WO2024049066A1 - 실리콘 마이크로 입자의 제조방법 및 이에 의해 제조된 실리콘 마이크로 입자 - Google Patents

실리콘 마이크로 입자의 제조방법 및 이에 의해 제조된 실리콘 마이크로 입자 Download PDF

Info

Publication number
WO2024049066A1
WO2024049066A1 PCT/KR2023/012221 KR2023012221W WO2024049066A1 WO 2024049066 A1 WO2024049066 A1 WO 2024049066A1 KR 2023012221 W KR2023012221 W KR 2023012221W WO 2024049066 A1 WO2024049066 A1 WO 2024049066A1
Authority
WO
WIPO (PCT)
Prior art keywords
silane gas
silicon
particles
micro particles
silicon micro
Prior art date
Application number
PCT/KR2023/012221
Other languages
English (en)
French (fr)
Inventor
노민호
오민경
장준현
강병창
지은옥
Original Assignee
오씨아이 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 오씨아이 주식회사 filed Critical 오씨아이 주식회사
Publication of WO2024049066A1 publication Critical patent/WO2024049066A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/02Silicon
    • C01B33/021Preparation
    • C01B33/027Preparation by decomposition or reduction of gaseous or vaporised silicon compounds other than silica or silica-containing material
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/02Silicon
    • C01B33/021Preparation
    • C01B33/027Preparation by decomposition or reduction of gaseous or vaporised silicon compounds other than silica or silica-containing material
    • C01B33/03Preparation by decomposition or reduction of gaseous or vaporised silicon compounds other than silica or silica-containing material by decomposition of silicon halides or halosilanes or reduction thereof with hydrogen as the only reducing agent
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/60Compounds characterised by their crystallite size
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity

