WO2024048614A1 - 電池及び電池用積層構造体 - Google Patents

電池及び電池用積層構造体 Download PDF

Info

Publication number
WO2024048614A1
WO2024048614A1 PCT/JP2023/031340 JP2023031340W WO2024048614A1 WO 2024048614 A1 WO2024048614 A1 WO 2024048614A1 JP 2023031340 W JP2023031340 W JP 2023031340W WO 2024048614 A1 WO2024048614 A1 WO 2024048614A1
Authority
WO
WIPO (PCT)
Prior art keywords
active material
solid electrolyte
material layer
electrolyte sheet
battery
Prior art date
Application number
PCT/JP2023/031340
Other languages
English (en)
French (fr)
Inventor
大輔 井上
崇嗣 筑本
Original Assignee
三井金属鉱業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井金属鉱業株式会社 filed Critical 三井金属鉱業株式会社
Publication of WO2024048614A1 publication Critical patent/WO2024048614A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a battery and a laminated structure for a battery.
  • Bipolar batteries which are small and have high energy density and are used as power sources for vehicles, are known as one type of secondary battery.
  • a positive electrode active material layer containing a current collector is formed on one main surface of a solid electrolyte layer, and a negative electrode active material layer containing a current collector is formed on the other surface of the solid electrolyte layer.
  • the positive electrode active material layer and the negative electrode active material layer are Efforts have been made to increase the area of the current collector.
  • an insulating member is usually inserted between the current collectors.
  • Patent Document 1 discloses a technique using a current collector having higher conductivity in the thickness direction than in the planar direction so that current flows only approximately in the thickness direction.
  • an object of the present invention is to provide a battery that has a simple configuration and can suppress the occurrence of short circuits.
  • the present inventors conducted extensive studies and found that by using a solid electrolyte sheet as the solid electrolyte layer, the electrode layer can be formed at any location on the solid electrolyte layer, and the occurrence of short circuits can be suppressed. I found it. That is, the present invention provides a solid electrolyte sheet containing a solid electrolyte; a first active material layer formed on one main surface of the solid electrolyte sheet and containing a first active material; The present invention provides a battery having a self-supporting laminated structure including a second active material layer formed on the other main surface of the solid electrolyte sheet and containing a second active material.
  • the present invention also provides a solid electrolyte sheet containing a solid electrolyte; a first active material layer formed on one main surface of the solid electrolyte sheet and containing a first active material;
  • the present invention provides a self-supporting laminated structure for a battery, including a second active material layer formed on the other main surface of the solid electrolyte sheet and containing a second active material.
  • FIG. 1(a) is a perspective view of a laminated structure for a battery according to an embodiment of the present invention
  • FIG. 1(b) is a sectional view taken along the line II in FIG. 1(a).
  • FIG. 2 is a perspective view of a laminated structure for a battery according to another embodiment of the present invention
  • FIG. 2(b) is a sectional view taken along the line II-II in FIG. 2(a).
  • FIG. 3(a) is a perspective view showing an assembly for manufacturing the battery laminated structure shown in FIG. 2(a)
  • FIG. 3(b) is a cross-sectional view taken along line III-III in FIG. 3(a). It is a diagram.
  • FIG. 1 is a schematic configuration diagram of a battery in an embodiment of the present invention.
  • FIG. 1(a) is a perspective view of a laminated structure in a battery
  • FIG. 1(b) is a cross-sectional view taken along the broken line II in FIG. 1(a).
  • a battery 10 shown in FIG. 1 includes a solid electrolyte sheet 11 that is self-supporting and includes a solid electrolyte, a first active material layer 12 formed on a main surface 11A of the solid electrolyte sheet 11, and a solid electrolyte sheet 11. It has a second active material layer 13 formed on the back surface 11B of.
  • the battery 10 includes a battery laminated structure including these three members 11, 12, and 13. In this laminated structure, the three members 11, 12, and 13 are integrated, so the laminated structure has self-supporting properties by itself and has high handling properties, as will be described later. be. In this specification, "integrated" means that two adjacent members among the three members 11, 12, 13 are arranged so that they cannot be separated in normal handling.
  • self-supporting means the rigidity of the laminated structure, and having self-supporting means that the laminated structure can maintain its shape without using a support member separate from the structure.
  • a sheet has a first main surface and a second main surface located opposite to the first main surface, and both main surfaces have a vertical dimension and a horizontal dimension of the main surface. This refers to a member whose thickness, which is the distance between
  • a solid electrolyte sheet 11 having self-supporting properties is used. Therefore, it is possible to provide a battery 10 having a self-supporting laminated structure, and as described below, the first active material layer 12 and the second active material layer 13 can be formed on any arbitrary layer on the solid electrolyte sheet 11. It can be formed at any location. Due to this, as shown in FIG. 1, for example, the first active material layer 12 and the second active material layer 13 can be arranged approximately at the center of the main surface 11A and the back surface 11B of the solid electrolyte sheet 11. .
  • the solid electrolyte sheet 11 has a first active material layer side extension portion (hereinafter sometimes referred to as “first outer peripheral edge portion”) 11C extending outward from the periphery of the first active material layer 12. or has a second active material layer side extension part (hereinafter sometimes referred to as "second outer peripheral part”) 11D extending outward from the periphery of the second active material layer 13. .
  • the battery 10 of this embodiment when the battery 10 of this embodiment is assembled into a bipolar type battery, it is effectively suppressed that the adjacent first active material layer 12 and second active material layer 13 come into contact and cause a short circuit. That is, by using the solid electrolyte sheet 11 having self-supporting properties as the solid electrolyte layer, it is possible to provide the battery 10 having a laminated structure having self-supporting properties, and the electrodes constituting the battery 10, that is, the first active material It is possible to provide a battery 10 that can suppress the occurrence of a short circuit between the layer 12 and the second active material layer 13 with a simple configuration.
  • the area of the main surface 11A and the back surface 11B of the solid electrolyte sheet 11 is A
  • the area of the main surface 12A or 13A of the first active material layer 12 or the second active material layer 13 is B
  • the solid electrolyte sheet When the area of the larger one of the first outer peripheral edge 11C and the second outer peripheral edge 11D in No. 11 is C, the ratio of the area C to the area A can preferably be 1/20 or less, and more preferably can be set to 1/25 or less, more preferably 1/30 or less.
  • the first outer peripheral edge 11C and the second outer peripheral edge 11D are regions of the solid electrolyte sheet 11 outside the region where the first active material layer 12 and the second active material layer 13 are provided. Note that the first outer peripheral edge portion 11C preferably extends from the entire peripheral edge of the first active material layer 12. Similarly, it is preferable that the second outer peripheral edge portion 11D extends from the entire peripheral edge of the second active material layer 13.
  • FIG. 2 is a schematic diagram of a laminated structure for a battery according to another embodiment of the present invention.
  • FIG. 2(a) is a perspective view of the laminated structure
  • FIG. 2(b) is a cross-sectional view taken along the broken line II--II in FIG. 2(a).
  • the same reference numerals are used for the same or similar components as those of the laminated structure shown in FIG.
  • the stacked structure provided in the battery 20 shown in FIG. 2 is an example in which the ratio of area C to area A is 0 in the embodiment related to FIG. 1 described above. That is, the area A of the solid electrolyte sheet 11 and the area B of the first active material layer 12 and the second active material layer 13 are made the same, and the first outer peripheral edge 11C and the second outer peripheral edge 11D of the solid electrolyte sheet 11 are This is an example that does not exist. Therefore, in a plan view of the laminated structure, the periphery of the solid electrolyte sheet 11, the periphery of the first active material layer 12, and the periphery of the second active material layer 13 are located at the same position.
  • the structure of the battery 20 can of course be simplified. Further downsizing can be achieved. Therefore, even when a predetermined battery cell or the like is configured by connecting a plurality of batteries 20, the battery cell can be made smaller.
  • FIG. 3(a) is a perspective view showing an assembly for manufacturing the battery shown in FIG. 2(a)
  • FIG. 3(b) is a sectional view taken along line III--III in FIG. 3(a).
  • the punched portion 25 is a region that penetrates all of the solid electrolyte sheet 11, the first active material layer 12, and the second active material layer 13 in the thickness direction in a plan view of the laminated structure. .
  • the thickness of the solid electrolyte sheet 11 is preferably, for example, 3 ⁇ m or more, particularly preferably 5 ⁇ m or more, and particularly preferably 10 ⁇ m or more.
  • the thickness of the solid electrolyte sheet 11 is preferably, for example, 100 ⁇ m or less, particularly preferably 80 ⁇ m or less, and particularly preferably 15 ⁇ m or less.
  • the thickness of the solid electrolyte sheet 11 can be measured, for example, by observing a cross section of the solid electrolyte sheet 11 with a microscope. It can also be measured using a thickness gauge. In any case, the thickness is measured at ten or more arbitrary positions, and the arithmetic average value thereof is defined as the thickness of the solid electrolyte sheet 11.
  • the solid electrolyte sheet 11 used in the present invention preferably includes a solid electrolyte and a support (not shown).
  • the solid electrolyte sheet 11 has higher self-supporting properties, and the handling properties are further improved.
  • the laminated structures constituting the batteries 10 and 20 described above can be successfully obtained.
  • the proportion of the solid electrolyte contained in the solid electrolyte sheet is, for example, preferably 50.0% by mass or more, particularly preferably 70.0% by mass or more, and particularly preferably 90.0% by mass or more. preferable.
  • the proportion of the solid electrolyte contained in the solid electrolyte sheet is preferably, for example, 99.5% by mass or less.
  • the solid electrolyte sheet 11 can have better relative density, ionic conductivity, and mechanical strength. Note that the upper limit of the proportion of the solid electrolyte contained in the solid electrolyte sheet is 100% by mass.
  • the porosity of the solid electrolyte sheet 11 may be, for example, 1% or more, 1.5% or more, or 2% or more.
  • the porosity of the solid electrolyte sheet 11 is, for example, preferably 50% or less, more preferably 45% or less, and even more preferably 30% or less.
  • the solid electrolyte sheet 11 can have better relative density, ionic conductivity, and mechanical strength.
  • the support is a porous substrate. It is preferable that the solid electrolyte is supported within the voids of the porous base material.
  • Porous in a porous base material refers to a state having a large number of pores.
