WO2024048457A1 - 積層体、包装袋および包装袋の製造方法 - Google Patents

積層体、包装袋および包装袋の製造方法 Download PDF

Info

Publication number
WO2024048457A1
WO2024048457A1 PCT/JP2023/030748 JP2023030748W WO2024048457A1 WO 2024048457 A1 WO2024048457 A1 WO 2024048457A1 JP 2023030748 W JP2023030748 W JP 2023030748W WO 2024048457 A1 WO2024048457 A1 WO 2024048457A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin layer
laminate
packaging bag
layer
less
Prior art date
Application number
PCT/JP2023/030748
Other languages
English (en)
French (fr)
Inventor
祐也 高杉
知美 柏原
祐也 田中
康司 大塚
達彦 村山
美玲 東野
Original Assignee
大日本印刷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2022162455A external-priority patent/JP2024032631A/ja
Priority claimed from JP2023129821A external-priority patent/JP2024032670A/ja
Application filed by 大日本印刷株式会社 filed Critical 大日本印刷株式会社
Publication of WO2024048457A1 publication Critical patent/WO2024048457A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/022Mechanical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/06Interconnection of layers permitting easy separation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D33/00Details of, or accessories for, sacks or bags
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D65/00Wrappers or flexible covers; Packaging materials of special type or form
    • B65D65/38Packaging materials of special type or form
    • B65D65/40Applications of laminates for particular packaging purposes