Definitions

  • the present invention relates to a method for producing silicon microparticles and silicon microparticles produced thereby.
  • Silicon is used in various industrial fields such as solar energy and semiconductors, and its demand is rapidly increasing.
  • Silicon is typically manufactured by the Siemens method using a bell-jar type reactor and the FBR (fluidized bed reactor) method.
  • the Siemens method is a method of depositing silicon on the surface of a silicon rod provided in a bell reactor, because the surface area required for silicon precipitation is limited and there is a limit to the diameter of the silicon rod that increases due to the precipitation reaction. Since continuous processing is impossible and power consumption per unit weight of silicon is large, productivity is limited.
  • the FBR method is a method of growing seed particles by precipitating silicon on the surface of silicon seeds heated to a high temperature.
  • the silicon produced thereby is generally manufactured in sizes of millimeters or more. Accordingly, a separate grinding process is required to obtain micro silicon, fine powder may occur during the grinding process, and a sieving process is also required, making the process complicated, increasing time and cost, and causing inefficiency. Additionally, during the production process in which seed particles grow in a fluidized bed reactor, there is a problem that the impurity content increases when silicon comes into contact with the inner wall of the reactor.
  • the present inventors completed the present invention by confirming that silicon microparticles can be manufactured by simultaneously forming silicon seed particles and growing the particles in one reactor without silicon rods or seed particles.
  • the purpose of the present invention is to provide a method for efficiently and continuously manufacturing silicon microparticles with controlled particle size while minimizing the impurity content.
  • the purpose of the present invention is to provide an economical and efficient method for producing silicon micro particles without the need for a separate grinding or screening process.
  • the steps include: introducing a silane gas mixture into a reactor; and producing silicon micro particles by decomposing the silane gas mixture in the reactor; It includes, the silane gas mixture includes a first silane gas and a second silane gas, and the decomposition temperature of the first silane gas is lower than the decomposition temperature of the second silane gas.
  • the method for manufacturing silicon micro particles according to the present invention can produce silicon micro particles without silicon rods or silicon seed particles, thereby avoiding unnecessary contact, and thus lowering the content of metal impurities without any additional processes. .
  • the method for producing silicon micro-particles according to the present invention is more economical and efficient because the production of silicon seed particles and the growth of the particles occur simultaneously in one reactor.
  • the method for manufacturing silicon micro-particles according to the present invention does not require a separate grinding process, so there is no generation of fine powder and does not require a sieving process, so silicon micro-particles can be manufactured more economically and efficiently.
  • Figure 1 is a scanning electron microscope (SEM) photograph of silicon microparticles prepared according to Example 1 of the present invention.
  • top (or bottom) of a component or the arrangement of any component on the “top (or bottom)” of a component means that any component is placed in contact with the top (or bottom) of the component. Additionally, it may mean that other components may be interposed between the component and any component disposed on (or under) the component.
  • each component when a component is described as being “connected,” “coupled,” or “connected” to another component, the components may be directly connected or connected to each other, but there is no “connection” between each component. It should be understood that each component may be “interposed” or “connected,” “combined,” or “connected” through other components.
  • first, second, and third are used to describe various components, but these components should not be limited by these terms. These terms are merely used to distinguish one component from another.
  • a method for producing silicon micro particles according to an embodiment of the present invention includes the steps of introducing a silane gas mixture into a reactor; and producing silicon micro-particles by decomposing the silane gas mixture in the reactor, wherein the silane gas mixture includes a first silane gas and a second silane gas, and the decomposition temperature of the first silane gas is It is lower than the decomposition temperature of the second silane gas.
  • the FBR (fluidized bed reactor) method involves injecting silicon seeds into a reactor and injecting silane gas to grow the seed particles.
  • silicon particles of a millimeter or larger size are produced. Accordingly, a separate grinding process is required to obtain micro silicon, fine powder may occur during the grinding process, and a sieving process is also required, making the process complicated, increasing time and cost, and causing inefficiency. Additionally, there is a problem that the impurity content increases when silicon comes into contact with the inner wall of the reactor during the production process.
  • the method for producing silicon micro particles does not use silicon rods or silicon seed particles, and does not require contact with a reactor during production, so the content of metal impurities can be reduced without any additional processes.
  • the method for producing silicon micro particles includes introducing a silane gas mixture into a reactor.
  • the silane gas mixture is a gas that serves as a raw material for manufacturing silicon particles, and may be a mixture of two or more types of silane gases represented by Chemical Formula 1 or Chemical Formula 2.
  • the silane gas mixture may include monosilane (SiH 4 ), monochlorosilane (SiH3Cl), dichlorosilane (SiH 2 Cl 2 ), trichlorosilane (SiHCl 3 ), tetrachlorosilane (SiCl 4 ), and hexachlorosilane ( It may be two or more types selected from the group consisting of Si 2 Cl 6 ), disilane (Si 2 H 6 ), and combinations thereof.
  • silicon microparticles can be produced using the silane gas mixture containing a first silane gas and a second silane gas having different decomposition temperatures without using silicon seed particles.
  • the first silane gas and the second silane gas may be selected from silane gases represented by Formula 1 or Formula 2.
  • the decomposition temperature of the first silane gas is lower than that of the second silane gas.
  • the first silane gas may be a silane gas with a decomposition temperature of 350°C to 600°C, and the second silane gas may be 600°C. It may be silane gas having a decomposition temperature of from 1,000°C.
  • the first silane gas may be dichlorosilane (SiH2Cl2)
  • the second silane gas may be trichlorosilane (SiHCl3).
  • the method for producing silicon micro-particles uses the silane gas mixture having different decomposition temperatures to control the decomposition rate to form silicon seed particles and grow the same particles.
  • the decomposition temperature of the first silane gas is lower than that of the second silane gas, and the first silane gas may be thermally decomposed first to form seed particles within the reactor.
  • silicon micro-particles can be manufactured in one reactor by depositing on the seed particles formed when the second silane gas is thermally decomposed.
  • the first silane gas and the second silane gas introduced into the reactor may be introduced simultaneously at a molar ratio of 1:30 to 1:2. Preferably, they can be introduced simultaneously at a molar ratio of 1:20 to 1:2. Accordingly, the formation rate of seed particles and the growth of particles can be well controlled. For example, when the ratio of the first silane gas is less than the above range, there is a problem in which silicon seed particles are not formed smoothly, and when the ratio of the first silane gas exceeds the above range, small particles that are not sufficiently grown There may be a problem in which silicon particles of the desired size cannot be formed because only large quantities of particles are formed.
  • the silane gas mixture may be introduced into the reactor together with hydrogen gas.
  • the hydrogen gas can produce silicon through a reduction reaction with the silane gas mixture.
  • the hydrogen gas may be introduced into the reactor in an amount of 50 to 90 mol% relative to the total amount of the silane gas mixture.
  • the method for producing silicon micro particles includes producing silicon micro particles by decomposing the silane gas mixture in the reactor.
  • the silane gas mixture can be decomposed to produce silicon seed particles and simultaneously grown to produce silicon micro-particles.
  • the first silane gas which is lower than the decomposition temperature, is first thermally decomposed to form seed particles, and the second silane gas is deposited on the seed particles formed by thermal decomposition to perform chemical vapor synthesis.
  • Silicon microparticles can be manufactured through a homogeneous reaction using the (chemical vapor synthesis, CVS) method. Accordingly, silicon micro particles can be manufactured at a faster rate and have smaller crystal grains.
  • the internal temperature of the reactor may be 700°C to 1,000°C, and the internal pressure of the reactor may be 1 bar to 10 bar.
  • the reactor it may be desirable for the reactor to have a temperature and pressure within the above range in terms of controlling the thermal decomposition rate of the silane gas mixture and the size of silicon particles and improving reaction yield.
  • the reactor can be heated to the above temperature by a heating device.
  • the silane gas mixture may remain in the reactor for 5 to 60 minutes to produce the silicon microparticles.
  • the residence time of the silane gas mixture within the above range, the desired silicon microparticles can be manufactured more efficiently.
  • the residence time of the silane gas mixture is below the above range, there may be a problem of insufficient time for seed particle formation and particle growth, and if the residence time of the silane gas mixture exceeds the above range, there may be a problem of insufficient time for seed particle formation and particle growth.
  • the size of the silicon particles may be outside the desired range, and there may be a problem of the crystal grains of the silicon particles overgrowing and the crystal grain size becoming too large.
  • the method of manufacturing the silicon micro-particles may further include recovering the silicon micro-particles, and may further include cooling before recovery.
  • Another embodiment of the present invention provides silicon microparticles manufactured according to the above silicon microparticle manufacturing method.
  • the silicon micro particles manufactured in this way can be used as a silicon nitride raw material, a solar cell material, a lithium ion battery cathode material, etc.
  • the silicon microparticles have particle sizes of 1 ⁇ m ⁇ d 10 ⁇ 4 ⁇ m, 2 ⁇ m ⁇ d 50 ⁇ 7 ⁇ m, and 4 ⁇ m ⁇ d 90 ⁇ 13 ⁇ m. You can have it. Accordingly, there is no need for a separate grinding process. Also, since there is no grinding process, there is no generation of fine powder and there is no need for a sieving process.
  • the silicon micro-particles having a particle size distribution in the above range are preferably used as silicon nitride and raw materials for battery anode materials.
  • the silicon micro particle size can be measured by a laser diffraction method using LS13 320, Beckman Coulter.
  • the silicon micro particles may have a spherical particle shape.
  • the silicon micro particles may have a particle size in the above range and a total metal impurity content of 2,000 ppm or less.
  • metal of metal impurities refers to metal elements that affect the quality when silicon particles are applied to secondary batteries, etc., and representative examples include 24 metal elements from Al to Zn listed in Table 2 of this specification. It may mean, but is not necessarily limited to this.
  • the silicon micro-particles are made into powder using a silane gas mixture without silicon rods or silicon seed particles, and the metal impurity content can be better lowered because there is no unnecessary contact.
  • the silicon microparticles manufactured by the above manufacturing method may contain metal impurities at a low level without any additional processes.
  • the silicon particles may contain the above-mentioned metal impurities at 2,000 ppm or less. For example, it may be included in an amount of 1,000 ppm or less and 500 ppm or less.
  • the silicon micro particles may be polycrystalline silicon and may have an average grain size of 60 nm or less.
  • the silicon particles manufactured by the above manufacturing method may have the above-described micro-sized particles and simultaneously have crystal grains of 60 nm or less. Accordingly, excellent effects can be shown in necessary fields.
  • the silicon micro-particles can be used as a negative electrode material for lithium-ion batteries, and in this case, the capacity maintenance rate can be improved by reducing particle destruction due to volume changes that occur during charging and discharging of the battery.
  • the silane gas mixture was reacted and decomposed in one reactor for about 40 minutes to produce micro-sized silicon particles.
  • the internal temperature of the reactor was 900°C and the internal pressure was 5 bar.
  • the prepared silicon particles were cooled and recovered.
  • silicon seed particles with a particle size of 600 ⁇ m were introduced into the reactor, and 67 mol% of hydrogen (H 2 ) and 33 mol% of trichlorosilane (SiHCl 3 ) were introduced into the reactor and reacted for 2 hours. Silicon particles were prepared by reacting for a while. At this time, the internal temperature of the reactor was 900°C and the internal pressure was 5 bar.
  • Metal silicon particles smaller than 45 ⁇ m classified as MG-Si, Elpion, Sieve was ground using a ball mill (Zirconia) to have a size similar to that of Example 1.
  • the size of the silicon particles according to Example 1 and Comparative Example 2 was measured using a Laser diffraction particle size analyzer (LS13 320, Beckman Coulter), and particles having a size of millimeters as in Comparative Example 1 were measured using a Digimatic caliper (Mitutoyo). It can be measured using, and the results are listed in Table 1 below.
  • Example 1 Comparative Example 1 Comparative Example 2 silicone particle size D 10 : 2.9 ⁇ m D 50 : 5.3 ⁇ m D 90 : 9.2 ⁇ m 3.1mm D 10 : 1.0 ⁇ m D 50 : 5.4 ⁇ m D 90 : 15.3 ⁇ m
  • the silicon particles prepared according to Example 1 were confirmed to have a micro size.
  • the silicon particles of Comparative Example 1 manufactured using seed particles were manufactured as large silicon particles of millimeters in size.
  • the content of metal impurities in the silicon particles of Example 1 and Comparative Example 2 is shown in Table 2 below. At this time, the content of metal impurities was measured using Thermo Fisher's 'iCAP 7600' equipment.
  • Example 1 Comparative Example 2 Al ppmw 8.5 2,938 As ⁇ 1 ⁇ 1 Ba 1.0 60 Ca 15 6.5 CD ⁇ 0.4 344 Co 0.4 3.1 Cr 35 114 Cu 65 16.2 Fe 144 5,831 K 1.0 10.9 Li ⁇ 0.4 ⁇ 0.4 Mg 16 8.3 Mn 3.5 36.2 Mo 0.4 4.8 Na 26 3.7 Ni 72 47 P 0.9 24.8 Pb ⁇ 2 ⁇ 1 Sb ⁇ 1 ⁇ 1 Sn ⁇ 0.4 ⁇ 0.4 Sr. ⁇ 0.4 4.9 Ti 4.0 280 V ⁇ 0.4 30.9 Zn 13 3.1 Zr 2.6 2,938
  • Comparative Example 2 contains about 12,700 metal impurities.
  • the silicon particles can be pulverized to have a size similar to Example 1, but in this case, there is a problem that the content of impurities increases.
  • Example 1 does not include a separate grinding process, so silicon micro particles can be manufactured, and at this time, the content of impurities can also be reduced.
  • the average size of the crystal grains contained in the silicon particles prepared in Examples and Comparative Examples was measured using XRD (Panalytical, Empyrean XRD), and the results are shown in Table 3 below.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Silicon Compounds (AREA)

