碘酸盐,甲基溴化铵,甲基氯化铵,溴化铅和碘化铅(摩尔比:1.1:0.2: 0.5: 0.2: 1.2)溶解于二甲基甲酰胺/二甲基亚砜混合溶液中(体积比:4:1),搅拌至透明澄清黄色溶液,定义为母液。最后将配制好的碘化铯(2.8%),碘化铷(2.8%)和碘化钾(1.8%)按照相应的体积比加入到以上配制好的母液中。
②将实施例1制备的二氧化锡量子点材料沉积在FTO透明玻璃基底上,形成二氧化锡量子点材料层;然后用氯苯反溶剂方法将铯铷钾掺杂钙钛矿溶液旋涂在二氧化锡量子点材料层上形成钙钛矿层,随后在相对湿度为20%-30%氛围中,120℃加热1小时。再制备2,2,7,7-四[N,N-二(4-甲氧基苯基)氨基]-9,9-螺二芴的小分子空穴传输层覆盖在钙钛矿薄膜上,最后热蒸发制备金电极,得到钙钛矿电池器件。
对比例1
本发明实施例以醇基二氧化锡(c-SnO 2)和商业化二氧化锡分散液(SnO 2 NPs)为实施例二氧化锡量子点材料的对比例。
进一步的,为了验证本发明实施例制备的二氧化锡量子点材料、光电器件的进步性,本发明实施例进行了性能测试。
测试例1
本发明测试例对实施例1制备的二氧化锡量子点材料的进行了观测,如附图1所述,其中,图1(a)是二氧化锡量子点材料的透射电子显微镜图像,插图显示了该量子点的粒径分布;从右上的高分辨率的透射电子显微镜图像,可清楚的观察到110晶面间距为0.33纳米。从右下的选定区域的电子衍射,可清楚的观察到来自该量子点(110),(101),(211),和(310)晶面的电子衍射环。其中,图1(b)是二氧化锡量子点材料的扫描透射电子显微图像和选定区域的高角度环形暗场扫描透射电子显微图像以及该量子点中对应的锡元素和氧元素的电子能量损失谱。
通过上述测试可知,本发明实施例1制备的二氧化锡量子点材料粒径为2~3纳米,粒径小且均一性好,小粒径的量子点材料在衬底微观表面间隙中有更好的填充效果,成膜性能更好。通过上述电子能量损失谱测试可知,所得产物中的特征锡元素和特征氧元素分布均匀。
测试例2
本发明测试例对实施例1制备的二氧化锡量子点材料与FTO透明导电衬底的结合性能进行了测试。
首先,通过扫描电镜测试了沉积有量子点的FTO透明导电玻璃衬底的表面形貌,如附图2所述,其中,图2(a)为FTO透明导电衬底,图2(b)为涂覆有醇基二氧化锡(c-SnO 2)的FTO,图2(c)为涂覆有商业化二氧化锡分散液(SnO 2 NPs)的FTO,图2(d)为涂覆有实施例1修饰的二氧化锡量子点(SnO 2 QDs)的FTO。
通过上述测试可知,不同种二氧化锡在FTO透明导电玻璃表面上的微观形貌分布。
进一步地,通过电镜测试了沉积有量子点的FTO透明导电玻璃衬底的横截面形貌,如附图3所示,其中,图3(a左)为涂覆有醇基二氧化锡的FTO的扫描电镜图,图3(a右)为涂覆有实施例1修饰的二氧化锡量子点的FTO的扫描电镜图。图3(b)为涂覆有醇基二氧化锡的FTO透射电子显微镜横截面形貌和相对应的选定区域的高角度环形暗场扫描透射电子显微图像,以及其对应的氟元素,锡元素和氧元素的电子能量损失图谱,如图3(c)所示。图3(d)为涂覆有实施例1修饰的二氧化锡量子点的FTO透射电子显微镜横截面形貌和相对应的选定区域的高角度环形暗场扫描透射电子显微图像,以及其对应的氟元素,锡元素和氧元素的电子能量损失图谱,如图3(e)所示。