Definitions

  • the present disclosure relates to a laminate, a packaging bag, and a method for manufacturing the packaging bag.
  • Semiconductor products are manufactured or used in a clean environment such as a clean room with a high degree of cleanliness, since the quality of semiconductor products may deteriorate if foreign matter such as dirt and dust adheres to the product.
  • a package containing the article in a plastic film bag is often brought into the clean environment. Therefore, high cleanliness is also required for packaging bags that house articles that require high cleanliness, such as semiconductor products.
  • a package is manufactured as follows using a double bag including at least an inner bag and an outer bag (see, for example, Patent Document 1). First, the article is placed inside the inner bag, vacuum degassed, and the opening of the inner bag is sealed. Next, the inner bag is placed inside the outer bag, vacuum degassed, and the opening of the outer bag is sealed. Articles are packaged using such double packaging or, if necessary, triple packaging. When an article is to be used, the outer bag is opened in the front room of the clean room, the clean inner bag is opened inside the clean room, and the article is taken out.
  • the present inventors considered producing a packaging bag using a laminate having a peelable surface film. By peeling off the surface film of the packaging bag in the front room of the clean room, the clean packaging bag can be brought into the clean room.
  • the present inventors have discovered a new problem in such a laminate: floating occurs between the layers and the appearance deteriorates. Additionally, in recent years, efforts to address environmental issues such as plastic ocean pollution and global warming have become important. Therefore, packaging materials and the like are required to have high recyclability. Furthermore, from the perspective of addressing environmental issues, packaging bags with low environmental impact are desired.
  • An object of one aspect of the present disclosure is to provide a laminate suitable as a packaging material that can package articles used in a clean environment and suppresses the occurrence of floating between layers.
  • An object of one embodiment of the present disclosure is to provide a laminate that is suitable as a packaging material for packaging articles used in a clean environment and has excellent recyclability.
  • An object of one aspect of the present disclosure is to provide a laminate that is suitable as a packaging material for packaging articles used in a clean environment and has a low environmental impact.
  • a laminate according to one aspect of the present disclosure includes at least a first resin layer and a second resin layer, and the first resin layer is provided so as to be peelable from the second resin layer.
  • the peel strength between the first resin layer and the second resin layer measured under the conditions of peel angle: 180 degrees and test speed: 50 mm/min, is 1.0 N/15 mm width or less, and the lamination
  • the body satisfies the following requirements (1) and/or (2).
  • the second resin layer is a sealant layer including at least a polyethylene layer having a density of 0.909 g/cm 3 or less, and the polyethylene layer in the second resin layer is in contact with the first resin layer.
  • the second resin layer is a sealant layer containing polyolefin as a main component, and the content of polyolefin in the second resin layer is 82% by mass or more based on the mass of the second resin layer. be.
  • a laminate according to one aspect of the present disclosure includes at least a first resin layer and a second resin layer, and the first resin layer is provided so as to be peelable from the second resin layer.
  • the second resin layer is a sealant layer containing polyolefin as a main component, and at least one resin layer selected from the first resin layer and the second resin layer contains at least a biomass-derived resin material. do.
  • a laminate suitable as a packaging material that can package articles used in a clean environment and suppresses the occurrence of floating between layers. According to one aspect of the present disclosure, it is possible to provide a laminate that is suitable as a packaging material for packaging articles used in a clean environment and has excellent recyclability. According to one aspect of the present disclosure, it is possible to provide a laminate that is suitable as a packaging material for packaging articles used in a clean environment and has a low environmental impact.
  • FIG. 1 is a schematic cross-sectional view of a laminate according to one embodiment.
  • FIG. 2 is a schematic cross-sectional view of a laminate according to one embodiment.
  • FIG. 3 is a schematic cross-sectional view of a laminate according to one embodiment.
  • FIG. 4 is a schematic cross-sectional view of a laminate according to one embodiment.
  • FIG. 5 is a schematic cross-sectional view of a laminate according to one embodiment.
  • FIG. 6 is a schematic cross-sectional view of a packaging bag according to one embodiment and its related diagrams.
  • FIG. 7 is a front view of a packaging bag according to one embodiment.
  • FIG. 8 is a schematic diagram illustrating a half-cut line.
  • FIG. 9 is a front view illustrating the production of a packaging bag.
  • FIG. 1 is a schematic cross-sectional view of a laminate according to one embodiment.
  • FIG. 2 is a schematic cross-sectional view of a laminate according to one embodiment.
  • FIG. 3 is
  • FIG. 10 is a schematic cross-sectional view of a laminate according to one embodiment.
  • FIG. 11 is a schematic cross-sectional view of a packaging bag according to one embodiment and its related diagrams.
  • FIG. 12 is a front view illustrating the production of a packaging bag.
  • FIG. 13 is an enlarged view of the vicinity of a corner of a front view of a packaging bag according to an embodiment.
  • FIG. 14 is an enlarged view of the vicinity of a corner of a front view of a packaging bag according to an embodiment.
  • FIG. 15 is a front view of a packaging bag according to one embodiment.
  • FIG. 16 is a front view of a packaging bag according to one embodiment.
  • FIG. 17 is a schematic cross-sectional view of a packaging bag according to one embodiment and its related diagrams.
  • FIG. 18 is a front view of a packaging bag according to one embodiment.
  • the numerical range of the parameter is between any one upper limit value candidate and any one lower limit value candidate. It may also be configured by combining candidates.
  • the above-mentioned parameters include physical property values, component content, and layer thickness.
  • Parameter B is preferably A1 or more, more preferably A2 or more, even more preferably A3 or more. Parameter B is preferably A4 or less, more preferably A5 or less, and still more preferably A6 or less.” '' will be explained.
  • the numerical range of parameter B may be A1 or more and A4 or less, A1 or more and A5 or less, A1 or more and A6 or less, A2 or more and A4 or less, A2 or more and A5 or less, A2 or more and A6 or less. It may be A3 or more and A4 or less, A3 or more and A5 or less, or A3 or more and A6 or less.
  • each component that appears may be used alone, Two or more types may be used.
  • polyethylene refers to a polymer in which the content of ethylene-derived structural units in all repeating structural units exceeds 50 mol%.
  • the content of the structural unit derived from ethylene is preferably 70 mol% or more, more preferably 80 mol% or more, still more preferably 90 mol% or more, particularly preferably 95 mol% or more.
  • the above content ratio is measured by NMR method.
  • polyethylene may be a homopolymer of ethylene or a copolymer of ethylene and an ethylenically unsaturated monomer other than ethylene.
  • ethylenically unsaturated monomers other than ethylene include propylene, 1-butene, 1-pentene, 1-hexene, 1-octene, 1-decene, 1-dodecene, 1-tetradecene, 1-hexadecene, and 1-octadecene.
  • vinyl such as vinyl acetate and vinyl propionate.
  • monomers and (meth)acrylic esters such as methyl (meth)acrylate and ethyl (meth)acrylate.
  • polyethylene includes, for example, high density polyethylene, medium density polyethylene, low density polyethylene, linear low density polyethylene, ethylene-vinyl acetate copolymer and ethylene-(meth)acrylic acid ester copolymer. can be mentioned.
  • the density of polyethylene is as follows.
  • the density of the high density polyethylene is preferably greater than 0.945 g/cm 3 and preferably less than or equal to 0.965 g/cm 3 , for example greater than 0.945 g/cm 3 and less than or equal to 0.965 g/cm 3 .
  • the density of the medium density polyethylene is preferably greater than 0.932 g/cm 3 and less than or equal to 0.945 g/cm 3 .
  • the density of the low density polyethylene is preferably 0.860 g/cm 3 or more and 0.932 g/cm 3 or less, more preferably 0.900 g/cm 3 or more and 0.932 g/cm 3 or less.
  • the density of the linear low density polyethylene is preferably 0.860 g/cm 3 or more and 0.932 g/cm 3 or less, more preferably 0.900 g/cm 3 or more and 0.932 g/cm 3 or less.
  • the density of polyethylene is measured according to method D (density gradient tube method, 23° C.) of JIS K7112:1999.
  • Low-density polyethylene is, for example, polyethylene obtained by polymerizing ethylene using a high-pressure polymerization method (high-pressure low-density polyethylene).
  • Linear low-density polyethylene is, for example, polyethylene obtained by polymerizing ethylene and a small amount of ⁇ -olefin by a polymerization method using a multi-site catalyst such as a Ziegler-Natta catalyst or a single-site catalyst such as a metallocene catalyst.
  • Polyethylenes with different densities or branches can be obtained by appropriately selecting the polymerization method.
  • a multi-site catalyst such as a Ziegler-Natta catalyst or a single-site catalyst such as a metallocene catalyst is used as a polymerization catalyst, and one-stage polymerization is performed by any one of gas phase polymerization, slurry polymerization, solution polymerization, and high-pressure ionic polymerization.
  • biomass-derived polyethylene may be used as the polyethylene. That is, as a raw material for obtaining polyethylene, ethylene etc. derived from biomass may be used instead of ethylene etc. obtained from fossil fuels. Since biomass polyethylene is a carbon-neutral material, the environmental impact of the laminate or packaging bag can be reduced. Biomass polyethylene can be produced, for example, by the method described in JP-A-2013-177531. Commercially available biomass polyethylene may be used.
  • mechanically recycled or chemically recycled polyethylene may be used as the polyethylene.
  • the environmental load caused by the laminate or the packaging bag can be reduced.
  • Mechanical recycling generally involves pulverizing recovered polyethylene film, washing it with alkali to remove dirt and foreign matter from the film surface, and then drying it at high temperature and reduced pressure for a certain period of time to remain inside the film. This method involves decontaminating the film by diffusing contaminants, removing dirt from the film, and then returning it to polyethylene.
  • Chemical recycling is generally a method in which recovered polyethylene films and the like are decomposed to the monomer level and the monomers are polymerized again to obtain polyethylene.
  • the term "main component" in a certain layer means that the content in the layer is more than 50% by mass, preferably 60% by mass or more, more preferably 70% by mass or more, even more preferably 80% by mass or more. Refers to a certain ingredient.
  • the laminate of the present disclosure includes at least a first resin layer and a second resin layer.
  • the first resin layer is the peeling part
  • the second resin layer is the main body part. That is, the laminate includes at least a peeling part and a main body part.
  • the second resin layer has a first surface and a second surface opposite to the first surface.
  • the first resin layer is provided on the first surface of the second resin layer.
  • the first resin layer is in contact with the second resin layer, and specifically, in contact with the first surface of the second resin layer. Therefore, the first surface of the second resin layer is usually the peeling surface when the first resin layer is peeled off.
  • the laminate of the present disclosure is, for example, the laminate of the following first to third aspects.
  • the laminate of the present disclosure is not limited to the first to third laminates.
  • the laminate of the first aspect has a peel strength of 1.0 N/min between the first resin layer and the second resin layer, which is measured under the conditions of a peel angle: 180 degrees and a test speed: 50 mm/min. 15 mm or less in width
  • the second resin layer is a sealant layer comprising at least a polyethylene layer having a density of 0.909 g/cm 3 or less, and the polyethylene layer in the second resin layer is in contact with the first resin layer.
  • the laminate of the second aspect has a peel strength of 1.0 N/min between the first resin layer and the second resin layer, which is measured under the conditions of a peel angle: 180 degrees and a test speed: 50 mm/min. 15 mm or less in width, the second resin layer is a sealant layer containing polyolefin as a main component, and the content ratio of polyolefin in the second resin layer is 82 mass by mass based on the mass of the second resin layer. % or more.
  • the second aspect it is possible to provide a laminate that is suitable as a packaging material for packaging articles used in a clean environment and has excellent recyclability.
  • the second resin layer is a sealant layer containing polyolefin as a main component, and at least one resin layer selected from the first resin layer and the second resin layer is It is characterized by containing at least a resin material derived from biomass.
  • laminates when explaining matters common to the laminates of the first to third embodiments, or when the laminates of the first to third embodiments are not particularly distinguished, they are also simply referred to as "laminates”. .
  • At least one resin layer selected from the first resin layer and the second resin layer contains a biomass-derived resin material (hereinafter also referred to as "biomass material").
  • biomass material is, for example, a resin material obtained using a biomass-derived raw material (specifically, a plant-derived raw material) as at least a part of the raw material. Since the biomass material is a carbon-neutral material, the environmental load caused by the laminate or the packaging bag can be reduced.
  • biomass materials for example, polyethylene synthesized using ethylene obtained from biomass-derived ethanol (fermented ethanol) obtained from plant materials as at least a part of the raw material monomer, and propylene obtained from waste cooking oil etc. as the raw material monomer.
  • Polyolefins such as polypropylene synthesized at least in part; polyesters synthesized using biomass-derived diol components and/or biomass-derived dicarboxylic acid components as at least part of the raw material monomer; biomass-derived dicarboxylic acids and/or biomass-derived dicarboxylic acid components; Examples include polyamides synthesized using diamine as at least a part of raw material monomers.
  • each biomass material will also be referred to as biomass polyolefin such as biomass polyethylene and biomass polypropylene, biomass polyester, and biomass polyamide.
  • Plant materials include, for example, corn, sugar cane, beets and manioc.
  • the plant material may also be plant-derived oils such as soybean oil, linseed oil, tung oil, coconut oil, palm oil, and castor oil, as well as recycled oils made from recycled waste cooking oils based on these oils. .
  • the biomass material only needs to have at least a part of the raw material monomer derived from biomass, and may be a resin material composed of 100% by mass of the raw material monomer derived from biomass, and may be composed of raw material monomer derived from fossil fuels together with the raw material monomer derived from biomass. It may also be a resin material. That is, the biomass degree of the biomass material explained below does not have to be 100%.
  • biomass degree refers to pMC (percent Modern Carbon) measured in accordance with Method B of ASTM D6866-22 at ⁇ 13 C. This is the value obtained after correction. Specifically, a sample is burned to generate carbon dioxide (CO 2 ), and the carbon dioxide is purified in a vacuum line. Purified carbon dioxide is reduced with hydrogen using iron as a catalyst to produce graphite. Next, the 14 C count and carbon isotope ratio ( 14 C/ 12 C, 13 C/ 12 C) of the obtained graphite are measured by accelerator mass spectrometry (AMS method). As a measuring device, a 14 C-AMS dedicated device (manufactured by NEC Corporation) can be used.
  • AMS method accelerator mass spectrometry
  • oxalic acid As a standard sample, oxalic acid (HOxII) provided by the US National Institute of Standards (NIST) is used. Measurements of this standard sample and background sample are also carried out at the same time. From the obtained carbon isotope ratio, the relative ratio (pMC) of 14 C/ 12 C of the sample to the standard sample is calculated. ⁇ 13 C is a value obtained by measuring 13 C/ 12 C of sample carbon and expressing the deviation from the standard sample in thousandths of a deviation.
  • pMC relative ratio
  • the biobased carbon content is a value obtained by multiplying pMC by a correction factor, since there is an excess of 14 C in the atmosphere due to nuclear testing. Due to the continued reduction of excess 14 C in the atmosphere, the correction factor shall be in accordance with ASTM D6866-22.
  • Fossil fuel-derived materials do not contain radioactive carbon ( 14C ) with a mass number of 14, while plant-derived materials contain 14C .
  • 14C radioactive carbon
  • plant-derived materials contain 14C .
  • Biomass degree is an index representing the mixing ratio of fossil fuel-derived materials and plant-derived materials.
  • a sample When measuring the biomass degree of the entire laminate, a sample may be prepared from the laminate. When measuring the biomass degree of each layer in the laminate, a sample may be prepared by separating the target layer from the laminate.
  • biomass polyethylene examples include biomass high-density polyethylene, biomass medium-density polyethylene, biomass low-density polyethylene, and biomass linear low-density polyethylene.
  • biomass polyester examples include biomass polyethylene terephthalate.
  • biomass polyamide examples include polyamide 56 (PA56), polyamide 410 (PA410), polyamide 510 (PA510), polyamide 610 (PA610), polyamide 810 (PA810), polyamide 910 (PA910), polyamide 1010 (PA1010), polyamide 1012 (PA1012), polyamide 11 (PA11) and polyamide 12 (PA12).
  • Polyamide 410 is obtained, for example, from tetramethylene diamine and sebacic acid.
  • Polyamide 610 is obtained, for example, from hexamethylene diamine and sebacic acid.
  • Polyamide 11 is obtained, for example, by polycondensation of 11-aminoundecanoic acid.
  • Polyamide 1010 is obtained, for example, from sebacic acid and 1,10-decanediamine obtained by aminating sebacic acid.
  • Sebacic acid can be obtained from castor oil.
  • 11-Aminoundecanoic acid can be obtained from castor oil.
  • Polyamide 11 and polyamide 1010 are preferred because they have a high degree of biomass.
  • the biomass degree of the biomass material is preferably 50% or more, more preferably 60% or more, even more preferably 70% or more, even more preferably 80% or more, particularly preferably 85% or more, 90% or more, or 95% or more. be.
  • the biomass degree of the laminate of the present disclosure is preferably 1% or more, more preferably 3% or more, even more preferably 5% or more, even more preferably 10% or more, and particularly preferably 15% or more.
  • 60% or less 50% or less, 40% or less, 35% or less, 30% or less, for example, 1% or more and 60% or less.
  • Such a laminate or a packaging bag including the laminate can reduce environmental load.
  • the first resin layer is provided so as to be peelable from the second resin layer.
  • the peeling part is provided so that it can be peeled off from the main body.
  • a film made of the first resin layer obtained by peeling the first resin layer from the second resin layer of the laminate or packaging bag of the present disclosure is also referred to as a "release film.”
  • the film made of the second resin layer after the peeling is also referred to as a "sealant film” or a "packaging film.”
  • the peel strength between the first resin layer and the second resin layer is preferably 1.0 N/15 mm width or less, more preferably 0.9 N/15 mm width or less, even more preferably 0.8 N/15 mm width or less, and more. More preferably, the width is 0.7N/15mm or less, particularly preferably 0.6N/15mm or less. In the case of a laminate and a packaging bag having such peel strength, the first resin layer can be easily peeled off from the second resin layer with an appropriate amount of force without damaging the second resin layer.
  • the above peel strength is, for example, 0.01N/15mm width or more, 0.05N/15mm width or more, or 0.1N/15mm width or more, preferably 0.15N/15mm width or more, more preferably 0.2N/15mm width or more. It is.
  • the above peel strength is, for example, 0.01 N/15 mm width or more and 1.0 N/15 mm width or less.
  • the above peel strength is measured under the following conditions: peel angle: 180 degrees, test speed: 50 mm/min.
  • the laminate or the packaging bag is cut to cut out a test piece having a width of 15 mm and a length of 100 mm.
  • the first resin layer at one end in the length direction of the test piece is peeled off and folded back, and the partially peeled end of the first resin layer (released film) is placed on one end of the tensile tester.
  • the end of the second resin layer (sealant film, packaging film) after being partially peeled is attached to the other grip of the tensile tester.
  • the initial distance between chucks is 100 mm.
  • the grip attached to the end of the first resin layer is rotated at 50 mm/min in a direction of 180 degrees to the surface of the test piece while maintaining the posture of the test piece so that this angle is maintained.
  • the maximum strength (N) measured for a 15 mm wide test piece is defined as the peel strength (N/15 mm width).
  • the thickness of the first resin layer is preferably 3 ⁇ m or more, more preferably 5 ⁇ m or more, even more preferably 10 ⁇ m or more, particularly preferably 15 ⁇ m or more, from the viewpoint of releasability, strength, and heat resistance. From the viewpoint of processability, the thickness of the first resin layer is preferably 150 ⁇ m or less, more preferably 130 ⁇ m or less, even more preferably 100 ⁇ m or less, even more preferably 80 ⁇ m or less, particularly preferably 60 ⁇ m or less, 50 ⁇ m or less, 40 ⁇ m or less. or less than 20 ⁇ m. The thickness of the first resin layer is, for example, 3 ⁇ m or more and 150 ⁇ m or less.
  • the thickness of the peelable portion as the first resin layer is preferably 10 ⁇ m or more, more preferably 12 ⁇ m or more, and even more preferably It is 14 ⁇ m or more.
  • the thickness of the peeling portion is equal to or greater than the lower limit, it is possible to prevent the peeling portion (release film) from being cut during peeling.
  • the content ratio of the same type of resin material having the largest content in the first resin layer is preferably 70% by mass or more, more preferably 75% by mass or more, and even more preferably 80% by mass, based on the mass of the first resin layer. It is at least 85% by mass, more preferably at least 85% by mass, particularly preferably at least 90% by mass.
  • a laminate including such a first resin layer has excellent recyclability. Specifically, the release film obtained by peeling off the first resin layer from the laminate has excellent recyclability.
  • similar resin materials include, for example, polymers classified as polyolefin resins, polymers classified as polyamides, polymers classified as ethylene-vinyl alcohol copolymers, and polymers classified as polyesters. Refers to polymers. For example, polyolefin resin and polyester are not classified as the same type of resin material.
  • the above-mentioned "content ratio of the same type of resin material having the largest content in the first resin layer” is replaced with “the content ratio of polyamide in the first resin layer” and “the content ratio of polyamide in the first resin layer”.
  • polyolefin resin is a concept that includes not only polyolefins but also modified polyolefins such as acid-modified polyolefins.
  • polyethylene resin is a concept that includes not only polyethylene but also modified polyethylene such as acid-modified polyethylene.
  • the first resin layer may include a heteroatom-containing resin layer containing a heteroatom-containing resin as a main component.
  • the first resin layer may be a heteroatom-containing resin layer, or may include a heteroatom-containing resin layer and a polyolefin layer containing polyolefin as a main component.
  • the heteroatom-containing resin layer may be in contact with the second resin layer. The laminate of this embodiment has excellent releasability of the first resin layer from the second resin layer.
  • the heteroatom-containing resin layer in the first resin layer is in contact with a polyethylene layer having a density of 0.909 g/cm 3 or less in the second resin layer.
  • the laminate of this embodiment has excellent balance in the releasability of the first resin layer from the second resin layer and the adhesion between the first resin layer and the second resin layer.
  • the laminate of the present disclosure may include a heteroatom-containing resin layer between the polyolefin layer in the first resin layer and the polyethylene layer having a density of 0.909 g/cm 3 or less in the second resin layer.
  • the laminate of the present disclosure may include a polyolefin layer as a surface layer. Such a laminate has an excellent appearance, and the heteroatom-containing resin layer can be made thinner, thereby reducing manufacturing costs.
  • the first resin layer may include a heteroatom-containing resin layer, an adhesive layer, and a heteroatom-containing resin layer in this order in the thickness direction.
  • the first resin layer may be a polymethylpentene layer containing polymethylpentene as a main component. Since the polymethylpentene layer has excellent mold releasability, it is preferable as the first resin layer that functions as a release film. Moreover, the polymethylpentene layer also has excellent heat resistance.
  • the biomass degree of the first resin layer is preferably 10% or more, more preferably 20% or more, even more preferably 30% or more, even more preferably 40% or more, and particularly preferably 50% or more. Yes, it may be 99% or less, 90% or less, 80% or less, 70% or less, for example, 10% or more and 99% or less.
  • a laminate or a packaging bag including the laminate can reduce environmental load.
  • the heteroatom-containing resin layer contains a heteroatom-containing resin as a main component.
  • the first resin layer including the heteroatom-containing resin layer has a high Young's modulus and is excellent in releasability from the second resin layer.
  • the laminate including the heteroatom-containing resin layer has excellent puncture resistance. Therefore, a packaging bag including such a laminate has excellent packaging properties for hard articles.
  • a laminate including a heteroatom-containing resin layer has excellent gas barrier properties such as oxygen barrier properties and water vapor barrier properties, heat resistance, and rigidity.
  • the heteroatom-containing resin may be a biomass material from the viewpoint of reducing environmental load.
  • heteroatoms in the heteroatom-containing resin include oxygen atoms, sulfur atoms, nitrogen atoms, and chlorine atoms.
  • the heteroatom-containing resin has a heteroatom-containing group such as a hydroxy group, an amide bond, an ester bond, and an ether bond.
  • heteroatom-containing resins include polyamide, ethylene-vinyl alcohol copolymer, polyvinyl alcohol, polyvinylidene chloride, polyester, polyether polyol, and polyester polyol. Among these, polyamide, ethylene-vinyl alcohol copolymer, polyester, and polyvinyl alcohol are preferred, and polyamide and ethylene-vinyl alcohol copolymer are more preferred, from the viewpoint of heat resistance, rigidity, and puncture resistance.
  • These resin materials may be biomass materials from the viewpoint of reducing environmental load.
  • polyamides examples include aliphatic polyamides and semi-aromatic polyamides.
  • aliphatic polyamide is preferable, and crystalline aliphatic polyamide is more preferable.
  • aliphatic polyamides examples include aliphatic homopolyamides and aliphatic copolyamides.
  • polyamide is also referred to as "PA”.
  • aliphatic homopolyamides examples include polycaprolactam or poly(6-aminocaproic acid) (PA6), polyenanthulactam or poly(7-aminoenantoic acid) (PA7), polyundecanelactam or poly(11- aminoundecanoic acid) (PA11), polylauryllactam or poly(12-aminolauric acid) (PA12), polypentamethylene adipamide (PA56), polyhexamethylene adipamide (PA66), polytetramethylene sebacamide (PA410), polytetramethylene dodecamide (PA412), polypentamethylene azelamide (PA59), polypentamethylene sebacamide (PA510), polypentamethylene dodecamide (PA512), polyhexamethylene azelamide (PA69), Polyhexamethylene sebamide (PA610), polyoctamethylene sebamide (PA810), polyhexamethylene dodecamide (PA612), polynon
  • the aliphatic copolymer polyamides include caprolactam/hexamethylene diamino adipic acid copolymer (PA6/66), caprolactam/hexamethylene diamino azelaic acid copolymer (PA6/69), and caprolactam/hexamethylene diamino acid copolymer (PA6/69).
  • Sebacic acid copolymer (PA6/610), caprolactam/hexamethylenediaminoundecanoic acid copolymer (PA6/611), caprolactam/hexamethylenediaminododecanoic acid copolymer (PA6/612), caprolactam/aminoundecanoic acid copolymer combination (PA6/11), caprolactam/lauryllactam copolymer (PA6/12), caprolactam/hexamethylene diamino adipic acid/lauryllactam copolymer (PA6/66/12), caprolactam/hexamethylene diamino adipic acid/hexa Examples include methylene diamino sebacic acid copolymer (PA6/66/610) and caprolactam/hexamethylene diamino adipic acid/hexamethylene diamino dodecane dicarboxylic acid copolymer (PA6/66/612).
  • the relative viscosity of the aliphatic polyamide is preferably 1.5 or more, more preferably 2.0 or more, even more preferably 2.5 or more, and preferably 5.0 or less, more preferably 4.5 or less, such as It is 1.5 or more and 5.0 or less.
  • the relative viscosity of aliphatic polyamide is measured at 25° C. by dissolving 1 g of polyamide in 100 mL of 96% concentrated sulfuric acid in accordance with JIS K6920-2:2009.
  • Semi-aromatic polyamide is a polyamide having structural units derived from an aromatic diamine and structural units derived from an aliphatic dicarboxylic acid, or a polyamide having structural units derived from an aliphatic diamine and a structural unit derived from an aromatic dicarboxylic acid. It is a polyamide having structural units. Examples include polyamides composed of aromatic diamines and aliphatic dicarboxylic acids, and polyamides composed of aliphatic diamines and aromatic dicarboxylic acids.
  • semi-aromatic polyamides examples include polyhexamethylene terephthalamide (PA6T), polyhexamethylene isophthalamide (PA6I), polynonamethylene terephthalamide (PA9T), and polyhexamethylene adipamide/polyhexamethylene terephthalamide copolymer.
  • PA66/6T polyhexamethylene adipamide/polyhexamethylene isophthalamide copolymer
  • PA66/6I polyhexamethylene terephthalamide/polycaproamide copolymer
  • PA6T/6 polyhexamethylene isophthalamide amide/polycaproamide copolymer
  • PA6I/6 polyhexamethylene terephthalamide/polydodecamide copolymer
  • PA6T/12 polyhexamethylene isophthalamide/polyhexamethylene terephthalamide copolymer
  • PA6I/6T Polyhexamethylene terephthalamide/poly(2-methylpentamethylene terephthalamide) copolymer
  • PA6T/M5T polyhexamethylene adipamide/polyhexamethylene terephthalamide/polyhexamethylene isophthalamide copolymer
  • PA66/6T) /6I polyhexamethylene adipamide/polyhexamethylene isophthalamide copo
  • the melt volume rate (MVR) of the semi-aromatic polyamide is preferably 5 cm 3 /10 minutes or more, more preferably 10 cm 3 /10 minutes or more, and preferably 200 cm 3 /10 minutes or less, more preferably 100 cm 3 /10. For example, it is 5 cm 3 /10 minutes or more and 200 cm 3 /10 minutes or less. MVR is measured at a temperature of 275° C. and a load of 5.00 kg in accordance with JIS K7210-1:2014.
  • crystalline aliphatic polyamide is preferred.
  • crystalline aliphatic polyamides include PA6, PA11, PA12, PA66, PA610, PA612, PA1010, PA6/66 and PA6/66/12.
  • the melting point (Tm) of the crystalline aliphatic polyamide is preferably 170°C or higher, more preferably 180°C or higher, preferably 300°C or lower, more preferably 250°C or lower, even more preferably 230°C or lower, such as The temperature is 170°C or higher and 300°C or lower.
  • the Tm of the crystalline aliphatic polyamide is the melting peak temperature obtained by differential scanning calorimetry (DSC) in accordance with JIS K7121:2012.
  • the melt flow rate (MFR) of the polyamide is preferably 0.1 g/10 minutes or more, more preferably 0.3 g/10 minutes or more, and even more preferably 0.5 g/10 minutes from the viewpoint of film formability and processability. or more, preferably 30 g/10 minutes or less, more preferably 20 g/10 minutes or less, even more preferably 10 g/10 minutes or less, particularly preferably 5 g/10 minutes or less, for example 0.1 g/10 minutes or more and 30 g /10 minutes or less.
  • the MFR of polyamide is measured by method A under conditions of a temperature of 235° C. and a load of 2.16 kg in accordance with JIS K7210-1:2014. The measurement temperature can be changed depending on the melting point of the polyamide.
  • biomass polyamide may be used as the polyamide.
  • biomass polyamides include PA56, PA410, PA510, PA610, PA810, PA910, PA1010, PA1012, PA11 and PA12.
  • Ethylene-vinyl alcohol copolymer can be obtained, for example, by copolymerizing ethylene and a vinyl ester monomer and then saponifying the copolymer.
  • the copolymerization of ethylene and the vinyl ester monomer can be carried out by any known polymerization method, such as solution polymerization, suspension polymerization, emulsion polymerization, etc.
  • vinyl ester monomer vinyl acetate is generally used, but other vinyl ester monomers may also be used.
  • vinyl ester monomers include vinyl formate, vinyl propionate, vinyl valerate, vinyl butyrate, vinyl isobutyrate, vinyl pivalate, vinyl caprate, vinyl laurate, vinyl stearate, and vinyl versatate. Included are aliphatic vinyl esters and aromatic vinyl esters such as vinyl benzoate.
  • the content ratio of structural units derived from ethylene (ethylene content ratio) in EVOH is preferably 20 mol% or more, more preferably 25 mol% or more, from the viewpoint of processability of the laminate.
  • the ethylene content in EVOH is preferably 60 mol% or less, more preferably 50 mol% or less, from the viewpoint of heat resistance, oxygen barrier property, and water vapor barrier property of the laminate.
  • the ethylene content is, for example, 20 mol% or more and 60 mol% or less.
  • the ethylene content rate is measured by NMR method.
  • the average degree of saponification in EVOH is preferably 90 mol% or more, more preferably 95 mol% or more, and still more preferably 99 mol% or more.
  • the average saponification degree is measured in accordance with JIS K6726:1994 (however, EVOH uses a solution uniformly dissolved in a water/methanol solvent).
  • the melting point (Tm) of EVOH is preferably 140°C or higher, more preferably 145°C or higher, even more preferably 150°C or higher, and preferably 200°C or lower, more preferably 195°C or lower, and Preferably it is 190°C or less, for example 140°C or more and 200°C or less.
  • the Tm of EVOH is the melting peak temperature obtained by DSC in accordance with JIS K7121:2012.
  • the melt flow rate (MFR) of EVOH is preferably 0.1 g/10 minutes or more, more preferably 0.3 g/10 minutes or more, and even more preferably 0.5 g/10 minutes from the viewpoint of film formability and processing suitability. or more, preferably 30 g/10 minutes or less, more preferably 20 g/10 minutes or less, even more preferably 10 g/10 minutes or less, particularly preferably 5 g/10 minutes or less, for example 0.1 g/10 minutes or more and 30 g /10 minutes or less.
  • the MFR of EVOH is measured by method A under conditions of a temperature of 190° C. and a load of 2.16 kg in accordance with JIS K7210-1:2014. The measurement temperature may be 210° C. depending on the melting point of EVOH.
  • EVOH may be modified by urethanation, acetalization, cyanoethylation, oxyalkylenation, etc. by known methods.
  • the average degree of saponification in polyvinyl alcohol (PVA) is preferably 70 mol% or more, more preferably 75 mol% or more, even more preferably 80 mol% or more, particularly preferably 85 mol% or more.
  • the average degree of saponification is measured in accordance with JIS K6726:1994.
  • polyester examples include polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polyethylene naphthalate (PEN), 1,4-polycyclohexylene dimethylene terephthalate, and terephthalic acid-cyclohexanedimethanol-ethylene glycol copolymer. Can be mentioned. Among these, PET is preferred.
  • the content ratio of the heteroatom-containing resin in the heteroatom-containing resin layer is preferably more than 50% by mass, more preferably 60% by mass or more, still more preferably 70% by mass or more, even more preferably 80% by mass or more, and particularly preferably It is 90% by mass or more.
  • the above-mentioned physical properties such as the heat resistance of the packaging bag can be improved.
  • the heteroatom-containing resin layer may contain additives.
  • Additives include, for example, antiblocking agents, slip agents, ultraviolet absorbers, antioxidants, light stabilizers, fillers, reinforcing agents, antistatic agents, compatibilizers, crosslinking agents, pigments and dyes.
  • the thickness of the heteroatom-containing resin layer is preferably 0.5 ⁇ m or more, more preferably 1 ⁇ m or more, still more preferably 3 ⁇ m or more, particularly preferably 5 ⁇ m or more.
  • the thickness of the heteroatom-containing resin layer is preferably 50 ⁇ m or less, more preferably 40 ⁇ m or less, still more preferably 30 ⁇ m or less, particularly preferably 20 ⁇ m or less.
  • the thickness of the heteroatom-containing resin layer is, for example, 0.5 ⁇ m or more and 50 ⁇ m or less.
  • the polyolefin layer in the first resin layer contains polyolefin as a main component.
  • Polyolefins include, for example, polyethylene, polypropylene and polymethylpentene.
  • As the polyolefin layer a polyethylene layer and a polypropylene layer are preferable, and a polyethylene layer is more preferable.
  • the polyolefin may be a biomass polyolefin from the viewpoint of reducing environmental load.
  • the MFR of the polyolefin is preferably 0.1 g/10 minutes or more, more preferably 0.3 g/10 minutes or more, even more preferably 0.5 g/10 minutes or more, from the viewpoint of film formability and processing suitability. is 30 g/10 minutes or less, more preferably 20 g/10 minutes or less, even more preferably 10 g/10 minutes or less, particularly preferably 5 g/10 minutes or less, for example, 0.1 g/10 minutes or more and 30 g/10 minutes or less. be.
  • the MFR of polyolefin is measured by method A under a load of 2.16 kg in accordance with JIS K7210-1:2014.
  • the measurement temperature for MFR is set depending on the melting point of the polyolefin, etc., and is 190°C for polyethylene and 230°C for polypropylene.
  • the content of polyolefin in the polyolefin layer is preferably more than 50% by mass, more preferably 60% by mass or more, even more preferably 70% by mass or more, and particularly preferably 80% by mass or more.
  • the polyolefin layer in the first resin layer may further contain a modified polyolefin from the viewpoint of adhesion to the heteroatom-containing resin layer.
  • modified polyolefins include polyolefin modifications, particularly graft-modified polyolefins, with unsaturated carboxylic acids such as maleic acid and fumaric acid, or acid anhydrides, esters, or metal salts thereof.
  • the modified polyolefin may be a biomass material from the viewpoint of reducing environmental load.
  • the MFR of the modified polyolefin is preferably 0.1 g/10 minutes or more, more preferably 0.3 g/10 minutes or more, and even more preferably 0.5 g/10 minutes or more, from the viewpoint of film formability and processing suitability. Preferably 30 g/10 minutes or less, more preferably 20 g/10 minutes or less, even more preferably 10 g/10 minutes or less, particularly preferably 5 g/10 minutes or less, for example 0.1 g/10 minutes or more and 30 g/10 minutes or less. It is.
  • the MFR of the modified polyolefin is measured by method A under a load of 2.16 kg in accordance with JIS K7210-1:2014.
  • the measurement temperature of MFR is set according to the melting point of the modified polyolefin, etc., and is 190°C in the case of modified polyethylene and 230°C in the case of modified polypropylene.
  • the content of the modified polyolefin in the polyolefin layer is preferably less than 50% by mass, more preferably 40% by mass or less, even more preferably 30% by mass or less, particularly preferably 20% by mass or less, preferably 1% by mass or more, It is more preferably 3% by mass or more, still more preferably 5% by mass or more, for example 1% by mass or more and less than 50% by mass.
  • the polyolefin layer may contain resin materials other than polyolefin and modified polyolefin.
  • resin materials include (meth)acrylic resins, vinyl resins, cellulose resins, polyamides, polyesters, and ionomer resins.
  • the polyolefin layer may contain the above additives.
  • the polyolefin layer is a polyolefin film layer containing polyolefin as a main component.
  • the thickness of the polyolefin layer is preferably 1 ⁇ m or more, more preferably 5 ⁇ m or more, and still more preferably 10 ⁇ m or more from the viewpoint of the strength, heat resistance, and recyclability of the laminate. From the viewpoint of processability of the laminate, the thickness of the polyolefin layer is preferably 100 ⁇ m or less, more preferably 80 ⁇ m or less, even more preferably 70 ⁇ m or less, even more preferably 60 ⁇ m or less, particularly preferably 50 ⁇ m or less, 40 ⁇ m or less, or 30 ⁇ m. or less than 20 ⁇ m. The thickness of the polyolefin layer is, for example, 1 ⁇ m or more and 100 ⁇ m or less.
  • the polyethylene layer in the first resin layer contains polyethylene as a main component.
  • polyethylene examples include high density polyethylene, medium density polyethylene, low density polyethylene and linear low density polyethylene.
  • a polyethylene layer containing linear low-density polyethylene as a main component is preferred.
  • a polyethylene layer containing high-density polyethylene as a main component is preferred.
  • the linear low density polyethylene includes, for example, ethylene-1-butene copolymer (C4-LLDPE) in which the comonomer is at least 1-butene, and ethylene-1-butene copolymer (C4-LLDPE) in which the comonomer is at least 1-hexene. Mention may be made of hexene copolymers (C6-LLDPE) and ethylene-1-octene copolymers (C8-LLDPE) in which the comonomer is at least 1-octene. These copolymers are not limited to only the above-mentioned comonomers, and additional comonomers may be used.
  • the polyethylene layer in the first resin layer may contain biomass polyethylene as the polyethylene from the viewpoint of reducing environmental load.
  • biomass polyethylene include biomass high-density polyethylene, biomass medium-density polyethylene, biomass low-density polyethylene, and biomass linear low-density polyethylene, and among these, biomass high-density polyethylene is preferred.
  • the density of the polyethylene in the first resin layer is preferably 0.925 g/cm 3 or more, more preferably 0.928 g/cm 3 or more, and still more preferably 0.925 g/cm 3 or more, from the viewpoint of the appearance and puncture resistance of the laminate. It is 930 g/cm 3 or more.
  • the density of polyethylene is preferably 0.932 g/cm 3 or less.
  • the density of the polyethylene is, for example, 0.925 g/cm 3 or more and 0.932 g/cm 3 or less.
  • the density of the polyethylene in the first resin layer is preferably more than 0.945 g/cm 3 and preferably not more than 0.965 g/cm 3 from the viewpoint of heat resistance of the laminate.
  • the MFR of the polyethylene in the first resin layer is preferably 0.1 g/10 minutes or more, more preferably 0.3 g/10 minutes or more, and even more preferably 0.5 g/10 minutes from the viewpoint of film formability and processing suitability. minutes or more, preferably 30 g/10 minutes or less, more preferably 20 g/10 minutes or less, even more preferably 10 g/10 minutes or less, particularly preferably 5 g/10 minutes or less, for example 0.1 g/10 minutes or more. It is 30g/10 minutes or less.
  • the MFR of polyethylene is measured by method A under conditions of a temperature of 190° C. and a load of 2.16 kg in accordance with JIS K7210-1:2014.
  • the melting point (Tm) of the polyethylene in the first resin layer is preferably 100°C or higher, more preferably 105°C or higher, even more preferably 110°C or higher, particularly preferably 120°C or higher, and preferably is 140°C or less, for example, 100°C or more and 140°C or less.
  • Tm is the melting peak temperature obtained by DSC in accordance with JIS K7121:2012.
  • the content of polyethylene in the polyethylene layer is preferably more than 50% by mass, more preferably 60% by mass or more, even more preferably 70% by mass or more, particularly preferably 80% by mass or more.
  • the polyethylene layer in the first resin layer may further contain modified polyethylene from the viewpoint of adhesion to the heteroatom-containing resin layer.
  • modified polyethylene include polyethylene modifications, particularly graft modifications of polyethylene, with unsaturated carboxylic acids such as maleic acid and fumaric acid, or acid anhydrides, esters, or metal salts thereof.
  • the modified polyethylene may be modified high-density polyethylene or maleic anhydride graft-modified high-density polyethylene.
  • the modified polyethylene may be a biomass material from the viewpoint of reducing environmental load.
  • the MFR of the modified polyethylene is preferably 0.1 g/10 minutes or more, more preferably 0.3 g/10 minutes or more, and even more preferably 0.5 g/10 minutes or more, from the viewpoint of film formability and processing suitability. Preferably 30 g/10 minutes or less, more preferably 20 g/10 minutes or less, even more preferably 10 g/10 minutes or less, particularly preferably 5 g/10 minutes or less, for example 0.1 g/10 minutes or more and 30 g/10 minutes or less. It is.
  • the MFR of modified polyethylene is measured by method A in accordance with JIS K7210-1:2014 at a temperature of 190° C. and a load of 2.16 kg.
  • the content of modified polyethylene in the polyethylene layer is preferably less than 50% by mass, more preferably 40% by mass or less, even more preferably 30% by mass or less, particularly preferably 20% by mass or less, preferably 1% by mass or more, It is more preferably 3% by mass or more, still more preferably 5% by mass or more, for example 1% by mass or more and less than 50% by mass.
  • the polypropylene layer in the first resin layer contains polypropylene as a main component.
  • a laminate including a polypropylene layer has excellent oil resistance.
  • the polypropylene may be any of a propylene homopolymer (homopolypropylene), a propylene random copolymer (random polypropylene), and a propylene block copolymer (block polypropylene), or a mixture of two or more selected from these.
  • a propylene homopolymer homopolymer
  • a propylene random copolymer random polypropylene
  • a propylene block copolymer block polypropylene
  • biomass polypropylene or mechanically recycled or chemically recycled polypropylene may be used from the viewpoint of reducing environmental load.
  • a propylene homopolymer is a polymer made only of propylene.
  • a propylene random copolymer is a random copolymer of propylene and an ⁇ -olefin other than propylene.
  • a propylene block copolymer is a copolymer having at least a polymer block made of propylene and a polymer block made of at least an ⁇ -olefin other than propylene.
  • ⁇ -olefins other than propylene examples include ⁇ -olefins having 2 to 20 carbon atoms, specifically ethylene, 1-butene, 1-pentene, 1-hexene, 1-octene, 1- Mention may be made of decene, 1-dodecene, 1-tetradecene, 1-hexadecene, 1-octadecene, 1-eicosene, 3-methyl-1-butene, 4-methyl-1-pentene and 6-methyl-1-heptene.
  • propylene random copolymers are preferred from the viewpoint of transparency.
  • propylene homopolymer is preferred.
  • propylene block copolymers are preferred.
  • the density of polypropylene is, for example, 0.88 g/cm 3 or more and 0.92 g/cm 3 or less.
  • the density of polypropylene is measured according to method D (density gradient tube method, 23° C.) of JIS K7112:1999.
  • the melting point (Tm) of polypropylene is preferably 120°C or higher, more preferably 130°C or higher, and even more preferably 150°C or higher.
  • the Tm of polypropylene is preferably 170°C or less, for example 120°C or more and 170°C or less.
  • Tm is the melting peak temperature obtained by DSC in accordance with JIS K7121:2012.
  • the content of polypropylene in the polypropylene layer is preferably more than 50% by mass, more preferably 60% by mass or more, even more preferably 70% by mass or more, even more preferably 80% by mass or more, particularly preferably 90% by mass or more. .
  • the adhesive layer in the first resin layer is an adhesive layer made of adhesive.
  • the adhesive may be a one-component curing adhesive, a two-component curing adhesive, or a non-curing adhesive.
  • the adhesive may be a solvent-free adhesive or a solvent-based adhesive.
  • solvent-free adhesives that is, non-solvent laminating adhesives
  • solvent-free adhesives include polyether adhesives, polyester adhesives, silicone adhesives, epoxy adhesives, and urethane adhesives.
  • urethane adhesives are preferred, and two-component curing type urethane adhesives are more preferred.
  • solvent-based adhesives include rubber adhesives, vinyl adhesives, olefin adhesives, silicone adhesives, epoxy adhesives, phenolic adhesives, and urethane adhesives.
  • the thickness of the adhesive layer is preferably 0.1 ⁇ m or more, more preferably 0.2 ⁇ m or more, even more preferably 0.5 ⁇ m or more, and preferably 10 ⁇ m or less, more preferably 8 ⁇ m or less, even more preferably 6 ⁇ m or less, For example, it is 0.1 ⁇ m or more and 10 ⁇ m or less.
  • the first resin layer may be a laminated film including a heteroatom-containing resin layer, an adhesive layer, and a heteroatom-containing resin layer in this order in the thickness direction.
  • the laminated film is made by laminating two or more films corresponding to the heteroatom-containing resin layer (for example, heteroatom-containing resin films such as PET films) by a non-solvent laminating method using a solvent-free adhesive. They may be manufactured together, or they may be manufactured by bonding them together by a dry lamination method using a solvent-based adhesive.
  • the first resin layer in one embodiment, is a polymethylpentene layer.
  • the polymethylpentene layer contains polymethylpentene as a main component. Since the polymethylpentene layer has excellent mold releasability, it is preferable as the first resin layer that functions as a release film. Moreover, the polymethylpentene layer also has excellent heat resistance.
  • polymethylpentene refers to a polymer in which the content of methylpentene-derived structural units in all repeating structural units exceeds 50 mol%.
  • the content of structural units derived from methylpentene is preferably 70 mol% or more, more preferably 80 mol% or more, still more preferably 90 mol% or more, particularly preferably 95 mol% or more.
  • the above content ratio is measured by NMR method.
  • Polymethylpentene may be a homopolymer of methylpentene, a random copolymer of methylpentene and an ⁇ -olefin other than methylpentene, or a block copolymer of methylpentene and an ⁇ -olefin other than methylpentene. A mixture of two or more selected from the following may also be used.
  • biomass polymethylpentene or mechanically recycled or chemically recycled polymethylpentene may be used from the viewpoint of reducing environmental load.
  • methylpentene examples include 4-methyl-1-pentene, 3-methyl-1-pentene and 4,4-dimethyl-1-pentene, with 4-methyl-1-pentene being preferred.
  • ⁇ -olefins other than methylpentene include ⁇ -olefins having 2 to 20 carbon atoms, specifically ethylene, propylene, 1-butene, 1-pentene, 1-hexene, 1-octene. , 1-decene, 1-dodecene, 1-tetradecene, 1-hexadecene, 1-octadecene, 1-eicosene, 3-methyl-1-butene and 6-methyl-1-heptene.
  • polymethylpentene examples include poly(4-methyl-1-pentene), poly(3-methyl-1-pentene), and poly(4,4-dimethyl-1-pentene); methyl-1-pentene) is preferred.
  • Poly(4-methyl-1-pentene) may be a homopolymer of 4-methyl-1-pentene, or a copolymer of 4-methyl-1-pentene and an ⁇ -olefin other than 4-methyl-1-pentene. good.
  • the density of polymethylpentene is, for example, 0.800 g/cm 3 or more and 0.860 g/cm 3 or less.
  • the density of polymethylpentene is measured according to the D method (density gradient tube method, 23° C.) of JIS K7112:1999.
  • the melting point (Tm) of polymethylpentene is preferably 200°C or higher, more preferably 210°C or higher, and even more preferably 220°C or higher.
  • the Tm of polymethylpentene is preferably 300°C or lower, more preferably 250°C or lower.
  • the Tm of polymethylpentene is, for example, 200°C or more and 300°C or less.
  • Tm is the melting peak temperature obtained by DSC in accordance with JIS K7121:2012.
  • the MFR of polymethylpentene is preferably 0.1 g/10 minutes or more, more preferably 1 g/10 minutes or more, even more preferably 5 g/10 minutes or more, and particularly preferably 15 g/10 minutes, from the viewpoint of film formability and processing suitability. It is 10 minutes or more, preferably 100 g/10 minutes or less, more preferably 50 g/10 minutes or less, even more preferably 30 g/10 minutes or less, for example 0.1 g/10 minutes or more and 100 g/10 minutes or less.
  • the MFR of polymethylpentene is measured by method A in accordance with JIS K7210-1:2014 at a temperature of 260° C. and a load of 5 kg.
  • the content of polymethylpentene in the polymethylpentene layer is preferably more than 50% by mass, more preferably 60% by mass or more, even more preferably 70% by mass or more, even more preferably 80% by mass or more, particularly preferably 90% by mass. % or more.
  • the polymethylpentene layer may contain resin materials other than polymethylpentene.
  • resin materials include polyolefins other than polymethylpentene, (meth)acrylic resins, vinyl resins, cellulose resins, polyamides, polyesters, and ionomer resins.
  • the polymethylpentene layer may contain the above additives.
  • the extruded resin layer in the first resin layer contains polyolefin as a main component.
  • the polyolefin include polyethylene, polypropylene and polymethylpentene, with polyethylene being preferred.
  • the polyethylene constituting the extruded resin layer is preferably at least one selected from low density polyethylene and linear low density polyethylene, and low density polyethylene is more preferred.
  • the polyolefin may be a biomass polyolefin from the viewpoint of reducing environmental load.
  • the MFR of the polyethylene in the extruded resin layer is preferably 0.1 g/10 minutes or more, more preferably 1 g/10 minutes or more, still more preferably 3 g/10 minutes or more, from the viewpoint of film formability and processability. is 30 g/10 minutes or less, more preferably 25 g/10 minutes or less, even more preferably 20 g/10 minutes or less, for example, 0.1 g/10 minutes or more and 30 g/10 minutes or less.
  • the MFR of polyethylene is measured by method A under conditions of a temperature of 190° C. and a load of 2.16 kg in accordance with JIS K7210-1:2014.
  • the melting point (Tm) of the polyethylene in the extruded resin layer is preferably 100°C or higher, preferably 140°C or lower, more preferably 130°C or lower, and even more preferably 120°C or lower, from the viewpoint of the balance between heat resistance and adhesive properties.
  • the temperature is 100°C or more and 140°C or less.
  • Tm is the melting peak temperature obtained by DSC in accordance with JIS K7121:2012.
  • the content of polyolefin such as polyethylene in the extruded resin layer is preferably 80% by mass or more, more preferably 85% by mass or more, still more preferably 90% by mass or more, particularly preferably 95% by mass.
  • a laminate including such an extruded resin layer has excellent recyclability.
  • the thickness of the extruded resin layer in the first resin layer is preferably 5 ⁇ m or more, more preferably 10 ⁇ m or more, and preferably 40 ⁇ m or less, more preferably 30 ⁇ m or less, for example, 5 ⁇ m or more and 40 ⁇ m or less.
  • a laminate including such an extruded resin layer has excellent interlayer adhesion and recyclability.
  • the extruded resin layer can be formed, for example, by melting a polyolefin or a polyolefin resin composition and extruding it onto a film.
  • the melting temperature at this time is preferably 280°C or higher, more preferably 290°C or higher, preferably 340°C or lower, more preferably 335°C or lower, for example 280°C or higher and 340°C or lower.
  • the second resin layer is a sealant layer.
  • the second resin layer includes at least a polyethylene layer, preferably at least a polyethylene layer having a density of 0.909 g/cm 3 or less.
  • the polyethylene layer having a density of 0.909 g/cm 3 or less in the second resin layer is preferably in contact with the first resin layer.
  • the second resin layer is a sealant layer containing polyolefin as a main component.
  • polyolefins examples include polyethylene, polypropylene, and polymethylpentene. Among these, polyethylene and polypropylene are preferred, and polyethylene is more preferred.
  • the polyolefin may be a biomass polyolefin from the viewpoint of reducing environmental load.
  • the MFR of the polyolefin in the second resin layer is preferably 0.1 g/10 minutes or more, more preferably 0.3 g/10 minutes or more, and even more preferably 0.5 g/10 minutes from the viewpoint of film formability and processability. minutes or more, preferably 30 g/10 minutes or less, more preferably 20 g/10 minutes or less, even more preferably 10 g/10 minutes or less, particularly preferably 5 g/10 minutes or less, for example 0.1 g/10 minutes or more. It is 30g/10 minutes or less.
  • the MFR of polyolefin is measured by method A under a load of 2.16 kg in accordance with JIS K7210-1:2014.
  • the measurement temperature for MFR is set depending on the melting point of the polyolefin, etc., and is 190°C for polyethylene and 230°C for polypropylene.
  • the content ratio of the polyolefin in the second resin layer is preferably 80% by mass or more, more preferably 82% by mass or more, still more preferably 85% by mass or more, even more preferably It is 90% by mass or more, particularly preferably 95% by mass or more.
  • a laminate including such a second resin layer has excellent recyclability.
  • the sealant film or packaging film corresponding to the second resin layer after the first resin layer is peeled off and removed from the laminate has excellent recyclability.
  • the above-mentioned "polyolefin content ratio in the second resin layer” can be read as "polyethylene content ratio in the second resin layer" or "polypropylene content ratio in the second resin layer”. .
  • the second resin layer contains polyethylene as a main component.
  • polyethylene examples include high-density polyethylene, medium-density polyethylene, low-density polyethylene, and linear low-density polyethylene, and low-density polyethylene and linear low-density polyethylene are preferred from the viewpoint of heat sealability.
  • the polyethylene may be biomass polyethylene from the viewpoint of reducing environmental load.
  • the melting point (Tm) of the polyethylene in the second resin layer is preferably 80°C or higher, more preferably 85°C or higher, and preferably 140°C or lower, more preferably The temperature is 130°C or less, for example, 80°C or more and 140°C or less. Tm is the melting peak temperature obtained by DSC in accordance with JIS K7121:2012.
  • the second resin layer contains polypropylene as a main component.
  • a laminate including such a second resin layer has excellent oil resistance.
  • polypropylene examples include propylene homopolymers, propylene random copolymers such as propylene- ⁇ -olefin random copolymers, and propylene block copolymers such as propylene- ⁇ -olefin block copolymers. Details of the ⁇ -olefin are as described above.
  • biomass polypropylene or mechanically recycled or chemically recycled polypropylene may be used from the viewpoint of reducing environmental load.
  • the density of the polypropylene in the second resin layer is, for example, 0.88 g/cm 3 or more and 0.92 g/cm 3 or less from the viewpoint of heat sealability.
  • the density of polypropylene is measured according to method D (density gradient tube method, 23° C.) of JIS K7112:1999.
  • the melting point (Tm) of the polypropylene in the second resin layer is preferably 120°C or higher, more preferably 125°C or higher, still more preferably 130°C or higher, and preferably The temperature is 160°C or lower, more preferably 155°C or lower, even more preferably 150°C or lower, for example 120°C or higher and 160°C or lower.
  • Tm is the melting peak temperature obtained by DSC in accordance with JIS K7121:2012.
  • the second resin layer may contain the above additive.
  • the biomass degree of the second resin layer is preferably 10% or more, more preferably 20% or more, even more preferably 30% or more, even more preferably 40% or more, and particularly preferably 50% or more. Yes, it may be 99% or less, 90% or less, 80% or less, 70% or less, for example, 10% or more and 99% or less.
