WO2024048258A1 - モータ制御装置 - Google Patents

モータ制御装置 Download PDF

Info

Publication number
WO2024048258A1
WO2024048258A1 PCT/JP2023/029412 JP2023029412W WO2024048258A1 WO 2024048258 A1 WO2024048258 A1 WO 2024048258A1 JP 2023029412 W JP2023029412 W JP 2023029412W WO 2024048258 A1 WO2024048258 A1 WO 2024048258A1
Authority
WO
WIPO (PCT)
Prior art keywords
current
motor
noise
noise component
motor current
Prior art date
Application number
PCT/JP2023/029412
Other languages
English (en)
French (fr)
Inventor
侑大 長田
Original Assignee
株式会社富士通ゼネラル
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社富士通ゼネラル filed Critical 株式会社富士通ゼネラル
Publication of WO2024048258A1 publication Critical patent/WO2024048258A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/14Estimation or adaptation of machine parameters, e.g. flux, current or voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters

Definitions

  • the present disclosure relates to a motor control device.
  • a motor control device that controls the drive of a motor has an inverter that generates a three-phase AC voltage (hereinafter sometimes referred to as "three-phase voltage") that is applied to the motor.
  • the inverter is composed of a plurality of switching elements.
  • the motor control device adjusts the d-axis current command value and the q-axis current command value so that the motor rotation speed matches the speed command value (target speed).
  • a d-axis voltage command value and a q-axis voltage command value are generated from the d-axis current command value and the q-axis current command value.
  • the motor control device converts the d-axis voltage command value and the q-axis voltage command value into three-phase voltage command values.
  • PWM Pulse Width Modulation
  • PWM Pulse Width Modulation
  • a signal for controlling on/off of a switching element (hereinafter sometimes referred to as a "PWM signal") is generated based on a comparison result between a carrier, which is a PWM carrier wave, and a modulated wave.
  • motor drive can be controlled without using a sensor (hereinafter sometimes referred to as a ⁇ position sensor'') to detect the rotational position of the motor's rotor (hereinafter sometimes referred to as ⁇ rotor position'').
  • a sensor hereinafter sometimes referred to as a ⁇ position sensor''
  • ⁇ rotor position'' A technique to do this (hereinafter sometimes referred to as a "position sensorless method") is known.
  • the rotor position is estimated without using a position sensor by detecting three-phase currents flowing through the motor (hereinafter sometimes referred to as "motor currents").
  • a single shunt detection method is known as a motor current detection method.
  • the 1-shunt detection method two phases of the motor current are detected based on the bus current flowing between the inverter that generates the three-phase voltage and the DC power supply, and the remaining one-phase current is detected as the two-phase current. Calculated using Kirchhoff's law from the phase current.
  • a first connection line transmits an amplified voltage obtained by amplifying the voltage generated across the shunt resistor for bus current detection to the first A/D converter
  • a second connection line transmits the amplified voltage generated at both ends of the shunt resistor for bus current detection
  • noise determination when noise is superimposed on the first connection line, the same noise is superimposed on the second connection line, so by determining whether the offset voltage is outside a predetermined range, It is determined whether or not large noise is superimposed on the bus current (hereinafter sometimes referred to as "noise determination").
  • the offset voltage when the offset voltage is a voltage outside a predetermined range, it is determined that the noise has a large influence on the detected bus current, and the amplified voltage detected at the same time as the offset voltage is discarded.
  • a PWM signal is generated based on the bus current calculated from the amplified voltage detected at the same time as the offset voltage.
  • the present disclosure proposes a technique that can control a motor using a highly accurate current value while suppressing an increase in the number of parts in a motor control device.
  • the motor control device of the present disclosure includes an inverter, a detection section, a calculation section, a first extraction section, and a determination section.
  • the inverter converts a DC voltage supplied from a DC power source into an AC voltage, and applies the AC voltage to the motor.
  • the detection unit detects a bus current of the inverter using a resistor connected between the DC power supply and the inverter.
  • the calculation unit calculates a motor current flowing through the motor based on the bus current.
  • the first extractor extracts a noise component included in the motor current from the motor current.
  • the determination unit determines the magnitude of noise in the bus current based on the noise component.
  • a motor can be controlled using a highly accurate current value while suppressing an increase in the number of parts in a motor control device.
  • FIG. 1 is a diagram illustrating a configuration example of a motor control device according to a first embodiment of the present disclosure.
  • FIG. 2 is a diagram illustrating a configuration example of a noise determination unit according to Example 1 of the present disclosure.
  • FIG. 3 is a diagram illustrating a configuration example of a first extracting unit according to Example 1 of the present disclosure.
  • FIG. 4 is a diagram illustrating an example of noise components and non-noise components included in the motor current according to the first embodiment of the present disclosure.
  • FIG. 5 is a diagram illustrating an example of extracted noise components according to Example 1 of the present disclosure.
  • FIG. 6 is a diagram illustrating an example of updating a threshold value used for noise determination according to the first embodiment of the present disclosure.
  • FIG. 1 is a diagram illustrating a configuration example of a motor control device according to a first embodiment of the present disclosure.
  • FIG. 2 is a diagram illustrating a configuration example of a noise determination unit according to Example 1 of the present disclosure.
  • FIG. 7 is a diagram illustrating a configuration example of a noise determination unit according to Example 2 of the present disclosure.
  • FIG. 8 is a diagram illustrating a configuration example of a first extraction unit and a second extraction unit in Example 2 of the present disclosure.
  • FIG. 9 is a flowchart illustrating an example of a processing procedure in the noise determination unit according to the second embodiment of the present disclosure.
  • FIG. 1 is a diagram illustrating a configuration example of a motor control device according to a first embodiment of the present disclosure.
  • the motor control device 100 shown in FIG. 1 controls the drive of the motor M using a position sensorless method, a one-shunt detection method, and PWM control.
  • the motor control device 100 includes subtraction sections 46, 47, and 52, a d-axis current setting section 48, a speed control section 49, a d-axis and q-axis voltage setting section 45, and a dq/3 ⁇ conversion section 43. , a PWM section 41, an inverter 10, a DC power supply EDC, and a shunt resistor Rs.
  • the motor control device 100 also includes a DC voltage detection section 31, a current detection section 21, AD conversion sections 71 and 72, a 3 ⁇ current calculation section 61, a DC voltage calculation section 32, a 3 ⁇ /dq conversion section 42, and , a position/velocity estimation section 44, a 1/Pn processing section 51, a noise determination section 80, and a current estimation section 81.
  • the unit 81 is realized by, for example, an MCU (Micro Control Unit) as hardware.
  • the inverter 10 also includes upper arm switching elements SWup, SWvp, and SWwp, and lower arm switching elements SWun, SWvn, and SWwn.
  • the d-axis current setting section 48 outputs a predetermined value of the d-axis current command value id * to the subtraction section 46.
  • the subtraction unit 46 receives the d-axis current command value id * from the d-axis current setting unit 48 and receives the d-axis current id from the noise determination unit 80.
  • the subtraction unit 46 calculates the d-axis current deviation ⁇ id by subtracting the d-axis current id from the d-axis current command value id * , and outputs the calculated d-axis current deviation ⁇ id to the d-axis q-axis voltage setting unit 45. .
  • the speed control unit 49 calculates the q-axis current command value iq * so that the speed deviation ⁇ input from the subtraction unit 52 approaches zero, and outputs the calculated q-axis current command value iq * to the subtraction unit 47 .
  • the subtraction unit 47 receives the q-axis current command value iq * from the speed control unit 49 and receives the q-axis current iq from the noise determination unit 80 .
  • the subtraction unit 47 calculates the q-axis current deviation ⁇ iq by subtracting the q-axis current iq from the q-axis current command value iq * , and outputs the calculated q-axis current deviation ⁇ iq to the d-axis and q-axis voltage setting unit 45. .
  • the d-axis current deviation ⁇ id is inputted from the subtraction unit 46 to the d-axis q-axis voltage setting unit 45, the q-axis current deviation ⁇ iq is inputted from the subtraction unit 47, and the d-axis current id and the q-axis current are inputted from the noise determination unit 80. iq is input.
  • the d-axis and q-axis voltage setting unit 45 calculates the d-axis voltage command value Vd * and the q-axis voltage command value Vq * so that the d-axis current deviation ⁇ id and the q-axis current deviation ⁇ iq approach zero, and sets the calculated d-axis voltage command value Vd * and the q-axis voltage command value Vq *
  • the voltage command value Vd * and the q-axis voltage command value Vq * are output to the position/velocity estimator 44 , the dq/3 ⁇ converter 43 , and the current estimator 81 .
  • the d-axis voltage command value Vd * and the q-axis voltage command value Vq * also change according to the U-phase current iu, V-phase current iv, and W-phase current iw, which are motor currents calculated by the 3 ⁇ current calculation unit 61. .
  • the position/velocity estimation section 44 receives the d-axis current id and the q-axis current iq from the noise determination section 80, and receives the d-axis voltage command value Vd * and the q-axis voltage command value Vq from the d-axis/q-axis voltage setting section 45. * is input.
  • the position/velocity estimator 44 calculates the electrical angular velocity ⁇ e and rotation of the motor M based on the d-axis current id, the q-axis current iq, the d-axis voltage command value Vd * , and the q-axis voltage command value Vq * .
  • the rotational phase angle ⁇ dq of the motor M at the coordinates (dq coordinates) is estimated.
  • the position/velocity estimation unit 44 outputs the estimated angular velocity ⁇ e to the 1/Pn processing unit 51, the noise determination unit 80, and the current estimation unit 81, and outputs the estimated rotational phase angle ⁇ dq to the 3 ⁇ /dq conversion unit 42 and dq/3 ⁇ . It is output to the converter 43.
  • the 1/Pn processing unit 51 converts the electrical angular velocity ⁇ e into the mechanical angular velocity ⁇ m of the rotor of the motor M by dividing the angular velocity ⁇ e by the number of pole pairs of the motor M, and subtracts the converted angular velocity ⁇ m. It outputs to section 52.
  • the subtraction unit 52 receives the angular velocity ⁇ m from the 1/Pn processing unit 51 and receives the speed command value ⁇ m * from outside the motor control device 100 (for example, from a higher-level controller of the motor control device 100).
  • the subtraction unit 52 calculates the speed deviation ⁇ by subtracting the angular velocity ⁇ m from the speed command value ⁇ m * , and outputs the calculated speed deviation ⁇ to the speed control unit 49.
  • the dq/3 ⁇ conversion unit 43 converts the two-phase d-axis voltage command value Vd * and the q-axis voltage command value Vq * of the rotational coordinates into three-phase voltages of the fixed coordinates (UVW coordinates) using the rotational phase angle ⁇ dq. Convert to command values Vu * , Vv * , Vw * .
  • the dq/3 ⁇ converter 43 outputs the converted voltage command values Vu * , Vv * , Vw * to the PWM unit 41.
  • the PWM section 41 receives voltage command values Vu * , Vv * , Vw * from the dq/3 ⁇ conversion section 43, and receives the DC voltage Vdc from the DC voltage calculation section 32. Further, a carrier signal, which is a PWM carrier wave, is input to the PWM unit 41 from outside the motor control device 100 (for example, from a higher-level controller of the motor control device 100).
  • the PWM unit 41 generates three-phase PWM signals Up, Un, Vp, Vn, Wp, Wn based on the voltage command values Vu * , Vv * , Vw * , the DC voltage Vdc, and the carrier signal,
  • the generated PWM signals Up, Un, Vp, Vn, Wp, and Wn are output to the inverter 10 and the 3 ⁇ current calculation section 61.
  • a DC voltage is supplied to the inverter 10 from a DC power source EDC, and PWM signals Up, Un, Vp, Vn, Wp, and Wn are input from a PWM section 41.
  • the inverter 10 converts the DC voltage supplied from the DC power supply EDC into a three-phase AC voltage according to the PWM signals Up to Wn, and applies the converted three-phase AC voltage to the motor M. That is, the inverter 10 applies an AC voltage to the motor M through PWM control.
  • the motor M is driven by applying three-phase AC voltage to the motor M.
  • each switching element SWup, SWun, SWvp, SWvn, SWwp, SWwn is turned on/off according to the PWM signals Up, Un, Vp, Vn, Wp, Wn, thereby converting the DC voltage into a three-phase voltage.
  • Ru. Free wheel diodes Dup, Dun, Dvp, Dvn, Dwp, and Dwn are connected to both ends of each switching element SWup, SWun, SWvp, SWvn, SWwp, and SWwn.
  • the current detection unit 21 detects the bus current Is of the inverter 10 using a shunt resistor Rs connected between the DC power source EDC and the inverter 10.
  • the shunt resistor Rs is arranged on an N line LN that is a DC line between the N side terminal of the DC power supply EDC and the inverter 10. Note that the shunt resistor Rs may be placed on the P line LP , which is a DC line between the P-side terminal of the DC power supply EDC and the inverter 10.
  • the current detection unit 21 detects the bus current Is flowing through the shunt resistor Rs based on the magnitude of this voltage drop and the resistance value of the shunt resistor Rs. Further, the current detection unit 21 calculates an analog voltage VA1 expressed by equation (1) based on the shunt resistance Rs and the bus current Is, and outputs the calculated analog voltage VA1 to the AD conversion unit 72.
  • the AD conversion unit 72 performs sampling on the analog voltage VA1 to convert the analog voltage VA1 into a digital voltage value VA2, and outputs the converted digital voltage value VA2 to the 3 ⁇ current calculation unit 61.
  • the 3 ⁇ current calculation unit 61 calculates the motor current using the one-shunt detection method.
  • the 3 ⁇ current calculation unit 61 calculates U-phase current iu, V-phase current iv, and The W-phase current iw is calculated, and the calculated motor currents iu, iv, iw are output to the 3 ⁇ /dq converter 42.
  • the 3 ⁇ /dq conversion unit 42 uses the rotational phase angle ⁇ dq input from the position/velocity estimation unit 44 to convert motor currents iu, iv, and iw indicating three-phase current vectors in the fixed coordinates into two-phase current vectors in the rotational coordinates. is converted into a d-axis current and a q-axis current indicating the current vector.
  • the d-axis current after conversion by the 3 ⁇ /dq conversion unit 42 will be referred to as a “detected d-axis current”
  • the q-axis current after conversion by the 3 ⁇ /dq conversion unit 42 will be referred to as a “detected q-axis current”.
  • the two-phase detected d-axis current and the detected q-axis current correspond to the three-phase motor current calculated by the 3 ⁇ current calculation unit 61.
  • the 3 ⁇ /dq conversion unit 42 outputs the detected d-axis current id_det and the detected q-axis current iq_det to the noise determination unit 80.
  • the detected d-axis current id_det and the detected q-axis current iq_det may be collectively referred to as "detected current i_det.”
  • the current estimation unit 81 receives the d-axis voltage command value Vd * and the q-axis voltage command value Vq * from the d-axis and q-axis voltage setting unit 45, receives the angular velocity ⁇ e from the position/velocity estimation unit 44, and performs noise determination.
  • a d-axis current id and a q-axis current iq are input from the section 80.
  • the current estimation unit 81 estimates the current based on the d-axis voltage command value Vd * , the q-axis voltage command value Vq * , the angular velocity ⁇ e, the d-axis current id, and the q-axis current iq, and estimates the estimated d-axis current id_est, Then, the estimated q-axis current iq_est is output to the noise determination section 80.