Abstract

실란 가스 혼합물을 반응기 내로 유입시키는 단계; 및 상기 반응기에서 상기 실란 가스 혼합물을 분해하여 실리콘 마이크로 입자를 제조하는 단계; 를 포함하며, 상기 실란 가스 혼합물은 제1 실란 가스 및 제2 실란 가스를 포함하고, 상기 제1 실란 가스의 분해온도는 제2 실란 가스의 분해온도보다 낮은 실리콘 마이크로 입자의 제조방법 및 이에 의해 제조된 실리콘 마이크로 입자가 제공된다.

Description

실리콘 마이크로 입자의 제조방법 및 이에 의해 제조된 실리콘 마이크로 입자
본 발명은 실리콘 마이크로 입자의 제조방법 및 이에 의해 제조된 실리콘 마이크로 입자에 관한 것이다.
실리콘은 태양광 및 반도체 등의 다양한 산업 분야에서 사용되는 것으로서, 그 수요가 비약적으로 증가하고 있다.
실리콘은 대표적으로 종형 반응기(bell-jar type reactor)를 이용하는 지멘스 법과, FBR(fluidized Bed Reactor) 공법에 의해 제조되고 있다.
그 중 지멘스 법은 종형 반응기 내에 구비된 실리콘 로드(rod)의 표면에 실리콘을 석출시키는 방법으로서, 실리콘의 석출에 필요한 표면적이 제한적이고, 석출 반응에 의해 증가하는 실리콘 로드의 직경에 한계가 있기 때문에 연속적인 공정이 불가능하고, 실리콘의 단위 무게당 전력 소모량이 크기 때문에, 생산성이 떨어지는 한계가 있다.
그리고, FBR 공법은 고온으로 가열된 실리콘 종입자(seed)의 표면에 실리콘을 석출시켜 종입자를 성장시키는 방법이다. 이에 의해 제조된 실리콘은 일반적으로 밀리미터 이상의 크기로 제조된다. 이에 따라 마이크로의 실리콘을 얻기 위해서는 별도의 분쇄 과정이 필요하고, 분쇄 과정에서 미분이 발생할 수 있고 선별(sieving) 과정 또한 필요하여 공정이 복잡해지고 시간과 비용이 증가하여 비효율적인 문제가 있다. 그리고, 유동층 반응기에서 종입자가 성장하는 생산 공정 중, 반응기 내벽에 실리콘이 접촉하는 과정에서 불순물 함량이 높아지는 문제가 있다.
따라서, 상기 문제점들을 해결하여, 불순물 함량을 최소화하면서 입도가 제어된 실리콘 마이크로 입자를 효율적으로 제조 및 생산할 수 있는 방법을 개발하는 것이 필요한 실정이다.
이에 본 발명자들은 실리콘 로드 또는 종입자 없이, 하나의 반응기 안에서 실리콘 종입자 형성과 입자의 성장이 동시에 이루어져 실리콘 마이크로 입자를 제조할 수 있는 것을 확인하고 본 발명을 완성하였다.
본 발명의 목적은 불순물 함량을 최소화하면서 입도가 제어된 실리콘 마이크로 입자를 효율적으로 연속 제조 및 생산할 수 있는 방법을 제공하는 것이다.
본 발명의 목적은 별도의 분쇄 과정 또는 선별 과정이 필요 없어 경제적이고 효율적인 실리콘 마이크로 입자의 제조방법을 제공하는 것이다.
본 발명의 목적은 이상에서 언급한 목적으로 제한되지 않으며, 언급되지 않은 본 발명의 다른 목적 및 장점들은 하기의 설명에 의해서 이해될 수 있고, 본 발명의 실시예에 의해 보다 분명하게 이해될 것이다. 또한, 본 발명의 목적 및 장점들은 특허 청구 범위에 나타낸 수단 및 그 조합에 의해 실현될 수 있음을 쉽게 알 수 있을 것이다.
상기 목적을 달성하기 위하여, 본 발명에 따르면, 실란 가스 혼합물을 반응기 내로 유입시키는 단계; 및 상기 반응기에서 상기 실란 가스 혼합물을 분해하여 실리콘 마이크로 입자를 제조하는 단계; 를 포함하며, 상기 실란 가스 혼합물은 제1 실란 가스 및 제2 실란 가스를 포함하고, 상기 제1 실란 가스의 분해온도는 제2 실란 가스의 분해온도보다 낮은 실리콘 마이크로 입자의 제조방법을 제공할 수 있다.
그리고, 본 발명에 따르면, 상기 실리콘 마이크로 입자의 제조방법에 따라 제조되는 불순물의 함량이 낮은 실리콘 마이크로 입자를 제공할 수 있다.
본 발명에 따른 실리콘 마이크로 입자의 제조방법은 실리콘 로드 또는 실리콘 종입자 없이 실리콘 마이크로 입자를 제조할 수 있는바, 불필요한 접촉을 피할 수 있고, 이에 따라 별도의 추가 공정 없이도 금속 불순물의 함량을 낮출 수 있다.
본 발명에 따른 실리콘 마이크로 입자의 제조방법은 하나의 반응기에서 실리콘 종입자의 생성 및 입자의 성장이 동시에 이루어지는 바 보다 경제적이고 효율적이다.
본 발명의 따른 실리콘 마이크로 입자의 제조방법은 별도의 분쇄 과정이 필요 없어 미분 발생이 없고 선별(sieving) 과정 또한 필요하지 않은바, 보다 경제적이고 효율적으로 실리콘 마이크로 입자를 제조할 수 있다.
상술한 효과와 더불어 본 발명의 구체적인 효과는 이하 발명을 실시하기 위한 구체적인 사항을 설명하면서 함께 기술한다.
도 1은 본 발명의 실시예 1 에 따라 제조된 실리콘 마이크로 입자의 주사전자현미경(SEM) 사진이다.
전술한 목적, 특징 및 장점은 첨부된 도면을 참조하여 상세하게 후술되며, 이에 따라 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 본 발명의 기술적 사상을 용이하게 실시할 수 있을 것이다. 본 발명을 설명함에 있어서 본 발명과 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 상세한 설명을 생략한다. 이하, 첨부된 도면을 참조하여 본 발명에 따른 바람직한 실시예를 상세히 설명하기로 한다. 도면에서 동일한 참조부호는 동일 또는 유사한 구성요소를 가리키는 것으로 사용된다.
본 명세서에서 기재되지 않은 내용 중 이 기술 분야의 통상의 기술자라면 충분히 기술적으로 유추할 수 있는 것은 그 설명을 생략하기로 한다.