  • biomass materials compared to conventional resin materials derived from fossil fuels, biomass materials have a broader molecular weight distribution and may contain many low molecular weight components. Since the second resin layer can come into contact with the article contained in the packaging bag, depending on the type of article (for example, semiconductor products and related parts), the second resin layer may not contain biomass material. In some cases, it is better. In such a case, the biomass degree of the second resin layer may be less than 10%, may be less than 5%, may be less than 3%, or may be less than 1% in one embodiment.
  • the thickness of the second resin layer is preferably 10 ⁇ m or more, more preferably 15 ⁇ m or more, even more preferably 20 ⁇ m or more, particularly preferably 30 ⁇ m or more, from the viewpoint of strength and heat sealability.
  • the thickness of the second resin layer is preferably 250 ⁇ m or less, more preferably 200 ⁇ m or less, still more preferably 150 ⁇ m or less, particularly preferably 100 ⁇ m or less, from the viewpoint of processability.
  • the thickness of the second resin layer is, for example, 10 ⁇ m or more and 250 ⁇ m or less.
  • the second resin layer includes at least a heat-fusible resin layer. In one embodiment, the second resin layer includes at least a heat-fusible resin layer as a surface layer of the laminate. In one embodiment, the second resin layer includes at least a heat-fusible resin layer containing polyolefin such as polyethylene and polypropylene as a main component, as a surface layer of the laminate. In one embodiment, the heat-fusible resin layer in the second resin layer is in contact with the first resin layer.
  • the second resin layer includes at least a polyethylene layer having a density of 0.909 g/cm 3 or less. In one embodiment, the polyethylene layer in the second resin layer is in contact with the first resin layer.
  • the second resin layer includes a polyethylene layer having a density of 0.909 g/cm 3 or less, and a heat-fusible resin layer containing polyolefin such as polyethylene as a main component as a surface layer of the laminate. , is provided.
  • the polyethylene layer in the second resin layer is in contact with the first resin layer.
  • the second resin layer further includes an intermediate layer between a polyethylene layer having a density of 0.909 g/cm 3 or less and a heat-fusible resin layer containing polyolefin such as polyethylene as a main component. and preferably an intermediate layer containing polyolefin such as polyethylene as a main component.
  • the second resin layer includes an extruded resin layer containing a polyolefin such as polyethylene as a main component, and a heat-fusible resin layer containing a polyolefin such as polyethylene as a main component.
  • a film corresponding to the first resin layer and a heat-fusible film corresponding to the heat-fusible resin layer are laminated with the extruded resin layer interposed therebetween. That is, the laminate of this embodiment includes an extruded resin layer between the first resin layer and the heat-fusible resin layer.
  • the first resin layer includes a polyolefin film layer containing polyolefin as a main component and an extruded resin layer containing polyolefin as a main component.
  • the extruded resin layer is in contact with the polar resin layer described below in the second resin layer.
  • the second resin layer includes a polar resin layer, an anchor coat layer, an extruded resin layer containing polyolefin as a main component, and a heat-fusible resin layer.
  • the polar resin layer is in contact with the extruded resin layer of the first resin layer.
  • Such a laminate has excellent releasability of the first resin layer.
  • the second resin layer includes a polyethylene layer having a density of 0.909 g/cm 3 or less.
  • a laminate including such a polyethylene layer can suppress lifting of the first resin layer from the second resin layer during manufacturing of the laminate, and can maintain good contact between the first resin layer and the second resin layer. It has excellent peel strength.
  • a polyethylene layer having a density of 0.909 g/cm 3 or less has an excellent balance of adhesion and releasability with the heteroatom-containing resin layer.
  • the density of the polyethylene layer is preferably 0.908 g/cm 3 or less, more preferably 0.907 g/cm 3 or less, even more preferably 0.906 g/cm 3 or less, even more preferably 0.905 g/cm 3 or less, Particularly preferably, it is 0.904 g/cm 3 or less.
  • the density of the polyethylene layer is preferably 0.860 g/cm 3 or more, more preferably 0.870 g/cm 3 or more, even more preferably 0.880 g/cm 3 or more, even more preferably 0.890 g/cm 3 or more, Particularly preferably, it is 0.895 g/cm 3 or more.
  • the density of the polyethylene layer is, for example, 0.860 g/cm 3 or more and 0.909 g/cm 3 or less.
  • the density of the polyethylene layer is measured according to the D method (density gradient tube method, 23° C.) of JIS K7112:1999.
  • the polyethylene layer contains polyethylene with a density of 0.909 g/cm 3 or less as a main component, preferably linear low-density polyethylene with a density of 0.909 g/cm 3 or less as a main component. do.
  • linear low density polyethylene include C4-LLDPE, C6-LLDPE and C8-LLDPE.
  • the polyethylene may be biomass polyethylene from the viewpoint of reducing environmental load.
  • the density of polyethylene such as linear low density polyethylene is preferably 0.908 g/cm 3 or less, more preferably 0.907 g/cm 3 or less, even more preferably 0.906 g/cm 3 or less, even more preferably 0. .905 g/cm 3 or less, particularly preferably 0.904 g/cm 3 or less, preferably 0.860 g/cm 3 or more, more preferably 0.870 g/cm 3 or more, even more preferably 0.880 g/cm 3 Above, it is even more preferably 0.890 g/cm 3 or more, particularly preferably 0.895 g/cm 3 or more, for example 0.860 g/cm 3 or more and 0.909 g/cm 3 or less.
  • the MFR of polyethylene with a density of 0.909 g/cm 3 or less is preferably 0.1 g/10 minutes or more, more preferably 0.3 g/10 minutes or more, and even more preferably 0. .5 g/10 minutes or more, preferably 30 g/10 minutes or less, more preferably 20 g/10 minutes or less, even more preferably 10 g/10 minutes or less, particularly preferably 5 g/10 minutes or less, for example 0.1 g /10 minutes or more and 30g/10 minutes or less.
  • the MFR of polyethylene is measured by method A in accordance with JIS K7210-1:2014 at a temperature of 190° C. and a load of 2.16 kg.
  • the polyethylene having a density of 0.909 g/cm 3 or less may be metallocene-based linear low-density polyethylene.
  • Metallocene-based linear low-density polyethylene is a metallocene-based ethylene/ ⁇ -olefin copolymer, that is, an ethylene/ ⁇ -olefin copolymer produced using a metallocene catalyst, and its molecular structure is generally linear. It is.
  • Examples of ⁇ -olefins copolymerized with ethylene include ⁇ -olefins having 3 to 12 carbon atoms, and specifically, propylene, 1-butene, 1-pentene, 1-hexene, and 1-heptene. , 1-octene, 4-methyl-1-pentene, 1-decene and 1-dodecene. Among these, ⁇ -olefins having 3 or more and 8 or less carbon atoms are preferred.
  • Examples of linear low density polyethylene include C4-LLDPE, C6-LLDPE and C8-LLDPE.
  • the melting point (Tm) of the metallocene-based linear low density polyethylene is preferably 110°C or lower, more preferably 105°C or lower, even more preferably 100°C or lower, particularly preferably 95°C or lower, preferably 80°C or higher, The temperature is more preferably 85°C or higher, even more preferably 88°C or higher, for example 80°C or higher and 110°C or lower.
  • Tm is the melting peak temperature obtained by DSC in accordance with JIS K7121:2012.
  • metallocene-based linear low-density polyethylenes resins called metallocene-based ethylene plastomers are preferred.
  • a metallocene-based ethylene plastomer is a type of copolymer of ethylene and ⁇ -olefin (ethylene/ ⁇ -olefin copolymer) obtained using a metallocene catalyst.
  • Metallocene-based ethylene plastomers have a density in a region called ultra-low density, which is relatively low even among low densities, and a narrow molecular weight distribution (Mw/Mn ) and plastomer-like properties.
  • metallocene-based ethylene plastomer may be used as the metallocene-based ethylene plastomer.
  • a commercially available product for example, it can be selected from the "Kernel (registered trademark)" series manufactured by Nippon Polyethylene. Examples include “KF260T”, “KF360T” and “KS340T”.
  • the ratio (Mw/Mn) of weight average molecular weight (Mw) to number average molecular weight (Mn) in polyethylene having a density of 0.909 g/cm 3 or less is preferably 3.5 or less, more preferably 3.3 or less, More preferably 3.0 or less, 1.0 or more, preferably 1.5 or more, more preferably 1.8 or more, still more preferably 2.1 or more, for example 1.0 or more and 3.5 It is as follows.
  • Mw/Mn is defined as the ratio (Mw/Mn) of weight average molecular weight (Mw) to number average molecular weight (Mn) measured by gel permeation chromatography (GPC). Mw and Mn are measured by the following method.
  • Equipment Waters GPC 150C type detector: MIRAN 1A infrared spectrophotometer (measurement wavelength, 3.42 ⁇ m)
  • Measurement is performed, and the logarithm of the elution volume and molecular weight is approximated by a quadratic equation.
  • the molecular weight of the sample is converted to polyethylene using the viscosity formula for polystyrene and polyethylene.
  • Measurement temperature 140°C Injection volume: 0.2ml Concentration: 20mg/10mL
  • Solvent Orthodichlorobenzene Flow rate: 1.0ml/min
  • the content of polyethylene with a density of 0.909 g/cm 3 or less in the polyethylene layer is preferably more than 50% by mass, more preferably 60% by mass or more, even more preferably 70% by mass or more, even more preferably 80% by mass or more. , particularly preferably 90% by mass or more.
  • the polyethylene layer may contain the above resin material other than polyethylene.
  • the polyethylene layer may contain the above additives.
  • the thickness of the polyethylene layer having a density of 0.909 g/cm 3 or less is preferably 0.5 ⁇ m or more, more preferably 1 ⁇ m or more, still more preferably 3 ⁇ m or more, particularly preferably 5 ⁇ m or more, from the viewpoint of peel strength.
  • the thickness of the polyethylene layer having a density of 0.909 g/cm 3 or less is preferably 50 ⁇ m or less, more preferably 40 ⁇ m or less, still more preferably 30 ⁇ m or less, particularly preferably 20 ⁇ m or less, from the viewpoint of film forming processability. be.
  • the thickness of the polyethylene layer is, for example, 0.5 ⁇ m or more and 50 ⁇ m or less.
  • the second resin layer may include a heat-fusible resin layer as a surface layer of the laminate.
  • the second resin layer may include, as a surface layer of the laminate, a heat-fusible resin layer containing polyolefin such as polyethylene and polypropylene as a main component.
  • a heat-fusible resin layer functions as a sealing layer in a packaging bag including a laminate.
  • the heat-fusible resin layer is a layer facing the accommodation space of the packaging bag.
  • the second resin layer is made of a heat-fusible resin layer.
  • the polyethylene layer having a density of 0.909 g/cm 3 or less is one surface layer of the second resin layer, and the heat-fusible resin layer is the other surface layer of the second resin layer. This is the surface layer.
  • the heat-fusible resin layer preferably contains a heat-fusible resin as a main component.
  • the heat-fusible resin include polyolefin resins and ionomer resins.
  • polyolefin resins include linear low-density polyethylene, low-density polyethylene, medium-density polyethylene, high-density polyethylene, polyethylene such as ethylene-vinyl acetate copolymer and ethylene-(meth)acrylate copolymer, Included are polypropylene, ethylene-propylene copolymers, polybutene, and acid-modified polyolefins such as acid-modified polyethylene and acid-modified polypropylene.
  • Polyethylene is preferred as the heat-fusible resin.
  • the heat-fusible resin may be a biomass material from the viewpoint of reducing environmental load.
  • the polyethylene may be biomass polyethylene from the viewpoint of reducing environmental load.
  • the heat-fusible resin layer preferably contains polyethylene as a main component from the viewpoint of heat-sealability. From the viewpoint of heat-sealability, the heat-fusible resin layer preferably contains at least one type of polyethylene selected from linear low-density polyethylene and low-density polyethylene as a main component. Examples of linear low density polyethylene include C4-LLDPE, C6-LLDPE and C8-LLDPE.
  • the total content of linear low-density polyethylene and low-density polyethylene in the heat-fusible resin layer is preferably more than 50% by mass, more preferably 60% by mass or more, still more preferably 70% by mass or more, even more preferably is 80% by mass or more, particularly preferably 90% by mass or more.
  • the heat-fusible resin layer contains linear low-density polyethylene and low-density polyethylene.
  • Such a heat-fusible resin layer has an excellent balance between heat-sealing properties and low contamination properties (suppression of outgas generation) for the articles housed in the packaging bag.
  • the content ratio (LLDPE:LDPE) of linear low density polyethylene (LLDPE) and low density polyethylene (LDPE) in the heat-fusible resin layer is preferably 5:95 to 95:5, more preferably 5:95 to 95:5 on a mass basis.
  • the ratio is preferably 10:90 to 90:10, more preferably 20:80 to 80:20.
  • the MFR of the polyolefin in the heat-fusible resin layer is preferably 0.1 g/10 minutes or more, more preferably 0.3 g/10 minutes or more, and even more preferably 0.5 g/10 minutes from the viewpoint of film formability and processing suitability. 10 minutes or more, preferably 30 g/10 minutes or less, more preferably 20 g/10 minutes or less, even more preferably 10 g/10 minutes or less, particularly preferably 5 g/10 minutes or less, for example 0.1 g/10 minutes. It is 30g/10 minutes or less.
  • the MFR of polyolefin is measured by method A under a load of 2.16 kg in accordance with JIS K7210-1:2014.
  • the measurement temperature for MFR is set depending on the melting point of the polyolefin, etc., and is 190°C for polyethylene and 230°C for polypropylene.
  • the numerical range of the MFR of polyethylene in the heat-fusible resin layer includes the same numerical range as the MFR of polyethylene contained in the polyethylene layer of the first resin layer.
  • the melting point (Tm) of the polyethylene in the heat-fusible resin layer is preferably 140°C or less, more preferably 130°C or less, still more preferably 125°C or less, from the viewpoint of the balance between heat resistance and heat sealability. is 80°C or higher, more preferably 85°C or higher, even more preferably 90°C or higher, even more preferably 95°C or higher, particularly preferably 100°C or higher, for example 80°C or higher and 140°C or lower.
  • Tm is the melting peak temperature obtained by DSC in accordance with JIS K7121:2012.
  • the heat-fusible resin layer may contain the above additives.
  • the thickness of the heat-fusible resin layer is preferably 5 ⁇ m or more, more preferably 10 ⁇ m or more, even more preferably 15 ⁇ m or more, even more preferably 20 ⁇ m or more, particularly preferably 25 ⁇ m or more, and preferably 200 ⁇ m or less, more preferably is 150 ⁇ m or less, more preferably 100 ⁇ m or less, even more preferably 80 ⁇ m or less, particularly preferably 60 ⁇ m or less, for example, 5 ⁇ m or more and 200 ⁇ m or less.
  • the second resin layer may further include an intermediate layer between the polyethylene layer having a density of 0.909 g/cm 3 or less and the heat-fusible resin layer.
  • the intermediate layer preferably contains polyolefin such as polyethylene and polypropylene as a main component, and more preferably contains linear low-density polyethylene as a main component from the viewpoint of puncture resistance of the laminate.
  • the polyolefin may be a biomass polyolefin from the viewpoint of reducing environmental load.
  • the polyethylene is preferably at least one selected from linear low-density polyethylene, low-density polyethylene, medium-density polyethylene, and high-density polyethylene; At least one selected type is more preferred, and linear low density polyethylene is even more preferred.
  • linear low density polyethylene include C4-LLDPE, C6-LLDPE and C8-LLDPE.
  • the polyethylene may be biomass polyethylene from the viewpoint of reducing environmental load.
  • the density of the polyethylene in the intermediate layer is preferably 0.925 g/cm 3 or more, more preferably 0.928 g/cm 3 or more, even more preferably 0.930 g/cm 3 or more.
  • a laminate including such an intermediate layer has excellent puncture resistance.
  • the density of the polyethylene in the intermediate layer is preferably 0.932 g/cm 3 or less, for example 0.925 g/cm 3 or more and 0.932 g/cm 3 or less.
  • the linear low density polyethylene in the intermediate layer is preferably linear low density polyethylene (ethylene-1-octene copolymer, C8-LLDPE) in which the comonomer is 1-octene.
  • a laminate including such an intermediate layer has excellent puncture resistance.
  • the density of the linear low density polyethylene may be 0.860 g/cm 3 or more and 0.932 g/cm 3 or less, or 0.900 g/cm 3 or more and 0.932 g/cm 3 or less.
  • the MFR of the polyethylene in the intermediate layer is preferably 0.1 g/10 minutes or more, more preferably 0.3 g/10 minutes or more, and even more preferably 0.5 g/10 minutes or more, from the viewpoint of film formability and processing suitability. be.
  • the MFR of the polyethylene in the intermediate layer is preferably 30 g/10 minutes or less, more preferably 20 g/10 minutes or less, even more preferably 10 g/10 minutes or less, particularly preferably 5 g/10 minutes, from the viewpoint of film formability and processability. minutes or less.
  • the above MFR is, for example, 0.1 g/10 minutes or more and 30 g/10 minutes or less.
  • the MFR of polyethylene is measured by method A under conditions of a temperature of 190° C. and a load of 2.16 kg in accordance with JIS K7210-1:2014.
  • the melting point (Tm) of the polyethylene in the intermediate layer is preferably 100°C or higher, more preferably 105°C or higher, even more preferably 110°C or higher, particularly preferably 120°C or higher, and preferably 140°C.
  • the temperature is not lower than 100°C and not higher than 140°C.
  • Tm is the melting peak temperature obtained by DSC in accordance with JIS K7121:2012.
  • the content of polyolefin such as polyethylene in the intermediate layer is preferably more than 50% by mass, more preferably 60% by mass or more, still more preferably 70% by mass or more, from the viewpoint of puncture resistance and recyclability of the laminate. More preferably, it is 80% by mass or more, particularly preferably 90% by mass or more.
  • the intermediate layer may contain the above resin material.
  • the intermediate layer may contain the above additives.
  • the thickness of the intermediate layer is preferably 1 ⁇ m or more, more preferably 3 ⁇ m or more, even more preferably 5 ⁇ m or more, particularly preferably 10 ⁇ m or more, preferably 50 ⁇ m or less, more preferably 40 ⁇ m or less, even more preferably 30 ⁇ m or less, especially Preferably it is 25 ⁇ m or less, for example, 1 ⁇ m or more and 50 ⁇ m or less.
  • the second resin layer includes a polar resin layer in contact with the first resin layer.
  • the polar resin layer is a layer containing polar resin as a main component.
  • the polar resin include polyesters such as polyethylene terephthalate, polyamides, polyvinyl alcohols, and ethylene-vinyl alcohol copolymers.
  • the polar resin layer may be a stretched film.
  • the polar resin layer may contain the above additives.
  • the thickness of the polar resin layer is preferably 5 ⁇ m or more, more preferably 10 ⁇ m or more, and preferably 40 ⁇ m or less, more preferably 30 ⁇ m or less, for example, 5 ⁇ m or more and 40 ⁇ m or less.
  • the second resin layer includes an extruded resin layer containing polyolefin such as polyethylene as a main component.
  • polyolefin examples include polyethylene, polypropylene and polymethylpentene, with polyethylene being preferred.
  • the polyethylene constituting the extruded resin layer is preferably at least one selected from low density polyethylene and linear low density polyethylene, and low density polyethylene is more preferred.
  • the polyolefin may be a biomass polyolefin from the viewpoint of reducing environmental load.
  • the extruded resin layer functions as an adhesive layer between the heteroatom-containing resin film in the first resin layer and the heat-fusible film in the second resin layer.
  • a laminate including such an extruded resin layer can have a high content of polyolefin such as polyethylene, has excellent recyclability, and has appropriate peel strength between the first resin layer and the second resin layer.
  • the first resin layer has excellent removability.
  • the MFR of the polyethylene in the extruded resin layer is preferably 0.1 g/10 minutes or more, more preferably 1 g/10 minutes or more, still more preferably 3 g/10 minutes or more, from the viewpoint of film formability and processability. is 30 g/10 minutes or less, more preferably 25 g/10 minutes or less, even more preferably 20 g/10 minutes or less, for example, 0.1 g/10 minutes or more and 30 g/10 minutes or less.
  • the MFR of polyethylene is measured by method A under conditions of a temperature of 190° C. and a load of 2.16 kg in accordance with JIS K7210-1:2014.
  • the melting point (Tm) of the polyethylene in the extruded resin layer is preferably 100°C or higher, preferably 140°C or lower, more preferably 130°C or lower, and even more preferably 120°C or lower, from the viewpoint of the balance between heat resistance and adhesive properties.
  • the temperature is 100°C or more and 140°C or less.
  • Tm is the melting peak temperature obtained by DSC in accordance with JIS K7121:2012.
  • the content of polyolefin such as polyethylene in the extruded resin layer is preferably 80% by mass or more, more preferably 85% by mass or more, still more preferably 90% by mass or more, particularly preferably 95% by mass.
  • a laminate including such an extruded resin layer has excellent recyclability.
  • the thickness of the extruded resin layer in the second resin layer is preferably 5 ⁇ m or more, more preferably 10 ⁇ m or more, and preferably 40 ⁇ m or less, more preferably 30 ⁇ m or less, for example, 5 ⁇ m or more and 40 ⁇ m or less.
  • a laminate including such an extruded resin layer has excellent interlayer adhesion and recyclability.
  • the extruded resin layer can be formed, for example, by melting a polyolefin or a polyolefin resin composition and extruding it onto a film.
  • the melting temperature at this time is preferably 280°C or higher, more preferably 290°C or higher, preferably 340°C or lower, more preferably 335°C or lower, for example 280°C or higher and 340°C or lower.
  • the second resin layer may further include an anchor coat layer between the polar resin layer and the extruded resin layer.
  • the anchor coat layer is formed from an anchor coat agent.
  • the anchor coating agent include polyurethane-based, polyester-based, polyether-based, polyolefin-based, or epoxy resin-based anchor coating agents.
  • the anchor coat layer may contain the above additives.
  • the thickness of the anchor coat layer is preferably 0.05 ⁇ m or more, more preferably 0.1 ⁇ m or more, even more preferably 0.2 ⁇ m or more, preferably 3 ⁇ m or less, more preferably 2 ⁇ m or less, and even more preferably 1 ⁇ m or less. For example, it is 0.05 ⁇ m or more and 3 ⁇ m or less.
  • the laminate or packaging bag of the present disclosure may further include a design layer such as a printed layer.
  • the design layer has an image. Examples of images include characters, figures, patterns, symbols, and combinations thereof.
  • the image may include textual information such as the product name, the name of the item in the packaging bag, the manufacturer, and the name of raw materials.
  • the image may be a solid color (a so-called solid image).
  • the design layer may be provided, for example, on the surface of the first resin layer.
  • the design layer may be provided on the surface of the first resin layer opposite to the surface facing the second resin layer (outer surface).
  • the design layer contains a colorant.
  • the colorant include pigments such as inorganic pigments and organic pigments, and dyes such as acid dyes, direct dyes, disperse dyes, oil-soluble dyes, metal-containing oil-soluble dyes, and sublimable dyes.
  • the coloring agent include fluorescent materials such as ultraviolet light-emitting materials that emit fluorescence by absorbing ultraviolet light and infrared light-emitting materials that emit fluorescence by absorbing infrared light.
  • the content of the colorant in the design layer is preferably 1% by mass or more, more preferably 3% by mass or more, even more preferably 5% by mass or more, and preferably 90% by mass or less, more preferably 70% by mass or less, More preferably, it is 50% by mass or less, for example, 1% by mass or more and 90% by mass or less.
  • the design layer may contain the above resin material or may contain the above additives.
  • the content ratio of the resin material in the design layer is preferably 10% by mass or more, more preferably 30% by mass or more, even more preferably 50% by mass or more, and preferably 99% by mass or less, more preferably 97% by mass or less, More preferably, it is 95% by mass or less, for example, 10% by mass or more and 99% by mass or less.
  • the design layer can be formed using, for example, an ink composition containing the above-mentioned components and, if necessary, a solvent.
  • methods for forming the design layer include gravure printing, offset printing, flexographic printing, screen printing, letterpress printing, and transfer printing.
  • a flexographic printing method may be used from the viewpoint of reducing environmental impact.
  • the thickness of the design layer is preferably 0.1 ⁇ m or more, more preferably 0.2 ⁇ m or more, even more preferably 0.3 ⁇ m or more, and preferably 10 ⁇ m or less, more preferably 5 ⁇ m or less, and even more preferably 3 ⁇ m or less. , for example, 0.1 ⁇ m or more and 10 ⁇ m or less.
  • FIGS. 1 to 5 and 10 show schematic cross-sectional views of an embodiment of the laminate of the present disclosure.
  • these laminates are a laminate as a tubular film, or a laminate as a top sheet and a back sheet constituting a packaging bag.
  • the laminate 1 in FIG. 1 includes a first resin layer 10 and a second resin layer 20 in this order in the thickness direction.
  • the second resin layer 20 may be, for example, a polyethylene layer 22 having a density of 0.909 g/cm 3 or less, or a heat-fusible resin layer 24.
  • the laminate 1 in FIG. 2 is the same as the laminate 1 in FIG. The same is true.
  • a polyethylene layer 22 is in contact with the first resin layer 10.
  • the laminate 1 in FIG. 3 is the same as the laminate 1 in FIG. 2 except that the first resin layer 10 includes a polyolefin layer 12 and a heteroatom-containing resin layer 14.
  • the heteroatom-containing resin layer 14 is in contact with the polyethylene layer 22.
  • the laminate 1 in FIG. 4 is the same as the laminate 1 in FIG. 2 except that the second resin layer 20 further includes an intermediate layer 23 between the polyethylene layer 22 and the heat-fusible resin layer 24. .
  • the laminate 1 in FIG. 5 is the same as the laminate 1 in FIG. 4 except that the first resin layer 10 includes a polyolefin layer 12 and a heteroatom-containing resin layer 14.
  • the laminate 1 in FIG. 10 includes a first resin layer 10 and a second resin layer 20 in this order in the thickness direction.
  • the first resin layer 10 includes a heteroatom-containing resin layer 14 , an adhesive layer 16 , and a heteroatom-containing resin layer 14 .
  • the second resin layer 20 includes an extruded resin layer 25 and a heat-fusible resin layer 24 .
  • a laminated film corresponding to the first resin layer 10 and a heat-fusible film corresponding to the heat-fusible resin layer 24 are laminated with an extruded resin layer 25 in between.
  • the total thickness of the laminate of the present disclosure is preferably 15 ⁇ m or more, more preferably 20 ⁇ m or more, even more preferably 30 ⁇ m or more, even more preferably 40 ⁇ m or more, and particularly preferably 50 ⁇ m. That's all.
  • the total thickness of the laminate of the present disclosure is preferably 300 ⁇ m or less, more preferably 250 ⁇ m or less, even more preferably 200 ⁇ m or less, even more preferably 150 ⁇ m or less, particularly preferably 100 ⁇ m or less, from the viewpoint of processability of the laminate. be.
  • the total thickness of the laminate of the present disclosure is, for example, 15 ⁇ m or more and 300 ⁇ m or less.
  • the laminate of the present disclosure is preferably an unstretched film from the viewpoint of heat sealability.
  • An unstretched film is a film that has not been subjected to a stretching process, such as an extruded film that has not been subjected to a stretching process.
  • the term "unstretched film” is a concept that includes not only a film that has not been stretched at all, but also a film that has been slightly stretched due to tension applied during film formation by an inflation method or the like.
  • the Young's modulus of the release film obtained from the laminate of the present disclosure is greater than the Young's modulus of the sealant film obtained from the laminate of the present disclosure.
  • Such a laminate has excellent releasability of the first resin layer. It is preferable that the Young's moduli measured in both the machine direction (machine direction) (MD) and the transverse direction (TD) of the film have such a magnitude relationship.
  • the Young's modulus of the release film is preferably 1.3 times or more, more preferably 1.5 times or more, and even more preferably 1.8 times or more than the Young's modulus of the sealant film.
  • the Young's modulus of the release film is preferably 20 times or less, more preferably 15 times or less, even more preferably 10 times or less than the Young's modulus of the sealant film.
  • the Young's modulus of the release film is, for example, 1.3 times or more and 20 times or less than the Young's modulus of the sealant film. It is preferable that the MD Young's modulus of the release film and the MD Young's modulus of the sealant film satisfy such conditions. It is preferable that the TD Young's modulus of the release film and the TD Young's modulus of the sealant film satisfy such conditions.
  • the Young's modulus of the sealant film is preferably 10 MPa or more, more preferably 30 MPa or more, even more preferably 50 MPa or more, and preferably 500 MPa or less, more preferably 400 MPa or less, still more preferably 330 MPa or less, for example, 10 MPa or more and 500 MPa or less. It is. It is preferable that the MD and TD Young's moduli of the sealant film satisfy such conditions.
  • the Young's modulus of the laminate of the present disclosure is preferably 30 MPa or more, more preferably 50 MPa or more, even more preferably 100 MPa or more, even more preferably 150 MPa or more, particularly preferably 200 MPa or more, preferably 800 MPa or less, more preferably It is 700 MPa or less, more preferably 600 MPa or less, even more preferably 500 MPa or less, particularly preferably 400 MPa or less, for example, 30 MPa or more and 800 MPa or less. It is preferable that the MD and TD Young's moduli of the laminate satisfy such conditions.
  • Young's modulus (MPa) is measured in accordance with JIS K7161-1:2014 using a tensile compression tester as a measuring device at a test speed of 5 mm/s. Details of the measurement conditions are described in the Examples column.
  • the loop stiffness value of the release film obtained from the laminate of the present disclosure is smaller than the loop stiffness value of the sealant film obtained from the laminate of the present disclosure.
  • Such a laminate has excellent releasability of the first resin layer. It is preferable that the loop stiffness values measured in both the machine direction (machine direction) (MD) and the width direction (TD) of the film have such a magnitude relationship.
  • MD machine direction
  • TD width direction
  • the loop stiffness value is a physical property that is affected not only by the hardness of the film but also by the thickness. Therefore, the magnitude relationship between the loop stiffness values of the release film and the sealant film is preferably opposite to the magnitude relationship between the Young's modulus of the release film and the sealant film.
  • the loop stiffness value of the release film is preferably 0.8 times or less, more preferably 0.6 times or less, and even more preferably 0.4 times or less than the loop stiffness value of the sealant film.
  • the loop stiffness value of the release film is preferably 0.05 times or more, more preferably 0.1 times or more, and still more preferably 0.15 times or more the loop stiffness value of the sealant film.
  • the loop stiffness value of the release film is, for example, 0.05 times or more and 0.8 times or less of the loop stiffness value of the sealant film. It is preferable that the MD loop stiffness value of the release film and the MD loop stiffness value of the sealant film satisfy such conditions. It is preferable that the TD loop stiffness value of the release film and the TD loop stiffness value of the sealant film satisfy such conditions.
  • the loop stiffness value of the sealant film is preferably 0.1 g or more, more preferably 0.2 g or more, even more preferably 0.3 g or more, and, for example, 5.0 g or less, preferably 3.0 g or less, more preferably 2 .0g or less, more preferably 1.0g or less, for example 0.1g or more and 5.0g or less. It is preferable that the MD and TD Young's moduli of the sealant film satisfy such conditions.
  • the loop stiffness value of the laminate of the present disclosure is preferably 0.5 g or more, more preferably 1.0 g or more, even more preferably 1.5 g or more, even more preferably 2.0 g or more, particularly preferably 2.5 g or more.
  • it is 25.0 g or less, preferably 8.0 g or less, more preferably 7.0 g or less, even more preferably 6.0 g or less, even more preferably 5.0 g or less, particularly preferably 4.0 g or less.
  • 0.5 g or more and 25.0 g or less It is preferable that the MD and TD loop stiffness values of the laminate satisfy such conditions.
  • the loop stiffness value (g) is measured using a loop stiffness tester as a measuring device at a pushing speed of 3.3 mm/sec. Details of the measurement conditions are described in the Examples column.
  • the laminate of the present disclosure can be manufactured by a conventionally known method.
  • the laminate is preferably a coextruded multilayer film, and can be manufactured, for example, by a coextrusion film forming method, more preferably by a T-die method or an inflation method.
  • the laminate of the present disclosure can be formed, for example, by extruding the resin or resin composition forming each layer in a molten state from an extruder.
  • the first surface of the second resin layer that is in contact with the first resin layer does not come into direct contact with the outside air both during and after manufacturing the laminate. Therefore, it is possible to suppress foreign matter such as dirt and dust from adhering to the first surface of the second resin layer between the time of manufacturing the laminate and the time of peeling and removing the first resin layer.
  • the packaging bag is used, the first surface of the second resin layer is exposed by peeling and removing the first resin layer from the second resin layer of the laminate. This first surface is a clean surface in which the adhesion of foreign matter is suppressed.
  • the laminate of the present disclosure includes a film corresponding to the first resin layer and a heat-fusible film corresponding to the heat-fusible resin layer, each containing polyolefin such as polyethylene as a main component. It can be manufactured by laminating layers with extruded resin layers interposed therebetween. Specifically, a laminate can be produced by laminating the above-mentioned films together using a melt extrusion lamination method using a molten resin containing a polyolefin such as polyethylene as a main component, particularly a sand lamination method. By performing lamination in a clean environment, contamination of the first surface of the second resin layer can be suppressed.
  • the heat-fusible film corresponding to the heat-fusible resin layer is preferably an unstretched resin film from the viewpoint of heat sealability.
  • the resin film can be produced, for example, by using a casting method, a T-die method, an inflation method, or the like.
  • the content ratio of the polyolefin resin in the laminate of the present disclosure may be 70% by mass or more, 75% by mass or more, 80% by mass or more, 85% by mass or more, based on the mass of the laminate, It may be 90% by mass or more, for example, 70% by mass or more and 100% by mass or less. Such a laminate has excellent recyclability.
  • the content rate of the polyolefin resin in the laminate of the present disclosure may be 99% by mass or less, 95% by mass or less, or 90% by mass or less based on the mass of the laminate.
  • the above-mentioned "content ratio of polyolefin resin in the laminate" can be read as "content ratio of polyethylene resin in the laminate" or "content ratio of polypropylene resin in the laminate.”
  • the laminate of the present disclosure can be suitably used as a packaging material constituting a packaging bag.
  • the second resin layer in the laminate constitutes an inner surface facing the accommodation space in the packaging bag (a surface with which the articles in the packaging bag come into contact).
  • the following description can also be applied to the packaging bags of the first and second aspects described below, if desired.
  • packaging bag of the present disclosure An example of how the packaging bag of the present disclosure is used will be described below.
  • Articles used in a clean environment such as a clean room require a high degree of cleanliness.
  • the packaging bag containing the above article is brought into a clean environment and opened. Therefore, packaging bags also require high cleanliness.
  • foreign matter such as dirt and dust may adhere to the surface of the packaging bag (for example, the outer surface and/or inner surface), and the foreign matter may be brought into the clean environment together with the packaging bag. It is necessary to prevent invasion.
  • intrusion of such foreign matter can be suppressed in the following manner.
  • an article is housed in the packaging bag of the present disclosure in a clean environment, deaerated by vacuum degassing or the like as necessary, the opening of the packaging bag is sealed, and the article is packaged in the packaging bag. Get a body.
  • Degassing is not limited to vacuum degassing as long as the gas inside the packaging bag can be removed.
  • deaeration may be performed by pressing the packaging bag from the outside using a pressing member. Bring the package to the front room in a clean environment.
  • the first resin layer (release film) constituting the packaging bag (in the laminate) is peeled off and removed.
  • the first surface of the second resin layer (sealant film or packaging film) constituting the packaging bag (in the laminate) is exposed.
  • the first surface of the second resin layer is a clean surface where adhesion of foreign matter is suppressed.
  • a packaging bag formed by peeling and removing the first resin layer has a small amount of foreign matter adhering to its surface. Such a packaging bag is brought into a clean environment. In a clean environment, open the packaging bag, take out the product, and use it.
  • the second surface of the second resin layer is also a clean surface where adhesion of foreign matter is suppressed. In this way, foreign matter is prevented from entering the clean environment together with the packaging bag.
  • the packaging bag of the present disclosure does not need to be configured as a double bag, or a triple or more bag that includes at least an inner bag and an outer bag.
  • the packaging bag of the present disclosure there is no restriction at all in using the packaging bag of the present disclosure as an outer bag in a double bag, triple bag or more bag.
  • examples of articles stored in the packaging bag include semiconductor products such as ICs and LSIs, semiconductor-related parts such as valves for semiconductor devices and filters for semiconductor manufacturing, precision machines, magnetic disks, silicon wafers, and Examples include rings, bellows, pharmaceutical products, products for regenerative medicine, and liquid drug products such as diluents for blood cell testing devices and artificial dialysis fluids.
  • Articles also include dust-proof clothing, dust-proof gloves, and instruments used in clean environments.
  • the packaging bag of the present disclosure includes the laminate of the present disclosure.
  • the packaging bag of the present disclosure includes a top sheet forming the front surface and a back sheet forming the back surface.
  • the top sheet may be composed of one laminate, and the back sheet may be composed of another laminate.
  • the top sheet and the back sheet may be integrated or may be composed of a single laminate.
  • the top sheet and the back sheet may be composed of one tubular laminate.
  • a packaging bag usually has a heat-sealed part (heat-sealed part, hereinafter also referred to as "sealed part").
  • the packaging bag has, for example, a seal portion formed by fusing together the second resin layers in the laminate.
  • Heat sealing methods include, for example, bar seals, rotating roll seals, belt seals, impulse seals, high frequency seals, and ultrasonic seals.
  • packaging bags examples include standing pouch type, side seal type, two side seal type, three side seal type, four side seal type, envelope sticker type, gasho sticker type (pillow seal type), pleated seal type, and flat bottom seal type.
  • packaging bags include standing pouch type, side seal type, two side seal type, three side seal type, four side seal type, envelope sticker type, gasho sticker type (pillow seal type), pleated seal type, and flat bottom seal type.
  • types of packaging bags such as a type, a square bottom seal type, and a gusset type.
  • the planar shape of the packaging bag may be, for example, a rectangle or a shape other than a rectangle, such as a circle.
  • one laminate of the present disclosure is prepared, folded and stacked so that the second surfaces of the second resin layers of the laminate face each other, and then the left and right sides of the laminate are stacked.
  • a packaging bag may be produced by forming heat-sealed portions on both sides of the outer periphery of the bag. In this way, a packaging bag having an opening on one side is obtained.
  • a seal portion may also be formed in the folded lower portion, and the lower portion of the lower seal portion may be further cut and removed. Thereby, the first resin layer can be peeled off and removed from each of the top sheet and back sheet of the packaging bag.
  • the packaging bag may be produced as follows.
  • the laminate of the present disclosure is formed into a film by an inflation method to obtain a tubular film. Both ends of the tubular film in the width direction perpendicular to the machine direction are cut along the machine direction. Next, both ends of the film in the width direction are heat-sealed along the flow direction, and portions of the film extending in the width direction are heat-sealed at regular intervals in the flow direction. Next, the film is cut along the machine direction at a central location in the width direction of the film, and the film is cut along the width direction at the heat-sealed portion extending in the width direction.
  • FIG. 9A shows a front view of the film, where hatched areas indicate heat-sealed areas and dotted lines indicate cut locations. In this way, a plurality of packaging bags each having an opening on one side are obtained.
  • the packaging bag may be produced as follows. Both widthwise ends of the tubular film are cut along the machine direction. Next, one end of the film in the width direction is heat-sealed along the flow direction, and the portions of the film extending in the width direction are heat-sealed at regular intervals in the flow direction. Next, the film is cut along the width direction at the heat-sealed portion extending in the width direction (see FIG. 9B). In this way, a plurality of packaging bags each having an opening on one side are obtained.
  • the packaging bag may be produced as follows. Both widthwise ends of the tubular film are cut along the flow direction. Next, at the center of the width of the film, the part extending in the machine direction is heat-sealed, or at the same time, the part extending in the machine direction of the film is heat-sealed at a certain interval in the width direction. The extending portions are heat-sealed at regular intervals in the machine direction.
  • the portion to be heat-sealed along the flow direction of the film may be, for example, one or more and five or less rows, or one or more and three or less rows.
  • the film is cut along the machine direction at the heat-sealed section extending in the machine direction, and the film is cut along the width direction at the heat-sealed section extending in the width direction (see FIGS. 9C and 9D). .
  • a plurality of packaging bags each having an opening on one side are obtained.
  • a half-cut line may be formed at a desired timing.
  • the article is charged through the opening of the non-heat-sealed portion of the packaging bag manufactured above.
  • the opening of the packaging bag is heat-sealed to form a heat-sealed portion, thereby obtaining a package in which the article is housed in the packaging bag.
  • FIG. 6a is a cross-sectional view showing an embodiment of the packaging bag of the present disclosure.
  • the seal portion of the packaging bag 50 is formed by overlapping and heat-sealing the laminate 1 including the first resin layer 10 and the second resin layer 20.
  • FIG. 6b is a sectional view showing an embodiment of the usage of the packaging bag of the present disclosure.
  • the first resin layers 10, 10 are peeled off from the second resin layers 20, 20 of the packaging bag 50, respectively, immediately before being brought into the clean room.
  • the packaging bag may include an easy-to-open part.
  • Examples of the easy-to-open portion include a notch that serves as a starting point for tearing the packaging bag, and an easy-to-open line formed by laser processing, a cutter, or the like as a path for tearing the packaging bag.
  • FIG. 7 is a front view showing an embodiment of the packaging bag of the present disclosure.
  • the packaging bag 50 in FIG. 7 includes a storage section (accommodation space) 50a that stores articles.
  • the packaging bag 50 includes an upper part 51, a lower part 52, and side parts 53, 53, and has a substantially rectangular outline in a front view.
  • names such as "upper part”, “lower part”, and “side part”, and terms such as “upper” and “lower” are relative representations of the positions and directions of the packaging bag 50 and its components. It's nothing more than that.
  • the posture of the packaging bag 50 during transportation or use is not limited by the names and terms used in this specification.
  • the packaging bag 50 includes a top sheet 54 constituting the front surface and a back sheet 55 constituting the back surface.
  • the top sheet 54 and the back sheet 55 are each formed of one laminate.
  • the top sheet 54 and the back sheet 55 may be integrated or formed from a single layered product.
  • the laminate is folded back at the lower part 52, for example, so that the second resin layer constitutes the inner surface of the packaging bag 50.
  • the packaging bag 50 has a seal portion extending along three sides of the packaging bag 50.
  • the inner surfaces of the top sheet 54 and the back sheet 55 are joined to each other at the seal portion.
  • the seal portion is hatched.
  • the seal portion is a portion where the sealant layers (second resin layers) of the laminate are joined together.
  • the packaging bag 50 has a seal portion extending along the four sides of the packaging bag 50.
  • the seal portion includes an upper seal portion 51a extending along the upper portion 51, a pair of side seal portions 53a, 53a extending along the pair of side portions 53, 53, and a lower seal portion 52a extending along the lower portion 52. including.
  • an opening (not shown) is formed in the upper part 51 of the packaging bag 50.
  • the inner surface of the top sheet 54 and the inner surface of the back sheet 55 are joined at the upper portion 51, thereby forming the upper seal portion 51a and sealing the packaging bag 50.
  • the upper seal portion 51a, the side seal portions 53a, 53a, and the lower seal portion 52a are seal portions formed by joining the inner surface of the top sheet 54 and the inner surface of the back sheet 55.
  • the method for forming the seal portion is not particularly limited as long as the packaging bag 50 can be sealed by joining the opposing sheets 54 and 55 together.
  • the sealed portion is formed by melting the inner surfaces of the sheet by heating or the like and fusing the inner surfaces together, that is, by heat sealing.
  • the laminate (for example, the top sheet and/or the back sheet) constituting the packaging bag has a half-cut line.
  • a half-cut line is a cut line that extends from the surface of the first resin layer constituting the laminate to the interface between the first resin layer and the second resin layer, but does not penetrate through the laminate. means. Starting from the half-cut line, the first resin layer in the laminate can be easily peeled off and removed by hand.
  • the half-cut line may be a half-cut line that will be explained in the packaging bag of the second embodiment described later.
  • the position where the half-cut line is formed is not particularly limited.
  • a packaging bag having a rectangular planar shape it is preferable to provide a half-cut line at at least one corner of the packaging bag. It is preferable that the half-cut line is formed on both the top sheet and the back sheet of the packaging bag. In one embodiment, the half-cut line extends from the side outer edge to the bottom outer edge of the topsheet and backsheet at the corners of the sheet.
  • the half-cut line can be formed, for example, by mechanically making a cut in the thickness direction of the laminate using a cutter or the like, or by irradiating the laminate with a laser.
  • FIG. 7 a half-cut line 60 is formed at one corner of the seal portion of the packaging bag 50. As shown in FIG. 7, the half-cut line 60 extends from the outer edge of the side portion 53 of the packaging bag 50 to the outer edge of the lower portion 52. The half-cut line 60 is formed on both the front and back sides of the packaging bag 50, that is, on the top sheet 54 and the back sheet 55, respectively.
  • FIG. 8 is an enlarged view of half-cut lines provided on the laminate that constitutes the packaging bag.
  • half-cut lines 60 are formed on both the front and back sides of the packaging bag 50, immediately before bringing the packaging bag 50 containing articles into the clean room, the packaging bag is cut through the half-cut line 60 formed on one side. 50 corners can be bent. Thereby, the first resin layer 10 can be easily peeled off from the second resin layer 20. Next, the other first resin layer 10 can be peeled off from the second resin layer 20 by bending the corner of the packaging bag 50 in the same way via the half-cut line 60 formed on the other side. can.
  • the packaging bag of the first aspect of the present disclosure includes a top sheet and a back sheet facing the top sheet.
  • the top sheet constitutes the surface of the packaging bag.
  • the back sheet constitutes the back surface of the packaging bag.
  • the terms "front side” and “back side” in the above-mentioned sheet are only relative representations of the front side and the back side of the packaging bag.
  • the posture of the packaging bag during transportation or use is not limited by the front and back surfaces in this specification.
  • the top sheet and the back sheet each include at least a first resin layer and a second resin layer that constitutes the inner surface of the packaging bag.
  • the first resin layer constitutes the outer surface of the packaging bag in one embodiment.
  • the second resin layer constitutes the inner surface facing the storage space of the packaging bag (the surface with which the articles in the packaging bag come into contact).
  • the first resin layer is provided so as to be peelable from the second resin layer. The details of the first resin layer and the second resin layer are as described above, and detailed description thereof will be omitted in this section. In the following description, the above-described laminate of the present disclosure can be used as the top sheet and/or the back sheet.
  • the top sheet and back sheet are each derived from the same tubular film produced by coextrusion inflation.
  • the tubular film includes at least a first resin layer forming the outer surface of the tube and a second resin layer forming the inner surface of the tube.
  • the inner surface has a high degree of cleanliness because it is prevented from coming into contact with outside air during the production of the tubular film and packaging bag.
  • the above-described laminate of the present disclosure can be used as the tubular film.
  • the second resin layer has a first surface and a second surface opposite to the first surface.
  • the first resin layer is provided on the first surface of the second resin layer.
  • the first resin layer is in contact with the second resin layer, and specifically, in contact with the first surface of the second resin layer. Therefore, the first surface of the second resin layer is usually the peeling surface when the first resin layer is peeled off.
  • the number of particles with a particle diameter of 0.2 ⁇ m or more adhering to the inner surface of the packaging bag according to the first aspect of the present disclosure is preferably 100 particles/cm 2 or less, more preferably 80 particles/cm 2 or less, and even more preferably is 60 pieces/cm 2 or less, more preferably 40 pieces/cm 2 or less, particularly preferably 20 pieces/cm 2 or less, 15 pieces/cm 2 or less, 10 pieces/cm 2 or less, or 5 pieces/cm 2 or less. be.
  • the lower limit of the number of particles is not particularly limited, but may be, for example, 0.1 particles/cm 2 , 0.5 particles/cm 2 , or 1 particle/cm 2 .
  • the number of particles is measured using a particle counter. Details of the measurement method are described in the Examples section. By manufacturing the packaging bag using the manufacturing method described below, the number of particles adhering to the inner surface of the packaging bag can be suppressed.
  • the packaging bag has a seal portion formed by joining (for example, fusion) a part of the second resin layer on the top sheet and a part of the second resin layer on the back sheet.
  • the sealed portion is, for example, a heat-sealed portion (heat-sealed portion).
  • FIG. 11a is a cross-sectional view showing an embodiment of the packaging bag according to the first aspect of the present disclosure.
  • the packaging bag 50 includes a top sheet 54 and a back sheet 55.
  • the topsheet 54 includes a first resin layer 10 and a second resin layer 20.
  • the back sheet 55 includes a first resin layer 10 and a second resin layer 20.
  • the packaging bag 50 has a seal portion HS formed by joining a portion of the second resin layer 20 on the top sheet 54 and a portion of the second resin layer 20 on the back sheet 55.
  • the packaging bag 50 is formed, for example, as follows. As shown in FIG. 11b, a tubular film 2 comprising at least a first resin layer 10 constituting the tube outer surface S out and a second resin layer 20 constituting the tube inner surface S in is produced by a coextrusion inflation method. is formed, and the film 2 is deformed into a flat shape (specifically, folded). Next, as shown in FIG. 11c, portions of the second resin layers 20 facing each other in the tubular film 2 are joined to form a seal portion HS. In FIG. 11c, the tubular film 2 has not been deformed into a flat shape in order to make the figure easier to see. Next, both ends of the heat-sealed tubular film 2 are cut off to a predetermined width.
  • the seal portion HS may be formed after this cutting.
  • a predetermined cutting process is performed.
  • the packaging bag 50 is obtained.
  • the packaging bag 50 is obtained by directly bag-making the tubular film 2 that has been deformed into a flat shape or the superimposed films obtained by cutting the film. Details of the method for manufacturing the packaging bag 50 will be described later. "Packaging bags obtained by directly bag-making a tubular film that has been deformed into a flat shape or a superimposed film made by cutting the film" means a tubular film that has been deformed into a flat shape or a packaging bag obtained by cutting the film.
  • the tubular film may be cut, for example, along the flow direction, but in the stacked films after the cutting, contact between the second resin layers is prevented. Bag making processing is performed without release.
  • "Without breaking contact between the second resin layers that are facing each other and in contact” means, in the case of a flattened tubular film, that the second resin layers are flattened without introducing outside air into the tube. In the case of superimposed films, it means to maintain both films in a superimposed state without separating the superimposed films from each other from cutting the tubular film. As long as the purpose of the present disclosure is not impaired, the second resin layers facing each other may not be in contact with each other in a small area.
  • FIG. 11d is a sectional view showing an embodiment of the usage pattern of the packaging bag according to the first aspect of the present disclosure.
  • the first resin layers 10, 10 are peeled off from the second resin layers 20, 20 of the packaging bag 50, respectively, immediately before being brought into the clean room.
  • the packaging bag 50 includes a top sheet 54 constituting the front surface and a back sheet 55 constituting the back surface.
  • the topsheet 54 and backsheet 55 are each sheets derived from the same tubular film made by coextrusion inflation.
  • the thickness of the top sheet and the back sheet is preferably 15 ⁇ m or more, more preferably 20 ⁇ m or more, even more preferably 30 ⁇ m or more, even more preferably 40 ⁇ m or more, particularly preferably 50 ⁇ m or more, from the viewpoint of the strength and heat resistance of the packaging bag. It is.
  • the thickness of the top sheet and the back sheet is preferably 300 ⁇ m or less, more preferably 250 ⁇ m or less, even more preferably 200 ⁇ m or less, even more preferably 150 ⁇ m or less, particularly preferably 100 ⁇ m or less, from the viewpoint of processing suitability of the packaging bag. .
  • the thickness of the top sheet and the back sheet is, for example, 15 ⁇ m or more and 300 ⁇ m or less.
  • the top sheet and the back sheet are preferably unstretched films from the viewpoint of heat sealability.
  • unstretched film is a concept that includes not only a film that has not been stretched at all, but also a film that has been stretched due to the tension applied during film formation by the coextrusion inflation method.
  • the content ratio of the polyolefin resin in the top sheet and the back sheet may be 70% by mass or more, 75% by mass or more, 80% by mass or more, 85% by mass or more, based on the mass of the sheet. % or more, and may be 90% by mass or more.
  • Such packaging bags have excellent recyclability.
  • the content ratio of the polyolefin resin in the top sheet and the back sheet may be 99% by mass or less, 95% by mass or less, or 90% by mass or less, based on the mass of the sheet.
  • the content ratio of the polyolefin resin in the top sheet and the back sheet is, for example, 70% by mass or more and 100% by mass or less.
  • the above-mentioned "content ratio of polyolefin resin" can be read as "content ratio of polyethylene resin" or "content ratio of polypropylene resin.”
  • the packaging bag of the first aspect may have the above-mentioned half-cut line and/or easy-open portion.
  • the packaging bag of the first aspect may have a half-cut line as described in the packaging bag of the second aspect.
  • the method for manufacturing a packaging bag according to the first aspect of the present disclosure includes: A tubular film comprising at least a first resin layer constituting the outer surface of the tube and a second resin layer constituting the inner surface of the tube containing polyolefin as a main component is formed by a coextrusion inflation method, and the film is (hereinafter also referred to as "step (1)"), and contacting the tubular film that has been transformed into a flat shape or the stacked film obtained by cutting the film, facing each other.
  • a step of producing a packaging bag by carrying out a bag-making process without breaking contact between the second resin layers (hereinafter also referred to as "step (2)"); including.
  • step (1) a tubular film comprising at least a first resin layer constituting the outer surface of the tube and a second resin layer constituting the inner surface of the tube containing polyolefin as a main component is produced by a coextrusion inflation method. is formed, and the film is deformed into a flat shape (specifically, folded).
  • melt extruder used in the coextrusion inflation method examples include a single screw extruder, a twin screw extruder, a vent extruder, and a tandem extruder. Since the packaging bag has a multilayer structure, a multilayer annular die and multiple melt extruders are used.
  • Coextrusion inflation methods include air-cooled inflation methods and water-cooled inflation methods. The air-cooled inflation method is preferable, and the upward air-cooled inflation method is more preferable because the film forming speed is high and a wide film can be formed.