  • the d-axis current estimated by the current estimator 81 may be referred to as an "estimated d-axis current”
  • the q-axis current estimated by the current estimator 81 may be referred to as an "estimated q-axis current”.
  • the estimated d-axis current id_est and the estimated q-axis current iq_est may be collectively referred to as "estimated current i_est.”
  • the noise determination unit 80 receives the detected current i_det from the 3 ⁇ /dq conversion unit 42, receives the angular velocity ⁇ e from the position/velocity estimation unit 44, and receives the estimated current i_est from the current estimation unit 81.
  • the noise determination section 80 performs noise determination and outputs the d-axis current to the position/velocity estimation section 44, the d-axis q-axis voltage setting section 45, the subtraction section 46, and the current estimation section 81 based on the determination result of the noise determination.
  • id and the q-axis current iq to be output to the position/velocity estimating section 44, d-axis/q-axis voltage setting section 45, subtracting section 47, and current estimating section 81 Details of the noise determination section 80 will be described later.
  • the DC voltage detection section 31 detects the bus voltage between the P line LP and the N line LN , and outputs the detected analog bus voltage VB1 to the AD conversion section 71.
  • the AD converter 71 converts the analog bus voltage VB1 into a digital bus voltage value VB2 by sampling the analog bus voltage VB1, and converts the converted digital bus voltage value VB2 into the DC voltage calculation unit. Output to 32.
  • the DC voltage calculation unit 32 calculates the DC voltage Vdc from the digital bus voltage value VB2, and outputs the calculated DC voltage Vdc to the PWM unit 41.
  • FIG. 2 is a diagram illustrating a configuration example of a noise determination unit according to Example 1 of the present disclosure.
  • the noise determination section 80a shown in FIG. 2 corresponds to the noise determination section 80 shown in FIG.
  • the noise determination section 80a includes a first extraction section 91, a noise amount determination section 92, and a current determination section 93.
  • the first extraction unit 91 extracts a noise component included in the motor current from the motor current, and outputs the extracted noise component to the noise amount determination unit 92.
  • the noise component extracted by the first extraction unit 91 is formed from a d-axis noise component id_no and a q-axis noise component iq_no.
  • the d-axis noise component id_no and the q-axis noise component iq_no may be collectively referred to as "noise component i_no.”
  • the noise amount determination unit 92 determines the magnitude of noise in the bus current based on the noise component.
  • the noise component sometimes takes a positive value and sometimes takes a negative value.
  • the noise amount determination unit 92 determines that at least one of the absolute value
  • the noise amount determination unit 92 sets the determination flag DF to '+1'; The determination flag DF is output to the current determining section 93.
  • the noise amount determination unit 92 sets the determination flag DF to '-1'; The determined determination flag DF is output to the current determining section 93.
  • the noise amount determining unit 92 sets the determination flag DF to '0' when it is determined that the noise of the bus current is small, and outputs the determination flag DF set to '0' to the current determining unit 93.
  • the current determination unit 93 receives the detected current i_det from the 3 ⁇ /dq conversion unit 42, the estimated current i_est from the current estimation unit 81, and the determination flag DF from the noise amount determination unit 92.
  • the current determining unit 93 determines the detected d-axis current id_det as the d-axis current id used for controlling the motor M in the current carrier cycle, and Out of the current id_det and the estimated d-axis current id_est, the detected d-axis current id_det is output to the position/velocity estimation section 44 , the d-axis/q-axis voltage setting section 45 , the subtraction section 46 , and the current estimation section 81 .
  • the carrier period is the reciprocal of the carrier frequency fc in the motor control device 100.
  • the current determining unit 93 sets the estimated d-axis current id_est to the d-axis current used for controlling the motor M in the current carrier cycle. id, and outputs the estimated d-axis current id_est of the detected d-axis current id_det and the estimated d-axis current id_est to the position/velocity estimation section 44, d-axis q-axis voltage setting section 45, subtraction section 46, and current estimation section 81. do.
  • the current determining unit 93 determines the detected q-axis current iq_det as the q-axis current iq used for controlling the motor M in the current carrier cycle, and Of the q-axis current iq_det and the estimated q-axis current iq_est, the detected q-axis current iq_det is output to the position/velocity estimation section 44, the d-axis/q-axis voltage setting section 45, the subtraction section 47, and the current estimation section 81.
  • the current determining unit 93 sets the estimated q-axis current iq_est to the q-axis current used for controlling the motor M in the current carrier cycle. iq, and outputs the estimated q-axis current iq_est out of the detected q-axis current iq_det and the estimated q-axis current iq_est to the position/velocity estimation unit 44, d-axis and q-axis voltage setting unit 45, subtraction unit 47, and current estimation unit 81. do.
  • estimation example 1 ⁇ Estimation of current>
  • estimation example 2 ⁇ Estimation of current>
  • previous d-axis current current (hereinafter sometimes referred to as "previous d-axis current")
  • p is the differential operator of (d/dt)
  • Ld is the d-axis inductance of motor M
  • ⁇ e is the position/velocity estimation
  • Lq is the q-axis inductance of the motor M
  • iq is the q-axis current ( Hereinafter, it may be referred to as the “previous q-axis current”
  • is the interlinkage magnetic flux of the motor M.
  • the winding resistance R, the d-axis inductance Ld, the q-axis inductance Lq, and the flux linkage ⁇ are parameters (hereinafter sometimes referred to as "motor parameters") that determine the characteristics of the motor M.
  • Vd * R ⁇ id+p ⁇ Ld ⁇ id ⁇ e ⁇ Lq ⁇ iq...(2.1)
  • Vq * R ⁇ iq+p ⁇ Lq ⁇ iq+ ⁇ e ⁇ Ld ⁇ id+ ⁇ e ⁇ ...(2.2)
  • equations (2.1) and (2.2) can be transformed into equations (3.1) and (3.2).
  • ⁇ Id is the d-axis current predicted to be output from the current determining unit 93 in the current carrier cycle (hereinafter referred to as "predicted d-axis current").
  • the amount of change in the previous d-axis current (hereinafter sometimes referred to as the “d-axis current change amount"), " ⁇ Iq”, is predicted to be output from the current determining unit 93 in the current carrier cycle.
  • Vd * R ⁇ id+Ld ⁇ Id ⁇ fc ⁇ e ⁇ Lq ⁇ iq...(3.1)
  • Vq * R ⁇ iq+Lq ⁇ Iq ⁇ fc+ ⁇ e ⁇ Ld ⁇ id+ ⁇ e ⁇ ...(3.2)
  • equations (3.1) and (3.2) are solved for the d-axis current change amount and the q-axis current change amount, equations (4.1) and (4.2) are obtained.
  • ⁇ Id (Vd * -R ⁇ id+ ⁇ e ⁇ Lq ⁇ iq)/(Ld ⁇ fc)...(4.1)
  • ⁇ Iq (Vq * -R ⁇ iq ⁇ e ⁇ Ld ⁇ id ⁇ e ⁇ )/(Lq ⁇ fc) ...(4.2)
  • the current estimation unit 81 uses the previous d-axis current id determined by the current determining unit 93 in the previous carrier cycle and input from the current determining unit 93, and the current determining unit 93 in the previous carrier cycle.
  • the estimated d-axis current id_est and the estimated q-axis current iq_est are calculated according to equation (5.1) and equation (5.2).
  • id_est id+ ⁇ Id...(5.1)
  • iq_est iq+ ⁇ Iq...(5.2)
  • the current estimation unit 81 calculates the estimated d-axis current id_est and the estimated q-axis current iq_est that are theoretically derived according to the motor model equation of the motor M, and calculates the estimated d-axis current iq_est.
  • the id_est and estimated q-axis current iq_est are output to the current determining unit 93.
  • the current estimation unit 81 uses the previous d-axis current as the estimated d-axis current id_est, and uses the previous q-axis current as the estimated q-axis current iq_est.
  • FIG. 3 is a diagram illustrating a configuration example of a first extracting unit according to Example 1 of the present disclosure.
  • the first extraction section 91 includes a first notch filter 911, a second notch filter 912, and a first high-pass filter 913.
  • the first notch filter 911 receives the detected current i_det from the 3 ⁇ /dq conversion section 42 and receives the angular velocity ⁇ e from the position/velocity estimation section 44 .
  • the second notch filter 912 receives the angular velocity ⁇ e from the position/velocity estimator 44 .
  • the detected current i_det includes a noise component and a component different from the noise component (hereinafter sometimes referred to as a "non-noise component").
  • the first extraction section 91 extracts a noise component from the detection current i_det by removing non-noise components from the detection current i_det, and outputs the extracted noise component to the noise amount determination section 92 .
  • non-noise components include a load pulsation component, a high frequency component caused by the structure of the motor M (hereinafter sometimes referred to as a "component caused by the motor structure"), and an offset component.
  • the load pulsation component is a component that appears due to load pulsation during one rotation of the motor M.
  • the motor structure-induced component is a frequency component including a harmonic component that depends on the rotation speed of the motor M, and an example thereof is pulsation due to cogging torque.
  • the offset component corresponds to the average value of the motor current and has no frequency component.
  • the first notch filter 911 first removes the load pulsation component from the detected current i_det as a non-noise component.
  • the load pulsation component is a frequency component generated due to the pulsation of the load of the motor M, it appears at a specific frequency. Further, the frequency at which the load pulsation component appears changes depending on the rotation speed of the motor M.
  • the first notch filter 911 performs detection according to equations (6.1) to (6.7), for example, based on the carrier frequency "fc" and the specific frequency " ⁇ n" at which the load pulsation component appears.
  • the load pulsation component is removed from the detected current i_det.
  • the noise component after the load pulsation component is removed from the detected current i_det is extracted.
  • the specific frequency ⁇ n at which the load pulsation component appears is calculated based on the angular velocity ⁇ e.
  • the first notch filter 911 outputs the noise component i_no after the load pulsation component is removed from the detected current i_det to the second notch filter 912.
  • N 0 ”, “N 1 ”, “N 2 ”, “D 0 ”, “D 1 ” and “D 2 ” are notch filters.
  • the predetermined filter constant “d” is a parameter that determines the amount of attenuation by the notch filter
  • " ⁇ ” is a parameter that determines the width of the frequency band to be attenuated by the notch filter.
  • x is the detection current i_det
  • y is the noise component extracted by the notch filter.
  • equations (6.1) to (6.7) “[k]” is the current carrier period, “[k-1]” is the previous carrier period, and “[k-2]” is the previous carrier period. This is the career cycle. Therefore, in equations (6.1) to (6.7), “x[k]” is the detected current i_det in the current carrier cycle, and “x[k-1]” is the detected current in the previous carrier cycle. i_det, “x[k-2]” is the detected current i_det in the carrier cycle before the previous one, and “y[k]” is the noise component i_no, "y[k-1]” extracted in the current carrier cycle. is the noise component i_no extracted in the previous carrier cycle, and “y[k-2]” is the noise component i_no extracted in the carrier cycle before the previous one.
  • the second notch filter 912 removes the component due to the motor structure as a non-noise component from the detected current i_det.
  • the motor structure-induced component includes a harmonic component, and the frequency at which the motor structure-induced component appears is determined by the number of poles of the motor M, the number of slots of the motor M, and the rotation speed of the motor M. For example, if the rotational speed of the motor M is the fundamental frequency, and the motor M is an X-pole Y-slot motor, a component due to the motor structure appears at the frequency of the least common multiple of X and Y. Furthermore, components due to the motor structure also appear at frequencies of orders 1/2, 2, 3, . . . , n times the least common multiple of X and Y.
  • the motor M is a 6-pole, 9-slot motor, in addition to the 18th frequency, which is the least common multiple of 6 and 9, the 9th frequency, which is half the least common multiple of 6 and 9, Furthermore, components due to the motor structure appear at 18 ⁇ n-order frequencies such as the 36th order, the 54th order, and so on. Therefore, for example, if the rotation speed of the motor M is 30 [rps], the motor structure has a frequency of 270 [Hz], 540 [Hz], 1080 [Hz], 1620 [Hz], ..., 540 ⁇ n [Hz]. The causative component appears. In this way, the component due to the motor structure appears at a specific frequency determined by the rotation speed of the motor M.
  • the second notch filter 912 uses the formula (6.1 ) to (6.7), the motor structure-induced component is removed from the detected current i_det by filtering the detected current i_det. As a result, a noise component is extracted from the detected current i_det after removing the component due to the motor structure. A specific frequency ⁇ n at which a component due to the motor structure appears is calculated based on the angular velocity ⁇ e.
  • the second notch filter 912 outputs the noise component i_no from the detected current i_det after removing the component due to the motor structure to the first high-pass filter 913.
  • the predetermined filter constant N 0 in equations (6.1) to (6.7), N 1 , N 2 , D 0 , D 1 , and D 2 are determined according to the rotation speed of the motor M.
  • the first high-pass filter 913 removes the offset component from the detection current i_det as a non-noise component.
  • the first high-pass filter 913 removes the offset component from the detection current i_det by filtering the detection current i_det according to equations (7.1) to (7.6) based on the carrier frequency “fc”. . Thereby, the noise component after the offset component is removed from the detection current i_det is extracted as "y[k]" in equation (7.1).
  • the first high-pass filter 913 outputs the noise component i_no from which the offset component has been removed from the detected current i_det to the noise amount determining section 92 .
  • “a1” and “a0” are filter constants that determine the characteristics of the first high-pass filter 913.
  • the first extraction unit 91 removes the load pulsation component, the motor structure-induced component, and the offset component as non-noise components from the detected current i_det in the manner described above.
  • the included noise components are extracted from the motor current.
  • FIG. 4 is a diagram showing an example of noise components and non-noise components included in the motor current according to Example 1 of the present disclosure
  • FIG. 5 is a diagram showing an example of extracted noise components according to Example 1 of the present disclosure. It is a diagram.
  • the first extraction unit 91 may remove one or more of the load pulsation component, the motor structure-induced component, and the offset component from the detected current i_det.
  • the filter to which the disclosed technology is applicable is not limited to second-order filters.
  • the noise amount determination unit 92 updates the threshold value ⁇ THN using the moving average value of the most recent n carriers of the noise component when it is determined that the noise of the bus current is small.
  • the noise amount determination unit 92 uses a low-pass filter to calculate the average value of the noise components when determining that the noise of the bus current is small, and updates the threshold value ⁇ THN using the calculated average value.
  • FIG. 6 is a diagram illustrating an example of updating a threshold value used for noise determination according to the first embodiment of the present disclosure.
  • the noise amount determining unit 92 determines the positive and negative peaks at which the absolute value of the noise component i_no in the predetermined period Ia is maximum when it is determined that the noise of the bus current is small in the predetermined period Ia.
  • the values P1, P2, and P3 are detected at any time, and the threshold value ⁇ THN is updated by the value obtained by adding a margin to the absolute value of each peak value P1, P2, and P3. As shown in FIG.
  • the noise amount determination unit 92 detects a negative peak value P1 in the cycle T1