  • the porous base material preferably has pores that communicate from one surface to the other surface of the porous base material. The size of the pores may be such that when the solid electrolyte sheet 11 is formed, at least a portion of the solid electrolyte particles are filled therein. The pores may communicate with each other.
  • the porous base material is particularly preferably a fiber sheet because it can provide the solid electrolyte sheet 11 with sufficient self-supporting properties and appropriate flexibility.
  • the fiber sheet include nonwoven fabrics, woven fabrics, and knitted fabrics, with nonwoven fabrics being particularly preferred.
  • "porous" refers to a state in which voids are formed between the fibers.
  • the nonwoven fabric used as the porous base sheet is not particularly limited as long as a desired solid electrolyte sheet can be obtained.
  • nonwoven fabrics include fiber orthogonal nonwoven fabrics, long fiber nonwoven fabrics, short fiber nonwoven fabrics, wet nonwoven fabrics, dry nonwoven fabrics, airlaid nonwoven fabrics, card type nonwoven fabrics, parallel type nonwoven fabrics, cross type nonwoven fabrics, random nonwoven fabrics, spunbond nonwoven fabrics, meltblown nonwoven fabrics, and flash.
  • Spun nonwoven fabrics chemical bond nonwoven fabrics, hydroentangled nonwoven fabrics, needle punched nonwoven fabrics, stitch bonded nonwoven fabrics, thermal bonded nonwoven fabrics, burst fiber nonwoven fabrics, tow open woven nonwoven fabrics, split fiber nonwoven fabrics, composite nonwoven fabrics, laminated nonwoven fabrics, coated nonwoven fabrics, laminated nonwoven fabrics, etc. It will be done. Among these, cloth type nonwoven fabrics are preferred.
  • a cross-type nonwoven fabric is preferable because it is easy to adjust the strength ratio in the length direction X and the width direction Y, the basis weight, etc. It is preferable that the strength ratio of the cross-type nonwoven fabric in the length direction X and width direction Y is adjusted to be uniform.
  • the cloth type nonwoven fabric may have a low basis weight or a high basis weight.
  • Examples of the cloth type nonwoven fabric include polyolefin mesh cloth (see JP-A-2007-259734). Note that the specific basis weight of the nonwoven fabric can be the same as that described in, for example, Japanese Patent Application Laid-Open No. 2018-129307, so a description thereof will be omitted here.
  • the material, porosity, air permeability, thickness, etc. constituting the porous base material can be the same as those of the porous base sheet used for general solid electrolyte sheets.
  • it can be similar to the porous base sheet described in JP-A No. 2018-129307, so the description here will be omitted.
  • a solid electrolyte layer is a layer that conducts lithium ions between a positive electrode layer and a negative electrode layer in a solid battery.
  • the solid electrolyte included in the solid electrolyte layer preferably includes a crystal phase having an argyrodite crystal structure.
  • the argyrodite crystal structure is a crystal structure possessed by a group of compounds derived from a mineral represented by the chemical formula: Ag 8 GeS 6 . Whether or not the solid electrolyte has a crystal phase having an argyrodite crystal structure can be confirmed by measurement using X-ray diffraction (hereinafter also referred to as "XRD").
  • a characteristic diffraction peak is shown at a position of ⁇ 1.0°.
  • 2 ⁇ 15.3° ⁇ 1.0°, 18.0° ⁇ 1.0°, 44.3° ⁇ 1.0° , 47.2° ⁇ 1.0°, 51.7° ⁇ 1.0°, 58.3° ⁇ 1.0°, 60.7° ⁇ 1.0°, 61.5° ⁇ 1.0° , 70.4° ⁇ 1.0° and 72.6° ⁇ 1.0°.
  • data of PDF number 00-034-0688 is used, for example.
  • the solid electrolyte preferably contains at least a lithium (Li) element, a phosphorus (P) element, and a sulfur (S) element, and preferably contains a lithium (Li) element, a phosphorus (P) element, a sulfur (S) element, and a halogen (X) element. It is further preferable that the material contains at least an element.
  • the solid electrolyte has a composition formula (I): Li a PS b X c (X is at least one of fluorine (F) element, chlorine (Cl) element, bromine (Br) element, and iodine (I) element ) is preferable from the viewpoint of improving lithium ion conductivity.
  • a indicating the molar ratio of the Li element is preferably 3.0 or more, particularly preferably 4.0 or more, and particularly preferably 5.0 or more.
  • a is preferably 6.5 or less, particularly preferably 5.9 or less, and particularly preferably 5.6 or less.
  • b is preferably 3.5 or more, particularly preferably 4.0 or more, and particularly preferably 4.2 or more.
  • b is preferably, for example, 5.5 or less, particularly preferably 4.9 or less, and particularly preferably 4.7 or less.
  • c is preferably 0.1 or more, particularly preferably 1.1 or more, and particularly preferably 1.4 or more. On the other hand, c is preferably 2.5 or less, particularly preferably 2.0 or less, and particularly preferably 1.8 or less.
  • the solid electrolyte may be represented by the compositional formula (II): Li 7-d PS 6-d X d .
  • the composition represented by the compositional formula (II) is a stoichiometric composition of an argyrodite crystal phase.
  • X has the same meaning as in compositional formula (I).
  • d is preferably 0.4 or more, particularly preferably 0.8 or more, and particularly preferably 1.2 or more.
  • the d is preferably 2.2 or less, particularly preferably 2.0 or less, and particularly preferably 1.8 or less.
  • the solid electrolyte may be represented by the compositional formula (III): Li 7-d-2e PS 6-de X d .
  • the argyrodite-type crystal phase having the composition represented by the compositional formula (III) can be obtained, for example, by the reaction between the argyrodite-type crystalline phase having the composition represented by the compositional formula (II) and P 2 S 5 (diphosphorus pentasulfide).
  • e is a value indicating the deviation of the Li 2 S component from the stoichiometric composition represented by compositional formula (II).
  • e is preferably -0.9 or more, especially -0.6 or more, and particularly preferably -0.3 or more.
  • e is preferably (-d+2.0) or less, particularly preferably (-d+1.6) or less, and particularly preferably (-d+1.0) or less.
  • the atomic ratio X/P of the X element to the P element is preferably larger than 1.0, more preferably 1.1 or more, and even more preferably 1.2 or more. , 1.4 or more is even more preferable.
  • the atomic ratio X/P is, for example, preferably 2.5 or less, more preferably 2.3 or less, and even more preferably 2.2 or less.
  • the atomic ratio X/P can be measured, for example, by high frequency inductively coupled plasma optical emission spectroscopy (ICP optical emission spectroscopy) or SEM-EDS analysis.
  • the atomic ratio (Cl+Br)/P of the total of the Cl element and the Br element to the P element is preferably larger than 1.0, for example, 1.1 or more. More preferably, it is 1.2 or more, even more preferably 1.4 or more.
  • the atomic ratio (Cl+Br)/P is, for example, preferably 2.5 or less, more preferably 2.3 or less, and even more preferably 2.0 or less. It is preferable that the atomic ratio (Cl+Br)/P is within the above range because the lithium ion conductivity is further improved.
  • the atomic ratio (Cl+Br)/P can be measured, for example, by elemental analysis using high-frequency inductively coupled plasma optical emission spectroscopy (ICP optical emission spectrometry) or a scanning electron microscope equipped with an EDS (SEM-EDS).
  • ICP optical emission spectrometry high-frequency inductively coupled plasma optical emission spectroscopy
  • SEM-EDS scanning electron microscope equipped with an EDS
  • the solid electrolyte is preferably one represented by the compositional formula (IV) Li 7-d PS 6-d Cl d1 Br d2 .
  • the total molar ratio d is preferably less than 2.5, particularly preferably less than 2.0, particularly preferably 1.8 or less, and particularly preferably 1.7 or less. When the total molar ratio d is within the range, the generation of foreign phases can be sufficiently controlled, and a decrease in ionic conductivity can be effectively suppressed.
  • the ratio of the molar ratio of Br to the molar ratio of Cl (d2/d1) is preferably 0.1, for example, preferably 0.3 or more, particularly 0.5 or more. It is preferable that there be.
  • the molar ratio is preferably, for example, 10 or less, particularly preferably 5 or less, and particularly preferably 3 or less. When the molar ratio is within the above range, lithium ion conductivity can be further improved.
  • d1 which indicates the molar ratio of Cl, is preferably 0.3 or more, particularly preferably 0.4 or more, and particularly preferably 0.6 or more.
  • d1 is preferably, for example, 1.5 or less, particularly preferably 1.2 or less, and particularly preferably 1.0 or less.
  • Lithium ion conductivity can be further improved by setting d1 to be greater than or equal to the lower limit.
  • d1 is equal to or less than the upper limit value, the solid electrolyte can be easily obtained.
  • d2 which indicates the molar ratio of Br, is preferably 0.3 or more, particularly preferably 0.4 or more, and particularly preferably 0.6 or more.
  • d2 is preferably, for example, 1.5 or less, particularly preferably 1.2 or less, and particularly preferably 1.0 or less.
  • d2 is equal to or greater than the lower limit, a solid electrolyte can be easily obtained.
  • d2 is set to be less than or equal to the upper limit value, lithium ion conductivity can be further improved.
  • the first active material layer 12 and the second active material layer 13 can each include a positive electrode active material or a negative electrode active material.
  • the battery 10 is used as, for example, a bipolar battery. be able to.
  • both stacked structures are arranged so that the first active material layer 12 in one stacked structure and the second active material layer 13 in the other stacked structure face each other with a current collector in between. By connecting in series, a bipolar battery can be provided.
  • the first active material contained in the first active material layer 12 and the second active material contained in the second active material layer 13 may both be a positive electrode active material or a negative electrode active material.
  • the positive electrode active material examples include oxide active materials containing lithium and transition metals. Specifically, rock salt layered active materials such as lithium cobalt oxide (LiCoO 2 ), lithium nickel oxide (LiNiO 2 ), LiNi 1/3 Co 1/3 Mn 1/3 O 2 , lithium manganate (LiMn 2 O 4 ), Li(Ni 0.5 Mn 1.5 ) O 4 , Li 1+x Mn 2-x-y M y O 4 (M is selected from the group consisting of Al, Mg, Co, Fe, Ni, Zn). ), olivine type active materials such as lithium titanate (L x TiO y ), LiFePO 4 , LiMnPO 4 , LiCoPO 4 , LiNiPO 4 , and the like.
  • examples of negative electrode active materials include Si, Si alloys, carbon materials such as graphite and hard carbon, various oxides such as lithium titanate, metallic lithium, lithium alloys, and the like.
  • the content of the active material contained in the first active material layer 12 and the second active material layer 13 is not particularly limited as long as it can function as an electrode.
  • the content of the positive electrode active material is, for example, 50% by mass when the total mass of the active material layer is 100% by mass. It is preferably at least 65% by mass, even more preferably at least 75% by mass.
  • the content of the positive electrode active material can be, for example, 99% by mass or less.
  • the content of the negative electrode active material is, for example, 20% by mass when the total mass of the active material layer is 100% by mass. It is preferably at least 40% by mass, even more preferably at least 70% by mass. On the other hand, the content of the negative electrode active material can be, for example, 99% by mass or less.
  • the first active material layer 12 and the second active material layer 13 may contain a solid electrolyte.
  • the solid electrolyte is not particularly limited.
  • the solid electrolyte is preferably the solid electrolyte described above.
  • the content of the solid electrolyte contained in the first active material layer 12 and the second active material layer 13 is such that the electrode including the first active material layer 12 and the second active material layer 13 exhibits a desired function. Not particularly limited.