  • the materials constituting each layer are fed into an extruder, melted, and extruded into a tube shape through a multilayer annular die.
  • air is sent into the tube-shaped molten resin from below to expand the diameter of the tube to a predetermined size, and cooling air is sent from outside the tube to form a tubular film.
  • the obtained tubular film is deformed into a flat shape using a stabilizer plate and pinch rolls while being pulled up using pinch rolls.
  • the inner surfaces facing each other in the tubular film, that is, the facing second resin layers are in contact with each other.
  • the flattened tubular film is wound up in the winding section to obtain a roll-shaped body.
  • a tubular film in which the first resin layer and the second resin layer are laminated can be easily produced in one step.
  • the first resin layer is provided so that it can be peeled off from the second resin layer after bag making, as will be described later.
  • Step (2) the second resin layers facing each other and in contact with the tubular film deformed into a flat shape in step (1) or the stacked films obtained by cutting the film are The bag making process is performed without releasing the contact between the bag and the packaging bag.
  • the facing second resin layers constituting the film that is, the inner surfaces of the film are in contact with each other.
  • a packaging bag is produced from a tubular film that has been deformed into a flat shape without breaking contact between the second resin layers that are facing each other and are in contact with each other.
  • a tubular film that has been deformed into a flat shape parts of the second resin layers that face each other and are in contact are bonded to form a sealed portion, and then the film is cut to form a packaging bag.
  • a packaging bag For example, in stacked films obtained by cutting flat tubular films along the flow direction, parts of the second resin layers that face each other and are in contact are bonded to form a sealing part. After forming, the film is cut to produce a packaging bag.
  • Examples of methods for forming the seal portion include heat sealing methods such as bar seals, rotary roll seals, belt seals, impulse seals, high frequency seals, and ultrasonic seals.
  • the first surface of the second resin layer in contact with the first resin layer does not come into direct contact with the outside air either during or after manufacturing the packaging bag. Therefore, it is possible to suppress foreign matter such as dirt and dust from adhering to the first surface of the second resin layer between the time of manufacturing the packaging bag and the time of peeling and removal of the first resin layer.
  • the packaging bag is used, the first surface of the second resin layer is exposed by peeling and removing the first resin layer from the second resin layer of the packaging bag. This first surface is a clean surface in which adhesion of foreign matter is suppressed.
  • the inner surface of the tubular film is kept clean without coming into contact with the outside air.
  • the bag making process does not necessarily have to be performed in a clean environment. If higher cleanliness is required, the bag making process may be performed in a clean environment.
  • both ends of a tubular film in the width direction are cut to a predetermined width to separate it into two films, and then the two films are overlapped to form a bag, both sides of the film are Due to exposure to outside air, it may not be possible to sufficiently prevent foreign matter from adhering to the inner surface of the packaging bag.
  • FIG. 12A1 shows a front view of the film, with hatched areas indicating sealing parts and dotted lines indicating cut points. In this way, a plurality of packaging bags each having an opening on one side are obtained.
  • Both widthwise ends of the flattened film are heat-sealed along the flow direction, and the portions extending in the width direction of the film are heat-sealed at regular intervals in the flow direction to form a sealed portion. do.
  • the film is cut along the machine direction at the center in the width direction of the film, and the film is cut along the width direction at the seal portion extending in the width direction (see FIG. 12A2). In this way, a plurality of packaging bags each having an opening on one side are obtained.
  • One widthwise end of the film that has been deformed into a flat shape is heat-sealed along the flow direction, and the portions extending in the width direction of the film are heat-sealed at regular intervals in the flow direction to form the sealed portion.
  • the film is cut along the width direction at the seal portion extending in the width direction (see FIG. 12B). In this way, a plurality of packaging bags each having an opening on one side are obtained.
  • the portion extending in the machine direction is heat-sealed, or the part of the film that extends in the machine direction is heat-sealed at regular intervals in the width direction, and the film is The portions extending in the width direction are heat-sealed at regular intervals in the flow direction to form a sealed portion.
  • the portion to be heat-sealed along the flow direction of the film may be, for example, one or more and five or less rows, or one or more and three or less rows.
  • the film is cut along the machine direction at the seal section extending in the machine direction, and the film is cut along the width direction at the seal section extending in the width direction (see FIGS. 12C and 12D). In this way, a plurality of packaging bags each having an opening on one side are obtained.
  • the portions of the flattened film extending in the machine direction are heat-sealed at intervals in the width direction, and the parts extending in the width direction of the film are heat-sealed at regular intervals in the machine direction to form the sealed portions.
  • Form. the film is cut along the machine direction at the sealing part extending in the machine direction, the film is cut along the machine direction at the center of the width direction of the film, and the film is cut in the width direction at the sealing part extending in the width direction. (See Figure 12E). In this way, a plurality of packaging bags each having an opening on one side are obtained.
  • Both widthwise ends of the flattened film are heat-sealed along the machine direction, and the parts of the film that extend in the machine direction are heat-sealed at regular intervals in the width direction, and the parts that extend in the machine direction are heat-sealed at regular intervals in the width direction.
  • the sections are heat sealed at regular intervals in the machine direction to form a seal.
  • the portion to be heat-sealed along the flow direction of the film may be, for example, one or more and five or less rows, or one or more and three or less rows.
  • the film is cut along the machine direction at the seal part extending in the machine direction, and the film is cut along the width direction at a position slightly below the seal part extending in the width direction (see FIG. 12F). In this way, a plurality of packaging bags each having an opening on one side are obtained.
  • both ends of the film in the width direction are cut off to a predetermined width along the flow direction. This cutting may be done before or after heat sealing.
  • the article is loaded through the opening of the unsealed portion of the packaging bag manufactured above.
  • the opening of the packaging bag is heat-sealed to form a sealed portion, thereby obtaining a package in which the article is housed in the packaging bag.
  • a packaging bag according to a second aspect of the present disclosure includes a laminate including a second resin layer serving as a main body portion and a first resin layer serving as a peeling portion in the thickness direction.
  • the first resin layer is also referred to as a peeling part
  • the second resin layer is also referred to as a main body part.
  • the main body includes a heat-fusible resin layer.
  • the peeling part is provided so that it can be peeled off from the main body. By peeling off the peeling part of the packaging bag in the front room of the clean room, the packaging bag in a clean state can be brought into the clean room.
  • the details of the first resin layer and the second resin layer are as described above, and detailed description thereof will be omitted in this section.
  • the heat-fusible resin layer in the main body portion constitutes the inner surface facing the storage section in the packaging bag (the surface with which the article in the packaging bag comes into contact).
  • the main body has a first surface and a second surface opposite to the first surface.
  • the peeling part is provided on the first surface of the main body part. The peeling part is in contact with the main body, and specifically, in contact with the first surface of the main body. Therefore, the first surface of the main body is usually a peeling surface when the peeling part is peeled off.
  • the packaging bag includes a top sheet made of the laminate, a back sheet made of the laminate, and a heat-fusible resin layer of the top sheet and a heat-fusible resin layer of the back sheet. It has a seal portion that contains the contents, and a storage portion that stores the contents.
  • the laminate forming the topsheet may be the same as or different from the laminate forming the backsheet.
  • the packaging bag of the second aspect of the present disclosure will be described with reference to the drawings.
  • the laminate the laminate of the present disclosure described above can be used.
  • the packaging bag of the second aspect may have the easy-to-open portion described above.
  • the packaging bag has a first side 101 having a point A, a second side 102 having a point B, and a first side 101 and a second side 102 in a plan view. and a corner 110 including a connecting vertex V.
  • planar view refers to viewing the packaging bag from the normal direction of the top sheet or back sheet of the packaging bag.
  • Point A and point B are virtual points for explaining the position of the half-cut line 104, and such points are not actually provided on the packaging bag.
  • the packaging bag has a half-cut line extending from point A on a line connecting point A on the first side and point B on the second side on the top sheet and/or back sheet.
  • the line connecting point A and point B is an imaginary line for explaining the position of the half-cut line, etc., and such a line is not actually provided on the packaging bag.
  • the line connecting point A and point B will also be referred to as a "virtual line.”
  • the imaginary line and the half-cut line may be linear in plan view, or may be curved, such as an arcuate shape that is convex or concave toward the accommodating portion side of the packaging bag.
  • FIG. 13A shows a linear example.
  • a half-cut line is a cut line that extends from the surface of the peeled part that constitutes the laminate to the interface between the peeled part and the main body in the thickness direction, but does not penetrate through the laminate ( Figure 8 reference). That is, the half-cut line is provided so that the peeling portion is cut in the thickness direction of the laminate, but at least a portion of the main body portion is not cut. Starting from the half-cut line, the peeled portion in the laminate can be easily peeled off and removed from the main body by hand.
  • the half-cut line can be formed, for example, by mechanically making a cut in the thickness direction of the laminate using a cutter, a knife blade, etc., or by irradiating the laminate with a laser.
  • half-cut lines are formed at the corners of the top sheet of the packaging bag. Therefore, before the packaging bag containing the articles is brought into the clean room, the corners of the packaging bag can be bent through the half-cut lines formed on the top sheet. This allows the peeling portion to be easily peeled off from the main body in the laminate that constitutes the topsheet.
  • half-cut lines are also formed at the corners of the back sheet of the packaging bag. By similarly bending the corners of the packaging bag through the half-cut lines formed on the backsheet, the peelable portion can be peeled off from the main body of the laminate that constitutes the backsheet.
  • the half-cut line is provided halfway along the virtual line from point A, that is, the half-cut line does not reach point B.
  • the peeled part is connected to the main body with the half-cut line 104 as the starting point.
  • a part of the peeled part (for example, the triangular part below the half-cut line 104 in FIG. 13B) remains on the main body.
  • the peeled portion remaining on the main body can become a foreign object in the clean room. If the half-cut line is provided halfway along the virtual line from point A, clean peeling can be achieved without leaving any peeling parts on the main body.
  • the shortest distance D1 between the half-cut line and the second side is preferably 2.0 mm or more, 2.5 mm or more, 3.0 mm or more, or 3.5 mm or more, more preferably 4 mm or more, and still more preferably 4.5 mm or more. , particularly preferably 5 mm or more, preferably 20 mm or less, more preferably 15 mm or less, still more preferably 10 mm or less, for example 2.0 mm or more and 20 mm or less. If the shortest distance D1 is less than the lower limit value, when the peeled portion is peeled off, a portion where a half-cut line is not provided may also be cut, and a portion of the peeled portion may remain on the main body.
  • the shortest distance D1 between the half-cut line and the second side is the length of the shortest straight line connecting any point on the half-cut line and any point on the second side.
  • the distance between point A, which is the starting point of the half-cut line, and the vertex V is preferably 8 mm or more, more preferably 10 mm or more, 12 mm or more, or 14 mm or more, and preferably 50 mm or less, more preferably 45 mm or less, and even more preferably is 40 mm or less, more preferably 35 mm or less, particularly preferably 30 mm or less, for example 8 mm or more and 50 mm or less.
  • the length of the half-cut line is preferably 4 mm or more, or 5 mm or more, more preferably 6 mm or more, even more preferably 7 mm or more, 8 mm or more, or 10 mm or more, preferably 60 mm or less, more preferably 50 mm or less, and even more preferably
  • the length is 40 mm or less, more preferably 30 mm or less, particularly preferably 25 mm or less, for example, 4 mm or more and 60 mm or less.
  • the virtual line and the half-cut line are linear.
  • the ratio of the length of the half-cut line to the length of the virtual line is preferably 20% or more, more preferably 25% or more, still more preferably 30% or more, even more preferably 35% or more, especially It is preferably 40% or more, preferably 80% or less, more preferably 75% or less, even more preferably 70% or less, even more preferably 65% or less, particularly preferably 60% or less, for example 20% or more and 80%. It is as follows.
  • the half-cut line is straight.
  • the angle between the first side and the half-cut line is preferably 10° or more, more preferably 20° or more, even more preferably 30° or more, even more preferably 35° or more, and particularly preferably 40° or more. , preferably 80° or less, more preferably 70° or less, still more preferably 60° or less, even more preferably 55° or less, particularly preferably 50° or less, for example 10° or more and 80° or less, for example approximately It is 45°.
  • the angle between the first side and the second side is preferably 60° or more, more preferably 70° or more, even more preferably 75° or more, even more preferably 80° or more, and particularly preferably 85° or more.
  • the angle is preferably 120° or less, more preferably 110° or less, still more preferably 105° or less, even more preferably 100° or less, particularly preferably 95° or less, for example 60° or more and 120° or less, e.g. It is approximately 90°.
  • the packaging bag includes a first seal portion 101S extending along the first side 101, a second seal portion 102S extending along the second side 102, has.
  • the first seal portion is, for example, a linear seal portion extending along the first side.
  • the second seal portion is, for example, a linear seal portion extending along the second side.
  • the first seal portion 101S has a seal width D101
  • the second seal portion 102S has a seal width D102.
  • the first seal portion and the second seal portion overlap in plan view at the corner of the packaging bag. That is, as shown in FIG. 14, the packaging bag has an intersection 112S between a first seal section 101S and a second seal section 102S.
  • the first seal portion and the second seal portion are usually formed integrally at the corners by heat sealing.
  • the seal widths of the first seal part and the second seal part are each independently preferably 3 mm or more, more preferably 4 mm or more, even more preferably 5 mm or more, and preferably 30 mm or less, more preferably 25 mm or less. , more preferably 20 mm or less, even more preferably 15 mm or less, particularly preferably 10 mm or less, for example 3 mm or more and 30 mm or less.
  • the seal length of each of the first seal part and the second seal part is usually determined in accordance with the size of the packaging bag.
  • the first side corresponds to the bottom or top side of the packaging bag
  • the second side corresponds to the side side of the packaging bag.
  • the first side may correspond to the side of the packaging bag
  • the second side may correspond to the bottom or top side of the packaging bag.
  • the lengths of the first side and the second side are each independently preferably 40 mm or more, more preferably 60 mm or more, still more preferably 80 mm or more, and even more Preferably it is 100 mm or more, preferably 600 mm or less, more preferably 500 mm or less, still more preferably 400 mm or less, even more preferably 300 mm or less, for example 40 mm or more and 600 mm or less.
  • the packaging bag further includes a third seal portion 103S provided at a corner 103 formed by the first seal portion 101S and the second seal portion 102S in plan view.
  • the half-cut line can be provided closer to the storage part in plan view of the packaging bag, making it easier to grasp the peeling part by hand and peeling it off from the main body part.
  • the half-cut line is provided on at least the third seal portion.
  • the shape of the third seal part is not particularly limited, but examples thereof include a triangular shape, and a shape in which the oblique side of the triangle is deformed into a convex or concave shape with respect to the housing section side of the packaging bag.
  • Each independently is preferably 2 mm or more, more preferably 4 mm or more, even more preferably 6 mm or more, even more preferably 8 mm or more, particularly preferably 10 mm or more, preferably 40 mm or less, more preferably 35 mm or less, and even more preferably is 30 mm or less, more preferably 25 mm or less, particularly preferably 20 mm or less, for example 2 mm or more and 40 mm or less. If the third seal part has such a size, the half-cut line can be provided closer to the storage part when the packaging bag is viewed from above, making it easier to grasp the peeling part by hand, and making it easier to peel it off from the main body. It becomes easier.
  • the first seal part, the second seal part, and the third seal part are usually formed integrally at the corners by heat sealing.
  • the third seal part is not formed separately from the first seal part or the second seal part, so the "shape of the third seal part" refers to the shape of the third seal part. This is for explaining the virtual shape of.
  • the half-cut line may be provided at at least one corner of the packaging bag, and may be provided at two or more corners. . If a half-cut line is provided at two or more corners, the description of the first side, second side, and vertex described above for the two sides defining each corner, and the half-cut line. position, shape, length, etc. can be applied. Although the half-cut line may be provided on either the top sheet or the back sheet of the packaging bag, it is preferably provided on both.
  • the half-cut line is provided at a corner of the packaging bag in plan view, and from the viewpoint of suppressing contamination of the bag and suppressing bag breakage, the half-cut line is provided at least on the sealing part. It is preferable that the sealing member is provided on the sealing portion, more preferably that the sealing portion is not provided in an area that overlaps with the storage portion of the packaging bag in plan view, and even more preferably that it is provided only on the sealing portion.
  • FIGS. 15 and 16 are front views showing an embodiment of the packaging bag according to the second aspect of the present disclosure.
  • the packaging bag 50 includes a top sheet 54, a back sheet 55, a first seal portion 101S, a second seal portion 102S, an opening 56, and the contents. accommodating part 50a which accommodates.
  • the packaging bag 50 includes a top sheet 54, a back sheet 55, a first seal section 101S, a second seal section 102S, and a third seal section 103S. , and has an opening 56 and a storage section 50a that stores the contents.
  • FIG. 13A is an example of an enlarged view of the vicinity of the corner 110 of the packaging bag 50 in FIG. 15.
  • FIG. 14 is an example of an enlarged view of the vicinity of the corner 110 of the packaging bag 50 in FIG. 16.
  • a half-cut line is formed at one corner of the sealed portion of the packaging bag.
  • the half-cut lines are formed on the top sheet and back sheet of the packaging bag, respectively.
  • the position of the half-cut line is not limited to the positions shown in FIGS. 15 and 16.
  • Half-cut lines may be provided at two or more corners.
  • FIG. 17a is a sectional view showing an embodiment of a packaging bag according to the second aspect of the present disclosure.
  • the sealed portion of the packaging bag 50 is formed by overlapping and heat-sealing the laminate 1 including the peeling portion 10 and the main body portion 20, and further has a half-cut line 104 formed therein.
  • FIG. 17b is a cross-sectional view showing an embodiment of how the packaging bag is used.
  • the peeling parts 10, 10 are peeled off from the main body parts 20, 20 of the packaging bag 50, respectively, immediately before being brought into a clean room. If the half-cut line 104 reaches the point B from the above-mentioned point A, then in FIG.
  • FIG. 18 is a front view showing an embodiment of the packaging bag according to the second aspect of the present disclosure.
  • the packaging bag 50 in FIG. 18 is the same as the packaging bag 50 in FIG. 7 except that it has the half-cut line 60 described in the second aspect of the packaging bag.
  • a laminate including at least a first resin layer and a second resin layer, the first resin layer being provided so as to be peelable from the second resin layer,
  • the peel strength between the first resin layer and the second resin layer measured under the conditions of peel angle: 180 degrees and test speed: 50 mm/min, is 1.0 N/15 mm width or less
  • the second resin layer is a sealant layer including at least a polyethylene layer having a density of 0.909 g/cm 3 or less, and the polyethylene layer in the second resin layer is in contact with the first resin layer. laminate.
  • the first resin layer includes at least a heteroatom-containing resin layer containing a heteroatom-containing resin as a main component, and the heteroatom-containing resin layer is made of the polyethylene having a density of 0.909 g/cm 3 or less.
  • the heteroatom-containing resin contains at least one selected from polyamide, ethylene-vinyl alcohol copolymer, and polyvinyl alcohol.
  • the first resin layer further includes a polyolefin layer containing polyolefin as a main component.
  • the second resin layer contains linear low-density polyethylene as a main component between the polyethylene layer having a density of 0.909 g/cm 3 or less and the heat-fusible resin layer.
  • the linear low-density polyethylene contained in the intermediate layer has a density of 0.925 g/cm 3 or more or is an ethylene-1-octene copolymer, according to [9] above. laminate.
  • a laminate including at least a first resin layer and a second resin layer, the first resin layer being provided so as to be peelable from the second resin layer,
  • the peel strength between the first resin layer and the second resin layer measured under the conditions of peel angle: 180 degrees and test speed: 50 mm/min, is 0.15 N/1.0 N/15 mm width or more.
  • the laminate has a width of 15 mm or less, and the second resin layer is a sealant layer.
  • the Young's modulus of the film made of the first resin layer obtained by peeling the first resin layer from the second resin layer is such that the film made of the second resin layer after the peeling is
  • the loop stiffness value of the film made of the first resin layer obtained by peeling the first resin layer from the second resin layer is the same as that of the second resin layer after the peeling.
  • a packaging bag comprising the laminate according to any one of [1] to [14] above.
  • a laminate including at least a first resin layer and a second resin layer, the first resin layer being provided so as to be peelable from the second resin layer,
  • the peel strength between the first resin layer and the second resin layer measured under the conditions of peel angle: 180 degrees and test speed: 50 mm/min, is 1.0 N/15 mm width or less
  • the second resin layer is a sealant layer containing polyolefin as a main component, and the content rate of the polyolefin in the second resin layer is 82% by mass or more based on the mass of the second resin layer.
  • the second resin layer includes a polyethylene layer having a density of 0.909 g/cm 3 or less, and a heat-fusible resin layer containing polyethylene as a main component as one surface layer of the laminate.
  • the second resin layer contains linear low-density polyethylene as a main component between the polyethylene layer having a density of 0.909 g/cm 3 or less and the heat-fusible resin layer.
  • the linear low-density polyethylene contained in the intermediate layer has a density of 0.925 g/cm 3 or more or is an ethylene-1-octene copolymer, according to [12] above. laminate.
  • a laminate including at least a first resin layer and a second resin layer, the first resin layer being provided so as to be peelable from the second resin layer,
  • the second resin layer is a sealant layer containing polyolefin as a main component, and at least one resin layer selected from the first resin layer and the second resin layer is made of a biomass-derived resin material.
  • the first resin layer includes at least a heteroatom-containing resin layer containing a heteroatom-containing resin as a main component, and the heteroatom-containing resin layer is in contact with the second resin layer.
  • the second resin layer includes a polyethylene layer having a density of 0.909 g/cm 3 or less, and a heat-fusible resin layer containing polyethylene as a main component as one surface layer of the laminate.
  • the laminate according to any one of [2] to [7], wherein the polyethylene layer in the second resin layer is in contact with the heteroatom-containing resin layer in the first resin layer. .
  • the second resin layer contains linear low-density polyethylene as a main component between the polyethylene layer having a density of 0.909 g/cm 3 or less and the heat-fusible resin layer.
  • a method for manufacturing a packaging bag in which a first resin layer constituting the outer surface of the tube and a second resin layer constituting the inner surface of the tube containing polyolefin as a main component are formed by a coextrusion inflation method. forming a tubular film comprising at least a resin layer, and deforming the film into a flat shape; and performing a bag-making process without breaking contact between the second resin layers that face each other and are in contact with each other to produce a packaging bag, and the packaging bag includes a top sheet and a top surface of the second resin layer.
  • each of the top sheet and the back sheet including at least the first resin layer and the second resin layer constituting the inner surface of the packaging bag,
  • the first resin layer is provided so as to be peelable from the second resin layer, and the packaging bag is separated from one of the second resin layers in the top sheet. and a part of the second resin layer on the back sheet are bonded together to form a seal part.
  • the first resin layer includes at least a heteroatom-containing resin layer containing a heteroatom-containing resin as a main component, and the heteroatom-containing resin layer is in contact with the second resin layer.
  • the heteroatom-containing resin contains at least one selected from polyamide, ethylene-vinyl alcohol copolymer, polyester, and polyvinyl alcohol.
  • the first resin layer further includes a polyolefin layer containing polyolefin as a main component.
  • the polyolefin layer further contains a modified polyolefin in addition to the polyolefin.
  • the second resin layer includes a polyethylene layer having a density of 0.909 g/cm 3 or less, and a heat-fusible resin layer containing polyethylene as a main component and forming the inner surface of the tube,
  • the second resin layer contains linear low-density polyethylene as a main component between the polyethylene layer having a density of 0.909 g/cm 3 or less and the heat-fusible resin layer.
  • the peel strength between the first resin layer and the second resin layer is 1.0 N, measured under the conditions of peel angle: 180 degrees and test speed: 50 mm/min. /15 mm or less in width, the method for producing a packaging bag according to any one of [1] to [9] above.
  • a packaging bag wherein the packaging bag includes a top sheet and a back sheet opposite to the top sheet, and the top sheet and the back sheet each include a first resin layer and a first resin layer.
  • the packaging bag includes a part of the second resin layer in the top sheet and a part of the second resin layer in the back sheet.
  • the packaging bag has a seal portion formed by joining together, and the packaging bag includes the first resin layer forming the outer surface of the tube and the second resin layer forming the inner surface of the tube, which are produced by a coextrusion inflation method.
  • a packaging bag made by directly forming a bag from a film obtained by deforming a tubular film comprising at least a layer into a flat shape, or a stacked film obtained by cutting the film.
  • a packaging bag wherein the packaging bag includes a top sheet and a back sheet opposite to the top sheet, and the top sheet and the back sheet each include a first resin layer and a first resin layer.
  • a second resin layer constituting the inner surface of the packaging bag the second resin layer containing polyolefin as a main component, and in the top sheet and the back sheet, the first resin layer , the packaging bag is provided so as to be peelable from the second resin layer, and the packaging bag includes a part of the second resin layer in the top sheet and a part of the second resin layer in the back sheet.
  • the number of particles with a particle diameter of 0.2 ⁇ m or more adhering to the inner surface of the packaging bag is 100 particles/cm 2 or less as measured using a particle counter.
  • the first resin layer includes at least a heteroatom-containing resin layer containing a heteroatom-containing resin as a main component, and the heteroatom-containing resin layer is in contact with the second resin layer.
  • the heteroatom-containing resin contains at least one selected from polyamide, ethylene-vinyl alcohol copolymer, polyester, and polyvinyl alcohol.
  • the first resin layer further includes a polyolefin layer containing polyolefin as a main component.
  • the second resin layer comprises a heat-fusible resin layer containing polyolefin as a main component and forming the inner surface of the packaging bag.
  • Packaging bag as described.
  • the heat-fusible resin layer contains as a main component at least one type of polyethylene selected from linear low-density polyethylene and low-density polyethylene.
  • the second resin layer includes a polyethylene layer having a density of 0.909 g/cm 3 or less, and a heat-fusible resin layer containing polyethylene as a main component and forming the inner surface of the packaging bag.
  • the packaging bag according to any one of [13] to [18], wherein the polyethylene layer in the second resin layer is in contact with the heteroatom-containing resin layer in the first resin layer.
  • the second resin layer contains linear low-density polyethylene as a main component between the polyethylene layer having a density of 0.909 g/cm 3 or less and the heat-fusible resin layer.
  • the peel strength between the first resin layer and the second resin layer is 1.0 N, measured under the conditions of peel angle: 180 degrees and test speed: 50 mm/min.
  • the packaging bag according to any one of [11] to [20] above, which has a width of /15 mm or less.
  • a packaging bag including a laminate, wherein the laminate includes a main body portion including a heat-fusible resin layer and a peeling portion provided to be peelable from the main body portion in the thickness direction.
  • the peeling portion has a thickness of 10 ⁇ m or more
  • the packaging bag includes a top sheet made of the laminate, a back sheet made of the laminate, and the thermal melting of the top sheet.
  • the packaging bag has a seal portion where the adhesive resin layer and the heat-fusible resin layer of the back sheet are joined, and a storage portion that stores the contents, and the packaging bag is arranged at point A in plan view.
  • the packaging bag has a first seal portion extending along the first side and a second seal portion extending along the second side, and the first seal portion and the second seal portion overlap in plan view at the corner of the packaging bag, and the half-cut line is provided on the seal portion at the corner, according to [1] above. packaging bag.
  • the length of the side in contact with the first seal part of the third seal part and the length of the side of the third seal part in contact with the second seal part are each independently,
  • the laminate, packaging bag, and method for manufacturing the same according to the present disclosure will be described in more detail based on Examples, but the laminate, packaging bag, and method for manufacturing the same according to the present disclosure are not limited by the Examples.
  • Example 1 Polyamide (5033B), LLDPE (KF260T), and a mixture of 70% by mass LDPE (B128) and 30% by mass LLDPE (UZ3500ZA) were coextruded into a film by an inflation method. In this way, a laminate with a total thickness of 70 ⁇ m was obtained, comprising a 15 ⁇ m thick polyamide layer, a 15 ⁇ m thick LLDPE layer, and a 40 ⁇ m thick polyethylene blend layer. The notation of mass % in a mixture indicates the content rate of each component in the mixture.
  • Example 2 Polyamide (5033B), LLDPE (KF260T), and a mixture of 30% by mass LDPE (B128) and 70% by mass LLDPE (UZ2021L) were coextruded into a film by an inflation method. In this way, a laminate with a total thickness of 75 ⁇ m was obtained, comprising a 20 ⁇ m thick polyamide layer, a 15 ⁇ m thick LLDPE layer, and a 40 ⁇ m thick polyethylene blend layer.
  • Example 3 A mixture of 80% by weight LLDPE (UZ3520L) and 20% by weight acid-modified polyethylene (BYNEL 40E 1053), polyamide (5033B), LLDPE (KF260T), 30% by weight LDPE (B128) and 70% by weight A mixture of LLDPE (UZ2021L) was coextruded into a film by an inflation method. In this way, a 75 ⁇ m thick laminate was obtained, comprising a 15 ⁇ m thick LLDPE blend layer, a 5 ⁇ m thick polyamide layer, a 15 ⁇ m thick LLDPE layer, and a 40 ⁇ m thick polyethylene blend layer. .
  • Example 3A A mixture of 80% by weight HDPE (HZ5000SF) and 20% by weight acid-modified polyethylene (BYNEL 40E 1053), polyamide (5033B), LLDPE (SP0511), 30% by weight LDPE (B128) and 70% by weight A mixture of LLDPE (UZ2021L) was coextruded into a film by an inflation method. In this way, a 75- ⁇ m-thick laminate was obtained, comprising a 15- ⁇ m-thick HDPE blend layer, a 5- ⁇ m-thick polyamide layer, a 15- ⁇ m-thick LLDPE layer, and a 40- ⁇ m-thick polyethylene blend layer. .
  • EVOH E173B
  • LLDPE KF260T
  • B1278 30% by mass LDPE
  • UZ2021L 70% by mass LLDPE
  • Example 5 A laminate having a total thickness of 75 ⁇ m was obtained in the same manner as in Example 4 except that the thickness of the EVOH layer was changed to 20 ⁇ m.
  • EVOH (E173B) and a mixture of 70% by mass of LDPE (B128) and 30% by mass of LLDPE (UZ3500ZA) were coextruded into a film by an inflation method.
  • Polyamide (5033B), LLDPE (KF260T), LLDPE (UZ3520L), and a mixture of 30% by mass LDPE (B128) and 70% by mass LLDPE (UZ2021L) were coextruded into a film by an inflation method.
  • a laminate with a total thickness of 75 ⁇ m was obtained, comprising a polyamide layer with a thickness of 15 ⁇ m, an LLDPE layer with a thickness of 15 ⁇ m, an LLDPE layer with a thickness of 20 ⁇ m, and a polyethylene blend layer with a thickness of 25 ⁇ m.
  • Example 7 A laminate was obtained in the same manner as in Example 6 except that LLDPE (UZ3520L) was changed to LLDPE (INNATE ST50).
  • Example 8 A mixture of 80% by weight LLDPE (UZ3520L) and 20% by weight acid-modified polyethylene (BYNEL 40E 1053), polyamide (5033B), LLDPE (KF260T), LLDPE (UZ3520L) and 30% by weight LDPE (B128) ) and a mixture of 70% by mass LLDPE (UZ2021L) were coextruded into a film by an inflation method. In this way, a total of A laminate having a thickness of 75 ⁇ m was obtained.
  • Example 8A A mixture of 80% by weight HDPE (HZ5000SF) and 20% by weight acid-modified polyethylene (BYNEL 40E 1053), polyamide (5033B), LLDPE (SP0511), LLDPE (UZ3520L) and 30% by weight LDPE (B128 ) and a mixture of 70% by mass LLDPE (UZ2021L) were coextruded into a film by an inflation method. In this way, a total of A laminate having a thickness of 75 ⁇ m was obtained.
  • Example 9 A laminate was obtained in the same manner as in Example 6 except that polyamide (5033B) was changed to EVOH (E173B).
  • Examples 1 to 5 of the laminate of the first embodiment correspond to Examples 1 to 5 of the laminate of the second embodiment
  • Reference Examples 1 to 3 of the laminate of the first embodiment correspond to the laminate of the second embodiment
  • Examples 6 to 8 of the laminate of the first aspect correspond to Examples 6 to 9 of the laminate of the first aspect
  • Example 13 A biaxially stretched PET film (manufactured by Futamura Chemical, FE2001A) having a thickness of 12 ⁇ m and having one side corona treated was prepared (referred to as film 1 and film 2, respectively, in Example 13).
  • a low-density polyethylene film (manufactured by Aicello, L-535) having a thickness of 60 ⁇ m and having one side corona treated was prepared.
  • the corona-treated surface of Film 1 was coated with a two-component curable urethane adhesive (RU-77T/H-7, manufactured by Rock Paint) to a dry thickness of 3 ⁇ m, and the corona-treated surface of Film 2 was coated on the coated surface of Film 1.
  • Film 2 was laminated onto Film 1 so that they were in contact with each other to obtain an intermediate laminate.
  • the intermediate laminate and the low-density polyethylene film are laminated by sandwich laminating with a 20 ⁇ m thick extruded resin layer (EC-PE) formed by melt extrusion of low-density polyethylene (LC600A manufactured by Nippon Polyethylene). I got a body.
  • the extruded resin layer and low density polyethylene film were laminated onto the corona-untreated side of Film 2 in the intermediate laminate.
  • Example 14 Polymethylpentene (TPX MX004) and a mixture of 30% by mass LDPE (B128) and 70% by mass LLDPE (UZ2021L) were coextruded into a film by an inflation method. In this way, a laminate with a total thickness of 70 ⁇ m, including a 15 ⁇ m thick polymethylpentene layer and a 55 ⁇ m thick polyethylene blend layer, was obtained.
  • Example 15 Polymethylpentene (TPX MX004), LLDPE (KF260T), and a mixture of 30% by mass LDPE (B128) and 70% by mass LLDPE (UZ2021L) were coextruded into a film by an inflation method. In this way, a laminate with a total thickness of 75 ⁇ m was obtained, comprising a 20 ⁇ m thick polymethylpentene layer, a 15 ⁇ m thick LLDPE layer, and a 40 ⁇ m thick polyethylene blend layer.
  • Example 16 A laminate was obtained in the same manner as in Example 14 except that polymethylpentene (TPX MX004) was changed to polymethylpentene (TPX MX002).
  • Example 17 A laminate was obtained in the same manner as in Example 15 except that polymethylpentene (TPX MX004) was changed to polymethylpentene (TPX MX002).
  • Both films were bonded together so that the treated surfaces were in contact with each other to obtain an intermediate laminate.
  • the corona-treated surface of film 4 was coated with a urethane anchor coating agent (manufactured by Mitsui Chemicals, A-3210/A-3075) to a dry thickness of 0.3 ⁇ m, and the film 3 surface of the intermediate laminate and the anchor coated surface of film 4 were coated.
  • the intermediate laminate and the film 4 are sandwich-laminated via a 20 ⁇ m thick extruded resin layer (EC-PE) formed by melt extrusion of low density polyethylene (LC600A manufactured by Nippon Polyethylene) so that they face each other. By doing so, a laminate was obtained.
  • EC-PE extruded resin layer
  • Example 21 A film was formed by coextrusion of bPA (Amilan CM2001L), LLDPE (SP0511), and a mixture of 70% by mass LDPE (B128) and 30% by mass LLDPE (UZ3500ZA) by an inflation method. In this way, a laminate with a total thickness of 70 ⁇ m was obtained, comprising a 15 ⁇ m thick PA layer, a 15 ⁇ m thick LLDPE layer, and a 40 ⁇ m thick polyethylene blend layer. The notation of mass % in a mixture indicates the content rate of each component in the mixture.
  • Example 22 A mixture of 80% by weight HDPE (HZ5000SF) and 20% by weight acid-modified polyethylene (BYNEL 40E 1053), bPA (Amilan CM2001L), LLDPE (SP0511), 30% by weight LDPE (B128) and 70% by weight A mixture of LLDPE (UZ2021L) was coextruded into a film by an inflation method. In this way, a laminate with a total thickness of 75 ⁇ m was obtained, comprising a 15 ⁇ m thick HDPE blend layer, a 5 ⁇ m thick PA layer, a 15 ⁇ m thick LLDPE layer, and a 40 ⁇ m thick polyethylene blend layer. Ta.
  • Example 23 A mixture of 80% by weight bHDPE (SGF4950) and 20% by weight acid-modified polyethylene (BYNEL 40E 1053), bPA (Amilan CM2001L), LLDPE (SP0511), LLDPE (UZ3520L) and 30% by weight LDPE ( B128) and a mixture of 70% by mass LLDPE (UZ2021L) were coextruded into a film by an inflation method. In this way, a total of A laminate having a thickness of 75 ⁇ m was obtained.
  • Example 24 A laminate having a total thickness of 75 ⁇ m was obtained in the same manner as in Example 23 except that bPA (Amilan CM2001L) was changed to bPA (RILSAN BESN P20 TL).
  • Example 25 A laminate having a total thickness of 75 ⁇ m was obtained in the same manner as in Example 23, except that bPA (Amilan CM2001L) was replaced with bPA (VESTAMID Terra DS22).
  • a film obtained by peeling off the first resin layer (release layer) from the second resin layer (sealant layer) in the laminate and corresponding to the release layer is referred to as a release film, and the sealant layer A film corresponding to this is referred to as a sealant film.
  • ⁇ Peel strength> The laminate was cut to give a test piece having a width of 15 mm and a length of 100 mm.
  • a tabletop tensile compression tester MCT-1150 manufactured by AND
  • initial chuck distance 100 mm
  • peeling angle 180 degrees
  • test speed 50 mm/min.
  • the peel strength (N/15 mm width) between the release layer and the sealant layer in the laminate was measured.
  • ⁇ Monomaterial ratio> The content ratio (monomaterial ratio, mass %) of the resin material with the largest content was calculated for the laminate, release film, and sealant film.
  • a loop stiffness tester manufactured by Toyo Seiki Seisakusho was used as a measuring instrument. The laminate, release film, and sealant film were each cut to obtain a test piece with a width of 15 mm and a length of 200 mm. A test piece whose length direction is along the machine direction (MD) of the laminate and film is indicated as "MD” in the table, and a test piece whose length direction is along the width direction (TD) of the laminate and film is indicated as "MD" in the table. It is written as "TD”.
  • the loop stiffness tester includes a pair of chucks for gripping a pair of lengthwise ends of a test piece, and a support member that supports the chucks.
  • both ends of the test piece were clamped and fixed between respective chucks.
  • the distance between the pair of chucks was 60 mm.
  • the pair of chucks were slid on the support member in a direction in which the distance between the chucks was reduced, and the chucks were brought into contact with each other via the test piece. In this way, a circular loop with a width of 15 mm was formed.
  • a circular loop was formed with the sealant layer facing inside the loop.
  • a circular loop was formed with the release side facing the outside of the loop.
  • the sealant film a circular loop was formed with the release side facing the outside of the loop. The obtained circular loop was pushed in from the opposite side of the chuck in the diametrical direction of the loop at a pushing speed of 3.3 mm/sec, and the value measured was defined as the loop stiffness value (g).
  • the laminate, release film, and sealant film were each cut to obtain a test piece having a width of 5 cm and a length of 5 cm.
  • a tabletop tensile compression tester MCT-1150 manufactured by AND Co., Ltd. was used.
  • a semicircular needle with a diameter of 1.0 mm and a tip radius of 0.5 mm was pierced into the test piece at a test speed of 50 mm/min, and the maximum strength (N) until the needle penetrated the test piece was measured.
  • the needle was pierced into the sealant layer surface and the release layer surface, and the puncture strength (N) of each was measured.
  • the needle was pierced into the surface opposite to the release surface, and the puncture strength (N) was measured.
  • the needle was pierced into the peeled surface and the puncture strength (N) was measured.
  • ⁇ Seal strength> The laminate was cut to give a test piece having a width of 15 mm and a length of 100 mm. Layer two test pieces so that their sealant layers are in contact with each other, and heat-seal a 15 mm x 15 mm portion at one end of the test piece under the conditions of a temperature of 140°C (single side heating), a pressure bonding time of 1 second, and a pressure of 1 kgf/ cm2. A seal portion was formed and a test piece was obtained.
  • test was conducted in accordance with JIS Z1707:2019 using a tabletop tensile compression tester MCT-1150 (manufactured by AND Co., Ltd.) as a measuring instrument, distance between chucks: 100 mm, peeling mode:
  • the seal strength (N/15 mm width) was measured under the conditions of T-peel and test speed: 300 mm/min.
  • test specimen was opened 180 degrees so that the seal part of the test specimen was in the center of the two grips of the testing machine, and both ends of the specimen were placed in the two grips of the testing machine.
  • the seal was attached and pulled at a speed of 300 mm/min until the seal part broke, and the maximum strength (N) was determined.
  • the maximum strength (N) measured for the 15 mm width test piece was defined as the heat seal strength (N/15 mm width).
  • ⁇ Method for measuring the number of particles in liquid The number of foreign substances (number of particles) adhering to the surface and inner surface of the sample bag prepared using the laminates obtained in Examples, Reference Examples, or Comparative Examples was measured using a particle counter (manufactured by Rion Corporation, KE-40). /KS-40AF) under the condition that the measurement size is 0.2 ⁇ m or more.
  • the sample bags and blank bags were produced in a clean class 1000 environment. The measurements were conducted in a clean class 100 environment.
  • Method for measuring the number of particles in liquid Surface of bag after first resin layer is peeled off
  • test bags Two types were prepared: a test bag 3 containing a sample bag inside a blank bag, and a test bag 4 containing only a blank bag. 4. Pour pure water whose blank value has been confirmed into the blank bag of test bag 3 (outside the sample bag), spread the pure water over the inner surface of the blank bag and the surface of the sample bag, and then hold the test bag 3 for at least 12 hours. I left it still. Similarly, pure water for which the blank value had been confirmed was poured into the blank bag of the test bag 4, and after the pure water was spread over the inner surface of the blank bag, the test bag 4 was allowed to stand still for 12 hours or more. 5.
  • the number of particles in the liquid was measured for 10 mL of water collected from each of the test bags 3 and 4 after "4.” above. Subtract the blank value of pure water and the number of particles in the liquid of test bag 4 from the number of particles in the liquid of test bag 3, and calculate the amount of particles attached to the surface of the sample bag (the surface of the second resin layer of the bag (peeling surface)). The number of foreign objects (number of particles) was calculated.
  • the tubular film consists of a 15 ⁇ m thick HDPE layer constituting the outer surface of the tube, a 5 ⁇ m thick PA layer, a 15 ⁇ m thick LLDPE layer, a 20 ⁇ m thick LLDPE layer, and a 25 ⁇ m thick LLDPE layer constituting the tube inner surface.
  • the polyethylene blend layer had a total thickness of 80 ⁇ m.
  • the inner surfaces of the tubular films were brought into contact with each other using pinch rolls to flatten them. The notation of mass % in a mixture indicates the content rate of each component in the mixture.
  • the flattened film is heat-sealed using a high-speed three-sided sealing automatic bag making machine (BH-60D manufactured by Totani Giken Kogyo) at a temperature of 140°C, a crimping time of 0.8 seconds, and a pressure of 3 kgf/cm 2 .
  • a three-sided sealed bag was produced by cutting the bag.
  • Such a bag making method will be referred to as "Method A.”
  • the release layer which is the first resin layer, consists of a 15 ⁇ m thick HDPE layer and a 5 ⁇ m thick PA layer.
  • the sealant layer which is the second resin layer, consists of a 15 ⁇ m thick LLDPE layer, a 20 ⁇ m thick LLDPE layer, and a 25 ⁇ m thick polyethylene blend layer.
  • Example 32 A mixture of 80% by weight HDPE (HZ5000SF) and 20% by weight mHDPE (BYNEL 40E 1053), PA (5033B), LLDPE (SP0511), LLDPE (UMERIT125FN), 80% by weight LLDPE (NF444N) and A mixture of 20% by mass of LDPE (B128) was extruded from the extruder into a tube through a multilayer annular die using a 5-layer coextrusion inflation device in the same manner as in Example 31, and then vertically. A tube-shaped film was formed by inflating it with air pressure while taking it.
  • the tubular film consists of a 15 ⁇ m thick HDPE layer constituting the outer surface of the tube, a 5 ⁇ m thick PA layer, a 15 ⁇ m thick LLDPE layer, a 20 ⁇ m thick LLDPE layer, and a 25 ⁇ m thick LLDPE layer constituting the tube inner surface.
  • the total thickness was 80 ⁇ m.
  • the subsequent operations were carried out in the same manner as in Example 31 to produce a three-sided sealed bag.
  • Example 33 A 30 ⁇ m thick HDPE layer, a 5 ⁇ m thick PA layer, a 20 ⁇ m thick LLDPE layer, and a 20 ⁇ m thick LLDPE layer constituting the outer surface of the tube were prepared in the same manner as in Example 31 except that the thickness of each layer was changed. A tubular film with a total thickness of 95 ⁇ m was obtained, comprising an LLDPE layer of 20 ⁇ m and a 20 ⁇ m thick polyethylene blend layer constituting the inner surface of the tube. The subsequent operations were carried out in the same manner as in Example 31 to produce a three-sided sealed bag.
  • Example 34 A 30 ⁇ m thick HDPE layer, a 5 ⁇ m thick PA layer, a 20 ⁇ m thick LLDPE layer, and a 20 ⁇ m thick LLDPE layer constituting the outer surface of the tube were prepared in the same manner as in Example 32 except that the thickness of each layer was changed. A tubular film with a total thickness of 95 ⁇ m was obtained, comprising an LLDPE layer of 20 ⁇ m and a 20 ⁇ m thick polyethylene blend layer constituting the inner surface of the tube. The subsequent operations were carried out in the same manner as in Example 31 to produce a three-sided sealed bag.
  • a tubular film was obtained in the same manner as in Example 31.
  • the inner surfaces of the tube-shaped films were brought together and flattened using pinch rolls. Both ends of the flattened film in the width direction were cut off to a predetermined width, and the two films were each wound up to obtain two roll-shaped films.
  • the films unwound from two rolls are stacked so that the polyethylene blend layers (thermal adhesive resin layers) are in contact with each other, and a high-speed three-sided seal automatic bag making machine (BH-60D manufactured by Totani Giken Kogyo Co., Ltd.) is used.
  • BH-60D manufactured by Totani Giken Kogyo Co., Ltd.
  • the bag was heat-sealed at a temperature of 140° C., a compression time of 0.8 seconds, and a pressure of 3 kgf/cm 2 , and a predetermined cutting process was performed to produce a three-sided sealed bag.
  • a bag making method will be referred to as "Method B.”
  • a three-sided sealed bag of Reference Example 32 was produced in the same manner as Reference Example 31 using the tubular film obtained in Example 32.
  • a three-sided sealed bag of Reference Example 33 was produced in the same manner as Reference Example 31 using the tubular film obtained in Example 33.
  • a three-sided sealed bag of Reference Example 34 was produced in the same manner as Reference Example 31 using the tubular film obtained in Example 34.
  • ⁇ Peel strength> The three-sided sealed bag was cut to give a test piece having a width of 15 mm and a length of 100 mm.
  • a tabletop tensile compression tester MCT-1150 manufactured by AND
  • initial chuck distance 100 mm
  • peel angle 180 degrees
  • test speed 50 mm/min.
  • the peel strength (N/15 mm width) between the release layer and the sealant layer in the above test piece was measured.
  • ⁇ Piercing strength> The three-sided sealed bag was cut to obtain a test piece having a width of 5 cm and a length of 5 cm.
  • the puncture strength of each of the above test pieces was measured in accordance with JIS Z1707:2019.
  • a tabletop tensile compression tester MCT-1150 manufactured by AND Co., Ltd.
  • a semicircular needle with a diameter of 1.0 mm and a tip radius of 0.5 mm was pierced into the sealant layer surface and release layer surface of the test piece at a test speed of 50 mm/min, and the needle was pierced with the maximum strength until it penetrated the test piece.
  • a certain puncture strength (N) was measured.
  • ⁇ Seal strength> A test piece having a width of 15 mm and a length of 100 mm was cut out from the tubular film. Layer two test pieces so that their sealant layers are in contact with each other, and heat seal a 15 mm x 15 mm portion at one end of the test piece under the conditions of a temperature of 140°C (single side heating), a pressure bonding time of 1 second, and a pressure of 1 kgf/ cm2. A seal portion was formed and a test piece was obtained.
  • test was conducted in accordance with JIS Z1707:2019 using a tabletop tensile compression tester MCT-1150 (manufactured by AND Co., Ltd.) as a measuring instrument, distance between chucks: 100 mm, peeling mode:
  • the seal strength (N/15 mm width) was measured under the conditions of T-peel and test speed: 300 mm/min.
  • test piece is opened 180 degrees so that the seal part of the test piece is in the center of the two grips of the testing machine, and both ends of the test piece are placed in the two grips of the testing machine.
  • the seal was attached and pulled at a speed of 300 mm/min until the seal part broke, and the maximum strength (N) was determined.
  • the maximum strength (N) measured for the 15 mm width test piece was defined as the heat seal strength (N/15 mm width).
  • ⁇ Method for measuring the number of particles in liquid The number of foreign objects (number of particles) adhering to the inner surface of the three-sided seal bag and the surface of the second resin layer was measured using a particle counter (manufactured by Rion Corporation, KE-40/KS-40AF) as a measurement device, with a measurement size of 0. Measurement was performed under the condition of .2 ⁇ m or more.
  • the bags were manufactured in a clean class 1000 environment. The measurements were conducted in a clean class 100 environment.
  • Method for measuring the number of particles in liquid Surface of bag after first resin layer is peeled off
  • test bags Two types were prepared: a test bag 1 containing a sample bag inside a blank bag, and a test bag 2 containing only a blank bag. 4. Pour pure water for which the blank value has been confirmed into the blank bag of test bag 1 (outside the sample bag), spread the pure water over the inner surface of the blank bag and the surface of the sample bag, and then leave test bag 1 still for 24 hours. I placed it. In the same manner, pure water for which the blank value had been confirmed was poured into the blank bag of test bag 2, and after the pure water was spread over the inner surface of the blank bag, test bag 2 was allowed to stand still for 24 hours. 5.
  • the number of particles in the liquid was measured for 10 mL of water collected from each of test bags 1 and 2 after the above "4.". Subtract the blank value of pure water and the number of particles in the liquid of test bag 2 from the number of particles in the liquid of test bag 1, and calculate the result on the surface of the sample bag (the surface of the second resin layer (separation surface) of the three-sided seal bag). The number of attached foreign substances (number of particles) was calculated.
  • Preparation example 2 A 5 ⁇ m thick HDPE blend layer, a 5 ⁇ m thick polyamide layer, a 15 ⁇ m thick LLDPE layer, and a 40 ⁇ m thick LLDPE layer were prepared in the same manner as in Production Example 1 except that the thickness of the HDPE blend layer was changed to 5 ⁇ m. A laminate with a thickness of 65 ⁇ m was obtained, comprising a polyethylene blend layer of .
  • An LDPE film was prepared by melt-extruding low-density polyethylene (LC522 manufactured by Nippon Polyethylene Co., Ltd., MFR: 4.0 g/10 minutes, density: 0.923 g/cm 3 ) to a thickness of 30 ⁇ m and corona treatment on one side.
  • a biaxially stretched PET film manufactured by Toyobo Co., Ltd., E5102 with a thickness of 12 ⁇ m and which had been corona treated on one side was prepared.
  • the corona-treated surface of the biaxially stretched PET film was coated with a two-part curable anchor coating agent (manufactured by Mitsui Chemicals, A3210/A3075, hereinafter also referred to as "AC") to a thickness of 0.3 ⁇ m.
  • AC a two-part curable anchor coating agent
  • the coated side of the biaxially stretched PET film and the corona-treated side of the LDPE film were bonded together by melt extrusion of low-density polyethylene (LC600A, manufactured by Nippon Polyethylene, MFR: 7.0 g/10 minutes, density: 0.918 g/cm 3 ). They were bonded together via the formed extruded resin layer (EC-PE) with a thickness of 15 ⁇ m.
  • LC600A low-density polyethylene
  • the non-corona treated side of the biaxially stretched PET film and a 60 ⁇ m thick polyethylene film (manufactured by Tama Poly, NB-1) were combined into a 15 ⁇ m thick extruded resin layer formed by melt extrusion of low density polyethylene (LC600A). They were bonded together via (EC-PE). In this way, a laminate was obtained.
  • Preparation example 5 A 4 ⁇ m thick HDPE blend layer, a 4 ⁇ m thick polyamide layer, and a 15 ⁇ m thick LLDPE layer were prepared in the same manner as in Production Example 1, except that the thickness of the HDPE blend layer and the polyamide layer were each changed to 4 ⁇ m. A laminate having a thickness of 63 ⁇ m was obtained, comprising a polyethylene blend layer having a thickness of 40 ⁇ m.
  • Example and reference example Production of packaging bag
  • the temperature was 160°C
  • the crimping time was 0.8 seconds
  • the pressure was 3 kgf/cm 2
  • Table 5-1 A three-sided pouch with a size of 170 mm x 120 mm was prepared by heat sealing under the sealing width conditions shown in Table 5-2.
  • Half-cut lines were formed on the three-sided pouch using a biku blade as specified at the positions listed in Tables 5-1 and 5-2.
  • the starting point position of the half-cut line is the distance between point A, which is the starting point of the half-cut line, and the vertex V above.
  • the shape of the third seal part is triangular, and the width of the third seal part is the length of the side of the third seal part that is in contact with the first seal part.
  • the height of the seal portion is the length of the side of the third seal portion that is in contact with the second seal portion.
  • ⁇ Peel strength> The laminate was cut to give a test piece having a width of 15 mm and a length of 100 mm.
  • a tabletop tensile compression tester MCT-1150 manufactured by AND
  • initial chuck distance 100 mm
  • peel angle 180 degrees
  • test speed 50 mm/min.
  • the peel strength (N/15 mm width) between the main body part and the peeled part in the laminate was measured.
  • the environment during the measurement was a temperature of 23° C. and a humidity of 50% RH. Measurements were performed on three test pieces, and the arithmetic mean value of the three obtained values was described as the peel strength.
  • Half cut line 101 First side 101S : First seal part 102: Second side 102S: Second seal part 103: Corner part 103S: Third seal part 104: Half cut line 106: Non-half cut line 110: Corner part 112S: Intersection part D1 : Shortest distance between the half-cut line and the second side D101: Seal width of the first seal part D102: Seal width of the second seal part D103a: Shortest distance of the side of the third seal part that touches the first seal part Length D103b: Length of the side of the third seal part that touches the second seal part