  • the value obtained by adding a positive margin to the absolute value of the peak value P1 is set as the threshold +THN in the period T2, and the value obtained by adding a negative sign to the absolute value of the peak value P1 is set as the threshold +THN.
  • the value including the margin is set as the threshold value -THN in the period T2.
  • the noise amount determination unit 92 detects a positive peak value P2 in the period T2, and sets the value obtained by adding a positive margin to the absolute value of the peak value P2 with a positive sign as the threshold value +THN in the period T3.
  • a value obtained by adding a negative margin to the absolute value of the peak value P2 with a negative sign is set as the threshold value -THN in the period T3.
  • the margin is preset to a predetermined value determined through experiments or the like so that the control of the motor M does not become unstable.
  • an example of the predetermined period Ia is a "load pulsation period" which is a period in which the load of the motor M pulsates as the motor M rotates. Since the peak value of steady noise that does not affect the accuracy of the current value appears periodically in the load pulsation cycle, it is necessary to appropriately set the threshold value ⁇ THN by updating the threshold value ⁇ THN every load pulsation cycle. Can be done. In other words, it is possible to prevent erroneous determination that the noise of the bus current is large due to stationary noise that does not affect the accuracy of the current value. Further, it is possible to prevent the noise of the bus current from being erroneously determined to be stationary noise even though it is a large noise (erroneously determining that the noise is small). Therefore, noise determination can be performed accurately.
  • Example 1 has been described above.
  • Example 2 When a single signal without periodicity such as noise is input to a secondary filter such as a notch filter, vibrations occur in the output of the secondary filter. The greater the noise input to the secondary filter, the greater the vibrations generated at the output of the secondary filter, and the greater the vibrations, the slower the vibrations settle down. Therefore, if the noise amount determining section 92 determines that the noise of the bus current is large in the current carrier cycle, the noise amount determining section 92 determines that the noise superimposed on the bus current is small in the next and subsequent carrier cycles. 92 may incorrectly determine that the noise of the bus current is large. Therefore, in the second embodiment, the noise determination section 80 has the following configuration.
  • FIG. 7 is a diagram illustrating a configuration example of a noise determination unit according to Example 2 of the present disclosure.
  • the noise determining section 80b shown in FIG. 7 corresponds to the noise determining section 80 shown in FIG.
  • the noise determination section 80b includes a first extraction section 91, a noise amount determination section 92, a current determination section 93, and a second extraction section 94.
  • FIG. 8 is a diagram illustrating a configuration example of a first extraction unit and a second extraction unit in Example 2 of the present disclosure.
  • the first extraction section 91 includes a first notch filter 911, a second notch filter 912, a first high-pass filter 913, and a data setting section 914.
  • the second extraction section 94 includes an input control section 941, a third notch filter 942, a fourth notch filter 943, a second high-pass filter 944, and a data output section 945.
  • the input control section 941 receives the detected current i_det from the 3 ⁇ /dq conversion section 42 and receives the determination flag DF from the noise amount determination section 92 .
  • the angular velocity ⁇ e is input to the third notch filter 942 and the fourth notch filter 943 from the position/velocity estimation section 44.
  • the determination flag DF is inputted to the data output section 945 from the noise amount determination section 92 .
  • the third notch filter 942 is a filter having the same filter constant as the first notch filter 911
  • the fourth notch filter 943 is a filter having the same filter constant as the second notch filter 912
  • the second high-pass Filter 944 is a filter having the same filter constant as first high-pass filter 913. That is, the third notch filter 942 performs filter processing according to equations (6.1) to (6.7) similarly to the first notch filter 911, and the fourth notch filter 943 performs filter processing similarly to the second notch filter 912. Filter processing is performed according to equations (6.1) to (6.7), and the second high-pass filter 944 performs filter processing according to equations (7.1) to (7.6) similarly to the first high-pass filter 913. .
  • the noise amount determination section 92 determines that the noise of the bus current is small, that is, when the determination flag DF set to '0' is input to the input control section 941 and the data output section 945, the input control section 941 , outputs the detected current i_det to the third notch filter 942 as an input to the third notch filter 942 .
  • data output section 945 does not operate, and since filter data FDa, FDb, and FDc are not output from data output section 945, data setting section 914 also does not operate.
  • the first notch filter 911, the second notch filter 912, and the first high-pass filter 913 perform the same filter processing as that described in the first embodiment.
  • the third notch filter 942 performs the same filter processing as the first notch filter 911
  • the fourth notch filter 943 performs the same filter processing as the second notch filter 912.
  • the second high-pass filter 944 performs the same filter processing as the first high-pass filter 913.
  • the noise amount determination unit 92 determines that the noise of the bus current is large in the previous carrier cycle, that is, the determination flag DF set to '+1' or '-1' is set to the input control unit 941 and the noise level in the previous carrier cycle.
  • the input control unit 941 outputs a current (hereinafter referred to as “virtual The virtual motor current is output to the third notch filter 942 as an input to the third notch filter 942.
  • the input control unit 941 adds a predetermined addition value +a to the detected current i_det in the carrier cycle before the previous one, and If the determination flag DF input in the carrier cycle is set to '-1', a predetermined addition value -a is added to the detected current i_det in the carrier cycle before the previous one. Further, the absolute value
  • is changed to the absolute value of the threshold ⁇ THN
  • the predetermined addition value ⁇ a may be a variable value determined according to the updated threshold value ⁇ THN. In this way, by adding a predetermined addition value ⁇ a to the detected current i_det when it is determined that the noise in the bus current is large, a virtual motor current in which the influence of noise is reduced is obtained. Note that the detected current i_det is stored in the noise amount determination unit 92 in time series for each carrier period.
  • the noise amount determination unit 92 determines that the noise of the bus current is large in the previous carrier cycle
  • the third notch filter 942 and the fourth notch filter 943 Filter processing is performed according to equations (6.1) to (6.7) based on the motor current
  • the second high-pass filter 944 performs filter processing according to equations (7.1) to (6.7) based on the virtual motor current in the previous carrier cycle. Perform filter processing according to 7.6).
  • the third notch filter 942, the fourth notch filter 943, and the second high-pass filter 944 are By changing “x[k]” in (6.1) to (6.7) and equations (7.1) to (7.6) from the detected current i_det to the virtual motor current, By performing filter processing according to equations (6.1) to (6.7) and equations (7.1) to (7.6), the noise component included in the virtual motor current (hereinafter referred to as "virtual noise component”) Extract y[k] from the virtual motor current.
  • the data output unit 945 determines x[k ⁇ 1] and y in the third notch filter 942 in the current carrier cycle. [k-1] is outputted to the data setting unit 914 as filter data FDa, x[k-1] and y[k-1] in the fourth notch filter 943 are outputted to the data setting unit 914 as filter data FDb, x[k-1] and y[k-1] in the second high-pass filter 944 are output to the data setting section 914 as filter data FDc.
  • the data setting unit 914 sets the filter data FDa input from the data output unit 945 to the first notch filter 911 in the current carrier cycle, and sets the filter data FDb input from the data output unit 945 to the second notch filter 911. and sets the filter data FDc input from the data output section 945 to the first high-pass filter 913.
  • x[k-1] and y[k-1] in the previous carrier cycle are inputted from the data output unit 945 in the current carrier cycle. [k-1] and y[k-1], and then filter processing by the first notch filter 911, second notch filter 912, and first high-pass filter 913 is performed.
  • FIG. 9 is a flowchart illustrating an example of a processing procedure in the noise determination unit according to the second embodiment of the present disclosure.
  • step S100 the first extraction unit 91 extracts the noise component i_no from the detected current i_det in the previous carrier cycle.
  • step S105 in the previous carrier cycle, the noise amount determination unit 92 determines whether the absolute value of the noise component i_no is greater than or equal to the absolute value of the threshold ⁇ THN, that is, whether the noise of the bus current is large. Determine.
  • step S105: Yes the process proceeds to step S110, and when it is determined that the noise of the bus current is small (step S105: No), the process proceeds to step S125. move on.
  • step S110 the input control unit 941 calculates a virtual motor current by adding a predetermined addition value ⁇ a to the detected current i_det in the previous carrier cycle, and converts the virtual motor current into the third notch instead of the detected current i_det. It is input to filter 942.
  • step S115 the third notch filter 942, fourth notch filter 943, and second high-pass filter 944 perform filter processing based on the virtual motor current in the previous carrier cycle in the previous carrier cycle.
  • step S120 the data setting unit 914 sets x[k-1] and y[k-1] in the first notch filter 911, second notch filter 912, and first high-pass filter 913 in the current carrier cycle.
  • x[k-1] and y[k-1] when the third notch filter 942, fourth notch filter 943, and second high-pass filter 944 perform filter processing based on the virtual motor current in the previous carrier cycle.
  • the first notch filter 911, the second notch filter 912, and the first high-pass filter 913 perform filter processing on the detected current i_det using the replaced x[k-1] and y[k-1]. conduct.
  • step S125 the input control unit 941 inputs the detected current i_det to the third notch filter 942.
  • step S130 the third notch filter 942, fourth notch filter 943, and second high-pass filter 944 perform filter processing based on the detected current i_det.
  • Example 2 has been described above.
  • the motor control device of the present disclosure includes an inverter (the inverter 10 of the embodiment), a detection section (the current detection section 21 of the embodiment), and a calculation section (the current detection section 21 of the embodiment). 3 ⁇ current calculation section 61), a first extraction section (first extraction section 91 in the embodiment), and a determination section (noise amount determination section 92 in the embodiment).
  • the inverter converts a DC voltage supplied from a DC power source into an AC voltage, and applies the converted AC voltage to a motor (motor M in the embodiment).
  • the detection unit detects the bus current of the inverter using a resistor (shunt resistor Rs in the embodiment) connected between the DC power supply and the inverter.
  • the calculation unit calculates a motor current flowing through the motor based on the bus current.
  • the first extractor extracts a noise component included in the motor current from the motor current.
  • the determination unit determines the magnitude of noise in the bus current based on the extracted noise component.
  • the offset voltage required by the above-mentioned prior art to determine the magnitude of noise in the bus current becomes unnecessary. Therefore, a circuit for acquiring the offset voltage and an A/D converter for sampling the offset voltage are not required. Therefore, the motor can be controlled using a highly accurate current value while suppressing an increase in the number of parts in the motor control device. Further, since an A/D converter for sampling the offset voltage is not required, the A/D converter used for sampling the offset voltage can be used for another purpose.
  • the first extraction unit extracts the noise component by removing non-noise components different from the noise component from the motor current. For example, the first extraction unit extracts a noise component included in the motor current from the motor current by removing a frequency component including a harmonic component that depends on the rotation speed of the motor from the motor current as a non-noise component. For example, the first extraction unit extracts a noise component included in the motor current from the motor current by removing a frequency component caused by pulsation of the motor load from the motor current as a non-noise component. For example, the first extraction unit extracts a noise component included in the motor current from the motor current by removing an offset component, which is an average value of the motor current, from the motor current as a non-noise component.
  • an offset component which is an average value of the motor current
  • the noise component can be extracted accurately.
  • the determination unit determines that the noise of the bus current is small when the noise component is less than the threshold value, and determines that the noise of the bus current is large when the noise component is greater than or equal to the threshold value. Further, when determining that the noise of the bus current is small, the determining section updates the threshold based on the noise component when determining that the noise is small. On the other hand, when the determination unit determines that the noise of the bus current is large, the determination unit does not update the threshold value.
  • the determination unit updates the threshold based on the peak value of the noise component in the predetermined period when it is determined that the noise of the bus current is small in the predetermined period.
  • the predetermined period is a load pulsation period, which is a period in which the load of the motor pulsates as the motor rotates.
  • the first extraction unit may perform filter processing based on the motor current calculated in the previous carrier cycle, the noise component extracted in the previous carrier cycle, and the motor current calculated in the current carrier cycle. In this way, non-noise components are removed from the motor current, and noise components included in the motor current are extracted from the motor current.
  • the noise component can be extracted more accurately.
  • the motor control device of the present disclosure includes a second extraction section (second extraction section 94 in the embodiment).
  • the second extraction unit extracts a virtual motor current in which the influence of noise has been reduced and a virtual motor current that is included in the virtual motor current in the current carrier cycle when the determination unit determines that noise in the bus current is large in the previous carrier cycle. and the virtual noise component to be output to the first extraction section.
  • the first extractor performs filter processing using a predetermined filter constant
  • the second extractor performs filter processing based on the virtual motor current using the same filter constant as the predetermined filter constant in the first extractor.
  • a virtual noise component included in the virtual motor current is extracted from the virtual motor current by performing filter processing.
  • the first extraction unit extracts the motor current calculated in the previous carrier cycle and the previous carrier in the current carrier cycle.
  • Filter processing is performed by replacing the noise component extracted in the cycle with the virtual motor current and virtual noise component input from the second extraction unit in the current carrier cycle.
  • the second extraction unit calculates the virtual motor current by adding a predetermined additional value to the motor current calculated in the previous carrier cycle.
  • the predetermined added value has the same sign as the sign of the noise component extracted by the first extraction unit, and the absolute value of the predetermined added value is smaller than the absolute value of the threshold value of the noise component.