  • the content of the solid electrolyte is, for example, 1% by mass or more and 80% by mass or less for each of the first active material layer 12 and the second active material layer 13 independently. Good too.
  • the first active material layer 12 and the second active material layer 13 may contain a conductive material, a binder, and various additives as necessary.
  • the conductive material include carbon materials such as VGCF (Vapor Grown Carbon Fiber) and carbon nanofibers, and metal materials.
  • the binder include materials such as polyvinylidene fluoride (PVdF), carboxymethyl cellulose (CMC), butadiene rubber (BR), and styrene-butadiene rubber (SBR), or a combination of these materials.
  • a solid electrolyte sheet 11 is manufactured.
  • This manufacturing process is broadly divided into the following steps. (1) Step of preparing a laminated member. (2) A step of manufacturing a laminate using a laminate member. (3) A step of pressurizing the laminate. (4) Step of peeling and removing the carrier sheet from the laminate. Each process will be explained below.
  • Step of preparing a laminated member a laminated member having a carrier sheet and a coating film containing a solid electrolyte formed on the carrier sheet is prepared.
  • the carrier sheet is preferably one that has strength and flexibility to support the coating film.
  • the thickness of the carrier sheet can be appropriately selected depending on the material constituting these carrier sheets, and it is preferable that the thickness is such that these carrier sheets have self-supporting properties. Further, by adjusting the thickness of the carrier sheet, the carrier sheet may be made flexible.
  • the thickness of the carrier sheet is not particularly limited, but may be, for example, 5 ⁇ m or more, 10 ⁇ m or more, or 15 ⁇ m or more. On the other hand, the thickness of the carrier sheet may be, for example, 1000 ⁇ m or less, 200 ⁇ m or less, and especially 100 ⁇ m or less.
  • the material constituting the carrier sheet is, for example, at least one of resin, glass, and metal. That is, the carrier sheet is preferably at least one of carrier resin, carrier glass, and carrier metal foil.
  • the carrier sheet may have a multilayer structure in which two or more of carrier resin, carrier glass, and carrier metal foil are laminated, for example.
  • Examples of materials contained in the carrier resin include acrylic resin, polyester resin, cellulose derivative resin, polyvinyl acetal resin, polyvinyl butyral resin, vinyl chloride-vinyl acetate copolymer, chlorinated polyolefin, and copolymers of these resin groups.
  • Examples include resins such as.
  • carrier glass for example, glass cloth, which is a woven glass fiber, can be used.
  • Examples of the material constituting the carrier metal foil include copper, stainless steel, aluminum, nickel, silver, gold, chromium, cobalt, tin, zinc, and alloys thereof.
  • the carrier sheet and the coating film are laminated in a peelable manner.
  • the carrier sheet and the coating film are laminated in a peelable manner, it means that both can be peeled off without destroying their respective structures.
  • the peel strength between the carrier sheet and the coating film is preferably, for example, 10 N/10 mm or less, particularly preferably 7 N/10 mm or less, and particularly preferably 4 N/10 mm or less. This is because when the peel strength is within the above range, the carrier sheet and the coating film can be peeled off well.
  • a laminate in which the target layers are laminated is cut into a 10 mm wide strip, and an interlayer peel test is performed using a tensile compression tester (180 degree peel, test speed 50 mm/min).
  • a tensile compression tester 180 degree peel, test speed 50 mm/min.
  • the surface facing the coating film can be subjected to a peeling treatment.
  • the release treatment include surface smoothing and application of a resin release agent.
  • the coating film formed on the carrier sheet includes a solid electrolyte and a solvent.
  • the solvent include, independently, non-polar solvents such as heptane, methylcyclohexane and toluene, aprotic polar solvents such as methyl isobutyl ketone and cyclohexanone, and mixtures thereof.
  • the solid electrolyte contained in the coating film has the form of particles.
  • the size of the particles is preferably, for example, 0.1 ⁇ m or more, and more preferably 0.3 ⁇ m or more, expressed as a volumetric cumulative particle size D50 at 50% cumulative volume by laser diffraction scattering particle size distribution measurement method. , more preferably 0.5 ⁇ m or more.
  • the D50 is preferably, for example, 20 ⁇ m or less, more preferably 10 ⁇ m or less, and even more preferably 5 ⁇ m or less.
  • Examples of methods for mixing the solid electrolyte and solvent include an ultrasonic homogenizer, a shaker, a thin film rotating mixer, a dissolver, a homomixer, a kneader, a roll mill, a sand mill, an attritor, a ball mill, a vibrator mill, and a high-speed impeller mill. It will be done.
  • the slurry obtained by mixing is applied to one surface of the carrier sheet.
  • the coating method include a doctor blade method, a die coating method, a gravure coating method, a spray coating method, an electrostatic coating method, a bar coating method, and the like.
  • a coating film is formed by applying the slurry to one side of the carrier sheet.
  • the solid content concentration of the coating film thus obtained is preferably, for example, 40% by mass or more, more preferably 50% by mass or more, and more preferably 60% by mass or more, from the viewpoint of coating properties of the slurry. It is more preferable that there be.
  • the solid content concentration is preferably, for example, 90% by mass or less, and more preferably 80% by mass or less.
  • the liquid component may be appropriately removed.
  • methods for removing the liquid component include hot air drying, hot air drying, infrared drying, reduced pressure drying, dielectric heating drying, and the like. In this way, a laminated member having a carrier sheet and a coating film containing a solid electrolyte formed on the carrier sheet is prepared.
  • the coating film containing the solid electrolyte in the laminate member is made of the above-mentioned porous base material.
  • the laminated member is disposed on the support so as to face the support, thereby obtaining a laminate in which the laminated member is laminated on the support.
  • solvent By containing an appropriate amount of solvent in the coating film, a portion of the solvent is filled into the pores of the porous substrate. This filling is ensured in the next step, the pressurization step.
  • the step of pressurizing the laminate is to form a coating film in the pores of the porous base material, that is, a solid electrolyte to ensure that at least some of the particles are filled.
  • the laminate is pressed at least in the thickness direction.
  • the laminate can be pressed in the thickness direction using a uniaxial press.
  • the entire laminate can be isotropically pressed by CIP (cold isostatic pressing).
  • the pressing force can be adjusted as appropriate depending on the type of porous base material constituting the laminate, the amount of solid electrolyte contained in the coating film, etc.
  • the specific pressing force is, for example, preferably 100 MPa or more, more preferably 350 MPa or more, and still more preferably 700 MPa or more.
  • Step of peeling and removing the carrier sheet from the laminate the carrier sheet is peeled and removed from the laminate after being pressed.
  • the desired solid electrolyte sheet 11 that is, the solid electrolyte sheet 11 in which the support is embedded in the solid electrolyte
  • the first active material layer 12 and the second active material layer 13 are formed on the main surface 11A and the back surface 11B of the solid electrolyte sheet 11 obtained as described above.
  • an electrode slurry containing an active material and a solvent is prepared.
  • the active material is a positive electrode active material or a negative electrode active material as described above, and typically has a particle form.
  • the size of the particles of the active material is preferably, for example, 0.1 ⁇ m or more, and more preferably 1 ⁇ m or more, expressed as a volume cumulative particle size D50 at 50 volume % of cumulative volume measured by laser diffraction scattering particle size distribution measurement method.
  • the thickness is preferably 3 ⁇ m or more, and more preferably 3 ⁇ m or more.
  • the D50 is preferably, for example, 100 ⁇ m or less, more preferably 30 ⁇ m or less, and even more preferably 10 ⁇ m or less.
  • the solvent examples include non-polar solvents such as heptane, methylcyclohexane and toluene, aprotic polar solvents such as methyl isobutyl ketone and cyclohexanone, and mixtures thereof.
  • the electrode slurry may contain other materials in addition to the active material and solvent.
  • examples of other materials include binders, conductive materials, solid electrolytes, and various additives.
  • Examples of methods for mixing the electrode slurry include an ultrasonic homogenizer, a shaker, a thin film rotating mixer, a dissolver, a homomixer, a kneader, a roll mill, a sand mill, an attritor, a ball mill, a vibrator mill, and a high-speed impeller mill.
  • the solid content concentration of the electrode slurry is preferably, for example, 40% by mass or more, more preferably 50% by mass or more, and even more preferably 60% by mass or more.
  • the solid content concentration is preferably, for example, 90% by mass or less, and more preferably 80% by mass or less.
  • the electrode slurry is prepared, it is applied to the main surface 11A and back surface 11B of the solid electrolyte sheet 11.
  • the coating method include a doctor blade method, a die coating method, a gravure coating method, a spray coating method, an electrostatic coating method, a bar coating method, and the like.
  • the coating film is formed, it is dried to remove the liquid component.
  • the amount of liquid components contained in the coating film can be adjusted to a desired range.
  • the drying method include hot air drying, hot air drying, infrared drying, reduced pressure drying, dielectric heating drying, and the like. As a result, a substantially dry active material layer 2 is formed.
  • the first active material layer 12 and the second active material layer 13 having desired thickness can be formed.
  • the punching step shown in FIG. 3 may be added after the steps described above.
  • a solid battery refers to a solid battery that does not contain any liquid substance or gel substance as an electrolyte, as well as a solid battery that does not contain any liquid substance or gel substance as an electrolyte. It also includes embodiments that include.
  • the present invention includes the following batteries and laminated structures for batteries.
  • a solid electrolyte sheet containing a solid electrolyte, a first active material layer formed on one main surface of the solid electrolyte sheet and containing a first active material;
  • the solid electrolyte sheet has a first active material layer side extension extending outward from the periphery of the first active material layer, or extends outward from the periphery of the second active material layer.
  • the battery according to [1] which has a second active material layer side extension portion.
  • the area with the larger value is defined as C
  • the area of the solid electrolyte sheet in plan view is A
  • the solid electrolyte sheet has a proportion of the solid electrolyte of 50.0% by mass or more and 99.5% by mass or less.
  • Both stacked structures are arranged in series such that the first active material layer in one of the stacked structures and the second active material layer in the other stacked structure face each other with a current collector interposed therebetween.
  • the laminated structure for a battery includes, at its outer edge, a punching portion that penetrates the solid electrolyte sheet, the first active material layer, and the second active material layer in the thickness direction; [12] The laminated structure for batteries described in .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Secondary Cells (AREA)
  • Primary Cells (AREA)