이하에서 구성요소의 "상부 (또는 하부)" 또는 구성요소의 "상 (또는 하)"에 임의의 구성이 배치된다는 것은, 임의의 구성이 상기 구성요소의 상면 (또는 하면)에 접하여 배치되는 것뿐만 아니라, 상기 구성요소와 상기 구성요소 상에 (또는 하에) 배치된 임의의 구성 사이에 다른 구성이 개재될 수 있음을 의미할 수 있다.
또한, 어떤 구성요소가 다른 구성요소에 "연결", "결합" 또는 "접속"된다고 기재된 경우, 상기 구성요소들은 서로 직접적으로 연결되거나 또는 접속될 수 있지만, 각 구성요소 사이에 다른 구성요소가 "개재"되거나, 각 구성요소가 다른 구성요소를 통해 "연결", "결합" 또는 "접속"될 수도 있는 것으로 이해되어야 할 것이다.
본 명세서에서 "< X" 및 "≤X"는 각각 X 보다 미만인 것 및 X 이하인 것을 의미하고, "> X" 및 "≥X"는 각각 X를 초과하는 것 및 X 이상인 것을 의미할 수 있다.
본 명세서의 다양한 실시예들에서 제1, 제2, 제3 등의 용어가 다양한 구성요소들을 기술하기 위해서 사용되었지만, 이들 구성요소들이 이 같은 용어들에 의해서 한정되어서는 안 된다. 이들 용어들은 단지 어느 구성요소를 다른 구성요소와 구별시키기 위해서 사용되었을 뿐이다.
본 명세서에서 사용된 용어는 실시예들을 설명하기 위한 것이며 본 발명을 제한하고자 하는 것은 아니다. 본 명세서에서, 단수형은 문구에서 특별히 언급하지 않는 한 복수형도 포함한다. 본 명세서에서 사용되는 '포함한다', '함유한다'등의 기재는 언급된 구성요소는 하나 이상의 다른 구성요소의 존재 또는 추가를 배제하지 않는다.
이하에서, 본 발명에 따른 실리콘 마이크로 입자의 제조방법을 구체적으로 설명한다.
본 발명의 일 실시예에 따른 실리콘 마이크로 입자의 제조방법은, 실란 가스 혼합물을 반응기 내로 유입시키는 단계; 및 상기 반응기에서 상기 실란 가스 혼합물을 분해하여 실리콘 마이크로 입자를 제조하는 단계;를 포함하며, 상기 실란 가스 혼합물은 제1 실란 가스 및 제2 실란 가스를 포함하고, 상기 제1 실란 가스의 분해온도는 제2 실란 가스의 분해온도보다 낮다.
실리콘 입자의 분산성과 실리콘 입자의 비표면적으로 인한 활성을 고려하여 많은 분야에서 실리콘 마이크로 입자의 수요가 증가하고 있다.
FBR(fluidized Bed Reactor) 공법은 반응기에 실리콘 종입자(seed)를 투입하고, 실란 가스를 주입하여 종입자를 성장시키는 것으로서, 일반적으로 밀리미터 이상 크기의 실리콘 입자가 제조된다. 이에 따라 마이크로의 실리콘을 얻기 위해서는 별도의 분쇄 과정이 필요하고, 분쇄 과정에서 미분이 발생할 수 있고 선별(sieving) 과정 또한 필요하여 공정이 복잡해지고 시간과 비용이 증가하여 비효율적인 문제가 있다. 또한, 생산 공정 중, 반응기 내벽에 실리콘이 접촉하는 과정에서 불순물 함량이 높아지는 문제가 있다.
상기 실리콘 마이크로 입자의 제조방법은 실리콘 로드 또는 실리콘 종입자를 사용하지 않으며, 생산 중 반응기에 접촉하는 과정이 필요하지 않아 별도의 추가 공정 없이도 금속 불순물의 함량을 낮출 수 있다.
구체적으로, 상기 실리콘 마이크로 입자의 제조방법은 실란 가스 혼합물을 반응기 내로 유입시키는 단계를 포함한다. 상기 실란 가스 혼합물은 실리콘 입자 제조에 있어 원료가 되는 가스로서, 화학식 1 또는 화학식 2 로 표시되는 실란 가스로부터 선택된 2 종 이상의 혼합물일 수 있다. 예를 들어, 상기 실란 가스 혼합물은 모노실란(SiH4), 일염화실란(SiH3Cl), 이염화실란(SiH2Cl2), 삼염화실란(SiHCl3), 사염화실란(SiCl4), 육염화이실란(Si2Cl6), 디실란(Si2H6) 및 이들의 조합으로 이루어진 군으로부터 선택된 2종 이상일 수 있다.
[화학식 1] SiHxCl4-x (0≤x≤4, x는 정수임)
[화학식 2] Si2HyCl6-y(0≤y≤6, y는 정수임)
상기 실리콘 마이크로 입자의 제조방법은 실리콘 종입자를 사용하지 않으면서도, 분해 온도가 상이한 제1 실란 가스 및 제2 실란 가스를 포함하는 상기 실란 가스 혼합물을 사용하여 실리콘 마이크로 입자를 제조할 수 있다. 상기 제1 실란 가스 및 제2 실란 가스는 상기 화학식 1 또는 화학식 2로 표시되는 실란 가스로부터 선택될 수 있다.
상기 제1 실란 가스의 분해온도는 제2 실란 가스의 분해온도보다 낮은 것으로서, 상기 제1 실란 가스는 350℃ 내지 600℃ 의 분해온도를 갖는 실란 가스일 수 있고, 상기 제2 실란 가스는 600℃ 내지 1,000℃ 의 분해온도를 갖는 실란 가스일 수 있다. 예를 들어, 제1 실란 가스는 이염화실란 (SiH2Cl2) 이고, 제2 실란 가스는 삼염화실란 (SiHCl3) 일 수 있다.
상기 실리콘 마이크로 입자의 제조방법은 분해 온도가 상이한 상기 실란 가스 혼합물을 사용하여 분해 속도를 조절하여 실리콘 종입자를 형성하면서 동이세 입자를 성장시킬 수 있다.
예를 들어, 상기 제1 실란 가스의 분해온도는 제2 실란 가스의 분해온도보다 낮은 것으로서, 제1 실란 가스가 먼저 열분해되면서 반응기 내에서 종입자를 형성할 수 있다. 이와 함께 제2 실란 가스가 열분해 되면서 형성된 종입자에 증착하여 하나의 반응기에서 실리콘 마이크로 입자를 제조할 수 있다.
상기 반응기 내로 유입되는 상기 제1 실란 가스 및 상기 제2 실란 가스는 1:30 내지 1:2 의 몰비로 동시에 유입시킬 수 있다. 바람직하게는 1:20 내지 1:2의 몰비로 동시에 유입될 수 있다. 이에 따라, 종입자의 형성 속도 및 입자의 성장을 잘 조절할 수 있다. 예를 들어, 상기 제1 실란 가스의 비율이 상기 범위 미만인 경우에는 실리콘 종입자 형성이 원할히 이루어지지 않는 문제가 있고, 상기 제1 실란 가스의 비율이 상기 범위를 초과하는 경우에는 충분히 성장 되지 않은 작은 크기의 입자만 다량 형성되어 목적하는 크기의 실리콘 입자를 형성할 수 없는 문제가 있을 수 있다.