Abstract

モータ制御装置(100)において、インバータ(10)は、直流電源から供給される直流電圧を交流電圧に変換し、変換後の交流電圧をモータ(M)に印加し、電流検出部(21)は、直流電源とインバータとの間に接続されたシャント抵抗(Rs)を用いてインバータ(10)の母線電流を検出し、3φ電流算出部(61)は、母線電流に基づいてモータ(M)に流れるモータ電流を算出し、第一抽出部(91)は、モータ電流に含まれるノイズ成分をモータ電流から抽出し、ノイズ量判定部(92)は、抽出されたノイズ成分に基づいて母線電流のノイズの大きさを判定する。

Description

モータ制御装置
 本開示は、モータ制御装置に関する。
 モータの駆動を制御するモータ制御装置は、モータに印加される3相の交流電圧(以下では「3相電圧」と呼ぶことがある)を生成するインバータを有する。インバータは、複数のスイッチング素子から構成される。
 また、モータ制御装置に対してベクトル制御を用いる場合、モ-タ制御装置は、モータの回転速度が速度指令値(目標速度)に一致するようにd軸電流指令値及びq軸電流指令値を生成し、d軸電流指令値及びq軸電流指令値からd軸電圧指令値及びq軸電圧指令値を生成する。さらに、モータ制御装置は、d軸電圧指令値及びq軸電圧指令値を3相の電圧指令値へ変換する。
 3相の電圧指令値に基づいてインバータを制御する技術としてPWM(Pulse Width Modulation)が知られている。PWMは、インバータを構成する複数のスイッチング素子のオン/オフ時間の長さを調節することによりインバータの出力電圧(つまり、3相電圧)を変化させる技術である。スイッチング素子のオン/オフを制御する信号(以下では「PWM信号」と呼ぶことがある)は、PWMの搬送波であるキャリアと変調波との比較結果に基づいて生成される。PWM信号に応じてスイッチング素子のオン/オフが制御されることにより、モータに3相電圧が印加されてモータの駆動が制御される。
 また、モータのロータの回転位置(以下では「ロータ位置」と呼ぶことがある)を検出するためのセンサ(以下では「位置センサ」と呼ぶことがある)を使用せずにモータの駆動を制御する技術(以下では「位置センサレス方式」と呼ぶことがある)が知られている。位置センサレス方式では、モータに流れる3相の電流(以下では「モータ電流」と呼ぶことがある)を検出することにより、位置センサを使用せずに、ロータ位置を推定する。
 また、モータ電流の検出方式として「1シャント検出方式」が知られている。1シャント検出方式では、3相電圧を生成するインバータと直流電源との間に流れる母線電流に基づいてモータ電流のうちの2相分の電流を検出し、残りの1相分の電流を、2相分の電流からキルヒホッフの法則を用いて算出する。
 ここで、母線電流検出用のシャント抵抗の両端に発生する電圧を増幅した増幅電圧を第一A/D変換器に伝送する第一接続線と、オフセット電圧生成部で生成されるオフセット電圧を第二A/D変換器に伝送する第二接続線とを、ノイズの影響を等しく受けるように配置する先行技術が提案されている。この先行技術では、第一接続線にノイズが重畳した場合には第二接続線にも同じノイズが重畳するため、オフセット電圧が所定の範囲外の電圧であるか否かを判定することにより、母線電流に大きなノイズが重畳されているか否かの判定(以下では「ノイズ判定」と呼ぶことがある)を行っている。また、この先行技術では、オフセット電圧が所定の範囲外の電圧であるときは、検出された母線電流へのノイズによる影響が大きいと判定し、オフセット電圧と同時に検出された増幅電圧を破棄し、オフセット電圧が所定の範囲内であるときに、オフセット電圧と同時に検出された増幅電圧から算出した母線電流に基づいてPWM信号が生成される。こうすることで、ノイズによる影響が小さい電流値(つまり、精度の高い電流値)を用いてモータを制御することが可能になり、ノイズによる影響が大きい電流値を用いてモータを制御することによる制御の不安定化を防止できる。
特開2015-126555号公報
 上記の先行技術では、ノイズ判定を行うにあたり、増幅電圧のサンプリングと同時にオフセット電圧のサンプリングを行う必要があるため、オフセット電圧を取得するための第二接続線や第二A/D変換器が別途必要になる。このため、上記の先行技術では、精度の高い電流値を用いてモータの制御を行う際に、モータ制御装置における部品点数が増加してしまう。
 そこで、本開示では、モータ制御装置における部品点数の増加を抑えつつ、精度の高い電流値を用いてモータの制御を行うことができる技術を提案する。
 本開示のモータ制御装置は、インバータと、検出部と、算出部と、第一抽出部と、判定部とを有する。前記インバータは、直流電源から供給される直流電圧を交流電圧に変換し、前記交流電圧をモータに印加する。前記検出部は、前記直流電源と前記インバータとの間に接続された抵抗を用いて前記インバータの母線電流を検出する。前記算出部は、前記母線電流に基づいて前記モータに流れるモータ電流を算出する。前記第一抽出部は、前記モータ電流に含まれるノイズ成分を前記モータ電流から抽出する。前記判定部は、前記ノイズ成分に基づいて前記母線電流のノイズの大きさを判定する。
 開示の技術によれば、モータ制御装置における部品点数の増加を抑えつつ、精度の高い電流値を用いてモータの制御を行うことができる。
図1は、本開示の実施例1のモータ制御装置の構成例を示す図である。 図2は、本開示の実施例1のノイズ判定部の構成例を示す図である。 図3は、本開示の実施例1の第一抽出部の構成例を示す図である。 図4は、本開示の実施例1のモータ電流に含まれるノイズ成分及び非ノイズ成分の一例を示す図である。 図5は、本開示の実施例1の抽出されたノイズ成分の一例を示す図である。 図6は、本開示の実施例1のノイズ判定に用いられる閾値の更新例を示す図である。 図7は、本開示の実施例2のノイズ判定部の構成例を示す図である。 図8は、本開示の実施例2の第一抽出部及び第二抽出部の構成例を示す図である。 図9は、本開示の実施例2のノイズ判定部における処理手順の一例を示すフローチャートである。
 以下、本開示の実施例を図面に基づいて説明する。以下の実施例において同一の構成には同一の符号を付す。
 [実施例1]
 <モータ制御装置の構成>
 図1は、本開示の実施例1のモータ制御装置の構成例を示す図である。図1に示すモータ制御装置100は、位置センサレス方式、1シャント検出方式、及び、PWM制御を用いてモータMの駆動を制御する。図1において、モータ制御装置100は、減算部46,47,52と、d軸電流設定部48と、速度制御部49と、d軸q軸電圧設定部45と、dq/3φ変換部43と、PWM部41と、インバータ10と、直流電源EDCと、シャント抵抗Rsとを有する。また、モータ制御装置100は、DC電圧検出部31と、電流検出部21と、AD変換部71,72と、3φ電流算出部61と、DC電圧算出部32と、3φ/dq変換部42と、位置・速度推定部44と、1/Pn処理部51と、ノイズ判定部80と、電流推定部81とを有する。
 減算部46,47,52、d軸電流設定部48、速度制御部49、d軸q軸電圧設定部45、dq/3φ変換部43、PWM部41、DC電圧検出部31、電流検出部21、AD変換部71,72、3φ電流算出部61、DC電圧算出部32、3φ/dq変換部42、位置・速度推定部44、1/Pn処理部51、ノイズ判定部80、及び、電流推定部81は、ハードウェアとして、例えばMCU(Micro Control Unit)により実現される。
 また、インバータ10は、上アームのスイッチング素子SWup,SWvp,SWwpと、下アームのスイッチング素子SWun,SWvn,SWwnとを有する。
 モータ制御装置100において、d軸電流設定部48は、所定値のd軸電流指令値idを減算部46へ出力する。
 減算部46には、d軸電流設定部48からd軸電流指令値idが入力され、ノイズ判定部80からd軸電流idが入力される。減算部46は、d軸電流指令値idからd軸電流idを減算することによりd軸電流偏差Δidを算出し、算出したd軸電流偏差Δidをd軸q軸電圧設定部45へ出力する。
 速度制御部49は、減算部52から入力される速度偏差Δωがゼロに近づくようにq軸電流指令値iqを算出し、算出したq軸電流指令値iqを減算部47へ出力する。
 減算部47には、速度制御部49からq軸電流指令値iqが入力され、ノイズ判定部80からq軸電流iqが入力される。減算部47は、q軸電流指令値iqからq軸電流iqを減算することによりq軸電流偏差Δiqを算出し、算出したq軸電流偏差Δiqをd軸q軸電圧設定部45へ出力する。
 d軸q軸電圧設定部45には、減算部46からd軸電流偏差Δidが入力され、減算部47からq軸電流偏差Δiqが入力され、ノイズ判定部80からd軸電流id及びq軸電流iqが入力される。d軸q軸電圧設定部45は、d軸電流偏差Δid及びq軸電流偏差Δiqがゼロに近づくようにd軸電圧指令値Vd及びq軸電圧指令値Vqを算出し、算出したd軸電圧指令値Vd及びq軸電圧指令値Vqを位置・速度推定部44、dq/3φ変換部43及び電流推定部81へ出力する。d軸電圧指令値Vd及びq軸電圧指令値Vqは、3φ電流算出部61により算出されるモータ電流であるU相電流iu、V相電流iv及びW相電流iwに応じても変化する。
 位置・速度推定部44には、ノイズ判定部80からd軸電流id及びq軸電流iqが入力され、d軸q軸電圧設定部45からd軸電圧指令値Vd及びq軸電圧指令値Vqが入力される。位置・速度推定部44は、d軸電流id、q軸電流iq、d軸電圧指令値Vd、及び、q軸電圧指令値Vqに基づいて、モータMの電気的な角速度ωeと、回転座標(dq座標)でのモータMの回転位相角θdqとを推定する。位置・速度推定部44は、推定した角速度ωeを1/Pn処理部51、ノイズ判定部80及び電流推定部81へ出力し、推定した回転位相角θdqを3φ/dq変換部42及びdq/3φ変換部43へ出力する。
 1/Pn処理部51は、角速度ωeをモータMの極対数で除することにより、電気的な角速度ωeをモータMが有するロータの機械的な角速度ωmに変換し、変換後の角速度ωmを減算部52へ出力する。
 減算部52には、1/Pn処理部51から角速度ωmが入力され、モータ制御装置100の外部から(例えば、モータ制御装置100の上位のコントローラから)速度指令値ωmが入力される。減算部52は、速度指令値ωmから角速度ωmを減算することにより速度偏差Δωを算出し、算出した速度偏差Δωを速度制御部49へ出力する。
 dq/3φ変換部43は、回転位相角θdqを用いて、回転座標の2相のd軸電圧指令値Vd及びq軸電圧指令値Vqを、固定座標(UVW座標)の3相の電圧指令値Vu,Vv,Vwに変換する。dq/3φ変換部43は、変換後の電圧指令値Vu,Vv,VwをPWM部41へ出力する。
 PWM部41には、dq/3φ変換部43から電圧指令値Vu,Vv,Vwが入力され、DC電圧算出部32からDC電圧Vdcが入力される。また、PWM部41には、モータ制御装置100の外部から(例えば、モータ制御装置100の上位のコントローラから)、PWMの搬送波であるキャリア信号が入力される。PWM部41は、電圧指令値Vu,Vv,Vwと、DC電圧Vdcと、キャリア信号とに基づいて、3相のPWM信号Up,Un,Vp,Vn,Wp,Wnを生成し、生成したPWM信号Up,Un,Vp,Vn,Wp,Wnをインバータ10及び3φ電流算出部61へ出力する。
 インバータ10には、直流電源EDCから直流電圧が供給され、PWM部41からPWM信号Up,Un,Vp,Vn,Wp,Wnが入力される。インバータ10は、直流電源EDCから供給される直流電圧をPWM信号Up~Wnに従って3相の交流電圧に変換し、変換後の3相の交流電圧をモータMに印加する。つまり、インバータ10は、PWM制御によって交流電圧をモータMに印加する。3相の交流電圧がモータMに印加されることによりモータMが駆動される。インバータ10では、PWM信号Up,Un,Vp,Vn,Wp,Wnに従って各スイッチング素子SWup,SWun,SWvp,SWvn,SWwp,SWwnがオン/オフされることにより、直流電圧が3相電圧に変換される。各スイッチング素子SWup,SWun,SWvp,SWvn,SWwp,SWwnの両端には、還流ダイオードDup,Dun,Dvp,Dvn,Dwp,Dwnが接続されている。