Abstract

固体電解質を含む固体電解質シート(11)と、固体電解質シート(11)の一方の主面に形成され、且つ第1活物質を含む第1活物質層(12)と、固体電解質シート(11)の他方の主面に形成され、且つ第2活物質を含む第2活物質層(13)と、を備えた、自己支持性を有する積層構造体を有する電池(10)を提供する。固体電解質シート(11)が、第1活物質層(12)の周縁から外方に延出した第1活物質層側延出部(11C)を有するか、又は第2活物質層(13)の周縁から外方に延出した第2活物質層側延出部(11D)を有することが好適である。

Description

電池及び電池用積層構造体
 本発明は電池及び電池用積層構造体に関する。
 近年、CO削減による地球温暖化防止に向けた取り組みとして、二次電池が注目されている。二次電池の一つとして、車両等の電源に用いられる、小型で高エネルギー密度を有する電池であるバイポーラ電池等が知られている。この電池では、固体電解質層の一方の主面上に集電体を含む正極活物質層が形成され、固体電解質層の他方の面に集電体を含む負極活物質層がそれぞれ形成されている。この電池では、固体電解質の主面に対する正極活物質層及び負極活物質層の位置ずれを防止すべく、固体電解質層の主面の面積に対して、正極活物質層及び負極活物質層、すなわち集電体の面積を大きくすることが行われている。しかし、集電体同士が電気的に接続されて短絡してしまうことがあるので、通常は、集電体間に絶縁部材を挿入している。
 しかし、前記のようなバイポーラ電池では、絶縁部材の挿入が必要な分だけ製造の工数が多くなり、また、電池の構造が複雑になってしまう。更に、絶縁部材の挿入分だけ重くなってしまう。
 かかる問題に鑑みて、特許文献1には、略厚み方向にのみ電流を流すように、厚み方向の導電性が面方向の導電性よりも高い集電体を用いる技術が開示されている。
特開2007-213930号公報
 しかしながら、特許文献1に記載の技術では、集電体を非導電性の高分子材料と導電性の導電性粒子とで構成しなければならず、材料の選択が限定されるとともに、集電体の製造工程が煩雑化してしまうという課題がある。
 したがって本発明の課題は、簡易な構成であり、且つ短絡の発生を抑制し得る電池を提供することにある。
 前記の課題を解決すべく本発明者らは鋭意検討した結果、固体電解質層として固体電解質シートを用いることにより、電極層を固体電解質層の任意の箇所に形成でき、短絡の発生を抑制できることを見出した。
 すなわち、本発明は、固体電解質を含む固体電解質シートと、
 前記固体電解質シートの一方の主面に形成され、且つ第1活物質を含む第1活物質層と、
 前記固体電解質シートの他方の主面に形成され、且つ第2活物質を含む第2活物質層と、を備えた、自己支持性を有する積層構造体を有する電池を提供するものである。
 また、本発明は、固体電解質を含む固体電解質シートと、
 前記固体電解質シートの一方の主面に形成され、且つ第1活物質を含む第1活物質層と、
 前記固体電解質シートの他方の主面に形成され、且つ第2活物質を含む第2活物質層と、を備えた、自己支持性を有する、電池用積層構造体を提供するものである。
図1(a)は、本発明の実施形態における電池用積層構造体の斜視図であり、図1(b)は、図1(a)におけるI-I線断面図である。 図2は、本発明の他の実施形態における電池用積層構造体の斜視図であり、図2(b)は、図2(a)におけるII-II線断面図である。 図3(a)は、図2(a)に示す電池用積層構造体を製造するためのアセンブリを示す斜視図であり、図3(b)は、図3(a)におけるIII-III線断面図である。
 以下本発明を、その好ましい実施形態に基づき説明する。
 図1は、本発明の実施形態における電池の概略構成図である。図1(a)は、電池における積層構造体の斜視図であり、図1(b)は、図1(a)の破線I-Iに沿って切った場合の断面図である。
 図1に示す電池10は、自己支持性を有し且つ固体電解質を含む固体電解質シート11と、固体電解質シート11の主面11A上に形成された第1活物質層12と、固体電解質シート11の裏面11B上に形成された第2活物質層13とを有する。電池10は、これら3つの部材11,12,13を備えた電池用積層構造体を備える。この積層構造体においては、前記の3つの部材11,12,13が一体化しているので、該積層構造体は、後述するとおり、それ単独で自己支持性を有し、ハンドリング性の高いものである。
 本明細書において一体化とは、前記の3つの部材11,12,13のうち、隣り合う2つの部材が通常のハンドリングにおいて分離不能に配置されていることをいう。
 また、本明細書において自己支持性とは、積層構造体の剛性を意味し、自己支持性を有するとは、積層構造体とは別部材の支持部材を用いなくとも形態を保てることを意味する。
 更に、本明細書においてシートとは、第1の主面及びそれと反対側に位置する第2の主面を有し、該主面縦方向の寸法及び横方向の寸法に対して、両主面間の距離である厚みが極めて小さい(縦方向の寸法及び横方向の寸法に対して厚みが例えば100分の1以下)部材のことである。
 本実施形態の電池10においては、自己支持性を有する固体電解質シート11を用いている。したがって、自己支持性を有する積層構造体を有する電池10の提供が可能となり、以下に説明するように、第1活物質層12及び第2活物質層13を、固体電解質シート11上の任意の箇所に形成することができる。このことに起因して、図1に示すように、例えば第1活物質層12及び第2活物質層13を固体電解質シート11の主面11A及び裏面11Bの略中央に配設することができる。その結果、固体電解質シート11は、第1活物質層12の周縁から外方に延出した第1活物質層側延出部(以下、「第1外周縁部」という場合がある。)11Cを有するか、又は第2活物質層13の周縁から外方に延出した第2活物質層側延出部(以下、「第2外周縁部」という場合がある)11Dを有するものとなる。
 したがって、本実施形態の電池10をバイポーラ型の電池に組み上げた場合に、隣り合う第1活物質層12と第2活物質層13とが接触して短絡することが効果的に抑制される。すなわち、固体電解質層として自己支持性を有する固体電解質シート11を用いることにより、自己支持性を有する積層構造体を有する電池10の提供が可能となり、電池10を構成する電極、すなわち第1活物質層12と第2活物質層13との短絡の発生を、簡易な構成で抑制し得る電池10を提供することができる。
 具体的には、固体電解質シート11の主面11A及び裏面11Bの面積をAとし、第1活物質層12又は第2活物質層13の主面12A又は13Aの面積をBとし、固体電解質シート11における第1外周縁部11C及び第2外周縁部11Dのうちの大きい方の面積をCとしたとき、面積Aに対する面積Cの割合を好ましくは1/20以下とすることができ、更に好ましくは1/25以下とすることができ、一層好ましくは1/30以下とすることができる。すなわち、短絡の発生を抑制することを目的として、固体電解質シート11を必要以上に大面積化する必要がなくなるので、電池10の構造を簡易化することができ、更には電池10の小型化を図ることができる。
 第1外周縁部11C及び第2外周縁部11Dは、固体電解質シート11のうち、第1活物質層12及び第2活物質層13が配設された領域よりも外側の領域である。
 なお、第1外周縁部11Cは、第1活物質層12の周縁の全域から延出していることが好ましい。同様に、第2外周縁部11Dは、第2活物質層13の周縁の全域から延出していることが好ましい。
 図2は、本発明の他の実施形態における電池用積層構造体の概略構成図である。図2(a)は、積層構造体の斜視図であり、図2(b)は、図2(a)の破線II-IIに沿って切った場合の断面図である。図2において、図1に示す積層構造体と同一及び類似の構成要素については同一の符号を用いている。
 図2に示す電池20に備えられた積層構造体は、上述した図1に関する実施形態において、面積Aに対する面積Cの割合を0とした例である。すなわち、固体電解質シート11の面積Aと第1活物質層12及び第2活物質層13の面積Bとを同一とし、固体電解質シート11の第1外周縁部11C及び第2外周縁部11Dが存在しない例である。したがって、積層構造体の平面視において、固体電解質シート11の周縁と、第1活物質層12の周縁と、第2活物質層13の周縁とは同一位置にある。
 本実施形態においては、固体電解質シート11の面積Aと第1活物質層12及び第2活物質層13の面積Bとを同一としているので、電池20の構造を簡易化できることは勿論、電池20の更なる小型化を図ることができる。したがって、電池20を複数接続して所定の電池セル等を構成した場合においても、当該電池セルの小型化を図ることができる。
 なお、公知の文献においては、図2に示す形態の電池構成が図示されているが、当該電池構成はあくまで簡易的且つ便宜的に記載したものであって、本実施形態の電池20が示すように、実質的に固体電解質シート11の面積Aと第1活物質層12及び第2活物質層13の面積Bとが同一となっているものではない。
 実際、図2に示す電池20に用いられる積層構造体は、図3(a)及び図3(b)に示すように、アセンブリ20Xに対して打ち抜き予定部25を設定し、アセンブリ20Xを打ち抜き予定部25において厚さ方向に打ち抜くことによって得られるものである。このような製造方法は従来知られていない方法であり、このような非公知の方法によって製造された図2に示す積層構造体を備えた電池20も当然に従来知られていないものである。図3(a)は、図2(a)に示す電池を製造するためのアセンブリを示す斜視図であり、図3(b)は、図3(a)におけるIII-III線断面図である。
 なお、前記打ち抜き予定部25とは、積層構造体の平面視において、固体電解質シート11、第1活物質層12及び第2活物質層13のすべてを厚さ方向に貫通する領域のことである。