通过上述测试可知,特征锡元素,特征氧元素和特征氟元素的具体分布,以解析二氧化锡在透明导电玻璃上截面微观形貌。
测试例3
本发明测试例对实施例1修饰的二氧化锡量子点(SnO 2 QDs)、商业化二氧化锡胶体分散液(SnO 2 NPs)以及醇基二氧化锡(c-SnO 2)的X射线光电子能谱分别进行了测试,如附图4所示(横坐标为键能,纵坐标为强度),其中,图4(a)为锡元素信号峰,图4(b)为氮元素信号峰,图4 为(c)硫元素信号峰和图4为(d)溴元素信号峰。
通过上述测试可知,所合成配体修饰的二氧化锡中典型的特征锡元素,特征氮元素特征硫元素和特征溴元素存在。
测试例4
本发明测试例对实施例1修饰的二氧化锡量子点(SnO 2 QDs)、商业化二氧化锡胶体分散液(SnO 2 NPs)以及醇基二氧化锡(c-SnO 2)的去离子水表面接触角、掠入射X射线广角散射、相对应的衍射特征峰与q值的关系以及相对应的关联长度分别进行了测试,如附图5所示,其中,图5 (a)从左至右依次为:涂覆有醇基二氧化锡(c-SnO 2)的FTO,涂覆有商业化二氧化锡分散液的FTO(SnO 2 NPs),涂覆有实施例1修饰的二氧化锡量子点的FTO(SnO 2 QDs)的去离子水表面接触角。图5 (b) 从左至右依次为:涂覆有醇基二氧化锡(c-SnO 2)的FTO,涂覆有商业化二氧化锡分散液(SnO 2 NPs)的FTO,涂覆有实施例1修饰的二氧化锡量子点(SnO 2 QDs)的FTO的掠入射X射线广角散射。图5(c)为相对应的衍射特征峰与q值的关系(横坐标为q值,纵坐标为强度)。图5(d)相对应的关联长度(纵坐标为关联长度)。
通过上述测试可知,多功能配体修饰的二氧化锡表面有着最小的接触角,有利于后续更好的钙钛矿晶体生长,以至于晶体质量的明显提高。
测试例5
本发明测试例通过扫描电子显微镜对沉积有量子点的FTO透明导电玻璃衬底的表面形貌进行了测试,如附图6所示,其中,(a)、(b)、(c)分别为:钙钛矿薄膜/醇基二氧化锡(c-SnO 2)/FTO透明导电玻璃,钙钛矿薄膜/商业化二氧化锡分散液(SnO 2 NPs)/FTO透明导电玻璃和钙钛矿薄膜/实施例1修饰的二氧化锡量子点(SnO 2 QDs)/FTO透明导电玻璃的扫描电子显微镜的截面形貌图。(d)、(e)、(f)分别为:钙钛矿薄膜/醇基二氧化锡(c-SnO 2)/FTO透明导电玻璃,钙钛矿薄膜/商业化二氧化锡分散液(SnO 2 NPs)/FTO透明导电玻璃和钙钛矿薄膜/实施例1修饰的二氧化锡量子点(SnO 2 QDs)/FTO透明导电玻璃的扫描电子显微镜的表面形貌图。
通过上述测试可知,钙钛矿薄膜/醇基二氧化锡(c-SnO 2)/FTO透明导电玻璃样品中有着很多界面物理缺陷和较大的钙钛矿晶粒,钙钛矿薄膜/商业化二氧化锡分散液(SnO 2 NPs)/FTO透明导电玻璃样品中有少量的界面物理缺陷,修饰的二氧化锡量子点(SnO 2 QDs)/FTO透明导电玻璃样品中没有观察到有明显的界面物理缺陷和较小的钙钛矿晶粒。
测试例6