 電流検出部21は、直流電源EDCとインバータ10との間に接続されているシャント抵抗Rsを用いて、インバータ10の母線電流Isを検出する。シャント抵抗Rsは、直流電源EDCにおけるN側端子とインバータ10との間のDCラインであるNラインL上に配置されている。なお、シャント抵抗Rsは、直流電源EDCにおけるP側端子とインバータ10との間のDCラインであるPラインL上に配置されても良い。シャント抵抗Rsには、PWM信号に応じて流れるモータ電流であるU相電流、V相電流、W相電流に応じた母線電流Isが流れ、シャント抵抗Rsに母線電流Isが流れるときに、シャント抵抗Rsの両端に電圧降下が生じる。電流検出部21は、この電圧降下の大きさとシャント抵抗Rsの抵抗値とから、シャント抵抗Rsに流れる母線電流Isを検出する。さらに、電流検出部21は、シャント抵抗Rsと母線電流Isとに基づいて、式(1)によって表されるアナログ電圧VA1を算出し、算出したアナログ電圧VA1をAD変換部72へ出力する。式(1)における“k”は所定の増幅率を示す。
 VA1=k×(Rs・Is) …(1)
 AD変換部72は、アナログ電圧VA1に対してサンプリングを行うことにより、アナログ電圧VA1をデジタル電圧値VA2へ変換し、変換後のデジタル電圧値VA2を3φ電流算出部61へ出力する。
 3φ電流算出部61は、1シャント検出方式を用いてモータ電流を算出する。3φ電流算出部61は、シャント抵抗Rsの抵抗値と、増幅率kと、デジタル電圧値VA2と、PWM信号Up~Wnとに基づいて、モータ電流であるU相電流iu、V相電流iv及びW相電流iwを算出し、算出したモータ電流iu,iv,iwを3φ/dq変換部42へ出力する。
 3φ/dq変換部42は、位置・速度推定部44から入力される回転位相角θdqを用いて、固定座標の3相の電流ベクトルを示すモータ電流iu,iv,iwを、回転座標の2相の電流ベクトルを示すd軸電流及びq軸電流に変換する。以下では、3φ/dq変換部42での変換後のd軸電流を「検出d軸電流」と呼び、3φ/dq変換部42での変換後のq軸電流を「検出q軸電流」と呼ぶことがある。2相の検出d軸電流及び検出q軸電流は、3φ電流算出部61によって算出される3相のモータ電流に相当する。3φ/dq変換部42は、検出d軸電流id_det及び検出q軸電流iq_detをノイズ判定部80へ出力する。以下では、検出d軸電流id_det及び検出q軸電流iq_detを「検出電流i_det」と総称することがある。
 電流推定部81には、d軸q軸電圧設定部45からd軸電圧指令値Vd及びq軸電圧指令値Vqが入力され、位置・速度推定部44から角速度ωeが入力され、ノイズ判定部80からd軸電流id及びq軸電流iqが入力される。電流推定部81は、d軸電圧指令値Vd、q軸電圧指令値Vq、角速度ωe、d軸電流id及びq軸電流iqに基づいて電流の推定を行い、推定したd軸電流id_est、及び、推定したq軸電流iq_estをノイズ判定部80へ出力する。以下では、電流推定部81によって推定されたd軸電流を「推定d軸電流」と呼び、電流推定部81によって推定されたq軸電流を「推定q軸電流」と呼ぶことがある。また以下では、推定d軸電流id_est及び推定q軸電流iq_estを「推定電流i_est」と総称することがある。
 ノイズ判定部80には、3φ/dq変換部42から検出電流i_detが入力され、位置・速度推定部44から角速度ωeが入力され、電流推定部81から推定電流i_estが入力される。ノイズ判定部80は、ノイズ判定を行い、ノイズ判定の判定結果に基づいて、位置・速度推定部44、d軸q軸電圧設定部45、減算部46及び電流推定部81へ出力するd軸電流idと、位置・速度推定部44、d軸q軸電圧設定部45、減算部47及び電流推定部81へ出力するq軸電流iqとを決定する。ノイズ判定部80の詳細については後述する。
 DC電圧検出部31は、PラインLとNラインLとの間の母線電圧を検出し、検出したアナログの母線電圧VB1をAD変換部71へ出力する。
 AD変換部71は、アナログの母線電圧VB1に対してサンプリングを行うことにより、アナログの母線電圧VB1をデジタルの母線電圧値VB2へ変換し、変換後のデジタルの母線電圧値VB2をDC電圧算出部32へ出力する。
 DC電圧算出部32は、デジタルの母線電圧値VB2からDC電圧Vdcを算出し、算出したDC電圧VdcをPWM部41へ出力する。
 <ノイズ判定部の構成>
 図2は、本開示の実施例1のノイズ判定部の構成例を示す図である。図2に示すノイズ判定部80aは、図1に示すノイズ判定部80に該当する。図2において、ノイズ判定部80aは、第一抽出部91と、ノイズ量判定部92と、電流決定部93とを有する。
 第一抽出部91は、モータ電流に含まれるノイズ成分をモータ電流から抽出し、抽出したノイズ成分をノイズ量判定部92へ出力する。第一抽出部91によって抽出されるノイズ成分は、d軸ノイズ成分id_noとq軸ノイズ成分iq_noとから形成される。以下では、d軸ノイズ成分id_no及びq軸ノイズ成分iq_noを「ノイズ成分i_no」と総称することがある。
 ノイズ量判定部92は、ノイズ成分に基づいて母線電流のノイズの大きさを判定する。ノイズ成分は、正の値になるときと、負の値になるときとがある。そこで例えば、ノイズ量判定部92は、d軸ノイズ成分id_noの絶対値|id_no|またはq軸ノイズ成分iq_noの絶対値|iq_no|の少なくとも一方が閾値±THNの絶対値|±THN|以上であるときに母線電流のノイズが大きいと判定し、|id_no|及び|iq_no|の双方が|±THN|未満であるときに母線電流のノイズが小さいと判定する。そして、ノイズ量判定部92は、母線電流のノイズが大きいと判定され、かつ、ノイズ成分が正の値を有するときは、判定フラグDFを‘+1’にセットし、‘+1’にセットされた判定フラグDFを電流決定部93へ出力する。一方、ノイズ量判定部92は、母線電流のノイズが大きいと判定され、かつ、ノイズ成分が負の値を有するときは、判定フラグDFを‘-1’にセットし、‘-1’にセットされた判定フラグDFを電流決定部93へ出力する。ノイズ量判定部92は、母線電流のノイズが小さいと判定されたときは判定フラグDFを‘0’にセットし、‘0’にセットされた判定フラグDFを電流決定部93へ出力する。
 電流決定部93には、3φ/dq変換部42から検出電流i_detが入力され、電流推定部81から推定電流i_estが入力され、ノイズ量判定部92から判定フラグDFが入力される。
 電流決定部93は、判定フラグDFが‘0’にセットされているときは、検出d軸電流id_detを今回のキャリア周期でのモータMの制御に用いるd軸電流idとして決定し、検出d軸電流id_det及び推定d軸電流id_estのうち検出d軸電流id_detを位置・速度推定部44、d軸q軸電圧設定部45、減算部46及び電流推定部81へ出力する。キャリア周期は、モータ制御装置100におけるキャリア周波数fcの逆数である。一方で、電流決定部93は、判定フラグDFが‘+1’または‘-1’にセットされているときは、推定d軸電流id_estを今回のキャリア周期でのモータMの制御に用いるd軸電流idとして決定し、検出d軸電流id_det及び推定d軸電流id_estのうち推定d軸電流id_estを位置・速度推定部44、d軸q軸電圧設定部45、減算部46及び電流推定部81へ出力する。
 また、電流決定部93は、判定フラグDFが‘0’にセットされているときは、検出q軸電流iq_detを今回のキャリア周期でのモータMの制御に用いるq軸電流iqとして決定し、検出q軸電流iq_det及び推定q軸電流iq_estのうち検出q軸電流iq_detを位置・速度推定部44、d軸q軸電圧設定部45、減算部47及び電流推定部81へ出力する。一方で、電流決定部93は、判定フラグDFが‘+1’または‘-1’にセットされているときは、推定q軸電流iq_estを今回のキャリア周期でのモータMの制御に用いるq軸電流iqとして決定し、検出q軸電流iq_det及び推定q軸電流iq_estのうち推定q軸電流iq_estを位置・速度推定部44、d軸q軸電圧設定部45、減算部47及び電流推定部81へ出力する。
 <電流の推定>
 以下、電流推定部81によって行われる電流の推定の一例として、推定例1と推定例2との2つの推定例について説明する。
 <推定例1>
 d軸q軸電圧設定部45から電流推定部81に入力されるd軸電圧指令値Vd及びq軸電圧指令値Vqは、式(2.1)及び式(2.2)に示すモータモデル式によって表される。式(2.1)及び式(2.2)において、“R”はモータMの巻線抵抗、“id”は前回のキャリア周期で電流決定部93から電流推定部81に入力されたd軸電流(以下では「前回d軸電流」と呼ぶことがある)、“p”は(d/dt)の微分演算子、“Ld”はモータMのd軸インダクタンス、“ωe”は位置・速度推定部44から電流推定部81に入力される角速度、“Lq”はモータMのq軸インダクタンス、“iq”は前回のキャリア周期で電流決定部93から電流推定部81に入力されたq軸電流(以下では「前回q軸電流」と呼ぶことがある)、“Ψ”はモータMの鎖交磁束である。巻線抵抗R、d軸インダクタンスLd、q軸インダクタンスLq及び鎖交磁束Ψは、モータMの特性を決定するパラメータ(以下では「モータパラメータ」と呼ぶことがある)である。
 Vd=R・id+p・Ld・id-ωe・Lq・iq …(2.1)
 Vq=R・iq+p・Lq・iq+ωe・Ld・id+ωe・Ψ …(2.2)
 また、モータ制御装置100におけるキャリア周波数fcを用いると、式(2.1)及び式(2.2)は、式(3.1)及び式(3.2)に変形できる。式(3.1)及び式(3.2)において、“ΔId”は、今回のキャリア周期で電流決定部93から出力されると予測されるd軸電流(以下では「予測d軸電流」と呼ぶことがある)の前回d軸電流に対する変化量(以下では「d軸電流変化量」と呼ぶことがある)、“ΔIq”は、今回のキャリア周期で電流決定部93から出力されると予測されるq軸電流(以下では「予測q軸電流」と呼ぶことがある)の前回q軸電流に対する変化量(以下では「q軸電流変化量」と呼ぶことがある)である。
 Vd=R・id+Ld・ΔId・fc-ωe・Lq・iq …(3.1)
 Vq=R・iq+Lq・ΔIq・fc+ωe・Ld・id+ωe・Ψ …(3.2)
 式(3.1)及び式(3.2)をd軸電流変化量及びq軸電流変化量について解くと、式(4.1)及び式(4.2)が得られる。
 ΔId=(Vd-R・id+ωe・Lq・iq)/(Ld・fc) …(4.1)
 ΔIq=(Vq-R・iq-ωe・Ld・id-ωe・Ψ)/(Lq・fc) …(4.2)
 そこで、推定例1では、電流推定部81は、前回のキャリア周期で電流決定部93によって決定され電流決定部93から入力された前回d軸電流idと、前回のキャリア周期で電流決定部93によって決定され電流決定部93から入力された前回q軸電流iqとを用いて、式(5.1)及び式(5.2)に従って、推定d軸電流id_est及び推定q軸電流iq_estを算出する。
 id_est=id+ΔId …(5.1)
 iq_est=iq+ΔIq …(5.2)
 このようにして、推定例1では、電流推定部81は、モータMのモータモデル式に従って理論的に導出される推定d軸電流id_est及び推定q軸電流iq_estを算出し、算出した推定d軸電流id_est及び推定q軸電流iq_estを電流決定部93へ出力する。
 <推定例2>
 推定例2では、電流推定部81は、前回d軸電流を推定d軸電流id_estとして使用し、前回q軸電流を推定q軸電流iq_estとして使用する。
 <第一抽出部の構成>
 図3は、本開示の実施例1の第一抽出部の構成例を示す図である。図3において、第一抽出部91は、第一ノッチフィルタ911と、第二ノッチフィルタ912と、第一ハイパスフィルタ913とを有する。第一ノッチフィルタ911には、3φ/dq変換部42から検出電流i_detが入力され、位置・速度推定部44から角速度ωeが入力される。第二ノッチフィルタ912には、位置・速度推定部44から角速度ωeが入力される。
 ここで、検出電流i_detには、ノイズ成分と、ノイズ成分と異なる成分(以下では「非ノイズ成分」と呼ぶことがある)とが含まれる。第一抽出部91は、検出電流i_detから非ノイズ成分を除去することにより検出電流i_detからノイズ成分を抽出し、抽出したノイズ成分をノイズ量判定部92へ出力する。
 ここで、非ノイズ成分の一例として、負荷脈動成分と、モータMの構造に起因する高周波成分(以下では「モータ構造起因成分」と呼ぶことがある)と、オフセット成分とが挙げられる。負荷脈動成分は、モータMが1回転する間の負荷の脈動によって現れる成分である。モータ構造起因成分は、モータMの回転数に依存する高調波成分を含む周波数成分であり、一例として、コギングトルクによる脈動等が挙げられる。オフセット成分は、モータ電流の平均値に相当し、周波数成分を持たない。