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Wrappers (AREA)

Abstract

第1の樹脂層と第2の樹脂層とを少なくとも備える積層体であって、第1の樹脂層は、第2の樹脂層から剥離できるように設けられており、第1の樹脂層と第2の樹脂層との剥離強度は、1.0N/15mm幅以下であり、下記(1)および/または(2)の要件を満たす、積層体。 (1)第2の樹脂層は、密度が0.909g/cm3以下のポリエチレン層を少なくとも備えるシーラント層であり、第2の樹脂層におけるポリエチレン層が、第1の樹脂層と接している。 (2)第2の樹脂層は、ポリオレフィンを主成分として含有するシーラント層であり、第2の樹脂層におけるポリオレフィンの含有割合は、第2の樹脂層の質量を基準として、82質量%以上である。

Description

積層体、包装袋および包装袋の製造方法 関連出願の相互参照
 本願は、それぞれ2022年8月29日に出願された日本国特許出願2022-136260号および日本国特許出願2022-136263号、2022年10月7日に出願された日本国特許出願2022-162455号、2023年3月30日に出願された日本国特許出願2023-056360号、ならびにそれぞれ2023年8月9日に出願された日本国特許出願2023-129895号、日本国特許出願2023-129913号および日本国特許出願2023-129821号に基づく優先権を主張するものであり、これら全体の開示内容は参照されることにより、本明細書の開示の一部とされる。
 本開示は、積層体、包装袋および包装袋の製造方法に関する。
 半導体製品は、埃および塵等の異物が該製品に付着すると品質が低下しえることから、清浄度の高いクリーンルーム等のクリーン環境下で製造または使用されている。このような環境内に物品を持ち込む際には、プラスチックフィルム製の袋内に物品を収容した包装体を、クリーン環境内に持ち込む場合が多い。したがって、半導体製品等の高いクリーン度が要求される物品を収容する包装袋に対しても、高いクリーン性が求められている。
 包装体は、従来、内袋および外袋を少なくとも備える2重袋を用いて以下のようにして製造されている(例えば、特許文献1参照)。まず内袋の内側に物品を入れ、真空脱気し、内袋の開口部を密封する。次に外袋の内側に該内袋を入れ、真空脱気し、外袋の開口部を密封する。このような2重包装、または必要に応じて3重包装により、物品は包装されている。物品を使用する際には、クリーンルームの前室で外袋を開封し、クリーンな状態の内袋をクリーンルーム内で開封して、物品は取り出されている。
特開2012-126437号公報
 2重脱気包装または3重脱気包装により物品を包装する際、脱気包装が複数回行われる。このため、物品包装の作業効率が高くない場合がある。また、包装袋の開封時には、複数回行われる袋の開封が手間である場合がある。
 そこで本発明者らは、剥離可能な表面フィルムを備える積層体により包装袋を作製することを検討した。クリーンルームの前室で包装袋の表面フィルムを剥離することで、クリーンな状態の包装袋をクリーンルーム内に持ち込むことができる。しかしながら、本発明者らは、そのような積層体において層間での浮きが発生し、外観が低下するという新たな課題を見出した。
 また、近年、プラスチック海洋汚染および地球温暖化など、環境問題に対する取り組みが重要視されている。したがって、包装材料などには、高いリサイクル性が求められている。また、環境問題に対する取り組みという観点から、環境負荷の低い包装袋が望まれている。
 本開示の一つの態様の課題は、クリーン環境内で使用される物品を包装でき、かつ層間での浮きの発生が抑制された、包装材料として好適な積層体を提供することにある。
 本開示の一つの態様の課題は、クリーン環境内で使用される物品を包装できる包装材料として好適で、リサイクル性に優れる積層体を提供することにある。
 本開示の一つの態様の課題は、クリーン環境内で使用される物品を包装できる包装材料として好適で、環境負荷の低い積層体を提供することにある。
 本開示の一つの態様の積層体は、第1の樹脂層と、第2の樹脂層と、を少なくとも備え、第1の樹脂層は、第2の樹脂層から剥離できるように設けられており、剥離角度:180度、試験速度:50mm/minの条件にて測定される、第1の樹脂層と第2の樹脂層との剥離強度は、1.0N/15mm幅以下であり、該積層体は、以下の(1)および/または(2)の要件を満たす。
(1)第2の樹脂層は、密度が0.909g/cm3以下のポリエチレン層を少なくとも備えるシーラント層であり、第2の樹脂層におけるポリエチレン層が、第1の樹脂層と接している。
(2)第2の樹脂層は、ポリオレフィンを主成分として含有するシーラント層であり、第2の樹脂層におけるポリオレフィンの含有割合は、第2の樹脂層の質量を基準として、82質量%以上である。
 本開示の一つの態様の積層体は、第1の樹脂層と、第2の樹脂層と、を少なくとも備え、第1の樹脂層は、第2の樹脂層から剥離できるように設けられており、第2の樹脂層は、ポリオレフィンを主成分として含有するシーラント層であり、第1の樹脂層および第2の樹脂層から選択される少なくとも1つの樹脂層は、バイオマス由来の樹脂材料を少なくとも含有する。
 本開示の一つの態様によれば、クリーン環境内で使用される物品を包装でき、かつ層間での浮きの発生が抑制された、包装材料として好適な積層体を提供できる。
 本開示の一つの態様によれば、クリーン環境内で使用される物品を包装できる包装材料として好適で、リサイクル性に優れる積層体を提供できる。
 本開示の一つの態様によれば、クリーン環境内で使用される物品を包装できる包装材料として好適で、環境負荷の低い積層体を提供できる。
図1は、一実施形態に係る積層体の模式断面図である。 図2は、一実施形態に係る積層体の模式断面図である。 図3は、一実施形態に係る積層体の模式断面図である。 図4は、一実施形態に係る積層体の模式断面図である。 図5は、一実施形態に係る積層体の模式断面図である。 図6は、一実施形態に係る包装袋の模式断面図およびその関連図である。 図7は、一実施形態に係る包装袋の正面図である。 図8は、ハーフカット線を説明する模式図である。 図9は、包装袋の作製を説明する正面図である。 図10は、一実施形態に係る積層体の模式断面図である。 図11は、一実施形態に係る包装袋の模式断面図およびその関連図である。 図12は、包装袋の作製を説明する正面図である。 図13は、一実施形態に係る包装袋の正面図の隅部付近の拡大図である。 図14は、一実施形態に係る包装袋の正面図の隅部付近の拡大図である。 図15は、一実施形態に係る包装袋の正面図である。 図16は、一実施形態に係る包装袋の正面図である。 図17は、一実施形態に係る包装袋の模式断面図およびその関連図である。 図18は、一実施形態に係る包装袋の正面図である。
 以下、本開示の実施形態について、詳細に説明する。本開示は多くの異なる形態で実施でき、以下に例示する実施形態の記載内容に限定して解釈されない。図面は、説明をより明確にするため、実施形態に比べ、各層の幅、厚さおよび形状等について模式的に表される場合があるが、あくまで一例であって、本開示の解釈を限定しない。本明細書と各図において、既出の図に関してすでに説明したものと同様の要素には、同一の符号を付して、詳細な説明を適宜省略することがある。
 本開示において、あるパラメータに関して複数の上限値の候補および複数の下限値の候補が挙げられている場合、そのパラメータの数値範囲は、任意の1つの上限値の候補と任意の1つの下限値の候補とを組み合わせることによって構成されてもよい。上記パラメータとしては、例えば、物性値、成分の含有割合および層の厚さが挙げられる。一例として、「パラメータBは、好ましくはA1以上、より好ましくはA2以上、さらに好ましくはA3以上である。パラメータBは、好ましくはA4以下、より好ましくはA5以下、さらに好ましくはA6以下である。」との記載について説明する。この例において、パラメータBの数値範囲は、A1以上A4以下でもよく、A1以上A5以下でもよく、A1以上A6以下でもよく、A2以上A4以下でもよく、A2以上A5以下でもよく、A2以上A6以下でもよく、A3以上A4以下でもよく、A3以上A5以下でもよく、A3以上A6以下でもよい。
 本明細書の以下の説明において、登場する各成分(例えば、ポリエチレンおよびポリプロピレンなどのポリオレフィン、α-オレフィン、ヘテロ原子含有樹脂などの樹脂材料、ならびに添加剤)は、それぞれ1種用いてもよく、2種以上を用いてもよい。
 本明細書においてポリエチレンとは、全繰返し構成単位中、エチレン由来の構成単位の含有割合が50モル%超の重合体をいう。この重合体において、エチレン由来の構成単位の含有割合は、好ましくは70モル%以上、より好ましくは80モル%以上、さらに好ましくは90モル%以上、特に好ましくは95モル%以上である。上記含有割合は、NMR法により測定される。
 本明細書において、ポリエチレンは、エチレンの単独重合体でもよく、エチレンと、エチレン以外のエチレン性不飽和モノマーとの共重合体でもよい。エチレン以外のエチレン性不飽和モノマーとしては、例えば、プロピレン、1-ブテン、1-ペンテン、1-ヘキセン、1-オクテン、1-デセン、1-ドデセン、1-テトラデセン、1-ヘキサデセン、1-オクタデセン、1-エイコセン、3-メチル-1-ブテン、4-メチル-1-ペンテンおよび6-メチル-1-ヘプテン等の炭素数3以上20以下のα-オレフィン、酢酸ビニルおよびプロピオン酸ビニル等のビニルモノマー、ならびに(メタ)アクリル酸メチルおよび(メタ)アクリル酸エチル等の(メタ)アクリル酸エステルが挙げられる。
 本明細書において、ポリエチレンとしては、例えば、高密度ポリエチレン、中密度ポリエチレン、低密度ポリエチレンおよび直鎖状低密度ポリエチレン、ならびにエチレン-酢酸ビニル共重合体およびエチレン-(メタ)アクリル酸エステル共重合体が挙げられる。
 本明細書においてポリエチレンの密度は、以下のとおりである。
 高密度ポリエチレンの密度は、好ましくは0.945g/cm3を超え、好ましくは0.965g/cm3以下であり、例えば0.945g/cm3を超えて0.965g/cm3以下である。中密度ポリエチレンの密度は、好ましくは0.932g/cm3を超えて0.945g/cm3以下である。低密度ポリエチレンの密度は、好ましくは0.860g/cm3以上0.932g/cm3以下、より好ましくは0.900g/cm3以上0.932g/cm3以下である。直鎖状低密度ポリエチレンの密度は、好ましくは0.860g/cm3以上0.932g/cm3以下、より好ましくは0.900g/cm3以上0.932g/cm3以下である。ポリエチレンの密度は、JIS K7112:1999のD法(密度勾配管法、23℃)に準拠して測定される。
 低密度ポリエチレンは、例えば、高圧重合法によりエチレンを重合して得られるポリエチレン(高圧法低密度ポリエチレン)である。直鎖状低密度ポリエチレンは、例えば、チーグラー・ナッタ触媒などのマルチサイト触媒またはメタロセン触媒などのシングルサイト触媒を用いた重合法によりエチレンおよび少量のα-オレフィンを重合して得られるポリエチレンである。
 密度または分岐が異なるポリエチレンは、重合方法を適宜選択することによって得られる。例えば、重合触媒として、チーグラー・ナッタ触媒などのマルチサイト触媒、またはメタロセン触媒などのシングルサイト触媒を用いて、気相重合、スラリー重合、溶液重合および高圧イオン重合のいずれかの方法により、1段または2段以上の多段で重合を行うことが好ましい。
 本明細書において、ポリエチレンとしては、バイオマス由来のポリエチレン(以下「バイオマスポリエチレン」ともいう)を用いてもよい。すなわち、ポリエチレンを得るための原料として、化石燃料から得られるエチレン等に代えて、バイオマス由来のエチレン等を用いてもよい。バイオマスポリエチレンは、カーボンニュートラルな材料であることから、積層体または包装袋による環境負荷を低減できる。バイオマスポリエチレンは、例えば、特開2013-177531号公報に記載されている方法により製造できる。市販されているバイオマスポリエチレンを用いてもよい。
 ポリエチレンとしては、メカニカルリサイクルまたはケミカルリサイクルされたポリエチレンを用いてもよい。これにより、積層体または包装袋による環境負荷を低減できる。メカニカルリサイクルとは、一般的に、回収されたポリエチレンフィルムなどを粉砕し、アルカリ洗浄してフィルム表面の汚れ、異物を除去した後、高温・減圧下で一定時間乾燥してフィルム内部に留まっている汚染物質を拡散させ除染を行い、フィルムの汚れを取り除き、再びポリエチレンに戻す方法である。ケミカルリサイクルとは、一般的に、回収されたポリエチレンフィルムなどをモノマーレベルまで分解し、当該モノマーを再度重合してポリエチレンを得る方法である。
 本明細書において、ある層における「主成分」とは、当該層中の含有割合が50質量%超、好ましくは60質量%以上、より好ましくは70質量%以上、さらに好ましくは80質量%以上である成分をいう。
 本明細書において、「フィルム」および「シート」等の用語は、呼称の違いのみに基づいて互いから区別されない。
 [積層体]
 本開示の積層体は、第1の樹脂層と、第2の樹脂層と、を少なくとも備える。第1の樹脂層は剥離部であり、第2の樹脂層は本体部である。すなわち積層体は、剥離部と、本体部と、を少なくとも備える。
 第2の樹脂層は、第1面と、該第1面に対向する第2面とを有する。第1の樹脂層は、第2の樹脂層の第1面上に設けられている。第1の樹脂層は、第2の樹脂層に接しており、具体的には、第2の樹脂層の第1面に接している。したがって、通常、第2の樹脂層の第1面は、第1の樹脂層を剥離する際の剥離面である。
 本開示の積層体は、例えば、以下の第1~第3の態様の積層体である。ただし、本開示の積層体は、第1~第3の積層体に限定されない。
 第1の態様の積層体は、剥離角度:180度、試験速度:50mm/minの条件にて測定される、第1の樹脂層と第2の樹脂層との剥離強度が、1.0N/15mm幅以下であり、第2の樹脂層が、密度が0.909g/cm3以下のポリエチレン層を少なくとも備えるシーラント層であり、第2の樹脂層におけるポリエチレン層が、第1の樹脂層と接していることを特徴とする。上記第1の態様によれば、クリーン環境内で使用される物品を包装でき、かつ層間での浮きの発生が抑制された、包装材料として好適な積層体を提供できる。
 第2の態様の積層体は、剥離角度:180度、試験速度:50mm/minの条件にて測定される、第1の樹脂層と第2の樹脂層との剥離強度が、1.0N/15mm幅以下であり、第2の樹脂層が、ポリオレフィンを主成分として含有するシーラント層であり、第2の樹脂層におけるポリオレフィンの含有割合が、第2の樹脂層の質量を基準として、82質量%以上であることを特徴とする。上記第2の態様によれば、クリーン環境内で使用される物品を包装できる包装材料として好適で、リサイクル性に優れる積層体を提供できる。
 第3の態様の積層体は、第2の樹脂層が、ポリオレフィンを主成分として含有するシーラント層であり、第1の樹脂層および第2の樹脂層から選択される少なくとも1つの樹脂層が、バイオマス由来の樹脂材料を少なくとも含有することを特徴とする。上記第3の態様によれば、クリーン環境内で使用される物品を包装できる包装材料として好適で、環境負荷の低い積層体を提供できる。
 以下の説明において、第1~第3の態様の積層体について共通する事項について説明するとき、あるいは第1~第3の態様の積層体を特に区別しないときは、単に「積層体」とも記載する。
 第1の樹脂層および第2の樹脂層から選択される少なくとも1つの樹脂層は、一実施形態において、バイオマス由来の樹脂材料(以下「バイオマス材料」ともいう)を含有する。バイオマス材料は、例えば、原料の少なくとも一部としてバイオマス由来の原料(具体的には、植物由来の原料)を用いて得られる樹脂材料である。バイオマス材料は、カーボンニュートラルな材料であることから、積層体または包装袋による環境負荷を低減できる。
 バイオマス材料としては、例えば、植物原料から得られるバイオマス由来のエタノール(発酵エタノール)から得られるエチレンを原料モノマーの少なくとも一部として合成されるポリエチレン、および廃食用油等から得られるプロピレンを原料モノマーの少なくとも一部として合成されるポリプロピレンなどのポリオレフィン、バイオマス由来のジオール成分および/またはバイオマス由来のジカルボン酸成分を原料モノマーの少なくとも一部として合成されるポリエステル、バイオマス由来のジカルボン酸および/またはバイオマス由来のジアミンを原料モノマーの少なくとも一部として合成されるポリアミドが挙げられる。以下、それぞれのバイオマス材料を、バイオマスポリエチレンおよびバイオマスポリプロピレンなどのバイオマスポリオレフィン、バイオマスポリエステル、バイオマスポリアミドとも記載する。植物原料としては、例えば、トウモロコシ、サトウキビ、ビートおよびマニオクが挙げられる。植物原料は、また、大豆油、亜麻仁油、桐油、ヤシ油、パーム油およびヒマシ油等の植物由来の油、ならびにそれらを主体とした廃食用油等をリサイクルした再生油等の植物原料でもよい。
 バイオマス材料は、原料モノマーの少なくとも一部がバイオマス由来であればよく、バイオマス由来の原料モノマー100質量%から構成される樹脂材料でもよく、バイオマス由来の原料モノマーとともに、化石燃料由来の原料モノマーから構成される樹脂材料でもよい。すなわち、バイオマス材料の以下に説明するバイオマス度は、100%でなくともよい。
 本明細書において、「バイオマス度」(バイオベース炭素含量(biobased carbon content)ともいう)とは、ASTM D6866-22のMethod Bに準拠して測定されるpMC(percent Modern Carbon)をδ13Cで補正して得られる値である。具体的には、試料を燃焼させて二酸化炭素(CO2)を発生させ、真空ラインで二酸化炭素を精製する。精製した二酸化炭素を、鉄を触媒として用いて水素で還元し、グラファイトを生成させる。次いで、加速器質量分析法(AMS法)により、得られたグラファイトの14Cの計数および炭素同位体比(14C/12C、13C/12C)を測定する。測定装置として、14C-AMS専用装置(NEC社製)を用いることができる。標準試料として、米国国立標準局(NIST)から提供されるシュウ酸(HOxII)を用いる。この標準試料とバックグラウンド試料の測定も同時に実施する。得られた炭素同位体比から、標準試料に対する試料の14C/12Cの相対比率(pMC)を算出する。δ13Cは、試料炭素の13C/12Cを測定し、基準試料からのずれを千分偏差で表した値である。
 バイオベース炭素含量は、核実験に起因して大気中の14Cが過剰となっていることから、pMCに補正係数をかけて得られる値である。大気中の過剰の14Cが継続的に減少していることから、補正係数はASTM D6866-22に準拠するものとする。
 化石燃料由来の材料は、質量数14の放射性炭素(14C)を含まないのに対して、植物由来の材料は14Cを含むことから、14Cの含有量に基づくバイオマス度により、両者の区別が可能である。このように化石燃料由来の材料は、バイオマス度が略0%であることが知られている。バイオマス度は、化石燃料由来の材料と植物由来の材料との混合比率を表す指標である。
 積層体全体のバイオマス度を測定する場合は、積層体から試料を調製すればよい。積層体中の各層のバイオマス度を測定する場合は、積層体から対象となる層を分離して試料を調製すればよい。
 バイオマスポリエチレンとしては、例えば、バイオマス高密度ポリエチレン、バイオマス中密度ポリエチレン、バイオマス低密度ポリエチレンおよびバイオマス直鎖状低密度ポリエチレンが挙げられる。バイオマスポリエステルとしては、例えば、バイオマスポリエチレンテレフタレートが挙げられる。
 バイオマスポリアミドとしては、例えば、ポリアミド56(PA56)、ポリアミド410(PA410)、ポリアミド510(PA510)、ポリアミド610(PA610)、ポリアミド810(PA810)、ポリアミド910(PA910)、ポリアミド1010(PA1010)、ポリアミド1012(PA1012)、ポリアミド11(PA11)およびポリアミド12(PA12)が挙げられる。ポリアミド410は、例えば、テトラメチレンジアミンとセバシン酸とから得られる。ポリアミド610は、例えば、ヘキサメチレンジアミンとセバシン酸とから得られる。ポリアミド11は、例えば、11-アミノウンデカン酸の縮重合によって得られる。ポリアミド1010は、例えば、セバシン酸と、セバシン酸をアミノ化して得た1,10-デカンジアミンとから得られる。セバシン酸は、ヒマシ油から得ることができる。11-アミノウンデカン酸は、ヒマシ油から得ることができる。ポリアミド11およびポリアミド1010は、バイオマス度が高いことから好ましい。
 バイオマス材料のバイオマス度は、好ましくは50%以上、より好ましくは60%以上、さらに好ましくは70%以上、よりさらに好ましくは80%以上、特に好ましくは85%以上、90%以上または95%以上である。
 本開示の積層体のバイオマス度は、一実施形態において、好ましくは1%以上、より好ましくは3%以上、さらに好ましくは5%以上、よりさらに好ましくは10%以上、特に好ましくは15%以上であり、60%以下でもよく、50%以下でもよく、40%以下でもよく、35%以下でもよく、30%以下でもよく、例えば1%以上60%以下である。このような積層体または該積層体を備える包装袋は、環境負荷を低減できる。
 <第1の樹脂層または剥離部>
 第1の樹脂層は、第2の樹脂層から剥離できるように設けられている。
 剥離部は、本体部から剥離できるように設けられている。
 本明細書において、本開示の積層体または包装袋の第2の樹脂層から第1の樹脂層を剥離して得られる、第1の樹脂層からなるフィルムを「剥離フィルム」ともいう。該剥離後の第2の樹脂層からなるフィルムを「シーラントフィルム」または「包装フィルム」ともいう。
 第1の樹脂層と第2の樹脂層との剥離強度は、好ましくは1.0N/15mm幅以下、より好ましくは0.9N/15mm幅以下、さらに好ましくは0.8N/15mm幅以下、よりさらに好ましくは0.7N/15mm幅以下、特に好ましくは0.6N/15mm幅以下である。このような剥離強度を有する積層体および包装袋の場合、第1の樹脂層を第2の樹脂層から、第2の樹脂層を破損することなく適度な力で容易に剥離できる。上記剥離強度は、例えば0.01N/15mm幅以上、0.05N/15mm幅以上または0.1N/15mm幅以上、好ましくは0.15N/15mm幅以上、より好ましくは0.2N/15mm幅以上である。このような剥離強度を有する積層体および包装袋の場合、第2の樹脂層からの第1の樹脂層の浮きを抑制でき、積層体および包装袋の外観に優れるとともに、第1の樹脂層が意図しない時期に第2の樹脂層から剥離されることを抑制できる。上記剥離強度は、例えば、0.01N/15mm幅以上1.0N/15mm幅以下である。
 上記剥離強度は、剥離角度:180度、試験速度:50mm/minの条件にて測定される。具体的には、積層体または包装袋をカットして、幅:15mm、長さ:100mmのサイズを有する試験片を切り出す。試験片における長さ方向の一方の端部の第1の樹脂層を剥離して折り返して、部分的に剥離された第1の樹脂層(剥離フィルム)の端部を、引張試験機の一方のつかみ具に取り付け、上記部分的に剥離後の第2の樹脂層(シーラントフィルム、包装フィルム)の端部を、引張試験機の他方のつかみ具に取り付ける。初期チャック間距離は100mmとする。次いで、第1の樹脂層の端部を取り付けたつかみ具を、試験片の表面に対して180度の方向に、該角度が維持されるように試験片の姿勢を保持しながら50mm/minの速度で引っ張り、最大強度(N)を測定する。15mm幅の試験片に対して測定された最大強度(N)を、剥離強度(N/15mm幅)とする。
 第1の樹脂層の厚さは、剥離性、強度および耐熱性という観点から、好ましくは3μm以上、より好ましくは5μm以上、さらに好ましくは10μm以上、特に好ましくは15μm以上である。第1の樹脂層の厚さは、加工適性という観点から、好ましくは150μm以下、より好ましくは130μm以下、さらに好ましくは100μm以下、よりさらに好ましくは80μm以下、特に好ましくは60μm以下、50μm以下、40μm以下または20μm以下である。第1の樹脂層の厚さは、例えば、3μm以上150μm以下である。
 後述する第2の態様の包装袋において、第1の樹脂層としての剥離部の厚さは、剥離性、強度および耐熱性という観点から、好ましくは10μm以上、より好ましくは12μm以上、さらに好ましくは14μm以上である。剥離部の厚さが下限値以上であると、剥離時において剥離部(剥離フィルム)が切断されることを抑制できる。
 第1の樹脂層における含有量が最も大きい同種の樹脂材料の含有割合は、第1の樹脂層の質量を基準として、好ましくは70質量%以上、より好ましくは75質量%以上、さらに好ましくは80質量%以上、よりさらに好ましくは85質量%以上、特に好ましくは90質量%以上である。このような第1の樹脂層を備える積層体は、リサイクル性に優れる。具体的には、上記積層体から第1の樹脂層を剥離して得られる剥離フィルムのリサイクル性に優れる。
 本明細書において同種の樹脂材料とは、例えば、ポリオレフィン系樹脂に分類されるポリマー同士、ポリアミドに分類されるポリマー同士、エチレン-ビニルアルコール共重合体に分類されるポリマー同士、ポリエステルに分類されるポリマー同士を指す。例えば、ポリオレフィン系樹脂とポリエステルとは、同種の樹脂材料には分類されない。
 一実施形態において、上記「第1の樹脂層における含有量が最も大きい同種の樹脂材料の含有割合」を、「第1の樹脂層におけるポリアミドの含有割合」、「第1の樹脂層におけるエチレン-ビニルアルコール共重合体の含有割合」、「第1の樹脂層におけるポリエステルの含有割合」、「第1の樹脂層におけるポリエチレン系樹脂の含有割合」または「第1の樹脂層におけるポリメチルペンテンの含有割合」と読み替えることができる。
 本明細書において、ポリオレフィン系樹脂とは、ポリオレフィンだけでなく、酸変性ポリオレフィンなどの変性ポリオレフィンを包含する概念である。本明細書において、ポリエチレン系樹脂とは、ポリエチレンだけでなく、酸変性ポリエチレンなどの変性ポリエチレンを包含する概念である。
 第1の樹脂層は、一実施形態において、ヘテロ原子含有樹脂を主成分として含有するヘテロ原子含有樹脂層を備えてもよい。第1の樹脂層は、ヘテロ原子含有樹脂層でもよく、ヘテロ原子含有樹脂層と、ポリオレフィンを主成分として含有するポリオレフィン層とを備えてもよい。ヘテロ原子含有樹脂層は、一実施形態において、第2の樹脂層と接していてもよい。このような態様の積層体は、第2の樹脂層からの第1の樹脂層の剥離性に優れている。
 第1の樹脂層におけるヘテロ原子含有樹脂層は、一実施形態において、第2の樹脂層における密度が0.909g/cm3以下のポリエチレン層と接している。このような態様の積層体は、第2の樹脂層からの第1の樹脂層の剥離性、および第1の樹脂層と第2の樹脂層との密着性のバランスに優れている。
 本開示の積層体は、第1の樹脂層におけるポリオレフィン層と第2の樹脂層における密度が0.909g/cm3以下のポリエチレン層との間に、ヘテロ原子含有樹脂層を備えてもよい。本開示の積層体は、ポリオレフィン層を表面層として備えてもよい。このような積層体は、外観に優れ、またヘテロ原子含有樹脂層を薄くでき、製造コストを低減できる。
 第1の樹脂層は、一実施形態において、ヘテロ原子含有樹脂層と、接着層と、ヘテロ原子含有樹脂層とを厚さ方向にこの順に備えてもよい。
 第1の樹脂層は、一実施形態において、ポリメチルペンテンを主成分として含有するポリメチルペンテン層でもよい。ポリメチルペンテン層は、離型性に優れることから、剥離フィルムとして機能する第1の樹脂層として好ましい。また、ポリメチルペンテン層は、耐熱性にも優れる。
 第1の樹脂層のバイオマス度は、一実施形態において、好ましくは10%以上、より好ましくは20%以上、さらに好ましくは30%以上、よりさらに好ましくは40%以上、特に好ましくは50%以上であり、99%以下でもよく、90%以下でもよく、80%以下でもよく、70%以下でもよく、例えば10%以上99%以下である。このような積層体または該積層体を備える包装袋は、環境負荷を低減できる。
 以下、第1の樹脂層が備えることのできる各層について説明する。
 (ヘテロ原子含有樹脂層)
 ヘテロ原子含有樹脂層は、ヘテロ原子含有樹脂を主成分として含有する。
 ヘテロ原子含有樹脂層を備える第1の樹脂層は、ヤング率が高く、第2の樹脂層からの剥離性に優れる。また、ヘテロ原子含有樹脂層を備える積層体は、耐突刺し性に優れる。したがって、このような積層体を備える包装袋は、硬い物品の包装性に優れる。ヘテロ原子含有樹脂層を備える積層体は、酸素バリア性および水蒸気バリア性等のガスバリア性、耐熱性ならびに剛性に優れる。ヘテロ原子含有樹脂は、環境負荷の低減という観点から、バイオマス材料でもよい。
 ヘテロ原子含有樹脂におけるヘテロ原子としては、例えば、酸素原子、硫黄原子、窒素原子および塩素原子が挙げられる。ヘテロ原子含有樹脂は、例えば、ヒドロキシ基、アミド結合、エステル結合およびエーテル結合などのヘテロ原子含有基を有する。ヘテロ原子含有樹脂としては、例えば、ポリアミド、エチレン-ビニルアルコール共重合体、ポリビニルアルコール、ポリ塩化ビニリデン、ポリエステル、ポリエーテルポリオールおよびポリエステルポリオールが挙げられる。これらの中でも、耐熱性、剛性および耐突刺し性という観点から、ポリアミド、エチレン-ビニルアルコール共重合体、ポリエステルおよびポリビニルアルコールが好ましく、ポリアミドおよびエチレン-ビニルアルコール共重合体がより好ましい。これらの樹脂材料は、環境負荷の低減という観点から、バイオマス材料でもよい。
 ポリアミドとしては、例えば、脂肪族ポリアミドおよび半芳香族ポリアミドが挙げられる。ポリアミドとしては、脂肪族ポリアミドが好ましく、結晶性脂肪族ポリアミドがより好ましい。
 脂肪族ポリアミドとしては、例えば、脂肪族ホモポリアミドおよび脂肪族共重合ポリアミドが挙げられる。以下の例示において、ポリアミドを「PA」とも記載する。
 脂肪族ホモポリアミドとしては、具体的には、ポリカプロラクタムまたはポリ(6-アミノカプロン酸)(PA6)、ポリエナントラクタムまたはポリ(7-アミノエナント酸)(PA7)、ポリウンデカンラクタムまたはポリ(11-アミノウンデカン酸)(PA11)、ポリラウリルラクタムまたはポリ(12-アミノラウリン酸)(PA12)、ポリペンタメチレンアジパミド(PA56)、ポリヘキサメチレンアジパミド(PA66)、ポリテトラメチレンセバカミド(PA410)、ポリテトラメチレンドデカミド(PA412)、ポリペンタメチレンアゼラミド(PA59)、ポリペンタメチレンセバカミド(PA510)、ポリペンタメチレンドデカミド(PA512)、ポリヘキサメチレンアゼラミド(PA69)、ポリヘキサメチレンセバカミド(PA610)、ポリオクタメチレンセバカミド(PA810)、ポリヘキサメチレンドデカミド(PA612)、ポリノナメチレンアジパミド(PA96)、ポリノナメチレンアゼラミド(PA99)、ポリノナメチレンセバカミド(PA910)、ポリノナメチレンドデカミド(PA912)、ポリデカメチレンアジパミド(PA106)、ポリデカメチレンアゼラミド(PA109)、ポリデカメチレンデカミド(PA1010)、ポリデカメチレンドデカミド(PA1012)、ポリドデカメチレンアジパミド(PA126)、ポリドデカメチレンアゼラミド(PA129)、ポリドデカメチレンセバカミド(PA1210)およびポリドデカメチレンドデカミド(PA1212)が挙げられる。
 脂肪族共重合ポリアミドとしては、具体的には、カプロラクタム/ヘキサメチレンジアミノアジピン酸共重合体(PA6/66)、カプロラクタム/ヘキサメチレンジアミノアゼライン酸共重合体(PA6/69)、カプロラクタム/ヘキサメチレンジアミノセバシン酸共重合体(PA6/610)、カプロラクタム/ヘキサメチレンジアミノウンデカン酸共重合体(PA6/611)、カプロラクタム/ヘキサメチレンジアミノドデカン酸共重合体(PA6/612)、カプロラクタム/アミノウンデカン酸共重合体(PA6/11)、カプロラクタム/ラウリルラクタム共重合体(PA6/12)、カプロラクタム/ヘキサメチレンジアミノアジピン酸/ラウリルラクタム共重合体(PA6/66/12)、カプロラクタム/ヘキサメチレンジアミノアジピン酸/ヘキサメチレンジアミノセバシン酸共重合体(PA6/66/610)、カプロラクタム/ヘキサメチレンジアミノアジピン酸/ヘキサメチレンジアミノドデカンジカルボン酸共重合体(PA6/66/612)が挙げられる。
 脂肪族ポリアミドの相対粘度は、好ましくは1.5以上、より好ましく2.0以上、さらに好ましくは2.5以上であり、好ましくは5.0以下、より好ましくは4.5以下であり、例えば1.5以上5.0以下である。脂肪族ポリアミドの相対粘度は、JIS K6920-2:2009に準拠して、ポリアミド1gを96%濃硫酸100mLに溶解させ、25℃で測定される。
 半芳香族ポリアミドとは、芳香族ジアミンに由来する構成単位と、脂肪族ジカルボン酸に由来する構成単位とを有するポリアミド、または、脂肪族ジアミンに由来する構成単位と、芳香族ジカルボン酸に由来する構成単位とを有するポリアミドである。例えば、芳香族ジアミンと脂肪族ジカルボン酸とから構成されるポリアミド、および脂肪族ジアミンと芳香族ジカルボン酸とから構成されるポリアミドが挙げられる。
 半芳香族ポリアミドとしては、例えば、ポリヘキサメチレンテレフタルアミド(PA6T)、ポリヘキサメチレンイソフタルアミド(PA6I)、ポリノナメチレンテレフタルアミド(PA9T)、ポリヘキサメチレンアジパミド/ポリヘキサメチレンテレフタルアミド共重合体(PA66/6T)、ポリヘキサメチレンアジパミド/ポリヘキサメチレンイソフタルアミド共重合体(PA66/6I)、ポリヘキサメチレンテレフタルアミド/ポリカプロアミド共重合体(PA6T/6)、ポリヘキサメチレンイソフタルアミド/ポリカプロアミド共重合体(PA6I/6)、ポリヘキサメチレンテレフタルアミド/ポリドデカミド共重合体(PA6T/12)、ポリヘキサメチレンイソフタルアミド/ポリヘキサメチレンテレフタルアミド共重合体(PA6I/6T)、ポリヘキサメチレンテレフタルアミド/ポリ(2-メチルペンタメチレンテレフタルアミド)共重合体(PA6T/M5T)、ポリヘキサメチレンアジパミド/ポリヘキサメチレンテレフタルアミド/ポリヘキサメチレンイソフタルアミド共重合体(PA66/6T/6I)、ポリヘキサメチレンアジパミド/ポリカプロアミド/ポリヘキサメチレンイソフタルアミド共重合体(PA66/6/6I)およびポリメタキシリレンアジパミド(PAMXD6)が挙げられる。
 半芳香族ポリアミドのメルトボリュームレート(MVR)は、好ましくは5cm3/10分以上、より好ましくは10cm3/10分以上であり、好ましくは200cm3/10分以下、より好ましくは100cm3/10分以下であり、例えば5cm3/10分以上200cm3/10分以下である。MVRは、JIS K7210-1:2014に準拠して、温度275℃、荷重5.00kgで測定される。
 ポリアミドとしては、結晶性脂肪族ポリアミドが好ましい。結晶性脂肪族ポリアミドとしては、例えば、PA6、PA11、PA12、PA66、PA610、PA612、PA1010、PA6/66およびPA6/66/12が挙げられる。
 結晶性脂肪族ポリアミドの融点(Tm)は、好ましくは170℃以上、より好ましくは180℃以上であり、好ましくは300℃以下、より好ましくは250℃以下、さらに好ましくは230℃以下であり、例えば170℃以上300℃以下である。結晶性脂肪族ポリアミドのTmは、JIS K7121:2012に準拠して、示差走査熱量測定(DSC)により得られる融解ピーク温度である。
 ポリアミドのメルトフローレート(MFR)は、製膜性および加工適性という観点から、好ましくは0.1g/10分以上、より好ましくは0.3g/10分以上、さらに好ましくは0.5g/10分以上であり、好ましくは30g/10分以下、より好ましくは20g/10分以下、さらに好ましくは10g/10分以下、特に好ましくは5g/10分以下であり、例えば0.1g/10分以上30g/10分以下である。ポリアミドのMFRは、JIS K7210-1:2014に準拠して、温度235℃、荷重2.16kgの条件で、A法により測定される。測定温度は、ポリアミドの融点に応じて変更できる。
 環境負荷の低減という観点から、ポリアミドとしてバイオマスポリアミドを用いてもよい。バイオマスポリアミドとしては、例えば、PA56、PA410、PA510、PA610、PA810、PA910、PA1010、PA1012、PA11およびPA12が挙げられる。
 エチレン-ビニルアルコール共重合体(EVOH)は、例えば、エチレンとビニルエステル系モノマーとを共重合させた後にケン化させることにより得られる。エチレンとビニルエステル系モノマーとの共重合は、公知の任意の重合法、例えば、溶液重合、懸濁重合、エマルジョン重合などにより行うことができる。
 ビニルエステル系モノマーとしては、一般的に酢酸ビニルが用いられるが、他のビニルエステル系モノマーを用いてもよい。他のビニルエステル系モノマーとしては、例えば、ギ酸ビニル、プロピオン酸ビニル、バレリン酸ビニル、酪酸ビニル、イソ酪酸ビニル、ピバリン酸ビニル、カプリン酸ビニル、ラウリン酸ビニル、ステアリン酸ビニルおよびバーサチック酸ビニル等の脂肪族ビニルエステル、ならびに安息香酸ビニル等の芳香族ビニルエステルが挙げられる。
 EVOHにおいてエチレンに由来する構成単位の含有割合(エチレン含有割合)は、積層体の加工適性という観点から、好ましくは20モル%以上、より好ましくは25モル%以上である。EVOHにおけるエチレン含有割合は、積層体の耐熱性、酸素バリア性および水蒸気バリア性という観点から、好ましくは60モル%以下、より好ましくは50モル%以下である。エチレン含有割合は、例えば20モル%以上60モル%以下である。エチレン含有割合は、NMR法により測定される。
 EVOHにおける平均ケン化度は、好ましくは90モル%以上、より好ましくは95モル%以上、さらに好ましくは99モル%以上である。平均ケン化度は、JIS K6726:1994(ただしEVOHは水/メタノール溶媒に均一に溶解した溶液を使用)に準拠して測定される。
 EVOHの融点(Tm)は、耐熱性という観点から、好ましくは140℃以上、より好ましくは145℃以上、さらに好ましくは150℃以上であり、好ましくは200℃以下、より好ましくは195℃以下、さらに好ましくは190℃以下であり、例えば140℃以上200℃以下である。EVOHのTmは、JIS K7121:2012に準拠して、DSCにより得られる融解ピーク温度である。
 EVOHのメルトフローレート(MFR)は、製膜性および加工適性という観点から、好ましくは0.1g/10分以上、より好ましくは0.3g/10分以上、さらに好ましくは0.5g/10分以上であり、好ましくは30g/10分以下、より好ましくは20g/10分以下、さらに好ましくは10g/10分以下、特に好ましくは5g/10分以下であり、例えば0.1g/10分以上30g/10分以下である。EVOHのMFRは、JIS K7210-1:2014に準拠して、温度190℃、荷重2.16kgの条件で、A法により測定される。測定温度は、EVOHの融点に応じて210℃でもよい。
 EVOHは、公知の方法により、ウレタン化、アセタール化、シアノエチル化、オキシアルキレン化などの変性がされていてもよい。
 ポリビニルアルコール(PVA)における平均ケン化度は、好ましくは70モル%以上、より好ましくは75モル%以上、さらに好ましくは80モル%以上、特に好ましくは85モル%以上である。平均ケン化度は、JIS K6726:1994に準拠して測定される。
 ポリエステルとしては、例えば、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)、ポリエチレンナフタレート(PEN)、1,4-ポリシクロヘキシレンジメチレンテレフタレートおよびテレフタル酸-シクロヘキサンジメタノール-エチレングリコール共重合体が挙げられる。これらの中でも、PETが好ましい。
 ヘテロ原子含有樹脂層におけるヘテロ原子含有樹脂の含有割合は、好ましくは50質量%超、より好ましくは60質量%以上、さらに好ましくは70質量%以上、よりさらに好ましくは80質量%以上、特に好ましくは90質量%以上である。これにより、例えば、包装袋の耐熱性などの上述した物性を向上できる。
 ヘテロ原子含有樹脂層は、添加剤を含有してもよい。添加剤としては、例えば、アンチブロッキング剤、スリップ剤、紫外線吸収剤、酸化防止剤、光安定剤、充填剤、補強剤、帯電防止剤、相溶化剤、架橋剤、顔料および染料が挙げられる。
 ヘテロ原子含有樹脂層の厚さは、積層体の耐熱性という観点から、好ましくは0.5μm以上、より好ましくは1μm以上、さらに好ましくは3μm以上、特に好ましくは5μm以上である。ヘテロ原子含有樹脂層の厚さは、積層体のリサイクル性という観点から、好ましくは50μm以下、より好ましくは40μm以下、さらに好ましくは30μm以下、特に好ましくは20μm以下である。ヘテロ原子含有樹脂層の厚さは、例えば、0.5μm以上50μm以下である。
 (ポリオレフィン層)
 第1の樹脂層におけるポリオレフィン層は、ポリオレフィンを主成分として含有する。ポリオレフィンとしては、例えば、ポリエチレン、ポリプロピレンおよびポリメチルペンテンが挙げられる。ポリオレフィン層としては、ポリエチレン層およびポリプロピレン層が好ましく、ポリエチレン層がより好ましい。ポリオレフィンは、環境負荷の低減という観点から、バイオマスポリオレフィンでもよい。
 ポリオレフィンのMFRは、製膜性および加工適性という観点から、好ましくは0.1g/10分以上、より好ましくは0.3g/10分以上、さらに好ましくは0.5g/10分以上であり、好ましくは30g/10分以下、より好ましくは20g/10分以下、さらに好ましくは10g/10分以下、特に好ましくは5g/10分以下であり、例えば0.1g/10分以上30g/10分以下である。ポリオレフィンのMFRは、JIS K7210-1:2014に準拠して、荷重2.16kgの条件で、A法により測定される。MFRの測定温度は、ポリオレフィンの融点等に応じて設定され、ポリエチレンの場合は190℃であり、ポリプロピレンの場合は230℃である。
 ポリオレフィン層におけるポリオレフィンの含有割合は、好ましくは50質量%超、より好ましくは60質量%以上、さらに好ましくは70質量%以上、特に好ましくは80質量%以上である。
 第1の樹脂層におけるポリオレフィン層は、ヘテロ原子含有樹脂層に対する密着性という観点から、さらに変性ポリオレフィンを含有してもよい。変性ポリオレフィンとしては、例えば、マレイン酸およびフマル酸等の不飽和カルボン酸、またはその酸無水物、エステルもしくは金属塩による、ポリオレフィンの変性物、特にポリオレフィンのグラフト変性物が挙げられる。変性ポリオレフィンは、環境負荷の低減という観点から、バイオマス材料でもよい。
 変性ポリオレフィンのMFRは、製膜性および加工適性という観点から、好ましくは0.1g/10分以上、より好ましくは0.3g/10分以上、さらに好ましくは0.5g/10分以上であり、好ましくは30g/10分以下、より好ましくは20g/10分以下、さらに好ましくは10g/10分以下、特に好ましくは5g/10分以下であり、例えば0.1g/10分以上30g/10分以下である。変性ポリオレフィンのMFRは、JIS K7210-1:2014に準拠して、荷重2.16kgの条件で、A法により測定される。MFRの測定温度は、変性ポリオレフィンの融点等に応じて設定され、変性ポリエチレンの場合は190℃であり、変性ポリプロピレンの場合は230℃である。
 ポリオレフィン層における変性ポリオレフィンの含有割合は、好ましくは50質量%未満、より好ましくは40質量%以下、さらに好ましくは30質量%以下、特に好ましくは20質量%以下であり、好ましくは1質量%以上、より好ましくは3質量%以上、さらに好ましくは5質量%以上であり、例えば1質量%以上50質量%未満である。
 ポリオレフィン層は、ポリオレフィンおよび変性ポリオレフィン以外の樹脂材料を含有してもよい。このような樹脂材料としては、例えば、(メタ)アクリル樹脂、ビニル樹脂、セルロース樹脂、ポリアミド、ポリエステルおよびアイオノマー樹脂が挙げられる。
 ポリオレフィン層は、上記添加剤を含有してもよい。
 ポリオレフィン層は、一実施形態において、ポリオレフィンを主成分として含有するポリオレフィンフィルム層である。
 ポリオレフィン層の厚さは、積層体の強度、耐熱性およびリサイクル性という観点から、好ましくは1μm以上、より好ましくは5μm以上、さらに好ましくは10μm以上である。ポリオレフィン層の厚さは、積層体の加工適性という観点から、好ましくは100μm以下、より好ましくは80μm以下、さらに好ましくは70μm以下、よりさらに好ましくは60μm以下、特に好ましくは50μm以下、40μm以下、30μm以下または20μm以下である。ポリオレフィン層の厚さは、例えば、1μm以上100μm以下である。
 ((ポリエチレン層))
 第1の樹脂層におけるポリエチレン層は、ポリエチレンを主成分として含有する。ポリエチレンとしては、例えば、高密度ポリエチレン、中密度ポリエチレン、低密度ポリエチレンおよび直鎖状低密度ポリエチレンが挙げられる。積層体の外観および耐突刺し性という観点から、直鎖状低密度ポリエチレンを主成分として含有するポリエチレン層が好ましい。ヒートシール時における積層体およびチューブ状フィルムの耐熱性という観点から、高密度ポリエチレンを主成分として含有するポリエチレン層が好ましい。
 本明細書において、直鎖状低密度ポリエチレンとしては、例えば、コモノマーが少なくとも1-ブテンであるエチレン-1-ブテン共重合体(C4-LLDPE)、コモノマーが少なくとも1-ヘキセンであるエチレン-1-ヘキセン共重合体(C6-LLDPE)、およびコモノマーが少なくとも1-オクテンであるエチレン-1-オクテン共重合体(C8-LLDPE)が挙げられる。これらの共重合体において、上記コモノマーのみに限定されず、さらなるコモノマーが用いられていてもよい。
 第1の樹脂層におけるポリエチレン層は、環境負荷の低減という観点から、ポリエチレンとしてバイオマスポリエチレンを含有してもよい。バイオマスポリエチレンとしては、例えば、バイオマス高密度ポリエチレン、バイオマス中密度ポリエチレン、バイオマス低密度ポリエチレンおよびバイオマス直鎖状低密度ポリエチレンが挙げられ、これらの中でもバイオマス高密度ポリエチレンが好ましい。
 第1の樹脂層におけるポリエチレンの密度は、積層体の外観および耐突刺し性という観点から、好ましくは0.925g/cm3以上、より好ましくは0.928g/cm3以上、さらに好ましくは0.930g/cm3以上である。ポリエチレンの密度は、好ましくは0.932g/cm3以下である。上記ポリエチレンの密度は、例えば、0.925g/cm3以上0.932g/cm3以下である。第1の樹脂層におけるポリエチレンの密度は、積層体の耐熱性という観点から、好ましくは0.945g/cm3超であり、好ましくは0.965g/cm3以下である。
 第1の樹脂層におけるポリエチレンのMFRは、製膜性および加工適性という観点から、好ましくは0.1g/10分以上、より好ましくは0.3g/10分以上、さらに好ましくは0.5g/10分以上であり、好ましくは30g/10分以下、より好ましくは20g/10分以下、さらに好ましくは10g/10分以下、特に好ましくは5g/10分以下であり、例えば0.1g/10分以上30g/10分以下である。ポリエチレンのMFRは、JIS K7210-1:2014に準拠して、温度190℃、荷重2.16kgの条件で、A法により測定される。
 第1の樹脂層におけるポリエチレンの融点(Tm)は、耐熱性という観点から、好ましくは100℃以上、より好ましくは105℃以上、さらに好ましくは110℃以上、特に好ましくは120℃以上であり、好ましくは140℃以下であり、例えば100℃以上140℃以下である。Tmは、JIS K7121:2012に準拠して、DSCにより得られる融解ピーク温度である。
 ポリエチレン層におけるポリエチレンの含有割合は、好ましくは50質量%超、より好ましくは60質量%以上、さらに好ましくは70質量%以上、特に好ましくは80質量%以上である。
 第1の樹脂層におけるポリエチレン層は、ヘテロ原子含有樹脂層に対する密着性という観点から、さらに変性ポリエチレンを含有してもよい。変性ポリエチレンとしては、例えば、マレイン酸およびフマル酸等の不飽和カルボン酸、またはその酸無水物、エステルもしくは金属塩による、ポリエチレンの変性物、特にポリエチレンのグラフト変性物が挙げられる。変性ポリエチレンとしては、変性高密度ポリエチレンでもよく、無水マレイン酸グラフト変性高密度ポリエチレンでもよい。変性ポリエチレンは、環境負荷の低減という観点から、バイオマス材料でもよい。
 変性ポリエチレンのMFRは、製膜性および加工適性という観点から、好ましくは0.1g/10分以上、より好ましくは0.3g/10分以上、さらに好ましくは0.5g/10分以上であり、好ましくは30g/10分以下、より好ましくは20g/10分以下、さらに好ましくは10g/10分以下、特に好ましくは5g/10分以下であり、例えば0.1g/10分以上30g/10分以下である。変性ポリエチレンのMFRは、JIS K7210-1:2014に準拠して、温度190℃、荷重2.16kgの条件で、A法により測定される。
 ポリエチレン層における変性ポリエチレンの含有割合は、好ましくは50質量%未満、より好ましくは40質量%以下、さらに好ましくは30質量%以下、特に好ましくは20質量%以下であり、好ましくは1質量%以上、より好ましくは3質量%以上、さらに好ましくは5質量%以上であり、例えば1質量%以上50質量%未満である。
 ((ポリプロピレン層))
 第1の樹脂層におけるポリプロピレン層は、ポリプロピレンを主成分として含有する。ポリプロピレン層を備える積層体は、耐油性に優れる。
 ポリプロピレンは、プロピレンホモポリマー(ホモポリプロピレン)、プロピレンランダムコポリマー(ランダムポリプロピレン)およびプロピレンブロックコポリマー(ブロックポリプロピレン)のいずれでもよく、これらから選択される2種以上の混合物でもよい。ポリプロピレンとしては、環境負荷の低減という観点から、バイオマスポリプロピレンや、メカニカルリサイクルまたはケミカルリサイクルされたポリプロピレンを用いてもよい。
 プロピレンホモポリマーとは、プロピレンのみの重合体である。プロピレンランダムコポリマーとは、プロピレンとプロピレン以外のα-オレフィン等とのランダム共重合体である。プロピレンブロックコポリマーとは、少なくともプロピレンからなる重合体ブロックと、少なくともプロピレン以外のα-オレフィン等からなる重合体ブロックとを有する共重合体である。
 プロピレン以外のα-オレフィンとしては、例えば、炭素数2以上20以下のα-オレフィンが挙げられ、具体的には、エチレン、1-ブテン、1-ペンテン、1-ヘキセン、1-オクテン、1-デセン、1-ドデセン、1-テトラデセン、1-ヘキサデセン、1-オクタデセン、1-エイコセン、3-メチル-1-ブテン、4-メチル-1-ペンテンおよび6-メチル-1-ヘプテンが挙げられる。
 ポリプロピレンの中でも、透明性という観点からは、プロピレンランダムコポリマーが好ましい。包装袋の剛性および耐熱性を重視する場合は、プロピレンホモポリマーが好ましい。包装袋の耐衝撃性を重視する場合は、プロピレンブロックコポリマーが好ましい。
 ポリプロピレンの密度は、例えば0.88g/cm3以上0.92g/cm3以下である。ポリプロピレンの密度は、JIS K7112:1999のD法(密度勾配管法、23℃)に準拠して測定される。
 ポリプロピレンの融点(Tm)は、耐熱性という観点から、好ましくは120℃以上、より好ましくは130℃以上、さらに好ましくは150℃以上である。ポリプロピレンのTmは、好ましくは170℃以下であり、例えば120℃以上170℃以下である。Tmは、JIS K7121:2012に準拠して、DSCにより得られる融解ピーク温度である。
 ポリプロピレン層におけるポリプロピレンの含有割合は、好ましくは50質量%超、より好ましくは60質量%以上、さらに好ましくは70質量%以上、よりさらに好ましくは80質量%以上、特に好ましくは90質量%以上である。
 (接着層)
 第1の樹脂層における接着層は、一実施形態において、接着剤により構成される接着剤層である。接着剤は、1液硬化型の接着剤、2液硬化型の接着剤、および非硬化型の接着剤のいずれでもよい。接着剤は、無溶剤型の接着剤でもよく、溶剤型の接着剤でもよい。
 無溶剤型の接着剤、すなわちノンソルベントラミネート接着剤としては、例えば、ポリエーテル系接着剤、ポリエステル系接着剤、シリコーン系接着剤、エポキシ系接着剤およびウレタン系接着剤が挙げられる。これらの中でも、ウレタン系接着剤が好ましく、2液硬化型のウレタン系接着剤がより好ましい。溶剤型の接着剤としては、例えば、ゴム系接着剤、ビニル系接着剤、オレフィン系接着剤、シリコーン系接着剤、エポキシ系接着剤、フェノール系接着剤およびウレタン系接着剤が挙げられる。
 接着層の厚さは、好ましくは0.1μm以上、より好ましくは0.2μm以上、さらに好ましくは0.5μm以上であり、好ましくは10μm以下、より好ましくは8μm以下、さらに好ましく6μm以下であり、例えば0.1μm以上10μm以下である。
 第1の樹脂層は、一実施形態において、ヘテロ原子含有樹脂層と、接着層と、ヘテロ原子含有樹脂層とを厚さ方向にこの順に備える積層フィルムでもよい。積層フィルムは、一実施形態において、ヘテロ原子含有樹脂層に対応する2以上のフィルム(例えばPETフィルムなどのヘテロ原子含有樹脂フィルム)を、無溶剤型の接着剤を用いたノンソルベントラミネート法により貼り合わせて製造してもよく、溶剤型の接着剤を用いたドライラミネート法により貼り合わせて製造してもよい。
 (ポリメチルペンテン層)
 第1の樹脂層は、一実施形態において、ポリメチルペンテン層である。ポリメチルペンテン層は、ポリメチルペンテンを主成分として含有する。ポリメチルペンテン層は、離型性に優れることから、剥離フィルムとして機能する第1の樹脂層として好ましい。また、ポリメチルペンテン層は、耐熱性にも優れる。
 本明細書においてポリメチルペンテンとは、全繰返し構成単位中、メチルペンテン由来の構成単位の含有割合が50モル%超の重合体をいう。この重合体において、メチルペンテン由来の構成単位の含有割合は、好ましくは70モル%以上、より好ましくは80モル%以上、さらに好ましくは90モル%以上、特に好ましくは95モル%以上である。上記含有割合は、NMR法により測定される。
 ポリメチルペンテンは、メチルペンテンのホモポリマーでもよく、メチルペンテンとメチルペンテン以外のα-オレフィン等とのランダムコポリマーでもよく、メチルペンテンとメチルペンテン以外のα-オレフィン等とのブロックコポリマーでもよく、これらから選択される2種以上の混合物でもよい。ポリメチルペンテンとしては、環境負荷の低減という観点から、バイオマスポリメチルペンテンや、メカニカルリサイクルまたはケミカルリサイクルされたポリメチルペンテンを用いてもよい。
 メチルペンテンとしては、例えば、4-メチル-1-ペンテン、3-メチル-1-ペンテンおよび4,4-ジメチル-1-ペンテンが挙げられ、4-メチル-1-ペンテンが好ましい。
 メチルペンテン以外のα-オレフィンとしては、例えば、炭素数2以上20以下のα-オレフィンが挙げられ、具体的には、エチレン、プロピレン、1-ブテン、1-ペンテン、1-ヘキセン、1-オクテン、1-デセン、1-ドデセン、1-テトラデセン、1-ヘキサデセン、1-オクタデセン、1-エイコセン、3-メチル-1-ブテンおよび6-メチル-1-ヘプテンが挙げられる。
 ポリメチルペンテンとしては、例えば、ポリ(4-メチル-1-ペンテン)、ポリ(3-メチル-1-ペンテン)およびポリ(4,4-ジメチル-1-ペンテン)が挙げられ、ポリ(4-メチル-1-ペンテン)が好ましい。ポリ(4-メチル-1-ペンテン)は、4-メチル-1-ペンテンのホモポリマーでもよく、4-メチル-1-ペンテンと4-メチル-1-ペンテン以外のα-オレフィン等とのコポリマーでもよい。
 ポリメチルペンテンの密度は、例えば0.800g/cm3以上0.860g/cm3以下である。ポリメチルペンテンの密度は、JIS K7112:1999のD法(密度勾配管法、23℃)に準拠して測定される。
 ポリメチルペンテンの融点(Tm)は、耐熱性という観点から、好ましくは200℃以上、より好ましくは210℃以上、さらに好ましくは220℃以上である。ポリメチルペンテンのTmは、好ましくは300℃以下、より好ましくは250℃以下である。ポリメチルペンテンのTmは、例えば、200℃以上300℃以下である。Tmは、JIS K7121:2012に準拠して、DSCにより得られる融解ピーク温度である。
 ポリメチルペンテンのMFRは、製膜性および加工適性という観点から、好ましくは0.1g/10分以上、より好ましくは1g/10分以上、さらに好ましくは5g/10分以上、特に好ましくは15g/10分以上であり、好ましくは100g/10分以下、より好ましくは50g/10分以下、さらに好ましくは30g/10分以下であり、例えば0.1g/10分以上100g/10分以下である。ポリメチルペンテンのMFRは、JIS K7210-1:2014に準拠して、温度260℃、荷重5kgの条件で、A法により測定される。
 ポリメチルペンテン層におけるポリメチルペンテンの含有割合は、好ましくは50質量%超、より好ましくは60質量%以上、さらに好ましくは70質量%以上、よりさらに好ましくは80質量%以上、特に好ましくは90質量%以上である。
 ポリメチルペンテン層は、ポリメチルペンテン以外の樹脂材料を含有してもよい。このような樹脂材料としては、例えば、ポリメチルペンテン以外のポリオレフィン、(メタ)アクリル樹脂、ビニル樹脂、セルロース樹脂、ポリアミド、ポリエステルおよびアイオノマー樹脂が挙げられる。
 ポリメチルペンテン層は、上記添加剤を含有してもよい。
 (押出樹脂層)
 第1の樹脂層における押出樹脂層は、ポリオレフィンを主成分として含有する。ポリオレフィンとしては、例えば、ポリエチレン、ポリプロピレンおよびポリメチルペンテンが挙げられ、ポリエチレンが好ましい。押出樹脂層を構成するポリエチレンとしては、接着性という観点から、低密度ポリエチレンおよび直鎖状低密度ポリエチレンから選択される少なくとも1種が好ましく、低密度ポリエチレンがより好ましい。ポリオレフィンは、環境負荷の低減という観点から、バイオマスポリオレフィンでもよい。
 押出樹脂層におけるポリエチレンのMFRは、製膜性および加工適性という観点から、好ましくは0.1g/10分以上、より好ましくは1g/10分以上、さらに好ましくは3g/10分以上であり、好ましくは30g/10分以下、より好ましくは25g/10分以下、さらに好ましくは20g/10分以下であり、例えば0.1g/10分以上30g/10分以下である。ポリエチレンのMFRは、JIS K7210-1:2014に準拠して、温度190℃、荷重2.16kgの条件で、A法により測定される。
 押出樹脂層におけるポリエチレンの融点(Tm)は、耐熱性および接着性のバランスという観点から、好ましくは100℃以上であり、好ましくは140℃以下、より好ましくは130℃以下、さらに好ましくは120℃以下であり、例えば100℃以上140℃以下である。Tmは、JIS K7121:2012に準拠して、DSCにより得られる融解ピーク温度である。
 押出樹脂層におけるポリエチレンなどのポリオレフィンの含有割合は、好ましくは80質量%以上、より好ましくは85質量%以上、さらに好ましくは90質量%以上、特に好ましくは95質量%である。このような押出樹脂層を備える積層体は、リサイクル性に優れる。
 第1の樹脂層における押出樹脂層の厚さは、好ましくは5μm以上、より好ましくは10μm以上であり、好ましくは40μm以下、より好ましくは30μm以下であり、例えば5μm以上40μm以下である。このような押出樹脂層を備える積層体は、層間接着性およびリサイクル性に優れる。
 押出樹脂層は、例えば、ポリオレフィンまたはポリオレフィン樹脂組成物を溶融させ、フィルム上に押し出すことにより形成できる。このときの溶融温度は、好ましくは280℃以上、より好ましくは290℃以上であり、好ましくは340℃以下、より好ましくは335℃以下であり、例えば280℃以上340℃以下である。
 <第2の樹脂層または本体部>
 第2の樹脂層は、シーラント層である。
 第2の樹脂層は、一実施形態において、ポリエチレン層を少なくとも備え、好ましくは、密度が0.909g/cm3以下のポリエチレン層を少なくとも備える。第2の樹脂層における密度が0.909g/cm3以下の上記ポリエチレン層は、第1の樹脂層と接していることが好ましい。
 第2の樹脂層は、一実施形態において、ポリオレフィンを主成分として含有するシーラント層である。これにより、上記積層体から第1の樹脂層を分離除去して得られる包装袋のモノマテリアル化を図ることができる。
 本開示の積層体を用いて包装袋を作製した場合に、第2の樹脂層は、包装袋の収容空間に面する層である。
 ポリオレフィンとしては、例えば、ポリエチレン、ポリプロピレンおよびポリメチルペンテンが挙げられる。これらの中でも、ポリエチレンおよびポリプロピレンが好ましく、ポリエチレンがより好ましい。ポリオレフィンは、環境負荷の低減という観点から、バイオマスポリオレフィンでもよい。
 第2の樹脂層におけるポリオレフィンのMFRは、製膜性および加工適性という観点から、好ましくは0.1g/10分以上、より好ましくは0.3g/10分以上、さらに好ましくは0.5g/10分以上であり、好ましくは30g/10分以下、より好ましくは20g/10分以下、さらに好ましくは10g/10分以下、特に好ましくは5g/10分以下であり、例えば0.1g/10分以上30g/10分以下である。ポリオレフィンのMFRは、JIS K7210-1:2014に準拠して、荷重2.16kgの条件で、A法により測定される。MFRの測定温度は、ポリオレフィンの融点等に応じて設定され、ポリエチレンの場合は190℃であり、ポリプロピレンの場合は230℃である。
 第2の樹脂層におけるポリオレフィンの含有割合は、第2の樹脂層の質量を基準として、好ましくは80質量%以上、より好ましくは82質量%以上、さらに好ましくは85質量%以上、よりさらに好ましくは90質量%以上、特に好ましくは95質量%以上である。このような第2の樹脂層を備える積層体は、リサイクル性に優れる。具体的には、上記積層体から第1の樹脂層を剥離除去した後の第2の樹脂層に相当するシーラントフィルムまたは包装フィルムは、リサイクル性に優れる。
 一実施形態において、上記「第2の樹脂層におけるポリオレフィンの含有割合」を、「第2の樹脂層におけるポリエチレンの含有割合」または「第2の樹脂層におけるポリプロピレンの含有割合」と読み替えることができる。
 第2の樹脂層は、一実施形態において、ポリエチレンを主成分として含有する。ポリエチレンとしては、例えば、高密度ポリエチレン、中密度ポリエチレン、低密度ポリエチレンおよび直鎖状低密度ポリエチレンが挙げられ、ヒートシール性という観点から、低密度ポリエチレンおよび直鎖状低密度ポリエチレンが好ましい。ポリエチレンは、環境負荷の低減という観点から、バイオマスポリエチレンでもよい。
 第2の樹脂層におけるポリエチレンの融点(Tm)は、耐熱性およびヒートシール性のバランスという観点から、好ましくは80℃以上、より好ましくは85℃以上であり、好ましくは140℃以下、より好ましくは130℃以下であり、例えば80℃以上140℃以下である。Tmは、JIS K7121:2012に準拠して、DSCにより得られる融解ピーク温度である。
 第2の樹脂層は、一実施形態において、ポリプロピレンを主成分として含有する。このような第2の樹脂層を備える積層体は、耐油性に優れる。
 ポリプロピレンとしては、例えば、プロピレンホモポリマー、プロピレン-α-オレフィンランダム共重合体等のプロピレンランダムコポリマー、およびプロピレン-α-オレフィンブロック共重合体等のプロピレンブロックコポリマーが挙げられる。α-オレフィンの詳細は、上述したとおりである。ポリプロピレンとしては、環境負荷の低減という観点から、バイオマスポリプロピレンや、メカニカルリサイクルまたはケミカルリサイクルされたポリプロピレンを用いてもよい。
 第2の樹脂層におけるポリプロピレンの密度は、ヒートシール性という観点から、例えば0.88g/cm3以上0.92g/cm3以下である。ポリプロピレンの密度は、JIS K7112:1999のD法(密度勾配管法、23℃)に準拠して測定される。
 第2の樹脂層におけるポリプロピレンの融点(Tm)は、耐熱性およびヒートシール性のバランスという観点から、好ましくは120℃以上、より好ましくは125℃以上、さらに好ましくは130℃以上であり、好ましくは160℃以下、より好ましくは155℃以下、さらに好ましくは150℃以下であり、例えば120℃以上160℃以下である。Tmは、JIS K7121:2012に準拠して、DSCにより得られる融解ピーク温度である。
 第2の樹脂層は、上記添加剤を含有してもよい。
 第2の樹脂層のバイオマス度は、一実施形態において、好ましくは10%以上、より好ましくは20%以上、さらに好ましくは30%以上、よりさらに好ましくは40%以上、特に好ましくは50%以上であり、99%以下でもよく、90%以下でもよく、80%以下でもよく、70%以下でもよく、例えば10%以上99%以下である。このような積層体または該積層体を備える包装袋は、環境負荷を低減できる。ただし、バイオマス材料は、従来の化石燃料由来の樹脂材料と比較して、分子量分布が広く、低分子量成分を多く含むことがある。第2の樹脂層は包装袋内に収容される物品と接触しえることから、当該物品の種類(例えば半導体製品およびその関連部品など)によっては、第2の樹脂層はバイオマス材料を含有しない方がよい場合もある。このような場合は、第2の樹脂層のバイオマス度は、一実施形態において、10%未満でもよく、5%以下でもよく、3%以下でもよく、1%以下でもよい。
 第2の樹脂層の厚さは、強度およびヒートシール性という観点から、好ましくは10μm以上、より好ましくは15μm以上、さらに好ましくは20μm以上、特に好ましくは30μm以上である。第2の樹脂層の厚さは、加工適性という観点から、好ましくは250μm以下、より好ましくは200μm以下、さらに好ましくは150μm以下、特に好ましくは100μm以下である。第2の樹脂層の厚さは、例えば、10μm以上250μm以下である。
 第2の樹脂層は、一実施形態において、熱融着性樹脂層を少なくとも備える。第2の樹脂層は、一実施形態において、積層体の表面層として、熱融着性樹脂層を少なくとも備える。第2の樹脂層は、一実施形態において、積層体の表面層として、ポリエチレンおよびポリプロピレンなどのポリオレフィンを主成分として含有する熱融着性樹脂層を少なくとも備える。第2の樹脂層における熱融着性樹脂層は、一実施形態において、第1の樹脂層と接している。
 第2の樹脂層は、一実施形態において、密度が0.909g/cm3以下のポリエチレン層を少なくとも備える。第2の樹脂層における上記ポリエチレン層は、一実施形態において、第1の樹脂層と接している。
 第2の樹脂層は、一実施形態において、密度が0.909g/cm3以下のポリエチレン層と、積層体の表面層として、ポリエチレンなどのポリオレフィンを主成分として含有する熱融着性樹脂層と、を備える。第2の樹脂層における上記ポリエチレン層は、一実施形態において、第1の樹脂層と接している。
 第2の樹脂層は、一実施形態において、密度が0.909g/cm3以下のポリエチレン層とポリエチレンなどのポリオレフィンを主成分として含有する熱融着性樹脂層との間に、中間層をさらに備え、好ましくはポリエチレンなどのポリオレフィンを主成分として含有する中間層をさらに備える。
 第2の樹脂層は、一実施形態において、ポリエチレンなどのポリオレフィンを主成分として含有する押出樹脂層と、ポリエチレンなどのポリオレフィンを主成分として含有する熱融着性樹脂層とを備える。この実施形態では、第1の樹脂層に対応するフィルムと、熱融着性樹脂層に対応する熱融着性フィルムとが、上記押出樹脂層を介して積層されている。すなわちこの実施形態の積層体は、第1の樹脂層と熱融着性樹脂層との間に、押出樹脂層を備える。
 第1の樹脂層は、一実施形態において、ポリオレフィンを主成分として含有するポリオレフィンフィルム層と、ポリオレフィンを主成分として含有する押出樹脂層と、を備える。押出樹脂層は、第2の樹脂層における下記極性樹脂層と接している。第2の樹脂層は、一実施形態において、極性樹脂層と、アンカーコート層と、ポリオレフィンを主成分として含有する押出樹脂層と、熱融着性樹脂層と、を備える。上記極性樹脂層は、第1の樹脂層における押出樹脂層と接している。このような積層体は、第1の樹脂層の剥離性に優れる。
 以下、第2の樹脂層が備えることのできる各層について説明する。
 (ポリエチレン層)