상기 실란 가스 혼합물은 수소 가스와 함께 반응기 내로 유입될 수 있다. 상기 수소 가스는 상기 실란 가스 혼합물과 환원 반응하여 실리콘을 제조 할 수 있다.
상기 수소 가스는 상기 실란 가스 혼합물과의 총합에 대하여, 50 내지 90 mol%의 함량으로 반응기 내로 유입될 수 있다.
상기 실리콘 마이크로 입자의 제조방법은 상기 반응기에서 상기 실란 가스 혼합물을 분해하여 실리콘 마이크로 입자를 제조하는 단계를 포함한다.
하나의 상기 반응기에서, 상기 실란 가스 혼합물은 분해하여 실리콘 종입자를 생성하면서, 동시에 성장하여 실리콘 마이크로 입자를 제조할 수 있다.
구체적으로, 상기 반응기에 투입된 상기 실란 가스 혼합물에서, 분해온도보다 낮은 상기 제1 실란 가스가 먼저 열분해되면서 종입자를 형성하고, 이와 함께 제2 실란 가스가 열분해 되면서 형성된 종입자에 증착하여 화학기상합성법(chemical vapor synthesis, CVS) 법을 이용하여 homogeneous 반응으로 실리콘 마이크로 입자를 제조할 수 있다. 이에 따라 실리콘 마이크로 입자는 더 빠른 속도로 제조될 수 있으며, 더 작은 결정립을 가질 수 있다.
이와 같이, 하나의 반응기에서 종입자의 생성 및 입자의 성장이 동시에 이루어지며, 별도의 분쇄 과정이 필요 없어 미분 발생이 없고 선별(sieving) 과정 또한 필요하지 않은바, 보다 경제적이고 효율적으로 실리콘 마이크로 입자를 연속 제조할 수 있다.
상기 실란 가스 혼합물이 분해되어 실리콘 마이크로 입자가 제조될 때, 상기 반응기의 내부 온도는 700℃ 내지 1,000℃ 이고, 상기 반응기 내부 압력은 1 bar 내지 10 bar 일 수 있다. 상기 반응 단계에서 상기 반응기가 상기 범위의 온도 및 압력을 가지는 것이 상기 실란 가스 혼합물의 열분해 속도 및 실리콘 입자의 크기 조절 그리고, 반응 수율 향상의 관점에서 바람직 할 수 있다. 상기 반응기는 가열장치에 의해 상기 온도까지 가열될 수 있다.
그리고, 상기 실란 가스 혼합물은 상기 반응기에서 5분 내지 60분 동안 체류하여 상기 실리콘 마이크로 입자를 제조할 수 있다. 상기 실란 가스 혼합물의 체류 시간을 상기 범위로 조절하여 목적하는 실리콘 마이크로 입자를 보다 효율적으로 제조할 수 있다. 예를 들어, 상기 실란 가스 혼합물의 체류 시간이 상기 범위 미만인 경우에는 종입자 형성 및 입자가 성장할 시간이 충분하지 않은 문제가 있을 수 있고, 상기 실란 가스 혼합물의 체류 시간이 상기 범위를 초과할 경우에는 실리콘 입자의 크기가 목적하는 범위를 벗어날 수 있으며, 실리콘 입자의 결정립이 과성장 되어 결정립 크기가 너무 커지는 문제가 있을 수 있다.
상기 실리콘 마이크로 입자의 제조방법은 상기 실리콘 마이크로 입자를 회수하는 단계를 더 포함할 수 있고, 회수 이전에 냉각하는 단계를 더 포함할 수 있다.
본 발명의 다른 일 구현 예는, 상기 실리콘 마이크로 입자의 제조방법에 따라 제조된 실리콘 마이크로 입자를 제공한다. 이와 같이 제조된 상기 실리콘 마이크로 입자는 질화규소 원료, 태양전지(Solar cell)용 재료, 리튬 이온 전지 음극 재료 등으로 사용 될 수 있다.
구체적으로, 본 발명에 따른 실리콘 마이크로 입자의 제조 방법에 따르면, 상기 실리콘 마이크로 입자는 1㎛<d10<4㎛, 2㎛<d50<7㎛ 및 4㎛<d90<13㎛ 의 입도를 가질 수 있다. 이에 따라, 별도의 분쇄 과정이 필요 없다. 그리고, 분쇄과정이 없기 때문에 미분의 발생이 없고 선별(sieving) 과정 또한 필요 없다.
그리고, 상기 범위의 입도 분포를 갖는 상기 실리콘 마이크로 입자는 질화규소 및 배터리 음극재 원재료 등으로 사용하기에 바람직하다. 상기 실리콘 마이크로 입자크기는 LS13 320, Beckman Coulter을 이용한 레이저 회절법(laser diffraction method) 으로 측정할 수 있다.
상기 실리콘 마이크로 입자는 구형의 입자 형태를 가질 수 있다.
상기 실리콘 마이크로 입자는 상기 범위의 입도와 함께, 총 금속 불순물 함량이 2,000 ppm 이하일 수 있다. 본 명세서에서 "금속 불순물의 금속"은 실리콘 입자를 이차전지 등에 적용할 때 품질의 영향을 미치는 금속 원소를 지칭하는 것으로서, 대표적으로는 본 명세서의 표 2 에 기재된 Al 내지 Zn의 24 종 금속 원소를 의미할 수 있으나, 이에 반드시 한정되는 것은 아니다.
상기 실리콘 마이크로 입자는 실리콘 로드 또는 실리콘 종입자 없이, 실란 가스 혼합물을 이용하여 분말을 제조하는 것으로서, 불필요한 접촉이 없어서 금속 불순물 함량을 보다 잘 낮출 수 있다.
실리콘 마이크로 입자에 금속 불순물이 잔류할 경우 금속 불순물로 의한 부반응이 발생할 수 있으며, 이로 인해 물성을 저하시킬 수 있다. 이에 실리콘 입자에 포함된 금속 불순물을 제거하기 위한 추가적인 공정들이 필요한 실정이다. 반면, 상기 제조방법에 의해 제조된 상기 실리콘 마이크로 입자는 별도의 추가 공정 없이도 금속 불순물을 낮은 수준으로 포함할 수 있다. 구체적으로, 상기 실리콘 입자는 2,000ppm 이하로 상기한 금속불순물을 포함할 수 있다. 예를 들어, 1,000ppm 이하, 500 ppm 이하의 함량으로 포함할 수 있다.