 固体電解質シート11の厚みは、例えば、3μm以上であることが好ましく、中でも5μm以上であることが好ましく、特に10μm以上であることが好ましい。一方、固体電解質シート11の厚みは、例えば、100μm以下であることが好ましく、中でも80μm以下であることが好ましく、特に15μm以下であることが好ましい。固体電解質シート11の厚みが前記範囲内であることにより、固体電解質シート11、延いては固体電解質の相対密度が向上し、電子伝導度を低く保持した状態でイオン伝導度を向上させることができ、更には機械強度の向上も図ることができる。
 固体電解質シート11の厚みは、例えば、固体電解質シート11の断面を顕微鏡観察することで測定できる。また、厚さゲージを用いて測定できる。いずれの場合であっても任意の10箇所以上の位置において厚みを測定し、その算術平均値をもって固体電解質シート11の厚みと定義する。
 本発明で用いられる固体電解質シート11は、固体電解質と支持体(図示せず)とを有することが好ましい。これによって、固体電解質シート11は一層高い自己支持性を有し、取り扱い性が一層向上する。また、上述した電池10,20を構成する積層構造体を首尾よく得ることができる。
 固体電解質シートに含まれる固体電解質の割合は、例えば、50.0質量%以上であることが好ましく、中でも70.0質量%以上であることが好ましく、特に90.0質量%以上であることが好ましい。一方、固体電解質シートに含まれる固体電解質の割合は、例えば、99.5質量%以下であることが好ましい。固体電解質シート11中の固体電解質の割合が前記範囲内であることにより、より優れた相対密度、イオン伝導度及び機械強度を有する固体電解質シート11とすることができる。なお、固体電解質シートに含まれる固体電解質の割合の上限は100質量%である。
 また、固体電解質シート11の空隙率は、例えば、1%以上であってもよく、1.5%以上であってもよく、2%以上であってもよい。一方、固体電解質シート11の空隙率は、例えば、50%以下であることが好ましく、45%以下であることがより好ましく、30%以下であることが更に好ましい。固体電解質シート11の空隙率が前記範囲内であることで、より優れた相対密度、イオン伝導度及び機械強度を有する固体電解質シート11とすることができる。
 前記支持体は多孔質基材であることが好ましい。固体電解質は、多孔質基材が有する空隙内にが支持されていることが好ましい。
 多孔質基材における「多孔質」とは、多数の細孔を有する状態を指す。
 多孔質基材は、該多孔質基材の一方の面から他方の面にまで通じる細孔を有することが好ましい。
 細孔のサイズは、固体電解質シート11を形成した際に、固体電解質の粒子の少なくとも一部が充填される程度のサイズであればよい。
 細孔は互いに連通していてもよい。
 多孔質基材は、特に繊維シートであることが、固体電解質シート11に十分な自己支持性と適度な可撓性を付与し得る点から好ましい。繊維シートとしては、例えば不織布、織布及び編み物地などが挙げられ、特に不織布であることが好ましい。
 多孔質基材シートが繊維シートである場合、「多孔質」は繊維の間に生じている空隙を有する状態を指す。
 不織布には、不織布の製造に使用される繊維の種類(繊維長、繊維径、繊維の材料等)、製造方法の種類(例えば、ウェブの形成方法、ウェブの繊維結合方法等)等に応じて、様々な種類が存在する。多孔質基材シートとして使用される不織布は、所望の固体電解質シートが得られれば特に限定されない。不織布としては、例えば、繊維直交不織布、長繊維不織布、短繊維不織布、湿式不織布、乾式不織布、エアレイド不織布、カード式不織布、パラレル式不織布、クロス式不織布、ランダム不織布、スパンボンド不織布、メルトブローン不織布、フラッシュ紡糸不織布、ケミカルボンド不織布、水流交絡不織布、ニードルパンチ不織布、ステッチボンド不織布、サーマルボンド不織布、バーストファイバー不織布、トウ開織不織布、スプリットファイバー不織布、複合不織布、積層不織布、コーテッド不織布、ラミネート不織布等が挙げられる。これらのうち、クロス式不織布が好ましい。クロス式不織布は、長さ方向X及び幅方向Yの強度比、目付等の調整が容易である点で好ましい。クロス式不織布の長さ方向X及び幅方向Yの強度比は、均一に調整することが好ましい。クロス式不織布の目付は、低目付であってもよいし、高目付であってもよい。クロス式不織布としては、例えば、ポリオレフィンメッシュクロス(特開2007-259734号公報参照)が挙げられる。なお、不織布の具体的な目付については、例えば、特開2018-129307号公報に記載された内容と同様とすることができるため、ここでの記載は省略する。
 多孔質基材を構成する材料、空隙率、通気度及び厚み等については、一般的な固体電解質シートに使用される多孔質基材シートと同様とすることができる。例えば、特開2018-129307号公報に記載された多孔質基材シートと同様とすることができるため、ここでの記載は省略する。
 固体電解質層は、固体電池において、正極層と負極層との間でリチウムイオンを伝導させる層である。この目的のために、固体電解質層に含まれる固体電解質は、アルジロダイト型結晶構造を有する結晶相を含むことが好ましい。アルジロダイト型結晶構造とは化学式:AgGeSで表される鉱物に由来する化合物群が有する結晶構造である。固体電解質がアルジロダイト型結晶構造の結晶相を有しているか否かは、X線回折(以下「XRD」ともいう。)による測定などによって確認できる。例えばCuKα1線を用いたXRDにより測定される回折パターンにおいて、アルジロダイト型結晶構造の結晶相は、2θ=25.5°±1.0°、30.0°±1.0°及び30.9°±1.0°の位置に特徴的な回折ピークを示す。また、固体電解質を構成する元素種によっては、前記回折ピークに加えて、2θ=15.3°±1.0°、18.0°±1.0°、44.3°±1.0°、47.2°±1.0°、51.7°±1.0°、58.3°±1.0°、60.7°±1.0°、61.5°±1.0°、70.4°±1.0°及び72.6°±1.0°に特徴的な回折ピークを示す場合もある。アルジロダイト型結晶構造に由来する回折ピークの同定には、例えばPDF番号00-034-0688のデータを用いる。
 固体電解質は、リチウム(Li)元素、リン(P)元素及び硫黄(S)元素を少なくとも含むことが好ましく、リチウム(Li)元素、リン(P)元素、硫黄(S)元素及びハロゲン(X)元素を少なくとも含むことが更に好ましい。この場合、固体電解質は、組成式(I):LiPS(Xは、フッ素(F)元素、塩素(Cl)元素、臭素(Br)元素、ヨウ素(I)元素のうち少なくとも一種である。)で表されることが、リチウムイオン伝導性の向上の観点から好ましい。
 組成式(I)において、Li元素のモル比を示すaは、例えば3.0以上であることが好ましく、中でも4.0以上であることが好ましく、特に5.0以上であることが好ましい。一方、aは、例えば6.5以下であることが好ましく、中でも5.9以下であることが好ましく、特に5.6以下であることが好ましい。aがこの範囲であることにより、室温(25℃)近傍における立方晶系アルジロダイト型結晶構造がより安定となることで、構造中にリチウムイオン空孔を十分に導入することができ、結果としてリチウムイオン伝導性を効果的に高めることができる。
 組成式(I)においてbは、例えば3.5以上であることが好ましく、中でも4.0以上であることが好ましく、特に、4.2以上であることが好ましい。一方、bは、例えば5.5以下であることが好ましく、中でも4.9以下であることが好ましく、特に4.7以下であることが好ましい。bが前記範囲内であることにより、室温(25℃)近傍におけるアルジロダイト型結晶構造がより安定となり、リチウムイオン伝導性が効果的に高くなる。
 組成式(I)においてcは、例えば0.1以上であることが好ましく、中でも1.1以上であることが好ましく、特に1.4以上であることが好ましい。一方、cは、例えば2.5以下であることが好ましく、中でも2.0以下であることが好ましく、特に1.8以下であることが好ましい。
 また、固体電解質は、組成式(II):Li7-dPS6-dで表されるものであってもよい。組成式(II)で表される組成は、アルジロダイト型結晶相の化学量論組成である。組成式(II)において、Xは、組成式(I)と同義である。
 組成式(II)においてdは、例えば0.4以上であることが好ましく、中でも0.8以上であることが好ましく、特に1.2以上であることが好ましい。一方、前記dは、例えば2.2以下であることが好ましく、中でも2.0以下であることが好ましく、特に1.8以下であることが好ましい。
 また、固体電解質は、組成式(III):Li7-d-2ePS6-d-eで表されるものであってもよい。組成式(III)で表される組成を有するアルジロダイト型結晶相は、例えば、組成式(II)で表される組成を有するアルジロダイト型結晶相とP(五硫化二リン)との反応により生成する。
 組成式(III)において、eは、組成式(II)で表される化学量論組成からのLiS成分のずれを示す値である。eは、例えば、-0.9以上であることが好ましく、中でも-0.6以上であることが好ましく、特に-0.3以上であることが好ましい。一方、前記eは、例えば(-d+2.0)以下であることが好ましく、中でも(-d+1.6)以下であることが好ましく、特に(-d+1.0)以下であることが好ましい。
 固体電解質においては、P元素に対するX元素の原子数比X/Pが、例えば1.0より大きいことが好ましく、1.1以上であることが更に好ましく、1.2以上であることが一層好ましく、1.4以上であることがより一層好ましい。一方、原子数比X/Pは、例えば、2.5以下であることが好ましく、2.3以下であることが更に好ましく、2.2以下であることが一層好ましい。原子数比X/Pが前記範囲内であることでリチウムイオン伝導性が更に向上する。原子数比X/Pは、例えば高周波誘導結合プラズマ発光分光分析法(ICP発光分光分析法)又はSEM―EDS分析によって測定できる。