 第2の樹脂層は、一実施形態において、密度が0.909g/cm3以下のポリエチレン層を備える。このようなポリエチレン層を備える積層体は、積層体の製造時において、第2の樹脂層からの第1の樹脂層の浮きを抑制でき、第1の樹脂層と第2の樹脂層との良好な剥離強度を有する。具体的には、密度が0.909g/cm3以下のポリエチレン層は、ヘテロ原子含有樹脂層との密着性および剥離性のバランスに優れる。
 ポリエチレン層の密度は、好ましくは0.908g/cm3以下、より好ましくは0.907g/cm3以下、さらに好ましくは0.906g/cm3以下、よりさらに好ましくは0.905g/cm3以下、特に好ましくは0.904g/cm3以下である。ポリエチレン層の密度は、好ましくは0.860g/cm3以上、より好ましくは0.870g/cm3以上、さらに好ましくは0.880g/cm3以上、よりさらに好ましくは0.890g/cm3以上、特に好ましくは0.895g/cm3以上である。ポリエチレン層の密度は、例えば0.860g/cm3以上0.909g/cm3以下である。ポリエチレン層の密度は、JIS K7112:1999のD法(密度勾配管法、23℃)に準拠して測定される。
 ポリエチレン層は、一実施形態において、密度が0.909g/cm3以下のポリエチレンを主成分として含有し、好ましくは密度が0.909g/cm3以下の直鎖状低密度ポリエチレンを主成分として含有する。直鎖状低密度ポリエチレンとしては、例えば、C4-LLDPE、C6-LLDPEおよびC8-LLDPEが挙げられる。ポリエチレンは、環境負荷の低減という観点から、バイオマスポリエチレンでもよい。
 直鎖状低密度ポリエチレンなどのポリエチレンの密度は、好ましくは0.908g/cm3以下、より好ましくは0.907g/cm3以下、さらに好ましくは0.906g/cm3以下、よりさらに好ましくは0.905g/cm3以下、特に好ましくは0.904g/cm3以下であり、好ましくは0.860g/cm3以上、より好ましくは0.870g/cm3以上、さらに好ましくは0.880g/cm3以上、よりさらに好ましくは0.890g/cm3以上、特に好ましくは0.895g/cm3以上であり、例えば0.860g/cm3以上0.909g/cm3以下である。
 密度が0.909g/cm3以下のポリエチレンのMFRは、製膜性および加工適性という観点から、好ましくは0.1g/10分以上、より好ましくは0.3g/10分以上、さらに好ましくは0.5g/10分以上であり、好ましくは30g/10分以下、より好ましくは20g/10分以下、さらに好ましくは10g/10分以下、特に好ましくは5g/10分以下であり、例えば0.1g/10分以上30g/10分以下である。ポリエチレンのMFRは、JIS K7210-1:2014に準拠して、温度190℃、荷重2.16kgの条件で、A法により測定される。
 密度が0.909g/cm3以下のポリエチレンは、メタロセン系直鎖状低密度ポリエチレンでもよい。メタロセン系直鎖状低密度ポリエチレンとは、メタロセン系エチレン・α-オレフィン共重合体、すなわちメタロセン系触媒を用いて製造されたエチレン・α-オレフィン共重合体であり、分子構造が概ね直鎖状である。
 エチレンと共重合されるα-オレフィンとしては、例えば、炭素数3以上12以下のα-オレフィンが挙げられ、具体的には、プロピレン、1-ブテン、1-ペンテン、1-ヘキセン、1-ヘプテン、1-オクテン、4-メチル-1-ペンテン、1-デセンおよび1-ドデセンが挙げられる。これらの中でも、炭素数3以上8以下のα-オレフィンが好ましい。直鎖状低密度ポリエチレンとしては、例えば、C4-LLDPE、C6-LLDPEおよびC8-LLDPEが挙げられる。
 メタロセン系直鎖状低密度ポリエチレンの融点(Tm)は、好ましくは110℃以下、より好ましくは105℃以下、さらに好ましくは100℃以下、特に好ましくは95℃以下であり、好ましくは80℃以上、より好ましくは85℃以上、さらに好ましくは88℃以上であり、例えば80℃以上110℃以下である。Tmは、JIS K7121:2012に準拠して、DSCにより得られる融解ピーク温度である。
 メタロセン系直鎖状低密度ポリエチレンの中でも、メタロセン系エチレンプラストマーと称される樹脂が好ましい。メタロセン系エチレンプラストマーは、具体的には、メタロセン触媒によって得られる、エチレンとα-オレフィンとの共重合体(エチレン・α-オレフィン共重合体)の一種である。メタロセン系エチレンプラストマーは、低密度の中でも比較的低い超低密度と呼ばれる領域の密度と、均一な触媒活性点を有する触媒であるメタロセン触媒による重合方法に由来する、狭い分子量分布(Mw/Mn)で指標される均一なポリマー分布と、プラストマー的性質と、を有する。
 メタロセン系エチレンプラストマーとしては、市販品を用いてもよい。市販品としては、例えば、日本ポリエチレン製「カーネル(登録商標)」シリーズから選択することができる。例えば、「KF260T」、「KF360T」および「KS340T」が挙げられる。
 密度が0.909g/cm3以下のポリエチレンにおける重量平均分子量(Mw)と数平均分子量(Mn)との比(Mw/Mn)は、好ましくは3.5以下、より好ましくは3.3以下、さらに好ましくは3.0以下であり、1.0以上であり、好ましくは1.5以上、より好ましくは1.8以上、さらに好ましくは2.1以上であり、例えば1.0以上3.5以下である。
 Mw/Mnは、ゲルパーミエーションクロマトグラフィー(GPC)で測定した重量平均分子量(Mw)と数平均分子量(Mn)との比(Mw/Mn)で定義される。MwおよびMnは、以下の方法で測定される。
 装置:ウオーターズ社製GPC
 150C型検出器:MIRAN 1A赤外分光光度計
          (測定波長、3.42μm)
 カラム:昭和電工社製AD806M/S 3本
[カラムの較正は、東ソー製単分散ポリスチレン(A500,A2500,F1,F2,F4,F10,F20,F40,F288の各0.5mg/ml溶液)の測定を行い、溶出体積と分子量の対数値を2次式で近似する。試料の分子量は、ポリスチレンとポリエチレンの粘度式を用いてポリエチレンに換算する。ポリスチレンの粘度式の係数は、α=0.723、logK=-3.967であり、ポリエチレンは、α=0.707、logK=-3.407である。]
 測定温度:140℃
 注入量:0.2ml
 濃度:20mg/10mL
 溶媒:オルソジクロロベンゼン
 流速:1.0ml/min
 ポリエチレン層における密度が0.909g/cm3以下のポリエチレンの含有割合は、好ましくは50質量%超、より好ましくは60質量%以上、さらに好ましくは70質量%以上、よりさらに好ましくは80質量%以上、特に好ましくは90質量%以上である。
 ポリエチレン層は、ポリエチレン以外の上記樹脂材料を含有してもよい。
 ポリエチレン層は、上記添加剤を含有してもよい。
 密度が0.909g/cm3以下のポリエチレン層の厚さは、剥離強度という観点から、好ましくは0.5μm以上、より好ましくは1μm以上、さらに好ましくは3μm以上、特に好ましくは5μm以上である。密度が0.909g/cm3以下のポリエチレン層の厚さは、フィルム製膜の加工性という観点から、好ましくは50μm以下、より好ましくは40μm以下、さらに好ましくは30μm以下、特に好ましくは20μm以下である。上記ポリエチレン層の厚さは、例えば0.5μm以上50μm以下である。
 (熱融着性樹脂層)
 第2の樹脂層は、積層体の表面層として、熱融着性樹脂層を備えてもよい。第2の樹脂層は、積層体の表面層として、ポリエチレンおよびポリプロピレンなどのポリオレフィンを主成分として含有する熱融着性樹脂層を備えてもよい。このような熱融着性樹脂層は、積層体を備える包装袋におけるシール層として機能する。本開示の積層体を用いて包装袋を作製した場合に、熱融着性樹脂層は、包装袋の収容空間に面する層である。
 一実施形態において、第2の樹脂層は、熱融着性樹脂層からなる。
 一実施形態において、0.909g/cm3以下の密度を有する上記ポリエチレン層が、第2の樹脂層の一方の表面層であり、熱融着性樹脂層が、第2の樹脂層の他方の表面層である。
 熱融着性樹脂層は、熱融着性樹脂を好ましくは主成分として含有する。
 熱融着性樹脂としては、例えば、ポリオレフィン系樹脂およびアイオノマー樹脂が挙げられる。ポリオレフィン系樹脂としては、例えば、直鎖状低密度ポリエチレン、低密度ポリエチレン、中密度ポリエチレン、高密度ポリエチレン、エチレン-酢酸ビニル共重合体およびエチレン-(メタ)アクリル酸エステル共重合体などのポリエチレン、ポリプロピレン、エチレン-プロピレン共重合体、ポリブテン、ならびに酸変性ポリエチレンおよび酸変性ポリプロピレンなどの酸変性ポリオレフィンが挙げられる。熱融着性樹脂としては、ポリエチレンが好ましい。熱融着性樹脂は、環境負荷の低減という観点から、バイオマス材料でもよい。ポリエチレンは、環境負荷の低減という観点から、バイオマスポリエチレンでもよい。
 熱融着性樹脂層は、ヒートシール性という観点から、ポリエチレンを主成分として含有することが好ましい。熱融着性樹脂層は、ヒートシール性という観点から、直鎖状低密度ポリエチレンおよび低密度ポリエチレンから選択される少なくとも1種のポリエチレンを主成分として含有することが好ましい。直鎖状低密度ポリエチレンとしては、例えば、C4-LLDPE、C6-LLDPEおよびC8-LLDPEが挙げられる。
 熱融着性樹脂層における、直鎖状低密度ポリエチレンおよび低密度ポリエチレンの合計含有量は、好ましくは50質量%超、より好ましくは60質量%以上、さらに好ましくは70質量%以上、よりさらに好ましくは80質量%以上、特に好ましくは90質量%以上である。
 熱融着性樹脂層は、一実施形態において、直鎖状低密度ポリエチレンと低密度ポリエチレンとを含有する。このような熱融着性樹脂層は、ヒートシール性と、包装袋内に収容された物品に対する低汚染性(アウトガス発生の抑制)とのバランスに優れる。
 熱融着性樹脂層における直鎖状低密度ポリエチレン(LLDPE)と低密度ポリエチレン(LDPE)との含有量比(LLDPE:LDPE)は、質量基準で、好ましくは5:95~95:5、より好ましくは10:90~90:10、さらに好ましくは20:80~80:20である。
 熱融着性樹脂層におけるポリオレフィンのMFRは、製膜性および加工適性という観点から、好ましくは0.1g/10分以上、より好ましくは0.3g/10分以上、さらに好ましくは0.5g/10分以上であり、好ましくは30g/10分以下、より好ましくは20g/10分以下、さらに好ましくは10g/10分以下、特に好ましくは5g/10分以下であり、例えば0.1g/10分以上30g/10分以下である。ポリオレフィンのMFRは、JIS K7210-1:2014に準拠して、荷重2.16kgの条件で、A法により測定される。MFRの測定温度は、ポリオレフィンの融点等に応じて設定され、ポリエチレンの場合は190℃であり、ポリプロピレンの場合は230℃である。
 熱融着性樹脂層におけるポリエチレンのMFRの数値範囲としては、第1の樹脂層のポリエチレン層に含まれるポリエチレンのMFRと同様の数値範囲を挙げることができる。
 熱融着性樹脂層におけるポリエチレンの融点(Tm)は、耐熱性およびヒートシール性のバランスという観点から、好ましくは140℃以下、より好ましくは130℃以下、さらに好ましくは125℃以下であり、好ましくは80℃以上、より好ましくは85℃以上、さらに好ましくは90℃以上、よりさらに好ましくは95℃以上、特に好ましくは100℃以上であり、例えば80℃以上140℃以下である。Tmは、JIS K7121:2012に準拠して、DSCにより得られる融解ピーク温度である。
 熱融着性樹脂層は、上記添加剤を含有してもよい。
 熱融着性樹脂層の厚さは、好ましくは5μm以上、より好ましくは10μm以上、さらに好ましくは15μm以上、よりさらに好ましくは20μm以上、特に好ましくは25μm以上であり、好ましくは200μm以下、より好ましくは150μm以下、さらに好ましくは100μm以下、よりさらに好ましくは80μm以下、特に好ましくは60μm以下であり、例えば5μm以上200μm以下である。
 (中間層)
 第2の樹脂層は、密度が0.909g/cm3以下のポリエチレン層と熱融着性樹脂層との間に、中間層をさらに備えてもよい。中間層は、ポリエチレンおよびポリプロピレンなどのポリオレフィンを主成分として含有することが好ましく、積層体の耐突刺し性という観点から、直鎖状低密度ポリエチレンを主成分として含有することがより好ましい。ポリオレフィンは、環境負荷の低減という観点から、バイオマスポリオレフィンでもよい。
 ポリエチレンとしては、直鎖状低密度ポリエチレン、低密度ポリエチレン、中密度ポリエチレンおよび高密度ポリエチレンから選択される少なくとも1種が好ましく、ヒートシール性という観点から、直鎖状低密度ポリエチレンおよび低密度ポリエチレンから選択される少なくとも1種がより好ましく、直鎖状低密度ポリエチレンがさらに好ましい。直鎖状低密度ポリエチレンとしては、例えば、C4-LLDPE、C6-LLDPEおよびC8-LLDPEが挙げられる。ポリエチレンは、環境負荷の低減という観点から、バイオマスポリエチレンでもよい。
 中間層におけるポリエチレンの密度は、好ましくは0.925g/cm3以上、より好ましくは0.928g/cm3以上、さらに好ましくは0.930g/cm3以上である。このような中間層を備える積層体は、耐突刺し性に優れる。中間層におけるポリエチレンの密度は、好ましくは0.932g/cm3以下であり、例えば0.925g/cm3以上0.932g/cm3以下である。
 中間層における直鎖状低密度ポリエチレンは、コモノマーが1-オクテンである直鎖状低密度ポリエチレン(エチレン-1-オクテン共重合体、C8-LLDPE)であることが好ましい。このような中間層を備える積層体は、耐突刺し性に優れる。この場合、直鎖状低密度ポリエチレンの密度は、0.860g/cm3以上0.932g/cm3以下でもよく、0.900g/cm3以上0.932g/cm3以下でもよい。
 中間層におけるポリエチレンのMFRは、製膜性および加工適性という観点から、好ましくは0.1g/10分以上、より好ましくは0.3g/10分以上、さらに好ましくは0.5g/10分以上である。中間層におけるポリエチレンのMFRは、製膜性および加工適性という観点から、好ましくは30g/10分以下、より好ましくは20g/10分以下、さらに好ましくは10g/10分以下、特に好ましくは5g/10分以下である。上記MFRは、例えば0.1g/10分以上30g/10分以下である。ポリエチレンのMFRは、JIS K7210-1:2014に準拠して、温度190℃、荷重2.16kgの条件で、A法により測定される。
 中間層におけるポリエチレンの融点(Tm)は、耐熱性という観点から、好ましくは100℃以上、より好ましくは105℃以上、さらに好ましくは110℃以上、特に好ましくは120℃以上であり、好ましくは140℃以下であり、例えば100℃以上140℃以下である。Tmは、JIS K7121:2012に準拠して、DSCにより得られる融解ピーク温度である。
 中間層におけるポリエチレンなどのポリオレフィンの含有割合は、積層体の耐突刺し性およびリサイクル適性という観点から、好ましくは50質量%超、より好ましくは60質量%以上、さらに好ましくは70質量%以上、よりさらに好ましくは80質量%以上、特に好ましくは90質量%以上である。
 中間層は、上記樹脂材料を含有してもよい。
 中間層は、上記添加剤を含有してもよい。
 中間層の厚さは、好ましくは1μm以上、より好ましくは3μm以上、さらに好ましくは5μm以上、特に好ましくは10μm以上であり、好ましくは50μm以下、より好ましくは40μm以下、さらに好ましくは30μm以下、特に好ましくは25μm以下であり、例えば1μm以上50μm以下である。
 (極性樹脂層)
 第2の樹脂層は、一実施形態において、第1の樹脂層と接する極性樹脂層を備える。極性樹脂層は、極性樹脂を主成分として含有する層である。極性樹脂としては、例えば、ポリエチレンテレフタレートなどのポリエステル、ポリアミド、ポリビニルアルコールおよびエチレン-ビニルアルコール共重合体が挙げられる。極性樹脂層は、延伸フィルムでもよい。極性樹脂層は、上記添加剤を含有してもよい。極性樹脂層の厚さは、好ましくは5μm以上、より好ましくは10μm以上であり、好ましくは40μm以下、より好ましくは30μm以下であり、例えば5μm以上40μm以下である。
 (押出樹脂層)
 第2の樹脂層は、一実施形態において、ポリエチレンなどのポリオレフィンを主成分として含有する押出樹脂層を備える。ポリオレフィンとしては、例えば、ポリエチレン、ポリプロピレンおよびポリメチルペンテンが挙げられ、ポリエチレンが好ましい。押出樹脂層を構成するポリエチレンとしては、接着性という観点から、低密度ポリエチレンおよび直鎖状低密度ポリエチレンから選択される少なくとも1種が好ましく、低密度ポリエチレンがより好ましい。ポリオレフィンは、環境負荷の低減という観点から、バイオマスポリオレフィンでもよい。
 押出樹脂層は、一実施形態において、第1の樹脂層におけるヘテロ原子含有樹脂フィルムと、第2の樹脂層における熱融着性フィルムとの接着層として機能する。このような押出樹脂層を備える積層体は、ポリエチレンなどのポリオレフィンの含有割合を高くすることができ、リサイクル性に優れるとともに、第1の樹脂層と第2の樹脂層との適度な剥離強度を有し、第1の樹脂層の剥離性に優れる。
 押出樹脂層におけるポリエチレンのMFRは、製膜性および加工適性という観点から、好ましくは0.1g/10分以上、より好ましくは1g/10分以上、さらに好ましくは3g/10分以上であり、好ましくは30g/10分以下、より好ましくは25g/10分以下、さらに好ましくは20g/10分以下であり、例えば0.1g/10分以上30g/10分以下である。ポリエチレンのMFRは、JIS K7210-1:2014に準拠して、温度190℃、荷重2.16kgの条件で、A法により測定される。
 押出樹脂層におけるポリエチレンの融点(Tm)は、耐熱性および接着性のバランスという観点から、好ましくは100℃以上であり、好ましくは140℃以下、より好ましくは130℃以下、さらに好ましくは120℃以下であり、例えば100℃以上140℃以下である。Tmは、JIS K7121:2012に準拠して、DSCにより得られる融解ピーク温度である。
 押出樹脂層におけるポリエチレンなどのポリオレフィンの含有割合は、好ましくは80質量%以上、より好ましくは85質量%以上、さらに好ましくは90質量%以上、特に好ましくは95質量%である。このような押出樹脂層を備える積層体は、リサイクル性に優れる。
 第2の樹脂層における押出樹脂層の厚さは、好ましくは5μm以上、より好ましくは10μm以上であり、好ましくは40μm以下、より好ましくは30μm以下であり、例えば5μm以上40μm以下である。このような押出樹脂層を備える積層体は、層間接着性およびリサイクル性に優れる。
 押出樹脂層は、例えば、ポリオレフィンまたはポリオレフィン樹脂組成物を溶融させ、フィルム上に押し出すことにより形成できる。このときの溶融温度は、好ましくは280℃以上、より好ましくは290℃以上であり、好ましくは340℃以下、より好ましくは335℃以下であり、例えば280℃以上340℃以下である。
 (アンカーコート層)
 第2の樹脂層は、一実施形態において、極性樹脂層と押出樹脂層との間に、アンカーコート層をさらに備えてもよい。これにより、例えば、第2の樹脂層における層間密着性を向上できる。アンカーコート層は、アンカーコート剤により形成される。アンカーコート剤としては、例えば、ポリウレタン系、ポリエステル系、ポリエーテル系、ポリオレフィン系またはエポキシ樹脂系のアンカーコート剤が挙げられる。アンカーコート層は、上記添加剤を含有してもよい。アンカーコート層の厚さは、好ましくは0.05μm以上、より好ましくは0.1μm以上、さらに好ましくは0.2μm以上であり、好ましくは3μm以下、より好ましくは2μm以下、さらに好ましくは1μm以下であり、例えば0.05μm以上3μm以下である。
 <意匠層>
 本開示の積層体または包装袋は、印刷層などの意匠層をさらに備えてもよい。意匠層は、画像を有する。画像としては、例えば、文字、図形、模様、記号およびこれらの組合せが挙げられる。画像は、商品名、包装袋中の物品の名称、製造者および原材料名等の文字情報を含んでもよい。画像は、単色無地(いわゆるベタ画像)でもよい。
 意匠層は、例えば、第1の樹脂層の表面上に設けられていてもよい。例えば、第1の樹脂層の、第2の樹脂層を向く面とは反対側の面(外側の面)上に、意匠層は設けられていてもよい。
 意匠層は、一実施形態において、着色剤を含有する。
 着色剤としては、例えば、無機顔料および有機顔料等の顔料、ならびに、酸性染料、直接染料、分散染料、油溶性染料、含金属油溶性染料および昇華性色素等の染料が挙げられる。また、着色剤としては、紫外線を吸収することにより蛍光を発する紫外線発光材料、および赤外線を吸収することにより蛍光を発する赤外線発光材料等の蛍光発光材料も挙げられる。
 意匠層における着色剤の含有割合は、好ましくは1質量%以上、より好ましくは3質量%以上、さらに好ましくは5質量%以上であり、好ましくは90質量%以下、より好ましくは70質量%以下、さらに好ましくは50質量%以下であり、例えば1質量%以上90質量%以下である。
 意匠層は、上記樹脂材料を含有してもよく、上記添加剤を含有してもよい。意匠層における樹脂材料の含有割合は、好ましくは10質量%以上、より好ましくは30質量%以上、さらに好ましくは50質量%以上であり、好ましくは99質量%以下、より好ましくは97質量%以下、さらに好ましくは95質量%以下であり、例えば10質量%以上99質量%以下である。
 意匠層は、例えば、上述した成分および必要に応じて溶媒を含有するインキ組成物を用いて形成できる。意匠層の形成方法としては、例えば、グラビア印刷法、オフセット印刷法、フレキソ印刷法、スクリーン印刷法、活版印刷法および転写印刷法が挙げられる。一実施形態において、環境負荷低減という観点から、フレキソ印刷法でもよい。
 意匠層の厚さは、好ましくは0.1μm以上、より好ましくは0.2μm以上、さらに好ましくは0.3μm以上であり、好ましくは10μm以下、より好ましくは5μm以下、さらに好ましくは3μm以下であり、例えば0.1μm以上10μm以下である。
 <積層体の構成および製造方法>
 図1~図5および図10に、本開示の積層体の一実施形態に係る模式断面図を示す。これらの積層体は、一実施形態において、チューブ状フィルムとしての積層体、または包装袋を構成する表面シートおよび裏面シートとしての積層体である。
 図1の積層体1は、第1の樹脂層10と、第2の樹脂層20と、を厚さ方向にこの順に備える。第2の樹脂層20は、例えば、密度が0.909g/cm3以下のポリエチレン層22でもよく、熱融着性樹脂層24でもよい。
 図2の積層体1は、第2の樹脂層20が密度が0.909g/cm3以下のポリエチレン層22と熱融着性樹脂層24とを備えること以外は、図1の積層体1と同様である。ポリエチレン層22が第1の樹脂層10と接している。
 図3の積層体1は、第1の樹脂層10がポリオレフィン層12とヘテロ原子含有樹脂層14とを備えること以外は、図2の積層体1と同様である。ヘテロ原子含有樹脂層14がポリエチレン層22と接している。
 図4の積層体1は、第2の樹脂層20がポリエチレン層22と熱融着性樹脂層24との間に中間層23をさらに備えること以外は、図2の積層体1と同様である。
 図5の積層体1は、第1の樹脂層10がポリオレフィン層12とヘテロ原子含有樹脂層14とを備えること以外は、図4の積層体1と同様である。
 図10の積層体1は、第1の樹脂層10と、第2の樹脂層20と、を厚さ方向にこの順に備える。第1の樹脂層10は、ヘテロ原子含有樹脂層14と、接着層16と、ヘテロ原子含有樹脂層14とを備える。第2の樹脂層20は、押出樹脂層25と、熱融着性樹脂層24とを備える。第1の樹脂層10に対応する積層フィルムと、熱融着性樹脂層24に対応する熱融着性フィルムとが、押出樹脂層25を介して積層されている。
 本開示の積層体の総厚さは、積層体の強度および耐熱性という観点から、好ましくは15μm以上、より好ましくは20μm以上、さらに好ましくは30μm以上、よりさらに好ましくは40μm以上、特に好ましくは50μm以上である。本開示の積層体の総厚さは、積層体の加工適性という観点から、好ましくは300μm以下、より好ましくは250μm以下、さらに好ましくは200μm以下、よりさらに好ましくは150μm以下、特に好ましくは100μm以下である。本開示の積層体の総厚さは、例えば、15μm以上300μm以下である。
 本開示の積層体は、ヒートシール性という観点から、好ましくは未延伸フィルムである。未延伸フィルムとは、延伸処理を受けていないフィルムであり、例えば、押出成形されたフィルムであって、延伸処理を受けていないフィルムである。「未延伸フィルム」とは、全く延伸されていないフィルムだけでなく、インフレーション法等による製膜の際に加えられる張力に起因してわずかに延伸されているフィルムも包含する概念である。
 一実施形態において、本開示の積層体から得られる剥離フィルムのヤング率は、本開示の積層体から得られるシーラントフィルムのヤング率よりも大きい。このような積層体は、第1の樹脂層の剥離性に優れる。フィルムの機械方向(流れ方向)(MD)および幅方向(TD)のいずれにおいて測定されるヤング率も、このような大小関係にあることが好ましい。
 剥離フィルムのヤング率は、シーラントフィルムのヤング率の好ましくは1.3倍以上、より好ましくは1.5倍以上、さらに好ましくは1.8倍以上である。剥離フィルムのヤング率は、シーラントフィルムのヤング率の好ましくは20倍以下、より好ましくは15倍以下、さらに好ましくは10倍以下である。剥離フィルムのヤング率は、シーラントフィルムのヤング率の例えば1.3倍以上20倍以下である。剥離フィルムのMDのヤング率と、シーラントフィルムのMDのヤング率とがこのような条件を満たすことが好ましい。剥離フィルムのTDのヤング率と、シーラントフィルムのTDのヤング率とがこのような条件を満たすことが好ましい。
 シーラントフィルムのヤング率は、好ましくは10MPa以上、より好ましくは30MPa以上、さらに好ましくは50MPa以上であり、好ましくは500MPa以下、より好ましくは400MPa以下、さらに好ましくは330MPa以下であり、例えば10MPa以上500MPa以下である。シーラントフィルムのMDおよびTDのヤング率がこのような条件を満たすことが好ましい。
 本開示の積層体のヤング率は、好ましくは30MPa以上、より好ましくは50MPa以上、さらに好ましくは100MPa以上、よりさらに好ましくは150MPa以上、特に好ましくは200MPa以上であり、好ましくは800MPa以下、より好ましくは700MPa以下、さらに好ましくは600MPa以下、よりさらに好ましくは500MPa以下、特に好ましくは400MPa以下であり、例えば30MPa以上800MPa以下である。積層体のMDおよびTDのヤング率がこのような条件を満たすことが好ましい。
 ヤング率(MPa)は、JIS K7161-1:2014に準拠して、測定器として引張圧縮試験機を用い、試験速度:5mm/sの条件にて測定される。測定条件の詳細は、実施例欄に記載する。
 一実施形態において、本開示の積層体から得られる剥離フィルムのループスティフネス値は、本開示の積層体から得られるシーラントフィルムのループスティフネス値よりも小さい。このような積層体は、第1の樹脂層の剥離性に優れる。フィルムの機械方向(流れ方向)(MD)および幅方向(TD)のいずれにおいて測定されるループスティフネス値も、このような大小関係にあることが好ましい。なお、ループスティフネス値は、フィルムの硬さに加えて厚さにも影響を受ける物性である。したがって、剥離フィルムおよびシーラントフィルムのループスティフネス値の大小関係は、剥離フィルムおよびシーラントフィルムのヤング率の大小関係とは逆であることが好ましい。
 剥離フィルムのループスティフネス値は、シーラントフィルムのループスティフネス値の好ましくは0.8倍以下、より好ましくは0.6倍以下、さらに好ましくは0.4倍以下である。剥離フィルムのループスティフネス値は、シーラントフィルムのループスティフネス値の好ましくは0.05倍以上、より好ましくは0.1倍以上、さらに好ましくは0.15倍以上である。剥離フィルムのループスティフネス値は、シーラントフィルムのループスティフネス値の例えば0.05倍以上0.8倍以下である。剥離フィルムのMDのループスティフネス値と、シーラントフィルムのMDのループスティフネス値とがこのような条件を満たすことが好ましい。剥離フィルムのTDのループスティフネス値と、シーラントフィルムのTDのループスティフネス値とがこのような条件を満たすことが好ましい。
 シーラントフィルムのループスティフネス値は、好ましくは0.1g以上、より好ましくは0.2g以上、さらに好ましくは0.3g以上であり、例えば5.0g以下、好ましくは3.0g以下、より好ましくは2.0g以下、さらに好ましくは1.0g以下であり、例えば0.1g以上5.0g以下である。シーラントフィルムのMDおよびTDのヤング率がこのような条件を満たすことが好ましい。
 本開示の積層体のループスティフネス値は、好ましくは0.5g以上、より好ましくは1.0g以上、さらに好ましくは1.5g以上、よりさらに好ましくは2.0g以上、特に好ましくは2.5g以上であり、例えば25.0g以下、好ましくは8.0g以下、より好ましくは7.0g以下、さらに好ましくは6.0g以下、よりさらに好ましくは5.0g以下、特に好ましくは4.0g以下であり、例えば0.5g以上25.0g以下である。積層体のMDおよびTDのループスティフネス値がこのような条件を満たすことが好ましい。
 ループスティフネス値(g)は、測定器としてループスティフネステスタを用い、押込み速度3.3mm/秒の条件にて測定される。測定条件の詳細は、実施例欄に記載する。
 本開示の積層体は、従来公知の方法により製造できる。積層体は、好ましくは共押出多層フィルムであり、例えば共押出成膜法に製造でき、より好ましくはTダイ法またはインフレーション法により製造できる。本開示の積層体は、例えば、各層を形成する樹脂または樹脂組成物を溶融状態で押出機から押し出すことにより、形成できる。
 上記方法によれば、積層体の製造時および製造後のいずれにおいても、第2の樹脂層における第1の樹脂層と接する第1面が直接外気に触れることはない。したがって、積層体の製造時から第1の樹脂層を剥離除去するまでの間に、第2の樹脂層の第1面に埃および塵等の異物が付着することを抑制できる。包装袋の使用時において、積層体の第2の樹脂層から第1の樹脂層を剥離除去することにより、第2の樹脂層の第1面が露出する。この第1面は、異物の付着が抑制されており、清浄な面である。
 本開示の積層体は、一実施形態において、第1の樹脂層に対応するフィルムと、熱融着性樹脂層に対応する熱融着性フィルムとを、ポリエチレンなどのポリオレフィンを主成分として含有する押出樹脂層を介して積層することにより製造できる。具体的には、上記フィルム同士を、ポリエチレンなどのポリオレフィンを主成分として含有する溶融樹脂を用いた溶融押出ラミネート法、特にサンドラミネート法を用いてラミネートすることにより、積層体を製造できる。クリーン環境下でラミネートを実施することにより、第2の樹脂層における第1面の汚染を抑制できる。
 熱融着性樹脂層に対応する熱融着性フィルムは、ヒートシール性という観点から、好ましくは未延伸の樹脂フィルムである。樹脂フィルムは、例えば、キャスト法、Tダイ法またはインフレーション法等を利用することにより作製できる。
 本開示の積層体におけるポリオレフィン系樹脂の含有割合は、積層体の質量を基準として、70質量%以上でもよく、75質量%以上でもよく、80質量%以上でもよく、85質量%以上でもよく、90質量%以上でもよく、例えば70質量%以上100質量%以下でもよい。このような積層体は、リサイクル性に優れる。本開示の積層体におけるポリオレフィン系樹脂の含有割合は、積層体の質量を基準として、99質量%以下でもよく、95質量%以下でもよく、90質量%以下でもよい。上記「積層体におけるポリオレフィン系樹脂の含有割合」を、「積層体におけるポリエチレン系樹脂の含有割合」または「積層体におけるポリプロピレン系樹脂の含有割合」と読み替えることができる。
 [包装袋]
 本開示の積層体は、包装袋を構成する包装材料として好適に使用できる。上記積層体における第2の樹脂層が、包装袋内の収容空間に面する内表面(包装袋内の物品が接触する面)を構成する。以下の説明は、所望により、後述する第1および第2の態様の包装袋にも適用できる。
 以下、本開示の包装袋の使用形態の一例について説明する。
 クリーンルーム等のクリーン環境内で使用される物品には、高い清浄度が必要とされる。上記物品を収容した包装袋は、クリーン環境内に持ち込まれ、開封される。したがって、包装袋にも、高い清浄度が必要とされる。すなわち、上記物品を収容した包装袋をクリーン環境内に持ち込む場合、包装袋の表面(例えば外面および/または内面)に埃および塵等の異物が付着して、クリーン環境内に包装袋とともに異物が侵入することを抑制する必要がある。本開示の積層体を備える包装袋または本開示の包装袋を用いることにより、例えば、以下のようにしてこのような異物の侵入を抑制できる。
 まず、クリーン環境下で本開示の包装袋内に物品を収容し、必要に応じて真空脱気等により脱気し、包装袋の開口部を密封し、包装袋内に物品が収容された包装体を得る。脱気は、包装袋内の気体を除去できれば真空脱気に限られない。例えば、押圧部材を用いて包装袋を外側から押圧することにより脱気を行ってもよい。クリーン環境の前室に包装体を持ち込む。ここで、包装袋を構成する(積層体における)第1の樹脂層(剥離フィルム)を剥離除去する。これにより、包装袋を構成する(積層体における)第2の樹脂層(シーラントフィルムまたは包装フィルム)の第1面が露出する。第2の樹脂層の第1面は、上述したように異物の付着が抑制されており、清浄な面である。第1の樹脂層を剥離除去してなる包装袋は、その表面における異物の付着量が少ない。このような包装袋をクリーン環境内に持ち込む。クリーン環境内において、包装袋を開封して物品を取り出し、使用する。一実施形態(例えば後述する第1の態様の包装袋)において、第2の樹脂層の第2面(包装袋の内面)もまた、異物の付着が抑制されており、清浄な面である。このようにして、包装袋とともに異物がクリーン環境内に侵入することが抑制される。
 以上の構成によれば、本開示の包装袋を、内袋および外袋を少なくとも備える2重袋、または3重以上の袋として構成する必要はない。しかしながら、本開示の包装袋を、2重袋または3重以上の袋における外袋等として使用することは何ら制限されない。
 本開示において、包装袋内に収容される物品としては、例えば、ICおよびLSIなどの半導体製品、半導体装置用バルブおよび半導体製造用フィルタなどの半導体関連部品、精密機械、磁気ディスク、シリコンウェハ、Oリング、ベローズ、医薬品製品、再生医療向け製品、ならびに血球検査装置用希釈液および人工透析液などの薬液製品が挙げられる。物品としては、クリーン環境内で使用される、防塵用衣服、防塵用手袋および器具なども挙げられる。
 本開示の包装袋は、一実施形態において、本開示の積層体を備える。
 本開示の包装袋は、一実施形態において、表面を構成する表面シートおよび裏面を構成する裏面シートを備える。表面シートは、1枚の積層体により構成されていてもよく、裏面シートは、もう1枚の積層体により構成されていてもよい。表面シートおよび裏面シートは、一体となっていてもよく、1枚の積層体により構成されていてもよい。表面シートおよび裏面シートは、1つのチューブ状の積層体により構成されていてもよい。
 包装袋は、通常、ヒートシールされた箇所(ヒートシール部、以下「シール部」ともいう)を有する。包装袋は、例えば、積層体における第2の樹脂層同士が融着して形成されたシール部を有する。ヒートシールの方法としては、例えば、バーシール、回転ロールシール、ベルトシール、インパルスシール、高周波シールおよび超音波シールが挙げられる。
 包装袋としては、例えば、スタンディングパウチ型、側面シール型、二方シール型、三方シール型、四方シール型、封筒貼りシール型、合掌貼りシール型(ピローシール型)、ひだ付シール型、平底シール型、角底シール型およびガゼット型などの種々の形態の包装袋が挙げられる。包装袋の平面形状は、例えば、矩形でもよく、矩形以外の円形等の形状でもよい。
 本開示の積層体を用いて包装袋を作製する一例を説明する。積層体を2枚準備する。2枚の積層体の第2の樹脂層を対向させて積層体を重ね合わせる。次いで、積層体の外周周縁部である左右および下部の三方にシール部を形成する。所望により、次いで、ハーフカット線を形成する。このようにして、一つの辺に開口部を有する包装袋が得られる。
 本開示の積層体を2枚用いる代わりに、本開示の積層体を1枚準備し、該積層体の第2の樹脂層の第2面が対向するように折って重ね合わせ、次いで、その左右の外周周縁部の二方にヒートシール部を形成して、包装袋を作製してもよい。このようにして、一つの辺に開口部を有する包装袋が得られる。この場合、折り返された下部にもシール部を形成してもよく、さらに下部のシール部の下側部分を切断除去してもよい。これにより、包装袋の表面シートおよび裏面シートそれぞれにおいて、第1の樹脂層を剥離除去できる。
 包装袋は、以下のようにして作製してもよい。本開示の積層体をインフレーション法により製膜し、チューブ状フィルムを得る。チューブ状フィルムの流れ方向(機械方向)に対して垂直な幅方向の両端部を流れ方向に沿って切断する。次に、フィルムの幅方向の両端部を流れ方向に沿ってヒートシールするとともに、フィルムの幅方向に延びる部分を流れ方向に一定間隔を空けてヒートシールする。次に、フィルムの幅方向の中央箇所でフィルムを流れ方向に沿って切断し、ヒートシールされた幅方向に延びる部分でフィルムを幅方向に沿って切断する。図9Aに、フィルムの正面図を示し、ハッチング部分はヒートシールされた部分を示し、点線は切断される箇所を示す。このようにして、一つの辺に開口部を有する包装袋が複数個得られる。
 包装袋は、以下のようにして作製してもよい。チューブ状フィルムの幅方向の両端部を流れ方向に沿って切断する。次に、フィルムの幅方向の一方の端部を流れ方向に沿ってヒートシールするとともに、フィルムの幅方向に延びる部分を流れ方向に一定間隔を空けてヒートシールする。次に、ヒートシールされた幅方向に延びる部分でフィルムを幅方向に沿って切断する(図9B参照)。このようにして、一つの辺に開口部を有する包装袋が複数個得られる。
 包装袋は、以下のようにして作製してもよい。チューブ状フィルムの幅方向の両端部を流れ方向に沿って切断する。次に、フィルムの幅方向の中央箇所において流れ方向に延びる部分をヒートシールするとともに、あるいは、フィルムの流れ方向に延びる部分を幅方向に一定間隔を空けてヒートシールするとともに、フィルムの幅方向に延びる部分を流れ方向に一定間隔を空けてヒートシールする。フィルムの流れ方向に沿ってヒートシールされる部分は、例えば、1列以上5列以下でもよく、1列以上3列以下でもよい。次に、ヒートシールされた流れ方向に延びる部分でフィルムを流れ方向に沿って切断し、ヒートシールされた幅方向に延びる部分でフィルムを幅方向に沿って切断する(図9Cおよび図9D参照)。このようにして、一つの辺に開口部を有する包装袋が複数個得られる。
 所望のタイミングで、ハーフカット線を形成してもよい。
 上記で製造した包装袋の未ヒートシール部の開口部から、物品を装入する。次いで、包装袋の開口部をヒ-トシールしてヒートシール部を形成して、包装袋中に物品が収容された包装体を得ることができる。
 図6aは、本開示の包装袋の一実施形態を示す断面図である。包装袋50のシール部は、第1の樹脂層10および第2の樹脂層20を備える積層体1を重ね合わせヒートシールすることにより形成されている。
 図6bは、本開示の包装袋の使用形態の一実施形態を示す断面図である。例えば、第1の樹脂層10,10は、クリーンルーム内に持ち込まれる直前に、包装袋50の第2の樹脂層20,20からそれぞれ剥離される。
 包装袋は、易開封部を備えてもよい。易開封部としては、例えば、包装袋の引き裂きの起点となるノッチ部や、包装袋を引き裂く際の経路として、レーザー加工やカッターなどにより形成された易開封線が挙げられる。
 図7は、本開示の包装袋の一実施形態を示す正面図である。以下、図7を参照して、包装袋の一例を説明する。図7の包装袋50は、物品を収容する収容部(収容空間)50aを備える。包装袋50は、上部51、下部52および側部53,53を含み、正面図において略矩形状の輪郭を有する。なお、「上部」、「下部」および「側部」等の名称、ならびに、「上方」および「下方」等の用語は、包装袋50やその構成要素の位置や方向を相対的に表したものに過ぎない。包装袋50の輸送時や使用時の姿勢等は、本明細書における名称や用語によっては限定されない。
 図7に示すように、包装袋50は、表面を構成する表面シート54および裏面を構成する裏面シート55を備える。図7に示す包装袋50において、表面シート54および裏面シート55は、それぞれ、1枚の積層体により形成されている。図示はしないが、包装袋50において、表面シート54および裏面シート55は、一体となっていてもよく、1枚の積層体により形成されていてもよい。このとき、積層体は、例えば、第2の樹脂層が包装袋50の内表面を構成するように下部52で折り返されている。この場合、包装袋50は、包装袋50の3辺に沿って延びるシール部を有する。
 表面シート54および裏面シート55は、内面同士がシール部において接合されている。図7に示す包装袋50の正面図においては、シール部にハッチングが施されている。シール部は、積層体のシーラント層(第2の樹脂層)同士が接合されている部分である。
 図7に示すように、包装袋50は、包装袋50の4辺に沿って延びるシール部を有する。シール部は、上部51に沿って延びる上部シール部51aと、一対の側部53,53に沿って延びる一対の側部シール部53a,53aと、下部52に沿って延びる下部シール部52aと、を含む。物品が収容される前の状態(物品が収容されていない状態)の包装袋50においては、包装袋50の上部51には開口部(図示せず)が形成されている。そして、包装袋50中に物品を収容した後、表面シート54の内面と裏面シート55の内面とを上部51において接合することにより、上部シール部51aが形成されて包装袋50が封止される。
 上部シール部51a、側部シール部53a,53aおよび下部シール部52aは、表面シート54の内面と裏面シート55の内面とを接合することによって構成されるシール部である。
 対向するシート54,55同士を接合して包装袋50を封止することができる限りにおいて、シール部を形成するための方法が特に限られることはない。例えば、加熱等によってシートの内面を溶融させ、内面同士を融着させることによって、すなわちヒートシールによって、シール部を形成する。
 包装袋を構成する積層体(例えば表面シートおよび/または裏面シート)は、一実施形態において、ハーフカット線を有する。ハーフカット線とは、積層体を構成する第1の樹脂層の表面から、第1の樹脂層と第2の樹脂層との界面にまで達しているが、積層体は貫通していない切れ込み線をいう。ハーフカット線を起点として、積層体における第1の樹脂層を容易に手で剥離除去できる。ハーフカット線は、後述する第2の態様の包装袋にて説明するハーフカット線でもよい。
 ハーフカット線が形成される位置は、特に限定されない。例えば、矩形状の平面形状を有する包装袋の場合は、包装袋の少なくとも1つの隅部にハーフカット線を設けることが好ましい。ハーフカット線は、包装袋の表面シートおよび裏面シートのいずれにも形成されていることが好ましい。ハーフカット線は、一実施形態において、表面シートおよび裏面シートの隅部において、該シートの側部外縁から下部外縁に延びている。ハーフカット線は、例えば、カッター等を用いて機械的に積層体の厚さ方向に切れ目を入れることにより、または積層体にレーザーを照射することにより、形成できる。
 図7および図8を用いて、ハーフカット線を具体的に説明する。
 図7に示すように、包装袋50のシール部の一つの隅部に、ハーフカット線60が形成されている。図7に示すように、ハーフカット線60は、包装袋50の側部53外縁から下部52外縁まで延びている。ハーフカット線60は、包装袋50の表裏両面、すなわち表面シート54および裏面シート55にそれぞれ形成されている。図8は、包装袋を構成する積層体に設けられたハーフカット線の拡大図である。
 包装袋50の表裏両面にハーフカット線60が形成されているので、物品が収容された包装袋50をクリーンルーム内に持ち込む直前で、一方の面に形成されたハーフカット線60を介して包装袋50の隅部を折り曲げることができる。このことにより、第1の樹脂層10を第2の樹脂層20から容易に剥離することができる。次に、他方の面に形成されたハーフカット線60を介して同様に包装袋50の隅部を折り曲げることにより、他方の第1の樹脂層10を第2の樹脂層20から剥離することができる。
 <第1の態様の包装袋>
 以下、本開示の第1の態様の包装袋およびその製造方法の一態様について説明する。該態様によれば、クリーン環境内で使用される物品を収容でき、高い清浄度を有する包装袋およびその製造法を提供できる。
 本開示の第1の態様の包装袋は、表面シートと、該表面シートに対向する裏面シートと、を備える。表面シートは、包装袋の表面を構成する。裏面シートは、包装袋の裏面を構成する。上記シートにおける「表面」および「裏面」の用語は、包装袋の表面と裏面とを相対的に表したものに過ぎない。包装袋の輸送時や使用時の姿勢等は、本明細書における表面と裏面とによっては限定されない。
 表面シートおよび裏面シートは、それぞれ、第1の樹脂層と、包装袋の内面を構成する第2の樹脂層と、を少なくとも備える。第1の樹脂層は、一実施形態において、包装袋の外面を構成する。第2の樹脂層は、包装袋の収容空間に面する内面(包装袋内の物品が接触する面)を構成する。表面シートおよび裏面シートにおいて、第1の樹脂層は、第2の樹脂層から剥離できるように設けられている。第1の樹脂層および第2の樹脂層の詳細については、上述したとおりであり、本欄での詳細な説明は省略する。以下の説明において、表面シートおよび/または裏面シートとして、上述した本開示の積層体を用いることができる。
 表面シートおよび裏面シートは、それぞれ、共押出インフレーション法により作製された同一のチューブ状フィルムに由来するシートである。該チューブ状フィルムは、チューブ外面を構成する第1の樹脂層と、チューブ内面を構成する第2の樹脂層と、を少なくとも備える。上記内面は、後述するとおり、チューブ状フィルムおよび包装袋の製造時に外気等と接触することが抑制されていることから、清浄度が高い。チューブ状フィルムとして、上述した本開示の積層体を用いることができる。
 第2の樹脂層は、第1面と、該第1面に対向する第2面と、を有する。第1の樹脂層は、第2の樹脂層の第1面上に設けられている。第1の樹脂層は、第2の樹脂層に接しており、具体的には、第2の樹脂層の第1面に接している。したがって、通常、第2の樹脂層の第1面は、第1の樹脂層を剥離する際の剥離面である。
 本開示の第1の態様の包装袋の内面に付着した、粒子径が0.2μm以上のパーティクルの数は、好ましくは100個/cm2以下、より好ましくは80個/cm2以下、さらに好ましくは60個/cm2以下、よりさらに好ましくは40個/cm2以下、特に好ましくは20個/cm2以下、15個/cm2以下、10個/cm2以下または5個/cm2以下である。上記パーティクルの数の下限は、特に限定されないが、例えば0.1個/cm2でもよく、0.5個/cm2でもよく、1個/cm2でもよい。上記パーティクルの数は、パーティクルカウンタを用いて測定される。測定方法の詳細は、実施例欄に記載する。後述する製造方法により包装袋を作製することにより、包装袋の内面に付着するパーティクルの数を抑制できる。
 包装袋は、表面シートにおける第2の樹脂層の一部と裏面シートにおける第2の樹脂層の一部とが接合(例えば融着)して形成されたシール部を有する。シール部は、例えば、ヒートシールされた箇所(ヒートシール部)である。
 図11aは、本開示の第1の態様の包装袋の一実施形態を示す断面図である。包装袋50は、表面シート54と裏面シート55とを備える。表面シート54は、第1の樹脂層10と第2の樹脂層20とを備える。裏面シート55は、第1の樹脂層10と第2の樹脂層20とを備える。包装袋50は、表面シート54における第2の樹脂層20の一部と裏面シート55における第2の樹脂層20の一部とが接合して形成されたシール部HSを有する。
 包装袋50は、例えば、以下のようにして形成される。
 図11bに示すように、共押出インフレーション法により、チューブ外面Soutを構成する第1の樹脂層10と、チューブ内面Sinを構成する第2の樹脂層20と、を少なくとも備えるチューブ状フィルム2を形成し、該フィルム2を扁平状に変形させる(具体的には折り畳む)。次に、図11cに示すように、チューブ状フィルム2において対面する第2の樹脂層20の一部同士を接合させ、シール部HSを形成する。図11cでは、図を見やすくするために、チューブ状フィルム2は扁平状に変形されてはいない。次に、ヒートシールされたチューブ状フィルム2の両端部を所定の幅で切除する。なお、この切除を行った後に、シール部HSを形成してもよい。次に、所定の切断処理を行う。このようにして、包装袋50が得られる。このように包装袋50は、扁平状に変形されたチューブ状フィルム2または該フィルムを切断してなる重ね合わされたフィルムを直接製袋して得られる。包装袋50の製造方法の詳細は、後述する。
 「扁平状に変形されたチューブ状フィルムまたは該フィルムを切断してなる重ね合わされたフィルムを直接製袋して得られる包装袋」とは、扁平状に変形されたチューブ状フィルムまたは該フィルムを切断してなる重ね合わされたフィルムに対して、対面して接触している第2の樹脂層同士の接触を解除することなく、シール部の形成およびフィルムの切断を行って得られる包装袋を意味する。ここで、シール部の形成の前に、チューブ状フィルムの例えば流れ方向に沿って該フィルムを切断してもよいが、該切断後の重ね合わされたフィルムにおいて、第2の樹脂層同士の接触を解除することなく製袋処理を行う。
 「対面して接触している第2の樹脂層同士の接触を解除することなく」とは、扁平化されたチューブ状フィルムの場合は、チューブ内に外気を導入せずに扁平化された状態を維持することを意味し、重ね合わされたフィルムの場合は、チューブ状フィルムの切断から、重ね合わされたフィルムを互いに分離せずに両フィルムが重ね合わされた状態を維持することを意味する。本開示の目的を損なわない範囲において、対面する第2の樹脂層同士がわずかな領域において接触していなくともよい。
 図11dは、本開示の第1の態様の包装袋の使用形態の一実施形態を示す断面図である。例えば、第1の樹脂層10,10は、クリーンルーム内に持ち込まれる直前に、包装袋50の第2の樹脂層20,20からそれぞれ剥離される。
 図7に示すように、包装袋50は、表面を構成する表面シート54および裏面を構成する裏面シート55を備える。図7に示す包装袋50の一実施形態において、表面シート54および裏面シート55は、それぞれ、共押出インフレーション法により作製された同一のチューブ状フィルムに由来するシートである。
 表面シートおよび裏面シートの厚さは、包装袋の強度および耐熱性という観点から、好ましくは15μm以上、より好ましくは20μm以上、さらに好ましくは30μm以上、よりさらに好ましくは40μm以上、特に好ましくは50μm以上である。表面シートおよび裏面シートの厚さは、包装袋の加工適性という観点から、好ましくは300μm以下、より好ましくは250μm以下、さらに好ましくは200μm以下、よりさらに好ましくは150μm以下、特に好ましくは100μm以下である。表面シートおよび裏面シートの厚さは、例えば、15μm以上300μm以下である。
 表面シートおよび裏面シートは、ヒートシール性という観点から、好ましくは未延伸フィルムである。「未延伸フィルム」とは、全く延伸されていないフィルムだけでなく、共押出インフレーション法による製膜の際に加えられる張力に起因して延伸されているフィルムも包含する概念である。
 表面シートおよび裏面シートにおけるポリオレフィン系樹脂の含有割合は、一実施形態において、該シートの質量を基準として、70質量%以上でもよく、75質量%以上でもよく、80質量%以上でもよく、85質量%以上でもよく、90質量%以上でもよい。このような包装袋は、リサイクル性に優れる。表面シートおよび裏面シートにおけるポリオレフィン系樹脂の含有割合は、該シートの質量を基準として、99質量%以下でもよく、95質量%以下でもよく、90質量%以下でもよい。表面シートおよび裏面シートにおけるポリオレフィン系樹脂の含有割合は、例えば、70質量%以上100質量%以下である。上記「ポリオレフィン系樹脂の含有割合」を、「ポリエチレン系樹脂の含有割合」または「ポリプロピレン系樹脂の含有割合」と読み替えることができる。
 第1の態様の包装袋は、上述したハーフカット線および/または易開封部を有してもよい。第1の態様の包装袋は、第2の態様の包装袋において説明するハーフカット線を有してもよい。
 本開示の第1の態様の包装袋の製造方法は、
 共押出インフレーション法により、チューブ外面を構成する第1の樹脂層と、ポリオレフィンを主成分として含有する、チューブ内面を構成する第2の樹脂層と、を少なくとも備えるチューブ状フィルムを形成し、該フィルムを扁平状に変形させる工程(以下「工程(1)」ともいう)、および
 扁平状に変形された上記チューブ状フィルムまたは該フィルムを切断してなる重ね合わされたフィルムに対して、対面して接触している上記第2の樹脂層同士の接触を解除することなく製袋処理を行い、包装袋を作製する工程(以下「工程(2)」ともいう)、
を含む。
 (工程(1))
 工程(1)では、共押出インフレーション法により、チューブ外面を構成する第1の樹脂層と、ポリオレフィンを主成分として含有する、チューブ内面を構成する第2の樹脂層と、を少なくとも備えるチューブ状フィルムを形成し、該フィルムを扁平状に変形させる(具体的には折り畳む)。
 共押出インフレーション法で用いる溶融押出機としては、例えば、一軸押出機、二軸押出機、ベント押出機およびタンデム押出機が挙げられる。包装袋は多層構造を有することから、多層環状ダイと複数台の溶融押出機とを使用する。共押出インフレーション法には、空冷式インフレーション法および水冷式インフレーション法がある。製膜速度が速く、幅広の製膜が可能であることから、空冷式インフレーション法が好ましく、上向きの空冷式インフレーション法がより好ましい。
 共押出インフレーション法の一実施形態について、以下に説明する。
 まず、各層を構成する材料を押出機に供給して溶融させ、多層環状ダイによりチューブ状に押し出す。このとき、チューブ状の溶融樹脂の内部に下方から空気を送り、チューブの径を所定の大きさに膨張させると共に、チューブ外方から冷却用空気を送り、チューブ状フィルムを形成する。続いて、得られたチューブ状フィルムをピンチロールで引っ張り上げながら、安定板およびピンチロールによって扁平状に変形させる。このとき、チューブ状フィルムにおいて対面する内面同士、すなわち対面する第2の樹脂層同士が接触している。所望により、巻き上げ部において扁平化されたチューブ状フィルムを巻き取り、ロール状体を得る。
 共押出インフレーション法によれば、第1の樹脂層と第2の樹脂層とが積層されたチューブ状フィルムを一工程で容易に製造できる。ここで、第1の樹脂層は、後述するとおり製袋後においては、第2の樹脂層から剥離できるように設けられている。
 (工程(2))
 工程(2)では、工程(1)で扁平状に変形された上記チューブ状フィルムまたは該フィルムを切断してなる重ね合わされたフィルムに対して、対面して接触している第2の樹脂層同士の接触を解除することなく製袋処理を行い、包装袋を作製する。
 扁平状に変形されたチューブ状フィルムでは、該フィルムを構成する、対面する第2の樹脂層同士、すなわち該フィルムの内面同士は、接触している。工程(2)では、扁平状に変形されたチューブ状フィルムから、対面して接触している第2の樹脂層同士の接触を解除することなく、包装袋を作製する。
 例えば、扁平状に変形されたチューブ状フィルムにおいて、対面して接触している第2の樹脂層の一部同士を接合させてシール部を形成した後、該フィルムを切断して、包装袋を作製する。例えば、扁平状に変形されたチューブ状フィルムを例えば流れ方向に沿って切断してなる重ね合わされたフィルムにおいて、対面して接触している第2の樹脂層の一部同士を接合させてシール部を形成した後、該フィルムを切断して、包装袋を作製する。
 シール部の形成方法としては、例えば、例えば、バーシール、回転ロールシール、ベルトシール、インパルスシール、高周波シールおよび超音波シールなどのヒートシール方法が挙げられる。
 本開示の製造方法によれば、包装袋の製造時および製造後のいずれにおいても、第2の樹脂層における第1の樹脂層と接する第1面が直接外気に触れることはない。したがって、包装袋の製造時から第1の樹脂層を剥離除去するまでの間に、第2の樹脂層の第1面に埃および塵等の異物が付着することを抑制できる。包装袋の使用時において、包装袋の第2の樹脂層から第1の樹脂層を剥離除去することにより、第2の樹脂層の第1面が露出する。この第1面は、異物の付着が抑制されており、清浄な面である。
 また、チューブ状フィルムを扁平状に変形させることにより、チューブ状フィルムの内面は、外気と触れず清浄に保たれる。扁平状に変形されたチューブ状フィルムの内面同士が接した状態のまま製袋処理することにより、内面が外気と触れず清浄に保たれたまま包装袋を製造できる。すなわち、第2の樹脂層の第2面は、異物の付着が抑制されており、清浄な面である。したがって、本開示の方法によれば、製袋処理は必ずしもクリーン環境内で行わなくともよい。より高い清浄度が求められる場合は、製袋処理をクリーン環境内で行ってもよい。一方、チューブ状フィルムにおける幅方向の両端部を所定の幅で切除して2枚のフィルムに分けた後に、両者を重ね合わせて製袋処理する方法では、製袋処理前に該フィルムの両面に外気が触れることから、包装袋の内面に異物が付着することを充分抑制できない場合がある。
 製袋処理の一例について、以下に記載する。
 扁平状に変形されたフィルムの流れ方向(押出方向)に対して交差(例えば直交)する幅方向の両端部を流れ方向に沿ってヒートシールするとともに、フィルムの幅方向に延びる部分を流れ方向に一定間隔を空けてヒートシールして、シール部を形成する。次に、幅方向に延びるシール部から僅かに下方の位置でフィルムを幅方向に沿って切断する。図12A1に、フィルムの正面図を示し、ハッチング部分はシール部を示し、点線は切断される箇所を示す。このようにして、一つの辺に開口部を有する包装袋が複数個得られる。
 製袋処理の他の例について、以下に記載する。
 扁平状に変形されたフィルムの幅方向の両端部を、流れ方向に沿ってヒートシールするとともに、フィルムの幅方向に延びる部分を流れ方向に一定間隔を空けてヒートシールして、シール部を形成する。次に、フィルムの幅方向の中央箇所でフィルムを流れ方向に沿って切断し、幅方向に延びるシール部でフィルムを幅方向に沿って切断する(図12A2参照)。このようにして、一つの辺に開口部を有する包装袋が複数個得られる。
 製袋処理の他の例について、以下に記載する。
 扁平状に変形されたフィルムの幅方向の一方の端部を流れ方向に沿ってヒートシールするとともに、フィルムの幅方向に延びる部分を流れ方向に一定間隔を空けてヒートシールして、シール部を形成する。次に、幅方向に延びるシール部でフィルムを幅方向に沿って切断する(図12B参照)。このようにして、一つの辺に開口部を有する包装袋が複数個得られる。
 製袋処理の他の例について、以下に記載する。
 扁平状に変形されたフィルムの幅方向の中央箇所において流れ方向に延びる部分をヒートシールするとともに、あるいは、フィルムの流れ方向に延びる部分を幅方向に一定間隔を空けてヒートシールするとともに、フィルムの幅方向に延びる部分を流れ方向に一定間隔を空けてヒートシールして、シール部を形成する。フィルムの流れ方向に沿ってヒートシールされる部分は、例えば、1列以上5列以下でもよく、1列以上3列以下でもよい。次に、流れ方向に延びるシール部でフィルムを流れ方向に沿って切断し、幅方向に延びるシール部でフィルムを幅方向に沿って切断する(図12Cおよび図12D参照)。このようにして、一つの辺に開口部を有する包装袋が複数個得られる。
 製袋処理の他の例について、以下に記載する。
 扁平状に変形されたフィルムの流れ方向に延びる部分を幅方向に間隔を空けてヒートシールするとともに、フィルムの幅方向に延びる部分を流れ方向に一定間隔を空けてヒートシールして、シール部を形成する。次に、流れ方向に延びるシール部でフィルムを流れ方向に沿って切断し、フィルムの幅方向の中央箇所でフィルムを流れ方向に沿って切断し、幅方向に延びるシール部でフィルムを幅方向に沿って切断する(図12E参照)。このようにして、一つの辺に開口部を有する包装袋が複数個得られる。
 製袋処理の他の例について、以下に記載する。
 扁平状に変形されたフィルムの幅方向の両端部を流れ方向に沿ってヒートシールし、フィルムの流れ方向に延びる部分を幅方向に一定間隔を空けてヒートシールするとともに、フィルムの幅方向に延びる部分を流れ方向に一定間隔を空けてヒートシールして、シール部を形成する。フィルムの流れ方向に沿ってヒートシールされる部分は、例えば、1列以上5列以下でもよく、1列以上3列以下でもよい。次に、流れ方向に延びるシール部でフィルムを流れ方向に沿って切断し、幅方向に延びるシール部から僅かに下方の位置でフィルムを幅方向に沿って切断する(図12F参照)。このようにして、一つの辺に開口部を有する包装袋が複数個得られる。
 製袋処理の以上の例において、上記フィルムの幅方向の両端部を流れ方向に沿って所定の幅で切除する。この切除は、ヒートシールの前に行ってもよく、ヒートシールの後に行ってもよい。
 例えばクリーン環境内で、上記で製造した包装袋の未シール部の開口部から、物品を装入する。次いで、包装袋の開口部をヒ-トシールしてシール部を形成して、包装袋中に物品が収容された包装体を得ることができる。
 <第2の態様の包装袋>
 本開示の第2の態様の包装袋は、本体部としての第2の樹脂層と剥離部としての第1の樹脂層とを厚さ方向に備える積層体を備える。以下の記載において、第1の樹脂層を剥離部とも記載し、第2の樹脂層を本体部とも記載する。本体部は、熱融着性樹脂層を備える。剥離部は、本体部から剥離できるように設けられている。クリーンルームの前室で包装袋の剥離部を剥離することで、クリーンな状態の包装袋をクリーンルーム内に持ち込むことができる。第1の樹脂層および第2の樹脂層の詳細については、上述したとおりであり、本欄での詳細な説明は省略する。
 本体部における熱融着性樹脂層が、包装袋内の収容部に面する内表面(包装袋内の物品が接触する面)を構成する。本体部は、第1面と、該第1面に対向する第2面と、を有する。剥離部は、本体部の第1面上に設けられている。剥離部は、本体部に接しており、具体的には、本体部の第1面に接している。したがって、通常、本体部の第1面は、剥離部を剥離する際の剥離面である。
 包装袋は、上記積層体により構成される表面シートと、上記積層体により構成される裏面シートと、表面シートの熱融着性樹脂層と裏面シートの熱融着性樹脂層とが接合されているシール部と、内容物を収容する収容部と、を有する。表面シートを構成する積層体は、裏面シートを構成する積層体と同一でもよく、異なってもよい。
 以下、図面を参照しながら、本開示の第2の態様の包装袋について説明する。上記積層体として、上述した本開示の積層体を用いることができる。第2の態様の包装袋は、上述した易開封部を有してもよい。
 包装袋は、図13Aに示すように、平面視において、点Aを有する第1の辺101と、点Bを有する第2の辺102と、第1の辺101と第2の辺102とを結ぶ頂点Vを含む隅部110と、を有する。本明細書において、平面視とは、包装袋の表面シートまたは裏面シートの法線方向から該包装袋を視ることをいう。点Aと点Bは、ハーフカット線104の位置等を説明するための仮想的な点であり、そのような点が実際に包装袋に設けられているわけではない。
 包装袋は、表面シートおよび/または裏面シートにおいて、第1の辺上の点Aと第2の辺上の点Bとを結ぶ線上に、点Aから延びるハーフカット線を有する。点Aと点Bとを結ぶ線は、ハーフカット線の位置等を説明するための仮想的な線であり、そのような線が実際に包装袋に設けられているわけではない。以下、点Aと点Bとを結ぶ線を「仮想線」ともいう。仮想線およびハーフカット線は、平面視において、直線状でもよく、包装袋の収容部側に対して凸状または凹状に形成された円弧状などの曲線状でもよい。図13Aでは、直線状の例を示している。
 ハーフカット線とは、積層体を構成する剥離部の表面から、厚さ方向において剥離部と本体部との界面にまで達しているが、積層体は貫通していない切れ込み線をいう(図8参照)。すなわちハーフカット線は、積層体の厚さ方向において剥離部は切断されているが本体部の少なくとも一部は切断されないように設けられている。ハーフカット線を起点として、積層体における剥離部を本体部から容易に手で剥離除去できる。ハーフカット線は、例えば、カッター、ビク刃等を用いて機械的に積層体の厚さ方向に切れ目を入れることにより、または積層体にレーザーを照射することにより、形成できる。
 一実施形態において、包装袋の表面シートの隅部に、ハーフカット線が形成されている。したがって、物品が収容された包装袋をクリーンルーム内に持ち込む前に、表面シートに形成されたハーフカット線を介して包装袋の隅部を折り曲げることができる。このことにより、表面シートを構成する積層体において、剥離部を本体部から容易に剥離できる。包装袋の裏面シートの隅部にも、ハーフカット線が形成されていることが好ましい。裏面シートに形成されたハーフカット線を介して同様に包装袋の隅部を折り曲げることにより、裏面シートを構成する積層体において、剥離部を本体部から剥離できる。
 ハーフカット線は、点Aから上記仮想線の途中まで設けられており、すなわちハーフカット線は、点Bには到達していない。図13Bに示すように、ハーフカット線104が第1の辺101上の点Aから第2の辺102上の点Bまで設けられている場合、ハーフカット線104を起点として剥離部を本体部から剥離すると、一部の剥離部(例えば図13Bではハーフカット線104よりも下側の三角形状の部分)が本体部上に残存することになる。本体部上に残存した剥離部は、クリーンルーム内での異物となりえる。ハーフカット線が、点Aから上記仮想線の途中まで設けられている場合は、剥離部を本体部上に残さずに奇麗に剥離できる。
 ハーフカット線と第2の辺との最短距離D1は、好ましくは2.0mm以上、2.5mm以上、3.0mm以上または3.5mm以上、より好ましくは4mm以上、さらに好ましくは4.5mm以上、特に好ましくは5mm以上であり、好ましくは20mm以下、より好ましくは15mm以下、さらに好ましくは10mm以下であり、例えば2.0mm以上20mm以下である。最短距離D1が下限値未満であると、剥離部の剥離時にハーフカット線が設けられていない個所も切れて、一部の剥離部が本体部上に残存する場合がある。最短距離D1が3.5mm以上であると、剥離部を本体部上に残さずに奇麗に剥離できる。ハーフカット線と第2の辺との最短距離D1とは、ハーフカット線上の任意の点と第2の辺上の任意の点とを結ぶ直線のうち、最も短い直線の長さをいう。
 ハーフカット線の始点である点Aと上記頂点Vとの距離は、好ましくは8mm以上、より好ましくは10mm以上、12mm以上または14mm以上であり、好ましくは50mm以下、より好ましくは45mm以下、さらに好ましくは40mm以下、よりさらに好ましくは35mm以下、特に好ましくは30mm以下であり、例えば8mm以上50mm以下である。
 ハーフカット線の長さは、好ましくは4mm以上または5mm以上、より好ましくは6mm以上、さらに好ましくは7mm以上、8mm以上または10mm以上であり、好ましくは60mm以下、より好ましくは50mm以下、さらに好ましくは40mm以下、よりさらに好ましくは30mm以下、特に好ましくは25mm以下であり、例えば4mm以上60mm以下である。
 一実施形態において、上記仮想線およびハーフカット線は、直線状である。この場合において、上記仮想線の長さに対するハーフカット線の長さの割合は、好ましくは20%以上、より好ましくは25%以上、さらに好ましくは30%以上、よりさらに好ましくは35%以上、特に好ましく40%以上であり、好ましくは80%以下、より好ましくは75%以下、さらに好ましくは70%以下、よりさらに好ましくは65%以下、特に好ましくは60%以下であり、例えば20%以上80%以下である。
 一実施形態において、ハーフカット線は、直線状である。第1の辺とハーフカット線とがなす角度は、好ましくは10°以上、より好ましくは20°以上、さらに好ましくは30°以上、よりさらに好ましくは35°以上、特に好ましくは40°以上であり、好ましくは80°以下、より好ましくは70°以下、さらに好ましくは60°以下、よりさらに好ましくは55°以下、特に好ましくは50°以下であり、例えば10°以上80°以下であり、例えば略45°である。