상기 실리콘 마이크로 입자는 다결정실리콘(polycrystalline silicon)일 수 있으며, 평균 결정립 크기가 60 ㎚이하일 수 있다. 상기 제조방법에 의해 제조된 상기 실리콘 입자는 전술한 마이크로 크기의 입자를 가지면서 이와 함께 60 ㎚이하의 결정립을 동시에 가질 수 있다. 이에 따라 필요한 분야에서 우수한 효과를 나타낼 수 있다. 예를 들어, 상기 실리콘 마이크로 입자는 리튬 이온 전지 음극재로 사용될 수 있으며, 이 때, 전지 충방전 중에 발생하는 부피 변화에 의한 입자 파괴를 줄여 용량 유지율을 향상 시킬 수 있다.
이하에서는, 본 발명을 실시예에 의해 더욱 상세하게 설명한다. 그러나, 하기의 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기 실시예에 한정되는 것은 아니다.
실시예 1
Ar 가스를 반응기에 투입하여 반응기가 5 bar의 압력을 갖고 900 ℃ 가 되도록 하였다. 그 후, 수소(H2) 67 mol% 와 함께, 3 mol%의 이염화실란(SiH2Cl2, 제1 실란 가스, 분해온도=599℃) 및 30 mol% 삼염화실란(SiHCl3, 제2 실란 가스, 분해온도=648℃)의 실란 가스 혼합물을 동시에 하나의 반응기 내로 유입시켰다.
그리고, 상기 실란 가스 혼합물을 상기 하나의 반응기에서 약 40분 동안 반응시켜 분해하여 마이크로 크기의 실리콘 입자를 제조하였다. 이때, 상기 반응기의 내부 온도는 900℃ 이고, 내부 압력은 5 bar 이었다. 그리고, 상기 제조된 실리콘 입자를 냉각하고 회수하였다.
비교예 1
종래 FBR 반응 공법에 따라, 반응기에 600㎛ 의 입경을 갖는 실리콘 종입자를 투입하고, 수소(H2) 67 mol% 와 함께, 33 mol%의 삼염화실란(SiHCl3)을 반응기 내로 유입시키고 2 시간 동안 반응시켜 실리콘 입자를 제조하였다. 이때, 상기 반응기의 내부 온도는 900℃ 이고, 내부 압력은 5 bar 이었다.
비교예 2:
메탈 실리콘(MG-Si, Elpion, Sieve 로 분급한 45㎛ 미만의 입자)을 실시예 1 과 유사한 크기를 갖도록 Ball mill(Zirconia)을 이용하여 분쇄하였다.
실험예 1: 실리콘 입자 크기
실시예 1 및 비교예 2 에 의한 실리콘 입자의 크기는 Laser diffraction particle size analyzer(LS13 320, Beckman Coulter)를 이용하여 측정하고, 비교예 1 과 같이 밀리미터의 크기를 갖는 입자는 Digimatic caliper(Mitutoyo)를 이용하여 측정할 수 있으며, 그 결과를 하기 표 1 에 기재하였다.
실시예 1 비교예 1 비교예 2
실리콘 입자 크기 D10: 2.9 ㎛
D50: 5.3 ㎛
D90: 9.2 ㎛
3.1 mm D10: 1.0 ㎛
D50: 5.4 ㎛
D90: 15.3 ㎛
상기 표 1에서 보는 바와 같이, 실시예 1에 따라 제조된 실리콘 입자는 마이크로 사이즈를 갖는 것을 확인하였다. 반면, 종입자를 사용하여 제조된 비교예 1의 실리콘 입자는 밀리미터의 큰 사이즈의 실리콘 입자가 제조되는 것을 확인하였다.
실험예 2: 금속 불순물 함량
실시예 1 및 비교예 2의 실리콘 입자의 금속 불순물의 함량을 하기 표 2 에 나타냈다. 이 때, 금속 불순물의 함량은 Thermo fisher社의 'iCAP 7600' 장비로 측정하였다.
금속 원소 단위 실시예 1 비교예 2
Al ppmw 8.5 2,938
As < 1 < 1
Ba 1.0 60
Ca 15 6.5
Cd < 0.4 344
Co 0.4 3.1
Cr 35 114
Cu 65 16.2
Fe 144 5,831
K 1.0 10.9
Li < 0.4 < 0.4
Mg 16 8.3
Mn 3.5 36.2
Mo 0.4 4.8
Na 26 3.7
Ni 72 47
P 0.9 24.8
Pb < 2 < 1
Sb < 1 < 1
Sn < 0.4 < 0.4
Sr < 0.4 4.9
Ti 4.0 280
V < 0.4 30.9
Zn 13 3.1
Zr 2.6 2,938
상기 표 2에서 보는 바와 같이, 비교예 2 는 약 12,700 의 금속 불순물을 함유하는 것을 확인할 수 있다. 이와 같이, 실리콘 입자를 분쇄하여 실시예 1과 유사한 크기를 갖도록 할 수 있으나, 이 경우 불순물의 함량이 많아지는 문제가 있다. 실시예 1은 별도의 분쇄과정을 포함하지 않는 것으로서, 실리콘 마이크로 입자의 제조할 수 있으며, 이때, 불순물의 함량도 낮출 수 있다.
실험예 3: 결정립 크기
실시예 및 비교예에 의해 제조된 실리콘 입자에 포함된 결정립의 평균 크기를 XRD(Panalytical 社, Empyrean XRD) 를 이용하여 측정하고, 그 결과를 하기 표 3 에 기재하였다.
실시예 1 비교예 1 비교예 2
결정립 평균 크기 41.7 nm 58.6 nm 151.9 nm
상기 표 3에서 보는 바와 같이, 실시예 1의 실리콘 입자는 작은 결정립을 포함하는 것을 확인할 수 있다.
이상 본 명세서의 실시예 및 도면을 참조하여 더욱 상세하게 설명하였으나, 본 명세서는 반드시 이러한 실시예 및 도면에 국한되는 것은 아니며, 본 명세서의 기술사상을 벗어나지 않는 범위 내에서 다양하게 변형 실시될 수 있다. 따라서, 본 명세서에 개시된 실시예는 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시예에 의하여 본 발명의 기술 사상의 범위가 한정되는 것은 아니다. 그러므로, 이상에서 기술한 실시예는 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. 본 명세서 및 본 발명의 보호 범위는 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 명세서 및 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.