本发明测试例通过原子力显微镜对沉积有量子点的FTO透明导电玻璃衬底的表面形貌进行了测试,如附图7所示,其中,(a)、(b)、(c)分别为:钙钛矿薄膜/醇基二氧化锡(c-SnO 2)/FTO透明导电玻璃,钙钛矿薄膜/商业化二氧化锡分散液(SnO 2 NPs)/FTO透明导电玻璃和钙钛矿薄膜/实施例1修饰的二氧化锡量子点(SnO 2 QDs)/FTO透明导电玻璃的原子力显微镜表面形貌。(d)、(e)、(f)分别为:钙钛矿薄膜/醇基二氧化锡(c-SnO 2)/FTO透明导电玻璃,钙钛矿薄膜/商业化二氧化锡分散液(SnO 2 NPs)/FTO透明导电玻璃和钙钛矿薄膜/实施例1修饰的二氧化锡量子点(SnO 2 QDs)/FTO透明导电玻璃的原子力显微镜三维表面形貌。
通过上述测试可知,在醇基二氧化锡(c-SnO 2)/FTO透明导电玻璃表面上的钙钛矿薄膜的表面粗糙度最大,然而在商业化二氧化锡分散液(SnO 2 NPs)/FTO透明导电玻璃和修饰的二氧化锡量子点(SnO 2 QDs)/FTO透明导电玻璃表面上的钙钛矿薄膜表面粗糙度基本一致。
测试例7
本发明测试了实施例5修饰的二氧化锡制备的钙钛矿电池、以及c-SnO 2和SnO 2 NPs制备的钙钛矿电池的最优电流密度-电压关系,如附图8所示(横坐标为电压,纵坐标为电流密度),其中(a)为醇基二氧化锡(c-SnO 2)钙钛矿电池,(b)为商业化二氧化锡分散液(SnO 2 NPs)的钙钛矿电池,(c)为实施例5修饰的二氧化锡量子点(SnO 2 QDs)的钙钛矿电池。
通过上述测试可知,修饰的二氧化锡量子点(SnO 2 QDs)的钙钛矿电池相比于其他两种电子传输层的钙钛矿电池有着更出色的转化效率。
测试例8
本发明测试实施例1二氧化锡量子点材料在不同处理温度下制成电子传输层的钙钛矿太阳能电池的最优电流密度-电压曲线关系,如附图9所述(横坐标为电压,纵坐标为电流密度,reverse scan为反向扫描,forward scan为正向扫描),其中,(a)100℃,(b)150℃,(c)180℃,和(d)200℃。
通过上述测试可知,不同处理温度下制成电子传输层的最佳钙钛矿太阳能电池的转化效率。
测试例9
本发明测试实施例1二氧化锡量子点材料在不同处理温度下制成电子传输层的钙钛矿太阳能电池的光伏参数,其静态统计分布图如附图10所示(横坐标分别为100℃,150℃,180℃和200℃的温度,纵坐标分别为开路电压、短路电流密度、填充因子和转换效率),其中(a)开路电压,(b)短路电流密度,(c)填充因子,(d)转换效率。
通过上述测试可知,不同处理温度下制成电子传输层的钙钛矿太阳能电池的光伏性能各参数分布统计。
测试例10
本发明测试实施例二氧化锡量子点材料在不同浓度下制成电子传输层的钙钛矿太阳能电池的光伏参数,其静态统计分布图如附图11所示(横坐标0.1M、0.13M、0.16M、0.20M分别对应实施例2、1、3和4制备的不同修饰浓度的二氧化锡量子点材料),其中(a)开路电压,(b)短路电流密度,(c)填充因子,(d)转换效率。
通过上述测试可知,不同前驱体溶液浓度制成电子传输层的钙钛矿太阳能电池的光伏性能各参数分布统计。
测试例11
本发明测试基于实施例5钙钛矿电池器件的最优电流密度-电压曲线关系,如附图12(a)所示(横坐标为电压,纵坐标为电流密度)。并在900个弯曲循环周期和不同弯曲半径下,基于不同种钙钛矿池器件的归一化效率变化图,如附图12(b)所示(横坐标为弯曲循环周期,纵坐标为归一化效率)。
通过上述测试可知,不同弯曲半径下,修饰二氧化锡电子传输层的柔性太阳能电池性能抗弯可靠性能。
测试例12