 第1の辺と第2の辺とがなす角度は、好ましくは60°以上、より好ましくは70°以上、さらに好ましくは75°以上、よりさらに好ましくは80°以上、特に好ましくは85°以上であり、好ましくは120°以下、より好ましくは110°以下、さらに好ましくは105°以下、よりさらに好ましくは100°以下、特に好ましくは95°以下であり、例えば60°以上120°以下であり、例えば略90°である。
 包装袋は、図13Aに示すように、一実施形態において、第1の辺101に沿って延びる第1のシール部101Sと、第2の辺102に沿って延びる第2のシール部102Sと、を有する。第1のシール部は、例えば、第1の辺に沿って延びる線状のシール部である。第2のシール部は、例えば、第2の辺に沿って延びる線状のシール部である。図14に示すように、第1のシール部101Sは、シール幅D101を有し、第2のシール部102Sは、シール幅D102を有する。
 第1のシール部と第2のシール部とは、包装袋の隅部で平面視において重なっている。すなわち、包装袋は、図14に示すように、第1のシール部101Sと第2のシール部102Sとの交差部112Sを有する。第1のシール部と第2のシール部とは、通常は、ヒートシール処理により隅部において一体化して形成されている。
 第1のシール部および第2のシール部のシール幅は、それぞれ独立して、好ましくは3mm以上、より好ましくは4mm以上、さらに好ましくは5mm以上であり、好ましくは30mm以下、より好ましくは25mm以下、さらに好ましくは20mm以下、よりさらに好ましくは15mm以下、特に好ましくは10mm以下であり、例えば3mm以上30mm以下である。第1のシール部および第2のシール部のそれぞれのシール長さは、通常は、包装袋の大きさに対応して決定される。
 平面視において略矩形状の包装袋の場合、一実施形態において、第1の辺が包装袋の下部または上部の辺に相当し、第2の辺が包装袋の側部の辺に相当してもよく、第1の辺が包装袋の側部の辺に相当し、第2の辺が包装袋の下部または上部の辺に相当してもよい。
 平面視において略矩形状の包装袋の場合、第1の辺および第2の辺の長さは、それぞれ独立して、好ましくは40mm以上、より好ましくは60mm以上、さらに好ましくは80mm以上、よりさらに好ましくは100mm以上であり、好ましくは600mm以下、より好ましくは500mm以下、さらに好ましく400mm以下、よりさらに好ましくは300mm以下であり、例えば40mm以上600mm以下である。
 包装袋は、図14に示すように、一実施形態において、平面視において第1のシール部101Sと第2のシール部102Sとがなす角部103に設けられた第3のシール部103Sをさらに有する。第3のシール部を設けることにより、包装袋の平面視においてハーフカット線をより収容部側に設けることができ、剥離部を手でつかみやすくなり、本体部からより剥離しやすくなる。ハーフカット線は、一実施形態において、少なくとも第3のシール部上に設けられている。
 第3のシール部の形状は特に限定されないが、例えば、三角形状、三角形状の斜辺が包装袋の収容部側に対して凸状または凹状に変形された形状が挙げられる。第3のシール部における第1のシール部に接する辺の長さ(図14においてD103a)、および第3のシール部における第2のシール部に接する辺の長さ(図14においてD103b)は、それぞれ独立して、好ましくは2mm以上、より好ましくは4mm以上、さらに好ましくは6mm以上、よりさらに好ましくは8mm以上、特に好ましくは10mm以上であり、好ましくは40mm以下、より好ましくは35mm以下、さらに好ましくは30mm以下、よりさらに好ましくは25mm以下、特に好ましくは20mm以下であり、例えば2mm以上40mm以下である。第3のシール部がこのような大きさを有すると、包装袋の平面視においてハーフカット線をより収容部側に設けることができ、剥離部を手でつかみやすくなり、本体部からより剥離しやすくなる。
 第1のシール部と第2のシール部と第3のシール部とは、通常は、ヒートシール処理により隅部において一体化して形成されている。通常は、第3のシール部は第1のシール部または第2のシール部と別個独立に形成されているわけではないことから、「第3のシール部の形状」は、第3のシール部の仮想的な形状を説明するためのものである。
 ハーフカット線は、例えば、略矩形状の平面形状を有する包装袋の場合は、包装袋の少なくとも1つの隅部に設けられていればよく、2つ以上の隅部に設けられていてもよい。2つ以上の隅部にハーフカット線が設けられている場合は、それぞれの隅部を画定する2辺に対して上述した第1の辺、第2の辺および頂点の説明、ならびにハーフカット線の位置、形状および長さ等を適用できる。ハーフカット線は、包装袋の表面シートおよび裏面シートのいずれか一方に設けられていてもよいが、両方に設けられていることが好ましい。
 ハーフカット線は、一実施形態において、平面視における包装袋の隅部に設けられており、袋の汚染を抑制する観点と袋の破袋を抑制する観点とから、少なくともシール部上に設けられていることが好ましく、平面視において包装袋の収容部と重複する領域には設けられていないことがより好ましく、シール部上のみに設けられていることがさらに好ましい。
 図15および図16は、本開示の第2の態様の包装袋の一実施形態を示す正面図である。包装袋50は、図15に示すように、一実施形態において、表面シート54と、裏面シート55と、第1のシール部101Sと、第2のシール部102Sと、開口部56と、内容物を収容する収容部50aと、を有する。包装袋50は、図16に示すように、一実施形態において、表面シート54と、裏面シート55と、第1のシール部101Sと、第2のシール部102Sと、第3のシール部103Sと、開口部56と、内容物を収容する収容部50aと、を有する。図15および図16の包装袋50において、一方の側部に第2のシール部102Sが設けられており、もう一方の側部にもシール部が設けられている。図13Aは、図15の包装袋50の隅部110付近の拡大図の一例である。図14は、図16の包装袋50の隅部110付近の拡大図の一例である。
 包装袋のシール部の一つの隅部に、ハーフカット線が形成されている。ハーフカット線は、図15および図16では、包装袋の表面シートおよび裏面シートにそれぞれ形成されている。ハーフカット線の位置は、図15および図16に記載した位置に限定されない。ハーフカット線は、2つ以上の隅部に設けてもよい。
 図17aは、本開示の第2の態様の包装袋の一実施形態を示す断面図である。包装袋50のシール部は、剥離部10および本体部20を備える積層体1を重ね合わせヒートシールすることにより形成されており、さらにハーフカット線104が形成されている。図17bは、包装袋の使用形態の一実施形態を示す断面図である。例えば、剥離部10,10は、クリーンルーム内に持ち込まれる直前に、包装袋50の本体部20,20からそれぞれ剥離される。ハーフカット線104が上述した点Aから点Bに達していると、図17bにおいて、剥離部10を剥離すると、本体部20上に剥離部10の一部10aが残存することになる。一方、ハーフカット線104が点Aから仮想線の途中まで設けられている場合は、上記10aも剥離部10の一部として剥離することができる。
 図18は、本開示の第2の態様の包装袋の一実施形態を示す正面図である。図18の包装袋50は、第2の態様の包装袋にて説明した上記ハーフカット線60を有すること以外は、図7の包装袋50と同様である。
 [本開示の態様の一例]
 本開示は、例えば以下の[1]~[16]に関する。
 [1]第1の樹脂層と、第2の樹脂層と、を少なくとも備える積層体であって、前記第1の樹脂層は、前記第2の樹脂層から剥離できるように設けられており、剥離角度:180度、試験速度:50mm/minの条件にて測定される、前記第1の樹脂層と前記第2の樹脂層との剥離強度は、1.0N/15mm幅以下であり、前記第2の樹脂層は、密度が0.909g/cm3以下のポリエチレン層を少なくとも備えるシーラント層であり、前記第2の樹脂層における前記ポリエチレン層が、前記第1の樹脂層と接している、積層体。
 [2]前記第1の樹脂層が、ヘテロ原子含有樹脂を主成分として含有するヘテロ原子含有樹脂層を少なくとも備え、前記ヘテロ原子含有樹脂層が、密度が0.909g/cm3以下の前記ポリエチレン層と接している、前記[1]に記載の積層体。
 [3]前記ヘテロ原子含有樹脂が、ポリアミド、エチレン-ビニルアルコール共重合体およびポリビニルアルコールから選択される少なくとも1種を含む、前記[2]に記載の積層体。
 [4]前記第1の樹脂層が、ポリオレフィンを主成分として含有するポリオレフィン層をさらに備える、前記[2]または[3]に記載の積層体。
 [5]前記ポリオレフィン層が、前記ポリオレフィンに加えて、変性ポリオレフィンをさらに含有する、前記[4]に記載の積層体。
 [6]前記ポリオレフィン層が、密度が0.925g/cm3以上のポリエチレンと、変性ポリエチレンとを含有する、前記[4]または[5]に記載の積層体。
 [7]前記第2の樹脂層が、前記積層体の一方の表面層として、熱融着性樹脂層をさらに備える、前記[1]~[6]のいずれか一項に記載の積層体。
 [8]前記熱融着性樹脂層が、直鎖状低密度ポリエチレンおよび低密度ポリエチレンから選択される少なくとも1種のポリエチレンを主成分として含有する、前記[7]に記載の積層体。
 [9]前記第2の樹脂層が、密度が0.909g/cm3以下の前記ポリエチレン層と、前記熱融着性樹脂層との間に、直鎖状低密度ポリエチレンを主成分として含有する中間層をさらに備える、前記[7]または[8]に記載の積層体。
 [10]前記中間層に含まれる前記直鎖状低密度ポリエチレンが、0.925g/cm3以上の密度を有するか、またはエチレン-1-オクテン共重合体である、前記[9]に記載の積層体。
 [11]第1の樹脂層と、第2の樹脂層と、を少なくとも備える積層体であって、前記第1の樹脂層は、前記第2の樹脂層から剥離できるように設けられており、剥離角度:180度、試験速度:50mm/minの条件にて測定される、前記第1の樹脂層と前記第2の樹脂層との剥離強度は、0.15N/15mm幅以上1.0N/15mm幅以下であり、前記第2の樹脂層は、シーラント層である、積層体。
 [12]共押出多層フィルムである、前記[1]~[11]のいずれか一項に記載の積層体。
 [13]前記第2の樹脂層から前記第1の樹脂層を剥離して得られる、前記第1の樹脂層からなるフィルムのヤング率が、前記剥離後の前記第2の樹脂層からなるフィルムのヤング率よりも大きい、前記[1]~[12]のいずれか一項に記載の積層体。
 [14]前記第2の樹脂層から前記第1の樹脂層を剥離して得られる、前記第1の樹脂層からなるフィルムのループスティフネス値が、前記剥離後の前記第2の樹脂層からなるフィルムのループスティフネス値よりも小さい、前記[1]~[13]のいずれか一項に記載の積層体。
 [15]前記[1]~[14]のいずれか一項に記載の積層体を備える包装袋。
 [16]ハーフカット線を有する、前記[15]に記載の包装袋。
 [本開示の態様の一例]
 本開示は、例えば以下の[1]~[19]に関する。
 [1]第1の樹脂層と、第2の樹脂層と、を少なくとも備える積層体であって、前記第1の樹脂層は、前記第2の樹脂層から剥離できるように設けられており、剥離角度:180度、試験速度:50mm/minの条件にて測定される、前記第1の樹脂層と前記第2の樹脂層との剥離強度は、1.0N/15mm幅以下であり、前記第2の樹脂層は、ポリオレフィンを主成分として含有するシーラント層であり、前記第2の樹脂層における前記ポリオレフィンの含有割合は、前記第2の樹脂層の質量を基準として、82質量%以上である、積層体。
 [2]前記第1の樹脂層における同種の樹脂材料の含有割合が、前記第1の樹脂層の質量を基準として、70質量%以上である、前記[1]に記載の積層体。
 [3]前記第1の樹脂層が、ヘテロ原子含有樹脂を主成分として含有するヘテロ原子含有樹脂層を少なくとも備える、前記[2]に記載の積層体。
 [4]前記ヘテロ原子含有樹脂が、ポリアミド、エチレン-ビニルアルコール共重合体、ポリエステルおよびポリビニルアルコールから選択される少なくとも1種を含む、前記[3]に記載の積層体。
 [5]前記第1の樹脂層が、ポリオレフィンを主成分として含有するポリオレフィン層をさらに備える、前記[3]または[4]に記載の積層体。
 [6]前記ポリオレフィン層が、前記ポリオレフィンに加えて、変性ポリオレフィンをさらに含有する、前記[5]に記載の積層体。
 [7]前記ポリオレフィン層が、密度が0.925g/cm3以上のポリエチレンと、変性ポリエチレンとを含有する、前記[6]に記載の積層体。
 [8]前記第1の樹脂層が、ポリメチルペンテンを主成分として含有するポリメチルペンテン層である、前記[1]または[2]に記載の積層体。
 [9]前記第2の樹脂層が、前記積層体の一方の表面層として、ポリオレフィンを主成分として含有する熱融着性樹脂層を備える、前記[1]~[8]のいずれか一項に記載の積層体。
 [10]前記熱融着性樹脂層が、直鎖状低密度ポリエチレンおよび低密度ポリエチレンから選択される少なくとも1種のポリエチレンを主成分として含有する、前記[9]に記載の積層体。
 [11]前記第2の樹脂層が、密度が0.909g/cm3以下のポリエチレン層と、前記積層体の一方の表面層として、ポリエチレンを主成分として含有する熱融着性樹脂層とを備え、前記第2の樹脂層における前記ポリエチレン層が、前記第1の樹脂層における前記ヘテロ原子含有樹脂層と接している、前記[3]~[7]のいずれか一項に記載の積層体。
 [12]前記第2の樹脂層が、密度が0.909g/cm3以下の前記ポリエチレン層と、前記熱融着性樹脂層との間に、直鎖状低密度ポリエチレンを主成分として含有する中間層をさらに備える、前記[11]に記載の積層体。
 [13]前記中間層に含まれる前記直鎖状低密度ポリエチレンが、0.925g/cm3以上の密度を有するか、またはエチレン-1-オクテン共重合体である、前記[12]に記載の積層体。
 [14]前記第2の樹脂層が、ポリエチレンを主成分として含有する押出樹脂層と、ポリエチレンを主成分として含有する前記熱融着性樹脂層とを備える、前記[9]に記載の積層体。
 [15]前記積層体におけるポリオレフィン系樹脂の含有割合が、前記積層体の質量を基準として、70質量%以上である、前記[1]~[14]のいずれか一項に記載の積層体。
 [16]共押出多層フィルムである、前記[1]~[15]のいずれか一項に記載の積層体。
 [17]前記第2の樹脂層から前記第1の樹脂層を剥離して得られる、前記第1の樹脂層からなるフィルムのループスティフネス値が、前記剥離後の前記第2の樹脂層からなるフィルムのループスティフネス値よりも小さい、前記[1]~[16]のいずれか一項に記載の積層体。
 [18]前記[1]~[17]のいずれか一項に記載の積層体を備える包装袋。
 [19]ハーフカット線を有する、前記[18]に記載の包装袋。
 [本開示の態様の一例]
 本開示は、例えば以下の[1]~[17]に関する。
 [1]第1の樹脂層と、第2の樹脂層と、を少なくとも備える積層体であって、前記第1の樹脂層は、前記第2の樹脂層から剥離できるように設けられており、前記第2の樹脂層は、ポリオレフィンを主成分として含有するシーラント層であり、前記第1の樹脂層および前記第2の樹脂層から選択される少なくとも1つの樹脂層が、バイオマス由来の樹脂材料を少なくとも含有する、積層体。
 [2]前記第1の樹脂層が、ヘテロ原子含有樹脂を主成分として含有するヘテロ原子含有樹脂層を少なくとも備え、前記ヘテロ原子含有樹脂層が、前記第2の樹脂層と接している、前記[1]に記載の積層体。
 [3]前記ヘテロ原子含有樹脂の少なくとも一部が、バイオマス由来の樹脂材料である、前記[2]に記載の積層体。
 [4]前記ヘテロ原子含有樹脂が、ポリアミド、エチレン-ビニルアルコール共重合体、ポリエステルおよびポリビニルアルコールから選択される少なくとも1種を含む、前記[2]または[3]に記載の積層体。
 [5]前記第1の樹脂層が、ポリオレフィンを主成分として含有するポリオレフィン層をさらに備える、前記[2]~[4]のいずれか一項に記載の積層体。
 [6]前記ポリオレフィンの少なくとも一部が、バイオマス由来の樹脂材料である、前記[5]に記載の積層体。
 [7]前記ポリオレフィン層が、前記ポリオレフィンに加えて、変性ポリオレフィンをさらに含有する、前記[5]または[6]に記載の積層体。
 [8]前記第2の樹脂層が、前記積層体の一方の表面層として、ポリオレフィンを主成分として含有する熱融着性樹脂層を備える、前記[1]~[7]のいずれか一項に記載の積層体。
 [9]前記熱融着性樹脂層が、直鎖状低密度ポリエチレンおよび低密度ポリエチレンから選択される少なくとも1種のポリエチレンを主成分として含有する、前記[8]に記載の積層体。
 [10]前記第2の樹脂層が、密度が0.909g/cm3以下のポリエチレン層と、前記積層体の一方の表面層として、ポリエチレンを主成分として含有する熱融着性樹脂層とを備え、前記第2の樹脂層における前記ポリエチレン層が、前記第1の樹脂層における前記ヘテロ原子含有樹脂層と接している、前記[2]~[7]のいずれか一項に記載の積層体。
 [11]前記第2の樹脂層が、密度が0.909g/cm3以下の前記ポリエチレン層と、前記熱融着性樹脂層との間に、直鎖状低密度ポリエチレンを主成分として含有する中間層をさらに備える、前記[10]に記載の積層体。
 [12]バイオマス度が3%以上である、前記[1]~[11]のいずれか一項に記載の積層体。
 [13]前記第1の樹脂層のバイオマス度が10%以上である、前記[1]~[12]のいずれか一項に記載の積層体。
 [14]剥離角度:180度、試験速度:50mm/minの条件にて測定される、前記第1の樹脂層と前記第2の樹脂層との剥離強度が、1.0N/15mm幅以下である、前記[1]~[13]のいずれか一項に記載の積層体。
 [15]共押出多層フィルムである、前記[1]~[14]のいずれか一項に記載の積層体。
 [16]前記[1]~[15]のいずれか一項に記載の積層体を備える包装袋。
 [17]前記積層体における前記第2の樹脂層同士が融着して形成されたシール部を有する、前記[16]に記載の包装袋。
 [本開示の態様の一例]
 本開示は、例えば以下の[1]~[21]に関する。
 [1]包装袋の製造方法であって、前記製造方法は、共押出インフレーション法により、チューブ外面を構成する第1の樹脂層と、ポリオレフィンを主成分として含有する、チューブ内面を構成する第2の樹脂層と、を少なくとも備えるチューブ状フィルムを形成し、前記フィルムを扁平状に変形させる工程、および扁平状に変形された前記チューブ状フィルムまたは該フィルムを切断してなる重ね合わされたフィルムに対して、対面して接触している前記第2の樹脂層同士の接触を解除することなく製袋処理を行い、包装袋を作製する工程、を含み、前記包装袋は、表面シートと、前記表面シートに対向する裏面シートと、を備え、前記表面シートおよび前記裏面シートは、それぞれ、前記第1の樹脂層と、前記包装袋の内面を構成する前記第2の樹脂層と、を少なくとも備え、前記表面シートおよび前記裏面シートにおいて、前記第1の樹脂層は、前記第2の樹脂層から剥離できるように設けられており、前記包装袋は、前記表面シートにおける前記第2の樹脂層の一部と前記裏面シートにおける前記第2の樹脂層の一部とが接合して形成されたシール部を有する、包装袋の製造方法。
 [2]前記第1の樹脂層が、ヘテロ原子含有樹脂を主成分として含有するヘテロ原子含有樹脂層を少なくとも備え、前記ヘテロ原子含有樹脂層が、前記第2の樹脂層と接している、前記[1]に記載の包装袋の製造方法。
 [3]前記ヘテロ原子含有樹脂が、ポリアミド、エチレン-ビニルアルコール共重合体、ポリエステルおよびポリビニルアルコールから選択される少なくとも1種を含む、前記[2]に記載の包装袋の製造方法。
 [4]前記第1の樹脂層が、ポリオレフィンを主成分として含有するポリオレフィン層をさらに備える、前記[2]または[3]に記載の包装袋の製造方法。
 [5]前記ポリオレフィン層が、前記ポリオレフィンに加えて、変性ポリオレフィンをさらに含有する、前記[4]に記載の包装袋の製造方法。
 [6]前記第2の樹脂層が、前記チューブ内面を構成する、ポリオレフィンを主成分として含有する熱融着性樹脂層を備える、前記[1]~[5]のいずれか一項に記載の包装袋の製造方法。
 [7]前記熱融着性樹脂層が、直鎖状低密度ポリエチレンおよび低密度ポリエチレンから選択される少なくとも1種のポリエチレンを主成分として含有する、前記[6]に記載の包装袋の製造方法。
 [8]前記第2の樹脂層が、密度が0.909g/cm3以下のポリエチレン層と、前記チューブ内面を構成する、ポリエチレンを主成分として含有する熱融着性樹脂層とを備え、前記第2の樹脂層における前記ポリエチレン層が、前記第1の樹脂層における前記ヘテロ原子含有樹脂層と接している、前記[2]~[7]のいずれか一項に記載の包装袋の製造方法。
 [9]前記第2の樹脂層が、密度が0.909g/cm3以下の前記ポリエチレン層と、前記熱融着性樹脂層との間に、直鎖状低密度ポリエチレンを主成分として含有する中間層をさらに備える、前記[8]に記載の包装袋の製造方法。
 [10]前記包装袋において、剥離角度:180度、試験速度:50mm/minの条件にて測定される、前記第1の樹脂層と前記第2の樹脂層との剥離強度が、1.0N/15mm幅以下である、前記[1]~[9]のいずれか一項に記載の包装袋の製造方法。
 [11]包装袋であって、前記包装袋は、表面シートと、前記表面シートに対向する裏面シートと、を備え、前記表面シートおよび前記裏面シートは、それぞれ、第1の樹脂層と、前記包装袋の内面を構成する第2の樹脂層と、を少なくとも備え、前記第2の樹脂層は、ポリオレフィンを主成分として含有し、前記表面シートおよび前記裏面シートにおいて、前記第1の樹脂層は、前記第2の樹脂層から剥離できるように設けられており、前記包装袋は、前記表面シートにおける前記第2の樹脂層の一部と前記裏面シートにおける前記第2の樹脂層の一部とが接合して形成されたシール部を有し、前記包装袋は、共押出インフレーション法により作製された、チューブ外面を構成する前記第1の樹脂層と、チューブ内面を構成する前記第2の樹脂層と、を少なくとも備えるチューブ状フィルムを扁平状に変形させたフィルムまたは該フィルムを切断してなる重ね合わされたフィルムを、直接製袋してなる、包装袋。
 [12]包装袋であって、前記包装袋は、表面シートと、前記表面シートに対向する裏面シートと、を備え、前記表面シートおよび前記裏面シートは、それぞれ、第1の樹脂層と、前記包装袋の内面を構成する第2の樹脂層と、を少なくとも備え、前記第2の樹脂層は、ポリオレフィンを主成分として含有し、前記表面シートおよび前記裏面シートにおいて、前記第1の樹脂層は、前記第2の樹脂層から剥離できるように設けられており、前記包装袋は、前記表面シートにおける前記第2の樹脂層の一部と前記裏面シートにおける前記第2の樹脂層の一部とが接合して形成されたシール部を有し、パーティクルカウンタを用いて測定される、前記包装袋の内面に付着した、粒子径が0.2μm以上のパーティクルの数が、100個/cm2以下である、包装袋。
 [13]前記第1の樹脂層が、ヘテロ原子含有樹脂を主成分として含有するヘテロ原子含有樹脂層を少なくとも備え、前記ヘテロ原子含有樹脂層が、前記第2の樹脂層と接している、前記[11]または[12]に記載の包装袋。
 [14]前記ヘテロ原子含有樹脂が、ポリアミド、エチレン-ビニルアルコール共重合体、ポリエステルおよびポリビニルアルコールから選択される少なくとも1種を含む、前記[13]に記載の包装袋。
 [15]前記第1の樹脂層が、ポリオレフィンを主成分として含有するポリオレフィン層をさらに備える、前記[13]または[14]に記載の包装袋。
 [16]前記ポリオレフィン層が、前記ポリオレフィンに加えて、変性ポリオレフィンをさらに含有する、前記[15]に記載の包装袋。
 [17]前記第2の樹脂層が、前記包装袋の内面を構成する、ポリオレフィンを主成分として含有する熱融着性樹脂層を備える、前記[11]~[16]のいずれか一項に記載の包装袋。
 [18]前記熱融着性樹脂層が、直鎖状低密度ポリエチレンおよび低密度ポリエチレンから選択される少なくとも1種のポリエチレンを主成分として含有する、前記[17]に記載の包装袋。
 [19]前記第2の樹脂層が、密度が0.909g/cm3以下のポリエチレン層と、前記包装袋の内面を構成する、ポリエチレンを主成分として含有する熱融着性樹脂層とを備え、前記第2の樹脂層における前記ポリエチレン層が、前記第1の樹脂層における前記ヘテロ原子含有樹脂層と接している、前記[13]~[18]のいずれか一項に記載の包装袋。
 [20]前記第2の樹脂層が、密度が0.909g/cm3以下の前記ポリエチレン層と、前記熱融着性樹脂層との間に、直鎖状低密度ポリエチレンを主成分として含有する中間層をさらに備える、前記[19]に記載の包装袋。
 [21]前記包装袋において、剥離角度:180度、試験速度:50mm/minの条件にて測定される、前記第1の樹脂層と前記第2の樹脂層との剥離強度が、1.0N/15mm幅以下である、前記[11]~[20]のいずれか一項に記載の包装袋。
 [本開示の態様の一例]
 本開示は、例えば以下の[1]~[9]に関する。
 [1]積層体を備える包装袋であって、前記積層体は、熱融着性樹脂層を備える本体部と、前記本体部から剥離できるように設けられている剥離部と、を厚さ方向に備え、前記剥離部の厚さは、10μm以上であり、前記包装袋は、前記積層体により構成される表面シートと、前記積層体により構成される裏面シートと、前記表面シートの前記熱融着性樹脂層と前記裏面シートの前記熱融着性樹脂層とが接合されているシール部と、内容物を収容する収容部と、を有し、前記包装袋は、平面視において、点Aを有する第1の辺と、点Bを有する第2の辺と、前記第1の辺と前記第2の辺とを結ぶ頂点を含む隅部と、を有し、前記包装袋は、前記第1の辺上の点Aと前記第2の辺上の点Bとを結ぶ線上に、点Aから延びるハーフカット線を有し、前記ハーフカット線は、前記点Aから前記線の途中まで設けられている、包装袋。
 [2]前記包装袋が、前記第1の辺に沿って延びる第1のシール部と、前記第2の辺に沿って延びる第2のシール部と、を有し、前記第1のシール部と前記第2のシール部とは、前記包装袋の前記隅部で平面視において重なっており、前記ハーフカット線が、前記隅部のシール部上に設けられている、前記[1]に記載の包装袋。
 [3]前記包装袋が、平面視において前記第1のシール部と前記第2のシール部とがなす角部に設けられた第3のシール部をさらに有する、前記[2]に記載の包装袋。
 [4]前記ハーフカット線が、少なくとも前記第3のシール部上に設けられている、前記[3]に記載の包装袋。
 [5]前記第3のシール部が、三角形状を有する、前記[3]または[4]に記載の包装袋。
 [6]前記ハーフカット線と前記第2の辺との最短距離D1が、2.0mm以上である、前記[1]~[5]のいずれか一項に記載の包装袋。
 [7]前記ハーフカット線と前記第2の辺との最短距離D1が、3.5mm以上である、前記[1]~[5]のいずれか一項に記載の包装袋。
 [8]前記第3のシール部における前記第1のシール部に接する辺の長さ、および前記第3のシール部における前記第2のシール部に接する辺の長さが、それぞれ独立して、2mm以上40mm以下である、前記[3]~[7]のいずれか一項に記載の包装袋。
 [9]剥離角度:180度、試験速度:50mm/minの条件にて測定される、前記剥離部と前記本体部との剥離強度が、1.0N/15mm幅以下である、前記[1]~[8]のいずれか一項に記載の包装袋。
 本開示の積層体、包装袋およびその製造方法について実施例に基づきさらに具体的に説明するが、本開示の積層体、包装袋およびその製造方法は実施例によって何ら限定されない。
 [積層体の作製]
 以下の実施例、参考例、比較例および作製例で用いた成分を示す。
 [原料成分]
・バイオマスポリアミド(bPA)
  東レ製、Amilan CM2001L、ポリアミド610、
  融点:225℃、密度:1.08g/cm3
  バイオマス度:59.5%
・バイオマスポリアミド(bPA)
  アルケマ製、RILSAN BESN P20 TL、
  ポリアミド11、
  融点:185℃、密度:1.04g/cm3、バイオマス度:70%
・バイオマスポリアミド(bPA)
  ダイセル・エボニック製、VESTAMID Terra DS22、
  ポリアミド1010、
  融点:199℃、密度:1.04g/cm3
  MFR:2.0g/10分、
  バイオマス度:100%
・ポリアミド(PA)
  UBE製、5033B、ポリアミド6/66共重合体、
  融点:197℃、密度:1.14g/cm3
  MFR:4.0g/10分(温度235℃、荷重2.16kg)
・エチレン-ビニルアルコール共重合体(EVOH)
  クラレ製、E173B、
  融点:165℃、密度:1.14g/cm3
  MFR:2.5g/10分(温度190℃、荷重2.16kg)、
  エチレン含有割合:44モル%
・ポリメチルペンテン
  三井化学製、TPX MX004、融点:228℃、
  密度:0.833g/cm3
  MFR:25.0g/10分(260℃/5kg)
・ポリメチルペンテン
  三井化学製、TPX MX002、融点:224℃、
  密度:0.834g/cm3
  MFR:21.0g/10分(260℃/5kg)
・高密度ポリエチレン(HDPE)
  プライムポリマー製、HZ5000SF
  融点:132℃、密度:0.954g/cm3
  MFR:0.66g/10分
・バイオマス高密度ポリエチレン(bHDPE)
  Braskem製、GreenPE SGF4950、
  融点:133℃、密度:0.956g/cm3
  MFR:0.34g/10分、
  バイオマス度:96%
・直鎖状低密度ポリエチレン(LLDPE)
  日本ポリエチレン製、KF260T、C6-LLDPE、
  融点:93℃、密度:0.901g/cm3
  MFR:2.0g/10分
・直鎖状低密度ポリエチレン(LLDPE)
  プライムポリマー製、SP0511、C6-LLDPE、
  融点:98℃、密度:0.901g/cm3
  MFR:1.2g/10分
・直鎖状低密度ポリエチレン(LLDPE)
  プライムポリマー製、UZ3500ZA、C4-LLDPE、
  融点:120℃、密度:0.921g/cm3
  MFR:2.1g/10分
・直鎖状低密度ポリエチレン(LLDPE)
  プライムポリマー製、UZ2021L、C6-LLDPE、
  融点:120℃、密度:0.919g/cm3
  MFR:2.0g/10分
・直鎖状低密度ポリエチレン(LLDPE)
  プライムポリマー製、UZ3520L、C6-LLDPE、
  融点:124℃、密度:0.931g/cm3
  MFR:2.1g/10分
・直鎖状低密度ポリエチレン(LLDPE)
  ダウ・ケミカル製、INNATE ST50、C8-LLDPE、
  融点:124℃、密度:0.918g/cm3
  MFR:0.85g/10分
・直鎖状低密度ポリエチレン(LLDPE)
  宇部丸善ポリエチレン、UMERIT125FN、
  融点:120℃、密度:0.924g/cm3
  MFR:2.2g/10分
・直鎖状低密度ポリエチレン(LLDPE)
  日本ポリエチレン、ハーモレックスNF444N、
  融点:121℃、密度:0.912g/cm3
  MFR:2.0g/10分
・低密度ポリエチレン(LDPE)
  宇部丸善ポリエチレン製、B128、
  融点:114℃、密度:0.928g/cm3
  MFR:1.0g/10分
・無水マレイン酸グラフト変性高密度ポリエチレン(mHDPE)
  ダウ・ケミカル製、BYNEL 40E 1053、接着性樹脂、
  融点:130℃、密度:0.960g/cm3
  MFR:2.0g/10分
 [第1の態様の積層体]
 [実施例1]
 ポリアミド(5033B)と、LLDPE(KF260T)と、70質量%のLDPE(B128)および30質量%のLLDPE(UZ3500ZA)の混合物とを、インフレーション法により共押出製膜した。このようにして、厚さ15μmのポリアミド層と、厚さ15μmのLLDPE層と、厚さ40μmのポリエチレンブレンド層とを備える、総厚さ70μmの積層体を得た。
 混合物における質量%の表記は、混合物中の各成分の含有割合を示す。
 [実施例2]
 ポリアミド(5033B)と、LLDPE(KF260T)と、30質量%のLDPE(B128)および70質量%のLLDPE(UZ2021L)の混合物とを、インフレーション法により共押出製膜した。このようにして、厚さ20μmのポリアミド層と、厚さ15μmのLLDPE層と、厚さ40μmのポリエチレンブレンド層とを備える、総厚さ75μmの積層体を得た。
 [実施例3]
 80質量%のLLDPE(UZ3520L)および20質量%の酸変性ポリエチレン(BYNEL 40E 1053)の混合物と、ポリアミド(5033B)と、LLDPE(KF260T)と、30質量%のLDPE(B128)および70質量%のLLDPE(UZ2021L)の混合物とを、インフレーション法により共押出製膜した。このようにして、厚さ15μmのLLDPEブレンド層と、厚さ5μmのポリアミド層と、厚さ15μmのLLDPE層と、厚さ40μmのポリエチレンブレンド層とを備える、厚さ75μmの積層体を得た。
 [実施例3A]
 80質量%のHDPE(HZ5000SF)および20質量%の酸変性ポリエチレン(BYNEL 40E 1053)の混合物と、ポリアミド(5033B)と、LLDPE(SP0511)と、30質量%のLDPE(B128)および70質量%のLLDPE(UZ2021L)の混合物とを、インフレーション法により共押出製膜した。このようにして、厚さ15μmのHDPEブレンド層と、厚さ5μmのポリアミド層と、厚さ15μmのLLDPE層と、厚さ40μmのポリエチレンブレンド層とを備える、厚さ75μmの積層体を得た。
 [実施例4]
 EVOH(E173B)と、LLDPE(KF260T)と、30質量%のLDPE(B128)および70質量%のLLDPE(UZ2021L)の混合物とを、インフレーション法により共押出製膜した。このようにして、厚さ15μmのEVOH層と、厚さ15μmのLLDPE層と、厚さ40μmのポリエチレンブレンド層とを備える、総厚さ70μmの積層体を得た。
 [実施例5]
 EVOH層の厚さを20μmに変更したこと以外は実施例4と同様にして、総厚さ75μmの積層体を得た。
 [参考例1]
 ポリアミド(5033B)と、70質量%のLDPE(B128)および30質量%のLLDPE(UZ3500ZA)の混合物とを、インフレーション法により共押出製膜した。このようにして、厚さ15μmのポリアミド層と、厚さ55μmのポリエチレンブレンド層とを備える、総厚さ70μmの積層体を得た。
 [参考例2]
 EVOH(E173B)と、70質量%のLDPE(B128)および30質量%のLLDPE(UZ3500ZA)の混合物とを、インフレーション法により共押出製膜した。このようにして、厚さ15μmのEVOH層と、厚さ55μmのポリエチレンブレンド層とを備える、総厚さ70μmの積層体を得た。
 [参考例3]
 80質量%のLLDPE(UZ3520L)および20質量%の酸変性ポリエチレン(BYNEL 40E 1053)の混合物と、ポリアミド(5033B)と、70質量%のLDPE(B128)および30質量%のLLDPE(UZ3500ZA)の混合物とを、インフレーション法により共押出製膜した。このようにして、厚さ15μmのLLDPEブレンド層と、厚さ5μmのポリアミド層と、厚さ55μmのポリエチレンブレンド層とを備える、総厚さ75μmの積層体を得た。
 [実施例6]
 ポリアミド(5033B)と、LLDPE(KF260T)と、LLDPE(UZ3520L)と、30質量%のLDPE(B128)および70質量%のLLDPE(UZ2021L)の混合物とを、インフレーション法により共押出製膜した。このようにして、厚さ15μmのポリアミド層と、厚さ15μmのLLDPE層と、厚さ20μmのLLDPE層と、厚さ25μmのポリエチレンブレンド層とを備える、総厚さ75μmの積層体を得た。
 [実施例7]
 LLDPE(UZ3520L)をLLDPE(INNATE ST50)に変更したこと以外は実施例6と同様にして、積層体を得た。
 [実施例8]
 80質量%のLLDPE(UZ3520L)および20質量%の酸変性ポリエチレン(BYNEL 40E 1053)の混合物と、ポリアミド(5033B)と、LLDPE(KF260T)と、LLDPE(UZ3520L)と、30質量%のLDPE(B128)および70質量%のLLDPE(UZ2021L)の混合物とを、インフレーション法により共押出製膜した。このようにして、厚さ15μmのLLDPEブレンド層と、厚さ5μmのポリアミド層と、厚さ20μmのLLDPE層と、厚さ15μmのLLDPE層と、厚さ20μmのポリエチレンブレンド層とを備える、総厚さ75μmの積層体を得た。
 [実施例8A]
 80質量%のHDPE(HZ5000SF)および20質量%の酸変性ポリエチレン(BYNEL 40E 1053)の混合物と、ポリアミド(5033B)と、LLDPE(SP0511)と、LLDPE(UZ3520L)と、30質量%のLDPE(B128)および70質量%のLLDPE(UZ2021L)の混合物とを、インフレーション法により共押出製膜した。このようにして、厚さ15μmのHDPEブレンド層と、厚さ5μmのポリアミド層と、厚さ20μmのLLDPE層と、厚さ15μmのLLDPE層と、厚さ20μmのポリエチレンブレンド層とを備える、総厚さ75μmの積層体を得た。
 [実施例9]
 ポリアミド(5033B)をEVOH(E173B)に変更したこと以外は実施例6と同様にして、積層体を得た。
 第1の態様の積層体における実施例および参考例を表1-1および表1-2に記載する。
 [第2の態様の積層体]
 第1の態様の積層体における実施例1~5が第2の態様の積層体における実施例1~5に相当し、第1の態様の積層体における参考例1~3が第2の態様の積層体における実施例6~8に相当し、第1の態様の積層体における実施例6~9が第2の態様の積層体における実施例9~12に相当する。
 [実施例13]
 片面がコロナ処理された、厚さ12μmの二軸延伸PETフィルム(フタムラ化学製、FE2001A)を準備した(実施例13において、それぞれフィルム1、フィルム2という)。片面がコロナ処理された厚さ60μmの低密度ポリエチレンフィルム(アイセロ製、L-535)を準備した。フィルム1のコロナ処理面に、2液硬化型ウレタン系接着剤(ロックペイント製、RU-77T/H-7)を乾燥厚さ3μmでコートし、フィルム1のコート面にフィルム2のコロナ処理面が接するように、フィルム1にフィルム2をラミネートし、中間積層体を得た。中間積層体と低密度ポリエチレンフィルムとを、低密度ポリエチレン(日本ポリエチレン製、LC600A)の溶融押出しにより形成された厚さ20μmの押出樹脂層(EC-PE)を介してサンドラミネートすることにより、積層体を得た。押出樹脂層および低密度ポリエチレンフィルムは、中間積層体におけるフィルム2のコロナ未処理面上に積層した。
 [実施例14]
 ポリメチルペンテン(TPX MX004)と、30質量%のLDPE(B128)および70質量%のLLDPE(UZ2021L)の混合物とを、インフレーション法により共押出製膜した。このようにして、厚さ15μmのポリメチルペンテン層と、厚さ55μmのポリエチレンブレンド層とを備える、総厚さ70μmの積層体を得た。
 [実施例15]
 ポリメチルペンテン(TPX MX004)と、LLDPE(KF260T)と、30質量%のLDPE(B128)および70質量%のLLDPE(UZ2021L)の混合物とを、インフレーション法により共押出製膜した。このようにして、厚さ20μmのポリメチルペンテン層と、厚さ15μmのLLDPE層と、厚さ40μmのポリエチレンブレンド層とを備える、総厚さ75μmの積層体を得た。
 [実施例16]
 ポリメチルペンテン(TPX MX004)をポリメチルペンテン(TPX MX002)に変更したこと以外は実施例14と同様にして、積層体を得た。
 [実施例17]
 ポリメチルペンテン(TPX MX004)をポリメチルペンテン(TPX MX002)に変更したこと以外は実施例15と同様にして、積層体を得た。
 [比較例1]
 片面がコロナ処理された、厚さ12μmの二軸延伸PETフィルム(フタムラ化学製、FE2001A)を準備した(比較例1において、それぞれフィルム3、フィルム4という)。片面がコロナ処理された、厚さ60μmの低密度ポリエチレンフィルム(アイセロ製、L-535)を準備した。フィルム3のコロナ処理面に、2液硬化型ウレタン系接着剤(ロックペイント製、RU-77T/H-7)を乾燥厚さ3μmでコートし、フィルム3のコート面に低密度ポリエチレンフィルムのコロナ処理面が接するように、両者のフィルムを貼り合わせて、中間積層体を得た。フィルム4のコロナ処理面にウレタン系アンカーコート剤(三井化学製、A-3210/A-3075)を乾燥厚さ0.3μmでコートし、中間積層体のフィルム3面とフィルム4のアンカーコート面とが対向するように、中間積層体とフィルム4とを、低密度ポリエチレン(日本ポリエチレン製、LC600A)の溶融押出しにより形成された厚さ20μmの押出樹脂層(EC-PE)を介してサンドラミネートすることにより、積層体を得た。
 第2の態様の積層体における実施例および比較例を表2-1~表2-3に記載する。
 [第3の態様の積層体]
 [実施例21]
 bPA(Amilan CM2001L)と、LLDPE(SP0511)と、70質量%のLDPE(B128)および30質量%のLLDPE(UZ3500ZA)の混合物とを、インフレーション法により共押出製膜した。このようにして、厚さ15μmのPA層と、厚さ15μmのLLDPE層と、厚さ40μmのポリエチレンブレンド層とを備える、総厚さ70μmの積層体を得た。
 混合物における質量%の表記は、混合物中の各成分の含有割合を示す。
 [実施例22]
 80質量%のHDPE(HZ5000SF)および20質量%の酸変性ポリエチレン(BYNEL 40E 1053)の混合物と、bPA(Amilan CM2001L)と、LLDPE(SP0511)と、30質量%のLDPE(B128)および70質量%のLLDPE(UZ2021L)の混合物とを、インフレーション法により共押出製膜した。このようにして、厚さ15μmのHDPEブレンド層と、厚さ5μmのPA層と、厚さ15μmのLLDPE層と、厚さ40μmのポリエチレンブレンド層とを備える、総厚さ75μmの積層体を得た。
 [実施例23]
 80質量%のbHDPE(SGF4950)および20質量%の酸変性ポリエチレン(BYNEL 40E 1053)の混合物と、bPA(Amilan CM2001L)と、LLDPE(SP0511)と、LLDPE(UZ3520L)と、30質量%のLDPE(B128)および70質量%のLLDPE(UZ2021L)の混合物とを、インフレーション法により共押出製膜した。このようにして、厚さ15μmのHDPEブレンド層と、厚さ5μmのPA層と、厚さ15μmのLLDPE層と、厚さ20μmのLLDPE層と、厚さ20μmのポリエチレンブレンド層とを備える、総厚さ75μmの積層体を得た。
 [実施例24]
 bPA(Amilan CM2001L)をbPA(RILSAN BESN P20 TL)に変更したこと以外は実施例23と同様にして、総厚さ75μmの積層体を得た。
 [実施例25]
 bPA(Amilan CM2001L)をbPA(VESTAMID Terra DS22)に変更したこと以外は実施例23と同様にして、総厚さ75μmの積層体を得た。
 [参考例21]
 bPA(Amilan CM2001L)をPA(5033B)に変更したこと以外は実施例21と同様にして、総厚さ70μmの積層体を得た。
 [参考例22]
 bHDPE(SGF4950)をHDPE(HZ5000SF)に変更し、bPA(Amilan CM2001L)をPA(5033B)に変更したこと以外は実施例23と同様にして、総厚さ75μmの積層体を得た。
 第3の態様の積層体における実施例および参考例を表3に記載する。
 [包装袋の作製]
 第1~第3の態様の実施例、参考例および比較例で得られた積層体ならびに高速三方シール自動製袋機(BH-60D トタニ技研工業製)を用いて、温度160℃、圧着時間0.8秒、圧力3kgf/cm2の条件でヒートシールして、三方パウチを作製した。
 [物性評価]
 積層体およびフィルムの物性の評価方法を以下に記載する。
 特に言及しない限り、各物性の測定時の環境は、温度23℃および湿度50%RHである。各物性についてそれぞれ3個の試験片について測定を行い、得られた3個の値の算術平均値をそれぞれの物性値として記載した。
 以下の記載において、積層体における第2の樹脂層(シーラント層)から第1の樹脂層(剥離層)を剥離して得られた、剥離層に対応するフィルムを剥離フィルムと記載し、シーラント層に対応するフィルムをシーラントフィルムと記載する。
 <剥離強度>
 積層体をカットして、幅:15mm、長さ:100mmのサイズを有する試験片を切り出した。上記試験片と、測定器として卓上型引張圧縮試験機MCT-1150(AND社製)とを用いて、初期チャック間距離:100mm、剥離角度:180度、試験速度:50mm/minの条件にて、積層体における剥離層とシーラント層との剥離強度(N/15mm幅)を測定した。
 <外観(層間の浮き)>
 積層体製造時の各工程において、剥離層とシーラント層との間の浮き(気泡が入り、白くなっている面積1cm2以上の箇所)を目視で確認した。浮きが発生した積層体を「BB」、浮きが発生しなかった積層体を「AA」と評価した。
 <モノマテリアル比率>
 積層体、剥離フィルムおよびシーラントフィルムについて、含有量が最も大きい樹脂材料の含有割合(モノマテリアル比率、質量%)を算出した。
 <剛性(ループスティフネス)>
 測定器としてループスティフネステスタ(東洋精機製作所製)を用いた。積層体、剥離フィルムおよびシーラントフィルムをそれぞれカットして、幅:15mm、長さ:200mmのサイズの試験片を得た。長さ方向が積層体およびフィルムの機械方向(MD)に沿う試験片を表中で「MD」と記載し、長さ方向が積層体およびフィルムの幅方向(TD)に沿う試験片を表中で「TD」と記載する。ループスティフネステスタは、試験片の長さ方向の一対の端部を把持するための一対のチャックと、チャックを支持する支持部材とを有する。次に、試験片の両端部をそれぞれのチャックに挟んで固定した。ここで、一対のチャック間の距離は60mmとした。次に、チャック同士の距離が縮まる方向において、一対のチャックを支持部材上でスライドさせ、試験片を介してチャック同士を接触させた。このようにして、幅:15mmの円形ループを形成した。積層体の場合は、シーラント層がループの内側を向くように円形ループを形成した。剥離フィルムの場合は、剥離面がループの外側を向くように円形ループを形成した。シーラントフィルムの場合は、剥離面がループの外側を向くように円形ループを形成した。得られた円形ループをチャックの反対側から押込み速度3.3mm/秒でループの直径方向に押し込んで測定された値を、ループスティフネス値(g)とした。
 <ヤング率>
 積層体、剥離フィルムおよびシーラントフィルムをそれぞれカットして、幅:15mm、長さ:120mmのサイズの試験片を得た。長さ方向が積層体およびフィルムの機械方向(MD)に沿う試験片を表中で「MD」と記載し、長さ方向が積層体およびフィルムの幅方向(TD)に沿う試験片を表中で「TD」と記載する。JIS K7161-1:2014に準拠して、測定器として卓上型引張圧縮試験機MCT-1150(AND社製)を用い、試験速度:5mm/sの条件にて、試験片を機械方向または幅方向に引っ張り、ヤング率(引張弾性率)(MPa)を測定した。
 <突刺し強度>
 JIS Z1707:2019に準拠して、積層体、剥離フィルムおよびシーラントフィルムの突刺し強度をそれぞれ測定した。積層体、剥離フィルムおよびシーラントフィルムをそれぞれカットして、幅:5cm、長さ:5cmのサイズを有する試験片を得た。測定器として、卓上型引張圧縮試験機MCT-1150(AND社製)を用いた。直径:1.0mm、先端形状半径:0.5mmの半円形の針を、試験速度:50mm/minで試験片に突き刺し、針が試験片を貫通するまでの最大強度(N)を測定した。積層体の場合は、上記針をシーラント層面および剥離層面に突き刺し、それぞれの突刺し強度(N)を測定した。剥離フィルムの場合は、上記針を剥離面とは反対側の面に突き刺し、突刺し強度(N)を測定した。シーラントフィルムの場合は、上記針を剥離面に突き刺し、突刺し強度(N)を測定した。
 <シール強度>
 積層体をカットして、幅:15mm、長さ:100mmのサイズを有する試験片を切り出した。2枚の試験片をそのシーラント層同士が接するように重ね合わせ、温度140℃(片面加熱)、圧着時間1秒および圧力1kgf/cm2の条件で試験片の一端15mm×15mmの部分をヒートシールして、シール部を形成し、試験体を得た。以下のとおり試験条件を変更したこと以外はJIS Z1707:2019に準拠して、測定器として卓上型引張圧縮試験機MCT-1150(AND社製)を用いて、チャック間距離:100mm、剥離態様:T型剥離、試験速度:300mm/minの条件にて、シール強度(N/15mm幅)を測定した。具体的には、試験体のシール部が上記試験機の2つのつかみ具の中央になるように、試験体を180度に開いて、試験体の両端を上記試験機の2つのつかみ具にそれぞれ取り付け、300mm/minの速度でシール部が破壊するまで引っ張り、最大強度(N)を求めた。15mm幅の試験体に対して測定された最大強度(N)を、ヒートシール強度(N/15mm幅)とした。
 <液中パーティクル数の測定方法>
 実施例、参考例または比較例で得られた積層体を用いて作製したサンプル袋の表面および内面に付着した異物の個数(パーティクル数)を、測定装置としてパーティクルカウンタ(リオン社製、KE-40/KS-40AF)を用い、計測サイズ:0.2μm以上の条件にて、測定した。サンプル袋およびブランク袋の作製は、クリーンクラス1000の環境で実施した。測定は、クリーンクラス100の環境で実施した。
 (液中パーティクル数の測定方法 袋の内面)
 1.純水で測定装置内をパージ後(25mL×4回)に、
   純水ブランクの液中パーティクル数を測定した。
 2.実施例、参考例または比較例で得られた積層体を用いて、
   30cm×30cmのサンプル袋を作製した。
 3.ブランク数値確認済みの純水をサンプル袋内に注水し、サンプル袋の内面に純水を行きわたらせた後、サンプル袋を12時間以上静置した。
 4.純水で測定装置内をパージ(25mL×4回)後に、上記「3.」後のサンプル袋内から採取した10mLの水について、液中パーティクル数を測定し、この液中パーティクル数から純水のブランク数値を差し引いて、サンプル袋の内面に付着した異物の個数(パーティクル数)を得た。
 (液中パーティクル数の測定方法 袋の表面)
 1.純水で測定装置内をパージ後(25mL×4回)に、
   純水ブランクの液中パーティクル数を測定した。
 2.ブランクフィルムを用いて、
   30cm×30cmのブランク袋を作製した。
 3.実施例、参考例または比較例で得られた積層体を用いて、20cm×20cmのサンプル袋を作製した。サンプル袋の開口部にヒートシールを施して密封した後、ブランク袋内にサンプル袋を入れた試験袋1と、ブランク袋のみの試験袋2と、の2種類を用意した。
 4.ブランク数値確認済みの純水を試験袋1のブランク袋内(サンプル袋の外側)に注水し、ブランク袋の内面およびサンプル袋の表面に純水を行きわたらせた後、試験袋1を12時間以上静置した。同様にして、ブランク数値確認済みの純水を試験袋2のブランク袋内に注水し、ブランク袋の内面に純水を行きわたらせた後、試験袋2を12時間以上静置した。
 5.純水で測定装置内をパージ(25mL×4回)後に、上記「4.」後の試験袋1および試験袋2内からそれぞれ採取した10mLの水について、液中パーティクル数を測定した。試験袋1の液中パーティクル数から、純水のブランク数値および試験袋2の液中パーティクル数を差し引いて、サンプル袋の表面に付着した異物の個数(パーティクル数)を算出した。
 (液中パーティクル数の測定方法 袋の第1の樹脂層剥離後の表面)
 1.純水で測定装置内をパージ後(25mL×4回)に、
   純水ブランクの液中パーティクル数を測定した。
 2.ブランクフィルムを用いて、
   30cm×30cmのブランク袋を作製した。
 3.実施例、参考例または比較例で得られた積層体を用いて、20cm×20cmの袋を作製した。該袋の開口部にヒートシールを施して密封した後、該袋の第1の樹脂層(剥離層)を剥離して、第2の樹脂層の表面(剥離面)が露出したサンプル袋を得た。ブランク袋内にサンプル袋を入れた試験袋3と、ブランク袋のみの試験袋4と、の2種類を用意した。
 4.ブランク数値確認済みの純水を試験袋3のブランク袋内(サンプル袋の外側)に注水し、ブランク袋の内面およびサンプル袋の表面に純水を行きわたらせた後、試験袋3を12時間以上静置した。同様にして、ブランク数値確認済みの純水を試験袋4のブランク袋内に注水し、ブランク袋の内面に純水を行きわたらせた後、試験袋4を12時間以上静置した。
 5.純水で測定装置内をパージ(25mL×4回)後に、上記「4.」後の試験袋3および試験袋4内からそれぞれ採取した10mLの水について、液中パーティクル数を測定した。試験袋3の液中パーティクル数から、純水のブランク数値および試験袋4の液中パーティクル数を差し引いて、サンプル袋の表面(袋の第2の樹脂層の表面(剥離面))に付着した異物の個数(パーティクル数)を算出した。
 [第1の態様の包装袋]
 [実施例31]
 80質量%のHDPE(HZ5000SF)および20質量%のmHDPE(BYNEL 40E 1053)の混合物と、PA(5033B)と、LLDPE(SP0511)と、LLDPE(UZ3520L)と、80質量%のLLDPE(UZ2021L)および20質量%のLDPE(B128)の混合物とを、5層共押出インフレーション装置を用いて押出機から多層環状ダイを通してチューブ状に押し出し、これを垂直方向に引き取りながら空気圧で膨らませてチューブ状フィルムを形成した。チューブ状フィルムは、チューブ外面を構成する厚さ15μmのHDPE層と、厚さ5μmのPA層と、厚さ15μmのLLDPE層と、厚さ20μmのLLDPE層と、チューブ内面を構成する厚さ25μmのポリエチレンブレンド層とを備え、総厚さ80μmであった。ピンチロールにてチューブ状フィルムの内面同士を接触させて扁平化した。
 混合物における質量%の表記は、混合物中の各成分の含有割合を示す。
 扁平化されたフィルムを、高速三方シール自動製袋機(BH-60D トタニ技研工業製)を用いて、温度140℃、圧着時間0.8秒、圧力3kgf/cm2でヒートシールして、所定の切断処理を行い、三方シール袋を作製した。このような製袋方法を、「方法A」と記載する。
 第1の樹脂層である剥離層は、厚さ15μmのHDPE層と、厚さ5μmのPA層と、からなる。第2の樹脂層であるシーラント層は、厚さ15μmのLLDPE層と、厚さ20μmのLLDPE層と、厚さ25μmのポリエチレンブレンド層と、からなる。
 [実施例32]
 80質量%のHDPE(HZ5000SF)および20質量%のmHDPE(BYNEL 40E 1053)の混合物と、PA(5033B)と、LLDPE(SP0511)と、LLDPE(UMERIT125FN)と、80質量%のLLDPE(NF444N)および20質量%のLDPE(B128)の混合物とを、実施例31と同様にして5層共押出5層共押出インフレーション装置を用いて押出機から多層環状ダイを通してチューブ状に押し出し、これを垂直方向に引き取りながら空気圧で膨らませてチューブ状フィルムを形成した。チューブ状フィルムは、チューブ外面を構成する厚さ15μmのHDPE層と、厚さ5μmのPA層と、厚さ15μmのLLDPE層と、厚さ20μmのLLDPE層と、チューブ内面を構成する厚さ25μmのポリエチレンブレンド層とを備え、総厚さ80μmであった。以降の作業は実施例31と同様にして、三方シール袋を作製した。
 [実施例33]
 各層の厚さを変更したこと以外は実施例31と同様にして、チューブ外面を構成する厚さ30μmのHDPE層と、厚さ5μmのPA層と、厚さ20μmのLLDPE層と、厚さ20μmのLLDPE層と、チューブ内面を構成する厚さ20μmのポリエチレンブレンド層とを備える、総厚さ95μmのチューブ状フィルムを得た。以降の作業は実施例31と同様にして、三方シール袋を作製した。
 [実施例34]
 各層の厚さを変更したこと以外は実施例32と同様にして、チューブ外面を構成する厚さ30μmのHDPE層と、厚さ5μmのPA層と、厚さ20μmのLLDPE層と、厚さ20μmのLLDPE層と、チューブ内面を構成する厚さ20μmのポリエチレンブレンド層とを備える、総厚さ95μmのチューブ状フィルムを得た。以降の作業は実施例31と同様にして、三方シール袋を作製した。
 [参考例31]
 実施例31と同様にして、チューブ状フィルムを得た。ピンチロールにてチューブ状フィルムの内面同士を合わせて扁平化した。扁平化されたフィルムにおける幅方向の両端部を所定の幅で切除して2枚のフィルムに分けてそれぞれ巻き取り、フィルムのロール状体を2つ得た。2つのロール状体からそれぞれ巻き出されたフィルムを、ポリエチレンブレンド層(熱融着性樹脂層)同士が接するように重ね合わせて、高速三方シール自動製袋機(BH-60D トタニ技研工業製)を用いて、温度140℃、圧着時間0.8秒、圧力3kgf/cm2でヒートシールし、所定の切断処理を行い、三方シール袋を作製した。このような製袋方法を、「方法B」と記載する。
 [参考例32~34]
 実施例32で得られたチューブ状フィルムを用いて参考例31と同様にして、参考例32の三方シール袋を作製した。実施例33で得られたチューブ状フィルムを用いて参考例31と同様にして、参考例33の三方シール袋を作製した。実施例34で得られたチューブ状フィルムを用いて参考例31と同様にして、参考例34の三方シール袋を作製した。
 第1の態様の包装袋における実施例および参考例を表4に記載する。
 [物性評価]
 第1の態様の包装袋である三方シール袋の物性の評価方法を以下に記載する。特に言及しない限り、各物性の測定時の環境は、温度23℃および湿度50%RHである。各物性についてそれぞれ3個の試験片について測定を行い、得られた3個の値の算術平均値をそれぞれの物性値として記載した。
 <剥離強度>
 三方シール袋をカットして、幅:15mm、長さ:100mmのサイズを有する試験片を切り出した。上記試験片と、測定器として卓上型引張圧縮試験機MCT-1150(AND社製)とを用いて、初期チャック間距離:100mm、剥離角度:180度、試験速度:50mm/minの条件にて、上記試験片における剥離層とシーラント層との剥離強度(N/15mm幅)を測定した。
 <突刺し強度>
 三方シール袋をカットして、幅:5cm、長さ:5cmのサイズを有する試験片を得た。JIS Z1707:2019に準拠して、上記試験片の突刺し強度をそれぞれ測定した。測定器として、卓上型引張圧縮試験機MCT-1150(AND社製)を用いた。直径:1.0mm、先端形状半径:0.5mmの半円形の針を、試験速度:50mm/minで試験片のシーラント層面および剥離層面に突き刺し、針が試験片を貫通するまでの最大強度である突刺し強度(N)を測定した。
 <シール強度>
 チューブ状フィルムをカットして、幅:15mm、長さ:100mmのサイズを有する試験片を切り出した。2枚の試験片をそのシーラント層同士が接するように重ね合わせ、温度140℃(片面加熱)、圧着時間1秒および圧力1kgf/cm2の条件で試験片の一端15mm×15mmの部分をヒートシールして、シール部を形成し、試験体を得た。以下のとおり試験条件を変更したこと以外はJIS Z1707:2019に準拠して、測定器として卓上型引張圧縮試験機MCT-1150(AND社製)を用いて、チャック間距離:100mm、剥離態様:T型剥離、試験速度:300mm/minの条件にて、シール強度(N/15mm幅)を測定した。具体的には、試験体のシール部が上記試験機の2つのつかみ具の中央になるように、試験体を180度に開いて、試験体の両端を上記試験機の2つのつかみ具にそれぞれ取り付け、300mm/minの速度でシール部が破壊するまで引っ張り、最大強度(N)を求めた。15mm幅の試験体に対して測定された最大強度(N)を、ヒートシール強度(N/15mm幅)とした。
 <液中パーティクル数の測定方法>
 三方シール袋の内面および第2の樹脂層の表面に付着した異物の個数(パーティクル数)を、測定装置としてパーティクルカウンタ(リオン社製、KE-40/KS-40AF)を用い、計測サイズ:0.2μm以上の条件にて、測定した。袋の作製は、クリーンクラス1000の環境で実施した。測定は、クリーンクラス100の環境で実施した。
 (液中パーティクル数の測定方法 袋の内面)
 1.純水で測定装置内をパージ後(25mL×4回)に、
   純水ブランクの液中パーティクル数を測定した。
 2.実施例または参考例と同様にして、
   30cm×30cmの三方シール袋を作製した。
 3.ブランク数値確認済みの純水を三方シール袋内に注水し、三方シール袋の内面に純水を行きわたらせた後、三方シール袋を24時間静置した。
 4.純水で測定装置内をパージ(25mL×4回)後に、上記「3.」後の三方シール袋内から採取した10mLの水について、液中パーティクル数を測定し、この液中パーティクル数から純水のブランク数値を差し引いて、三方シール袋の内面に付着した異物の個数(パーティクル数)を得た。
 (液中パーティクル数の測定方法 袋の第1の樹脂層剥離後の表面)
 1.純水で測定装置内をパージ後(25mL×4回)に、
   純水ブランクの液中パーティクル数を測定した。
 2.ブランクフィルムを用いて、
   30cm×30cmのブランク袋を作製した。
 3.実施例または参考例と同様にして20cm×20cmの三方シール袋を作製した。三方シール袋の開口部にヒートシールを施して密封した後、該袋の第1の樹脂層(剥離層)を剥離して、第2の樹脂層の表面(剥離面)が露出したサンプル袋を得た。ブランク袋内にサンプル袋を入れた試験袋1と、ブランク袋のみの試験袋2と、の2種類を用意した。
 4.ブランク数値確認済みの純水を試験袋1のブランク袋内(サンプル袋の外側)に注水し、ブランク袋の内面およびサンプル袋の表面に純水を行きわたらせた後、試験袋1を24時間静置した。同様にして、ブランク数値確認済みの純水を試験袋2のブランク袋内に注水し、ブランク袋の内面に純水を行きわたらせた後、試験袋2を24時間静置した。
 5.純水で測定装置内をパージ(25mL×4回)後に、上記「4.」後の試験袋1および試験袋2内からそれぞれ採取した10mLの水について、液中パーティクル数を測定した。試験袋1の液中パーティクル数から、純水のブランク数値および試験袋2の液中パーティクル数を差し引いて、サンプル袋の表面(三方シール袋の第2の樹脂層の表面(剥離面))に付着した異物の個数(パーティクル数)を算出した。
 [第2の態様の包装袋]
 [作製例1]
 80質量%のHDPE(HZ5000SF)および20質量%の酸変性ポリエチレン(BYNEL 40E 1053)の混合物と、ポリアミド(5033B)と、LLDPE(KF260T)と、30質量%のLDPE(B128)および70質量%のLLDPE(UZ2021L)の混合物とを、インフレーション法により共押出製膜した。このようにして、厚さ10μmのHDPEブレンド層と、厚さ5μmのポリアミド層と、厚さ15μmのLLDPE層と、厚さ40μmのポリエチレンブレンド層とを備える、厚さ70μmの積層体を得た。
 混合物における質量%の表記は、混合物中の各成分の含有割合を示す。
 [作製例2]
 HDPEブレンド層の厚さを5μmに変更したこと以外は作製例1と同様にして、厚さ5μmのHDPEブレンド層と、厚さ5μmのポリアミド層と、厚さ15μmのLLDPE層と、厚さ40μmのポリエチレンブレンド層とを備える、厚さ65μmの積層体を得た。
 [作製例3]
 低密度ポリエチレン(日本ポリエチレン製、LC522、MFR:4.0g/10分、密度:0.923g/cm3)を厚さ30μmで溶融押出し、片面にコロナ処理することにより、LDPEフィルムを作製した。片面がコロナ処理された、厚さ12μmの二軸延伸PETフィルム(東洋紡製、E5102)を準備した。二軸延伸PETフィルムのコロナ処理面に、2液硬化型アンカーコート剤(三井化学製、A3210/A3075、以下「AC」とも記載する)を厚さ0.3μmでコートした。二軸延伸PETフィルムのコート面とLDPEフィルムのコロナ処理面とを、低密度ポリエチレン(日本ポリエチレン製、LC600A、MFR:7.0g/10分、密度:0.918g/cm3)の溶融押出しにより形成された厚さ15μmの押出樹脂層(EC-PE)を介して貼り合わせた。次いで、二軸延伸PETフィルムの非コロナ処理面と厚さ60μmのポリエチレンフィルム(タマポリ製、NB-1)とを、低密度ポリエチレン(LC600A)の溶融押出しにより形成された厚さ15μmの押出樹脂層(EC-PE)を介して貼り合わせた。このようにして、積層体を得た。
 [作製例4]
 片面がコロナ処理された、厚さ12μmの二軸延伸PETフィルム(E5102)を、片面がコロナ処理された、厚さ15μmの二軸延伸ナイロンフィルム(ユニチカ製、ON-RT)に変更したこと以外は作製例3と同様にして、積層体を得た。
 [作製例5]
 HDPEブレンド層およびポリアミド層の厚さをそれぞれ4μmに変更したこと以外は作製例1と同様にして、厚さ4μmのHDPEブレンド層と、厚さ4μmのポリアミド層と、厚さ15μmのLLDPE層と、厚さ40μmのポリエチレンブレンド層とを備える、厚さ63μmの積層体を得た。
 [実施例および参考例:包装袋の作製]
 作製例で得られた積層体および高速三方シール自動製袋機(BH-60D トタニ技研工業製)を用いて、温度160℃、圧着時間0.8秒、圧力3kgf/cm2、表5-1および表5-2に記載したシール幅の条件でヒートシールして、170mm×120mmのサイズの三方パウチを作製した。三方パウチに対して、ビク刃を用いて、表5-1および表5-2に記載した位置等で指定されるハーフカット線を形成した。表5-1および表5-2において、ハーフカット線の始点位置は、ハーフカット線の始点である点Aと上記頂点Vとの距離である。表5-2において、第3のシール部の形状は三角形状であり、第3のシール部の幅は、第3のシール部における第1のシール部に接する辺の長さであり、第3のシール部の高さは、第3のシール部における第2のシール部に接する辺の長さである。
 第2の態様の包装袋における実施例および参考例を表5-1および表5-2に記載する。
 [評価]
 <剥離評価>
 作製した三方パウチにおいて、ハーフカット線を起点として剥離部を本体部から剥離した。剥離時において剥離部(剥離フィルム)の切れの有無、剥離後に本体部上に残存した剥離部の有無、剥離しやすさを評価した。
 AA:剥離フィルムを切らずに剥離可能である。
 BB:剥離フィルムが切れやすいが剥離可能である。
 CC:剥離フィルムが切れるため、剥離不可である、または
    本体部上に剥離部の一部が残存する。
 <剥離強度>
 積層体をカットして、幅:15mm、長さ:100mmのサイズを有する試験片を切り出した。上記試験片と、測定器として卓上型引張圧縮試験機MCT-1150(AND社製)とを用いて、初期チャック間距離:100mm、剥離角度:180度、試験速度:50mm/minの条件にて、積層体における本体部と剥離部との剥離強度(N/15mm幅)を測定した。測定時の環境は、温度23℃および湿度50%RHである。3個の試験片について測定を行い、得られた3個の値の算術平均値を剥離強度として記載した。
 1 …積層体
 2 …チューブ状フィルム
 10…第1の樹脂層または剥離部
 10a…第1の樹脂層または剥離部の一部
 12…ポリオレフィン層
 14…ヘテロ原子含有樹脂層
 16…接着層
 20…第2の樹脂層または本体部
 22…密度が0.909g/cm3以下のポリエチレン層
 23…中間層
 24…熱融着性樹脂層
 25…押出樹脂層
 40…物品
 50…包装袋
 50a…収容部(収容空間)
 51…上部
 51a…上部シール部
 52…下部
 52a…下部シール部
 53…側部
 53a…側部シール部
 54…表面シート
 55…裏面シート
 56…開口部
 60…ハーフカット線
 101:第1の辺
 101S:第1のシール部
 102:第2の辺
 102S:第2のシール部
 103:角部
 103S:第3のシール部
 104:ハーフカット線
 106:非ハーフカット線
 110:隅部
 112S:交差部
 D1:ハーフカット線と第2の辺との最短距離
 D101:第1のシール部のシール幅
 D102:第2のシール部のシール幅
 D103a:第3のシール部における第1のシール部に接する辺の長さ
 D103b:第3のシール部における第2のシール部に接する辺の長さ
 当業者であれば理解するように、本開示の積層体等は上記実施例の記載によって限定されず、上記実施例および明細書は本開示の原理を説明するためのものにすぎず、本開示の主旨および範囲から逸脱しない限り、様々な改変または改善を行うことができ、これら改変または改善はいずれも保護請求している本開示の範囲内に含まれる。さらに本開示が保護請求している範囲は、請求の範囲の記載のみならずその均等物を含む。