 特に、X元素がCl元素及びBr元素を少なくとも含む場合、P元素に対する、Cl元素及びBr元素合計の原子数比(Cl+Br)/Pは、例えば1.0より大きいことが好ましく、1.1以上であることが更に好ましく、1.2以上であることが一層好ましく、1.4以上であることがより一層好ましい。一方、原子数比(Cl+Br)/Pは、例えば2.5以下であることが好ましく、2.3以下であることが更に好ましく、2.0以下であることが一層好ましい。原子数比(Cl+Br)/Pが前記範囲内であることによりリチウムイオン伝導性が更に一層向上するので好ましい。原子数比(Cl+Br)/Pは、例えば高周波誘導結合プラズマ発光分光分析法(ICP発光分光分析法)又はEDS搭載走査型電子顕微鏡(SEM―EDS)による元素分析によって測定できる。
 固体電解質は、上述した組成式(I)~(III)の中でも、特に組成式(IV)Li7-dPS6-dCld1Brd2で表されるものであることが好ましい。
 前記組成式(IV)において、Cl及びBrの合計モル比d(=d1+d2)は、例えば1.0より大きいことが好ましく、中でも1.2以上であることが好ましく、特に1.4以上であることが好ましい。一方、前記合計モル比dは、例えば2.5未満であることが好ましく、中でも2.0未満であることが好ましく、特に1.8以下、更には1.7以下であることが好ましい。前記合計モル比dが前記範囲内であることにより、異相の生成を十分に制御することができ、イオン伝導度の低下を効果的に抑えることができる。
 前記組成式において、Clのモル比に対するBrのモル比の割合(d2/d1)は、例えば0.1であることが好ましく、中でも0.3以上であることが好ましく、特に0.5以上であることが好ましい。一方、前記モル比の割合は、例えば、10以下であることが好ましく、中でも5以下であることが好ましく、特に3以下であることが好ましい。前記モル比の割合が上述した範囲内であることによって、リチウムイオン伝導性を一層高めることができる。
 前記組成式において、Clのモル比を示すd1は、例えば0.3以上であることが好ましく、中でも0.4以上であることが好ましく、特に0.6以上であることが好ましい。一方、d1は、例えば1.5以下であることが好ましく、中でも1.2以下であることが好ましく、特に1.0以下であることが好ましい。d1が前記下限値以上であることによってリチウムイオン伝導性を一層高めることができる。他方、d1が、前記上限値以下であることによって前記固体電解質が得られやすくなる。
 前記組成式において、Brのモル比を示すd2は、例えば0.3以上であることが好ましく、中でも0.4以上であることが好ましく、特に、0.6以上であることが好ましい。一方、d2は、例えば、1.5以下であることが好ましく、中でも1.2以下であることが好ましく、特に1.0以下であることが好ましい。d2が前記下限値以上であることによって固体電解質が得られやすくなる。他方、d2が前記上限値以下であることによってリチウムイオン伝導性を一層高めることができる。
 前記固体電解質が前記組成式(I)、(II)、(III)及び(IV)のうちのいずれである場合にも、X元素がBr元素を含んでいると、リチウムイオン伝導性が更に向上するので好ましい。
 第1活物質層12及び第2活物質層13は、それぞれ正極活物質又は負極活物質を含んで構成することができる。第1活物質層12に含まれる第1活物質が正極活物質であり、第2活物質層13に含まれる第2活物質が負極活物質である場合、電池10を例えばバイポーラ電池として使用することができる。具体的には、一の積層構造体における第1活物質層12と、他の積層構造体における第2活物質層13とを、集電体を介して対向するように、両積層構造体を直列に接続することによって、バイポーラ電池を提供することができる。
 第1活物質層12に含まれる第1活物質及び第2活物質層13に含まれる第2活物質は、いずれも正極活物質又は負極活物質であってもよい。
 正極活物質としては、例えばリチウム及び遷移金属を含む酸化物活物質が挙げられる。具体的には、コバルト酸リチウム(LiCoO)、ニッケル酸リチウム(LiNiO)、LiNi1/3Co1/3Mn1/3等の岩塩層状型活物質、マンガン酸リチウム(LiMn)、Li(Ni0.5Mn1.5)O、Li1+xMn2-x-y(Mは、Al、Mg、Co、Fe、Ni、Znからなる群から選択される一種以上である。)等のスピネル型活物質、チタン酸リチウム(LiTiO)、LiFePO、LiMnPO、LiCoPO、LiNiPO等のオリビン型活物質等が挙げられる。
 一方、負極活物質としては、例えばSiやSi合金、グラファイトやハードカーボン等の炭素材料、チタン酸リチウム等の各種酸化物、金属リチウムやリチウム合金等が挙げられる。
 第1活物質層12及び第2活物質層13に含まれる活物質の含有量は、電極としての機能を発揮できる程度であれば特に限定されない。第1活物質層12又は第2活物質層13が正極活物質を含む場合には、当該活物質層の総質量を100質量%としたときの正極活物質の含有量は、例えば50質量%以上であることが好ましく、65質量%以上であることが更に好ましく、75質量%以上であることが一層好ましい。一方、正極活物質の含有量は、例えば99質量%以下とすることができる。
 第1活物質層12又は第2活物質層13が負極活物質を含む場合には、当該活物質層の総質量を100質量%としたときの負極活物質の含有量は、例えば20質量%以上であることが好ましく、40質量%以上であることが更に好ましく、70質量%以上であることが一層好ましい。一方、負極活物質の含有量は、例えば99質量%以下とすることができる。
 第1活物質層12及び第2活物質層13は、固体電解質を含んでいてもよい。固体電解質は特に限定されない。固体電解質は、上述した固体電解質であることが好ましい。第1活物質層12及び第2活物質層13に含まれる固体電解質の含有量は、第1活物質層12及び第2活物質層13を含む電極が所望の機能を発揮する程度であれば特に限定されない。活物質層の総質量を100質量%としたときの固体電解質の含有量は、第1活物質層12及び第2活物質層13についてそれぞれ独立に例えば1質量%以上80質量%以下であってもよい。
 第1活物質層12及び第2活物質層13は、必要に応じて導電材やバインダ、各種添加剤を含んでいてもよい。導電材としては、例えば、VGCF(気相成長法炭素繊維、Vapor Grown Carbon Fiber)及びカーボンナノ繊維等の炭素材料並びに金属材等が挙げられる。バインダとしては、例えば、ポリフッ化ビニリデン(PVdF)、カルボキシメチルセルロース(CMC)、ブタジエンゴム(BR)及びスチレンブタジエンゴム(SBR)等の材料、又はこれらを組み合せた材料が挙げられる。
 次に、本発明の電池の好適な製造方法を、図1に示す実施形態における電池10の製造方法を例にとり説明する。
 最初に、固体電解質シート11を製造する。本製造は、以下の工程に大別される。
  (1)積層部材を用意する工程。
  (2)積層部材を用いて積層体を製造する工程。
  (3)積層体を加圧する工程。
  (4)積層体からキャリアシートを剥離除去する工程。
 以下、それぞれの工程について説明する。
(1)積層部材を用意する工程
 本工程においては、キャリアシートと、該キャリアシート上に形成された固体電解質を含む塗膜とを有する積層部材を用意する。キャリアシートとしては、塗膜を支持し得る強度を有し且つ可撓性を有するものが好ましい。
 キャリアシートの厚みは、これらのキャリアシートを構成する材料により適宜選択でき、これらのキャリアシートが自己支持性を有する程度の厚みであることが好ましい。また、キャリアシートの厚みを調整することにより、フレキシブル性を有するキャリアシートとしてもよい。キャリアシートの厚みは特に限定されないが、例えば5μm以上であってもよく、10μm以上であってもよく、15μm以上であってもよい。一方、キャリアシートの厚みは、例えば、1000μm以下であってもよく、200μm以下であってもよく、特に100μm以下であってもよい。
 キャリアシートを構成する材料は、例えば樹脂、ガラス及び金属のうちの少なくとも一種であることが好ましい。つまりキャリアシートは、キャリア樹脂、キャリアガラス及びキャリア金属箔のうちの少なくとも一種であることが好ましい。キャリアシートは、例えばキャリア樹脂、キャリアガラス及びキャリア金属箔のうちの二種以上が積層された多層構造であってもよい。
 キャリア樹脂に含まれる材料としては、例えばアクリル樹脂、ポリエステル樹脂、セルロース誘導体樹脂、ポリビニルアセタール樹脂、ポリビニルブチラール樹脂、塩化ビニル-酢酸ビニル共重合体、塩素化ポリオレフィン、及びこれらの樹脂群の共重合体等の樹脂が挙げられる。
 キャリアガラスとしては、例えばガラス繊維の織物であるガラスクロスなどを用いることができる。
 キャリア金属箔を構成する材料としては、例えば銅、ステンレス、アルミニウム、ニッケル、銀、金、クロム、コバルト、スズ、亜鉛、及びこれらの合金等が挙げられる。
 キャリアシートと塗膜の間には他の層を有しなくてもよく、あるいは両者間に他の層を一又は二以上有していてもよい。いずれの場合であっても、キャリアシートと塗膜とは剥離可能に積層されていることが好ましい。