本发明测试实施例5钙钛矿电池器件在不同偏压下的光致发光效果,如附图13(a)所示(横坐标为波长,纵坐标为荧光强度),其中插图显示实施例5钙钛矿电池器件发射红光。附图13(b)(横坐标为电流密度,纵坐标为荧光效率)为实施例5钙钛矿电池器件的光致发光外量子效率与电流密度关系图。
通过上述测试可知,修饰二氧化锡电子传输层应用于发光二极管的器件发光性能好。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种二氧化锡量子点材料的制备方法,其特征在于,包括以下步骤:
    获取锡源和亲水型配体;
    在0℃~60℃的氧气氛围下,将所述锡源和所述亲水型配体混合处理,得到表面结合有亲水型配体的二氧化锡量子点材料。
  2. 如权利要求1所述的二氧化锡量子点材料的制备方法,其特征在于,所述锡源选自:二水合氯化亚锡、五水合氯化锡、四乙酸锡、乙酸亚锡、草酸亚锡、2-乙基己酸亚锡中的至少一种;和/或,
    所述亲水型配体选自:2-乙基异硫脲氢溴酸盐、(2,3-二氟苯基)硫脲、(2,5-二氟苯基)硫脲、1,3-二异丙基-2-硫脲、3,5-二甲基苯基硫脲、4-氰基苯硫脲、4-氟苯硫脲、1-(3-羧苯基)-2-硫脲、1-(2-糠基)-2-硫脲中的至少一种;和/或,
    所述亲水型配体的溶液中溶剂选自:水、乙醇、异丙醇中的至少一种。
  3. 如权利要求1或2所述的二氧化锡量子点材料的制备方法,其特征在于,所述锡源与所述亲水型配体的摩尔比为(1~50):1;和/或,
    所述二氧化锡量子点材料的粒径为2~3纳米。
  4. 如权利要求3所述的二氧化锡量子点材料的制备方法,其特征在于,将所述锡源和所述亲水型配体混合处理的步骤包括:将所述锡源添加到所述亲水型配体的溶液中形成混合体系后,搅拌处理。
  5. 一种二氧化锡量子点材料,其特征在于,所述二氧化锡量子点材料由如权利要求1~4任一所述的方法制得。
  6. 一种光电器件,其特征在于,包含有如权利要求5所述的二氧化锡量子点材料。
  7. 如权利要求6所述的光电器件,其特征在于,所述光电器件包括由所述二氧化锡量子点材料构成的二氧化锡量子点材料层。
  8. 如权利要求7所述的光电器件,其特征在于,所述光电器件包括依次叠层设置在衬底上的二氧化锡量子点材料层、钙钛矿层、空穴传输层和电极层。
  9. 如权利要求8所述的光电器件,其特征在于,所述二氧化锡量子点材料层的厚度为30~50纳米;和/或,
    所述钙钛矿层的厚度为300~1000纳米。
  10. 如权利要求6~9任一所述的光电器件,其特征在于,所述光电器件包括依次叠层设置在透明导电衬底上的所述二氧化锡量子点材料层、铷铯钾共掺杂钙钛矿体系层、2,2,7,7-四[N,N-二(4-甲氧基苯基)氨基]-9,9-螺二芴层和金电极。
PCT/CN2020/110027 2020-04-07 2020-08-19 二氧化锡量子点材料及其制备方法,光电器件 WO2021203609A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010266718.0A CN113493219A (zh) 2020-04-07 2020-04-07 二氧化锡量子点材料及其制备方法,光电器件
CN202010266718.0 2020-04-07