Claims (31)

  1.  積層体であって、
     前記積層体は、第1の樹脂層と第2の樹脂層とを少なくとも備え、
     前記第1の樹脂層は、前記第2の樹脂層から剥離できるように設けられており、
     剥離角度:180度、試験速度:50mm/minの条件にて測定される、前記第1の樹脂層と前記第2の樹脂層との剥離強度は、1.0N/15mm幅以下であり、
     前記積層体は、下記(1)および/または(2)の要件を満たす、
    積層体。
    (1)前記第2の樹脂層は、密度が0.909g/cm3以下のポリエチレン層を少なくとも備えるシーラント層であり、前記第2の樹脂層における前記ポリエチレン層が、前記第1の樹脂層と接している。
    (2)前記第2の樹脂層は、ポリオレフィンを主成分として含有するシーラント層であり、前記第2の樹脂層における前記ポリオレフィンの含有割合は、前記第2の樹脂層の質量を基準として、82質量%以上である。
  2.  積層体であって
     前記積層体は、第1の樹脂層と第2の樹脂層とを少なくとも備え、
     前記第1の樹脂層は、前記第2の樹脂層から剥離できるように設けられており、前記第2の樹脂層は、ポリオレフィンを主成分として含有するシーラント層であり、
     前記第1の樹脂層および前記第2の樹脂層から選択される少なくとも1つの樹脂層は、バイオマス由来の樹脂材料を少なくとも含有する、積層体。
  3.  前記第1の樹脂層が、ヘテロ原子含有樹脂を主成分として含有するヘテロ原子含有樹脂層を少なくとも備え、前記ヘテロ原子含有樹脂層が、前記第2の樹脂層と接している、請求項1または2に記載の積層体。
  4.  前記ヘテロ原子含有樹脂が、ポリアミド、エチレン-ビニルアルコール共重合体、ポリエステルおよびポリビニルアルコールから選択される少なくとも1種を含む、請求項3に記載の積層体。
  5.  前記第1の樹脂層が、ポリオレフィンを主成分として含有するポリオレフィン層をさらに備える、請求項3または4に記載の積層体。
  6.  前記ポリオレフィン層が、前記ポリオレフィンに加えて、変性ポリオレフィンをさらに含有する、請求項5に記載の積層体。
  7.  前記ポリオレフィン層が、密度が0.925g/cm3以上のポリエチレンと変性ポリエチレンとを含有する、請求項5または6に記載の積層体。
  8.  前記第1の樹脂層が、ポリメチルペンテンを主成分として含有するポリメチルペンテン層である、請求項1または2に記載の積層体。
  9.  前記第1の樹脂層における含有量が最も大きい同種の樹脂材料の含有割合が、前記第1の樹脂層の質量を基準として、70質量%以上である、請求項1~8のいずれか一項に記載の積層体。
  10.  前記第2の樹脂層が、前記積層体の一方の表面層として、ポリオレフィンを主成分として含有する熱融着性樹脂層を備える、請求項1~9のいずれか一項に記載の積層体。
  11.  前記第2の樹脂層が、密度が0.909g/cm3以下のポリエチレン層と、前記積層体の一方の表面層として、ポリエチレンを主成分として含有する熱融着性樹脂層とを備え、前記第2の樹脂層における前記ポリエチレン層が、前記第1の樹脂層と接している、請求項1~10のいずれか一項に記載の積層体。
  12.  前記第2の樹脂層が、密度が0.909g/cm3以下の前記ポリエチレン層と、前記熱融着性樹脂層との間に、直鎖状低密度ポリエチレンを主成分として含有する中間層をさらに備える、請求項11に記載の積層体。
  13.  前記中間層に含まれる前記直鎖状低密度ポリエチレンが、0.925g/cm3以上の密度を有するか、またはエチレン-1-オクテン共重合体である、請求項12に記載の積層体。
  14.  共押出多層フィルムである、請求項1~13のいずれか一項に記載の積層体。
  15.  前記第2の樹脂層が、ポリエチレンを主成分として含有する押出樹脂層と、前記積層体の一方の表面層として、ポリエチレンを主成分として含有する熱融着性樹脂層と、を備える、請求項1~13のいずれか一項に記載の積層体。
  16.  前記第2の樹脂層から前記第1の樹脂層を剥離して得られる、前記第1の樹脂層からなるフィルムのヤング率が、前記剥離後の前記第2の樹脂層からなるフィルムのヤング率よりも大きい、請求項1~15のいずれか一項に記載の積層体。
  17.  前記第2の樹脂層から前記第1の樹脂層を剥離して得られる、前記第1の樹脂層からなるフィルムのループスティフネス値が、前記剥離後の前記第2の樹脂層からなるフィルムのループスティフネス値よりも小さい、請求項1~16のいずれか一項に記載の積層体。
  18.  前記積層体におけるポリオレフィン系樹脂の含有割合が、前記積層体の質量を基準として、70質量%以上である、請求項1~17のいずれか一項に記載の積層体。
  19.  バイオマス度が3%以上である、請求項1~18のいずれか一項に記載の積層体。
  20.  前記第1の樹脂層のバイオマス度が10%以上である、請求項1~19のいずれか一項に記載の積層体。
  21.  請求項1~20のいずれか一項に記載の積層体を備える包装袋。
  22.  前記積層体における前記第2の樹脂層同士が融着して形成されたシール部を有する、請求項21に記載の包装袋。
  23.  包装袋の製造方法であって、
     前記製造方法は、
     共押出インフレーション法により、チューブ外面を構成する第1の樹脂層と、ポリオレフィンを主成分として含有する、チューブ内面を構成する第2の樹脂層と、を少なくとも備えるチューブ状フィルムを形成し、前記フィルムを扁平状に変形させる工程、および
     扁平状に変形された前記チューブ状フィルムまたは該フィルムを切断してなる重ね合わされたフィルムに対して、対面して接触している前記第2の樹脂層同士の接触を解除することなく製袋処理を行い、包装袋を作製する工程、
    を含み、
     前記包装袋は、表面シートと、前記表面シートに対向する裏面シートと、を備え、前記表面シートおよび前記裏面シートは、それぞれ、前記第1の樹脂層と、前記包装袋の内面を構成する前記第2の樹脂層と、を少なくとも備え、前記表面シートおよび前記裏面シートにおいて、前記第1の樹脂層は、前記第2の樹脂層から剥離できるように設けられており、前記包装袋は、前記表面シートにおける前記第2の樹脂層の一部と前記裏面シートにおける前記第2の樹脂層の一部とが接合して形成されたシール部を有する、
    包装袋の製造方法。
  24.  包装袋であって、
     前記包装袋は、表面シートと、前記表面シートに対向する裏面シートと、を備え、
     前記表面シートおよび前記裏面シートは、それぞれ、第1の樹脂層と、前記包装袋の内面を構成する第2の樹脂層と、を少なくとも備え、前記第2の樹脂層は、ポリオレフィンを主成分として含有し、
     前記表面シートおよび前記裏面シートにおいて、前記第1の樹脂層は、前記第2の樹脂層から剥離できるように設けられており、
     前記包装袋は、前記表面シートにおける前記第2の樹脂層の一部と前記裏面シートにおける前記第2の樹脂層の一部とが接合して形成されたシール部を有し、
    (1)前記包装袋は、共押出インフレーション法により作製された、チューブ外面を構成する前記第1の樹脂層と、チューブ内面を構成する前記第2の樹脂層と、を少なくとも備えるチューブ状フィルムを扁平状に変形させたフィルムまたは該フィルムを切断してなる重ね合わされたフィルムを、直接製袋してなるか、および/または、(2)パーティクルカウンタを用いて測定される、前記包装袋の内面に付着した、粒子径が0.2μm以上のパーティクルの数が、100個/cm2以下である、
    包装袋。
  25.  積層体を備える包装袋であって、
     前記積層体は、
      熱融着性樹脂層を備える本体部と、
      前記本体部から剥離できるように設けられている剥離部と、
    を厚さ方向に備え、
     前記剥離部の厚さは、10μm以上であり、
     前記包装袋は、
      前記積層体により構成される表面シートと、
      前記積層体により構成される裏面シートと、
      前記表面シートの前記熱融着性樹脂層と前記裏面シートの前記熱融着性樹脂層とが接合されているシール部と、
      内容物を収容する収容部と、
    を有し、
     前記包装袋は、平面視において、点Aを有する第1の辺と、点Bを有する第2の辺と、前記第1の辺と前記第2の辺とを結ぶ頂点を含む隅部と、を有し、
     前記包装袋は、前記第1の辺上の点Aと前記第2の辺上の点Bとを結ぶ線上に、点Aから延びるハーフカット線を有し、前記ハーフカット線は、前記点Aから前記線の途中まで設けられている、
    包装袋。
  26.  前記包装袋が、前記第1の辺に沿って延びる第1のシール部と、前記第2の辺に沿って延びる第2のシール部と、を有し、前記第1のシール部と前記第2のシール部とは、前記包装袋の前記隅部で平面視において重なっており、前記ハーフカット線が、前記隅部のシール部上に設けられている、請求項25に記載の包装袋。
  27.  前記包装袋が、平面視において前記第1のシール部と前記第2のシール部とがなす角部に設けられた第3のシール部をさらに有する、請求項26に記載の包装袋。
  28.  前記ハーフカット線が、少なくとも前記第3のシール部上に設けられている、請求項27に記載の包装袋。
  29.  前記第3のシール部が、三角形状を有する、請求項27または28に記載の包装袋。
  30.  前記ハーフカット線と前記第2の辺との最短距離D1が、2.0mm以上である、請求項25~29のいずれか一項に記載の包装袋。
  31.  前記第3のシール部における前記第1のシール部に接する辺の長さ、および前記第3のシール部における前記第2のシール部に接する辺の長さが、それぞれ独立して、2mm以上40mm以下である、請求項27~29のいずれか一項に記載の包装袋。
PCT/JP2023/030748 2022-08-29 2023-08-25 積層体、包装袋および包装袋の製造方法 WO2024048457A1 (ja)

Applications Claiming Priority (14)

Application Number Priority Date Filing Date Title
JP2022-136260 2022-08-29
JP2022136263 2022-08-29
JP2022136260 2022-08-29
JP2022-136263 2022-08-29
JP2022-162455 2022-10-07
JP2022162455A JP2024032631A (ja) 2022-08-29 2022-10-07 積層体および包装袋
JP2023056360 2023-03-30
JP2023-056360 2023-03-30
JP2023-129913 2023-08-09
JP2023129913 2023-08-09
JP2023129821A JP2024032670A (ja) 2022-08-29 2023-08-09 積層体および包装袋
JP2023129895 2023-08-09
JP2023-129821 2023-08-09
JP2023-129895 2023-08-09

Publications (1)

Publication Number Publication Date
WO2024048457A1 true WO2024048457A1 (ja) 2024-03-07

Family

ID=90099899

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/030748 WO2024048457A1 (ja) 2022-08-29 2023-08-25 積層体、包装袋および包装袋の製造方法

Country Status (1)

Country Link
WO (1) WO2024048457A1 (ja)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5578432U (ja) * 1978-11-24 1980-05-30
JPH10235773A (ja) * 1997-02-28 1998-09-08 Dainippon Printing Co Ltd 積層体及びそれを用いた袋体の製造方法
JP2000079949A (ja) * 1998-09-03 2000-03-21 Toppan Printing Co Ltd クリーン包装袋とその製造方法およびその製造装置
JP2001162727A (ja) * 1999-12-10 2001-06-19 Toppan Printing Co Ltd バリア性包装資材及びこれを用いた包装袋
JP2002211579A (ja) * 2001-01-23 2002-07-31 Toppan Printing Co Ltd クリーンな包装袋
JP2002211580A (ja) * 2001-01-23 2002-07-31 Toppan Printing Co Ltd クリーンな包装材料及び包装袋
JP2003246901A (ja) * 2002-02-25 2003-09-05 Mitsui Chemicals Inc フィルム用樹脂組成物およびそれから得られる食品包装用フィルム
JP2004244048A (ja) * 2003-02-13 2004-09-02 Toppan Printing Co Ltd クリーン包装袋及びその製造方法
JP2009132417A (ja) * 2007-11-30 2009-06-18 Aicello Chemical Co Ltd クリーン包装用二重袋
JP2021066185A (ja) * 2016-02-17 2021-04-30 共同印刷株式会社 リシール用易剥離性積層体

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5578432U (ja) * 1978-11-24 1980-05-30
JPH10235773A (ja) * 1997-02-28 1998-09-08 Dainippon Printing Co Ltd 積層体及びそれを用いた袋体の製造方法
JP2000079949A (ja) * 1998-09-03 2000-03-21 Toppan Printing Co Ltd クリーン包装袋とその製造方法およびその製造装置
JP2001162727A (ja) * 1999-12-10 2001-06-19 Toppan Printing Co Ltd バリア性包装資材及びこれを用いた包装袋
JP2002211579A (ja) * 2001-01-23 2002-07-31 Toppan Printing Co Ltd クリーンな包装袋
JP2002211580A (ja) * 2001-01-23 2002-07-31 Toppan Printing Co Ltd クリーンな包装材料及び包装袋
JP2003246901A (ja) * 2002-02-25 2003-09-05 Mitsui Chemicals Inc フィルム用樹脂組成物およびそれから得られる食品包装用フィルム
JP2004244048A (ja) * 2003-02-13 2004-09-02 Toppan Printing Co Ltd クリーン包装袋及びその製造方法
JP2009132417A (ja) * 2007-11-30 2009-06-18 Aicello Chemical Co Ltd クリーン包装用二重袋
JP2021066185A (ja) * 2016-02-17 2021-04-30 共同印刷株式会社 リシール用易剥離性積層体

Similar Documents

Publication Publication Date Title
JP4720562B2 (ja) 共押出多層フィルム及び該フィルムを用いた包装材
JP5413647B2 (ja) 共押出多層フィルム及び該フィルムからなる包装材
EP2355979B1 (en) Multilayer shrink films, labels made therefrom and use thereof
JP5459535B2 (ja) 共押出多層フィルム及び該フィルムからなる包装材
JP4670744B2 (ja) 共押出多層フィルム及び該フィルムからなる包装材
JP5713190B2 (ja) 易開封性多層フィルム及び該フィルムを用いた包装材
JP5716286B2 (ja) 共押出多層フィルム及び該フィルムからなる包装材
JP5741935B2 (ja) 多層フィルム及び該フィルムからなる包装材
EP1591482A1 (en) Resin composition having easy-to-open property and use thereof
JP2006281675A (ja) 易開封性共押出フィルムならびに該フィルムを用いた蓋材および深絞り成形容器
JP2008080543A (ja) 共押出多層フィルム、並びに該フィルムを用いたラミネートフィルム及び包装材
JP2014188677A (ja) 電子線照射された易引裂性多層フィルム及び包装材
JP2008062493A (ja) オレフィン系シュリンクフィルム
JP5991504B2 (ja) 易貫通性蓋材
JP6264092B2 (ja) 易引裂性多層フィルム及び包装材
WO2013008780A1 (ja) プラスチックフィルム及び輸液バッグ
WO2024048457A1 (ja) 積層体、包装袋および包装袋の製造方法
JP5347419B2 (ja) 多層フィルム
JP6565640B2 (ja) 耐熱性を有する易引裂性フィルム及び包装材
CN112638648A (zh) 阻隔性易撕裂共挤出多层薄膜和包装材料
JP5935372B2 (ja) ひねり包装用フィルム及びひねり包装体
JP2024032631A (ja) 積層体および包装袋
WO2013176017A1 (ja) 積層フィルム
JP2024032670A (ja) 積層体および包装袋
TW202417230A (zh) 積層體、包裝袋及包裝袋之製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23860219

Country of ref document: EP

Kind code of ref document: A1