Claims (11)

  1. 실란 가스 혼합물을 반응기 내로 유입시키는 단계; 및
    상기 반응기에서 상기 실란 가스 혼합물을 분해하여 실리콘 마이크로 입자를 제조하는 단계; 를 포함하며,
    상기 실란 가스 혼합물은 제1 실란 가스 및 제2 실란 가스를 포함하고,
    상기 제1 실란 가스의 분해온도는 제2 실란 가스의 분해온도보다 낮은
    실리콘 마이크로 입자의 제조방법.
  2. 제1항에 있어서,
    상기 실란 가스 혼합물은 화학식 1 또는 화학식 2 로 표시되는 실란 가스로부터 선택된 2 종 이상인
    실리콘 마이크로 입자의 제조방법.
    [화학식 1] SiHxCl4-x (0≤x≤4, x는 정수임)
    [화학식 2] Si2HyCl6-y(0≤y≤6, y는 정수임)
  3. 제1항에 있어서,
    상기 제1 실란 가스는 350℃ 내지 600℃ 의 분해온도를 갖고,
    상기 제2 실란 가스는 600℃ 내지 1,000℃ 의 분해온도를 갖는
    실리콘 마이크로 입자의 제조방법.
  4. 제1항에 있어서,
    상기 제1 실란 가스 및 상기 제2 실란 가스는 1:30 내지 1:2 의 몰비로 반응기 내로 유입시키는
    실리콘 마이크로 입자의 제조방법.
  5. 제1항에 있어서,
    하나의 상기 반응기에서, 상기 실란 가스 혼합물은 분해하여 실리콘 종입자를 생성하면서, 동시에 성장하여 실리콘 마이크로 입자를 제조하는
    실리콘 마이크로 입자의 제조방법.
  6. 제1항에 있어서,
    실리콘 로드 또는 실리콘 종입자를 사용하지 않는
    실리콘 마이크로 입자의 제조방법.
  7. 제1항에 있어서,
    상기 실란 가스 혼합물은 상기 반응기에서 5분 내지 60분 동안 체류하여 상기 실리콘 마이크로 입자를 제조하는
    실리콘 마이크로 입자의 제조방법.
  8. 제1항에 있어서,
    상기 반응기의 온도는 700℃ 내지 1,000℃ 이고, 압력은 1 bar 내지 10 bar인
    실리콘 마이크로 입자의 제조방법.
  9. 제1항 내지 제8항 중 어느 한 항에 따른 실리콘 마이크로 입자의 제조방법에 따라 제조되는 실리콘 마이크로 입자.
  10. 제9항에 있어서,
    상기 실리콘 마이크로 입자는 1㎛<d10<4㎛, 2㎛<d50<7㎛ 및 4㎛<d90<13㎛ 의 입도를 갖고,
    총 금속 불순물 함량이 2,000 ppm 이하인
    실리콘 마이크로 입자.
  11. 제9항에 있어서,
    상기 실리콘 마이크로 입자는 평균 결정립 크기가 60 ㎚이하인
    실리콘 마이크로 입자.
PCT/KR2023/012221 2022-08-29 2023-08-17 실리콘 마이크로 입자의 제조방법 및 이에 의해 제조된 실리콘 마이크로 입자 WO2024049066A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020220108706A KR20240030102A (ko) 2022-08-29 2022-08-29 실리콘 마이크로 입자의 제조방법 및 이에 의해 제조된 실리콘 마이크로 입자
KR10-2022-0108706 2022-08-29