 第一抽出部91において、まず、第一ノッチフィルタ911が、負荷脈動成分を非ノイズ成分として検出電流i_detから除去する。
 負荷脈動成分はモータMの負荷の脈動に起因して発生する周波数成分であるため、特定の周波数に出現する。また、負荷脈動成分が出現する周波数は、モータMの回転数によって変化する。
 そこで、第一ノッチフィルタ911は、例えば、キャリア周波数“fc”と、負荷脈動成分が出現する特定の周波数“ωn”とに基づいて、式(6.1)~(6.7)に従って、検出電流i_detをフィルタ処理することにより、検出電流i_detから負荷脈動成分を除去する。これにより、検出電流i_detから負荷脈動成分が除去された後のノイズ成分が抽出される。負荷脈動成分が出現する特定の周波数ωnは角速度ωeに基づいて算出される。第一ノッチフィルタ911は、検出電流i_detから負荷脈動成分が除去された後のノイズ成分i_noを第二ノッチフィルタ912へ出力する。
Figure JPOXMLDOC01-appb-M000001
 ここで、式(6.1)~(6.7)において、“N”、“N”、“N”、“D”、“D”及び“D”は、ノッチフィルタの所定のフィルタ定数、“d”はノッチフィルタでの減衰量を決めるパラメータ、“σ”はノッチフィルタでの減衰対象の周波数帯域の幅を決めるパラメータである。また、式(6.1)~(6.7)において、“x”は検出電流i_det、“y”はノッチフィルタによって抽出されたノイズ成分である。また、式(6.1)~(6.7)において、“[k]”は今回のキャリア周期、“[k-1]”は前回のキャリア周期、“[k-2]”は前々回のキャリア周期である。よって、式(6.1)~(6.7)において、“x[k]”は今回のキャリア周期での検出電流i_det、“x[k-1]”は前回のキャリア周期での検出電流i_det、“x[k-2]”は前々回のキャリア周期での検出電流i_detであり、“y[k]”は今回のキャリア周期で抽出されたノイズ成分i_no、“y[k-1]”は前回のキャリア周期で抽出されたノイズ成分i_no、“y[k-2]”は前々回のキャリア周期で抽出されたノイズ成分i_noである。
 次いで、第二ノッチフィルタ912が、モータ構造起因成分を非ノイズ成分として検出電流i_detから除去する。
 モータ構造起因成分には高調波成分が含まれ、モータ構造起因成分が出現する周波数はモータMの極数、モータMのスロット数及びモータMの回転数によって定まる。例えば、モータMの回転数を基本波周波数として、モータMがX極Yスロットモータである場合には、XとYの最小公倍数の周波数にモータ構造起因成分が出現する。さらに、XとYの最小公倍数の2分の1倍、2倍、3倍、…、n倍の次数の周波数にもモータ構造起因成分が出現する。例えば、モータMが6極9スロットのモータである場合、6と9との最小公倍数である18次の周波数の他、6と9との最小公倍数の2分の1倍の9次の周波数、及び、36次、54次、…という18×n次の周波数にモータ構造起因成分が出現する。よって例えば、モータMの回転数が30[rps]である場合、270[Hz]、540[Hz]、1080[Hz]、1620[Hz]、…、540×n[Hz]の周波数にモータ構造起因成分が出現する。このように、モータ構造起因成分は、モータMの回転数によって決まる特定の周波数に出現する。
 そこで、第二ノッチフィルタ912は、第一ノッチフィルタ911と同様に、例えば、キャリア周波数“fc”と、モータ構造起因成分が出現する特定の周波数“ωn”とに基づいて、式(6.1)~(6.7)に従って、検出電流i_detをフィルタ処理することにより、検出電流i_detからモータ構造起因成分を除去する。これにより、検出電流i_detからモータ構造起因成分が除去された後のノイズ成分が抽出される。モータ構造起因成分が出現する特定の周波数ωnは角速度ωeに基づいて算出される。第二ノッチフィルタ912は、検出電流i_detからモータ構造起因成分が除去された後のノイズ成分i_noを第一ハイパスフィルタ913へ出力する。
 ここで、負荷脈動成分または、モータ構造起因成分が出現する特定の周波数ωnはモータMの回転数によって変化するため、式(6.1)~(6.7)における所定のフィルタ定数N,N,N,D,D,DはモータMの回転数に応じて定められる。
 次いで、第一ハイパスフィルタ913が、オフセット成分を非ノイズ成分として検出電流i_detから除去する。
 例えば、第一ハイパスフィルタ913は、キャリア周波数“fc”に基づいて、式(7.1)~(7.6)に従って検出電流i_detをフィルタ処理することにより、検出電流i_detからオフセット成分を除去する。これにより、検出電流i_detからオフセット成分が除去された後のノイズ成分が式(7.1)の“y[k]”として抽出される。第一ハイパスフィルタ913は、検出電流i_detからオフセット成分が除去された後のノイズ成分i_noをノイズ量判定部92へ出力する。式(7.1)~(7.6)において、“a1”及び“a0”は第一ハイパスフィルタ913の特性を決めるフィルタ定数である。
Figure JPOXMLDOC01-appb-M000002
 図4及び図5に示すように、第一抽出部91は、以上のようにして、負荷脈動成分、モータ構造起因成分及びオフセット成分を非ノイズ成分として検出電流i_detから除去することによりモータ電流に含まれるノイズ成分をモータ電流から抽出する。図4は、本開示の実施例1のモータ電流に含まれるノイズ成分及び非ノイズ成分の一例を示す図であり、図5は、本開示の実施例1の抽出されたノイズ成分の一例を示す図である。
 なお、第一抽出部91は、負荷脈動成分、モータ構造起因成分及びオフセット成分のうち一つまたは複数を検出電流i_detから除去しても良い。また、上記では、第一抽出部91が、二次フィルタである第一ノッチフィルタ911、第二ノッチフィルタ912及び第一ハイパスフィルタ913を有する場合について説明したが、開示の技術が適用可能なフィルタは二次フィルタに限定されない。
 <閾値±THNの更新>
 以下、ノイズ量判定部92によって行われる閾値±THNの更新の一例として、更新例1~3の3つの更新例について説明する。
 <更新例1>
 更新例1では、ノイズ量判定部92は、母線電流のノイズが小さいと判定したときのノイズ成分の直近のnキャリア分の移動平均値によって閾値±THNを更新する。
 <更新例2>
 更新例2では、ノイズ量判定部92は、ローパスフィルタを用いて母線電流のノイズが小さいと判定したときのノイズ成分の平均値を算出し、算出した平均値によって閾値±THNを更新する。
 <更新例3>
 更新例3では、ノイズ量判定部92は、母線電流のノイズが小さいと判定したときのノイズ成分に基づいて閾値±THNを更新する。図6は、本開示の実施例1のノイズ判定に用いられる閾値の更新例を示す図である。
 図6に示すように、例えば、ノイズ量判定部92は、所定期間Iaにおいて母線電流のノイズが小さいと判定したときの所定期間Iaにおけるノイズ成分i_noの絶対値が最大となる正及び負のピーク値P1,P2,P3を随時検出し、各ピーク値P1,P2,P3の絶対値にマージンを加えた値によって閾値±THNを更新する。図6に示すように、例えば、それぞれが同一の所定期間Iaを有する周期T1,T2,T3が設定されている場合、ノイズ量判定部92は、周期T1において負のピーク値P1を検出し、ピーク値P1の絶対値に正の符号を付した値に正のマージンを加えた値を周期T2における閾値+THNとして設定するとともに、ピーク値P1の絶対値に負の符号を付した値に負のマージンを加えた値を周期T2における閾値-THNとして設定する。また、ノイズ量判定部92は、周期T2において正のピーク値P2を検出し、ピーク値P2の絶対値に正の符号を付した値に正のマージンを加えた値を周期T3における閾値+THNとして設定するとともに、ピーク値P2の絶対値に負の符号を付した値に負のマージンを加えた値を周期T3における閾値-THNとして設定する。なお、マージンは、モータMの制御が不安定化しないように、実験等によって求められた所定値に予め設定されている。
 ここで、所定期間Iaの一例として、モータMの回転に伴ってモータMの負荷が脈動する周期である「負荷脈動周期」が挙げられる。電流値の精度に影響しない定常的なノイズのピーク値は、負荷脈動周期で周期的に出現するため、負荷脈動周期ごとに閾値±THNを更新することで、閾値±THNを適切に設定することができる。つまり、電流値の精度に影響しない定常的なノイズによって母線電流のノイズが大きいと誤判定されてしまうことを防止できる。また、母線電流のノイズが大きなノイズであるにもかかわらず定常的なノイズであると誤判定(ノイズが小さいと誤判定)されてしまうことを防止できる。したがって、ノイズ判定を正確に行うことができる。
 以上、実施例1について説明した。
 [実施例2]
 ノッチフィルタのような二次フィルタにノイズのような周期性がない単発の信号が入力されると、二次フィルタの出力に振動が生じる。二次フィルタに入力されるノイズが大きいほど、二次フィルタの出力に生じる振動も大きくなり、振動が大きくなるほど振動の収まりが遅くなる。このため、今回のキャリア周期でノイズ量判定部92が母線電流のノイズが大きいと判定した場合、次回以降のキャリア周期で、母線電流に重畳されたノイズが小さいにもかかわらず、ノイズ量判定部92は母線電流のノイズが大きいと誤判定してしまう可能性がある。そこで、実施例2では、ノイズ判定部80は以下の構成を採る。
 <ノイズ判定部の構成>
 図7は、本開示の実施例2のノイズ判定部の構成例を示す図である。図7に示すノイズ判定部80bは、図1に示すノイズ判定部80に該当する。図7において、ノイズ判定部80bは、第一抽出部91と、ノイズ量判定部92と、電流決定部93、第二抽出部94とを有する。
 <第一抽出部及び第二抽出部の構成>
 図8は、本開示の実施例2の第一抽出部及び第二抽出部の構成例を示す図である。
 図8において、第一抽出部91は、第一ノッチフィルタ911と、第二ノッチフィルタ912と、第一ハイパスフィルタ913と、データ設定部914とを有する。
 また、図8において、第二抽出部94は、入力制御部941と、第三ノッチフィルタ942と、第四ノッチフィルタ943と、第二ハイパスフィルタ944と、データ出力部945とを有する。入力制御部941には、3φ/dq変換部42から検出電流i_detが入力され、ノイズ量判定部92から判定フラグDFが入力される。第三ノッチフィルタ942及び第四ノッチフィルタ943には、位置・速度推定部44から角速度ωeが入力される。データ出力部945には、ノイズ量判定部92から判定フラグDFが入力される。
 ここで、第三ノッチフィルタ942は第一ノッチフィルタ911と同一のフィルタ定数を有するフィルタであり、第四ノッチフィルタ943は第二ノッチフィルタ912と同一のフィルタ定数を有するフィルタであり、第二ハイパスフィルタ944は第一ハイパスフィルタ913と同一のフィルタ定数を有するフィルタである。つまり、第三ノッチフィルタ942は、第一ノッチフィルタ911と同様に式(6.1)~(6.7)に従ってフィルタ処理を行い、第四ノッチフィルタ943は、第二ノッチフィルタ912と同様に式(6.1)~(6.7)に従ってフィルタ処理を行い、第二ハイパスフィルタ944は、第一ハイパスフィルタ913と同様に式(7.1)~(7.6)に従ってフィルタ処理を行う。
 <ノイズ判定部の動作>
 以下、ノイズ判定部80bの動作例について、母線電流のノイズが小さい場合と、母線電流のノイズが大きい場合とに分けて説明する。
 <母線電流のノイズが小さい場合>
 ノイズ量判定部92が母線電流のノイズが小さいと判定した場合、つまり、‘0’にセットされた判定フラグDFが入力制御部941及びデータ出力部945に入力された場合、入力制御部941は、第三ノッチフィルタ942への入力として、検出電流i_detを第三ノッチフィルタ942へ出力する。一方、データ出力部945は動作せず、データ出力部945からフィルタデータFDa,FDb,FDcが出力されないため、データ設定部914も動作しない。また、第一ノッチフィルタ911、第二ノッチフィルタ912及び第一ハイパスフィルタ913は、実施例1において説明したフィルタ処理と同一のフィルタ処理を行う。また、第三ノッチフィルタ942には検出電流i_detが入力されるため、第三ノッチフィルタ942は第一ノッチフィルタ911と同一のフィルタ処理を行い、第四ノッチフィルタ943は第二ノッチフィルタ912と同一のフィルタ処理を行い、第二ハイパスフィルタ944は第一ハイパスフィルタ913と同一のフィルタ処理を行う。