 キャリアシートと塗膜とが剥離可能に積層されているとは、両者を、それぞれの構造が破壊されることなく剥離できることを意味する。キャリアシートと塗膜との剥離強度は、例えば10N/10mm以下であることが好ましく、中でも7N/10mm以下であることが好ましく、特に4N/10mm以下であることが好ましい。剥離強度が前記範囲内であることにより、キャリアシートと塗膜とを良好に剥離することができるからである。剥離強度の測定方法としては、例えば、対象となる層が積層された積層体を10mm幅の短冊状に切り出し、引張圧縮試験機を用いて層間剥離試験(180度剥離、テストスピード50mm/min)を行う方法が挙げられる。
 キャリアシートと塗膜とを剥離可能に積層する場合には、キャリアシートが有する二つの主面のうち、塗膜と対向する側の面を剥離処理することができる。剥離処理としては、表面の平滑化や樹脂製剥離剤の塗布などが挙げられる。
 キャリアシート上に形成される塗膜は、固体電解質と溶剤とを含んで構成されている。溶剤としては、それぞれ独立に、例えばヘプタン、メチルシクロヘキサン及びトルエン等の非極性溶剤、メチルイソブチルケトン及びシクロヘキサノン等の非プロトン性極性溶剤、又はこれらの混合液等が挙げられる。
 塗膜に含まれる固体電解質は粒子の形態を有する。粒子のサイズは、レーザー回折散乱式粒度分布測定法による累積体積50容量%における体積累積粒径D50で表して例えば0.1μm以上であることが好ましく、0.3μm以上であることが更に好ましく、0.5μm以上であることが一層好ましい。一方、前記D50は、例えば20μm以下であることが好ましく、10μm以下であることが更に好ましく、5μm以下であることが一層好ましい。
 固体電解質と溶剤とを混合する方法としては、例えば超音波ホモジナイザー、振盪器、薄膜旋廻型ミキサー、ディゾルバー、ホモミキサー、ニーダー、ロールミル、サンドミル、アトライター、ボールミル、バイブレーターミル、高速インペラーミル等が挙げられる。
 このようにして固体電解質と溶剤とが混合されたら、混合によって得られたスラリーをキャリアシートの一面に塗布する。塗布方法としては、例えばドクターブレード法、ダイコート法、グラビアコート法、スプレー塗工法、静電塗工法、バー塗工法等が挙げられる。スラリーをキャリアシートの一面に塗布することで塗膜が形成される。
 このようにして得られた塗膜の固形分濃度は、スラリーの塗布性の観点から、例えば40質量%以上であることが好ましく、50質量%以上であることが更に好ましく、60質量%以上であることが一層好ましい。一方、前記固形分濃度は、例えば90質量%以下であることが好ましく、80質量%以下であることが更に好ましい。
 塗膜が形成されたら、液体成分を適度に除去してもよい。液体成分の除去方法としては、例えば温風乾燥、熱風乾燥、赤外線乾燥、減圧乾燥、誘電加熱乾燥等が挙げられる。このようにして、キャリアシートと、該キャリアシート上に形成された固体電解質を含む塗膜とを有する積層部材が用意される。
(2)積層部材を用いて積層体を製造する工程
 (1)の工程において用意された積層部材は、例えば、該積層部材における、固体電解質を含む塗膜が、上述した多孔質基材からなる支持体に対向するように該支持体上に配設され、それによって支持体上に積層部材が積層されてなる積層体を得る。塗膜に適度な量の溶剤が含まれていることによって、塗膜は、それらの一部が多孔質基材の細孔内に充填される。この充填は、次工程である加圧工程において確実となる。
(3)積層体を加圧する工程
 積層体を加圧する工程は、固体電解質シートが多孔質基材からなる支持体を有する場合に、当該多孔質基材の細孔内に塗膜、すなわち固体電解質の粒子の少なくとも一部が確実に充填されるように行う。この目的のために、積層体を少なくとも厚み方向に加圧する。例えば一軸プレス機を用いて積層体を厚み方向に加圧することができる。あるいはCIP(冷間等方圧プレス)によって積層体全体を等方的に加圧することもできる。
 なお、加圧力は、積層体を構成する多孔質基材の種類や塗膜に含まれる固体電解質の量等によって適宜調整することができる。具体的な加圧力としては、例えば、100MPa以上であることが好ましく、350MPa以上であることがより好ましく、700MPa以上であることが更に好ましい。
(4)積層体からキャリアシートを剥離除去する工程
 本工程では、加圧後の積層体からキャリアシートを剥離して除去する。このようにして積層体からキャリアシートを剥離することで、目的とする固体電解質シート11、すなわち支持体が固体電解質に埋設された固体電解質シート11が得られる。
 次に、上述のようにして得た固体電解質シート11の主面11A及び裏面11Bに、第1活物質層12及び第2活物質層13を形成する。
 先ず、活物質と溶剤とを含む電極スラリーを準備する。活物質は、上述のとおり正極活物質又は負極活物質であり、典型的には粒子の形態を有している。活物質の粒子のサイズは、レーザー回折散乱式粒度分布測定法による累積体積50容量%における体積累積粒径D50で表して例えば0.1μm以上であることが好ましく、1μm以上であることが更に好ましく、3μm以上であることが一層好ましい。一方、前記D50は、例えば100μm以下であることが好ましく、30μm以下であることが更に好ましく、10μm以下であることが一層好ましい。
 溶剤としては、例えばヘプタン、メチルシクロヘキサン及びトルエン等の非極性溶剤、メチルイソブチルケトン及びシクロヘキサノン等の非プロトン性極性溶剤、又はこれらの混合液等が挙げられる。
 電極スラリーは、活物質及び溶剤に加えて他の材料を含んでいてもよい。他の材料としては、例えばバインダ、導電材、固体電解質及び各種添加剤等などが挙げられる。
 電極スラリーの混合方法としては、例えば超音波ホモジナイザー、振盪器、薄膜旋廻型ミキサー、ディゾルバー、ホモミキサー、ニーダー、ロールミル、サンドミル、アトライター、ボールミル、バイブレーターミル、高速インペラーミル等が挙げられる。
 電極スラリーの固形分濃度は、スラリーの塗布性の観点から、例えば40質量%以上であることが好ましく、50質量%以上であることが更に好ましく、60質量%以上であることが一層好ましい。一方、前記固形分濃度は、例えば90質量%以下であることが好ましく、80質量%以下であることが更に好ましい。
 電極スラリーが準備できたら、これを固体電解質シート11の主面11A及び裏面11Bに塗布する。塗布方法としては、例えばドクターブレード法、ダイコート法、グラビアコート法、スプレー塗工法、静電塗工法、バー塗工法等が挙げられる。塗膜が形成されたら、これを乾燥させて液体成分を除去する。乾燥条件を適宜設定することで、塗膜に含まれる液体成分量を所望の範囲に調整することができる。乾燥方法としては、例えば温風乾燥、熱風乾燥、赤外線乾燥、減圧乾燥、誘電加熱乾燥等が挙げられる。これによって実質的に乾燥状態になった活物質層2が形成される。電極スラリーの塗布量を適切に調整することで、所望の厚みを有する第1活物質層12及び第2活物質層13を形成することができる。
 図2に示す電池20を製造するときは、上述した工程の後に、図3に示す打ち抜き工程を追加すればよい。
 このようにして得られた電池は、固体電池として有用である。本明細書において固体電池とは、液状物質又はゲル状物質を電解質として一切含まない固体電池のほか、例えば50質量%以下、30質量%以下、10質量%以下の液状物質又はゲル状物質を電解質として含む態様も包含する。
 なお、前記実施形態に鑑み、本発明は、以下の電池及び電池用積層構造体を含むものである。
〔1〕固体電解質を含む固体電解質シートと、
 前記固体電解質シートの一方の主面に形成され、且つ第1活物質を含む第1活物質層と、
 前記固体電解質シートの他方の主面に形成され、且つ第2活物質を含む第2活物質層と、を備えた、自己支持性を有する積層構造体を有する電池。
〔2〕前記固体電解質シートが、第1活物質層の周縁から外方に延出した第1活物質層側延出部を有するか、又は第2活物質層の周縁から外方に延出した第2活物質層側延出部を有する、〔1〕に記載の電池。
〔3〕第1活物質層側延出部及び第2活物質層側延出部の平面視での面積のうち、値が大きい方の当該面積をCとし、
 前記固体電解質シートの平面視での面積をAとしたとき、
  面積Aに対する面積Cの割合が1/20以下である、〔1〕又は〔2〕に記載の電池。
〔4〕前記固体電解質シートの厚さが3μm以上100μm以下である、〔1〕ないし〔3〕のいずれか1つ記載の電池。
〔5〕前記固体電解質シートの前記固体電解質の割合が50.0質量%以上99.5質量%以下である、〔1〕ないし〔4〕のいずれか1つに記載の電池。
〔6〕前記固体電解質シートは、支持体を有する、〔1〕ないし〔5〕のいずれか1つに記載の電池。
〔7〕前記支持体が多孔質基材からなり、該多孔質基材が有する空隙内に前記固体電解質が支持されている、〔6〕に記載の電池。
〔8〕前記固体電解質が、アルジロダイト型結晶構造を有する結晶相を含む、〔1〕ないし〔7〕のいずれか1つに記載の電池。
〔9〕第1活物質が正極活物質であり、第2活物質が負極活物質である、〔1〕ないし〔8〕のいずれか1つに記載の電池。
〔10〕一の前記積層構造体における第1活物質層と、他の前記積層構造体における第2活物質層とが、集電体を介して対向するように、両積層構造体が直列に接続されている、〔9〕に記載の電池。
〔11〕第1活物質及び第2活物質が、いずれも正極活物質又は負極活物質である、〔1〕ないし〔8〕のいずれか1つに記載の電池。
〔12〕固体電解質を含む固体電解質シートと、
 前記固体電解質シートの一方の主面に形成され、且つ第1活物質を含む第1活物質層と、
 前記固体電解質シートの他方の主面に形成され、且つ第2活物質を含む第2活物質層と、
を備えた、自己支持性を有する、電池用積層構造体。
〔13〕前記電池用積層構造体は、その外縁部において、前記固体電解質シート、前記第1活物質層及び前記第2活物質層を厚さ方向に貫通する打ち抜き予定部を備える、〔12〕に記載の電池用積層構造体。
 本発明によれば、簡易な構成であり、且つ短絡の発生を抑制し得る電池を提供することができる。