Publications (1)

Publication Number Publication Date
WO2024049066A1 true WO2024049066A1 (ko) 2024-03-07

Family

ID=90098203

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/012221 WO2024049066A1 (ko) 2022-08-29 2023-08-17 실리콘 마이크로 입자의 제조방법 및 이에 의해 제조된 실리콘 마이크로 입자

Country Status (2)

Country Link
KR (1) KR20240030102A (ko)
WO (1) WO2024049066A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06127914A (ja) * 1992-10-16 1994-05-10 Tonen Chem Corp 多結晶シリコンの製造方法
KR100210261B1 (ko) * 1997-03-13 1999-07-15 이서봉 발열반응을 이용한 다결정 실리콘의 제조 방법
EP1341720B1 (de) * 2000-12-11 2005-01-26 Solarworld Aktiengesellschaft Verfahren zur herstellung von reinstsilicium
JP2008273831A (ja) * 2007-05-04 2008-11-13 Wacker Chemie Ag 高純度の多結晶性シリコン顆粒を連続的に製造する方法
KR20210119515A (ko) * 2019-07-16 2021-10-05 와커 헤미 아게 다결정 실리콘의 제조 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06127914A (ja) * 1992-10-16 1994-05-10 Tonen Chem Corp 多結晶シリコンの製造方法
KR100210261B1 (ko) * 1997-03-13 1999-07-15 이서봉 발열반응을 이용한 다결정 실리콘의 제조 방법
EP1341720B1 (de) * 2000-12-11 2005-01-26 Solarworld Aktiengesellschaft Verfahren zur herstellung von reinstsilicium
JP2008273831A (ja) * 2007-05-04 2008-11-13 Wacker Chemie Ag 高純度の多結晶性シリコン顆粒を連続的に製造する方法
KR20210119515A (ko) * 2019-07-16 2021-10-05 와커 헤미 아게 다결정 실리콘의 제조 방법

Also Published As

Publication number Publication date
KR20240030102A (ko) 2024-03-07

Similar Documents

Publication Publication Date Title
KR930011998B1 (ko) 실란을 열분해시켜 직경이 균일하게 큰 다결정질 로드를 제조하는 반응기 시스템 및 방법
JP4567430B2 (ja) ダスト不含および孔不含の高純度多結晶シリコン顆粒およびその製法およびその使用
CA1145117A (en) Process for producing polycrystalline silicon
WO2013109105A1 (en) Silicon carbide powder and method for manufacturing the same
US20100233063A1 (en) Method for manufacturing high-purity silicon material
US4318942A (en) Process for producing polycrystalline silicon
WO2013100456A1 (en) Silicon carbide powder, method for manufacturing the same and method for growing single crystal
WO2013089483A1 (ko) 금속 도핑된 결정성 철인산염, 이의 제조 방법 및 이로부터 제조된 리튬 복합금속인산화물
WO2012015152A2 (ko) 삼염화실란의 제조를 위한 사염화규소의 탈염소수소화 반응에 사용되는 촉매 및 그 제조방법
WO2024049066A1 (ko) 실리콘 마이크로 입자의 제조방법 및 이에 의해 제조된 실리콘 마이크로 입자
KR20040025590A (ko) 컵 반응기에서 기체상 물질의 열분해에 의한 고체의침착방법
CA1311906C (en) Preparation of high purity boron
US6953559B2 (en) Method for producing highly pure, granular silicon
JP2004210594A (ja) 高純度シリコンの製造方法
WO2013032146A1 (en) Method of fabricating silicon carbide
CN109354023A (zh) 一种双层冷却夹套的甲硅烷热分解炉及生产工艺
CN111410197B (zh) 多面体硅晶的制备方法
WO2015174705A1 (ko) 수평형 반응기를 이용한 폴리실리콘 제조 장치 및 제조 방법
US20080025901A1 (en) Cylindrical Container Made of Carbon and Method for Producing Silicon
WO1990008104A1 (en) Process for preparing silicon carbide
WO2020230955A1 (ko) 습식 나노 분말 제조방법
WO2015111885A1 (ko) 금속 실리사이드의 표면개질 방법, 표면개질된 금속 실리사이드를 이용한 삼염화실란의 제조방법 및 제조장치
CN208454506U (zh) 一种圆台形冷却夹套的甲硅烷热分解炉
JP5823058B2 (ja) ポリシリコンの製造方法
CN109553107B (zh) 纳米颗粒材料的连续性、批量化的制备方法和制备装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23860744

Country of ref document: EP

Kind code of ref document: A1