 <母線電流のノイズが大きい場合>
 ノイズ量判定部92が前回のキャリア周期で母線電流のノイズが大きいと判定した場合、つまり、‘+1’または‘-1’にセットされた判定フラグDFが前回のキャリア周期で入力制御部941及びデータ出力部945に入力された場合、前回のキャリア周期では、入力制御部941は、記憶しておいた前々回のキャリア周期での検出電流i_detに所定の加算値を加えた電流(以下では「仮想モータ電流」と呼ぶことがある)を算出し、第三ノッチフィルタ942への入力として、仮想モータ電流を第三ノッチフィルタ942へ出力する。入力制御部941は、前回のキャリア周期で入力された判定フラグDFが‘+1’にセットされていた場合は所定の加算値である+aを前々回のキャリア周期での検出電流i_detに加算し、前回のキャリア周期で入力された判定フラグDFが‘-1’にセットされていた場合は所定の加算値である-aを前々回のキャリア周期での検出電流i_detに加算する。また、所定の加算値±aの絶対値|±a|は、閾値±THNの絶対値|±THN|より小さいことが好ましい。二次フィルタの出力の振動は前回のキャリア周期よりも今回のキャリア周期の方が小さくなるため、所定の加算値±aの絶対値|±a|を、閾値±THNの絶対値|±THN|より小さくしておけば、第一ノッチフィルタ911、第二ノッチフィルタ912及び第一ハイパスフィルタ913で行われる後述のフィルタ処理により得られる出力の振動は、今回のキャリア周期で閾値±THNを超えない範囲に抑えられる。つまり、ノイズ量判定部92が母線電流のノイズが大きいと誤判定しない程度までノイズの影響が低減された仮想モータ電流が得られる。また、所定の加算値±aは、更新後の閾値±THNに応じて定められる可変の値であっても良い。このように、母線電流のノイズが大きいと判定されたときの検出電流i_detに所定の加算値±aが加えられることにより、ノイズの影響が低減された仮想モータ電流が得られる。なお、検出電流i_detはキャリア周期毎に時系列にノイズ量判定部92に記憶される。
 また、ノイズ量判定部92が前回のキャリア周期で母線電流のノイズが大きいと判定した場合、前回のキャリア周期で、第三ノッチフィルタ942及び第四ノッチフィルタ943は、前回のキャリア周期での仮想モータ電流に基づいて式(6.1)~(6.7)に従ってフィルタ処理を行い、第二ハイパスフィルタ944は、前回のキャリア周期での仮想モータ電流に基づいて式(7.1)~(7.6)に従ってフィルタ処理を行う。つまり、ノイズ量判定部92が前回のキャリア周期で母線電流のノイズが大きいと判定した場合、前回のキャリア周期で、第三ノッチフィルタ942、第四ノッチフィルタ943及び第二ハイパスフィルタ944は、式(6.1)~(6.7)及び式(7.1)~(7.6)における“x[k]”を検出電流i_detから仮想モータ電流に替えることにより、仮想モータ電流に基づいて式(6.1)~(6.7)及び式(7.1)~(7.6)に従ってフィルタ処理を行うことにより、仮想モータ電流に含まれるノイズ成分(以下では「仮想ノイズ成分」と呼ぶことがある)y[k]を仮想モータ電流から抽出する。
 また、ノイズ量判定部92が前回のキャリア周期で母線電流のノイズが大きいと判定した場合、今回のキャリア周期で、データ出力部945は、第三ノッチフィルタ942におけるx[k-1]及びy[k-1]をフィルタデータFDaとしてデータ設定部914へ出力し、第四ノッチフィルタ943におけるx[k-1]及びy[k-1]をフィルタデータFDbとしてデータ設定部914へ出力し、第二ハイパスフィルタ944におけるx[k-1]及びy[k-1]をフィルタデータFDcとしてデータ設定部914へ出力する。データ設定部914は、今回のキャリア周期で、データ出力部945から入力されたフィルタデータFDaを第一ノッチフィルタ911に設定し、データ出力部945から入力されたフィルタデータFDbを第二ノッチフィルタ912に設定し、データ出力部945から入力されたフィルタデータFDcを第一ハイパスフィルタ913に設定する。これにより、今回のキャリア周期では、第一抽出部91において、前回のキャリア周期でのx[k-1]及びy[k-1]が今回のキャリア周期でデータ出力部945から入力されたx[k-1]及びy[k-1]に置き換えられた上で、第一ノッチフィルタ911、第二ノッチフィルタ912及び第一ハイパスフィルタ913によるフィルタ処理が行われる。
 <ノイズ判定部における処理手順>
 図9は、本開示の実施例2のノイズ判定部における処理手順の一例を示すフローチャートである。
 図9において、ステップS100では、前回のキャリア周期で、第一抽出部91は、検出電流i_detからノイズ成分i_noを抽出する。
 次いで、ステップS105では、前回のキャリア周期で、ノイズ量判定部92は、ノイズ成分i_noの絶対値が閾値±THNの絶対値以上であるか否か、つまり、母線電流のノイズが大きいか否かを判定する。母線電流のノイズが大きいと判定されたときは(ステップS105:Yes)、処理はステップS110へ進み、母線電流のノイズが小さいと判定されたときは(ステップS105:No)、処理はステップS125へ進む。
 ステップS110では、入力制御部941は、前々回のキャリア周期での検出電流i_detに所定の加算値±aを加えることにより仮想モータ電流を算出し、検出電流i_detに替えて仮想モータ電流を第三ノッチフィルタ942への入力とする。
 次いで、ステップS115では、前回のキャリア周期で、第三ノッチフィルタ942、第四ノッチフィルタ943及び第二ハイパスフィルタ944は、前回のキャリア周期での仮想モータ電流に基づいてフィルタ処理を行う。
 次いで、ステップS120では、今回のキャリア周期で、データ設定部914は、第一ノッチフィルタ911、第二ノッチフィルタ912及び第一ハイパスフィルタ913におけるx[k-1]及びy[k-1]を、前回のキャリア周期で仮想モータ電流に基づいて第三ノッチフィルタ942、第四ノッチフィルタ943及び第二ハイパスフィルタ944がフィルタ処理を行った際のx[k-1]及びy[k-1]に置き換え、第一ノッチフィルタ911、第二ノッチフィルタ912及び第一ハイパスフィルタ913は、置き換えられた後のx[k-1]及びy[k-1]を用いて検出電流i_detに対するフィルタ処理を行う。
 一方で、ステップS125では、入力制御部941は、検出電流i_detを第三ノッチフィルタ942への入力とする。
 次いで、ステップS130では、第三ノッチフィルタ942、第四ノッチフィルタ943及び第二ハイパスフィルタ944は、検出電流i_detに基づいてフィルタ処理を行う。
 以上、実施例2について説明した。
 以上のように、本開示のモータ制御装置(実施例のモータ制御装置100)は、インバータ(実施例のインバータ10)と、検出部(実施例の電流検出部21)と、算出部(実施例の3φ電流算出部61)と、第一抽出部(実施例の第一抽出部91)と、判定部(実施例のノイズ量判定部92)とを有する。インバータは、直流電源から供給される直流電圧を交流電圧に変換し、変換後の交流電圧をモータ(実施例のモータM)に印加する。検出部は、直流電源とインバータとの間に接続された抵抗(実施例のシャント抵抗Rs)を用いてインバータの母線電流を検出する。算出部は、母線電流に基づいてモータに流れるモータ電流を算出する。第一抽出部は、モータ電流に含まれるノイズ成分をモータ電流から抽出する。判定部は、抽出されたノイズ成分に基づいて母線電流のノイズの大きさを判定する。
 こうすることで、精度の高い電流値を用いてモータの制御を行うにあたり、母線電流のノイズの大きさを判定するために上記の先行技術が必要としたオフセット電圧が不要になる。そのため、オフセット電圧を取得するための回路や、オフセット電圧をサンプリングするためのA/D変換器が不要になる。よって、モータ制御装置における部品点数の増加を抑えつつ、精度の高い電流値を用いてモータの制御を行うことができる。また、オフセット電圧をサンプリングするためのA/D変換器が不要になるため、オフセット電圧のサンプリングに用いていたA/D変換器を別の用途に使用することが可能になる。
 また、第一抽出部は、モータ電流からノイズ成分と異なる非ノイズ成分を除去することによりノイズ成分を抽出する。例えば、第一抽出部は、モータの回転数に依存する高調波成分を含む周波数成分を非ノイズ成分としてモータ電流から除去することによりモータ電流に含まれるノイズ成分をモータ電流から抽出する。また例えば、第一抽出部は、モータの負荷の脈動に起因する周波数成分を非ノイズ成分としてモータ電流から除去することによりモータ電流に含まれるノイズ成分をモータ電流から抽出する。また例えば、第一抽出部は、モータ電流の平均値であるオフセット成分を非ノイズ成分としてモータ電流から除去することによりモータ電流に含まれるノイズ成分をモータ電流から抽出する。
 こうすることで、ノイズ成分を正確に抽出することができる。
 また、判定部は、ノイズ成分が閾値未満であるときに母線電流のノイズが小さいと判定し、ノイズ成分が閾値以上であるときに母線電流のノイズが大きいと判定する。また、判定部は、母線電流のノイズが小さいと判定したとき、ノイズが小さいと判定したときのノイズ成分に基づいて閾値を更新する。一方で、判定部は、母線電流のノイズが大きいと判定したとき、閾値を更新しない。
 例えば、判定部は、所定期間において母線電流のノイズが小さいと判定したときの所定期間におけるノイズ成分のピーク値に基づいて閾値を更新する。
 また例えば、所定期間は、モータの回転に伴ってモータの負荷が脈動する周期である負荷脈動周期である。
 こうすることで、電流値の精度に影響しない定常的なノイズによって母線電流のノイズが大きいと誤判定されてしまうことを防止できる。また、大きなノイズであるにもかかわらず定常的なノイズであると誤判定(ノイズが小さいと誤判定)されてしまうことを防止できる。したがって、ノイズ判定を正確に行うことができる。
 また、第一抽出部は、前回のキャリア周期で算出されたモータ電流と、前回のキャリア周期で抽出したノイズ成分と、今回のキャリア周期で算出されたモータ電流とに基づいてフィルタ処理を行うことにより、モータ電流から非ノイズ成分を除去してモータ電流に含まれるノイズ成分をモータ電流から抽出する。
 こうすることで、ノイズ成分をさらに正確に抽出することができる。
 また、本開示のモータ制御装置は、第二抽出部(実施例の第二抽出部94)を有する。第二抽出部は、前回のキャリア周期において判定部によって母線電流のノイズが大きいと判定されたときに、今回のキャリア周期で、ノイズの影響が低減された仮想モータ電流と、仮想モータ電流に含まれる仮想ノイズ成分とを第一抽出部へ出力する。
 例えば、第一抽出部は、所定のフィルタ定数を用いてフィルタ処理を行い、第二抽出部は、第一抽出部における所定のフィルタ定数と同一のフィルタ定数を用いて、仮想モータ電流に基づいてフィルタ処理を行うことにより仮想モータ電流に含まれる仮想ノイズ成分を仮想モータ電流から抽出する。
 また例えば、第一抽出部は、前回のキャリア周期において判定部によって母線電流のノイズが大きいと判定されたときに、今回のキャリア周期では、前回のキャリア周期で算出されたモータ電流及び前回のキャリア周期で抽出したノイズ成分を、今回のキャリア周期で第二抽出部から入力された仮想モータ電流及び仮想ノイズ成分に置き換えてフィルタ処理を行う。
 また例えば、第二抽出部は、前々回のキャリア周期で算出されたモータ電流に所定の加算値を加えることにより仮想モータ電流を算出する。また、所定の加算値は、第一抽出部が抽出したノイズ成分の符号と同一の符号を有し、かつ、所定の加算値の絶対値はノイズ成分の閾値の絶対値より小さい。
 こうすることで、今回のキャリア周期で判定部が母線電流のノイズが大きいと判定した場合であっても、次回以降のキャリア周期で、第一抽出部の出力の振動を抑制することができる。したがって、母線電流に重畳されたノイズが小さいにもかかわらず、母線電流のノイズが大きいと誤判定されてしまうことを防止できる。
 100 モータ制御装置
 10 インバータ
 21 電流検出部
 61 3φ電流算出部
 91 第一抽出部
 92 ノイズ量判定部
 94 第二抽出部