Claims (13)

  1.  固体電解質を含む固体電解質シートと、
     前記固体電解質シートの一方の主面に形成され、且つ第1活物質を含む第1活物質層と、
     前記固体電解質シートの他方の主面に形成され、且つ第2活物質を含む第2活物質層と、を備えた、自己支持性を有する積層構造体を有する電池。
  2.  前記固体電解質シートが、第1活物質層の周縁から外方に延出した第1活物質層側延出部を有するか、又は第2活物質層の周縁から外方に延出した第2活物質層側延出部を有する、請求項1に記載の電池。
  3.  第1活物質層側延出部及び第2活物質層側延出部の平面視での面積のうち、値が大きい方の当該面積をCとし、
     前記固体電解質シートの平面視での面積をAとしたとき、
     面積Aに対する面積Cの割合が1/20以下である、請求項1に記載の電池。
  4.  前記固体電解質シートの厚さが3μm以上100μm以下である、請求項1に記載の電池。
  5.  前記固体電解質シートの前記固体電解質の割合が50.0質量%以上99.5質量%以下である、請求項1に記載の電池。
  6.  前記固体電解質シートは、支持体を有する、請求項1に記載の電池。
  7.  前記支持体が多孔質基材からなり、該多孔質基材が有する空隙内に前記固体電解質が支持されている、請求項6に記載の電池。
  8.  前記固体電解質が、アルジロダイト型結晶構造を有する結晶相を含む、請求項1に記載の電池。
  9.  第1活物質が正極活物質であり、第2活物質が負極活物質である、請求項1に記載の電池。
  10.  一の前記積層構造体における第1活物質層と、他の前記積層構造体における第2活物質層とが、集電体を介して対向するように、両積層構造体が直列に接続されている、請求項9に記載の電池。
  11.  第1活物質及び第2活物質が、いずれも正極活物質又は負極活物質である、請求項1に記載の電池。
  12.  固体電解質を含む固体電解質シートと、
     前記固体電解質シートの一方の主面に形成され、且つ第1活物質を含む第1活物質層と、
     前記固体電解質シートの他方の主面に形成され、且つ第2活物質を含む第2活物質層と、
    を備えた、自己支持性を有する、電池用積層構造体。
  13.  前記電池用積層構造体は、前記固体電解質シート、前記第1活物質層及び前記第2活物質層を厚さ方向に貫通する打ち抜き予定部を備える、請求項12に記載の電池用積層構造体。
PCT/JP2023/031340 2022-08-31 2023-08-29 電池及び電池用積層構造体 WO2024048614A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-137593 2022-08-31
JP2022137593 2022-08-31

Publications (1)

Publication Number Publication Date
WO2024048614A1 true WO2024048614A1 (ja) 2024-03-07

Family

ID=90099639

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/031340 WO2024048614A1 (ja) 2022-08-31 2023-08-29 電池及び電池用積層構造体

Country Status (2)

Country Link
TW (1) TW202425379A (ja)
WO (1) WO2024048614A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008103286A (ja) * 2006-10-20 2008-05-01 Idemitsu Kosan Co Ltd 全固体組電池
JP2016031789A (ja) * 2014-07-25 2016-03-07 ニッポン高度紙工業株式会社 固体電解質シート、及び、全固体二次電池
JP2016152204A (ja) * 2015-02-19 2016-08-22 三星電子株式会社Samsung Electronics Co.,Ltd. 固体電池及びその製造方法
JP2017103146A (ja) * 2015-12-03 2017-06-08 地方独立行政法人大阪府立産業技術総合研究所 固体電解質シート及びその製造方法、全固体電池、並びに全固体電池の製造方法
WO2020054081A1 (ja) * 2018-09-11 2020-03-19 マクセルホールディングス株式会社 固体電解質シートおよび全固体リチウム二次電池

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008103286A (ja) * 2006-10-20 2008-05-01 Idemitsu Kosan Co Ltd 全固体組電池
JP2016031789A (ja) * 2014-07-25 2016-03-07 ニッポン高度紙工業株式会社 固体電解質シート、及び、全固体二次電池
JP2016152204A (ja) * 2015-02-19 2016-08-22 三星電子株式会社Samsung Electronics Co.,Ltd. 固体電池及びその製造方法
JP2017103146A (ja) * 2015-12-03 2017-06-08 地方独立行政法人大阪府立産業技術総合研究所 固体電解質シート及びその製造方法、全固体電池、並びに全固体電池の製造方法
WO2020054081A1 (ja) * 2018-09-11 2020-03-19 マクセルホールディングス株式会社 固体電解質シートおよび全固体リチウム二次電池

Also Published As

Publication number Publication date
TW202425379A (zh) 2024-06-16

Similar Documents

Publication Publication Date Title
WO2015045921A1 (ja) 正極活物質層
KR102534840B1 (ko) 이차전지용 세퍼레이터, 이의 제조방법, 이를 포함하는 이차전지의 제조방법 및 이에 의해 제조된 이차전지
US20200052279A1 (en) Method of preparing energy storage electrodes
KR20150132463A (ko) 보다 두꺼운 전극 제조를 가능하게 하기 위한 다층 배터리 전극 설계
JP6927292B2 (ja) 全固体リチウムイオン二次電池
JP7027125B2 (ja) 全固体電池およびその製造方法
JP2018166020A (ja) 全固体電池、および全固体電池の製造方法
JP2018195483A (ja) 固体電解質シート及びその製造方法、並びに、固体電池
CN117413374A (zh) 固态锂离子多层电池及制造方法
KR20240045188A (ko) 전고체전지 및 전고체전지의 제조방법
KR20200096870A (ko) 전고체 전지 및 그 제조 방법
WO2024048614A1 (ja) 電池及び電池用積層構造体
JPWO2020129411A1 (ja) リチウム二次電池
KR102564614B1 (ko) 전고체 전지
KR20220083581A (ko) 전고체 전지
JP7032973B2 (ja) 全固体電池およびその製造方法
KR20210072700A (ko) 부극 활물질 및 전지
JP2012124117A (ja) リチウムイオン二次電池用負極材及びその製造方法、リチウムイオン二次電池用負極、並びにリチウムイオン二次電池
WO2023190547A1 (ja) 固体電解質シート、その製造方法、及びそれを備えた固体電池
WO2023171646A1 (ja) 電極部材及びその製造方法、電池部材及びその製造方法、並びに電池の製造方法
WO2024122496A1 (ja) 固体電解質シート及びその評価方法
US20240178387A1 (en) Component for use in an energy storage device or an energy conversion device and method for the manufacture thereof
CN113036084B (zh) 全固体电池和全固体电池的制造方法
US20240332537A1 (en) Solid-state secondary battery
WO2023282146A1 (ja) 全固体電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23860376

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2024544307

Country of ref document: JP

Kind code of ref document: A