Publications (1)

Publication Number Publication Date
WO2021203609A1 true WO2021203609A1 (zh) 2021-10-14

Family

ID=77995644

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/110027 WO2021203609A1 (zh) 2020-04-07 2020-08-19 二氧化锡量子点材料及其制备方法,光电器件

Country Status (2)

Country Link
CN (1) CN113493219A (zh)
WO (1) WO2021203609A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114242920A (zh) * 2021-11-12 2022-03-25 华南理工大学 一种基于氧化锡作为电子注入层的磷化铟量子点电致发光器件及其制备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101973576A (zh) * 2010-11-02 2011-02-16 上海大学 二氧化锡量子点的电子加速器辐照修饰方法
US20120190583A1 (en) * 2011-01-26 2012-07-26 The Curators Of The University Of Missouri Combination of Single-Cell Electroporation and Electrical Recording Using the Same Electrode
CN106479503A (zh) * 2016-09-29 2017-03-08 Tcl集团股份有限公司 一种量子点固态膜及其制备方法
CN106784329A (zh) * 2017-01-12 2017-05-31 武汉大学 一种SnO2量子点电子传输层钙钛矿太阳能电池及其制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104505409B (zh) * 2014-12-24 2017-02-22 武汉大学 一种SnO2多孔结构钙钛矿光伏电池及其制备方法
CN105633181A (zh) * 2016-03-18 2016-06-01 武汉理工大学 一种钙钛矿太阳能电池及其制备方法
CN110400876A (zh) * 2018-04-25 2019-11-01 杭州纤纳光电科技有限公司 一种掺杂抗氧化剂的钙钛矿薄膜及其制备方法和应用
CN108389977B (zh) * 2018-04-26 2022-02-11 西南石油大学 一种钙钛矿太阳能电池及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101973576A (zh) * 2010-11-02 2011-02-16 上海大学 二氧化锡量子点的电子加速器辐照修饰方法
US20120190583A1 (en) * 2011-01-26 2012-07-26 The Curators Of The University Of Missouri Combination of Single-Cell Electroporation and Electrical Recording Using the Same Electrode
CN106479503A (zh) * 2016-09-29 2017-03-08 Tcl集团股份有限公司 一种量子点固态膜及其制备方法
CN106784329A (zh) * 2017-01-12 2017-05-31 武汉大学 一种SnO2量子点电子传输层钙钛矿太阳能电池及其制备方法

Also Published As

Publication number Publication date
CN113493219A (zh) 2021-10-12

Similar Documents

Publication Publication Date Title
Cheng et al. Progress in air-processed perovskite solar cells: from crystallization to photovoltaic performance
Zhao et al. Enhanced stability and optoelectronic properties of MAPbI 3 films by a cationic surface-active agent for perovskite solar cells
Ji et al. Two-stage ultraviolet degradation of perovskite solar cells induced by the oxygen vacancy-Ti4+ states
Li et al. Wide bandgap interface layer induced stabilized perovskite/silicon tandem solar cells with stability over ten thousand hours
Tao et al. Functionalized SnO2 films by using EDTA-2 M for high efficiency perovskite solar cells with efficiency over 23%
CN111192971B (zh) 低滚降准二维钙钛矿发光二极管及其制备方法
CN109411614B (zh) 一种有机无机复合型钙钛矿发光二极管器件及其制备方法
Zhang et al. High-efficiency perovskite solar cells with poly (vinylpyrrolidone)-doped SnO 2 as an electron transport layer
CN107154460A (zh) 一种全碳基钙钛矿太阳能电池及其制备工艺
Ma et al. Establishing multifunctional interface layer of perovskite ligand modified lead sulfide quantum dots for improving the performance and stability of perovskite solar cells
Zhao et al. Field‐effect control in hole transport layer composed of Li: NiO/NiO for highly efficient inverted planar perovskite solar cells
WO2021203609A1 (zh) 二氧化锡量子点材料及其制备方法,光电器件
Su et al. Multifunctional and multi-site interfacial buffer layer for efficient and stable perovskite solar cells
EP2600365A2 (en) Dye-sensitized solar cell and method for forming light-scattering layer thereof
EP4304317A1 (en) Perovskite solar cell and preparation method therefor
CN106784330A (zh) 一种半透明有机金属卤化物钙钛矿薄膜太阳能电池及其制备方法
WO2024031752A1 (zh) 钙钛矿薄膜、晶种辅助成膜方法、钙钛矿太阳能电池
CN109830604A (zh) 一种以聚氧化乙烯薄膜钝化电子传输层与光敏层间界面的钙钛矿光伏电池及其制备方法
CN112133831B (zh) 一种基于二氧化锡传输层的光伏器件的制备方法和应用
CN114709340A (zh) 一种宽带隙钙钛矿薄膜、太阳能电池及其制备方法
CN114759147A (zh) 一种钙钛矿电池的制备方法
CN110970566A (zh) 核壳纳米材料及其制备方法和量子点发光二极管
CN111384245B (zh) 复合材料及其制备方法和量子点发光二极管
CN111883663A (zh) 一种基于石墨相氮化碳片层材料双界面修饰的钙钛矿太阳能电池及其制备方法
Pang et al. High-Quality Perovskite Film Preparations for Efficient Perovskite Solar Cells

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20930036

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20930036

Country of ref document: EP

Kind code of ref document: A1