Claims (12)

  1.  直流電源から供給される直流電圧を交流電圧に変換し、前記交流電圧をモータに印加するインバータと、
     前記直流電源と前記インバータとの間に接続された抵抗を用いて前記インバータの母線電流を検出する検出部と、
     前記母線電流に基づいて前記モータに流れるモータ電流を算出する算出部と、
     前記モータ電流に含まれるノイズ成分を前記モータ電流から抽出する第一抽出部と、
     前記ノイズ成分に基づいて前記母線電流のノイズの大きさを判定する判定部と、
     を具備するモータ制御装置。
  2.  前記第一抽出部は、前記モータ電流から前記ノイズ成分と異なる非ノイズ成分を除去することにより前記ノイズ成分を抽出する、
     請求項1に記載のモータ制御装置。
  3.  前記判定部は、
     前記ノイズ成分が閾値未満であるときに前記母線電流の前記ノイズが小さいと判定し、
     前記母線電流の前記ノイズが小さいと判定したときの前記ノイズ成分に基づいて前記閾値を更新する、
     請求項1に記載のモータ制御装置。
  4.  前記判定部は、所定期間において前記母線電流の前記ノイズが小さいと判定したときの前記所定期間における前記ノイズ成分のピーク値に基づいて前記閾値を更新する、
     請求項3に記載のモータ制御装置。
  5.  前記所定期間は、前記モータの回転に伴って前記モータの負荷が脈動する周期である負荷脈動周期である、
     請求項4に記載のモータ制御装置。
  6.  前記第一抽出部は、前記モータの回転数に依存する高調波成分を含む周波数成分を前記非ノイズ成分として前記モータ電流から除去することにより前記モータ電流に含まれる前記ノイズ成分を前記モータ電流から抽出する、
     請求項2に記載のモータ制御装置。
  7.  前記第一抽出部は、前記モータの負荷の脈動に起因する周波数成分を前記非ノイズ成分として前記モータ電流から除去することにより前記モータ電流に含まれる前記ノイズ成分を前記モータ電流から抽出する、
     請求項2に記載のモータ制御装置。
  8.  前記第一抽出部は、前記モータ電流の平均値であるオフセット成分を前記非ノイズ成分として前記モータ電流から除去することにより前記モータ電流に含まれる前記ノイズ成分を前記モータ電流から抽出する、
     請求項2に記載のモータ制御装置。
  9.  前記インバータは、PWM制御によって前記交流電圧を前記モータに印加し、
     前記判定部は、前記ノイズ成分が閾値以上であるときに前記母線電流の前記ノイズが大きいと判定し、
     前記第一抽出部は、前回のキャリア周期で算出された前記モータ電流と、前回のキャリア周期で抽出した前記ノイズ成分と、今回のキャリア周期で算出された前記モータ電流とに基づいてフィルタ処理を行うことにより、前記モータ電流から前記非ノイズ成分を除去して前記モータ電流に含まれる前記ノイズ成分を前記モータ電流から抽出し、
     前回のキャリア周期において前記判定部によって前記母線電流の前記ノイズが大きいと判定されたときに、今回のキャリア周期で、前記ノイズの影響が低減された仮想モータ電流と、前記仮想モータ電流に含まれる仮想ノイズ成分とを前記第一抽出部へ出力する第二抽出部、をさらに具備する、
     請求項2に記載のモータ制御装置。
  10.  前記第一抽出部は、所定のフィルタ定数を用いて前記フィルタ処理を行い、
     前記第二抽出部は、前記所定のフィルタ定数と同一のフィルタ定数を用いて、前記仮想モータ電流に基づいてフィルタ処理を行うことにより前記仮想モータ電流に含まれる前記仮想ノイズ成分を前記仮想モータ電流から抽出する、
     請求項9に記載のモータ制御装置。
  11.  前記第一抽出部は、前回のキャリア周期において前記判定部によって前記母線電流の前記ノイズが大きいと判定されたときに、今回のキャリア周期では、前回のキャリア周期で算出された前記モータ電流及び前回のキャリア周期で抽出した前記ノイズ成分を、今回のキャリア周期で前記第二抽出部から入力された前記仮想モータ電流及び前記仮想ノイズ成分に置き換えて前記フィルタ処理を行う、
     請求項9に記載のモータ制御装置。
  12.  前記第二抽出部は、前々回のキャリア周期で算出された前記モータ電流に所定の加算値を加えることにより前記仮想モータ電流を算出し、
     前記所定の加算値は、前記第一抽出部が抽出したノイズ成分の符号と同一の符号を有し、かつ、前記所定の加算値の絶対値は前記閾値の絶対値より小さい、
     請求項9に記載のモータ制御装置。
PCT/JP2023/029412 2022-08-31 2023-08-14 モータ制御装置 WO2024048258A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022138681A JP7459906B2 (ja) 2022-08-31 2022-08-31 モータ制御装置
JP2022-138681 2022-08-31

Publications (1)

Publication Number Publication Date
WO2024048258A1 true WO2024048258A1 (ja) 2024-03-07

Family

ID=90099328

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/029412 WO2024048258A1 (ja) 2022-08-31 2023-08-14 モータ制御装置

Country Status (2)

Country Link
JP (1) JP7459906B2 (ja)
WO (1) WO2024048258A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008086124A (ja) * 2006-09-27 2008-04-10 Mitsubishi Electric Corp 電動機制御装置、電気掃除機及び手乾燥装置
JP2009261101A (ja) * 2008-04-15 2009-11-05 Jtekt Corp モータ制御装置
JP2017034897A (ja) * 2015-08-04 2017-02-09 東芝ライフスタイル株式会社 モータ制御装置及び洗濯機

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008086124A (ja) * 2006-09-27 2008-04-10 Mitsubishi Electric Corp 電動機制御装置、電気掃除機及び手乾燥装置
JP2009261101A (ja) * 2008-04-15 2009-11-05 Jtekt Corp モータ制御装置
JP2017034897A (ja) * 2015-08-04 2017-02-09 東芝ライフスタイル株式会社 モータ制御装置及び洗濯機

Also Published As

Publication number Publication date
JP7459906B2 (ja) 2024-04-02
JP2024034451A (ja) 2024-03-13

Similar Documents

Publication Publication Date Title
KR101109067B1 (ko) 영구자석 모터의 위치 센서리스 제어장치
JP5761243B2 (ja) モータ制御装置および磁極位置推定方法
JP4881635B2 (ja) 永久磁石モータのベクトル制御装置
US8154231B2 (en) Motor controller and vehicular steering system using said motor controller
KR100850415B1 (ko) 유도 전동기의 벡터 제어 장치
JP3582505B2 (ja) モーター制御装置
JP5168536B2 (ja) モータ制御装置
US20170264227A1 (en) Inverter control device and motor drive system
JP2003061386A (ja) 同期電動機駆動システム
JP6984399B2 (ja) 電力変換器制御装置
JPH1189297A (ja) 電力変換装置
JP3637209B2 (ja) 速度センサレスベクトル制御を用いた電力変換装置
WO2020217764A1 (ja) 電力変換装置およびそれを備えた電動車両システム
WO2024048258A1 (ja) モータ制御装置
JP2005160199A (ja) 3相交流電動機の制御装置および制御方法
JP7063240B2 (ja) 回転電機の制御装置
EP3823159B1 (en) Control device for electric power steering device
JP5996485B2 (ja) モータの駆動制御装置
JP6695497B2 (ja) モータ制御装置
JP3506053B2 (ja) 電気角計測装置、および電気角計測方法
JP5546754B2 (ja) 電気車制御装置
JP5325556B2 (ja) モータ制御装置
JP4038412B2 (ja) ベクトル制御インバータ装置
JP2024034452A (ja) モータ制御装置
JP2022153006A (ja) モータ制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23860023

Country of ref document: EP

Kind code of ref document: A1